by
MARILYN STAYTON BUNYAN
B. A., Southwestern College Winfield, Kansas, 1954

A THESIS
submitted in partial fulfillment of the requirements for the degree

MASTER OF SCIENCE

Department of Foods and Nutrition

KANSAS STATE COLLEGE
OF AGRICULTURE AND APPLIED SCIENCE
TARLE OF CONTEITTS
INT'RODUCTION 1
REVIMR OF LITYRATURE 1
Yuscle Composition and Structure 1
Muscle Fibers 2
Connective Tissues 3
Collagenous Connective Tissue 3
Elastic Connective Tissue 4
Amorphous Ground Substance 4
Adipose Tissue 5
Variations in Tenderness 6
Differences Within a Muscle 6
Differences Between Miscles 7
Differences Between Animals 7
Factors Affecting Tenderness 8
Age and liutritional Level 8
Aging Time, Temperature and Humidity 9
Rate of lieat Penetration and Method of Cooking 11
Effect of Cooking 13
on Color 13
On Aroma and Flavor 14
On Tenderness 14
on Juiciness 15
PROCEDURE 17
RESULTS AND DISCUSSION 39
Rate of Heat Penetration 39
Aroma and Flavor 56
Tenderness and Shear Force Values 59
Juiciness and Related Factors 62
SUMMARY 73
ACKNOVLEDGMENTS 77
LITERATURE CITED 78
APPENDIX 82

IlITRODUCTION

Tondernegs is an important factor in determining the accoptability of moat. A bottor understanding is nooded of the offect that the dogreo of cooking has on the tondernoss of moat. Genorally, it is believod that during hoating, the mascle fibers become less tonder when the protoplasnic proteins coagulate; whoreas, simultanoously tondornoss may bo incroasod as the connective tissue is softoned and partially hydrolyzod. At timos the se changes in connoctivo tissuo may increase the tondorness of cookod mat more than the coagulation of tho protoplasmic protoins docrease tenderness.

The purpose of this study was to detormino the changes that occur, mainly in tenderness, during tho oven roasting of cuts from cortain beef muscles. The roasts vero cooked to internal temperatures of $55^{\circ}, 70^{\circ}$ and $85^{\circ} \mathrm{C}$. Which ropresented rare, medium and well-done, rospectively. Differences in tondemoss as voll as other palatability faciors vore moasured subjectively and objectively to determino any changes that might occur which could be attributed to the internal tomperature to which the moat was roastod.

REVIFN OF LITERATURE

Muscio Composition and Structuro

All muoclos are mado up of oloncated, cylindrical and multinuclouted fibors surrounded by sarcoloma (Lowe, 1955). Theso
fibers may originate or terminate in a tendon or within a muscie and are made up of fibrils which are bathed in an interfibrillar substance, sarcoplasm. Fibers are surroundod by endomysium and are grouped together as bundles or fasciculi and these are surrounded by the perimysium. Several bundles in turn, are surrounded by the epimysium or muscle sheath and constitute a muscle.

Muscle Fibers. The fibrils in a muscle fiber are made up of alternate dark (A or Q) and light (I or J) bands which are coinshaped and are called sarcomers (Szent-Györgi, 1951 and Lowe, 1955). In some fibers a dark band (Z) is found dividing the light band. These bands or sarcomers are thought to give muscle fibers a cross-striated appearance; whereas, the fibrils themselves are responsible for the longitudinal striations. The longitudinal striations are associated with tendernoss as they are more distinct right after death and then less distinct as the moat is aged. The number of fibers in an animal are predetermined and remain constant after birth (Lowe, 1955). The muscle fibers in 50 bundles from four muscles were counted by Brady (1937). He also measured the diameter of 50 fibers. No significant differonce in fiber diameter was found botweon muscles but there was a significant difference in number of fibers per bundle from the different muscles. He noted that the larger bundles indicated finer texture and consequently resulted in more tender meat. The proteins thus far isolated in muscle fibers were listed by Lowe (1955) as globulin x, myoalbumin, tropomyosin, myogen and
mosin combinod with actin. The latter two were considered by Szent-Gyorg1 (1951) as the most important of these and were noted to be colloidal in nature. Nyosin was thought by szent-Gyögi (1948) to be an inactive skoleton to which were attached a number of Blobular proteins callod protins without which myosin was inactivo. Other cherical constituents found in muscle are water, inorganic and organic salts, carbohydrates, fat, lipids, pigments, enzymes, vitamins, nitrogenous substances and non-nitrogenous substances such as lactic acid (Maximow and Bloom, 1952; Love, 1955 and Szent-Györgi, 1951).

Connective Tissues. A small number of cells and much intercellular substance is characteristic of connective tissue. It has many forms, some is loose as betreen the organs, some 18 compact as in tendon and othor is dense as in cartilage (Lowe, 1955). It can be distinguished as collagerous or elastic and as amorphous ground substance. All three types of connective tissue usually are found together and thus the classification of a given area of connective tissue will be that which is most prodominate.

The thicknoss of the perimysium and the epimysium and the amount of sarcoplasm have a direct effect on tenderness; the more of these present, the less tender the meat.

Collagenous Connective Tissue. The main function of collagenous tissue is to bind and support other tissues. The collagenous fibers often occur in bundes, are flexible but not elastic, are wavy in appearance and may be stretchod until the waves disappoar (Lowe, 1955). The fibers in themsolves are colorless and bireIringent but when bunched together appear white and the tissue
often is called white connective tissue. Tendons, blood vessels and the sarcolema are composed mainly of collagenous connective tissue.

Collagen is the main protein in this tissue. The chemical composition of collagen has been considered to be similar to that of gelatin as collagen may be converted to gelatin to some extent in the presence of heat and water (Lowe, 1955 and Winegarden et a1., 1952). Proline and hydroxyproline vere indicated as the main amino acid residues in gelatin. Probably, the sequence of the collagen backbone chain could be proline, Elycine, another amino acid and hydroxyproline. X-ray patterns of collagen indicated that the chains were of a somewhat compact, folded, spiral alpha form and upon denaturation were changed to a beta form.

Elastic Connective Tissue. Elastin is the major protein found in elastic connective tissue. The ilbers of this tissue are straight in their natural position but often appear wavy when teased onto a slide (Maximow and Bloom, 1952). They yiold easily to stretching and when released return practically to their former length (Lowe, 1955). This tissue often is called yellow connective tissue as when elastic fibers are massod together in a Iigament they appear to have a Jellow color. When heated in the presence of water, the elastic connective tissue is softened slightly but not to the same extent as the collagenous connoctive tissue.

Amorphous Ground Substance. The collagenous and elastic fibers of connective tissue are embeddod in a homocenous matrix
called the amorphous ground substance which has a consistency that varies from a fluid to a gel. In general, little is known about this substance. However, Miller and Kastelic (1956) postulated that ground substance is composed of mucopolysaccharides and mucopolysaccharide-protein complexes present in different degrees of polymerization.

Adipose tissue. Adipose tissue consists mainly of fat, but other substances such as water, minerals and proteins are present. As fat is deposited in certain cells of a beef animal, the cell walls, composed mainly of collagenous connective tissue, become thinner end finally rupture. Connective tissue then becomes a part of fatty tissue (Lowe, 1955). The deposition of fat occurs first in subcutaneous areas and around the internal organs, then around and between muscles and finally intramuscularly which may be between a few or many muscle fibers. The amount of intramuscular fat deposited varies in different muscles.

Some workers have agreed that fat plays a part in the tenderness of meat. Wang et al. (1954) indicated that the manner in which fat was distributed throughout the muscle appreciably affected the tenderness. This distribution, they called the protein-fat interphase, that is the emount of surface contact between the fat cell and muscle protein (either or both, actomyosin and collagen). According to these workers, this distribution of fat in raw samples could be determined quantitatively by measuring the longest axis of each fat island and expressing the sum as "Iinear" fat. The scores for tenderness of broiled beef steaks
correlated well with the "linear" fat of the raw ruscie. The higher the amount of "Iinear" fat, the more tender the cooked meat. These data could assist in explaining the possible beneficial effect of marbling. Hiner et al. (1955) also agreed that beef from vell-fattened animels usually was more tender than meat from lean animals.

Variations in Tenderness

Differences Within 旦 Muscle. Tendernoss of certain of the beef muscles has been shown to vary within a given muscle. This was true in the semimembranosus muscle (Paul anci Bratzler, 2955b) in which steaks from the anterior portion were more tender than those from the center portion which in turn were more tender than those from the posterior end. In another study by the se same workers (1955a), steaks from eight pairs of longissimus dorsi muscles from U. S. Prime, Good and Commercial erade beef animals were, in most cases, more tender from the anterior portion of the muscle than those from the posterior ond. In contrast, Ramsbottom et al. (1945) found that in the longissimus dorsi muscle from three U. S. Good carcasses, the posterior end was more tender than the anterior. Noble et al. (1934) used roasts from ll Choice and Medium grade beef animals and found no pronounced tendency for the longissimus dorsi to become less tender from the posterior to the anterior end.

The psoas major was found to vary slightly in tenderness by Ramsbottom et al. (1945), in that, lower shear values were noted
for the cores for the midde section than for those for either the anterior or posterior end. Steaks from the adductor muscle from U. S. Prime and Good beof carcasses also were quite uniform In shear tendorness rogardiess of position of the steak, treatment or erade of animal (Paul and Bratzler, 1955b).

Differences Between Muscles. The relative tenderness of 50 muscles of a boef carcass was determined by Ramsbottom and Strandine (1948) by the use of shear values on raw and cooked samples. The raw muscles were ranked in order of most to least tender as follows: longissimus dorsi, psoas major, adductor, vastus lateralus, semimembranosus, rectus femoris and semitendinosus. Vhereas, the cooked muscles ranked thus in order of most to least tendor: psoas major, longissimus dorsi, rectus femoris, adductor, semitendinosus, vastus lateralus and semimembranosus. The psoas major also was reported as the most tender of all cooked beof muscles in an earlier paper from this same laboratory (Ramsbotton et al., 1945) and is in agreement with studies by Jacobson and Fenton (1956) and Hinor and Hankins (1950). The results of a study reported by Clark and VanDuyne (1949) were in conflict with those of Ramsbottom and Strandine (1948). The Illinois workers found that the cooked semimembranosus muscle of U. S. Prime and Choice beef animals was significantly more tender than the adductor muscle.

Differonces Between Animal 3. The tenderness of beef carcasses varies considerably oven within a U. S. grade. Paul and Bretzler (1955b) compared the tenderness of the semimembranosus muscle
from U. S. Prime and Cood carcasses. They found more variation in tenderness among the muscles from carcasses of the same grade (U. S. Good) than among muscles from carcasses of the two grades. Similar results were not obtained with other muscles. These same workers (Paul and Bratzler, 1955 a) reported that U. S. Prime grade steaks from the longissimus dorsi muscle were more tender than U. S. Good or Commercial grade steaks from the same muscle. Differences in tenderness and other palatability factors of meat from U. S. Choice, Good and Commercial grade beef carcasses were reported by simone et al. (1958) to become more apparent with increasingly wider differences in the degree of finish and carcass grado. These differences were not apparent unless carcasses with a moderate finish were compared with carcasses of a rather high degree of finish.

Factors Affecting Tenderness

Age and Nutritional Level. Meat from animals of varying ages often differ in tenderness. In a study by Hiner and Hankins (1950), it was noted that generally as age of the animals increased, tenderness of each of the muscle samples representing nine principal cuts decreased. The beef muscles used were from cows, heifers, stoers, steer calves and veal calves. No significant difference in tenderness was noted between the muscle samples from veal and those from steer calves, but the differenco between the samples from veal calves and those from cows was highly significant. A decrease in tenderness of beef muscles with an increase
in age of the animal also was noted by Mackintosh et al. (1936) and Jacobson and Fenton (1956).

Nutritional level of the animal as well as age has an effect on the teaderness of beef muscles. Jacobson and Fenton (1956) maintained 24 heifers, 32 to 80 woeks old, at high, medium and low levels of nutrition. The longissimus dorsi muscle from the animals on the higher nutrition level showed significantly highor tenderness scoros than for this muscle from animals on the lower level. This was not true of the psoas major, in that, tenderness scores were similar regardless of nutritional level of the animal. Aging Time, Temperature and Humidity. The tenderness of a carcass is affected by tho conditions under which it is aged. Rigor mortis or the stiffening of muscles occurs soon after the doath of an enimel. This rigidity of tho muscle (Szent-Györgi, 1951) was attributed to the permanent combination of the muscle proteins, myosin and actin, into actomyosin, the disintegration of adenosine triphosphate (ATP) and the breakdown of glycogen into lactic acid. With death this contraction reaction is irreversible Fhereas in normal muscle, contraction is reversed by rolaration. The histological appearance of the fibers of beef also changes with the onset and passing of rigor. Paul et al. (1952) rave described the fibers of fresh beef as atraight, poorly differentifted but with quite prominent longitudinul strietions. With the severe contraction of muscie and the onset of rigur, rigor nodes and $Z-2$ contractions appeared in the nuscle fibers. As rigor diminished, the nuscles tended to relax and the fivers became
fairly straight. They thought that active muscle contraction contributed to the toughness of beef; whereas, with relaxation, passing of rigor, and consequent broakdown of the fibers, the meat became more tender. This process takes place by enzymatic action When the beef carcass is aged usually at refrigerator temperatures. The extent of aging following slaughter is one of the important determinants of tenderness (Paul, 1957). Beef from 10 J. S. Choice to Common grado carcasses was used by Ramsbottom and Strandine (1949) to study the changes in tenderness during a 12 day holding period at $35^{\circ} \mathrm{F}$. The beef was more tender at two hours following slaughter than at any time thereafter up to six days. However, from the sixth to the twelfth day of aging, the beef progressively increased in tenderness. By the twelfth day, the beef was considerably more tender than it was at two hours after slaughter. In contrast, 14 beef carcasses were aged at 33° to $35^{\circ} \mathrm{F}$. for longer periods by Deatherage and Harsham (1947). When the initial tondernoss was high as in the case of two carcasses, only a small increase in tenderness was noted following aging. However, in the other 12 carcasses, tonderness usually increased up to 17 days and then developed a plateau. At 24 days there was a slight drop in tendernsss and at 31 days there was some increase beyond that for the 17 day level. These workers stated that this work indicated that unless beef was to be aged over four weeks, it needed only two and one-half weeks of aging. However, a shorter aging period was recommended by Paul et al. (1956) who indicated that boof aged more than seven days did not increase significantly in tenderness.

Ten beef carcasses were subjected to three suries of storage treatments by Griswolc and prarton (1941). They found small differencos in tenderness betveen meat stored at 34° F. for nine or 37 days. Thore was littlo ilfference in tonderness of meat stored for 48 hours at 600 F . Without ultra-violet irradiation and that stored at 600 F . for 48 hours with ultra-violet light. But Then meat stored at 360 F . Without irradiation was compared with mat stored at 60°. with irradiation, the tendernoss was sifghty greator in tho meat stored at the hisher tomperature. sleeth et al. (2958) stored U. S. Choice and Good beef hindquartors, forequarters and wholesale ribs at tomperatures of $360,40^{\circ}, 57^{\circ}, 680$, 76°, and $86^{\circ} \mathrm{F}$. under relative humidities of 80 to 90 percent and air velocities of 15 to 20 Ineal feet per minute. Ultru-violet light was used with the elovated tomperatures to control microbial Growth. Tendorness scores fol the beef quarters aged two to three daye at the higher temperatures under ultra-violet mero comparable to those aged $i 2$ to 14 days at 36° to $40^{\circ} \mathrm{F}$. They found that proper kumidity was neoded in the aging room to lossen shrinkage and disccluration of the meat when higher storage temperatures were usod.

Fate of Heat Penetration and Method of Ccoking. Wany changes occur in meat when it is cooked. Rato of heat penetration and subsequent coagulation of the muscio proteins are important determinants of these changes. The temporature at which coagulation beging is dependent on the rate at which cooking occurs. Lowe (1955) indicatod that in most cases coagulation of the ruscle proteins begins at approximately $60^{\circ} \mathrm{C}$.

Beef roasts always were found by Cover (1943) to be tender when the rate of heat penetration was slow enough to require 30 hours or more for the meat to lose its pink color. Throe pair of beef roasts were cooked well-done and one pair rare at oven temperatures of 80° and $125^{\circ} \mathrm{C}$.

The right and left semimembranosus muscles were divided into thick and thin cuis and roasted at 300° and $350^{\circ} \mathrm{F}$., respectively by Hood et al. (1955) to an internal temperature of $176^{\circ} \mathrm{F}$. The internal temperature of these cuts was recorded every three minutes until $170^{\circ} \mathrm{F}$. was reachod and then after every minute until the end temperature was obtained. The internal temperatures tended to lag around $160^{\circ} \mathrm{F}$. for the thin cuts cooked at 350 F . and at $150^{\circ} \mathrm{F}$. for the thick cuts cooked at $300^{\circ} \mathrm{F}$.

The right and left somitendinosus and biceps femoris muscles were dissected from six beef animals by Paul et al. (1952) and divided into three adjacent pairs of one-inch steaks and three to four-inch roasts. The roasts were cooired in the oven at $163^{\circ} \mathrm{C}$. to an internal temperature of $63^{\circ} \mathrm{C}$.; the staaiks were cooked in deep-fiat at $147^{\circ} \mathrm{C}$. to $63^{\circ} \mathrm{C}$. The deep-iat cooking required less tirne than the roasting which reflected the efficiency of hoat transfer.

Roasts from beef muscles rather than steaks were cooked in deep-fat by Visser (1957). Falrly straight heat penetration curves were noted for the smaller roasts; whereas, the more blocky, compact roasts had longer more sloping curves. However, the rate of heat penetration had no offect on either the tenderness scores or shear force values for the roasts. The larger roasts appeared
to be more "done" than the smaller ones cooked to the same internal temperature. In preliminary work by Jacobson and Fenton (1956) large roasts also seemed to be more "done" than small roasts cooked to the same internal temperature.

Effoct of Cooking

Meat is cooked to mako it more palacable and certain changes occur with cooking. The extent of these changes might be alight or great and are denendent upon the degree to which the meat is cooked. Some of the more prominent changes thet occur are in color, aroma, flavor, tenderness and juiciness.
on Color. Myoglobin is tho insin piement in muscle tissue and has a close relationship in structure to hemoglobin (Lowe, 1955). It is mainly responsible for the dark red color of freshly cut beef and with exposure to eir, it is combined with oxygen to form oxymyoglobin, a bright red piement. Vith continued exposure to air, the oxymyoglobin may be oxidized to metmyoglobin, a brown pigment. The myoglobin pigment, like heaoglobin, is unstable to heat (Lowe, 1955). Decomposition products are formed when fresh meat is heated to sufficiently high temperatures and according to Lowe (1955) this change begina when internal temperatures of approximately 65° to $70^{\circ} \mathrm{C}$. are reached. At these temperatures the globulin portion of the picment molecule begins to coagulate and the newly-formed hemetin pienent is responsible for the gray or brown color. The rate of heat penetrution may effect the temperature at which myoglobin starts to coagulate. lith long, slow
cooking the decomposition of this pigment may take place at lower internal temperatures than if the meat is heated rapidiy.

On Aroma and Flavor. Aroma and flavor are two components of palatability that aro difficult to differentiate. It has been said (Howe, 1927) that in cooked meat, the most prominent flavors are found as odors.

Crocker (1948) found that the flavor of raw meat was mostly in the juices and was weak, sweet, salty and blood-like. Whis characteristic raw meat flavor sometimes could bo detected in beef cooked to low internal temperatures. The flavor of cooked meat was attributed mainly to the breakdown of the side chain amino acid units of muscle fiber proteins. The breakdown compounds isolated vere ammonia, mines, hydrogen sulfide and various acids which indicated that a variety of amino acids were changed during cooking. The characteristic flavors of cooked meat increased with longer cooking up to about three hours but with prolonged cooking these flavors seemed to be lost (Crocker, 1948).

On Tenderness. Tenderness of meat is closely related to other palatability factors and has considerable influence on its accoptance. The oase with which a piece of meat is chewed is related to the fineness of the grain, the quantity of connective tissue and the hardness of the fibers.

Tenderness has been measured organoleptically by subjective scoring and by the recording of the number of chews needed to completely masticate a sample of meat of standard surface area and thickness. Paul and Bean (1956) found that counting the number of chews was an effective method for measuring tenderness, but
they had difficulty in obtaining similar sizo pieces of meat for each trial.

Shear values obtainod on the Verner-3ratzler shearing apparatus are used as on objective measurement for tenderness. Tro sizes of shear cores, one-inch and one-half-inch, have been used for the determination of shear force values. The latter size usaully has been used on small pieces of moat. Significant correlation coefficients between the shear values for one-half and for one-inch cores of cooked beef muscle rossts were found by paul and Bratzler (1955b) and therefore, it was concluded that efthor size could be used for the determination of shear force valuog.

There is disegreement in the iiterature as to the effoct that cooking has on the tenderness of beef. The adductor, longissimus dorsi and semitendinosus muscies were noted by Ramsbottom et al. (1945) to become less tendor with cooking. This was true whon the shear values of the cooked muscies were compared with those from the raw muscles. However, Satorius and Child (1938a) found that tonderness of the adductor muscle from animals of ligh Medium to Good grade was not affoctod by cooking, but that the longissimus dors: became more tendor with the increased degree of cooking. Tho scmitendinosus muscie, too, increased in tenderness with coogulation of the muscle proteins up to $67^{\circ} \mathrm{C}$. but decreased in tendernese from 67° to $75^{\circ} \mathrm{C}$.

0n Juicines3. Juiciness of cooked meat is thought to be related to its moisture and fat content. During cooking the fat
of the adipose tissue is softened and thus contributes to juiciness. Juiciness of beef muscles is evaluated subjectively by taste panels and compared with such objective measurements as total cooking losses, including volatile and dripping losses, cocking time and press fluid yields. Press fluid yields do not always correlate with juiciness scores becauso they are only a measure of the amount of juice expressible under certain conditions and do not involvo other factors such as the flow of saliva which takes place when a piece of meat is tasted (Satorius and Child, 1938b).

The location of the fat in the various forms of connective tissue in anc around a muscle, as well as the total amount of fat present may contribute to the juiciness of meat (Lowe, 1955). However, either the total amount or location of fat in the muscle did not make a difference in the juiciness scores of meat in a study reported by Siemers and Hanning (1953). These workers useà small pieces of semimembranosus boef muscle and coverod them with a suet sheath to simulate a covering of fat, or ground the lean and suet together to simulate fat within a piece or meat. Phe Iean and lean-suet combined pieces (either with the sheath or ground) were cooked in centrifuce tubes in a vater bath at $85^{\circ} \mathrm{C}$. Jułciness scores for all samples decroased with an increase in cooking time and the taste panel was unable to detect a significant difference in jufciness between lean and lean-suet samples. A decrease in juiciness scores for beef muscle was found by Clark et al. (1955) and Fay et al. (1953) as the cooking losses and cooking times increased. This relationship also was found by

Aldrich and Lowe (1954) when they cooked beef muscles on aditional hour beyond the tine required to reach an internal temperature of $90^{\circ} \mathrm{C}$. at an oven temperature of $150^{\circ} \mathrm{C}$. Cooking losses vere found by Child and Satorius (1938) to increase with an increase in oven temperature when the semftendinosus muscle of beef was cooked to $58^{\circ} \mathrm{C}$. at oven temperatures of $120^{\circ}, 150^{\circ}, 175^{\circ}$ and $200^{\circ} \mathrm{C}$. The greater cooking losses were attributed to greater evaporation or volatilo losses. However, no difference was found in press fluid yields from this muscle cooked at these various oven temperatures.

PROCEDURE

The long hindquarters from six U. S. Good beef carcasses with unknown past history were obtained from a Kanses Clty packing house. The weights of a pair of long hindquarters ranged from 284 to 350 pounds. Approximately two or three days after the carcasses were received at Kansas state College, certain paired muscles were dissected and trimmed of most of the exterior fat. The muscles used were the psoas major, adductor, rectus femoris, vastus lateralus, semimembranosus (posterior), semimembranosus (anterior), semitendinosus, longissizus dorsi (loin) and longissimus dorsi (rib). The first six muscles each were cut into two roasts; the other three muscles into three roasts. Plates I through VIII are photographs of representative muscles used in this study. The paired rossts were coded and a randomized block design was used for those cut into two pleces and cooked to oither 55° and $70^{\circ} \mathrm{C}$. or to 70° and $85^{\circ} \mathrm{C}$. end-point temperatures. A

EXPLANATION OF PLATE I

Top of plato:
F3OQs major mucle, richt side from Animal y.
Bottom of plate:
Fsoas major musclo from left sido of Animal X, divided
into roasts Al (anterior end) and Bl (posterior end).

PLATE I

EYFIATYATION OF PIATE II

Top of plate:
Adductor muscle, right side from Animal X.
Bottom of plate:
Adductor muscle from left side of Animal X, divided into roasts Cl (proximal end) and D1 (distal end).

EXPLANATION OF PLATE III

Top of plate:
loctus fomoris muscle, right side from Animal VII. Bottom of ylate:

Foctus femoris muscle from left side of Animal VII, divided into roasta $E l$ (proximal end) and $F l$ (distal end).

EXPIANATION OF PLAGE IV

Top of plato:
Vastus leterblus muscio, rieht sicie from Aninal V. Bottom of plate:

Vostus latoralus rasclo from loft side of Animal V, divided into roasts Gl (proximal end) and HI (distal end).

PLATE IV

EXPLANATION OF PLATE V

Left side or plate:
Semimembranosus muscle, right sido from Animal X.
R1ght side of plate:
Semimembranosus miacle from left side of Animal X, divided into roasts Pl (postcrior side, proximal end), Ql (posterior side, distal end), Rl (anterior side, proximal end) and SI (antorior side, distal ond). The slices between the roasts removed for chemical analyses also are shown.

EXPLANATION OF PLATE VI

Top of plate:
Semitendinosus mascle, right side rrom Animal X.
Bottom of plate:
Semitendinosus muscle from left side of Animal X, divided into roasts $J 1$ (proximal ond), Il (distal end) and $K 1$
(center).

EXPLANATIOII OF PLATE VII

Top of plate:
Loin section of tho longissimus dorei muscle, richt side from Animal VII.

Bottom of plate:
Loin section of the longissimus dorsi muscle from left side of Animal VII, divided into roasts $M 1$ (anterior end), 01 (posterior end) and NI (center). The slices between the roasts removod for chemical analyses also aro shovin.

EXPLAMATTON OF PLATT VIII

Top of plate:
Rib scction of tho longissimus dorsi muscle, right side fron hnira? \bar{X}.

Bottom or 1ate:
Fib scetion of tinc longissimus dorsi muscle from loft sido of Animal X, divided into roasts $T l$ (anterior ond), VI (postorior end) and Ul (center). The slices between the roasts removed for chemical analysos also are shown.

PLATE VIII

randomized incomplete block desien wes used for those out into three vonsts and cooked to $55^{\circ}, 70^{\circ}$ and $85^{\circ} \mathrm{C}$. end-point temperatures (Tables 1 and 2).

The roasts rore wrapped in 0.0015 gauge aluninum foil srad frozen in en upricht home freezer maintained at -100 . Approximatoly 43 hours previous to cooling, the wrapped roasts wero defrosted in a rorrigeretor (420 to 460 F .). Following that time, the roasts mire unvrappod and centigrede thermometers vere insarted into the mid-portion of the thickest section of the cut. The rossts then woro cookod on racko in aluminum pans in a preheated rotary hesrth oven maintsined at $300^{\circ} \mathrm{F}$. All roasts irom one paired muscle vise cooked at each period.

The internal temperaturss of the roasts were noted before they werc placed into the oven. The time required for each $5^{\circ} \mathrm{C}$. riso in tomperaturo until the roasts had reachec $55^{\circ} \mathrm{C}$. Was recorded and thereafter each $2^{\circ} \mathrm{C}$. rise was notod. Following removal of the roaste from the oven, they were allowed to stand for a pariod of time in order that any rise in internal temporatire could be recorded. Appropriate weizhts of the roasts were taren in orden that volatile, daipping and total cookiniz lossos could be calculstod.

When the meat was cool enough to handle, a one-inch core was talion from each roast and shear values wero detemined on a Warner-Rratzler skearing npparatus. These cores were talion parallel to the fibers and before sampes mere removed for palatablifty testa. The larner-Buatzlor shearinc apparatus indicated the numbor of pounds it took for a dull blade to cut through the

$$
85
$$

70

[^0]Table 2.
Randomized incomplete block design for roasting cuts from certain rifht (R) and left (L) beof muscles.

[^1]core of meat. Five shear values were obtained on a one-inch core and averages were used for the final shear value of each roast. Slices from each roast werc cut one-eighth inch thick on a General home slicer and samples from the same position from each roast were given to each of the members of the palatability committee at each scoring period. Ten judges scored the samples for aroma, flavor, juiciness, tenderness and rocorded number of chews to completely masticate a sample of meat. A ten-point scale was used with ten indicating extreneiy good and one, extremely poor (Form I, Appendix). Each judge also ranked the samples according to his preference for juiciness and for tenderness.

The remainder of the meat was trimmed and that with the pieces of the sheared cores was ground in an Universal No. 3 meat grinder and stored in a refrigerator overnight. The following day, the ground meat samples were allowed to come to room temperature (approximately one hour) before press fluid determinations were made. Each sample was done in duplicate.

For press fluid measurements 25 grams of the ground meat were packed in three layers in a cheesecloth lined metal cylinder. The layers each were separated by No. I Whatman filter papers. A leathor disk and a metal plunger were placed on the meat and the packed cylinder was set on a stainless steel pan and placed on a Carver Laboratory Press. Pressure was applied
according to the following echedule:

Time in	Pressure in
pounds\%	

Three minutes after the pressure was released the press fluid was poured into 15 ml . graduated centrifuge tubes. All the excess juice was scraped from the cylinder and pan into the tubes and these tubes were placed in a refrigerator over night. Total volume of press fluid, as well as the volume of serum and fat was recorded the following morning.

The data collected in this study were analyzed statistically to determine the effect that the degree of cooking had on total, volatile and dripping lossos; cooking time; shear force values; total press fluid yields and the palatability factors, aroma, flavor, tenderness, juiciness and preference for tenderness and juiciness. Analyses of variance and where appropriate, least significant differences, were run on data from the muscies chat were cooked to three internal temperatures. The t-test was usod to analyze data from the muscies cooked to two internal temperatures.

Also, correlation coefficients were determined for tenderness

WThe pressure in the schedule refers to the load on the 1.25-inch ram of the test cylinder. The maximum load on the meat wes 4,000 pounds por square inch.
scores and shear force values; juiciness scores and cooking losses (total, volatile and dripping); juiciness scores and press fluid yields; and cooking losses (total, volatile and dripping) and press fluid yields. The correlation coefficients were run on the data for roasts from each muscle cooked to cach internal temperature.

Histological samples, raw and cooked, were taken from all roasts. Slides from these samples will be studied for type and amount of elastic and collagenous connective tissue, amount and deposition of fat and width of muscle fibers. Samples for chemical determinations were removed from the raw and cooked roasts of the semimembranosus (anterior), semimembranosus (posterior), longissimus dorsi (loin) and longissimus dorsi (rib) muscles. Determinations will be made for total nitrogen, collagennitrogen, water soluble nitrogen and heat coagulable water soluble nitrogen. The histological and chemical data will be roported in another manuscript.

RESULTS AIND DISCUSSION

The discussion presented here will be concernod mainly with the changes in palatability that occur during the cooring of roasts from beef muscles.

Rate of lieat lenetration

When meat is cooked, temperatures often rise rapidly until protein coagulation begins. At this time, the slope of a heat
penetration curve becomes more gradual and a plateau may occur in the curve if sufficient coagulation is taking place at one time. The flattened portion of the heat penetration curve may be attributed to the absurption of heat because protein coagulation is an ondothermic reaction.

The rate of heat penetration curves for this study are given in Figs. I through 15. Nost of the curves tended to rise rather sharply until the internal temperature in the meat was $40^{\circ} \mathrm{C}$., after that, the curves flattened out gradually until the end-point temperatures vere reachod. The curves for the roasts from the right muscies were similar to those from the corresponding left muscles. In the psoas major, adductor, vastus lateralus, semitendinosus and longissimus doral (rib) the curves for the right and for the left rossts almost could be superimposed on each other.

For sone of the muscles, the proximal or anterior end roasts showed loneer curves with more eradual inclines than those for the rossts from the distal or posterior ends; whereas, in other muscles, the opposite was true. In the case of the semimembranosus (posterior), left, the rate of heat penetration for the proximal and distal ends was similar in that the average time for the internal temperature of each to rise to $85^{\circ} \mathrm{C}$. Was the same. The rate of rise in the internal temperature for the distal roasts of the left rectus femoris vas slower then that for the proximal roasts of the same muscle until $70^{\circ} \mathrm{C}$. was reached. Thereafter, a rather sudden rise for the distal roasts was noted until $85^{\circ} \mathrm{C}$. was reachod; whereas, the temporature rise of the proximal roasts was gradual until $85^{\circ} \mathrm{C}$. was obtained. No consistent pattern for rate

Fig. If. Average heat penetration curves for the rectis femoris mecle. Tol of figure, right muscle; bottom, left

Fig. 5. Average heat penetration curves for the right vastus lateralus muscle.

+
∞
$w 30$
w
w
0
0
0
w
w
0
Fig.

Fig. 9. Average heat penetration curves for the semimembranosus (anterior) muscle. Top of figure, right muscle; bottom, left muscle.

Fig. 10. Average heat renetration curves for the ripht semitendinosus muscle.

Fig. 14. Averafa heat penetration curves for the right longissimus dorsi (rib)
w

i․ . 15
of hoat penetration was noted for the center cuts from the semitendinosus, longissimus dorsi (loin) and longissimus dorsi (rib) muscles.

The roasts from the psoas major had the shortest and those from the rectus femoris the longest cooking times as shown by the rate of hoat penotration curves. The psoas major roasts (average welght, 1.1 pounds) were the smallest ones cooked but the rectus fomoris cuts (averago weight, 1.5 pounds) wore not the largest ones roasted. The antcrior somimembranosus roasts (everage weight, 1.9 pounds) also had long curves but they were not as long as those for the rectus femoris. The rossts from the cther muscles were similar in weight and showed similar rates of hat penetration. The curves of the posterior semimembranosus and vastus lateralus roasts were of average length even though these muscles weighoc slightly more than the roctus femoris rossts.

Aroma and Flavor

In this study, as the arome scores increased the scores for flavor also tended to increase (Tables 3 and 4). Aroma mean scores for all roasts became higher as the end-point temperatures increased. That is, the aroma scores for the roasts cooked to $70^{\circ} \mathrm{C}$. Nere slightly higher than the scores for those cooked to $55^{\circ} \mathrm{C}$. , and the aroma scores for tho roasts cooked to $85^{\circ} \mathrm{C}$. Were higher than the scores for those cooked to $70^{\circ} \mathrm{C}$. A larger increase in aroma scores was noted botween the roasts cooked to $70^{\circ} \mathrm{C}$. and those roasted to $85^{\circ} \mathrm{C}$. than wes found between those
Table 3. Average of mean values for factors related to aroma, flavor and tenderness

[^2]Table 4 Average of mean values for factors related to aroma, flavor and tendernoss
for roasit from tho muscles cooked to three internal temperatures.
cooked to $55^{\circ} \mathrm{C}$. and those roastod to $70^{\circ} \mathrm{C}$. Aroma scores for all roasts cooked to two end-point temperatures (70° and $85^{\circ} \mathrm{C}$.) were very significantly higher for thoso roasted to $85^{\circ} \mathrm{C}$. than for those roasted to $70^{\circ} \mathrm{C}$. Significantiy highor aroma scores were found for the $70^{\circ} \mathrm{C}$. psoas major roasts than for the $55^{\circ} \mathrm{C}$. roasts. Also, significant differences vere found among the aroma scores for the rousts cookea to the three end-point terperatures $\left(55^{\circ}\right.$, 70° and $85^{\circ} \mathrm{C}$.).

Mean flavor scores also showed a tendency to increase as the end-point temperatures increased. This was true for roasts from all muscles except iron tho semimembranosus (postorior) in which the average flavor scores were practically the same for those roasts cookod to $70^{\circ} \mathrm{C}$. and to $85^{\circ} \mathrm{C}$. Flavor scoros for the roasts from the psoas majcr, semitondinosus, longissimus dorsi (Ioin) and longissimus dorsi (rib) were significantly higher for those cooked to $70^{\circ} \mathrm{C}$. than for chose roasted to $55^{\circ} \mathrm{C}$. Also, flavor scores for the $85^{\circ} \mathrm{C}$. roasts from the longissimus dorsi (loin) and longissimus dorsi (rib) were sigmificantly greater than for the $55^{\circ} \mathrm{C}$. roasts. The flavor scores for the semitendinosus and rectus femoris roasts cooked to $85^{\circ} \mathrm{C}$. were significantiy and highly significantly greater, respectively, than for those roasted to $70^{\circ} \mathrm{C}$.

Tenderness and Shear Porce Values

Tenderness scores, preference for tonderness and shear force values are closely related and were used in this study to evaluate
the tenderness of beef. The tendorness scores were deternined by the number of chews required by the judge to completely masticate a sample of meat. Each judge was asked to set up his owr range for the number of chows that would be oqual to a Eiven tenderness score.

On the whole, average tenderness scores were similar for roasts cooked to each of the end-point temperatures (Tables 3 and 4). Significant difforences in tenderness attributable to internal temperature were found only for the roasts from the rectus femoris, longissimus dorsi (loin) and longissimus dorsi (rib). Tenderness scores for the roasts from the last two muscles montioned abovo wero significantly higher for the roasts cooked to $55^{\circ} \mathrm{C}$. than for the roasts cooked to $85^{\circ} \mathrm{C}$. No significant difforence attributable to end-point temperatures was noted for tenderness scores for the roasts from the other muscles.

The taste panel was asked to rank the samples in order of their preference for tenderness. Later the rankings were given a numerical value, with lover numbers used to indicate the higher preferences. As the end-point tomperatures increased the average tenderness preference values for the samplos decreased slightly. The tenderness preferences for roasts from the psoas major, longissimus dorsi (loin) and longissimus dorsi (rib) were significantly in favor of the $55^{\circ} \mathrm{C}$. cuts when compared with the $70^{\circ} \mathrm{C}$. roasts. The tenderness of the rectus fomoris $70^{\circ} \mathrm{C}$. roasts was highly significantly preferred to that for the $85^{\circ} \mathrm{C}$. roasts. Also, the $55^{\circ} \mathrm{C}$. longissimus dorsi (loin) and longissimus dorsi (rib)
roasts had significantly better tenderness preferences than for the $85^{\circ} \mathrm{C}$. roasts. Even though the tenderness preferences for the roasts decreased with each rise in end-point tomperature, the ranking for other roasts not mentioned above were similar. Shear force values were used as an objective method of measuring tenderness. Generally, the shear force values increased as the tenderness scores decreased. In this study the average tenderness scores decreased slightly as end-point temperatures increased; however, some of the shear force values decreased, whereas, other shear force values increased with an increase in end-point temperatures. The adductor roasts cooked to $85^{\circ} \mathrm{C}$. had shear force values that were significantly lower than those for roasts cooked to $70^{\circ} \mathrm{C}$. The psoas major roasts cooked to $70^{\circ} \mathrm{C}$. had very highly significantly lower shear force values than those roasted to $55^{\circ} \mathrm{C}$. The shear force values for the semitendinosus roasts cooked to $70^{\circ} \mathrm{C}$. and those roasted to $85^{\circ} \mathrm{C}$. were significantly lower than those for roasts cooked to $55^{\circ} \mathrm{C}$.

Other muscles showed no significant difference in shear force values attributable to end-point temperatures. The average shear force values from the rectus femoris roasts cooked to $70^{\circ} \mathrm{C}$. were slightly lower than those for the $85^{\circ} \mathrm{C}$. roasts; whereas, the semimembranosus (posterior) $85^{\circ} \mathrm{C}$. roasts had lower shear force values than the $70^{\circ} \mathrm{C}$. roasts. The longissimus dorsi (rib) roasts cooked to $70^{\circ} \mathrm{C}$. were lower in shear force values than the values for those roasted to $55^{\circ} \mathrm{C}$. The vastus lateralus shear force values from roasts cooked to 70° and to $85^{\circ} \mathrm{C}$. were similar.

Negative correlation coefficients between tenderness scores and shear force values were noted for 19 of the 21 relationships investigated (Table 5). The correlation coefficients for tenderness scores and shear force values were significant for $85^{\circ} \mathrm{C}$. rectus iemoris roasts, highly significant for $85^{\circ} \mathrm{C}$. vastus lateralus and longissimus dorsi (loin and rib) roasts and very highly significant for $85^{\circ} \mathrm{C}$. adductor roasts.

There has been disagreement in the literature $2 s$ to the correlation of tenderness scores and shear force values. Cover and Smith (1956) found highly significant correlation coefficients for these factors when they studied two cooking methods for two beof muscles (longissimus dorsi and biceps femoris); whereas, Paul et al. (1956) noted that tenderness scores and shear force values were not well correlated when samples from the semiteridinosus, semimembranosus and adductor muscles from two types of U. S. Commercial grade beef animals were used.

Juiciness and Related Factors

Juiciness scores, preference for juiciness, press fluid yields, total, volatile and dripping losses and cooking time are thought to be closely related factors and will be discussed in this section. The a verage juiciness scores for all roasts decressed as the end-point temporatures increased (Tables 6 and 7). The roasts cooked to $55^{\circ} \mathrm{C}$. showed slightly higher juicinoss scores than those roasted to $70^{\circ} \mathrm{C}$., but greater differences in scores were noted botween those roasts cooked to $70^{\circ} \mathrm{C}$. and those roasted to $85^{\circ} \mathrm{C}$. Significant decreases in juiciness scores were noted as

Table 5. Correlation coefficients for tendorness scores and shear force velues; prees fluid yiclds and cooking losses (total, volatile and dripping).

Tenderness scores and shear values
Psoas major
$-.458 \quad-.633 \%$

Adculuctor
Fectue femoris
$-.566$
Vastus lateralus
Semincinbranosus (postericr)
Semimonbranosus (anterior)
Semitendinosus
Longiseimus dorsi (loin)
Lownissimus dorsi (rib)
Press fluid and total loases
Psoas major
Alductor
Nectus remoris
Vastus lateralus
ismimerbianosus (posterior)
Semimembranosus (anterion)
Semitendincsus
Ioneissimus donsi (loin)
Longiseimus dorsi (rib)
Press fluid and volatile losses
Fsoss major
Adductor
Fectus femoris
Tastus lateralus
Semimembranoeus (posterior)
Semimembranosus (antoriois)
cemitendinosus
$-.492 \quad .447 \quad-.659 \%$
Longissimus dorsi (loin)
Longissimus dorsi (rib)
$.427 \quad .412$
fluid and dripping losses
psoas major
hdductor
Tectus femoris
Vastus lateralus
Nemimembranosus (posterior)
Seminembranosus (anterior)
semitendinosus
-.134 -. 043
. .194
$-.264$
-. 676%
-. 217
$-.458$
.098
-. 332
.280
. 270

Longlssimus dorsi (loin)
$\begin{array}{rrr}.531 & -.002 & \\ & . .105 & -.108 \\ & -.117 & -.074 \\ & . .327 & .358 \\ & . .201 & .073 * * * \\ -.528 & -.015 & -.065 \\ .170 & -.301 & -.396 \\ .118 & -.310 & . .644 \%\end{array}$
$\begin{array}{rrr}.531 & -.002 & \\ & . .105 & -.108 \\ & -.117 & -.074 \\ & -.327 & .358 \\ & . .201 & .073 * * * \\ -.528 & -.015 & -.065 \\ .170 & -.301 & -.396 \\ .118 & -. .310 & .644 *\end{array}$
Louklisimus dorsi (rit)
.118
-. 310
. 644*

[^3]Table 6. Average of mean values for factors related to juiciness, cooking losses and
cooking time for roasts from the muscles cooked to two internal temperatires.

[^4]Table 7. Average of mean values for factors related to juiciness, cooking losses and cooking time for roasts from the muscles cooked to thres internal temperatures.

[^5]end-point temperatures for the semitendinosus, longissimus dorsi (loin) end longlesimus dorei (rib) rousts increased from 55° to 70° to $85^{\circ} \mathrm{C}$. Juiciness sccres for the psoas major $55^{\circ} \mathrm{C}$. roasts nore highly significantly greater than for the $70^{\circ} \mathrm{C}$. roasts. The adductor, rectus femorls, vastus lateralus, senimembranosus (posterior) and semimembranosus (anterior) roasts cooked to $70^{\circ} \mathrm{C}$. had very highly oignificantly larger juiciness scures than those cooked to $85^{\circ} \mathrm{C}$. Significant differences were found amonis juicinoss scores for all roasts as the end-roint tamperatures increased from $55^{\circ} \mathrm{C}$. (rare) to $85^{\circ} \mathrm{C}$. (well-done). Siemors and Haning (1953) also founci highly significunt differences lin juiciness scores between meat cooked to rare and that cooked well-done.

The judges were asised to rete the beef samples in ordor of preference for juiciness and to use amaller numbers to indicate the higher preforences. As shown in mables 6 and i the average juiciness preferonces decreased as the roasts vope cooked to the higher end-point temperatures. The greatest range in juiciness preference values wes found betvenn those roasts cooked to $70^{\circ} \mathrm{C}$. and those to $85^{\circ} \mathrm{C}$., the lowest preference was for the $85^{\circ} \mathrm{C}$. roasts. Significant difforences for juiciness preference were fornd between each increase in ond-point temperature ($55^{\circ}, 70^{\circ}$ and $85^{\circ} \mathrm{C}$.) for the seniterdinosus, longissimus dorsi (loin) and longissimus dorsi (rib) roasts. Hifghly significant differsnces wore noted between the jufciness preference for psoas major roasts cooked to $55^{\circ} \mathrm{C}$. and those cooked to $70^{\circ} \mathrm{C}$., with the rosists cooker to $55^{\circ} \mathrm{C}$. being preforred. The roasts cooked to $70^{\circ} \mathrm{C}$. from the adductor, rectus
femoris, vastus lateralus, semimembrenosus (posterior) and semimembranosus (anterior) showed a very highly significant juiciness preference over those roasted to $85^{\circ} \mathrm{C}$.

Press fluid yields are used as an objective method for indicating juiciness, but nany workers have indicated that press fluid might not measure the same thing that is measured by a taste panel. Gonerally, the average press fluid Jields for most roasts decreased with an increase in end-point temperature (Tables 6 and 7). The semitendinosus roasts cooked to $55^{\circ} \mathrm{C}$. had greater press fluid yields than those roasts from this muscle cooked to $70^{\circ} \mathrm{C}$. This is in agreement with Child and Fogarty (1935) who also found greater press fluid yields from the semitendinosus muscle that was cooked to $58^{\circ} \mathrm{C}$. than was found for those which were cooked to $75^{\circ} \mathrm{C}$. No significant differences in press fluid yields were noted between those from $55^{\circ} \mathrm{C}$. roasts and those from $70^{\circ} \mathrm{C}$. roasts. The press fluid yields of the semitendinosus, longissimus dorsi (Ioin) and longissimus dorsi (rib) $85^{\circ} \mathrm{C}$. roasts showed a significant decrease when compared with those from the $55^{\circ} \mathrm{C}$. roasts and with those from the $70^{\circ} \mathrm{C}$. roasts. Press fluld yields from the seminembrenosus (posterior) roasts cooked to $85^{\circ} \mathrm{C}$. were highly significantly lower thar for those roasted to $70^{\circ} \mathrm{C}$.; whereas, those for the $85^{\circ} \mathrm{C}$. roasts from the adductor, rectus fomoris, vastus lateralus and seminiembranosus (anterior) were very highly significantly lower than those for the $70^{\circ} \mathrm{C}$. roasts. The juiciness scores always decreased with an increase in end-point temperature, but; the press fluid yields did not always
show a similar relationship. The roasts that had the highest of lowest juiciness scores wore not necossarily the same roasts that had the highost or lowest press fluid yields.

Positive correlation coefficients between juiciness scores and press fluid jields were noted for 16 of the 21 relationships investigated (Table 8). The correlation coefficients for these two factors for the $70^{\circ} \mathrm{C}$. semitendinosus and $85^{\circ} \mathrm{C}$. adductor roasts were significant and highly significant, respectively. This finding is in general disagreement with Satorius and Child (1938b) who found no correlation between the quantity of juice of beef muscle as shown by the judges scores and the press fluid jiolds obtained.

The total cooking losses of roasts increased with each increase in ond-point temperature (Tables 6 and 7). The psoas major roasts cooked to $70^{\circ} \mathrm{C}$. showed very highly significantly greater total cooking losses than those roasted to $55^{\circ} \mathrm{C}$. Total cooking losses were very highly significantly greater for the adductor, rectus femoris, vastus lateralus, semimembranosus (posterior) and semimembranosus (anterior) roasts cooked to $85^{\circ} \mathrm{C}$. than for those roasted to $70^{\circ} \mathrm{C}$. The roasts from the semitendinosus, longissimus dorsi (loin) and longissimus dorsi (rib) cooked to 55°, to 700 and to $85^{\circ} \mathrm{C}$. showed significant increases in total cooking Iusses with each increase in end-point temperature.

In this study, total cooking losses had negative correlation coofficients with the juiciness scores for the majority of the roasts cooked (Table 8). That is, the total cooking losses

Table 8. Correlation coefilicients for juicimess scores and press fluid yields and juiciness scores and coolsing losses (total, volatile and dripping).

Fgetors	$\because 55^{4} \mathrm{C}$	$: 70^{0} \mathrm{C}$: $85{ }^{\circ} \mathrm{C}$
Juiciness scures and press fluid			
Psoas major	. 091	. 445	
Adductor		-. 463	- 7 23\%\%
Fiectus fenoris		.446	. 254
Vastus lateralus		. 236	. 007
Semimembranosus (posterior)		. 353	-. 374
Semimerbranosizs (anterior)		-. 261	.334
Semitendinosus	. 447	. 659%	. 457
Iongissimus dorsi (loin)	-. 568	-. 2.58	.173
Longissimus dorsi (rib)	.032	. 515	. 432
Juiciness scoles and total losses			
Psoas major	. 068	- 341	
Adductor		. 100	-. 178
Kectus figmoris		-. 488	-. 502
Vastus lateralus		-. 888 \%	-. 492
Semimembranosus (posterior)		-. 462	-. 182
Semimembrancsus (anterior)		-. 222	-. 21.4
Semitendinosus	-. 480	.274	-. 709%
Longissimus dorsi (loin)	. 492	-. 305	. 026
Longissimus dorsi (rib)	-. 262	-. 108	-. 598%
Juiciness scorss and volat. lcsses			
psoas major Adductor	. 038	-. 220	-. 168
Fectus f'emorzs		-. 607%	-. 6055
Vastus lateralus		-. 783%	-. 466
Semimembranosus (postcrior)		-. 339	.. 2150
Semimembranosus (anterior)		-. 500	-. 129
Semitendinosus	-. 558	. 262	-. 62.6%
Longissimus dorsi (Ioin)	. 516	-. 452	-. 016
Longissimus dorsi (rib)	-. 310	-. 061.	-. 576%
Julciness scoses and drip. losses			
Psoas major	. 062.	- 248	
Adductor		-. 252	. 095
Kectus fumoris		. 105	- 64.0%
Vastus lateralus		-.823\%	-. 269
Semimembranosus (posterior)		-. 567	-. 424
Senimembranosis (antexioor)		. 26.3	. 172
Semitcrainosus	-. 377	. 075	-. 26.3
Longissirus dorsi (lcin)	. 072	. 188	. 335
Longissimus dorsi (rib)	-. 152	-. 196	. 213

increasod as the juiciness scores decreased. A very highly significant nogative correlation coefficient betweon juiciness scores and total cooking losses was found for the $70^{\circ} \mathrm{C}$. vastus lateralus roasts. The longissimus dorsi (rib) $85^{\circ} \mathrm{C}$. rossts had a significant correlation coefficient betweon juiciness scores and total cooking lossos; whereas, the semitendinosus roasts at $85^{\circ} \mathrm{C}$. had a highly significant correlation coefficient for these two factors.

Negative correlation coefficients for press fluid yiolds and total cooking losses were found for 14 of the 21 relationships studied (Tablo 5). Significant corrolation coefficients between press fluid yields and total cooking losses were found for the roasts cookod to $70^{\circ} \mathrm{C}$. from the long1ssimus dorsi (rib) and for the roasts cooked to $85^{\circ} \mathrm{C}$. from the semitendinosus. The rectus femoris $85^{\circ} \mathrm{C}$. roasts showed highly significant correlation coefficients for these two factors.

Generally, the average of mean volatile losses increased as the end-point temperatures increased, from 55° to 70° and to $85^{\circ} \mathrm{C}$. (Tables 6 and 7). Similar significant differences were found for volatile losses as were noted for total cooking losses. On the whole, negative correlation coefficients were noted for volatile losses and juiciness scores. Significant correlation coefficients for these factors were found for the roasts from the rectus fomoris, semitendinosus and longissimus dorsi (rib) cookod to $85^{\circ} \mathrm{C}$. and for $70^{\circ} \mathrm{C}$. rectus femoris roasts; whereas, a highly significant correlation coefficient was noted for the $70^{\circ} \mathrm{C}$. vastus
lateralus roasts (Table 8). Negative correlation coefficients between press fluid yields and volatile losses were found for most roasts. Significant correlation coefficients were noted for the roasts from the longissimias dorsi (rib) at 70° and at $85^{\circ} \mathrm{C}$. and for those from the $85^{\circ} \mathrm{C}$. semitendinosus roasts.

Dripping losses for some roasts tended to decrease; whereas, that for others increased as the end-point temperatures increased (Tables 6 and 7). However, the dripping losses from roasts from the psoas major significantiy increased as the end-point temperatures increased from 55° to $70^{\circ} \mathrm{C}$. The dripping losses from roasts (somitendinosus, longissimus dorsi, loin and longissimus dorsi, rib) were greater for those cooked to $70^{\circ} \mathrm{C}$. than for those cooked to $55^{\circ} \mathrm{C}$. : and those cooked to $85^{\circ} \mathrm{C}$. had smaller losses than for the $70^{\circ} \mathrm{C}$. roasts, but these were greater than those for the $55^{\circ} \mathrm{C}$. roasts. Significantly smaller dripping losses were noted for the $55^{\circ} \mathrm{C}$. roasts (semitendinosus and longissimus dorsi, rib) than for the $70^{\circ} \mathrm{C}$. ones and significantly larger losses were found for those roasted to $85^{\circ} \mathrm{C}$. than for those to $55^{\circ} \mathrm{C}$. Foasts from the semimembranosus (anterior) cooked to $85^{\circ} \mathrm{C}$. had a significant decrease in dripping losses when compared with those roasted to $70^{\circ} \mathrm{C}$. A highly significant decrease was round in dripping losses for $85^{\circ} \mathrm{C}$. adductor roasts when this was compared with those roasted to $70^{\circ} \mathrm{C}$. Vastus lateralus and semimembranosus (posterior) $85^{\circ} \mathrm{C}$. roasts showed very highly significantly lower dripping losses than for those roasted to $70^{\circ} \mathrm{C}$.

As shown in Table 8, approximately one-half of the relationships hac positive currelation coefficients between dripping losses and juiciness scores. A signiflcant positive correlation coefficient botwoon dripping losses and juiciness scores was noted for the rectus fomoris $85^{\circ} \mathrm{C}$. roasts; whereas, a very highly significant negative correlation coefficient was found for the vastus lateralus $70^{\circ} \mathrm{C}$. roasts. Since both a significant positive and a significant negative correlation coefficient were found, this might indicate that dripping losses are not the best method for ovaluating the juiciness of beef muscies. Also, approximately one-half of the relationships showed positive correlation coefficients for dripping losses and press fluid yields. Very highly significant positive correlation coefficients for dripping lossos and press fluid Jields were found for the $85^{\circ} \mathrm{C}$. roasts from the sominembranosus (posterior) and significant corrslation coefficients were shown for the longissimus dorsi (rib) $85^{\circ} \mathrm{C}$. roasts (Table 5). Since only a small number of significant correlation coofficients were noted botween dripping losses and press fluid yields, dripping losses might not be good criteria for estimating the press fluid yields of beef muscles.

In this study, cooking time for all roasts increased with each increase in end-point temporature (l'ables 6 and 7). Bocause of the size of the roasts used (average weight, 1.1 to 1.9 pounds), the average cooking time in minutos por pound was long. The average of mean juiciness scores decreased and tho total cooking losscs increased, as the cooling time increased. However, roasts
from the semitendinosus at $55^{\circ} \mathrm{C}$. and those from the adductor at $70^{\circ} \mathrm{C}$. were the only ones that had the highest cooking losses with the longest cooking times. Cooking time was significantly longer for roasts from the semitendinosus, longissimus dorsi (loin and rib) for each increase in end-point temperature. Roasts from the psoas major cooked to $70^{\circ} \mathrm{C}$. had a very highly significant increase in cooking time over those roasted to $55^{\circ} \mathrm{C}$. The $85^{\circ} \mathrm{C}$. roasts from the adductor, rectus femoris, vastus lateralus, semimembrenosus (posterior) and semimembranosus (anterior) muscles had very highly significantly longer cooking times than those roasted to $70^{\circ} \mathrm{C}$.

SUMMARY

Roasts from certain muscles of six J . S. Good long hindquarters of beef were used to study the changes, mainly in palatability, that occur during the oven-roasting of meat. A randomized incomplete block desien was used for cooking roasts from the semitendinosus, longissimus dorsi (loin) and longissimus dorsi (rib) muscles. Three roasts were cut from each of the previously mentioned muscles and cooked to end-point temperatures of 55°, 70° and $85^{\circ} \mathrm{C}$. Two roasts were cut from the psoas major, adductor, rectus femoris, vastus lateralus, semimembranosus (posterior) and semimembranosus (anterior). A randomized complete block design was used for cooking of the roasts either to end-point temperatures of 55° and $70^{\circ} \mathrm{C}$. or 70° and $85^{\circ} \mathrm{C}$. from the last muscles mentioned. The defrosted roasts were cooked in a pre-heated rotary hearth oven maintained at $300{ }^{\circ} \mathrm{F}$. The rate of rise in internal temperature
was noted during cooking. After removing tho roasts from the oven, weights were taken from which data for total, volatile and dripping cooking losses were obtained. Shear force values for one-inch cores of meat, press fluid yields and palstability scores were obtained. The data vore analyzed statistically; the analyses of variance vere run on data from the roasts cooked to three endpoint temperatures and t-tests were done on data from those roasted to two end-point temperatures.

No particular difference was noted in the rate of heat penetration between the roasts from paired right and left muscles. Most of the curves tended to rise rather sharply until the internal temperature in the meat was $40^{\circ} \mathrm{C}$., aftor that, the curves flattened out eradually until the end-point temperatures were reached. For some of the muscles, the roasts from the proximal or anterior end had the slower rate of hest penctration; whereas, in the remaining muscles the distal or posterior end roasts had the slover rates. The center cuts showed no consistent pattern for rate of heat penetration. The average weight of the roasts ranged from 1.1 to 1.9 pounds, but the largest roasts did not require the longest cooking time.

Aroma and flavor scores for roasts increased with an increase in end-point temporatures. Significant and very highly significant increases in mean aroma scores were found with oach increase in end-point temporature. Approximately one-half of the muscles had significant differencos in mean flavor scores that could be ettributed to an increase in ond-point temperature. In most cases, the tenderness scores for roasts decreased sllghtly with
an increase in end-point temperature, but an increase in end-point temperature had Iittle real effect on the tenderness scores of the roasts, because significant differences in tenderness attributable to degree of cooking were noted in only a few cases. Tenderness preference decreased with an increase in ond-point temperature. An increase in end-point temperature had no consistent effect on the shear force values, since they increased for some of the roasts but decreased for others. Significant negative correlation coefficients for tenderness scores and shear force values were found for the majority of the roasts cooked to $85^{\circ} \mathrm{C}$.

Juiciness scores and preference for juiciness decreased with an increase in end-point temperature; whereas, the total cooking losses and cooking tines increased with an increase in the degree of cooking. Significant to very highly significant differences for each of these factors were found as the degree of cooking increased. The dripping losses tended to decrease with an increase in end-point temperature and differences were significant for roasts from most muscles. Generally, the average press fluid yields for most roasts decreased significantly with each increase in end-point temperature. The majority of the correlation coefficients between juiciness scores and press fluid fields were positive, however, only two coefficients were significant. Slightly more than half of the correlation coefficients for juiciness scores and cooking losses (total and volatile) were negative and only a few of these were significant. Most of the correlation coefficients for press fluid yields and cooking losses (total and volatile) were negative and only a fev of these were
sienificant. No consistent trend was found for the correlation coefficients for dripping losses and juiciness scores or dripping losses and press fluid jields.

ACKNOWLEDGMENTS

Sincere appreciation is expressed to Dr. Grayce Goertz, Associate Professor of Foods and Nutrition, for her help in the direction of this project and for her patience and help in the preparation of this manuscript; to Dr. Dorothy Harrison, Head of the Department of Foods and Nutrition, for her constructive criticism during the research and the reading of this manuscript; to Professor David Mackintosh and his staff of the Dekartment of Animal liusbandry for securing the meat and dissecting the muscies. Appreciation also is expressed to the graduate students and other research workers who served so faithfully on the palatability committee and to my husband, Bill, who gave his moral support throughout the period of research and during the preparation of this manuscript.

LITERATURE CITED

Aldrich, Pearl J. and Belle Lowe.
Comparison of grades of beef rounds: Effect of cooking times on palatability and cost. J. Am. Diet. Assoc. 30:39-43, 1954.

Brady, D. E.
A study of the factors influencing tenderness and texture of beef. Pro. Am. Soc. Animal Prod. 30:246-249, 1937.

Child, Alice M. and J. Agnes Fogarty.
Effect of interior temperatures of beef muscle upon the press fluid and cooking losses. J. Agri. Res. 5l:655-662, 1935.

Child, Alico M. and Mary J. Satorius.
Effect of exterior temperature upon press fluid, shear force, and cooking losses of roasted beef and pork muscies. J. Agr1. Res. 57:865-871, 1938.

Clark, Helen E., Marie C. Milmeth, Dorothy L. Harrison and Gladys E. Vail.

The effect of braising and pressure saucepan cookery on the cooking losses, palatability and nutritive value of the proteins of round steaks. Food Research 20:35-41, 1955.

Clark, Futh Keys and Frances 0. VanDuyne.
Cooking losses, tenderness, palatability, and thiamine and riboflavin content of beef as affected by roasting, pressure saucepan cooking, and broiling. Food Research 14:221-230, 1949.

Cover, Sylvia.
Effect or extremely low rates of heat penetration on tendering of beef. Food Research 8:388-394, 1943.

Cover, Sylvia and W. H. Smith, Jr.
The effect of two methods of cooking on palatability scores, shear force values, and collagen content of two cuts of beef. Food Research 21:312-321, 1956.

Crocker, E. C.
Flavor of meat. Food Research 13:179-183, 1948.
Deatherage, F. E. and Albert Harsham.
Relation of tenderness of boef to aging time at $33^{\circ}-35^{\circ} \mathrm{F}$. Food Rosearch 12:164-172, 1947.

Griswold, Ruth M. and Marion A. Vharton. Effect of storace conditions on palatability of boef. Food Research 6:517-523, 1941.

Hay, Pattie P., Dorothy L. Harrison and Gladys E. Vail. Effects of a meat tenderizer on less tender cuts of beef cooked by four methods. Food Technol. 7:217-220, 1953.

Hiner, R. L, E. E. Anderson and C. R. Fellers. Amount and character of connective tissue as it relates to tenderness in beef muscle. Food Technol. 9:80-86, 1955.

Hinor, R. L. and O. G. Hankins. The tenderness of beef in relation to different muscles and age in the animal. J. Animal Sci. 9:347-353, 1950.

Hood, Maude P., Doris W. Thompson and Lenora Mirone. Effects of cooking methods on low grade beef. Georgia Agri. Exp. Sta. Bul., N. S. $4,1955^{\circ}$

Howe, Paul E.
The relation of cooking to the study of the quality and palatability of meat. J. Home Econ. 9:8-15, 1927.

Jacobson, Marion and Faith Fenton.
Effects of three levels of nutrition and age of animal on the quality of beef. I. Palatability, cooking data, moisture, fat, and nutrition. Food Research 21:415-426, 1956.

Lowe, Belle.
Experimental cookery from the chemical and physical standpoint, 4th ed., p. 209-220. New York: John Wiley and Sons, Inc. 1955.

Mackintosh, David L., J. Lowe Hall and Glsdys E. Vail.
Some observations pertaining to tenderness of meat. Pro. Am. Soc. Animal Prod. 21:285-289, 1936.

Maximow, Alexander A. and William Bloom.
A textbook of histoloEy, 6th od., p. 49-52, 147-153. Philadelphia: W. B. Saunders Company, 1952.

Miler, Madge and Joseph Kastelic.
Chemical responses of connective tissue of bovine skelatal muscle. J. Agri. and Food Chem. 4:537-543, 1956.

Noble, I. T., E. G. Halliday and H. K. Klass. Studies on tenderness and juiciness of cooked meat. J. Home Econ. 26:238-242, 1934.

Paul, Pauline.
Tenderness of beef. J. Am. Diet. Assoc. 33:890-894, 1957.
Paul, Pauline and Maura Bean.
Method for braising beef round steaks. Food Research 21:75-86, 1956.

Paul, Pauline, Maura Bean and L. J. Bratzler. Effect of cold storage and method of cooking on commercial grade cow benî. Mich. Agri. Exp. Sta. Bul. 256, 1956.

Paul, Pauline and L. J. Bratzler.
Studies on tenderness of beof. II. Varying storage times and conditions. Food Rescarch 20:626-634, 1955a.

Paul, Pauline and L. J. Bratzler.
Studies on tendernoss of beef. III. Size of shear cores: end to end variation in the semimembranosus and adauctor. Food Research 20:635-638, 1955b.

Paul, Pauline, L. J. Bratzler, E. D. Farwell and Katherine Knicht. Studies on tenderness of beef. I. Rate of heat penetration. Food Rescarch 17:504-510, 1952.

Ramsbottom, J. M. and E. J. Strandine.
Comparative tenderness and identification of muscle in wholesale beef cuts. Food Fosoarch i3:315-330, 1948.

Ramsbottom, J. M. and E. J. Strandine.
Initial physical and chemical changes in beef as related to tenderness. J. Animal Sci. 8:398-410, 1949.

Ramsbottom, J. M., E. J. Strandine and C. H. Koonz. Comparative tenderness of representative beef muscles. Food Research 10:497-509, 1945.

Satorius, Mary and Alice M. Child.
Effect of coagulation on press fluid, shear force, musclecell diameter and composition of beef muscle. Food Research 3:619-626, 1938a.

Satorius, Mary and Alice M. Child.
Problems in meat cesesreh. I. Four comparable cuts from one animal. II. Reliability of judges' scores. Food Fesearch 3:627-635, 1938b.

Siemors, Lorene Larsen and Flora Hanning.
A study of certain factors influencing the juiciness of meat. Food Research 18:113-120, 1953.

Simone, Marion, Floyd Carroll and M. T. Clegg. Effect of degree of finish on differences in quality factors of beef. Food Research 23:32-39, 1958.

Sleeth, R. B., G. C. Kelley and D. E. Brady.
Shrinkage and organoleptic characteristics of beef aged in controlled environments. Food Technol. 12:86-90, 1958.

Szent-Györgi, Albert.
Chemistry of muscular contraction, 2nd ed., p. 9-19, 25-27. New York: Academic Press Inc., 1951.

Szent-Györgi, Albert.
Nature of Iife, a study on mascle. p. 28-32. New York: Academic Press Inc., 1948.

Visser, Rosemary.
The palatability of cortain beof muscles cooked in deep fat to three degrees of doneness. Unpublished Master's thesis. Kansas State College, Manhattan, Kansas, 1957.

Wang, Hsi, Ellen Rasch, Virginia Bates, F. J. Beard, J. C. Pierce and O. G. Hankins.

Histological observations on fat loci and distribution in cooked beef. Food Research 19:314-322, 1954.

Winegarden, Margaret W., Belle Lowe, Joseph Kastelic, Edwin A. Kline, Alma R. Plagge and F. S. Shearer.

Physical changes of connective tissuo of beef during heating. Food Research 17:172-184. 1952.
Form 1. Score card for beef.

Description of Abbreviations

1. Sides of beef carcass
```
r - richt side
l - left side
```

2. Muscle position code

$$
\begin{aligned}
& \text { A, M, T } \\
& \begin{array}{l}
\text { - Anterior end } \\
B, O, V \\
C, E, G, P, ~ R, ~ J ~-~ P r o s t e r i m a r ~ e n d ~ \\
\text { C } \\
\text { D, } \\
\mathrm{K}, \mathrm{H}, \mathrm{H}, \mathrm{C}, \mathrm{~S}, \mathrm{~L} \text { - Distal end } \\
\text { - Mid-section }
\end{array}
\end{aligned}
$$

3. Animal number and total weight of paired long hindquarters

$$
\begin{aligned}
& \text { Animal III - } 300 \text { pounds } \\
& \text { Animal VI }-325 \text { pounds } \\
& \text { Animal VII }-284 \text { pounds } \\
& \text { An1mal VIII }-311 \text { pounds } \\
& \text { Animal X }-349 \text { pounds } \\
& \text { Animal XII }-350 \text { pounds }
\end{aligned}
$$

4. Preference Ratings

The judges ranked the samples from each trial in order of their preference. A numerical value later was given for each rank, number one for first place, two for second place, etc. If there was a tie such as for first place, the numerical value was an average of the sum of the values for first and second place. Therefore, the sum of the numerical values when four samples were ranked always was 10 and when six samples were ranked always was 21 .

mincoinmininmos minnininlnoulninoo. N

OMiniosommiórme

Table 9. (cont.)

 N

N

N

23.6	22.6	20.8	22.8	20.2
4.0	4.0	3.8	3.6	3.7
4.2	4.0	4.2	4.0	3.7
4.6	4.0	4.2	4.4	3.4
4.8	4.8	5.0	4.6	4.2
5.4	4.8	5.2	4.8	4.5
5.8	5.8	6.5	6.0	5.7
3.4	3.8	3.0	3.3	2.3
3.2	3.5	3.0	3.3	3.3
4.0	4.0	3.5	3.5	3.3
3.6	3.8	4.5	3.0	4.0
4.8	5.0	4.0	4.5	4.8
4.0	5.0	6.0	4.5	5.0
6.0	5.3	4.5	5.3	6.3
2.0	3.8	5.0		4.5
5.5		8.0	6.3	5.5
8.3		9.0	6.5	7.0
7.8		10.0	8.5	10.0
10.0		11.0	11.0	20.5
10.3		14.0	12.3	16.5
18.3		16.0	12.8	12.5
17.5		21.0	14.5	12.5
13.5				
4.0	5.8	6.2	6.7	1.0

8.0
N

Table 9. (concl.)

Table 10. Significance of mean squares shoving differences attributable to muscles and animals for roasts from the adducior, rectus feroris, vastus lateralus, semimembranosus (posterior) and semimembranosus (anterior).

Table ll．Summary of the t－test analyses for the psoas major， adductor and rectus remoris muscles cooked to two Enternal tompertires．

Factors	：	Peoos major		Adductor	：	Kectus femoris
Aroma scores		$2.92 \div$		7.40 圱品琞		8.28 는ำ
Flavor scures		2.76 4s		1.35 ns		3.19 \％\％\％\％
Tendorness scores		0.34 ns		1.73 ns		2.79%
Tondorness pref．		2.33 \％		1.65 ns		3.29%
Shear force values		5.24 \％ 58 －8\％		2.93 ＊		0.56 ns
Juiciness scoros		4.00 titis		11.53 \％r\％\％		9.69 ：4－6\％
Juiciness pref．		3.18%		9.59 ช้าำว		3.89 \％
Press rluid yields		2.03 ns		5.21 \％		4.58 \％ํㅏㅄ웅
Jotal cke．Iosees		I6．09 $\because \% \%$		22.47 \％		12.68 坔
Volat．ckg．lossee		17.62 \％ํㅡㅄㅜㅇ		22.59 为爰号		12．70 诺\％哭
Drip．ckr．losses		2.48 \％		$4.44 \% \%$		0.98 ns
Cooking time		15．00 \％์イัジ์		1］． 64 \％		9.85%

```
ns - Non-significant.
* - Significant at the five percent level.
*** - Significant at the onc percent levol.
*%* - Eignificant at the one-tenth percent level.
```

Table 12．Summary of the t－test analyses for the vastus latera－ lus，semimembranosus（posterior）and semimembranosus （anterior）mascles coulea to two internal temperatures．

[^6]Table 13．Summary of analyses of variance results of roasts from muscles cooked to throe internal temperatures．

Factors	Semitendi－ nosus	Longissimus dolisi（10in）	Longissimus dorsi（rib）
Aroma scores	\％\％	$\%$	米湦豆
Flavor scoses	\％\％\％	$\%$	\％$\%$
Tenderness scores	ns	\％	＊
Tenderness pref．	ne	\because	\％
Shear force values	米\％$\%$	ns	ns
Juiciness scores	\＃\％\％	\％\％	＊
Juiciness pref．	\％	兴莫莫	\％
Press fluid yiolds	\％\％\％	\％\％	\％$\%$
Total cke．losses	\％$\%$ \％	米米兴	\％+ \％
Volat．ckg．losses	\＃\％\％	＊\％\％	\％$\%$ \％
Drip．cke．losses	\％$\%$	$n \mathrm{n}$	＊＊
Cooking time	\％$\%$ \％	\％\％\％	为 $\%$

Table 14.
aroma, flavor and tenderness temporatures.

ns - Non-signinicant.
\because - Significant at the fivo peicent level.
$\because \%-$ Significant ai the one peicont lovel.
$\because \% \because-$ Significant at the one-tenth percent level.
Table 15. Summary of mean squares and aignificance for juiciness scores and preference and press fluid yields for roasts cooked to three internal temperatures.

Source of Variation	D/F	Juicinesis scores	!		Press fluid vields
Semitendinosus					
Block, unadjusted	17	0. 58 \%		0.63 ns	0.46 ns
Temp., adjustod	2	15.31 \% \%		2.2.44 \% \% \%	10.54 \% \% \% \%
Error	16	0.14		0.34	0.28
Total	35				
Longissimus dorsi (loin)					
Block, unadjusted	17	1.07		0.71 \%	1.55%
Temp., adjusted	2	等.00		16.66 \% \% \%	$21.55 \% \%$
Error	16	0.16		0.21	0.43
Total	35				
Longissimus dorsi (rib)					
Block, unedjustea	17	$0.90 \% \%$		0.74 **	1.70 \% \% \%
Temp., adiusted	2	18.22%		17.65%	19.64 \% \% \%
Error	16	0.16		0.17	0.32
Total	35				

[^7]Table 16.
Summary of mean squares and sidnificance for couline lossos and cooking time for roasts cooked tc three internal temperatures.

[^8]Table 17. Mean values for factors related to aroma, flavor and tenderness.

Muscle	$\begin{aligned} & : \operatorname{In} t \\ & : \operatorname{tem} \\ & :{ }^{\mathrm{O}} \mathrm{C} \end{aligned}$	Anima numb		Aroma scores	Plavor scoras	$\begin{aligned} & \text { :Monder } \\ & \text { : noss } \\ & \text { :scores } \end{aligned}$: Chews		:Shear :force :values
a jor	55	III	A1	7.7	8.0	9.0	20.8	2.6	14.3
			Br	7.7	7.8	9.3	18.5	2.3	12.6
		VI	A1	7.8	8.4	9.6	$1 \% .7$	2.3	15.1
			Br	7.9	8.6	9.4	1\%.7	2.1	12.1
		VII	$A x$	7.5	8.0	9.5	17.6	2.3	13.7
			Br	7.9	8.3	9.4	14.3	2.7	15.4
		VIII	Ar	7.0	7.9	9.5	13.8	2.6	35.8
			Br	7.0	7.9	9.5	17.4	1.8	13.5
		X	A1	7.0	8.1	9.1	21.6	2.3	15.6
			Br	$7 \cdot 3$	8.3	9.0	22.5	2.5	20.7
		XII	Ar	7.4	8.1	9.5	18.5	2.6	14.4
			$B r$	7.3	8.1	9.6	18.1	2.4	14.1
AV.	$7 \cdot 46$				8.12	9.37	1.9.04	2.38	14.73
	70	III	Ar	7.6	8.0	9.5	16.6	2.5	12.6
			Bl	7.9	8.0	9.3	20.4	2.6	11.3
		VI	Ar	8.3	9.0	9.3	18.9	2.7	13.?
			BI	8.5	9.0	9.4	13.6	2.6	11.1
		VII	A1	7.3	8.6	9.3	20.4	2.6	12.1
			BI	8.1	8.9	9.5	18.3	2.4	11.2
		VIII	A1	7.4	7.9	9.3	21.4	2.8	12.2
			B1	7.1	8.1:	9.4	19.6	2.8	12.3
		X	Ar	$7 \cdot 3$	8.3	9.0	22.5	2.4	13.4
			B1	7.1	8.0	9.0	23.0	2.9	13.9
		XII	A1	$7 \cdot 5$	8.3	9.4	17.1	2.4	12.6
			E1	$7 \cdot 3$	8.0	9.4	19.5	2.6	10.2
AV.				7.66	8.37	9.32	19.86	2.61	12.18

Table 17. (cont.)

Muscle		- Anlime numb		Aroma scores	$\begin{aligned} & \text { Flavor } \\ & \text { scores } \end{aligned}$:Iender : Mess :scores	Chews	:lender : ncss - pref.	:Shear :Iorce :values
femoris	70	III	Er	8.4	8.5	9.1	22.9	1.6	15.7
			Fl	8.1	8.4	8.4	27.3	2.6	19.1
		VI	E, 1	8.1	8.1	8.4	20.2	2.6	18.7
			F1	8.3	8.4	8.4	27.4	2.2	20.9
		VII	$E r$	7.6	8.3	3.8	25.3	2.7	10.1
			T1	7.6	8.3	8.7	23.2	1.9	1\%.2
		VIII	19	7.5	7.6	8.1	32.0	2.4	27.7
			Pl	7.4	7.6	8.0	31.9	2.1	16.2
		X	E1	7.3	7.3	9.0	23.0	1.4	12.8
			Er	7.4	7.6	B. 4	29,1	2.8	19.2
		XIT	E1	8.0	8.3	8.4	27.3	2,7	9.8
			Fr	$7 \cdot 17$	$7 \cdot 9$	8.3	30.3	2,1	19.4
AV.				$7 \cdot 78$	8.02	8.5?	27.32	2.26	17.23
	85	III	21	8.9	8.9	3.9	24.4	2.3	13.8
			Ir	8.9	3.5	7.9	23.5	3.5	12.8
		VI	Er	8.6	8.7	8.6	26.2	2.1	18.5
			Fr	8.3	8.8	8.2	29.0	3.2	20.3
		VII	E1	9.0	8.6	8.7	22.8	2.5	10.5
			Tr	9.0	8.6	8.8	23.2	2.8	15.0
		VIII	Er	8.3	3.5	7.6	34.3	3.3	29.4
			Tr	8.3	7.9	8.0	31.9	2.2	14.2
		X	Er	8.4	8.3	8.8	27.0	2.8	17.5
			F1	8.0	1.8	8.5	29.4	2.9	16.0
		XII	Fr	3.5	7.7	7.7	34.7	3.1	23.0
			F?	8.9	8.7	8.0	30.7	2.8	25.8
AV,				8.68	8.42	(3)31	28.51	2.79	18.07

	Fuscle		An1 32 numbe :	$:$ Cod	Arota scores:	Sluvar scuras	$\begin{aligned} & \text { :'erder- } \\ & \text { : nesu } \\ & \text { : scores } \\ & \hline \end{aligned}$	Chows	$\begin{aligned} & \text { :'encel. } \\ & \text { : ness } \\ & \text { : pref. } \end{aligned}$	$\begin{aligned} & \text { : Uhesi } \\ & \text { : Iorce } \\ & \text { :yalugs } \end{aligned}$
vastus	latcralus	70	III	Gr	15.3	8.5	10.2	27.9	2.4	17.8
				111	8.2	8.2	8.1	20.0	2.4	14.9
			V I	Gr	?.3	8.1	$? .4$	36.9	2.4	19.6
				H1	7.0	8.4	?. 5	35.9	2.1	22.6
			VII	G1.	8.1	B. 3	8.1	23.3	2.7	16.0
				III	7.4	8.2	8.0	28.8	2.9	16.9
			VJIE	(ir	?. 4	?. 8	7. 7	32.7	2.1	27.1
				${ }_{13} \mathrm{C}$	7.0	7.8	? $\cdot 7$	34.9	2.4	24.6
			X	61	7.4	7.9	3.1	30.6	1.9	17.0
				11	7.3	?. 5	8.0	32.9	2.3	20.0
			XII	CI	7.3	?.9	?. 5	37.4	2.5	16.9
				IIr	7.1	7.8	? $\cdot 5$	$3 \% .3$	3.0	21.1
	AV.				7.52	8.03	7.32	32.63	2.142	19.50
		35	III	(il	8.4	8.4	8.2	$2 \% .7$	2.8	17.3
				Hr	8.8	8.8	8.5	20.9	2.5	14.0
			V I	Cil	8.7	7.8	7.4	30.3	2.8	24.3
				Ir	8.3	8.3	7.6	316.9	2.6	23.6
			VIf	(ir	8.1	8.3	3.6	215.0	2.4	14.9
				15	9.0	8.8	8.8	-2. 3	1.9	15.3
			VIII	Cil	8.1	7.6	?.9)	34.9	2.6	28.9
				11	(3.1)	7.8	1.6	35. 7	3. 0	20.6
			3	(ir	8.5	0.5	8.1	28.5	2.2	18.1
				Fr_{r}	3.3	8.3	7.4	26.5	3.6	19.2
			YII	$1 r$	8.6	8.1	8.3	29.5	2.3	17.4
				42	3.5	7.5	7.9	33.4	2.3	20.4
	Avo				8.50	8.18	8.02	30.97	2.5,8	29. 24

(cont.)

Muscle	$\begin{aligned} & \text { : Int } \\ & \text { : tem } \\ & :{ }^{0} \mathrm{C} \end{aligned}$	- Anima numbe	Codo	Aroma scores	Flavor scores	$\begin{aligned} & \text { :Mender } \\ & \text { : ness } \\ & \text { : scores } \end{aligned}$	Chews	:Tendel : ness : pref.	:Shear :force : values
Semimembranosus (posterior)	70	ITT.	$P r$	7.9	8.0	8.4	26.6	2.1	11.9
			Qr	7.6	8.0	7.5	34.5	2.5	30.7
		VII	P1	7.9	8.3	7.4	35.8	2.7	20.9
			Q1.	8.0	8.6	7.4	35.6	2.9	31.4
		VIT.	Pr	8.1	8.0	7.9	. 31.9	2.6	16.9
			Qr	8.1	8.1	7.9	31.4	2.6	28.0
		VIIT	P1	7.6	8.0	7.1	33.3	2.3	21.0
			Q1	7.4	7.9	7.8	33.3	2.1	38.0
		X	PI	7.9	7.9	8.1	30.8	2.2	20.2
			Qr	7.6	8.0	7.9	33.3	2.1	22.1
		XIT	P1	7.5	7.9	8.4	29.8	2.9	18.1
			Q1	$7 \cdot 4$	7.6	8.0	32.0	2.8	32.7
AV.				7.75	8.02	7.82	32.36	2.4 .8	$24 \cdot 32$
	85	III	PI	8.3	7.5	8.4	27.3	2.0	16.0
			Q1	8.7	8.1	7.5	33.6	3.4	24.8
		VI	Pr	9.0	8.7	7.9	31.8	1.6	21.0
			Qr	8.6	7.9	7.4	35.7	2.8	26.4
		VII	P1	8.6	7.9	7.7	32.6	3.1	27.7
			Q1	8.9	7.9	8.2	28.6	1.8	17.4
		VIIT	Pr	8.5	7.9	7.4	32.7	2.6	17.7
			Qr	8.9	8.1	7.0	38.0	3.1	31.6
		X	Pr	8.5	7.9	7.8	33.7	2.7	28.2
			Q. 1	8.4	8.1	7.6	35.3	3.1	26.9
		XII	$P r$	8.4	7.9	3.4	28.5	2.2	17.7
			Qr	8.4	8.1	8.4	29.9	2.1	29.7
SV.				8.50	3.00	7.31	32.31	2.54	23.75

Table 17.

Wuscle		- Ansma : numbe	Code	$\begin{aligned} & \text { Aroma } \\ & \text { scores } \end{aligned}$	Flavor scores	$\begin{aligned} & \text { : cnder } \\ & \text { : ness } \\ & \text { : scores } \end{aligned}$	Chews	$\begin{aligned} & \text { :'ende } \\ & \text { : noss } \\ & \text { : prof } \end{aligned}$:Shaar : force :values
Semimembranosus (anterior)	70	III	R1	7.5	7.7	8.1	30.1	1.7	17.7
			Sr	7.5	7.6	7.7	33.8	2.8	22.7
		V I	Rr	8.1	7.7	7.4	34.8	2.2	24.0
			S1	8.0	8.0	7.8	33.7	2.3	34.4
		VII	Pr	7.7	7.6	7.9	32.4	2.9	21.3
			S1	7.9	8.0	8.1	31.3	2.8	23.2
		VIII	R1	7.8	7.8	8.0	30.3	2.9	23.5
			Sr	7.5	7.5	8.5	27.0	1.9	29.5
		X	Pl	7.9	7.5	7.9	33.1	1.6	20.7
			S1	8.1	7.4	7.8	33.6	1.9	29.3
		XII	$R r$	7.7	7.7	7.7	34.7	2.4	18.2
			S1	7.9	7.7	7.7	36.7	2.4	24.3
$\wedge v$ 。				7.80	7.68	7.88	32.62	2.32	24.07
	85	III	$R r$	8.0	7.2	7.8	32.7	2.7	16.4
			SI	8.3	7.6	7.4	35.9	2.8	25.7
		VI	R1	8.8	7.7	7.6	34.1	2.4	28.0
			Sr	8.4	7.3	7.3	37.3	3.2	3!. 5
		VII	Fl	8.6	8.0	8.0	31.1	2.3	23.1
			Sr	8.6	8.0	8.3	29.3	2.0	25.9
		VIII	Rr	9.1	8.0	8.8	25.9	1.8	29.2
			S1	8.8	8.3	$7 \cdot 4$	314.8	3.4	39.3
		Y	Rr	3.9	7.9	6.9	42.0	3.0	27.3
			Sr	8.6	7.9	7.1	37.0	3.5	20.6
		YIL	$\Gamma 1$	9.1	8.1	8.3	30.7	2.3	15.5
			Sr	9.1	8.3	7.6	35.0	2.9	30.7
AV.				3.69	7.85	7.71	33.82	2.69	26.35

Table 17. (cont.)

Muscle	$\begin{aligned} & \text { : lnt } \\ & : \text { temp } \\ & : \quad \mathrm{O}^{2} . \end{aligned}$	Inima numbo		Aroma scores	Flavor scores	$\begin{aligned} & \text { :Tnacr-: } \\ & \text { ness } \\ & \text { :scores } \end{aligned}$	Chews	$\begin{aligned} & \text { :Iender } \\ & \text { : ness } \\ & \text { : pref. } \end{aligned}$:Shear : force : values
Somitendinosus	55	III	$J r$	7.5	7.8	8.5	27.3	3.3	18.2
			$K r$	7.8	7.7	8.5	28.0	2.7	18.2
		VT	J1	6.9	7.8	8.3	27.3	2.8	34.3
			II	6.9	7.8	8.5	26.8	3.1	29.1
		VII	Jr	7.6	7.6	8.4	25.7	3.6	33.9
			KI	7.4	3.0	B. 6	25.4	3.6	17.9
		VIII	J.	7.7	7.3	8.3	28.8	3.7	27.5
			Ir	7.4	7.6	8.2	29.1	3.7	33.6
		X	Jr	7.8	8.0	8.6	27.4	3.4	49.6
			K].	8.0	8.0	8.4	28.3	3.3	39.8
		$X I T$	Jr	7.2	8.2	9.0	23.2	3.3	36.0
			Kl	7.8	8.4	8.8	23.8	3.14	31.7
Av.				7.50	7.85	8.51	26.76	3.32	30.82
	70	III	ITI	8.3	8.0	8.0	30.8	1.8	17.2
			LI	7.8	7.8	8.7	27.0	2.2	20.7
		VI	J1	6.9	8.3	7.9	28.9	4.3	24.9
			KI.	7.4	7.9	8.3	28.1	3.8	21.1
		VII	JI	7.8	3.2	8.3	27.1	$4 \cdot 2$	22.3
			LI	7.8	8.2	8.3	27.2	4.2	17.1
		VIII	KI	7.8	8.2	8.6	28.8	2.9	18.8
			EI	7.7	8.1	8.6	28.1	3.1	24.2
		Y	Jこ	8.2	8.1	8.3	27.2	3.3	23.8
			I. 1	8.0	7.9	8.2	28.6	3.6	18.4
		SiI	ITr	3.0	8.1	8.8	21.8	3.3	17.6
			L.l.	8.0	8.2	9.2	22.2	2.8	1\%.?
ΛV.				7.82	8.21	8.43	27.40	3.53	20.32

Table 17. (cont.)

"uscle		AnIma nuit?	Code:	Aroma scores	Flavor scores		Chew 3	$\begin{aligned} & \text { : sender } \\ & \text { : ness } \\ & \text { : prof. } \end{aligned}$:Nhear :Iorce :values
Semitendinosus	85	III	J1	8.8	8.7	8.2	29.8	4.1	16.6
			Lr	8.7	8.8	8.3	29.0	1.1	18.5
		VI	Kr	8.5	8.3	3.4	27.4	3.3	20.8
			Lr	8.3	8.5	8.3	28.9	3.8	23.6
		VIII	Kr	8.4	8.9	8.9	23.0	2.7	1\%.4
			Ir	8.2	8.7	9.0	22.1	2.8	16.8
		VIII	Jr	8.6	8.1	8.4	28.6	3.6	23.9
			Kr	8.3	8.2	8.0	30.1	1.0	22.2
		X	J1	8.2	8.0	8.1	30.6	4.4	21.4
			Lr	8.6	8.0	8.4	27.6	2.9	19.1.
		XII	J1	8.8	8.4	8.8	23.14	3.8	20.9
			Ir	9.0	8.4	8.8	23.6	3.9	18.9
$A \vee$ 。				8.53	8.42	8.117	27.01	3.62	20.01
Longisaimus dorsi (loin)	55	ITI.	NI	7.9	8.1	9.3	20.1	1.9	10.6
			Or	7.9	7.9	9.1	22.4	3.2	10.9
		VI	11	$7 \cdot 3$	8.0	8.9	23.6	2.8	18.3
			02	7.3	7.9	8.8	23.8	2.9	12.1
		VIT	M1	7.5	7.9	9.0	21.9	2.8	15.0
			Nr	7.6	7.8	9.0	21.8	2.7	13.4
		VIII	111	7.0	7.8	8.6	25.5	1.7	18.4
			01	6.5	7.8	3.6	27.8	3.4	14.2
		X	Mr	7.5	$7 \cdot 4$	3.6	28.4	3.5	12.2
			Nr	7.6	8.0	8.6	2.3 .6	3.3	13.5
		YII	${ }^{17}$	7.5	7.8	8.8	23.7	3.9	15.6
			OH	7.5	8.0	9.0	20.1	2.6	12.8
BV.				7.112	7.87	8.86	24.02	2.89	24.33

Table 17. (cont.)

lusclo		Anima numbe	Code	Aroma scores	$\begin{aligned} & \text { Flavor } \\ & \text { scoros } \end{aligned}$	$\begin{aligned} & \text { :'onder } \\ & \text { : ness } \\ & \text { : scores } \end{aligned}$: Chows	$\begin{aligned} & \text { : londor } \\ & \text { : ness } \\ & \text { : pref. } \end{aligned}$:Shear : Iorco :values
Longiseimis dorsi (rib)	55	TII	$T 1$	7.4	33.0	?. 0	22.0	3.14	15.4
			Ur	7.5	8.3	Y. 2	20.0	2.6	1.0
		VI	${ }_{2}$	7.6	7.6	4.0	23.4	2.0	17.0
			V1	7.6	8.0	4.0	19.7	2.5	13.7
		VIT	T1	8.4	8.6	9.1	22.1	3.3	14.8
			U2	3.1	8.5	9.3	21.0	2.7	24.2
		VIII	15	7.8	7.9	9.3	21.2	1.9	13.1
			4.2	7.7	7.8	9.2	23.3	2.5	14.6
		Y	T1	7.1	8.1	9.0	23.5	2.6	28.0
			V1	$7 \cdot 3$	8.0	9.0	23.8	3.3	20.1
		XII	${ }^{T} \mathrm{I}$	7.4	7.0	8.7	25.7	3.8	27.0
			VI'	7.4	$7 \cdot 1$	8.5	23.9	3.1	1i, 2
Av.				7.61	8.01	9.05	22.47	2.86	15.03
	70	III	U1	8.2	8.9	9.1	19.7	2.7	9.8
			Vr	7.3	8.6	8.7	23.1	4.5	11.0
		$V I$	U1	8.3	8.3	8.9	24.3	2.7	14.8
			Vr	7.9	8.4	8.4	27.3	4.6	13.2
		VII	Jr	8.3	8.8	8.9	24.6	$4 \cdot 3$	11.0
			Vi	8.3	8.9	9.1	21.5	3.6	11.5
		VIII	T1	7.9	8.1	8.9	24.1	3.6	18.5
			"J'	8.0	8.1	8.9	24.9	3. 2	19.8
		Y.	T1	7.5	7.9	8.5	27.0	3.2	21.1
			U1	7.5	8.4	8.8	24.9	4.7	15.?
		XII	U1	0.4	8.6	9.0	23.3	2.7	13.9
			V1	7.9	8.2	9.0	24.0	3.3	11.3
AV.				0.00	8.43	8.85	24.08	$3 \cdot 84$	11.37

Table 17. (conc].)

Table 18.

7.61

9.10

i.te のran inarki?
n
i

9.24

-2
0
0

\&न \&

$\begin{array}{lllll}H \\ H \\ H & H \\ H & H \\ H\end{array} \underset{H}{H}$
\bigcirc

Muscle		Anime numbe	Coda	$\begin{aligned} & \text { : Julci- } \\ & \text { : ness } \\ & \text { : scones } \end{aligned}$	$\begin{aligned} & \text { : Julci- } \\ & \text { : ness } \\ & \text { : nrel. } \end{aligned}$	$\begin{aligned} & \text { : Press : } \\ & \text { : fluid } \\ & \text { :ml/25g. } \end{aligned}$	$\begin{gathered} \text { Cleg. } \\ \text { losses } \\ \text { pet } \end{gathered}$:	$\begin{aligned} & \text { Volat. } \\ & \text { losses } \\ & \text { pet } \end{aligned}$	$\begin{aligned} & \text { :DrIp } \\ & \text { : Iosses } \\ & : \text { pot } \end{aligned}$
Adductor	70	III	Cl	8.0	2. 7	3.3	18.4		15.1	2.2
			[1	8.1	1. 6	8.6	13.8		15.5	2.6
		VI	CI	8.9	1. 6	1.2	22.1		20.0	2.1
			D1	8.6	7. 7.6	8.7	19.9		17.5	2.1
		VII	Cr	7.9	1.6	8.0	20.6		1?.2	3.5
			D1	8.0	2. 5.5	9.1	19.5		17.3	1.7
		VIII	CI	8.6	I. 8	3.2	23.7		19.6	$4 \cdot 2$
			Dr	8.4	2.9	$8 \cdot 3$	23.6		20.4	2.9
		X	C1	8.1	2.1	8.4	22.4		19.2	3.1
			DI	8.3	2.1	7.1	23.2		20.8	2.2
		XII	Cr°	8.0	2. 5	10.0	22.5		19.5	3.0
			Dr	$7 \cdot 5$	2.1	5.7	23.9		20.2	3.7
AV.				8.20	I. 76	6.38	21.55		18.61	2.78
	85	III	Cr	5.9	$3 \cdot 3$	7.5	30.9		20.5	2.0
			Dr	5.9	3.5	6.1	36.5		34.1	2.1
		VI	Cr	6.6	2.9	6.7	32.8		31.1	1. 8
			Dr	4.9	3.9	5.7	37.6		35.4	1.8
		VII	CI	$5 \cdot 7$	3.2	5.8	35.8		33.2	2.6
			Dr	5.2	3.8	6.5	35.5		$34 \cdot 3$	1.0
		VIII	Cr	5.8	3.4	6.8	39.0		35.1	3.8
			D1	6.6	2.6	7.3	36.4		34.0	2.4
		X	Cl^{3}	6.6	2.9	$7 \cdot 7$	37.1		34.9	2.2
			Dr	6.7	2. 9	7. 1	37.1		35.2	1.9
		VII	CI	6.4	2. 9	7.5	34.1		32.5	1.4
			DI	5.9	3.5	7.0	39.2		37.4	1.7
Av.				6.02	3.23	6.85	36.00		33.81	2.06

Table 18.

	Muscle		- Anima numbe	Code	$\begin{aligned} & \text { : sulci- } \\ & \text { : ness } \\ & \text { : scores } \end{aligned}$: Julci- : ness : pref.	$\begin{aligned} & \text { : Fross } \\ & : \text { flu1d } \\ & : m l / 258 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Ckg. } \\ & \text { losses } \\ & \text { pct } \end{aligned}$	$\begin{gathered} \text { Volat } \\ \text { losses } \\ \text { pct } \end{gathered}$	$\begin{aligned} & \text { :UrIp. } \\ & \text { :losses } \\ & \text { : pet } \\ & \hline \end{aligned}$
Soctus	feroris	70	III	Fr	8.8	2.2	8.7	21.1	17.3	1.1
				F 2	9.1	1.8	9.9	1L. 6	23.5	0.6
			リI	E1	8.4	1.9	5.7	20.8	18.8	2.0
				Fl	8.4	1.9	7.2	16.2	14.8	1.6
			VII	Er	8.6	1.5	8.0	22.9	20.4	2.5
				Fl	8.8	1.5	8.6	16.6	15.1t	1. 2
			VIII	E1	8.6	1.9	9.0	22.3	10.5	3.3
				Fl	8.9	1.8	8.6	21.7	18.6	3.2
			X	FI	8.3	2.0	8.3	24.0	21.0	3.2
				Fr	8.5	2.1	9.6	17.5	16.0	1.1
			YII	E1	8.0	2.1	8.6	25.9	24.1	1.3
				Fr	8.4	1.6	8.3	23.2	21.2	1.8
	$A \nabla$.				8.62	1.86	8.38	20.57	18.30	2.20
		85	III	E. 1	6.6	3.6	5.2	40.4	39.3	1.4
				Fr	7.5	2.5	7.0	35.2	32.5	2.6
			VI	Ir	$7 \cdot 3$	2.2	5.0	35.3	33.4	1.8
				Fr	7.1	3.0	7.8	35.6	34.1	1.5
			VII	E1	6.4	3.5	5.5	38.1	36.9	1.3
				Fr	5.7	$3 \cdot 5$	6.4	37.6	36.3	2.3
			VIII	Er	7.1	2.9	?.1	37.9	35.9	2.1
				Fr	7.0	5.4	6.2	35.3	33.0	2.1
			X	Es	6.9	3.3	$\therefore 2$	39.2	36.5	2.8
				E1	7.5	2.6	$\cdots .5$	33.1	30.9	2. 3
			$X I I$	Er	7.1	2.9	8.5	31.8	29.8	1.8
				Fl	6.7	3.5	3.1	34.5	33.2	1.3
	Av.				6.91	3.16	6.62	36.18	34.32	1.86

Table 18. (cont.)

70	III	Gr	8.9	1.5	8.0	17.8	15.2	2.6
		III	8.3	1.9	8.1	18.2	15.6	2.6
	VI	Gr	8.6	1.6	7.5	17.1	14.5	2.5
		FII	8.9	1.8	7.4	15.8	14.0	2.0
	VII	GI	8.7	1.9	8.0	29.4	16.6	2.7
		H1	3.1	1.3	8.9	16.3	14.2	2.3
	VIII	Cr	$\cdots 7$	2.1	7.9	25.1	20.5	5.5
		IIr	8.3	2.1	8.7	22.0	16.2	5.6
	X	CI	8.6	2.0	8.4	22.9	19.5	3.5
		H1	8.6	1.9	9.0	21.6	17.1	$4 \cdot 3$
	XII	C:I	8.3	1.9	7.7	23.4	20.2	3.2
		H	8.9	1.9	9.5	23.1	15.3	2.8
			8.62	1.82	8.26	19.89	16.58	3.30
85	III	G1	$7 \cdot 4$	3.5	6.6	33.9	32.0	1.8
		FIr	7.5	3.3	7.1	34.0	31.8	2.1
	VI	G2	5.9	3.6	7.6	35.5	33.7	1.9
		Efr	6.9	2.9	7.0	32.9	31.4	1.7
	VII	Cr	$7 \cdot 3$	3.2	6.3	37.3	35.9	1.4
		Fr	6.3	3.6	6.4	37.6	36.3	1.5
	VIII	C.1	5.9	3.5	7.0	34.1	32.8	2.3
		H	6.L	2.4	6.1	37.7	35.0	2.4
	X	Cr	6.8	3.3	7.1	33.9	32.8	2.0
		Ir	7.5	2.8	7.9	32.8	30.6	2.2
	XII	CiP^{3}	6.8	2.8	7.9	33.3	31.2	2.1
		H 1	6.0	3.4	$7 \cdot 3$	42.1	38.8	2.3
			6.72	3.19	7.05	$35 \cdot 34$	33.36	1.98

Table 18. (cont.)

Table 18. (cont.)

Muscle	$\begin{aligned} & \text { : Int } \\ & : \text { ter } \\ & :{ }^{0} \mathrm{C} \end{aligned}$	Anim numb		$\begin{aligned} & \text { : Juici- } \\ & \text { : ness } \\ & \text { : scores } \end{aligned}$	$\begin{aligned} & \text { Julci- } \\ & \text { ness } \\ & \text { pref. } \end{aligned}$: Press - fluid :ml/25s.	$\begin{aligned} & \text { Chg. } \\ & \text { losses } \\ & \text { pet } \end{aligned}$	$\begin{gathered} \text { Volat. } \\ \text { losses } \\ \text { loct } \end{gathered}$: Drip. :losses : pct
mbranosus rion)	70	I.II	I. 3	8.8	1.6	7.2	20.0	17.1	2.6
			Sr	E. 7	1.7	8.9	22.1	18.5	3.7
		VI	Rr	7.8	2.1	8.3	21.2	19.9	1.1f
			51	7.9	1.6	7.5	19.1	18.1	1.2
		VII	Fir	7.9	2.2.	9.1	19.0	17.4	1.1
			SI	8.4	1.r	8.4	17.3	16.1	0.9
		VIII	F.	7.8	1.8	9.6	21. 3	10. 6	2.5
			SI'	8.1	1. \%	9.3	23.3	21.3	2.1
		X	FIL	7.9	1.8	8.5	22.0	10.1	3.2
			51	7.13	1.6	8.1	22.8	19.5	3.2
		YII	R20	7.7	2.1	8.5	21.9	20.1	1.7
			SI	8.1	1.7	9.2	22.9	19.4	3.4
Av.				8.08	1.78	8.55	21.10	18.36	2.23
	85	III	R	5.9	3.7	6.8	34.6	32.0	2.5
			S.	6.6	3.1	9.0	38.1	36.4	2.1
		VI	R1	6.7	2.7	7.4	32.0	30.1	1.5
			Sr	5.8	3.6	6.7	37.2	36.2	1.0
		ViI	Fil	5.9	3.1	6.7	39.0	38.1.	0.9
			S2	6.7	3.1	6.8	35.4	33.8	1.7
		VITI	Rr	5.9	3.7	6.6	36.0	34.4	1.6
			SI	6.1	3.7	8.1	45.0	42.9	1.8
		X	Rr	6.1	3.1	5.8	37.2	34.9	2. 3
			Si	6.1	3.11	7.7	34.2	$32 \cdot 3$	1.7
		XII	FI	5.3	3.4	6.7	37.4	35.6	1.8
			$S \mathrm{~S}$	$5 . ?$	2.8	$7 \cdot 5$	39.2	37.4	1.8
AV.				6.12	3.23	7.15	37.13	35.39	1. 72

Table 28. (cont.)

Muscle	$\begin{aligned} & \text { :Int } \\ & : \text { tom } \\ & : \quad \mathrm{C} \\ & \hline \end{aligned}$	Anima numb	ode	$\begin{aligned} & \text { :Julch- } \\ & \text { : ness } \\ & \text { :scorns } \end{aligned}$	$\begin{aligned} & \text { :Julci- } \\ & \text { : ness } \\ & \text { : prof. } \end{aligned}$	$\begin{aligned} & \text { : Pross } \\ & \text { : fluid } \\ & : \mathrm{ml} / 25 \mathrm{~g} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Ckg. } \\ & \text { losses } \\ & \text { pct } \end{aligned}$	$\begin{gathered} \text { volet. } \\ \text { losses } \\ \text { pet. } \end{gathered}$	$\begin{aligned} & \text { :Dr1p. } \\ & \text { : losses } \\ & : \text { pct } \end{aligned}$
Semitondinosus	55	III	Jr	9.0	1.6	9.2	10.7	9.4	1.1
			Kr	9.2	2.2	9.15	11.1	9.5	1.1
		VI	JI	9.0	2.1	9.9	9.5	8.9	0.8
			Ll	9.15	1.5	9.9	8.8	7.9	0.9
		VII	Jr	8.8	2.4	8.8	20.1	9.2	1.0
			KI	9.0	2.0	9.5	20.6	9.8	0.8
		VIII	J1	9.3	2.7	9.3	10.4	9.3	0.9
			Lr	9.3	2.5	9.2	9.5	8.6	0.7
		X	Jr	8.9	2.3	9.7	11.0	9.9	0.9
			KI	8.9	2.3	8.9	13.3	11.3	2.9
		XII	Jr	9.2	2.6	9.4	12.5	12.0	1.5
			K1	8.8	3.4	9.0	13.2	11.3	1.6
Av.				9.07	2.30	9.35	10.89	9.72	2.10
	70	III	KI	8.7	2.8	9.8	20.6	17.9	2.4
			L1	8.3	3.8	3.2	17.9	15.5	2.2
		VI	Jr	7.4	4.1	8.1	16.5	15.1	2.8
			K1	8.3	2.8	8.5	15.8	14.8	1.0
		VII	J1	8.6	2.9	9.0	14.8	13.5	1.3
			L1	8.6	2.9	9.7	17.6	26.7	1.2
		VIII	K. 1	8.2	3.2	9.3	20.6	17.9	2.7
			L1	8.2	3.1	8.3	20.8	17.3	3.4
		X	Kr	7.9	3.6	8.9	19.5	18.0	2.3
			L1	8.6	2.4	9.2	20.4	16.6	3.6
		XII	πr	8.8	2.5	9.1	20.9	19.1	1.8
			LI	8.3	2.3	9.2	20.0	17.7	2.0
Av.				8.37	3.03	8.24	18.78	26.68	2.06

rable 28. (cont.)

Muscle	$\begin{aligned} & \text { :Int. :Anima } \\ & \text { :temp. Anumbe } \\ & \text { : } \mathrm{C} . \text { : } \end{aligned}$		$\begin{aligned} & \text { : Julci- } \\ & \text { : ness } \\ & \text { :scores } \end{aligned}$	$\begin{aligned} & \text { : Julci- } \\ & \text { : ness } \\ & \text { : pref. } \end{aligned}$	$\begin{aligned} & \text { Press } \\ & \text { : fluld } \\ & \mathrm{ml} / 25 \end{aligned}$	$\begin{aligned} & \text { Ckg. } \\ & \text { losisos } \\ & \text { pot } \end{aligned}$	$\begin{gathered} \text { Volat } \\ \text { losses } \\ \text { pet } \end{gathered}$	$\begin{aligned} & \text { :DrIp } \\ & \text { : Iosses } \\ & \text { :pct } \end{aligned}$
Semitendinosus	85 IIT	J1	6.5	5.8	7.6	33.0	32.4	1.8
		Ir	7.5	4.9	7.5	31.6	29.8	1.9
	VI	Kr	6.4	5.3	7.1	33.3	32.1	1.2
		Lro	6.9	5.2	8.4	30.8	29.8	1.0
	VII	Kr	7.0	5.1	7.2	32.5	31.2	1.5
		Lro	6.6	5.7	6.5	35.2	34.2	1.0
	VIII	Jr	6.1	4.7	7.2	36.8	34.8	1.8
		K	6.0	1.8	6.8	34.3	32.1	2.2
	χ	J].	6.7	4.9	7.2	33.6	31.1	2.5
		Ler	6.0	5.5	7.4	34.7	32.6	1.8
	$X I T$	J. 2	6.6	5.2	7.7	31.9	29.5	2.4
		Ir	7.2	5.0	8.2	32.6	30.9	1.6
AV。			6.62	5.18	7.40	33.36	31.62	1.72
Longissimus dorsi (loin)	55 III	W1.	9.4	1.8	9.9	9.4	8.1	1. 2
		Or	9.0	1.6	10.2	8.3	6.6	1.6
	VI	N 2	9.6	1.8	8.8	7.6	6.7	1.1
		01	9.4	2.2	8.7	8.6	7.2	1.2
	VII	M1	9.3	2.1	7.7	7.3	6.3	1.0
		Nr	9.1	2.7	9.5	9.4	8.0	1.5
	VIII	N1	9.8	2.8	7.7	10.0	8.6	1.1
		01	9.8	2.6	9.2	12.5	9.9	2.2
	X	19	9.8	2.4	8.2	12.4	11.2	1.0
		Nr	9.6	2.9	8.3	12.5	9.2	2.8
	XII	N1	9.2	2.9	9.0	10.1	3.8	1.4
		Or	9.3	2.8	9.1	12.0	10.1	1.7
AV.			9.4	2.38	8.86	20.01	3.39	1. 48

Iable 18. (cont.)

Table 13. (cont.)

Table 18. (concl.)

I For description of abtroviations used in this table see Appondiz, pg. Ul.
Table 19. Veights and cooking times for roasts from beef muscles. -

Tablo 19. (cont.)

(cont.)
Table 19.

		8	Int.		Animal	-			1.	igh	-	:	Cooking
	Iuscle	\vdots	$\begin{aligned} & \text { temp. } \\ & \text { O. } \\ & \hline \end{aligned}$	$\begin{aligned} & \vdots \\ & \hline \end{aligned}$	number	$\begin{array}{r} \vdots \\ \vdots \end{array}$	Code	$\begin{aligned} & : \\ & \because \\ & \hline \end{aligned}$	Gms .	:	Lbs.	:	$\begin{gathered} \text { time } \\ \min \cdot / 10 . \end{gathered}$
Rectus	fenoris		70		III		Er		711.0		1.6		61.9
							FI		658.0		2.4.		70.7
					VI		EI		607.0		1.3		72.3
							F1		728.0		1.6		58.1
					VII		Er		750.0		1.7		63.5
							F1		739.0		1.6		61.9
					VIII		E1		600.0		1.3		76.2
							F1		695.0		1.5		70.0
					X		E1		728.0		1.6		73.1
							Fr		799.0		1.8		62.8
					YII		E1		617.0		1.4		80.0
									617.0		1.4		67.1
	AV.								687.4		1.5		68.13
			85		III		E1		715.0		1.6		150.0
							Fr		653.0		1.4		117.1
					VI		Er		703.0		1.6		125.0
							Fr		744.0		1.6		134.4
					VII		El		700.0		1.5		138.0
							Fr		683.0		1.5		137.3
					VIII		Er		633.0		1.4		128.6
							Fr		700.0		1.5		120.0
					X		Er		715.0		1.6		111.3
							F1		789.0		1.7		104.7
					XII		Er		560.0		I. 2		102.5
							F1		705.0		1.6		109.4
	AV.								691.7		1.5		123.19

Inilc 29. (cont.)

TabIo 19.

Tablo 19.

Table 19.
(cont.)

$$
\text { Gris. }:
$$

Table 19. (cont.)

Table 29. (cont.)

Table 19.

Table 19. (concl.)

AN ABSTRACT OF A THESIS

submitted in partial fulfillment of the
requirements for the degree

RASTER OF SCIENCE

Department of Foods and Nutrition

KANSAS STATE COLITGE
OF AGRICULTURE AND APFLIED SCIENCE

A better understanding is needed of the effoct that the degree of cooking has on the tenderness of meat. Generally it is belleved that during heating, the muscle fibers become less tender when the protoplasmic proteins coagulate; whereas, simultaneously tenderness may be increased as the connective tissue is softened and partially hydrolyzed. At times these changes in connective tissue may increase the tenderness of cooked meat more than the coagulation of the protoplasmic proteins decrease tenderness.

The purpose of this study was to investigate the acceptability of oven-roasted beef muscles cooked to end-point temperatures of 55 , 70° and $85^{\circ} \mathrm{C}$. representing rare, medium- and well-done, respectively. Differences in tenderness as well as other palatability factors were measured subjectively and objectively to determine any changes that might occur which could be attributed to the degree to which the meat was cooked.

Roasts from certain muscles of six U. S. Good long hindquarters of beef were used. A randomized incomplete block design was used for cooking roasts from the semitendinosus, longissimus dorsi (loin) and longissimus dorsi (rib) muscles. Three roasts were cut from each of the previously mentioned muscles and cooked to end-point temperatures of $55^{\circ}, 70^{\circ}$ and $85^{\circ} \mathrm{C}$. Two roasts were cut from the psoas major, adductor, rectus femoris, vastus lateralus, semimombranosus (posterior) and semimembranosus (anterior). A randomized complete block design was used for cooking of the roasts either to end-point temperatures of 55° and $70^{\circ} \mathrm{C}$. or 70° and $85^{\circ} \mathrm{C}$. from the last muscles mentioned.

The defrosted roasts were cooked in a pre-heated rotary hearth oven maintained at $300^{\circ} \mathrm{F}$. The rate of rise in internal temperature was noted during cooking. After removing the roasts from the oven, weights were taken from which data for total, volatile and dripping cooking losses were obtained. Shear force values for one-inch cores of meat, press fluid yields and palatability scores vere obtained. These data were analyzed statistically; the analyses of variance were run on data from the roasts cooked to three end-point temperatures and t-tests were done on data from those roasted to two end-point temperatures.

No particular differenco was noted in the rate of heat penetration between the roasts from the right and left muscles. Most of the curves tended to rise rather sharply until the internal temperature in the meat was $40^{\circ} \mathrm{C}$., after that, the curves flattened out gradually until the end-point temperatures were reachod. For some of the muscles, the roasts from the proximal or anterior end had the slower rate of heat penetration; whereas, in the remaining muscles the distal or posterior end roasts had the slower rates. The center cuts showed no consistent pattern for rate of hoat penetration. The average welght of the roasts ranged from 1.1 to 1.9 pounds but the largest roasts did not require the longest cooking time.

Aroma and flavor scores for roasts increased with an increase in end-point temperatures. Significant and very highly significant increases for aroma scores were found with each increase in in end-point temperature. Approximately one-half of the muscles
had significant differences in flavor scores that could be attributed to an increase in end-point temperature. In most cases, the tenderness scores for roasts decreased with an increase in end-point temperature, but an increase in end-point temperature had little real effect on the tenderness scores of the roasts, because significant differences in tenderness attributable to degree of cooking were noted in only a few cases. Tenderness preference decreased with an increase in end-point temperature. An increase in end-point temperature had no consistent effect on the shear force values, since they increased for some of the roasts but decreased for others. Significant negative correlation coefficients for tenderness scores and shear force values were found for the majority of the roasts cooked to $85^{\circ} \mathrm{C}$. Juiciness scores and preference for juiciness decreased with an increase in end-point temperature; whereas, the total cooking losses and cooking times increased with an increase in the degree of cooking. Significant to very highly significant differences for each of these factors were found as the degree of cooking increased. The dripping cooking losses tended to decrease with an increase in end-point temperature and differences were significant for roasts from most muscles. Generally, the average press fluid yields decreased significantly with each increase in endpoint temperature. The majority of the correlation coefficients between juiciness scores and press fluid yields were positive, however, only two coefficients were significant. Slightly more than half of the correlation coefficients for juiciness scores
and cooking losses (total and volatile) were negative and only a few of these were significant. Most of tho correlation coofficients for press fluid yiclds and cooking losses (total and volatile) wero negative and only a fow of these were significant. No consistent trend for significant correlation coefficients was found for dripping losses and juiciness scores or dripping losses and press fluid yields.

[^0]: A - Roasts from antorlor end of muscle.
 B - Roasts from posterior end of musclo.
 C, Γ, G, P, R - Roasts from proximal ond of muscle.

[^1]: J - Roasts from proximal end of muscle.
 K, N, TJ - Roasts frora midusection of muscle.
 L - Hoasts from distal and of muscle.
 M, T - Roasts from anterior ond of musclo.
 $0, V$ - Roasts from posterior end of muscle.

[^2]: - 10 noximum score possible 10.

 2- Lower values indicate higher preferences.
 *-Significant at the five percent level.
 \%-Significant at the one percent level.
 \% $\%$ - Significant at the one-tenth percent level.

[^3]: * - Significant at the five percent level.
 * - Significant at the one percent level.
 \% $\%$ - Significant at the one-tenth percert level.

[^4]: Teximum score possible, 10.
 2-Lower values indicate hipher preferences.
 $\%-$ Sienificant at the five percent level.
 米: - Significant at the one-tenth percent level.

[^5]: Maximum score possible, 10.

 1. - Lower values indicate hicher preferences.
 \% - Sienificant at the five percent level.
[^6]: ns－Non－sifnificant．
 －Significant at the five percont level．
 H\％－Eignificant at tho one percent level．
 \＆\％－Sifnificant at the one－tenth percont level．

[^7]: ns - Mon-significant

 * - Significant at the five porcent level.
 \#\% - Significant at the one percent level.
 \% \% \% - Significant at the one-tenth percent level.

[^8]: ns - liun-significant.
 \% - Significant at the five poicent lovel.
 His - Significant ai the ore percont level.
 \%\% - Significant at the une-tenth percent level.

