COMPARISON OF RARE, MEDIUM- AND WELL-DONE ROASTS FROM CERTAIN BEEF MUSCLES

by

MARILYN STAYTON BUNYAN

B. A., Southwestern College Winfield, Kansas, 1954

A THESIS

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Foods and Nutrition

KANSAS STATE COLLEGE OF AGRICULTURE AND APPLIED SCIENCE

•

TABLE OF CONTENTS

INTRODUCTION	•	•	•	•	•	•	1						
REVIEW OF LITERATURE				•		•	1						
Muscle Composition and Structure			•	•	•	•	l						
Muscle Fibers	•	•			•	•	2						
Connective Tissues													
Collagenous Connective Tissue	•	٠	•	•	•	•	3						
Elastic Connective Tissue	•	•	•	•		•	4						
Amorphous Ground Substance	•	•	•	•	•	•	4						
Adipose Tissue			•	•	•	•	5						
Variations in Tenderness	•	•	•	•	•	•	6						
Differences Within a Muscle	• •	•	•	•	•	•	6						
Differences Between Muscles	•	•	•	•	•	•	7						
Differences Between Animals	•		•	•	•	•	7						
Factors Affecting Tenderness	•	•	•	•	•	•	8						
Age and Nutritional Level	•	•	•	•	•	•	8						
Aging Time, Temperature and Humidity .	•	•	•	•	•	•	9						
Rate of Heat Penetration and Method of	Cod	oki	Ing		•	•	11						
Effect of Cooking	• •	•		•		•	13						
On Color	•	•	•	•		•	13						
On Aroma and Flavor	• •	•	•	•		•	14						
On Tenderness				•	•	•	14						
On Juiciness	•			•		•	15						
PROCEDURE				•		•	17						
RESULTS AND DISCUSSION					•	•	39						
Rate of Heat Penetration							39						

	Aroma and	l Flat	70r	• •	•	• •	•	• •		٠	٠	•	•	•	•	٠	•	•	•		56
	Tendernes	s and	i Sh	lear	Fo	rce	Va	lue	S	•		0	•	•	•	•	•	•			59
	Juiciness	and	Rel	ste	d Fa	acti	ors	•		•	•	٠		•	•		•	•	٠	•	62
SUMMA	ARY	• • •	•	• •	0	• •	•	• •	٠			•	•	•	•	•	•	•	•	٠	73
ACKNO	WLEDGMENI	S	•	• •	٠	••	•	•••	•	٠	•	•	•	•	•	•	0	•	0		77
LITEF	RATURE CIT	ED .	•	• •	•	• •	•	• •		0	•	•	•		•		•	•		•	78
APPEN	DIX																	•			82

INTRODUCTION

Tenderness is an important factor in determining the acceptability of meat. A better understanding is needed of the effect that the degree of cooking has on the tenderness of meat. Generally, it is believed that during heating, the muscle fibers become less tender when the protoplasmic proteins coagulate; whereas, simultaneously tenderness may be increased as the connective tissue is softened and partially hydrolyzed. At times these changes in connective tissue may increase the tenderness of cooked meat more than the coagulation of the protoplasmic proteins decrease tenderness.

The purpose of this study was to determine the changes that occur, mainly in tenderness, during the oven roasting of cuts from certain beef muscles. The roasts were cooked to internal temperatures of 55°, 70° and 85°C. which represented rare, medium and well-done, respectively. Differences in tenderness as well as other palatability faciors were measured subjectively and objectively to determine any changes that might occur which could be attributed to the internal temperature to which the meat was roasted.

REVIEW OF LITERATURE

Muscle Composition and Structure

All muscles are made up of elongated, cylindrical and multinucleated fibers surrounded by sarcolemma (Lowe, 1955). These fibers may originate or terminate in a tendon or within a muscle and are made up of fibrils which are bathed in an interfibrillar substance, sarcoplasm. Fibers are surrounded by endomysium and are grouped together as bundles or fasciculi and these are surrounded by the perimysium. Several bundles in turn, are surrounded by the epimysium or muscle sheath and constitute a muscle.

Muscle Fibers. The fibrils in a muscle fiber are made up of alternate dark (A or Q) and light (I or J) bands which are coinshaped and are called sarcomers (Szent-Gyorgi, 1951 and Lowe, 1955). In some fibers a dark band (Z) is found dividing the light band. These bands or sarcomers are thought to give muscle fibers a cross-striated appearance; whereas, the fibrils themselves are responsible for the longitudinal striations. The longitudinal striations are associated with tenderness as they are more distinct right after death and then less distinct as the meat is aged. The number of fibers in an animal are predetermined and remain constant after birth (Lowe, 1955). The muscle fibers in 50 bundles from four muscles were counted by Brady (1937). He also measured the diameter of 50 fibers. No significant difference in fiber diameter was found between muscles but there was a significant difference in number of fibers per bundle from the different muscles. He noted that the larger bundles indicated finer texture and consequently resulted in more tender meat.

The proteins thus far isolated in muscle fibers were listed by Lowe (1955) as globulin x, myoalbumin, tropomyosin, myogen and

myosin combined with actin. The latter two were considered by Szent-Györgi (1951) as the most important of these and were noted to be colloidal in nature. Myosin was thought by Szent-Györgi (1948) to be an inactive skeleton to which were attached a number of globular proteins called protins without which myosin was inactive. Other chemical constituents found in muscle are water, inorganic and organic salts, carbohydrates, fat, lipids, pigments, enzymes, vitamins, nitrogenous substances and non-nitrogenous substances such as lactic acid (Maximow and Bloom, 1952; Lowe, 1955 and Szent-Györgi, 1951).

<u>Connective Tissues</u>. A small number of cells and much intercellular substance is characteristic of connective tissue. It has many forms, some is loose as between the organs, some is compact as in tendon and other is dense as in cartilage (Lowe, 1955). It can be distinguished as collagenous or elastic and as amorphous ground substance. All three types of connective tissue usually are found together and thus the classification of a given area of connective tissue will be that which is most predominate.

The thickness of the perimysium and the epimysium and the amount of sarcoplasm have a direct effect on tenderness; the more of these present, the less tender the meat.

Collagenous Connective Tissue. The main function of collagenous tissue is to bind and support other tissues. The collagenous fibers often occur in bundles, are flexible but not elastic, are wavy in appearance and may be stretched until the waves disappear (Lowe, 1955). The fibers in themselves are colorless and birefringent but when bunched together appear white and the tissue

often is called white connective tissue. Tendons, blood vessels and the sarcolemma are composed mainly of collagenous connective tissue.

Collagen is the main protein in this tissue. The chemical composition of collagen has been considered to be similar to that of gelatin as collagen may be converted to gelatin to some extent in the presence of heat and water (Lowe, 1955 and Winegarden et al., 1952). Proline and hydroxyproline were indicated as the main amino acid residues in gelatin. Probably, the sequence of the collagen backbone chain could be proline, glycine, another amino acid and hydroxyproline. X-ray patterns of collagen indicated that the chains were of a somewhat compact, folded, spiral alpha form and upon denaturation were changed to a beta form.

Elastic Connective Tissue. Elastin is the major protein found in elastic connective tissue. The fibers of this tissue are straight in their natural position but often appear wavy when teased onto a slide (Maximow and Bloom, 1952). They yield easily to stretching and when released return practically to their former length (Lowe, 1955). This tissue often is called yellow connective tissue as when elastic fibers are massed together in a ligament they appear to have a yellow color. When heated in the presence of water, the elastic connective tissue is softened slightly but not to the same extent as the collagenous connective tissue.

Amorphous Ground Substance. The collagenous and elastic fibers of connective tissue are embedded in a homogenous matrix

called the amorphous ground substance which has a consistency that varies from a fluid to a gel. In general, little is known about this substance. However, Miller and Kastelic (1956) postulated that ground substance is composed of mucopolysaccharides and mucopolysaccharide-protein complexes present in different degrees of polymerization.

Adipose Tissue. Adipose tissue consists mainly of fat, but other substances such as water, minerals and proteins are present. As fat is deposited in certain cells of a beef animal, the cell walls, composed mainly of collagenous connective tissue, become thinner and finally rupture. Connective tissue then becomes a part of fatty tissue (Lowe, 1955). The deposition of fat occurs first in subcutaneous areas and around the internal organs, then around and between muscles and finally intramuscularly which may be between a few or many muscle fibers. The amount of intremuscular fat deposited varies in different muscles.

Some workers have agreed that fat plays a part in the tenderness of meat. Wang et al. (1954) indicated that the manner in which fat was distributed throughout the muscle appreciably affected the tenderness. This distribution, they called the protein-fat interphase, that is the amount of surface contact between the fat cell and muscle protein (either or both, actomyosin and collagen). According to these workers, this distribution of fat in raw samples could be determined quantitatively by measuring the longest axis of each fat island and expressing the sum as "linear" fat. The scores for tenderness of broiled beef steaks

correlated well with the "linear" fat of the raw muscle. The higher the amount of "linear" fat, the more tender the cooked meat. These data could assist in explaining the possible beneficial effect of marbling. Hiner et al. (1955) also agreed that beef from well-fattened animals usually was more tender than meat from lean animals.

Variations in Tenderness

Differences Within a Muscle. Tenderness of certain of the beef muscles has been shown to vary within a given muscle. This was true in the semimembranosus muscle (Paul and Bratzler, 1955b) in which steaks from the anterior portion were more tender than those from the center portion which in turn were more tender than those from the posterior end. In another study by these same workers (1955a), steaks from eight pairs of longissimus dorsi muscles from U. S. Prime, Good and Commercial grade beef animals were, in most cases, more tender from the anterior portion of the muscle than those from the posterior end. In contrast, Ramsbottom et al. (1945) found that in the longissimus dorsi muscle from three U. S. Good carcasses, the posterior end was more tender than the anterior. Noble et al. (1934) used roasts from 11 Choice and Medium grade beef animals and found no pronounced tendency for the longissimus dorsi to become less tender from the posterior to the anterior end.

The psoas major was found to vary slightly in tenderness by Ramsbottom et al. (1945), in that, lower shear values were noted

for the cores for the middle section than for those for either the anterior or posterior end. Steaks from the adductor muscle from U. S. Prime and Good beef carcasses also were quite uniform in shear tenderness regardless of position of the steak, treatment or grade of animal (Paul and Bratzler, 1955b).

Differences Between Muscles. The relative tenderness of 50 muscles of a beef carcass was determined by Ramsbottom and Strandine (1948) by the use of shear values on raw and cooked samples. The raw muscles were ranked in order of most to least tender as follows: longissimus dorsi, psoas major, adductor, vastus lateralus, semimembranosus, rectus femoris and semitendinosus. Whereas, the cooked muscles ranked thus in order of most to least tender: psoas major, longissimus dorsi, rectus femoris. adductor, semitendinosus, vastus lateralus and semimembranosus. The psoas major also was reported as the most tender of all cooked beef muscles in an earlier paper from this same laboratory (Ramsbottom et al., 1945) and is in agreement with studies by Jacobson and Fenton (1956) and Hiner and Hankins (1950). The results of a study reported by Clark and VanDuyne (1949) were in conflict with those of Ramsbottom and Strandine (1948). The Illinois workers found that the cooked semimembranosus muscle of U. S. Prime and Choice beef animals was significantly more tender than the adductor muscle.

Differences Between Animals. The tenderness of beef carcasses varies considerably even within a U. S. grade. Paul and Bretzler (1955b) compared the tenderness of the semimembranosus muscle

from U. S. Prime and Good carcasses. They found more variation in tenderness among the muscles from carcasses of the same grade (U. S. Good) than among muscles from carcasses of the two grades. Similar results were not obtained with other muscles. These same workers (Paul and Bratzler, 1955a) reported that U. S. Prime grade steaks from the longissimus dorsi muscle were more tender than U. S. Good or Commercial grade steaks from the same muscle. Differences in tenderness and other palatability factors of meat from U. S. Choice, Good and Commercial grade beef carcasses were reported by Simone et al. (1958) to become more apparent with increasingly wider differences in the degree of finish and carcass grade. These differences were not apparent unless carcasses with a moderate finish were compared with carcasses of a rather high degree of finish.

Factors Affecting Tenderness

Age and Nutritional Level. Meat from animals of varying ages often differ in tenderness. In a study by Hiner and Hankins (1950), it was noted that generally as age of the animals increased, tenderness of each of the muscle samples representing nine principal cuts decreased. The beef muscles used were from cows, heifers, steers, steer calves and veal calves. No significant difference in tenderness was noted between the muscle samples from veal and those from steer calves, but the difference between the samples from veal calves and those from cows was highly significant. A decrease in tenderness of beef muscles with an increase

in age of the animal also was noted by Mackintosh et al. (1936) and Jacobson and Fenton (1956).

Nutritional level of the animal as well as age has an effect on the tenderness of beef muscles. Jacobson and Fenton (1956) maintained 24 heifers, 32 to 80 weeks old, at high, medium and low levels of nutrition. The longissimus dorsi muscle from the animals on the higher nutrition level showed significantly higher tenderness scores than for this muscle from animals on the lower level. This was not true of the psoas major, in that, tenderness scores were similar regardless of nutritional level of the animal.

Aging Time, Temperature and Humidity. The tenderness of a carcass is affected by the conditions under which it is aged. Rigor mortis or the stiffening of muscles occurs soon after the death of an animal. This rigidity of the muscle (Szent-Györgi, 1951) was attributed to the permanent combination of the muscle proteins, myosin and actin, into actomyosin, the disintegration of adenosine triphosphate (ATP) and the breakdown of glycogen into lactic acid. With death this contraction reaction is irreversible whereas in normal muscle, contraction is reversed by relaxation.

The histological appearance of the fibers of beef also changes with the onset and passing of rigor. Faul et al. (1952) have described the fibers of fresh beef as straight, poorly differentiated but with quite prominent longitudinal striations. With the severe contraction of muscle and the onset of rigor, rigor nodes and Z-Z contractions appeared in the muscle fibers. As rigor diminished, the muscles tended to relax and the fibers became fairly straight. They thought that active muscle contraction contributed to the toughness of beef; whereas, with relaxation, passing of rigor, and consequent breakdown of the fibers, the meat became more tender. This process takes place by enzymatic action when the beef carcass is aged usually at refrigerator temperatures.

The extent of aging following slaughter is one of the important determinants of tenderness (Paul, 1957). Beef from 10 U.S. Choice to Common grade carcasses was used by Ramsbottom and Strandine (1949) to study the changes in tenderness during a 12 day holding period at 35°F. The beef was more tender at two hours following slaughter than at any time thereafter up to six days. However, from the sixth to the twelfth day of aging, the beef progressively increased in tenderness. By the twelfth day, the beef was considerably more tender than it was at two hours after slaughter. In contrast, 14 beef carcasses were aged at 33° to 35°F. for longer periods by Deatherage and Harsham (1947). When the initial tenderness was high as in the case of two carcasses, only a small increase in tenderness was noted following aging. However, in the other 12 carcasses, tenderness usually increased up to 17 days and then developed a plateau. At 24 days there was a slight drop in tenderness and at 31 days there was some increase beyond that for the 17 day level. These workers stated that this work indicated that unless beef was to be aged over four weeks, it needed only two and one-half weeks of aging. However, a shorter aging period was recommended by Paul et al. (1956) who indicated that beef aged more than seven days did not increase significantly in tenderness.

Ten beef carcasses were subjected to three series of storage treatments by Griswold and Wharton (1941). They found small differences in tenderness between meat stored at 34°F. for nine or 37 days. There was little difference in tenderness of meat stored for 48 hours at 60°F. without ultra-violet irradiation and that stored at 60°F. for 48 hours with ultra-violet light. But when meat stored at 36°F. without irradiation was compared with meat stored at 60°F. with irradiation, the tendernoss was slightly greater in the meat stored at the higher temperature. Sleeth et al. (1958) stored U. S. Choice and Good beef hindquarters, forequarters and wholesale ribs at temperatures of 36°, 40°, 57°, 68°, 76°, and 86°F. under relative humidities of 80 to 90 percent and air velocities of 15 to 20 lineal feet per minute. Ultra-violet light was used with the elevated temperatures to control microbial growth. Tenderness scores for the beef quarters aged two to three days at the higher temperatures under ultra-violet were comparable to those aged 12 to 14 days at 36° to 40°F. They found that proper humidity was needed in the aging room to lessen shrinkage and discoloration of the meat when higher storage temperatures were used.

<u>Rate of Heat Penetration and Method of Cooking</u>. Many changes occur in meat when it is cooked. Rate of heat penetration and subsequent coagulation of the muscle proteins are important determinants of these changes. The temperature at which coagulation begins is dependent on the rate at which cooking occurs. Lowe (1955) indicated that in most cases coagulation of the muscle proteins begins at approximately 60°C. Beef roasts always were found by Cover (1943) to be tender when the rate of heat penetration was slow enough to require 30 hours or more for the meat to lose its pink color. Three pair of beef roasts were cooked well-done and one pair rare at oven temperatures of 80° and 125°C.

The right and left semimembranosus muscles were divided into thick and thin cuts and roasted at 300° and 350°F., respectively by Hood et al. (1955) to an internal temperature of 176°F. The internal temperature of these cuts was recorded every three minutes until 170°F. was reached and then after every minute until the end temperature was obtained. The internal temperatures tended to lag around 160°F. for the thin cuts cooked at 350°F. and at 150°F. for the thick cuts cooked at 300°F.

The right and left semitendinosus and biceps femoris muscles were dissected from six beef animals by Paul et al. (1952) and divided into three adjacent pairs of one-inch steaks and three to four-inch roasts. The roasts were cooked in the oven at 163°C. to an internal temperature of 63°C.; the steaks were cooked in deep-fat at 147°C. to 63°C. The deep-fat cooking required less time than the roasting which reflected the efficiency of heat transfer.

Roasts from beef muscles rather than steaks were cooked in deep-fat by Visser (1957). Fairly straight heat penetration curves were noted for the smaller roasts; whereas, the more blocky, compact roasts had longer more sloping curves. However, the rate of heat penetration had no effect on either the tenderness scores or shear force values for the roasts. The larger roasts appeared to be more "done" than the smaller ones cooked to the same internal temperature. In preliminary work by Jacobson and Fenton (1956) large roasts also seemed to be more "done" than small roasts cooked to the same internal temperature.

Effect of Cooking

Meat is cooked to make it more palatable and certain changes occur with cooking. The extent of these changes might be slight or great and are dependent upon the degree to which the meat is cooked. Some of the more prominent changes that occur are in color, aroma, flavor, tenderness and juiciness.

On Color. Myoglobin is the main pigment in muscle tissue and has a close relationship in structure to hemoglobin (Lowe, 1955). It is mainly responsible for the dark red color of freshly cut beef and with exposure to air, it is combined with oxygen to form oxymyoglobin, a bright red pigment. With continued exposure to air, the oxymyoglobin may be oxidized to metmyoglobin, a brown pigment.

The myoglobin pigment, like hemoglobin, is unstable to heat (Lowe, 1955). Decomposition products are formed when fresh meat is heated to sufficiently high temperatures and according to Lowe (1955) this change begins when internal temperatures of approximately 65° to 70°C. are reached. At these temperatures the globulin portion of the pigment molecule begins to coagulate and the newly-formed hematin pigment is responsible for the gray or brown color. The rate of heat penetration may effect the temperature at which myoglobin starts to coagulate. With long, slow cooking the decomposition of this pigment may take place at lower internal temperatures than if the meat is heated rapidly.

On Aroma and Flavor. Aroma and flavor are two components of palatability that are difficult to differentiate. It has been said (Howe, 1927) that in cooked meat, the most prominent flavors are found as odors.

Crocker (1948) found that the flavor of raw meat was mostly in the juices and was weak, sweet, salty and blood-like. This characteristic raw meat flavor sometimes could be detected in beef cooked to low internal temperatures. The flavor of cooked meat was attributed mainly to the breakdown of the side chain amino acid units of muscle fiber proteins. The breakdown compounds isolated were ammonia, amines, hydrogen sulfide and various acids which indicated that a variety of amino acids were changed during cooking. The characteristic flavors of cooked meat increased with longer cooking up to about three hours but with prolonged cooking these flavors seemed to be lost (Crocker, 1948).

On Tenderness. Tenderness of meat is closely related to other palatability factors and has considerable influence on its acceptance. The ease with which a piece of meat is chewed is related to the fineness of the grain, the quantity of connective tissue and the hardness of the fibers.

Tenderness has been measured organoleptically by subjective scoring and by the recording of the number of chews needed to completely masticate a sample of meat of standard surface area and thickness. Paul and Bean (1956) found that counting the number of chews was an effective method for measuring tenderness, but they had difficulty in obtaining similar size pieces of meat for each trial.

Shear values obtained on the Warner-Bratzler shearing apparatus are used as an objective measurement for tenderness. Two sizes of shear cores, one-inch and one-half-inch, have been used for the determination of shear force values. The latter size usaully has been used on small pieces of meat. Significant correlation coefficients between the shear values for one-half and for one-inch cores of cooked beef muscle roasts were found by Paul and Bratzler (1955b) and therefore, it was concluded that either size could be used for the determination of shear force values.

There is disagreement in the literature as to the effect that cooking has on the tenderness of beef. The adductor, longissimus dorsi and semitendinosus muscles were noted by Ramsbottom et al. (1945) to become less tender with cooking. This was true when the shear values of the cooked muscles were compared with those from the raw muscles. However, Satorius and Child (1938s) found that tenderness of the adductor muscle from animals of High Medium to Good grade was not affected by cooking, but that the longissimus dorsi became more tender with the increased degree of cooking. The semitendinosus muscle, too, increased in tenderness with coagulation of the muscle proteins up to 67°C, but decreased in tenderness from 67° to 75°C.

On Juiciness. Juiciness of cooked meat is thought to be related to its moisture and fat content. During cooking the fat

1.5

of the adipose tissue is softened and thus contributes to juiciness. Juiciness of beef muscles is evaluated subjectively by taste panels and compared with such objective measurements as total cocking losses, including volatile and dripping losses, cocking time and press fluid yields. Press fluid yields do not always correlate with juiciness scores because they are only a measure of the amount of juice expressible under certain conditions and do not involve other factors such as the flow of saliva which takes place when a piece of meat is tasted (Satorius and Child, 1938b).

The location of the fat in the various forms of connective tissue in and around a muscle, as well as the total amount of fat present may contribute to the juiciness of meat (Lowe, 1955). However, either the total amount or location of fat in the muscle did not make a difference in the juiciness scores of meat in a study reported by Siemers and Hanning (1953). These workers used small pleces of semimembranosus beef muscle and covered them with a suet sheath to simulate a covering of fat, or ground the lean and suet together to simulate fat within a piece of meat. The lean and lean-suet combined pieces (either with the sheath or ground) were cooked in centrifuge tubes in a water bath at 65° . Juiciness scores for all samples decreased with an increase in cooking time and the taste panel was unable to detect a significant difference in juiciness between lean and lean-suet samples.

A decrease in juiciness scores for beef muscle was found by Clark et al. (1955) and Hay et al. (1953) as the cooking losses and cooking times increased. This relationship also was found by Aldrich and Lowe (1954) when they cooked beef muscles an additional hour beyond the time required to reach an internal temperature of 90°C. at an oven temperature of 150°C. Cooking losses were found by Child and Satorius (1938) to increase with an increase in oven temperature when the semitendinosus muscle of beef was cooked to 58°C. at oven temperatures of 120°, 150°, 175° and 200°C. The greater cooking losses were attributed to greater evaporation or volatile losses. However, no difference was found in press fluid yields from this muscle cooked at these various oven temperatures.

PROCEDURE

The long hindquarters from six U. S. Good beef carcasses with unknown past history were obtained from a Kansas City packing house. The weights of a pair of long hindquarters ranged from 284 to 350 pounds. Approximately two or three days after the carcasses were received at Kansas State College, certain paired muscles were dissected and trimmed of most of the exterior fat. The muscles used were the psoas major, adductor, rectus femoris, vastus lateralus, semimembranosus (posterior), semimembranosus (anterior), semitendinosus, longissimus dorsi (loin) and longissimus dorsi (rib). The first six muscles each were cut into two roasts; the other three muscles into three roasts. Flates I through VIII are photographs of representative muscles used in this study. The paired roasts were coded and a randomized block design was used for those cut into two pieces and cooked to either 55° and 70°C. or to 70° and 85°C. end-point temperatures. A

EXPLANATION OF PLATE I

Top of plate:

Fsoas major muscle, right side from Animal X.

Bottom of plate:

Fsoas major muscle from left side of Animal X, divided into roasts Al (anterior end) and Bl (posterior end).

.

EVPLANATION OF PLATE II

Top of plate:

Adductor muscle, right side from Animal X.

Bottom of plate:

Adductor muscle from left side of Animal X, divided into roasts Cl (proximal end) and Dl (distal end).

PLATE II

EXPLANATION OF PLATE III

Top of plate:

Pectus femoris muscle, right side from Animal VII.

Bottom of plate:

Rectus femoris muscle from left side of Animal VII, divided into roasts El (proximal end) and Fl (distal end).

PLATE III

EXPLANATION OF PLATE IV

Top of plate:

Vastus lateralus muscle, right side from Animal V. Bottom of plate:

Vastus lateralus muscle from left side of Animal V, divided into roasts Gl (proximal end) and Hl (distal end).

PLATE IV

EXPLANATION OF PLATE V

Left side of plate:

Semimembranosus muscle, right side from Animal X.

Right side of plate:

Semimembranosus muscle from left side of Animal X, divided into roasts Pl (posterior side, proximal end), Ql (posterior side, distal end), Rl (anterior side, proximal end) and Sl (anterior side, distal end). The slices between the roasts removed for chemical analyses also are shown.

EXPLANATION OF PLATE VI

Top of plate:

Semitendinosus muscle, right side from Animal X.

Bottom of plate:

Semitendinosus muscle from left side of Animal X, divided into roasts Jl (proximal end), Ll (distal end) and Kl (center).

PLATE VI

EXPLANATION OF PLATE VII

Top of plate:

Loin section of the longissimus dorsi muscle, right side from Animal VII.

Bottom of plate:

Loin section of the longissimus dorsi muscle from left side of Animal VII, divided into roasts Ml (anterior end), Ol (posterior end) and Nl (center). The slices between the roasts removed for chemical analyses also are shown.

PLATE VII

EXPLANATION OF PLATE VIII

Top of plate:

Rib section of the longissimus dorsi muscle, right side from Animal X.

Bottom of plate:

Hib section of the longissimus dorsi muscle from left side of Animal X, divided into roasts Tl (anterior end), Vl (posterior end) and Ul (center). The slices between the roasts removed for chemical analyses also are shown.

PLATE VIII

randomized incomplete block design was used for those cut into three roasts and cooked to 55°, 70° and 85°C. end-point temperatures (Tables 1 and 2).

The roasts were wrapped in 0.0015 gauge aluminum foil and frozen in an upright home freezer maintained at -10°F. Approximately 48 hours previous to cooking, the wrapped roasts were defrosted in a refrigerator (42° to 46°F.). Following that time, the roasts were unwrapped and centigrade thermometers were inserted into the mid-portion of the thickest section of the cut. The roasts then were cooked on racks in aluminum pans in a preheated rotary hearth oven maintained at 300°F. All roasts from one paired muscle were cooked at each period.

The internal temperatures of the roasts were noted before they were placed into the oven. The time required for each 5°C. rise in temperature until the roasts had reached 55°C. was recorded and thereafter each 2°C. rise was noted. Following removal of the roasts from the oven, they were allowed to stand for a period of time in order that any rise in internal temperature could be recorded. Appropriate weights of the roasts were taken in order that volatile, dripping and total cooking losses could be calculated.

When the meat was cool enough to handle, a one-inch core was taken from each reast and shear values were determined on a Warner-Eratzler shearing apparatus. These cores were taken parallel to the fibers and before samples were removed for palatability tests. The Warner-Bratzler shearing apparatus indicated the number of pounds it took for a dull blade to cut through the

Randomized complete block design for roasting cuts from certain right (R) and left (L) beef muscles. Table 1.

		••				ANTI	MALS							
Muscles :	Code	TI	T	R V.	•••••	VI. R	L	VII R	L	: R	Г	XI R	I	
Psoas major	<7 €G	55	202	570	70	202	70	NN	70	520	202	555	70 70	
Adductor	DA	88	70	000 1010	70	30	85	85	30	80 2 2 2 2 2 2 2	70	02	00 0 0 0 0 0	
Rectus femoris	a a	35	85	80 10 10 10 10 10 10 10 10 10 10 10 10 10	70	30	302	80 10 10 10 10 10 10 10 10 10 10 10 10 10	70	202	850	202	35	
Vastus lateralus	υщ	20 85	85	70	85	∞	02	70	80 80 10 17 0	88 10 10 10 10 10 10 10 10 10 10 10 10 10	70	202	70	
Semimembranosus (posterior)	A 6'	02	000 000	88 20 20 20 20 20 20 20 20 20 20 20 20 20	70 70	70	000 000	000	70	85	30	$\infty \infty$	02	
Semimembranosus (anterior)	pr; 02	85	010	20 20 20	85	820	85	85	30	88 10 10 10 10	70	70 85	85	
A - Rossta from	o notron i o	bre a	of m	0100										

A - ROASTS IFOM ARCEFIOF END OF MUSCLE. B - Roasts from posterior end of muscle. C, R, G, P, R - Roasts from proximal end of muscle. D, F, H, Q, S - Roasts from distal end of muscle.

Rando ized inco plete block design for rousting cuts from certain right (R) and left (L) beef muscles. '1ublo 2.

	1.	-	-	1		APPL	ALS		1				
Muscles		C R	L L	R V		R VII		H I I I I I I I I I I		X	 	ХI. Н	L
Semitendinosus	ראט	NNC NNN	85 70 70	0.7.70 0.7.70	2022	NNN NNN	2020	0000 1000 1000 1000 1000 1000 1000 100	700	252	2020	52 85 85	.2.2. .2.2.0
Longissimus dorsi (loin)	NO	220	3 17 3 1 17 1	70	0000 0000	0000 0000	20X 2 X X X X X X X X X X X X X X X X X	320	0 11 10	C' C' C'	85 70	82 202	2220
Longissimus dorsi (rib)	HD>	8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	8.7N	287 2700	80V 70V	85 70	NNN	10 10 10 10 10 10 10 10 10 10 10 10 10 1	0 N N 0 N N	70	NNN	100 M 10 M M	45 70 70
J - Rossts from	i proxi	mal end	of mu	acle.									

K, N, U - Foasts from mid-section of muscle.
L - hoasts from distal and of muscle.
M, T - Roasts from anterior and of muscle.
0, V - Roasts from posterior and of muscle.

core of meat. Five shear values were obtained on a one-inch core and averages were used for the final shear value of each roast.

Slices from each roast were cut one-eighth inch thick on a General home slicer and samples from the same position from each roast were given to each of the members of the palatability committee at each scoring period. Ten judges scored the samples for aroma, flavor, juiciness, tenderness and recorded number of chews to completely masticate a sample of meat. A ten-point scale was used with ten indicating extremely good and one, extremely poor (Form 1, Appendix). Each judge also ranked the samples according to his preference for juiciness and for tenderness.

The remainder of the meat was trimmed and that with the pieces of the sheared cores was ground in an Universal No. 3 meat grinder and stored in a refrigerator overnight. The following day, the ground meat samples were allowed to come to room temperature (approximately one hour) before press fluid determinations were made. Each sample was done in duplicate.

For press fluid measurements 25 grams of the ground meat were packed in three layers in a cheesecloth lined metal cylinder. The layers each were separated by No. 1 Whatman filter papers. A leather disk and a metal plunger were placed on the meat and the packed cylinder was set on a stainless steel pan and placed on a Carver Laboratory Press. Pressure was applied

according to the following schedule:

Time in	Pressure in
minutes	pounds*
10	5 000
2.0	7,500
3.0	10,000
5.0	10,000
7.5	12,500
10.0	15,000
11.0	16,000
15.0	16,000

Three minutes after the pressure was released the press fluid was poured into 15 ml. graduated centrifuge tubes. All the excess juice was scraped from the cylinder and pan into the tubes and these tubes were placed in a refrigerator over night. Total volume of press fluid, as well as the volume of serum and fat was recorded the following morning.

The data collected in this study were analyzed statistically to determine the effect that the degree of cooking had on total, volatile and dripping losses; cooking time; shear force values; total press fluid yields and the palatability factors, aroma, flavor, tenderness, juiciness and preference for tenderness and juiciness. Analyses of variance and where appropriate, least significant differences, were run on data from the muscles that were cooked to three internal temperatures. The t-test was used to analyze data from the muscles cooked to two internal temperatures.

Also, correlation coefficients were determined for tenderness

[&]quot;The pressure in the schedule refers to the load on the 1.25-inch ram of the test cylinder. The maximum load on the meat was 4,000 pounds per square inch.

scores and shear force values; juiciness scores and cooking losses (total, volatile and dripping); juiciness scores and press fluid yields; and cooking losses (total, volatile and dripping) and press fluid yields. The correlation coefficients were run on the data for roasts from each muscle cooked to each internal temperature.

Histological samples, raw and cooked, were taken from all roasts. Slides from these samples will be studied for type and amount of elastic and collagenous connective tissue, amount and deposition of fat and width of muscle fibers. Samples for chemical determinations were removed from the raw and cooked roasts of the semimembranosus (anterior), semimembranosus (posterior), longissimus dorsi (loin) and longissimus dorsi (rib) muscles. Determinations will be made for total nitrogen, collagennitrogen, water soluble nitrogen and heat coagulable water soluble nitrogen. The histological and chemical data will be reported in another manuscript.

RESULTS AND DISCUSSION

The discussion presented here will be concerned mainly with the changes in palatability that occur during the cooking of roasts from beef muscles.

Rate of Heat Penetration

When meat is cooked, temperatures often rise rapidly until protein coagulation begins. At this time, the slope of a heat

penetration curve becomes more gradual and a plateau may occur in the curve if sufficient coagulation is taking place at one time. The flattened portion of the heat penetration curve may be attributed to the absorption of heat because protein coagulation is an endothermic reaction.

The rate of heat penetration curves for this study are given in Figs. 1 through 15. Most of the curves tended to rise rather sharply until the internal temperature in the meat was 40°C., after that, the curves flattened out gradually until the end-point temperatures were reached. The curves for the roasts from the right muscles were similar to those from the corresponding left muscles. In the psoas major, adductor, vastus lateralus, semitendinosus and longissimus dorsi (rib) the curves for the right

For some of the muscles, the proximal or anterior end roasts showed longer curves with more gradual inclines than those for the roasts from the distal or posterior ends; whereas, in other muscles, the opposite was true. In the case of the semimembranosus (posterior), left, the rate of heat penetration for the proximal and distal ends was similar in that the average time for the internal temperature of each to rise to 85° C. was the same. The rate of rise in the internal temperature for the distal roasts of the left rectus femoris was slower than that for the proximal roasts of the same muscle until 70° C. was reached. Thereafter, a rather sudden rise for the distal roasts was noted until 85° C. was gradual until 85° C. was obtained. No consistent pattern for rate

Fig. 1. Average heat penetration curves for the psoas major muscle. Top of figure, right muscle; bottom, left muscle.

The second secon

Average heat penetration curves for the left vastus lateralus muscle. F1E. 6.

Fig. 9. Average heat penetration curves for the semimembranosus (anterior) muscle. Top of figure, right muscle; bottom, left muscle.

Average heat penetration curves for the left semitendinosus muscle. 11. • 97 14

of heat penetration was noted for the center cuts from the semitendinosus, longissimus dorsi (loin) and longissimus dorsi (rib) muscles.

The roasts from the psoas major had the shortest and those from the rectus femoria the longest cooking times as shown by the rate of heat penetration curves. The psoas major roasts (average weight, 1.1 pounds) were the smallest ones cooked but the rectus femoris cuts (average weight, 1.5 pounds) were not the largest ones roasted. The anterior semimembranosus roasts (average weight, 1.9 pounds) also had long curves but they were not as long as those for the rectus femoris. The roasts from the other muscles were similar in weight and showed similar rates of heat penetration. The curves of the posterior semimembranosus and vastus lateralus roasts were of average length even though these muscles weighed slightly more than the rectus femoris roasts.

Aroma and Flavor

In this study, as the aroma scores increased the scores for flavor also tended to increase (Tables 3 and 4). Aroma mean scores for all roasts became higher as the end-point temperatures increased. That is, the aroma scores for the roasts cooked to 70° C. were slightly higher than the scores for those cooked to 55° C., and the aroma scores for the roasts cooked to 85° C. were higher than the scores for those cooked to 70° C. A larger increase in aroma scores was noted between the roasts cooked to 70° C. and those roasted to 85° C. than was found between those

tenderness	
flavor and	comperatures.
to aroma,	internal t
related	to two
factors	s cooked
lues for	te muscles
mean va	from th
Average of	for roasts
Table 3.	

Muscles	: Int. temp. cc.	. Aroma ¹ scores	: Flavor 1 : scores :	Tender-1 : ness : scores :	Tender-2 : ness : pref. :	Shear force lbs.
Psoas major	55	7.46	8.12	9.37	2.38	14.78
	70	7.66	8.37	9.32	2.61	12,18
Adductor	70	7.73	7.82	8.08	2.34	20.43
	85	8.66	8.08	7.92	2.65	24.65
Rectus femoris	70	7.78	8.02	8.52	2.26	17.23
	85	*** 8 • 68	8.42	8.31	2.79	18.07
Vastus lateralus	70	7.52	8.03	7.82	2.42	19.59
	85	8.50	8.18	8.02	2.58	19-54
Semimembranosus	70	7.75	8.02	7.82	2.48	24.32
(posterior)	85	8.60	8.00	7.81	2.54	23.76
Semimembranosus	02	7.80	7.68	7.88	2.32	24.07
(anterior)	85	8.69	7.85	7.71	2.69	26.35

1 - Maximum score possible, 10.
2 - Lower values indicate higher preferences.
* - Significant at the five percent level.
*** - Significant at the one percent level.
**** - Significant at the one-tenth percent level.

ndernoss	Shent force lis.	30.327	20.32 *	20.01	4.77	14.33	14.02	15.32	-	15.03	14.37	11.52	8
lavor and te emporatures.	e ider-c : nc 38 : prof. :	3.32	3.53	3.62		2.897	3.72 *	3.88-	0.69	2.867	3.54 *	4.13-	0.69
to aroma, f	ei er-1: neks : scores :	3.51	8.43	8.47		8.867	8.62 *	6.59	0.17	6.057	8.85 *	9.65	0.28
sctors related sooked to three	Flavor scores	7.05	8.11	8.42	0.22	7.8.7	8.24	3.31.	0.30	8.017	8.43 3	8.54	0.22
ues for fu muscles	Aroma scores	7.50	7.82	8.53	0.22	7.42	7.93	8.68	0.20	7.61	8.00	8.88 8.88	0.22
from the	Int. tolt.	55	70	35		55	02.	85		55	70	85	
Table 4. Average of for roast	, uscles	Semitenuinosus			lsá	Longissimus dorsi	(TITOT)		laû	Longiasimus dorsi	(07.1)		lsd

Leximum score pessible, 10. Lower values indicate higher preferences. Significant at the five fercent level. - Least at nificant difference.

cooked to 55° C. and those roasted to 70° C. Aroma scores for all roasts cooked to two end-point temperatures (70° and 85° C.) were very significantly higher for those roasted to 85° C. than for those roasted to 70° C. Significantly higher aroma scores were found for the 70° C. psoas major roasts than for the 55° C. roasts. Also, significant differences were found among the aroma scores for the roasts cooked to the three end-point temperatures (55° , 70° and 85° C.).

Mean flavor scores also showed a tendency to increase as the end-point temperatures increased. This was true for roasts from all muscles except from the semimembranosus (posterior) in which the average flavor scores were practically the same for those roasts cooked to 70° C. and to 85° C. Flavor scores for the roasts from the psoas major, semitendinosus, longissimus dorsi (loin) and longissimus dorsi (rib) were significantly higher for those cooked to 70° C. than for those roasted to 55° C. Also, flavor scores for the 85° C. roasts from the longissimus dorsi (loin) and longissimus dorsi (rib) were significantly greater than for the 55° C. roasts. The flavor scores for the semitendinosus and rectus femoris roasts cooked to 85° C. were significantly and highly significantly greater, respectively, than for those roasted to 70° C.

Tenderness and Shear Force Values

Tenderness scores, preference for tenderness and shear force values are closely related and were used in this study to evaluate

the tenderness of beef. The tenderness scores were determined by the number of chews required by the judge to completely masticate a sample of meat. Each judge was asked to set up his own range for the number of chews that would be equal to a given tenderness score.

On the whole, average tenderness scores were similar for roasts cooked to each of the end-point temperatures (Tables 3 and 4). Significant differences in tenderness attributable to internal temperature were found only for the roasts from the rectus femoris, longissimus dorsi (loin) and longissimus dorsi (rib). Tenderness scores for the roasts from the last two muscles mentioned above were significantly higher for the roasts cooked to 55°C. than for the roasts cooked to 85°C. No significant difference attributable to end-point temperatures was noted for tenderness scores for the roasts from the other muscles.

The taste panel was asked to rank the samples in order of their preference for tenderness. Later the rankings were given a numerical value, with lower numbers used to indicate the higher preferences. As the end-point temperatures increased the average tenderness preference values for the samples decreased slightly. The tenderness preferences for roasts from the psoas major, longissimus dorsi (loin) and longissimus dorsi (rib) were significantly in favor of the 55°C. cuts when compared with the 70°C. roasts. The tenderness of the rectus femoris 70°C. roasts was highly significantly preferred to that for the 85°C. roasts. Also, the 55°C. longissimus dorsi (loin) and longissimus dorsi (rib)

roasts had significantly better tenderness preferences than for the 85°C. roasts. Even though the tenderness preferences for the roasts decreased with each rise in end-point temperature, the ranking for other roasts not mentioned above were similar.

Shear force values were used as an objective method of measuring tenderness. Generally, the shear force values increased as the tenderness scores decreased. In this study the average tenderness scores decreased slightly as end-point temperatures increased; however, some of the shear force values decreased, whereas, other shear force values increased with an increase in end-point temperatures. The adductor roasts cooked to 85°C. had shear force values that were significantly lower than those for roasts cooked to 70°C. The psoas major roasts cooked to 70°C. had very highly significantly lower shear force values than those roasted to 55°C. The shear force values for the semitendinosus roasts cooked to 70°C. and those roasted to 85°C. were significantly lower than those for roasts cooked to 55°C.

Other muscles showed no significant difference in shear force values attributable to end-point temperatures. The average shear force values from the rectus femoris roasts cooked to 70°C. were slightly lower than those for the 85°C. roasts; whereas, the semimembranosus (posterior) 85°C. roasts had lower shear force values than the 70°C. roasts. The longissimus dorsi (rib) roasts cooked to 70°C. were lower in shear force values than the values for those roasted to 55°C. The vastus lateralus shear force values from roasts cooked to 70° and to 85°C. were similar.

Negative correlation coefficients between tenderness scores and shear force values were noted for 19 of the 21 relationships investigated (Table 5). The correlation coefficients for tenderness scores and shear force values were significant for 85°C. rectus femoris roasts, highly significant for 85°C. vastus lateralus and longissimus dorsi (loin and rib) roasts and very highly significant for 85°C. adductor roasts.

There has been disagreement in the literature as to the correlation of tenderness scores and shear force values. Cover and Smith (1956) found highly significant correlation coefficients for these factors when they studied two cooking methods for two beef muscles (longissimus dorsi and biceps femoris); whereas, Paul et al. (1956) noted that tenderness scores and shear force values were not well correlated when samples from the semitendinosus, semimembranosus and adductor muscles from two types of U. S. Commercial grade beef animals were used.

Juiciness and Related Factors

Juiciness scores, preference for juiciness, press fluid yields, total, volatile and dripping losses and cooking time are thought to be closely related factors and will be discussed in this section. The average juiciness scores for all roasts decreased as the end-point temperatures increased (Tables 6 and 7). The roasts cooked to 55°C. showed slightly higher juiciness scores than those roasted to 70°C., but greater differences in scores were noted between those roasts cooked to 70°C. and those roasted to 85°C. Significant decreases in juiciness scores were noted as

Table 5. Correlation coefficients for tenderness scores and shear force values; press fluid yields and cooking losses (total, volatile and dripping).

Factors	: 55°C.	: 70°C.	: 85°C.
Tenderness scores and shear values Psoas major Adductor Rectus femoris Vastus lateralus Semimembranosus (postericr) Semitendinosus Longissimus dorsi (loin) Longissimus dorsi (rib)	458 .059 554 373	633* 566 500 506 364 .110 307 001 397	914*** 624* 701** 495 248 456 715** 729**
Press fluid and total losses Psoas major Adductor Hectus femoris Vastus lateralus Semimembranosus (posterior) Semimembranosus (anterior) Semitendinosus Longissimus dorsi (loin) Longissimus dorsi (rib)	•417 •.524 •.085 •.087	.266 175 185 .021 .130 .360 .352 096 570	207 728** 428 283 .288 666* 290 554
Press fluid and volatile losses Pscas major Adductor Rectus femoris Vastus lateralus Semimembranosus (posterior) Semimembranosus (anterior) Semitendinosus Longissimus dorsi (loin) Longissimus dorsi (rib)	427 492 134 127	.411 264 217 098 .280 .356 .447 048 594*	194 676* 458 332 .270 659* 261 612*
Fress fluid and dripping losses Psoas major Adductor Rectus femoris Vastus lateralus Semimembranosus (posterior) Semimembranosus (anterior) Semitendinosus Longissimus dorsi (loin) Longissimus dorsi (rit)	•531 528 .170 .118	002 .105 117 .227 388 .201 015 301 310	108 074 .358 .873*** .098 065 396 .644*

* - Significant at the five percent level.

** - Significant at the one percent level.

*** - Significant at the one-tenth percent level.

: Int. : tento.	:Juici-1 : ness :scores	Juici-2 . ness .pref.	:Press :fluid :ml/25g	: Ckg. :losses : pct	:Volat. :losses : pct	: Drip. :losses : pct	.t. Ibs.	Ckg. time min/lb
55	9.24 **	2.26 ** 2.73	9.10 9.44	8.42 **** 14.58	7.61 **** 13.37	0.80 * 1.08	1.1	38.94 **** 62.32
70 85	8.20 *** 6.02	1.76 *** 3.23	8.38 **** 6.85	21.55 *** 36.00	18.61 **** 33.81	2.78 ** 2.06	1.2	72.94 *** 128.43
70 85	8.62 *** 6.91	1.86 *** 3.16	8.38 **** 6.62	20.57 **** 36.18	18.30 **** 34.32	2.20 1.86	ч ч л	68.13 *** 123.19
70	8.62 **** 6.72	1.02 *** 3.19	8.26 ***** 7.05	19.89 **** 35.34	16.58 *** 33.36	3.30 **** 1.98	1.6	55.43 **** 103.69
70	8.51 *** 6.58	1.76 **** 3.25	8.54 ** 7.34	18.55 *** 32.98	16.26 *** 31.24	2.22 *** 1.62	1.6	60.39 **** 112.70
70	8.08 *** 6.12	1.78 *** 3.23	8.55 *** 7.15	21.10 *** 37.13	18.86 **** 35.39	2.28 * 1.72	1.9 1.9	61.25 *** 104.26
	. Int. . tent. . oc. . oc. . 70 70 85 70 70 70 70 70 70 85	<pre>Int. Juici1 itemp.: noss formure: nos</pre>	<pre>*Int. :Juici-1:Juici * tenup.: ness : ness : oC. :scores :pref. 55 9.24, 2.26 *** 70 8.98 2.73 70 8.20 1.76 **** 85 6.02 3.23 70 8.62 1.02 **** 85 6.91 3.16 70 8.62 1.02 **** 85 6.72 3.19 70 8.61 1.78 **** 85 6.58 3.25 70 8.61 1.78 **** 85 6.58 1.78 </pre>	Int.Julci-lijuici-lifresstemp.:nessifluidtemp.:nessifluid559.242.269.10708.982.739.44708.201.768.38708.6023.236.85708.621.768.38708.621.868.38708.621.768.38708.621.028.26708.621.028.26708.621.028.26708.651.028.26708.611.768.26708.511.768.54708.611.788.55708.613.257.34708.081.788.55708.081.788.55708.081.788.55856.123.237.15856.123.237.15	Int. Julci-Julci-Stress : Ckg.:tenu.: noess : neess :fluid :losses:tenu.: noess : neess :fluid :losses:oC. :scores :pref. :ml/25g: pct559.24208.98708.98856.02******708.68856.02******856.021.768.3821.55******856.028.683.23708.68856.913.166.628.661.028.61.028.61.028.61.028.61.028.61.028.61.028.61.028.61.028.61.028.61.028.61.028.61.028.61.028.61.028.61.028.61.028.61.028.54.548.511.768.511.788.68.558.61.788.61.788.68.558.61.788.68.558.568.558.568.558.568.558.568.558.585.158.585.158.585.158.585.158.585.158.585.15	Int.Julci-liJulci-firessCkg.Volat.:tenuenass.ness.fluidlosseslosses:co.:secores.nass.nul/25g.pctlosseslosses559.242.269.108.427.61***********708.982.739.4414.5613.37708.201.768.3821.5518.61***************856.023.236.8536.0033.81708.621.868.3820.5718.30708.621.988.2636.0033.81708.651.908.2619.8916.58708.621.023.168.5418.30708.511.0535.3433.36708.511.0735.3433.36708.511.768.5418.55708.611.788.5516.26708.611.788.5516.26708.611.788.5516.26708.081.788.5516.26708.613.257.3432.98708.081.788.5516.26708.081.788.5516.26708.081.788.5521.10708.081.788.557.34708.081.788.55 <td>Int. Julei-rjulei-Zifress : Ckg. :Volat. : Drip. :temp.: ness : fluid :losses : losses : losses : ress : fluid :losses : losses : losses : ckg. : pet :</td> <td>Int. Juici-lijuici-Zifress : Ckg. Volat. : Drip. : teumo.: ness : ifluid : losses : losses : losses : losses : losses : max. : pot. : pot. 55 9.24 2.73 9.44 14.58 13.37 1.08 1.1 70 8.98 2.73 9.44 14.58 13.37 1.08 1.1 70 8.98 2.73 9.44 14.58 13.37 1.08 1.1 70 8.20 1.76 8.38 21.55 18.61 2.78 1.2 70 8.62 1.76 8.38 21.55 18.61 2.76 1.2 70 8.62 1.86 8.38 20.57 18.61 2.76 1.5 70 8.62 1.86 8.38 20.57 18.30 2.20 1.5 70 8.62 1.05 34.32 1.86 1.5 1.6 1.6 70 8.62 1.05 35.34 16.56 2.22 1.6 1.6 70 8.62 1.05 35.34 16.56 2.22 1.6 1.6 <tr< td=""></tr<></td>	Int. Julei-rjulei-Zifress : Ckg. :Volat. : Drip. :temp.: ness : fluid :losses : losses : losses : ress : fluid :losses : losses : losses : ckg. : pet :	Int. Juici-lijuici-Zifress : Ckg. Volat. : Drip. : teumo.: ness : ifluid : losses : losses : losses : losses : losses : max. : pot. : pot. 55 9.24 2.73 9.44 14.58 13.37 1.08 1.1 70 8.98 2.73 9.44 14.58 13.37 1.08 1.1 70 8.98 2.73 9.44 14.58 13.37 1.08 1.1 70 8.20 1.76 8.38 21.55 18.61 2.78 1.2 70 8.62 1.76 8.38 21.55 18.61 2.76 1.2 70 8.62 1.86 8.38 20.57 18.61 2.76 1.5 70 8.62 1.86 8.38 20.57 18.30 2.20 1.5 70 8.62 1.05 34.32 1.86 1.5 1.6 1.6 70 8.62 1.05 35.34 16.56 2.22 1.6 1.6 70 8.62 1.05 35.34 16.56 2.22 1.6 1.6 <tr< td=""></tr<>

a nor a tura a mean values for factors related to juiciness, cooking losses and TOB of Average of Table 6.

Maximum score possible, 10.
 Lower values indicate higher preferences.
 Significant at the five percent level.
 Significant at the one percent level.
 Significant at the one-tenth percent level.

Average of mean values for factors related to juiciness, cooking losses and cooking time for roasts from the muscles cooked to three internal temperatures. Table 7.

Muscles	: Int. : temp. : oC.	.Juici-J . ness .scores	.Juici-d . ness .pref.	: Fress : fluid : ml/25g:	Ckg. losses pct	.Volat. .losses . pct	. Urip. .losses . pct	Wt. Ibs.	Ckg. time min/lb
Semitendinosus	55	9.07	2.30	9.357	10.89	9.72	1.107	1.2	48.17
	70	8.37	3.03	8.94 *	18.78	16.68	2.06 %	1.3	70.55
	85	* 6.62	5.18	7.401	33.36	31.62	1.72	1.2	136.27
lsd		0.37	0.58	0.53	1.54	1.31	0.57		49.6
Longissimus dorsi	55 75	44.6	2.38	8.867	10.01	8.39	1.48	1.4	35.08
(UTOT)	70	8.76	3.16	8.78 *	17.82	15.87	1.92	1. S	+10.65
	85	* 6.38	5.00	6.37	35.62	33.91	1.62	J.4	* 122•54
lsd		0.40	0.46	0.66	1.70	1.34	8 1 2 3		8.09
Longissimus dorsi	55	9.54	2.29	8.717	01.6	8.07	66.0	1.4	38.45
(01.1)	70	8.82	3.22	8.90 %	16.21	14.68	1.48 *	1.4	60.63
	85	6.82	5.02	6.32	33.61	32.09	1.36	1.3	* 127.71
lsà		0.40	1.41.0	0.57	J.76	1.89	0.28		04.6
1 - Maxim 2 - Lower * - Signif	um score values ficant a	poss1b1 fnd1cate t the fi	.e, 10. . higher .ve perce	preferen int level					

65

- Least significant difference.

- sd Lsd

end-point temperatures for the semitendinosus, longissimus dorsi (loin) and longissimus dorsi (rib) roasts increased from 55° to 70° to 85°C. Juiciness scores for the psoas major 55°C. roasts were highly significantly greater than for the 70°C. roasts. The adductor, rectus femoris, vastus lateralus, semimembranosus (posterior) and semimembranosus (anterior) roasts cooked to 70°C. had very highly significantly larger juiciness scores than those cooked to 85°C. Significant differences were found among juiciness scores for all roasts as the end-point temperatures increased from 55°C. (rare) to 85°C. (well-done). Siemers and Hanning (1953) also found highly significant differences in juiciness scores between meat cooked to rare and that cooked well-done.

The judges were asked to rate the beef samples in order of preference for juiciness and to use smaller numbers to indicate the higher preferences. As shown in Tables 6 and 7 the average juiciness preferences decreased as the roasts were cooked to the higher end-point temperatures. The greatest range in juiciness preference values was found between those roasts cooked to 70° C. and those to 85° C., the lowest preference was for the 85° C. roasts. Significant differences for juiciness preference were found between each increase in end-point temperature (55° , 70° and 85° C.) for the seniterdinosus, longissimus dorsi (loin) and longissimus dorsi (rib) roasts. Highly significant differences were noted between the juiciness preference for psoas major roasts cooked to 55° C. and those cooked to 70° C., with the roasts cooked to 55° C. being preferred. The roasts cooked to 70° C. from the adductor, rectus

femoris, vastus lateralus, semimembranosus (posterior) and semimembranosus (anterior) showed a very highly significant juiciness preference over those roasted to 85°C.

Press fluid yields are used as an objective method for indicating juiciness, but many workers have indicated that press fluid might not measure the same thing that is measured by a taste panel. Generally, the average press fluid yields for most roasts decreased with an increase in end-point temperature (Tables 6 and 7). The semitendinosus roasts cooked to 55°C, had greater press fluid yields than those roasts from this muscle cooked to 70°C. This is in agreement with Child and Fogarty (1935) who also found greater press fluid yields from the semitendinosus muscle that was cooked to 58°C. than was found for those which were cooked to 75°C. No significant differences in press fluid yields were noted between those from 55°C. roasts and those from 70°C. roasts. The press fluid yields of the semitendinosus, longissimus dorsi (loin) and longissimus dorsi (rib) 85°C. roasts showed a significant decrease when compared with those from the 55°C. roasts and with those from the 70°C, roasts. Press fluid yields from the semimembranosus (posterior) roasts cooked to 85°C, were highly significantly lower than for those roasted to 70°C.: whereas, those for the 85°C. roasts from the adductor, rectus femoris, vastus lateralus and semimembranosus (anterior) were very highly significantly lower than those for the 70°C. roasts.

The juiciness scores always decreased with an increase in end-point temperature, but the press fluid yields did not always

show a similar relationship. The roasts that had the highest of lowest juiciness scores were not necessarily the same roasts that had the highest or lowest press fluid yields.

Positive correlation coefficients between juiciness scores and press fluid yields were noted for 16 of the 21 relationships investigated (Table 8). The correlation coefficients for these two factors for the 70°C. semitendinosus and 85°C. adductor roasts were significant and highly significant, respectively. This finding is in general disagreement with Satorius and Child (1938b) who found no correlation between the quantity of juice of beef muscle as shown by the judges scores and the press fluid yields obtained.

The total cooking losses of roasts increased with each increase in end-point temperature (Tables 6 and 7). The psoas major roasts cooked to 70°C. showed very highly significantly greater total cooking losses than those roasted to 55°C. Total cooking losses were very highly significantly greater for the adductor, rectus femoris, vastus lateralus, semimembranosus (posterior) and semimembranosus (anterior) roasts cooked to 85°C. than for those roasted to 70°C. The roasts from the semitendinosus, longissimus dorsi (loin) and longissimus dorsi (rib) cooked to 55°, to 70° and to 85°C. showed significant increases in total cooking losses with each increase in end-point temperature.

In this study, total cooking losses had negative correlation coefficients with the juiciness scores for the majority of the roasts cooked (Table 8). That is, the total cooking losses
Table 8. Correlation coefficients for juiciness scores and press fluid yields and juiciness scores and cooking losses (total, volatile and dripping).

Factors	: 55°C.	: 70°C.	: 85°C.
Juiciness scores and press fluid Psoas major Adductor Rectus femoris Vastus lateralus Semimembranosus (posterior) Semimembranosus (enterior) Semitendinosus Longissimus dorsi (loin) Longissimus dorsi (rib)	.091 .447 568 .032	-445 -463 -446 -236 -393 -261 -659* -258 -515	.713*** .254 .007 -374 .334 .457 .173 .432
Juiciness scores and total losses Psoas major Adductor Rectus femoris Vastus lateralus Semimembranosus (posterior) Semimembranosus (anterior) Semitendinosus Longissimus dorsi (loin) Longissimus dorsi (rib)	.068 480 .492 262	.341 .100 488 888**** 462 224 .274 305 108	178 502 492 182 114 709** .026 598*
Juiciness scores and volat. lesses Psoas major Adductor Rectus femoris Vastus lateralus Semimembranosus (posterior) Semimembranosus (anterior) Semitendinosus Longissimus dorsi (loin) Longissimus dorsi (rib)	.038 558 .516 310	.325 .220 607* 783** 339 500 .262 452 452 061	168 466 150 129 626* 016 576*
Juiciness scores and drip. losses Psoas major Adductor Rectus femoris Vastus lateralus Semimembranosus (posterior) Semimembranosus (anterior) Semitendinosus Longissimus dorsi (lein) Longissimus dorsi (rib)	.062 377 .072 152	.248 252 .105 823*** 567 .263 .075 .188 196	.095 .640* 269 424 .172 163 .335 .213

* - Significant at the five percent level. ** - Significant at the one percent level.

*** - Significant at the one-tenth percent level.

increased as the juiciness scores decreased. A very highly significant negative correlation coefficient between juiciness scores and total cooking losses was found for the 70°C. vastus lateralus roasts. The longissimus dorsi (rib) 85°C. roasts had a significant correlation coefficient between juiciness scores and total cooking losses; whereas, the semitendinosus roasts at 85°C. had a highly significant correlation coefficient for these two factors.

Negative correlation coefficients for press fluid yields and total cooking losses were found for 14 of the 21 relationships studied (Table 5). Significant correlation coefficients between press fluid yields and total cooking losses were found for the roasts cooked to 70°C. from the longissimus dorsi (rib) and for the roasts cooked to 85°C. from the semitendinosus. The rectus femoris 85°C. roasts showed highly significant correlation coefficients for these two factors.

Generally, the average of mean volatile losses increased as the end-point temperatures increased, from 55° to 70° and to 85°C. (Tables 6 and 7). Similar significant differences were found for volatile losses as were noted for total cooking losses. On the whole, negative correlation coefficients were noted for volatile losses and juiciness scores. Significant correlation coefficients for these factors were found for the roasts from the rectus femoris, semitendinosus and longissimus dorsi (rib) cooked to 85° C. and for 70°C. rectus femoris roasts; whereas, a highly significant correlation coefficient was noted for the 70°C. vastus

lateralus roasts (Table 8). Negative correlation coefficients between press fluid yields and volatile losses were found for most roasts. Significant correlation coefficients were noted for the roasts from the longissimus dorsi (rib) at 70° and at 85°C. and for those from the 85°C. semitendinosus roasts.

Dripping losses for some roasts tended to decrease; whereas, that for others increased as the end-point temperatures increased (Tables 6 and 7). However, the dripping losses from roasts from the psoas major significantly increased as the end-point temperatures increased from 55° to 70°C. The dripping losses from roasts (semitendinosus, longissimus dorsi, loin and longissimus dorsi, rib) were greater for those cooked to 70°C. than for those cooked to 55°C.; and those cooked to 85°C, had smaller losses than for the 70°C. roasts, but these were greater than those for the 55°C. roasts. Significantly smaller dripping losses were noted for the 55°C. roasts (semitendinosus and longissimus dorsi, rib) than for the 70°C. ones and significantly larger losses were found for those roasted to 85°C. than for those to 55°C. Roasts from the semimembranosus (anterior) cooked to 85°C, had a significant decrease in dripping losses when compared with those roasted to 70°C. A highly significant decrease was found in dripping losses for 85°C. adductor roasts when this was compared with those roasted to 70°C. Vastus lateralus and semimembranosus (posterior) 85°C. roasts showed very highly significantly lower dripping losses than for those roasted to 70°C.

As shown in Table 8, approximately one-half of the relationships had positive correlation coefficients between dripping losses and juiciness scores. A significant positive correlation coefficient between dripping losses and juiciness scores was noted for the rectus femoris 85°C. roasts; whereas, a very highly significant negative correlation coefficient was found for the vastus lateralus 70°C. roasts. Since both a significant positive and a significant negative correlation coefficient were found, this might indicate that dripping losses are not the best method for evaluating the juiciness of beef muscles. Also, approximately one-half of the relationships showed positive correlation coefficients for dripping losses and press fluid yields. Very highly significant positive correlation coefficients for dripping losses and press fluid yields were found for the 85°C. roasts from the semimembranosus (posterior) and significant correlation coefficients were shown for the longissimus dorsi (rib) 85°C. roasts (Table 5). Since only a small number of significant correlation coefficients were noted between dripping losses and press fluid yields, dripping losses might not be good criteria for estimating the press fluid yields of beef muscles.

In this study, cooking time for all roasts increased with each increase in end-point temperature (Tables 6 and 7). Because of the size of the roasts used (average weight, 1.1 to 1.9 pounds), the average cooking time in minutes per pound was long. The average of mean juiciness scores decreased and the total cooking losses increased, as the cooking time increased. However, roasts

from the semitendinosus at 55° C. and those from the adductor at 70° C. were the only ones that had the highest cooking losses with the longest cooking times. Cooking time was significantly longer for roasts from the semitendinosus, longissimus dorsi (loin and rib) for each increase in end-point temperature. Roasts from the psoas major cooked to 70° C. had a very highly significant increase in cooking time over those roasted to 55° C. The 85° C. roasts from the adductor, rectus femoris, vastus lateralus, semimembranosus (posterior) and semimembranosus (anterior) muscles had very highly significantly longer cooking times than those roasted to 70° C.

SUMMARY

Roasts from certain muscles of six U. S. Good long hindquarters of beef were used to study the changes, mainly in palatability, that occur during the oven-roasting of meat. A randomized incomplete block design was used for cooking roasts from the semitendinosus, longissimus dorsi (loin) and longissimus dorsi (rib) muscles. Three roasts were cut from each of the previously mentioned muscles and cooked to end-point temperatures of 55°, 70° and 85°C. Two roasts were cut from the psoas major, adductor, rectus femoris, vastus lateralus, semimembranosus (posterior) and semimembranosus (anterior). A randomized complete block design was used for cooking of the roasts either to end-point temperatures of 55° and 70°C. or 70° and 85°C. from the last muscles mentioned.

The defrosted roasts were cooked in a pre-heated rotary hearth oven maintained at 300°F. The rate of rise in internal temperature

was noted during cooking. After removing the roasts from the oven, weights were taken from which data for total, volatile and dripping cooking losses were obtained. Shear force values for one-inch cores of meat, press fluid yields and palatability scores were obtained. The data were analyzed statistically; the analyses of variance were run on data from the roasts cooked to three endpoint temperatures and t-tests were done on data from those roasted to two end-point temperatures.

No particular difference was noted in the rate of heat penetration between the roasts from paired right and left muscles. Most of the curves tended to rise rather sharply until the internal temperature in the meat was 40°C., after that, the curves flattened out gradually until the end-point temperatures were reached. For some of the muscles, the roasts from the proximal or anterior end had the slower rate of heat penetration; whereas, in the remaining muscles the distal or posterior end roasts had the slower rates. The center cuts showed no consistent pattern for rate of heat penetration. The average weight of the roasts ranged from 1.1 to 1.9 pounds, but the largest roasts did not require the longest cooking time.

Aroma and flavor scores for roasts increased with an increase in end-point temperatures. Significant and very highly significant increases in mean aroma scores were found with each increase in end-point temperature. Approximately one-half of the muscles had significant differences in mean flavor scores that could be attributed to an increase in end-point temperature. In most cases, the tenderness scores for roasts decreased slightly with

an increase in end-point temperature, but an increase in end-point temperature had little real effect on the tenderness scores of the roasts, because significant differences in tenderness attributable to degree of cooking were noted in only a few cases. Tenderness preference decreased with an increase in end-point temperature. An increase in end-point temperature had no consistent effect on the shear force values, since they increased for some of the roasts but decreased for others. Significant negative correlation coefficients for tenderness scores and shear force values were found for the majority of the roasts cooked to 85° C.

Juiciness scores and preference for juiciness decreased with an increase in end-point temperature; whereas, the total cooking losses and cooking times increased with an increase in the degree of cooking. Significant to very highly significant differences for each of these factors were found as the degree of cooking increased. The dripping losses tended to decrease with an increase in end-point temperature and differences were significant for roasts from most muscles. Generally, the average press fluid yields for most roasts decreased significantly with each increase in end-point temperature. The majority of the correlation coefficients between juiciness scores and press fluid yields were positive, however, only two coefficients were significant. Slightly more than half of the correlation coefficients for juiciness scores and cooking losses (total and volatile) were negative and only a few of these were significant. Most of the correlation coefficients for press fluid yields and cooking losses (total and volatile) were negative and only a few of these were

significant. No consistent trend was found for the correlation coefficients for dripping losses and juiciness scores or dripping losses and press fluid yields.

ACKNOWLEDGMENTS

Sincere appreciation is expressed to Dr. Grayce Goertz, Associate Professor of Foods and Nutrition, for her help in the direction of this project and for her patience and help in the preparation of this manuscript; to Dr. Dorothy Harrison, Head of the Department of Foods and Nutrition, for her constructive criticism during the research and the reading of this manuscript; to Professor David Mackintosh and his staff of the Department of Animal Husbandry for securing the meat and dissecting the muscles. Appreciation also is expressed to the graduate students and other research workers who served so faithfully on the palatability committee and to my husband, Bill, who gave his moral support throughout the period of research and during the preparation of this manuscript.

LITERATURE CITED

Aldrich, Pearl J. and Belle Lowe. Comparison of grades of beef rounds: Effect of cooking times on palatability and cost. J. Am. Diet. Assoc. 30:39-43, 1954.

- Brady, D. E. A study of the factors influencing tenderness and texture of beef. Pro. Am. Soc. Animal Prod. 30:246-249, 1937.
- Child, Alice M. and J. Agnes Fogarty. Effect of interior temperatures of beef muscle upon the press fluid and cooking losses. J. Agri. Res. 51:655-662, 1935.
- Child, Alice M. and Mary J. Satorius. Effect of exterior temperature upon press fluid, shear force, and cooking losses of roasted beef and pork muscles. J. Agri. Res. 57:865-871, 1938.
- Clark, Helen E., Marie C. Wilmeth, Dorothy L. Harrison and Gladys E. Vail.

The effect of braising and pressure saucepan cookery on the cooking losses, palatability and nutritive value of the proteins of round steaks. Food Research 20:35-41, 1955.

- Clark, Ruth Keys and Frances O. VanDuyne. Cooking losses, tenderness, palatability, and thiamine and riboflavin content of beef as affected by roasting, pressure saucepan cooking, and broiling. Food Research 14:221-230, 1949.
- Cover, Sylvia. Effect of extremely low rates of heat penetration on tendering of beef. Food Research 8:388-394, 1943.
- Cover, Sylvia and W. H. Smith, Jr. The effect of two methods of cooking on palatability scores, shear force values, and collagen content of two cuts of beef. Food Research 21:312-321, 1956.
- Crocker, E. C. Flavor of meat. Food Research 13:179-183, 1948.
- Deatherage, F. E. and Albert Harsham. Relation of tenderness of beef to aging time at 33°-35°F. Food Research 12:164-172, 1947.
- Griswold, Ruth M. and Marion A. Wharton. Effect of storage conditions on palatability of beef. Food Research 6:517-528, 1941.

- Hay, Pattie P., Dorothy L. Harrison and Gladys E. Vail. Effects of a meat tenderizer on less tender cuts of beef cooked by four methods. Food Technol. 7:217-220, 1953.
- Hiner, R. L, E. E. Anderson and C. R. Fellers. Amount and character of connective tissue as it relates to tenderness in beef muscle. Food Technol. 9:80-86, 1955.
- Hiner, R. L. and O. G. Hankins. The tenderness of beef in relation to different muscles and age in the animal. J. Animal Sci. 9:347-353, 1950.
- Hood, Maude P., Doris W. Thompson and Lenora Mirone. Effects of cooking methods on low grade beef. Georgia Agri. Exp. Sta. Bul., N. S. 4, 1955.
- Howe, Paul E. The relation of cooking to the study of the quality and palatability of meat. J. Home Econ. 9:8-15, 1927.
- Jacobson, Marion and Faith Fenton. Effects of three levels of nutrition and age of animal on the quality of beef. I. Palatability, cooking data, moisture, fat, and nutrition. Food Research 21:415-426, 1956.
- Lowe, Belle. Experimental cookery from the chemical and physical standpoint, 4th ed., p. 209-220. New York: John Wiley and Sons, Inc., 1955.
- Mackintosh, David L., J. Lowe Hall and Gladys E. Vail. Some observations pertaining to tenderness of meat. Pro. Am. Soc. Animal Prod. 21:285-289, 1936.
- Maximow, Alexander A. and William Bloom. A textbook of histology, 6th ed., p. 49-52, 147-153. Philadelphia: W. B. Saunders Company, 1952.
- Miller, Madge and Joseph Kastelic. Chemical responses of connective tissue of bovine skelatal muscle. J. Agri. and Food Chem. 4:537-543, 1956.
- Noble, I. T., E. G. Halliday and H. K. Klass. Studies on tenderness and juiciness of cooked meat. J. Home Econ. 26:238-242, 1934.
- Paul, Pauline. Tenderness of beef. J. Am. Diet. Assoc. 33:890-894, 1957.
- Paul, Pauline and Maura Bean. Method for braising beef round steaks. Food Research 21:75-86, 1956.

- Paul, Pauline, Maura Bean and L. J. Bratzler. Effect of cold storage and method of cooking on commercial grade cow beef. Mich. Agri. Exp. Sta. Bul. 256, 1956.
- Paul, Pauline and L. J. Bratzler. Studies on tenderness of beef. II. Varying storage times and conditions. Food Research 20:626-634, 1955a.
- Paul, Pauline and L. J. Bratzler. Studies on tenderness of beef. III. Size of shear cores: end to end variation in the semimembranosus and adauctor. Food Research 20:635-638, 1955b.
- Paul, Pauline, L. J. Bratzler, E. D. Farwell and Katherine Knight. Studies on tenderness of beef. I. Rate of heat penetration. Food Research 17:504-510, 1952.
- Ramsbottom, J. M. and E. J. Strandine. Comparative tenderness and identification of muscle in wholesale beef cuts. Food Research 13:315-330, 1948.
- Ramsbottom, J. M. and E. J. Strandine. Initial physical and chemical changes in beef as related to tenderness. J. Animal Sci. 8:398-410, 1949.
- Ramsbottom, J. M., E. J. Strandine and C. H. Koonz. Comparative tenderness of representative beef muscles. Food Research 10:497-509, 1945.
- Satorius, Mary and Alice M. Child. Effect of coagulation on press fluid, shear force, musclecell diameter and composition of beef muscle. Food Research 3:619-626, 1938a.
- Satorius, Mary and Alice M. Child. Problems in meat research. I. Four comparable cuts from one animal. II. Reliability of judges' scores. Food Research 3:627-635, 1938b.
- Siemers, Lorene Larsen and Flora Hanning. A study of certain factors influencing the juiciness of meat. Food Research 18:113-120, 1953.
- Simone, Marion, Floyd Carroll and M. T. Clegg. Effect of degree of finish on differences in quality factors of beef. Food Research 23:32-39, 1958.
- Sleeth, R. B., G. C. Kelley and D. E. Brady. Shrinkage and organoleptic characteristics of beef aged in controlled environments. Food Technol. 12:86-90, 1958.

Szent-Györgi, Albert. Chemistry of muscular contraction, 2nd ed., p. 9-19, 25-27. New York: Academic Press Inc., 1951.
Szent-Györgi, Albert. Nature of life, a study on muscle. p. 28-32. New York: Academic Press Inc., 1948.
Visser, Rosemary. The palatability of certain beef muscles cooked in deep fat to three degrees of doneness. Unpublished Master's thesis. Kansas State College, Manhattan, Kansas, 1957.
Wang, Hsi, Ellen Rasch, Virginia Bates, F. J. Beard, J. C. Pierce and O. G. Hankins. Histological observations on fat loci and distribution in cooked beef. Food Research 19:314-322, 1954.
Winegarden, Margaret W., Belle Lowe, Joseph Kastelic, Edwin A. Kline, Alma R. Plagge and P. S. Shearer.

Physical changes of connective tissue of beef during heating. Food Research 17:172-184, 1952. APPENDIX

Score card for beef. Form 1.

	ł
	ľ
	Į
	ł
	ł
	l
0	
6)
5	
10	

Code

Date

j,

Comments							
Juiciness Tenderness of chews:		•• ••	•• ••	•• ••	•• ••	•• ••	
: Flavor	•• ••		•• ••	•• ••	•• ••	•• ••	
Aroma	•• ••	•• ••	•• ••		•• ••	•• ••	
Sample number	1.	2.	3.	4.	ъ.	6.	

Descriptive terms for scoring:

- Extremely good Very good romt no-1000
 - - Good
- Moderately good Slightly good Slightly poor Moderately poor
 - - - Poor
- Very poor
- Extremely poor

Description of Abbreviations

3. Animal number and total weight of paired long hindquarters

```
Animal III - 300 pounds
Animal VI - 325 pounds
Animal VII - 284 pounds
Animal VIII - 311 pounds
Animal X - 349 pounds
Animal XII - 350 pounds
```

4. Preference Ratings

The judges ranked the samples from each trial in order of their preference. A numerical value later was given for each rank, number one for first place, two for second place, etc. If there was a tie such as for first place, the numerical value was an average of the sum of the values for first and second place. Therefore, the sum of the numerical values when four samples were ranked always was 10 and when six samples were ranked always was 21.

ГH	00000000000000000000000000000000000000	5.2
FP :	unuannancon-uana-00n hotell	л. Л
: EI	atunnor-unttunrtaounoo wtunnor-unttunrtaounoo atunnor-unttunrta	6.2
Er :	Nuasuroononuttuunasonu Notto Notto	5.2
: IQ	หั้นของการการการการการการการการการการการการการก	6.0
Dr :	onournoonononoonoonoon mptattinenenenenenenenenenenenenenenenenenen	6.7
C1 :	40000000000000000000000000000000000000	5.0
Cr :	Loogoanterrererererere	4.8
B1 :	การการการการการการการการการการการการการก	7.8
Br :	H MMC MMM MMC MMM	2.6
. 11		3.2
1 : 1		2.0
 A		•
remp.	20202220202020202020202020202020202020	Ltial P OC
		Tem
	Temp. : C. : Ar : Al : Br : Bl : Cr : Cl : Dr : Dl : Er : El : Fr : Fl	0.00.0 37.7 0.01.0 1.01.0 0.011.0 1.01.0 0.011.0 1.01.0 0.011.0 1.01.0 0.011.0 1.01.0 <

Average time in minutes for rise in internal temperature for roasts from beef muscles. Table 9.

Table 9. (cont.)

Torne. Roners Roners 250 67. 67. 67. 61. Hr. H1. Fr. F1. 67. 61. Fr. F1. 67. 71. 61. Fr. F1. 67. 71. <td< th=""></td<>
Tento. Tento. 75 07. 01. Hr. H1. Fr. F1. 07. 01. Hr. H1. Fr. F1. 07. 01. Hr. H1. Fr. F1. 01. Hr. F1. Fr. F1. 01. Hr. F1. Fr. F1. 01. Hr. F1. Fr. F1.
Temp. Tomp. Tomp. 7000. Gr. Gl. Hr. Hl. Pr. Pl. Pl. Pr. Pl. Pl. Pl. Pl. Pr. Pl. Pl. Pr. Pl. Pl. Pl. Pl. Pl. Pl. Pl. Pl. Pl. Pl
Temp. Temp. 70.00. .
Temp. Temp. 75 0.0. 75 0.0. 75 0.0. 75 7.0. 75 7.0. 73 7.0. 73 7.0. 73 7.0. 73 7.0. 73 7.0. 73 7.0. 73 7.0. 73 7.0. 73 7.0. 73 7.0. 73 7.0. 74 7.0. 75 7.0. 73 7.0. 74 7.0. 75 7.0. 75 7.0. 75 7.0. 75 7.0. 76 7.0. 77 7.0. 78 7.0. 77 7.0. 78 7.0. 79 7.0. 70 7.0. 71 7.0. 72 7.0. 73 7.0. 74 <t< td=""></t<>
Temp. Temp. Rovers 25 30 45 61 Hr. H1 Fr. F1 80.51 25 57 67 61 Hr. H1 Fr. F1 97.1 25 55 28.2 29.0 25.3 29.0 27.3 27.5 28.2 55 55.0 57.0 7.5 7.5 27.3 27.5 27.3 27.5 27.3 27.5
Temp. Temp. Temp. 25 Gr. 61 Hr. H. H. H. H. H. 25 Gr. 61 Hr. H. H. 26 26 Hr. H. H. H. 26 4.7 27.0 27.0 27 77 27.0 27.0 27.0 27 7.7 27.0 27.0 27.0 27 7.7 27.0 27.0 27.0 27 7.7 27.0 27.0 27.0 27 7.7 27.0 27.0 27.0 27 77 77.0 27.0 27.0 27.0 27 77 77.0 27.0 27.0 27.0 27.0 27 77 77.0 27.0 27.0 27.0 27.0 27 77 110.0 27.0 27.0 27.0 27.0 27.0 27 77 110.0 27.0 27.0 27.0 27.0 27.0 27 110.0 27.0 27.0 27.0 27.0 27.0 27.0 10.0.0 </td
Temp. Temp. 25 0.0. 25 0.0. 25 0.0. 25 0.0. 25 0.0. 25 0.0. 25 0.0. 25 0.0. 25 0.0. 25 0.0. 25 0.0. 26 0.0. 27 0.0. 27 0.0. 27 0.0. 27 0.0. 27 0.0. 27 0.0. 27 0.0. 27 0.0. 27 0.0. 27 0.0. 27 0.0. 27 0.0. 27 0.0. 27 0.0. 27 0.0. 27 0.0. 28 0.0. 29 0.0. 27.0 0.0. 27.0 0.0. 27.0 0.0. 28 0.0. 29.0
Temp. Temp. 25 Gr. 1 25 Gr. 2 26 Gr. 2 27 Gr. 2 28 Gr. 2 29 Gr. 2 29 Gr. 2 20 Gr. 2 21 Hr. 4 23 Gr. 2 26 Gr. 2 27 Gr. 2 27 Gr. 2 28 Gr. 2 29 Gr. 2 20 Gr. 2 21 Gr. 2 27 Gr. 2 27 Gr. 4 27 Gr. 4 27 Gr. 4 27 Gr. 7 28 Gr. 7 29 Gr. 7 27 Gr. 7 28 Gr. 7 29 Gr. 7 29 Gr. 7 20 Gr. 7
Тепр. 25 25 25 25 25 25 25 25 25 25
Тепр. 20 20 20 20 20 20 20 20 20 20
Temp. 700 733 733 733 733 733 733 733
Temp. 25 25 25 25 25 25 25 25 25 25 25 25 25

	TO	onnnnoonntontetuuntteuun http://	0-2
	0r :	Vanconnu unnontettun	6.7
	· IN	00000000000000000000000000000000000000	0.9
	· JN	anoococacacacoo NNNNTTTTT	л 8. 2
	M1 .	UNUMOBUNOOOBOONEBEBUNOO BUNUMOBEEMEMMUNEEEEW	1.7
STS	Mr	00000000000000000000000000000000000000	11 . 8
ROA	rl :	BOFOBNONB40NUALTEN	8.0
	Lr :	000000000 NNON0000000000000000000000000	7.0
	K1 :	00000000000000000000000000000000000000	8.2
	Kr :	WYOWWCYYOOOONFOFWWYOWWW OPPOFPGYFWWYCWWYWWW PPPPP	ц С
	J1 :	00000000000000000000000000000000000000	6.7
	: Jr :	44400000000000000000000000000000000000	8.2
Tomp.	°0°.	и м м 4 4 и и и и и и и и и и и и и и и	Thitial Temp. OC.

Table 9. (cont.)

Table 9. (concl.)

		1
τΛ	00000000000000000000000000000000000000	7.0
Vr :	00000000000000000000000000000000000000	6.5
ASTS UI :	00000000000000000000000000000000000000	6.3
Ur :	uu-o-uovovostte uu-o-uovovostte uu-o-uu uu-o-uovostte uu-o-uu uu-o-uovostte uu-o-uovos	6.8
: LT	оллололистерение истро-литерение истро-листро- и и и и и и и и и и и и и и и и и и и	7.8
•	нн н чн н чн н	8.0
T'emp.	NWWJJNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN	Initial Temp., oc.

Table 10. Significance of mean squares showing differences attributable to muscles and animals for roasts from the adductor, rectus femoris, vastus lateralus, semimembranosus (posterior) and semimembranosus (anterior).

	SO	URCE OF VARIATION	
Factors	Muscle	Animal	Muscle x Animal
D/F	4	5	20
Aroma scores	ns		20 - 20 - 20 - 20 - 20 - 20 - 20 - 20 -
Flavor scores	ns	**	ns
Tenderness scores	ns	*	ns
Tenderness pref.	ns	18 18 A	ns
Shear force values	ns	ns	ns
Juiciness scores	115	ns	ns
Juiciness pref.	ns	ns	ns
Press fluid yields	ns	it.	44
Total ckg. losses	ns	ns	ns
Volat. ckg. losses	ns	ns	ns
Drip. ckg. losses	ns	ns	ns
Cooking time	ns	ns	ns

ns - Non-significant.

* - Significant at the five percent level.

** - Significant at the one percent level.

*** - Significant at the one-tenth percent level.

Table 11. Summary of the t-test analyses for the psoas major, adductor and rectus femoris muscles cooked to two internal tomperatures.

Factors	: Peoas : major	Aaductor	: Kectus : femoris
Aroma scores Flavor scores Tenderness scores Tenderness pref. Shear force values Juiciness scores Juiciness pref. Press fluid yields Total ckg. losses Volat. ckg. losses Drip. ckg. losses Cooking time	2.92 * 2.76 * 0.84 ns 2.33 * 5.24 *** 4.00 ** 3.18 ** 2.03 ns 16.09 *** 17.62 *** 2.48 * 15.00 ***	7.40 *** 1.35 ns 1.73 ns 1.65 ns 2.93 * 11.53 *** 9.59 *** 5.21 *** 22.47 *** 22.59 *** 4.44 ** 11.64 ***	8.28 *** 3.19 ** 2.79 * 3.29 ** 0.56 ns 9.69 *** 8.89 *** 4.58 *** 12.68 *** 12.68 *** 12.70 *** 0.98 ns 9.85 ***

ns - Non-significant.
* - Significant at the five percent level.
*** - Significant at the one percent level.
*** - Dignificant at the one-tenth percent level.

Table 12. Summary of the t-test analyses for the vastus lateralus, semimembranosus (posterior) and semimembranosus (anterior) muscles cooked to two internal temperatures.

Factors	Vastus lateralus	: Senimem- : branosus : (post.)	: Semimem- : branosus : (ant.)
Aroma scores	8.53 ***	9.62 #**	8.87 ***
Flavor scores	1.31 ns	0.62 ns	1.35 ns
Tenderness scores	1.82 ns	0.10 ns	1.05 ns
Tenderness pref.	0.89 ns	0.28 ns	1.42 ns
Shear force values	0.08 ns	0.31 ns	1.59 ns
Juiciness scores	11.00 ***	14.23 #*#	14.33 ***
Juiciness pref.	8.60 ***	18.80 **#	11.26 ***
Press fluid yields	4.53 ***	3.48 ##	4.98 ***
Total ckg. losses	11.62 ***	9.78 **#	17.64 ***
Volat. ckg. losses	11.62 ***	9.90 ***	19.18 ***
Drip. ckg. losses	14.18 ***	5.04 #**	2.50 *
Cooking time	4.53 ***	13.32 #*#	4.41 ***

ns - Non- significant. * - Significant at the five percent level. ** - Significant at the one percent level. ** - Si nificant at the one-tenth percent level.

Table 13. Summary of analyses of variance results of roasts from muscles cocked to three internal temperatures.

Factors	Semitendi- nosus	Longissimus dorsi (loin)	Longissimus dorsi (rib)
Aroma scores	ato atom	44-19-04	***
Flavor scores		*	****
Tenderness scores	ns	20.30	9.0 6 m
Tenderness pref.	ns	26	がた
Shear force values	10 10 10 10 10 10 10 10 10 10 10 10 10 1	ns	ns
Juiciness scores	12 10 20 91 - 01	26-26-26	38.38.38
Juiciness pref.	*****		
Press fluid yields	3: 3: 3:		
Total ckg. losses	50 30 30 -	26-26-26	38-38-38
Volat. ckg. losses	50 50 50 85	10 - 10 - 10 76 - 75 - 75	10 26 30
Drip, ckg. losses	5 4 5 4 - 	ne	14 - 34 19 - 28
Cooking time	48 54 50 45 23 05	16 56-56	34.34.34 23 - 24 - 25

ns - Non-significant.

* - Significant at the five percent level.
** - Significant at the one percent level.

*** - Significant at the one-tenth percent level.

Summary of mean squares and significance for aroma, flavor and tenderness factors for roasts cooked to three internal temperatures. Table 14.

Source of Variation : Variation : Tock, unadjusted Fror Total Cota	17 17 17 16 16 17 17 17 17 17 17 17 17 17 17 17 17 17	Aroma scorea 2.76 *** 0.05 *** 0.05 *** 0.05 *** 0.01 **** 0.03 ***	Flavor : sccres : 0.87 *** 0.05 ** 0.09 *** 0.05 ***	Tender- : ness : 0.05 ns 0.07 ns 0.12 ** 0.03 ** 0.03 ** 0.09 ns 0.08 *	Tender- nees pref. 0.10 ns 0.76 ns 0.43 ns 2.32 * 0.46 ns 3.54 **	: Shoar : force : force : yelues 281.34 *** 222.80 : ** 222.80 : ** 222.80 : ** : * :
--	--	---	---	---	---	---

* - Significant at the five percent level. ** - Significant at the one percent level.

level. *** - Significant at the one-tenth percent

and press	fluid yields f	lor roasts cook	ed to three internal	temperatures.
Source of Variation	: D/F	Juici- ness scores	aulci-	Press fluid Vields
Semitendinosus Block, unedjusted Temp., adjusted Error Total	17 35 35	0.58 ** 15.31 *** 0.14	0.63 ns 22.444 **** 0.34	0.446 ns 10.544 **** 0.28
Longissimus dorsi (loin) Block, unadjusted Temp., adjusted Error Total	17	1.07 *** 24.00 ***	0.71 ** 16.66 **** 0.21	1.55 * 21.55 ***
Longissimus dorsi (rib) Block, unedjusted Temp., adjusted Error Total	17 16 35	0.90 *** 18.22 ***	0.74 *** 17.65 ***	1.70 **** 19.64 ***
ns - Non-signifi * - Significant	cant at the five po	prcent level.		

** - Significant at the one percent level. *** - Significant at the one-tenth percent level.

Table 16. Summary of mean squares and al alficance for coolin. losses and cooking

* - Dignificant at the one percent level. ** - Significant at the one percent level. *** - Significant at the one-tenth percent level.

m
02
03
S
2
0
G
- 24
L.
0
R
3
54
0
P
3
Gui
. 1
•
13
G
E
Ø
0
J
0
4
0
5
-
E.
0
4
0
C_
F
0
4-4
02
0
2
65
A
2
03
5.11
N-
-
0
0
0
E

HE-JONOF-JHOO	14.78	00000000000000000000000000000000000000	12.18
00000000000000000000000000000000000000	2.38	ototocotocoo Nonnnnnnnn	2.61
10000000000000000000000000000000000000	19.04	20000000000000000000000000000000000000	19.86
00000000000000000000000000000000000000	9.37	200020200000 2000200000000000000000000	9.32
8888474888848 19909000000000000000000000000000000000	8.12	00000000000000000000000000000000000000	8.37
21111111111111111111111111111111111111	7.46	00000000000000000000000000000000000000	7.66
A B B B B B B B B B B B B B B B B B B B			
IIX X ITIA IA III		TTX X TTTA TTA TTT	
2,2		70	
soas mejor	Av.		AV.
	Recent me jor 55 III Al 7.7 8.0 9.3 12.6 VII Ar 7.7 8.0 9.3 186.5 2.3 12.6 VIII Br 7.7 8.0 9.4 9.4 17.7 2.3 12.6 VIII Br 7.7 8.0 9.4 9.4 14.7 2.3 12.6 VIII Br 7.7 8.0 9.4 9.4 14.7 2.3 12.6 VIII Br 7.5 8.0 9.4 14.6 2.3 12.6 X Ar 7.7 8.3 9.4 14.6 2.3 12.6 X Br 7.0 7.9 9.5 14.6 2.6 14.3 X Br 7.3 8.3 9.5 13.6 14.3 XII Br 7.3 8.3 9.5 13.6 15.4 X Ar 7.3 8.3 9.5 13.6 15.4 XII Br 7.3 9.5 18.3 9.5 15.6	Roose me jor 55 III AI 7.7 8.0 9.0 20.8 2.6 14.3 VI Br 7.7 8.0 9.3 18.5 2.3 12.1 VII Br 7.7 8.0 9.4 17.7 2.3 12.1 VII Br 7.5 8.0 9.4 17.7 2.3 12.1 VIII Br 7.5 8.0 9.4 17.7 2.3 12.1 VIII Br 7.0 8.3 9.4 17.7 2.3 12.1 VIII Br 7.0 8.3 9.4 17.7 2.3 12.1 VIII Br 7.0 8.3 9.4 19.3 2.6 14.3 XII Br 7.0 8.1 9.5 13.6 2.3 15.4 Av. 7.1 Br 7.0 8.1 9.5 16.0 2.3 15.4 Av. 7.1 Br 7.3 8.1 9.5 16.0 2.3 15.4 Av. 7.4 <t< td=""><td>Rates Till Al Till Al Till Al Till Al Till Al Till Al Till Br Br Br Till Br Br Br Br Br Br Br</td></t<>	Rates Till Al Till Al Till Al Till Al Till Al Till Al Till Br Br Br Till Br Br Br Br Br Br Br

-	~
	٠
-	4
	R
	0
	0
-	-
f	•
1	11.
	11.
	e 11.
1	Le L/.
1	ble 1/.
1	able 1/.

uscle	: Int. : temp. : oc.	Animal number	Code :	Al'OINS SCOTUS	el vur georeg	. render-	Ch we	Tender: ness: pref.	.:Shear :force :values
Adductor	02	JIX X IIIA IA III	545454545454	01-1-1-1-1-2-0- 8-1-1-1-1-2-0- 8-1-1-1-1-1-2-0-0-0-0-0-0-0-0-0-0-0-0-0-0	00000000000000000000000000000000000000	00000000000000000000000000000000000000		00000000000000000000000000000000000000	111222222222 0112222222222 0112222222222
AV.				7.73	7.82	8.08	30.38	2.34	20.143
	85	JIX X JITA JA JTI	84848484845456 648868886856	88888888888888 1014980000000000000000000000000000000000	474-784-709 879	88999999999999999999999999999999999999	6899 <i>277</i> 28282822	89999999999999999999999999999999999999	40200000000000000000000000000000000000
Av.				8.66	8.08	7.92	30.35	2.65	24.65

	Muscle	temp.	Andmal	Code :	Aroma scores	Flavor scores	:Tender- : ness :scores	Chews	.Tender- . ness . pref.	.Shear force
Rectus	femoris	02	IIX X IIIA IIA III	HERERERERERERERERERERERERERERERERERERER	しのたちたくいうのととした しょうれてたくいうのとのの	20000000000000000000000000000000000000		20000000000000000000000000000000000000	1-205-1-1-0-000 0000-000-0-0000	10000000000000000000000000000000000000
	Av.				822	8.02	3.52	27.32	2,26	17.23
		35.	ТТХ Х ТТТА ТТА ТТХ	HLALICALLE DEBEBEBEEL	00000000000000000000000000000000000000	00000000000000000000000000000000000000	01200100100000000000000000000000000000	174000000000000000000000000000000000000	๛๛๛๛๛๛๛๛๛๛ ๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛	00000000000000000000000000000000000000
	AV.				8.68	8.42	8.31	28.51	2.79	18.07

...

Table 17. (cont.)

Luscle	:Int. :terp.	Animal	. Code .	Aroun : Beores	Llavor scores	:Tender-: nesa : scores :	Chewa :	Tender- ness pref.	Shear force values
Vastus lateralus	0/	TTT	Gr	20° 20°	2000 2000	8.1	27.9	2.4	11.9
		IV	Gr	7.3	8.1		36.9	10 I	19.6
			TH	7.0	8.4	5	35.9	10	22.6
		TIA	CI	7.4		10	28.20	-0	16.0
		VJIC	(;)		2.8	7.7	32.7	5.1	27.7
		;	JII.	0.2	0 2 2	7.0	34.9	10	24.6
		X	19	7.4	2.5		20.0		20.04
		TTX	G1 Hr		10.20		37.04	in m	16.9
μv.			1	7.52	8.03	7.32	32.63	2.42	19.59
	35	TTT	(1)	8.4	8.4	8.2	27.7	2.8	17.3
			Hr	0.8	C. C.	8.5	20.9	2.2	14.0
		TA	CI	8.2	0.0	7.4	36.3	20 20 20	24.3
		VTI	Cr.	2.000).	0, 0 	24.0	2.4	14.9
		1	HT	0.6	8.8	8.8	22.3	1.9	15.3
		TIT	15		2.6	6.2	34.9	5.0	28.9
		~	1 H	с. С.	-0 -0	0 -1 -0 	-20-20-20-20-20-20-20-20-20-20-20-20-20-	5 N 2 N	18.1
			H	3.3	8.3	7.4	36.5	3.6	19.2
		YII	LL LL	0 N. 0 N.	8. -1.0	3.	50 50 50 50 50 50 50 50 50 50 50 50 50 5	 	12.04
AV.				8.50	8.18	8.02	30.97	2.58	19.54

Table 17. (cont.)

40
C
0
~
0
\sim
-
1
-
0
-
0
100
60
Fred 1

	.tot					· Hondon .		actions.	
Muscle	temp.	Animal	Code	Aroma scores	Flavor scores	ness ness : scores	Chews	. pref.	
Semimembranosus (posterior)	20	TII	4 G	7.9	00	8.1 7.5	26.6 31.5	2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2	
		TΛ	Ld	2.9	0°.0	7.4	35.8	2.7	
		VII	Pr.	01	0 0 0 0	7.94		0.0	
			SP	1.0	н. Со с	2.9	31.4	2.6	
		TIIV	TA O	7.1.	0.0	7.5 8			
		X	14	1.0	6.2		00	5	
		1 + A	r Gr	2.0 2.0	000	6-1 -	n a ma	20	
		TTY	17		7.6	000	32.0	200	
AV.				7.75	8.02	7.82	32.36	2.48	
	85	TTT	H d	000 000	1. Ca	3°.5	27.3	0.0	
		TΛ	Pr-	0.0	1.00	2.00	000 01.00	0 7 7	
			Or	0°0	7.9	7.04	35.7	5.00	
		TIA	H G	0 0 2 0	6.1	- ~	20.0		
		VIII	Pr	000	6.2	7.4	32.7	2.6	
		×	Pr.		1.0	2.0		-1~ mai	
			01	8.4	8.1	7.6	35.3	3.1	
		TIX	Sr.	11	8-0	55 00 00	29.92	25	
2 4 A				2 KO	000	7 87	rc cc	12 0	
41 V •				00.00	0.00	TO .	+0.90	C = 74	

-
40
C
0
0
0
~
~
_
1.1
0
-
ph. I
00
Fre
-

Muscle	tor.	An1ma1 number	Code	Aroma scores	Flavor scores	:lender-: ness :	Chews	: lender- : ness : pref.	.:Shear :force :values
cemimembranosus (anterior)	70	IIX X IIIA III III	記念社の社会社の社会社	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		11100000000000000000000000000000000000	30.1 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0	FF6669889284	20000000000000000000000000000000000000
AV.				7.80	7.68	7.88	32.62	2.32	24.07
	80 72	III V IIIV X YII YII	ACR SESSES ESES	0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	20000000000000000000000000000000000000	6624040000040400	30.000 30.0000 30.00000 30.00000 30.00000000	Sound Bound	20000000000000000000000000000000000000
AV.				3.69	7.85	7.71	33.82	2.69	26.35

4
C
8
0
0
\sim
~ *
1
02
_
2
0
Et

									and the state of the
líuscle	temp.	Animal number	Code	Aroma scores	Flavor scores	Tender.	Chews	:Tender- : ness : pref.	.:Shear :force :values
Semitendinosus	л Л	IIX X IIIA III III	A A F I H E H E H E H E H E H E H E H E H E H	800877780080 71811110000	72000000000000000000000000000000000000	ఐందిదిదిదిదిదిదిది సుగులు 40 లుగం 40 ది	800441844000 600000000000000000000000000000000	200400004000 20040000	40000000000000000000000000000000000000
AV.				7.50	7.85	8.51	26.76	3.32	30.82
	02	IIX X IIIA IIA III	던려유던다더더한다한다	00000000000000000000000000000000000000	00000000000000000000000000000000000000	0 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	20000000000000000000000000000000000000	BODUHONNOCHUS NUMUNATTUT	464 82 81 91 9 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
AV.				7.82	8.11	8.43	27.40	3.53	20.32

								and a second	
elsen	fat.	Animal	Code	Aroma scores	Flavor scores	: nenuer-	: Chews	: ness : pref.	force : values
Semitendinosus	85	III	11	3 .09	8.8	8.2	29.0	1.1	16.6
		IA	Kr	-5	8.9	2.5	27.4	3.9	20.8
			L.		50		28.9	3.00	23.6
		TTA	F. F.	8°.5	0.0	6.0 6	22.1	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	16.8
		IIIV	Jr	8.6	8.1	8.4	20.6	3.6	23.9
		~	집다		0 a	0 r ∞ α	30.1	14.0	22.22
		<	TP	8.6	000		27.6	5- 5- 5-	10.1
		IIX	IL	8.8	8°4	8	23.4	3.0	20.9
			In	0.6	0.4	8.8	23.6	3.9	18.9
Av.				8.53	8.42	8.47	27.01	3.62	20.01
Longissimus dorsi	57	III	TN	7.9	8.1	9.3	20.1	1.9	10.6
(loin)			010	7.9	7.9	9.1	22.4	3.0	10.9
		IA	TN	7.3	0.0	8°9	23.6	2.8	18.3
			10	- C	2.9	200	23.0		12.1
		1.1.1	TM		7.07		× • • • • •	20.0	13.1
		TIIN	IN I	7.0	7.8	8.6	25.	1.7	18.4
			10	6.5	7.8	ц.6	27.8	3.4	14.2
		X	NP-	2.2	1. L	0.0 0.7	28.4		
		YTT	-In	0 V - C) a	0 ac	22.0	10	
		1 2 2	Or	2.	-23	0.6	20. /	5.0	12.8
άν.				7.112	7.87	8.86	24.02	2.89	14.33

Table 17. (cont.)

at.
0
(c
• 7 •
ble
Ta

Muscle	: Int. : temp. : of.	Animal numher	Code	Aroma scores	Flavor scores	:Tender-: : ness :	Chews	Tender- ness pref.	.Shear force
Longissirus dorsi (loin)	70	TIX X TITV TV TIT	ANN	00000000000000000000000000000000000000	00000000000000000000000000000000000000	00000000000000000000000000000000000000	22000000000000000000000000000000000000	ですしらてしたこれですした	
AV.				7.93	8.24	8.62	26.01	3.72	J.1.02
	80 27	ITX K ITIA ITA ITI	THE REAL OF	00000000000000000000000000000000000000	00000000000000000000000000000000000000	00000000000000000000000000000000000000	22 22 22 22 22 22 22 22 22 22 22 22 22	MUTTUTUTUUU NUMUTUTUTUUUU	90000000000000000000000000000000000000
. AV.				3.68	8.31	6.59	26.34	3.88	15.32

l'usclo	temp.	Animal	Code:	Aroma scores	Flavor scores	:Tender- : ness :scores	: Chews	: ness : pref.	:Shear force values
Loncleri do dorsi (rib)	5	TIX <i>X</i> TIIN TIN TN	295222552255	サヤをてくのですののろう	20000000000000000000000000000000000000	04004000000000000000000000000000000000	00144000000000000000000000000000000000	- จอกละองจายฯ	20000000000000000000000000000000000000
• v •	70	IIIA IIA ITI III	BY BY BY BY BY	5 000000000000000000000000000000000000	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	00000000000000000000000000000000000000	55555555555555555555555555555555555555	noomerry 6	15.03 14.03 14.03 14.03 19.03 19.03 19.03
٩٧		XII	TD TD TD	NN 76 0	2.5 8.4 8.4 8.4 8.4 8.4 8.4 8.4 8.4 8.4 8.4	00000 00000 00000000000000000000000000	27.0 24.9 24.0 24.08	5	11.37

Table 17. (cont.)
Table 17. (concl.)

Muscle	: tut. : tomp. : c.	Animal number	Code :	Aroma scores	Flavor scores	.Tender ness scores	Chews	"lender ness pref.	.:Shear :force :values
Longissimus dorsi. (rib)	ひ どり	IIX X IIIA IIA ITI	HALFORNONDARD ALLARADADARD	01001400000000000000000000000000000000	00000000000000000000000000000000000000	దారు చెల్లా పారా సంగారం సారా సారా సాగా సాగా సాగా సాగా సాగా సాగా సాగా		してしていいいない	4 00044050000 100004000000 1000000000
Av.				8.98	8.54	8.55	25.62	4.13	17.52
		- 1- 7	L 0		1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.			AI.	

- Nor description of abbreviations used in this table see Appendix, pg. 04.

Moan values for factors related to juiciness and cooking losses.1 Table 18.

	+ cr +			Tutot -	. 11201 -	· Unage	· Clea	· Volat	. I and m
Muscle	temp.	Anlmal number	Code	ness Bcores	ness pref.	fluia :ml/25F.	losses pet	. losses	.losses : pct.
Psoas major	55	III	TA	1.6	2.5	8.6	8.8	7.5	6.0
2			Br	9.1	5.2	8.7	7.7	6.7	0.7
		IN	Al	9.2	2.1	ය ස	6.3	5.	0.8
		77 77	Br	0.0 0	2.5	2.2	6.9	6.7	
		TTA	Br	10	1.0	20.0 70.0	0.0	2.0	
		IIIV	Ar	9.4	2.7	9.6	8.6	7.6	0.8
			Br	9.6	2.4	9.5	8.0	7.7	0.3
		X	V1	0°.	2.1	6.6 0.6	10.4	00	1.0
		-	Br	010	610	0.9 0.0	9.0	2 0	-0
		XII	Ar	na Da		9.6	01	n. Da	, u
			br	0.0	C.2	•••	0.0		0.0
AV.				9.24	2.26	9.10	8.42	7.61	c.80
	20	III	Ar	8.9	2.6	8.0	13.6	12.3	1.1
			Bl	9.1	2.4	9.3	14.8	13.2	1.1
		IN	Ar	8.9	2.8	0.6	13.5	12.4	1.0
			Bl	8.9	2.9	7.6	14.0	12.7	0.9
		VII	Al	0.6	2.J	10.5	15.0	14.6	0.0
		1	BI	n-5	2.0	10.4	14.0	1	2.0
		TTTA	TV	9.tt		6.0T	12.0	12.0	
		Å	181	1.0	-00	O -	J.0.	14.2	
		<	Bl	- 6	3.1		12.61	13.7	1.8
		TIX	1V	8.6	2.7	10.01	14.0	13.1	0.9
			Bl	8.6	2.5	9.4	12.6	12.0	0.6
AV.				8.96	2.73	9.44	14.58	13.37	1.03

4
n
0
0
\sim
00
H
Ð
[mm]
2
3
EH

and a second						And the second se	and the second se	And the State of the second	
Muscle	temp.	Animal number	code:	ness cores	.Juici- ness pref.	: Fress : : fluid : :ml/25g.:	Cirg. losses pet	Volat. losses pet	:Drip. :losses : pct
Adductor	02	IIA IA ITI	100000	0000000	roooo deletetete	20000000000000000000000000000000000000	120.02 20.00	44244 2005-5-5 420200	0044M
		IIX X IIIA	C A C C A C A	100000000		1054000 00000000	-0-10000 0000000	0.90.000 0.90.000 0.90.000	-NOHNOK-
Av.				8.20	1.76	6.38	21.55	18.61	2.78
	85	ITI	Cr Dr	000 500	<u>479</u>	NHN 1-00	30.9 30.9 32.5 32	20. 20. 20. 20. 20. 20. 20. 20. 20. 20.	810 810
		IIA	A T A	300	o Na minin		1-11 001	1.200 1.200	890 10-10-
		TIIV	D12 D12 D12 D12 D12 D12 D12 D12 D12 D12	000 110	oto vnn		1000	0 H 0	5-00 - 00
		X	Cr Dr	6.9	0.0			94-00 10 10 10 10 10 10 10 10 10 10 10 10 1	26
		TIX	DI	20	on wm	50	39.2	51	1.1
Av.				6.02	3.23	6.85	36.00	33.81	2.06

~
4
C
6
~
0
~
~
L8.
18.
18.
e 18.
10 18.
ble 18.
able 18.
rable 18.

	uscle	temp.	Animal	. Code .	ness scores	ness pref.	: Fress : : fluid : :ml/25g.	Ckg. losses pct	: Volat. : losses : pct	: Lrip. : losses : pct
fectus 1	fenoris	70	III	Er	8.8	7-85 1-85	8.7	21.1	1	0.61
			IL	E	8.4	1.9	5.2	20.8	18.8	2.0
				FJ	8.4	1.9	7.2	16.2	14.0	1.6
			TIA	Er	0°0		0.00	22.9	20.1	
			VITI		00.0	10	0.0	22.3	10.5	1.0
				F1	8.9	1.8	8.6	21.7	14.6	3.5
			×	L R	0 4 0 4	0.0	300	24.0	21.0	2.2 2.2
			XII	L EL	0.00	2.1	0.0	25.9	24.1	
			1	Fr	8.4	1.6	8.3	23.2	21.2	1.8
-4	AV.				8.62	1.86	8.38	20.57	16.30	2.20
		35	III	El	6.6	9.0 0	22	40.4	39.3	2.4
			UT T	F.r.	- c	20		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1. 1. 1.	0 a 1 -
			T >	Fr		101	2.00	22.0	34.1	
			TIA	El	6.4	5	ທ. ນາ	38.1	36.9	1.3
			5 5 6 0	Fr	5.0	n	2.5	37.6	36.3	
			TTTA	4 4	1.			20	20.00	 V 0
			X	E.T.	.9	1 1 1		101	20.00	2.0+
				F'1	7.5	2.6	1-: N	33.1	30.9	3
			IIX	Er	7.1	on	 ЛЧ	34.5	33.2	т. Т.
1	AV.				6.91	3.16	6.42	36.18	34.32	1.86

CL.	
1	
2	
0	
0	
~	
3	
-	
•••	
0	
-	
0	
G	
~~~	
(mad	

Muscle stus lateralus Av.	: temp. : comp. ?0 85	Animai Tamimar Tit Tit Tit Tit Tit Tit VITU	Segecesacea cacasace	ински состания в водать в в в в в в в в в в в в в в в в в в в	Tresser de sesere de seser	нотчосто 2 2700010001000000000000000000000000000	Ска ска ска ска ска ска ска ска с		
		Х		100	u n n		- ~~~	-68	9 31.8 30.6
		IIX	19E	00	1-00 0-1-00 0-1-00	0.0	194		200 200 200 200 200
AV.				6.72	3.19	7.05	35.	34	34 33.36

Table 18. (cont.)

	and the second se						and the second se		and the second s
Muscle	teup.	Animal	Code	ness scores	nef.	: fluid : : fluid : :ml/25g.	losses pct	: Vola. : losses : pct	:Dr p. :losses : pct
Semimembruncsus (posterior)	20	III X IIIA III III	222222222222222222	దాది ది దాది దాది దాది దాది దాది దాది ద	00000000000000000000000000000000000000	00000000000000000000000000000000000000	40000000000000000000000000000000000000	22222222222222222222222222222222222222	00000000000000000000000000000000000000
AV.				8.5	1.76	8.51.	18.55	16.26	2.22
	S S	IIX X IIIA IX IX	2242222222222	0112-1711-172020 NOCOCOCOTION	๛๛ <i>๛</i> ๛๛๛๛๛๛๛๛ ๛๛๛๛๛๛๛๛๛๛๛๛	21001001000000000000000000000000000000	36-22-19-12-25-20 36-22-19-25-2-2 36-22-19-25-2-20 36-22-19-25-2-20 36-22-19-25-2-20 36-22-19-25-2-20 36-22-19-12-25-2-20 36-22-19-12-25-2-20 36-22-19-12-25-2-20 36-22-19-12-25-2-20 36-22-19-12-25-2-20 36-22-19-12-25-2-20 36-22-19-12-25-2-20 36-22-19-12-25-2-20 36-22-19-12-25-2-20 36-22-19-12-25-2-20 36-22-19-12-25-2-20 36-22-19-12-25-2-20 36-22-19-12-25-2-20 36-22-19-12-25-2-20 36-22-19-12-25-2-20 36-22-19-12-25-2-20 36-22-19-12-25-2-20 36-22-19-12-25-2-20 36-22-19-12-25-2-20 36-22-19-12-25-2-20 36-22-19-12-25-2-20 36-22-19-12-25-2-20 36-22-19-12-25-2-20 36-22-19-12-25-2-20 36-22-19-12-25-2-20 36-22-19-12-25-2-20 37-22-25-20 37-25-20 37-25-20 37-25-20 37-25-20 37-25-20 37-25-20 37-25-20 37-25-20 37-25-20 37-25-20 37-25-20 37-25-20 37-25-20 37-25-20 37-25-20 37-25-20 37-25-20 37-25-20 37-25-20 37-25-20 37-25-20 37-25-20 37-25-20 37-25-20 37-25-20 37-25-20 37-25-20 37-25-20 37-25-20 37-25-20 37-20 37-20 37-20 37-20 37-20 37-20 37-20 37-20 37-20 37-20 37-20 37-20 37-20 37-20 37-20 37-20 37-20 37-20 37-20 37-20 37-20 37-20 37-20 37-20 37-20 37-20 37-20 37-20 37-20 37-20 37-20 37-20 37-20 37-20 37-20 37-20 37-20 37-20 37-20 37-20 37-20 37-20 37-20 37-20 37-20 37-20 37-20 37-20 37-20 37-20 37-20 37-20 37-20 37-20 37-20 37-20 37-20 37-20 37-20 37-20 37-20 37-20 37-20 37-20 37-20 37-20 37-20 37-20 37-20 37-20 37-20 37-20 37-20 37-20 37-20 37-20 37-20 37-20 37-20 37-20 37-20 37-20 37-20 37-20 37-20 37-20 37-20 37-20 37-20 37-20 37-20 37-20 37-20 37-20 37-20 37-20 37-20 37-20 37-20 37-20 37-20 37-20 37-20 37-20 37-20 37-20 37-20 37-20 37-20 37-20 37-20 37-20 37-20 37-20 37-20 37-20 37-20 37-20 37-20 37-20 37-20 37-20 37-20 37-20 37-20 37-20 37-20 37-20 37-20 37-20 37-20 37-20 37-20 37-20 37-20 37-20 37-20 37-20 37-20 37-20 37-20 37-20 37-20 37-20 37-20 37-20 37-20 37-20 37-20 37-20 37-20 37-20 37-20 37-20 37-20 37-20 37-20 37-20 37-20 37-20 37-20 37-20 37-20 37-20 37-20 37-20 37-20 37-20 37-20 37-20 37-20 37-20 37-20 37-20 37-20 37-20 37-20 37-20 37-20 37-20 37-20 37-20 37-20 37-20 37-20 37-20 37-20 37-20 37-20 37-20 37	90000000000000000000000000000000000000	10111111111111111111111111111111111111
Av.				6.58	3.25	7.31	32.98	31.24	1.62

.

	And a second sec								
Muscle	. Int. temp.	Animal	Code	Juici- ness scores	Juici- ness pref.	. Fress : fluid :ml/25g.	Ckg. losses pet	: Volat. : losses : pct	:Urip. :losses : pct
Semimembranosus (anterior)	20	IIX X IJIA IIA IIJ		001-00-10-1000-1000	AHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	22222222222222222222222222222222222222	11111111111111111111111111111111111111	00000000000000000000000000000000000000
AV.				8.08	1.78	0°.7	21.10	18.36	2.23
	8 17	IIX X TITA IIA III	SURSESSESSES	ooroorooroonn	nnd nnnnnnnnnd	00400000000000000000000000000000000000	04050500000000000000000000000000000000	Towastanasoos Anistatanasoos Anistatanasoos	NURCOLOGUULOG NURCOLOGUULO
Av.				6.12	3.23	7.15	37.13	35.39	1.72

:ont.)	
3. (c	
316	
able	
6-4	

usclo	: Int. : temp.	An fmal number	: Code :	Juici- ness scores	.Juici- . ness . pref.	: Fress : : fluid : :ml/25g.	Ckg. losses pet	: Volat. : losses : pct.	.Drip. :losses : pct	
Seritendinosus	55	III	Jr	0.6	1.6	9.5	10.7	2.6	1.1	
		1	R.	0.0	2.0	9.1	ч, ч,			
		IN		0.0			na	10.0		
		IIA .	J.L	20°4	5-1 5-1	.0.4	10.1	- 6-	1.0	
			LN	0.6	2.0	9.5	10.6	9.8	0.8	
		TIIV	11	9.3	2.7	9.3	10.4	0°.0	0.9	
		3	E.	0.0 0	20	0.0	5	8.6	0.7	
		×	L1	5 C	20	-0-6	12.2	2. 2.	2.0	
		XII	Jr	0.0	5. 5. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7.		10- 	11.0		
			Kl	8.8	3.4	0.6	13.2	11.3	1.6	
Av.				9.07	2.30	9.35	10.89	9.72	1.10	
	70	III	KJ	8.7	2.8	9.8	20.6	17.9	2.4	
			LI	8.3	3.8	3.2	17.9	15.5	2.2	
		ΤΛ	Jr	2.5		с) 0 С	10.1	10.1 10	2° 1	
		VTT	ZF	200	00		11.8			
		1	L1	8.6	2.9	9.7	17.6	16.7	1.0	
		TIIV	<b>F</b> J	8.2	3.2	9.3	20.6	17.9	2.7	
		4	L1 xx	200	~~ ~	m 0 20 a	20.02 20.02	17.3	3. 	
		<	L.T			00	1-10	16.6	1.0	
		TIX	Kr	) c) ) c)	1 CI	9.1	20.9	19.1	00 	
			LI	8.3	2.3	9.2	20.0	17.7	2.0	
AV.				8.37	3.03	8.94	18.78	16.68	2.06	

~
(cont.
18.
Table

Muscle	: Int. temp.	Animal	Code	Juici- ness scores	Juici- ness pref.	: Press : : fluid : :ml/25g.:	Ckg. losses pct	: Volat. : losses : pct	.Drip. .losses . pct	
Semitendinosus	80 72	IIX X IIIA IA III	695959596969	NOCOCOLOCOLO NNTEOCOLOCOLO	๛๛๛๛๛๛๛๛๛๛ พ.พ.พ.พ.ร.ร.ร.พ.พ.พ.	011100001010 0111000010100			HHHHHHUNHUH SONONOSNNS-40	
AV.				6.62	5°18	7.40	33.36	31.62	1.72	
Longissimus dorsi (loin)	5	TIX X TIIA IIA III	Rondryrdyrdo	20020000000000000000000000000000000000	00000000000000000000000000000000000000	н 6000000000000000000000000000000000000	20000000000000000000000000000000000000	10000000000 10000000000000000000000000		
AV.				9-44	2.38	8.86	10.01	0.39	1.48	

- 41		-
		-
	6	5
	٠	1
	-	4
	9	Ξ.
	-	
	C	η.
	1	1
	C	3
	-	1
		6
c	r	•
c	2	•
C	2	-
0	2	• > +
0	2	• > 1
0	2	• > 1
0	2	• > +
0	2	• >
0	200	· > · ·
0 -	2 0	· ) + ( · ·
0 -	2	· ) + ! +
0 1	2	· ) + ! +
0 1	2 0 0	· ) + ! ! + !
0	2 0 2	
0 1 1	2 0 2	· · · · · · · · · · · ·
0 1	2 0 0	· · · · · · · · · · · · · · · · · · ·
0 1	2 0 40	· ) + 11
0	2 0 0 0	· ) + . + . = .
0	2 0 40	· OF STOBT

								and the second se	
l'uscle	: Int. : tep.	An ral	Code	Julci ness scores	: Juici-	: 1ress : fluid :m1/25	Ckg. Losses pet	: Volat. : loaseas : pet	:lrip. :losses : pet
Longissizus dorsi	70	TTT	5	8.7	3.6	10.0	16.9	15.1	1.6
(loin)	-		l'T	8.6	3.4	9.6	17.8	16.0	2.7
		ΤΛ	l'T	9.1	3.3	9.2	17.0	15.2	1.8
			IIT	0.1	3.5	7.9	17.3	15.6	1.7
		IIV	1/1	0.0	2.9	8.7	14.5	13.9	0.9
		* * * *	TO	5.0 0.0	50	2.0	10.2	15.2	
		TTTA	L'A	2 2 2 2 2	200	va v	19.05	14・2	2.2
		X	TN	10.0	- r-	-0 -0	19.3	17.0	5
			TO	9.1	3.4	8.3	18.2	16.6	1.6
		XII	E.	0.2	2.8	9.0	17.4	15.8	1.5
			IIT	8.0	3.0	9.4	21.0	16.7	2.1
. VA.				8.76	3.16	8.78	17.82	15.87	1.92
	85	III	Tu	6.3	5.4	8.0	35.1	33.7	1.3
			01.	7.1	5.1	5.7	39.3	37.1	2.0
		IN	TI	7.0		2.0	33.0	31.6	1.1
		TTV	201	20.0	1 1 1 1 1 1 1	1- y	7.50	20.15	
		4 7 A	-io	1 1 1 1	10.0	4.9	10.5	33.6	ч N
		LIIV	TH	6.0	4.7	7.0	32.1	30.5	1.6
		¢	Or	6.9	1+•1+	0.tr	33.8	31.9	6 a
		2	TH	-11	4.4	10 10	7 30	20.2	
		***	-IO	0.0	0.	- (	0.20	1.00	4.5
		111	10	6.7	- - -	 	37.4	30.0	1.6
AV.				6.38	2.00	6.37	35.62	33.91	1.62

~
4
5
0
0
$\overline{}$
с <b>)</b>
13.
13.
e 10.
le 10.
ble 10.
able 13.

Muscle	.Int. tomp.	Animel	Code	Juici- ness scores	.Juici- ness pref.	: Press : fluid :ml/25g.	Ckg. losses pot	: Volat. : losses : pct	.Drip. .losses . pct
Longissimus doral (rib)	л. Г.	TITA TITA TITA TITA TITA	SPECCESS SECTOR	00000000000000000000000000000000000000	anneternoner Lannananan	чого 4 госарара 10 госариалиот 10 госадиалиот	- с с с с с с с с с с с с с	00070700000000000000000000000000000000	ronoooncooti iohnhooooo
ΛV.			ΔI	9.54	3.1	8.71	9.10	9.7 8.07	1.2
	70	TTX X TTTA TA TII		00000000000000000000000000000000000000	H TO ON ON A THOM ON A COLOR	00000000000000000000000000000000000000	24402000000000000000000000000000000000	444444444444 4444444444444444444444444	00000000000000000000000000000000000000
AV.				3.32	3.22	0.90	16.21	14.68	1.4.8

Table 18. (concl.)

.lrip. .losues . re:	омоомиранана аналагалагана	1.36
: Volet. : loases : pet	22.08 33.09 34.08 33.09 33.09 33.09 33.09 33.09 33.09 33.09 33.09 33.09 33.09 33.09 33.09 33.09 33.09 33.09 33.09 33.09 33.09 33.09 33.09 33.09 33.09 33.09 33.09 33.09 33.09 33.09 33.09 33.09 33.09 33.09 33.09 33.09 33.09 33.09 33.09 33.09 33.09 33.09 33.09 33.09 33.09 33.09 33.09 33.09 33.09 33.09 33.09 33.09 33.09 33.09 33.09 33.09 33.09 33.09 33.09 33.09 33.09 33.09 33.09 33.09 33.09 33.09 33.09 33.09 33.09 33.09 33.09 33.09 33.09 33.09 33.09 33.09 33.09 33.09 33.09 33.09 33.09 33.09 33.09 33.09 33.09 33.09 33.09 33.09 33.09 33.09 33.09 33.09 33.09 33.09 33.09 33.09 33.09 33.09 33.09 33.09 33.09 33.09 33.09 33.09 33.09 33.09 33.09 33.09 33.09 33.09 33.09 33.09 33.09 33.09 33.09 33.09 33.09 33.09 33.09 33.09 33.09 33.09 33.09 33.09 33.09 33.09 33.09 33.09 33.09 33.09 33.09 33.09 33.09 33.09 33.09 33.09 33.09 33.09 33.09 33.09 33.09 33.09 33.09 33.09 33.09 33.09 33.09 33.09 33.09 33.09 33.09 33.09 33.09 33.09 33.09 33.09 33.09 33.09 33.09 33.09 33.09 33.09 33.09 33.09 33.09 33.09 33.09 33.00 33.00 33.00 33.00 33.00 33.00 33.00 33.00 33.00 33.00 33.00 33.00 33.00 33.00 33.00 33.00 33.00 33.00 33.00 33.00 33.00 33.00 33.00 33.00 33.00 33.00 33.00 33.00 33.00 33.00 33.00 33.00 33.00 33.00 33.00 33.00 33.00 33.00 33.00 33.00 33.00 33.00 33.00 33.00 33.00 33.00 33.00 33.00 33.00 33.00 33.00 33.00 33.00 33.00 33.00 33.00 33.00 33.00 33.00 33.00 33.00 33.00 33.00 33.00 33.00 33.00 33.00 33.00 33.00 33.00 33.00 33.00 33.00 33.00 33.00 33.00 33.00 33.00 33.00 33.00 33.00 33.00 33.00 33.00 33.00 33.00 33.00 33.00 33.00 33.00 33.00 33.00 33.00 33.00 33.00 33.00 33.00 33.00 33.00 33.00 33.00 33.00 33.00 33.00 33.00 33.00 33.00 33.00 33.00 33.00 33.00 33.00 33.00 33.00 33.00 33.00 33.00 33.00 33.00 33.00 33.00 33.00 33.00 33.00 33.00 33.00 33.00 33.00 33.00 33.00 33.00 33.00 33.00 33.00 33.00 33.00 33.00 33.00 33.00 33.00 33.00 33.00 33.00 33.00 33.00 33.00 33.00 33.00 33.00 33.00 33.00 33.00 33.00 33.00 33.00 33.00 33.00 33.00 33.00 33.00 33.00 33.00 33.00 33.00 33.00 33.00 33.00 33.00 33.00 33.00 33.00 33.00 33.00 33.000	32.09
CT 103263 pct	20000000000000000000000000000000000000	33.61
: 17.028 : 11.11d : mi/255.	うのででやくれどりのどくりののののとうしょう	6.32
Juici- : ness : pref.	-000-15-20101000 55.05.05.5000000	5.02
: Juici- : ness : scores	20000000000000000000000000000000000000	6.82
Code		
Animal	TIX X TIIV TIV TIV	
nt: oC	(1) .7.	
"uscle	(r15) (r12)	Av.

For description of abbreviations used in this table see Appendix, pg. UH.

-1
muscles.
beef
from
roasts
f'or
times
cooking
and
l eights
-91
Table

	••	Int.	. Animal	••	Well	shts	. Cooking
Muscle	•• ••	temp. oc.	number	: Code	Gms.	Lbs.	: time : min./lb.
Psoas major		Ľ Ľ	III	Al	455.0	1.0	43.0
)		5 1		Br	534.0	1.2	37.5
			TΛ	TV	477.0		34.5
				Br	0.074		34.6
			ITA	Ar	0.244	6.0r	0.04
			WTTT				
				Br	の 18 18 18 18 18 18 18 18 18 18	1.3	35.1
			X	TV	191.0		37.3
				Br	520.0	1.1	35.5
			TIX	Ar	338.0	0.7	47.1
				Br	383.0	0.8	45.0
AV.					4.87.4	1.1	38.94
		70	TTT	Ar	537.0	1.2	55.0
		-		Bl	522 0	1.1	65.5
			TΛ	Ar	534.0	1.2	51.7
				Bl	542.0	1.2	58.8
			TIV	Al	1,12.0	6.0	72.2
			*****	12	0.000		00.00
			TTTA	TH	1. 20. C		
			Δ	Ta	1020		600.7
			<	Bl	597.0	) (1 )	58.
			IIX	A1	328.0	0.00	4.12
				TA	247.0	0.0	00.0
AV.					L78_2		62.32

-
42
00
0
0
-
0
2
100

						No. of the local days of the l
.tuscla	: Int. t3 -r.	Animal number	Code	Gas.	hts Lbs.	Cooking time min./lb.
Adductor	10	TII	555	603.0 1457.0	MOR	70.8 78.0 71, 7
		TIA	T T T T T	732.0 739.0		61-3 61-3
		X IIIA	1040	2598.0 0.0252 0.0252	111	80.8 78.3 61.8
		TIX	Dr	500 0 1435 0	- H O O	71.8 80.0 73.0
.AV.				563.9	1.2	72.94
	85	III	Gr	550.0	1.2	117.5
		ΓΛ	Cr Dr	671.0 455.0	р Ч Ч	153.0
		N.LI	C1 Dr	762.0 574.0	1.3	109.4 138.5
		TIIA	Cr D1	500.0	ы Ч Ч	129.1
		X	Dr.	812.0 528.0	80 Q F	104.4
		444	ID	401.0	6.0	152.2
AV.				570.3	1.3	123.43

-
1
1.0
<u> </u>
-
0
63
0
$\smile$
-
5
0
19
19
19
19
e 19.
le 19.
le 19.
ole 19.
ble 19.
able 19.
able 19.
Table 19.

.

	: In	tt:	•	••	101	ghts	: Cooking
lluscle	40 40	.mp.	Animal	: Code	. Gms.	. Lbs.	: tine : min./lb.
Rectus femoris	2	0	TTT	Er	711.0	1.6	61.9
				TH	658.0	2. l.	70.7
			TΛ	EH	607.0	1.3	72.3
				LI	728.0	1.6	58.1
			TIV	Er	750.0	1.7	63.5
				LI	739.0	1.6	61.9
			TIIV	El	600.0	1.3	76.2
				LH	695.0	1. S	70.0
			X	EI	728.0	1.6	73.1
				Fr	799.0	1.8	62.8
			XII	El	617.0	1.4	80.0
				FT	617.0	1.4	67.1
AV.					687.4	1.5	68.13
	8	5	III	EI	715.0	1.6	150.0
				FT	653.0	2.4	117.1
			IΛ	Er	703.0	1.6	125.0
				LL	744.0	<b>1</b> •0	1.34.04
			TIA	EI	700.0		138.0
				LL	643.0	-1-	1.27.00
			TTTA	E	633.0	1.4	128.6
			ľ	FT	200.0		120.0
			×	Er	715.0	1.6	111.0
				LI	789.0	1.7	104.7
			TTX	Er	0.000		10%
				<b>T</b>	0.00	0.1	+•60T
21 YZ					6.1.7	10	91.221

	: Int.			•••	LE to	aut 002 :
alsele	temp.	requint	: Code	• ගහ ප් 	: Lbs.	: tio : in./lb.
lestus lateralus	70	TTT	Gr	606.0	1.3	644.6
			TII	110.0	1.7	50.5
		TA	AD E	697.0	10 	2.2
		TIA	GI	813.0		56.1
		VIII	HI	813.0	сл - н	52.2 62.2
		22	Hr	677.0	1	53.7
		Х	19	874.0	1.9	54.2
		IIK	TE	00121	1.7	54.7
			Hr	708.0	1.6	1,8,1
AV.				6.0417	1.6	55.43
	82	III	Gl	779.0	1.7	97.6
		VT	LE LE	714.0	1.6	102.5
		4	Hr.	893.0	2.0	97.5
		TIA	Gr	879.0	1.9	112.6
		VTTT	Hr G1	0-012-0		143.8
		* * * *	TH	618.0	2.4	112.1
		Х	Gr	880.0	1.9	82.1
			Hr	7444.0	1.6	84.4
		XII X	Gr	756.0	1.7	90.6
			TH	0.420	1-4	143.0

Table 19. (cont.)

103.69

1.7

756.3

AV.

43
S
0
Ö
-
~
5
19.
19.
e 19.
le 19.
le 19.
ble 19.
able 19.
Table 19.

	• •	Int.				chts	: Cooking
Muscle		temp.	Anmber .	. Gode	Gms.	. Lbs.	: time
Semimembranosus		70	TTT	Pr	1050.0		50°-9
( posterior )			ΤΛ	3-A	508.0 508.0		74. 24. 54.
				10	532.0	2.1	67.5
			TIA	Pro	700.0		50.0
			TTTA	34	734.0	1.64	68.8
			₩.	10 D	781.0	~~~ 	70.6
			4	4 G	612.0	1.1	
			TIX		808.0		0
				10	717.0	1.6	51.9
AV.					734.7	1.6	60.39
		35	TTT	TAC	764.0		93.5
			TΛ	r sid	637.0	1.4	102.1
			十十27	6	516.0		127.3
			77 /	4 4	828°0	100	102.0
			TTTA	H.	782.0	7-1	112.9
			×	P 4	07.29	1.4	125.0
				L S	604.0		125.4
			XII	Pr.	805.0		120.7
- AV					677.1	2 T	112.70

		5
4	٠	2
	C	3
	1	5
	5	2
	ς	)
-	_	-
1	3	1
	_	
. 1		3
	0	
	-	2
1	-	4
	C	5
	1	2
	G	0
1	86 I	

Muncle	. Int.	Animul	Godo	. Gma.	hts :	: Cooking : time
			••	• • • • • • • • • • • • • • • • • • • •	•••••••••••••••••••••••••••••••••••••••	: min./10.
Remî membranosus	70	111	R1	0.909.0	2.0	50.0
(antertor)			Sr	013.0	1.8	0.22
		IA	Rr	962.0	2.1	67.6
			Sl	952.0	2.1	61.9
		IIV	Rr	738.0	1.6	60.8
			13	863.0	1.9	62.1
		TILA	TH	750.0	1.7	61.8
			Sr	74,8.0	1.6	71.3
		X	Rl	81:0.0	1.9	58.4
			S1	883.0	1.9	56.3
		<b>NII</b>	Rr	932.0	2.1	60.0
			Sl	855.0	1.9	53.2
					ſ	70 57
AV.				1.cc0	Y.T	67.10
	85	III	Rr	682.0	1.5	100.0
			Sl	968.0	2.1	59.5
		IV	Rl	926.0	2.0	56.5
			Sr	798.0	1.8	120.6
		ITA	Rl	685.0	ч. У.	140.0
			Sr	998.0	2.2	92.3
		IIIA	Rr	794.0	1.7	117.1
			Sl	665.0	- -	95.3
		X	Rr	1.084.0	2.4	84.2
			Sr	1118.0	5.2	87.2
		IIX	117	373.0	1.9	104.5
			L	0.2.0	1.9	108.9
• AV				3.3.2	1.9	104.20

ont.	
, (0	
6T	
Table	

Menselete maggiumetria/passes-opti dessit-unter gimetiteras-ottessit/butt issues resilied	Ar delayanda Yudarddandanaana anna ahaanaana	And the second second in the second sec	In case of university in the stand of the design of the standard of		) Production of the optimized optimized on the product of the section optimized	Charged artesticity costs of the second
	: Int.	Cont n A	••	. Vei	ghts .	Cooking
ofosny	temp.	Loquino	: Code	Gra.	Lhs.	time min./lb.
Semitendinosus	22		Jr	531.0	2- - -	53.3
		TA		504.0		
			TJ	456.0	1.0	50.0
		TIA	Jr L	000		53.6
		TIIV	Tr	450.0	• • •	22.0
		a Na	Lr	5117.0		12.00
		4	The state of the s			116.2
		TIX	Jr	456.0		00
			TY	0112.0	7.04	4.24
AV.				539.3	1.2	4.8.17
	70	TTT	TXI	627.0	1.4	73.6
			L.I	464.0	7.0	78.0
		TA	JI LA	611.0		66.9
		T + V		602.0		64.6
			TT	4.32.0	1.0	80.0
		TTTA	N	637.0	1.44	0°02
		ş	TT	054.0	10-	5.10
		×	J. L	0.1.0	-1 r	(3. L
		XTT	12	0.797		00.00
			L.1	1116.0	1.0	72.0
Λν.				572.7	ы • 0)	70.55

- · · · ·
-
and the second s
And a
1
and a
-
-
23
-
Sec. 10.
-
-
6
6
6.
61
19.
19.
19.
19.
19.
19.
19.
19.
e 19.
e 19.
Le 19.
le 19.
le 19.
le 19.
ole 19.
ble 19.
ble 19.
ble 19.
ible 19.
able 19.
able 19.
'able 19.
rable 19.
Table 19.
Table 19.

	II :	nt.		•••		.1	elf to		Cooking	
Muscle		emp.	Animber	•• ••	Code	Gms.	•• ••		time min./lb.	
Semi tendi nosus		35	111		Ľr.	566.0		2	147.5	
					E	534.0		2	124.2	
			IN		Kr	574.0	Γ.	<u>د.</u>	140.8	
					In	386.0	0	6.0	142.2	
			TIV		Kr	679.0		· .	130.0	
					Lr	1140.0			159.1	
			TIIV		Jr	0.8411		0.	170.0	
					Kr	586.0			130.0	
			X		TP.	527.0			114.2	
					En la	10.101			1.247	
			IIX		JI Lr	564.0		- 5	119.2	
Av.						528.3	Ę	2.	136.27	
Concteet mile dowed		L L	777		LN	642 0	-	1	1 01	
(101n)			* * 7		or or	578.0		t m	32.3	
			IN		IN	655.0	<u>-</u>		34.3	
			1		01	596.0	~	· · ·	33.8	
			TIV		TM	729.0	~	1.6	30.6	
					Nr	671.0	7	N.	31.3	
			TIIA			147.0	r{ 1	0	0.0	
			ř		10	506.0			1001	
			2			0.0.0		20	210.0 2	
			V.T.T		111		1 -	- 0	1-1-0	
			TTV		TN	534.0		5	22.0	
						0.000	F	-	00 70	
AV.						020.4	-1	L+	00.45	

Muscle	temp.	Animal	Code	. Gms.	chts Lbs.	 Cooking time min /1h
	•					• 0 T / • • • • • • • • • • • • • • • • • •
Longissimus dorsi	70	111	NE	629.0	1.L.	63.6
(loin) .		8	Nr	589.0	1.3	70.8
		TA	In	552.0		5.7.5
			III	583.0	1.3	60.0
		TIT	lifr	765.0		52.4
			TO	725.0	91	41.64
		VIII	Mr	752.0	1.	0.0
		2	LIN	O LUC	011 	24.04
		Y	- N	0.101	-1-	10°0
		TIX		622.0		63.6
			NI	561.0		69.2
ΛV.				665.1	1.5	59.04
	85	TTT	TIN	712.0	9 <b>•</b> T	128.1
		ŢŢ	10	595.0 572.0		132.5
		v. v.	Or	554.0	:	10.01
		VIL	TN	722.0	1.6	116.3
			OIL	736.0	1.6	103.1
		VIII	HT C	0.022		109,2
		2		665.0	-1	118.7
			OIL	715.0	9.1	96.9
		TIX	I.	629.0	7.4	120.0
			10	141.0	1.0	141.0
AV.				623.8		122.54

Table 19. (cont.)

-
10
and .
here
0
~
0
-
6
.61
19.
19.
19.
e 19.
le 19.
le 19.
ble 19.
able 19.
able 19.
Table 19.

				0	in the second	001
Muscle	temp.	Animal.	. Code	Gms.	. 153.	t1 in./1
ongissimus dorsi	55	III	LT	74,1.0	1.6	32.8
(dir)		1 T	Ur.	139.0		17.8
			.LV	527.0	1.2	1,0.0
		IIA	TI II	1164.0	00	117.0
		LIIV	Tr	421.0	1.0	45.0
		÷	TD I	627.0		38.6
		•	TA	766.0	2.1	27.1
×		IIX	TT	662.0	1.5	31.3
			Vr	857.0	1.9	33.7
Av.				611.7	1.4	36.45
	20	III	Th:	206.0	1.6	60.0
		T 1	47	120.0	) • T	10 10 10
		TA	J.A.	6C1 .0	1 • T	14.5
		IIA	Ur	4.90.0	1.1	63.6
			V.r.	493.0	1.1	63.5
		VIII	LT	497.0		
		Y	TT -	650.0	1.1	57.9
			Ur	582.0	1.	56.2
		YII	TN	672.0	ري ا	57.3
			LV	800.0	1.9	143.9
AV.				619.8	1.	60.53

Table 19. (concl.)

Auscle temp. Thumber Code Has. Jongissimus dorsi US III Tr 595.0 (rib) UT TT 71 399.0 VIII TT 71 596.0 VIII TT 71 596.0 VIII VII 639.0 VIII VII 639.0 VIII VII 639.0 VIII VII 639.0 VIII 77 535.0 AV. 572.3	: Int.	[ ] ] ]	••	leig	hts	: Cooking
Av.	temp.	190mnu	. Code	Gins.	Lbc.	: time : nin./lb.
VIII VII 2399.0 VIII VII 233.0 VIII VII 5286.0 VIII VII 5286.0 VP VP 535.0 VP VP V	JS Lso		TT.	571.0	с <b>ј</b> .	100.8
Av.		TΛ		0.00°00°00°00°00°00°00°00°00°00°00°00°00	10.10	166.7
VII Tr VIII V1 5586.0 V1 V1 V2 526.0 V2 V2 V2 733.0 V2 V2 733.0 V2 733.0 V2 72.3 V7 V2 733.0 V7 733.0 V7 733.0 V7 733.0 535.0 535.0 535.0 572.3			UI:	509.0	1.1	150.0
Av.		TTA	ar	Sito.0		120,8
Av.			TA	536.0		11.6.9
X V1 733.0 X U1 639.0 Vr Vr 585.0 Vr Vr 585.0 Vr 649.0		TTTA	Ur	526.0	7.5	JIO.B
X Ul 639.0 Vr 535.0 Vr 71 71 535.0 Vr 649.0			TA	733.0	1.6	126°9
AV. Vr 535.0 Vr 735.0 MV. 649.0		24	TO	639.0	1.4	115.7
AV. 572.3			1TA	535.0	3	132.3
Av. 572.3		TIN	Ч	535.0		126.7
AV. 572.3			Ur	649.0	7.7	126.4
				572.3	3	127.71

L For description of abbreviations used in this table see Appendix, pg. 84.

## CO PARISON OF RARE, MEDIUM- AND ELL-DONE ROASTS FROM CERTAIN BEEF MUSCLIS

by

MARILYN STAYTON BUNYAN

B. A., Southwestern College, Winfield, Kansas, 1954

AN ABSTRACT OF A THESIS

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Foods and Nutrition

KANSAS STATE COLLIGE OF AGRICULTURE AND APPLIED SCIENCE

A better understanding is needed of the effect that the degree of cooking has on the tenderness of meat. Generally it is believed that during heating, the muscle fibers become less tender when the protoplasmic proteins coagulate; whereas, simultaneously tenderness may be increased as the connective tissue is softened and partially hydrolyzed. At times these changes in connective tissue may increase the tenderness of cooked meat more than the coagulation of the protoplasmic proteins decrease tenderness.

The purpose of this study was to investigate the acceptability of oven-roasted beef muscles cooked to end-point temperatures of 55°, 70° and 85°C. representing rare, medium- and well-done, respectively. Differences in tenderness as well as other palatability factors were measured subjectively and objectively to determine any changes that might occur which could be attributed to the degree to which the meat was cooked.

Roasts from certain muscles of six U. S. Good long hindquarters of beef were used. A randomized incomplete block design was used for cooking roasts from the semitendinosus, longissimus dorsi (loin) and longissimus dorsi (rib) muscles. Three roasts were cut from each of the previously mentioned muscles and cooked to end-point temperatures of 55°, 70° and 85°C. Two roasts were cut from the psoas major, adductor, rectus femoris, vastus lateralus, semimembranosus (posterior) and semimembranosus (anterior). A randomized complete block design was used for cooking of the roasts either to end-point temperatures of 55° and 70°C. or 70° and 85°C. from the last muscles mentioned. The defrosted roasts were cooked in a pre-heated rotary hearth oven maintained at 300°F. The rate of rise in internal temperature was noted during cooking. After removing the roasts from the oven, weights were taken from which data for total, volatile and dripping cooking losses were obtained. Shear force values for one-inch cores of meat, press fluid yields and palatability scores were obtained. These data were analyzed statistically; the analyses of variance were run on data from the roasts cooked to three end-point temperatures and t-tests were done on data from those roasted to two end-point temperatures.

No particular difference was noted in the rate of heat penetration between the roasts from the right and left muscles. Most of the curves tended to rise rather sharply until the internal temperature in the meat was 40°C., after that, the curves flattened out gradually until the end-point temperatures were reached. For some of the muscles, the roasts from the proximal or anterior end had the slower rate of heat penetration; whereas, in the remaining muscles the distal or posterior end roasts had the slower rates. The center cuts showed no consistent pattern for rate of heat penetration. The average weight of the roasts ranged from 1.1 to 1.9 pounds but the largest roasts did not require the longest cooking time.

Aroma and flavor scores for roasts increased with an increase in end-point temperatures. Significant and very highly significant increases for aroma scores were found with each increase in in end-point temperature. Approximately one-half of the muscles

had significant differences in flavor scores that could be attributed to an increase in end-point temperature. In most cases, the tenderness scores for roasts decreased with an increase in end-point temperature, but an increase in end-point temperature had little real effect on the tenderness scores of the roasts, because significant differences in tenderness attributable to degree of cooking were noted in only a few cases. Tenderness preference decreased with an increase in end-point temperature. An increase in end-point temperature had no consistent effect on the shear force values, since they increased for some of the roasts but decreased for others. Significant negative correlation coefficients for tenderness scores and shear force values were found for the majority of the roasts cooked to  $85^{\circ}$ C.

Juiciness scores and preference for juiciness decreased with an increase in end-point temperature; whereas, the total cooking losses and cooking times increased with an increase in the degree of cooking. Significant to very highly significant differences for each of these factors were found as the degree of cooking increased. The dripping cooking losses tended to decrease with an increase in end-point temperature and differences were significant for roasts from most muscles. Generally, the average press fluid yields decreased significantly with each increase in endpoint temperature. The majority of the correlation coefficients between juiciness scores and press fluid yields were positive, however, only two coefficients were significant. Slightly more than half of the correlation coefficients for juiciness scores

and cooking losses (total and volatile) were negative and only a few of these were significant. Most of the correlation coefficients for press fluid yields and cooking losses (total and volatile) were negative and only a few of these were significant. No consistent trend for significant correlation coefficients was found for dripping losses and juiciness scores or dripping losses and press fluid yields.



	Date Due
Mar 597 Jun 22'59/ Jul 9 597	
129 Feb 600	