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Influence of the initial angular distribution on strong-field molecular dissociation
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We study few-cycle, strong-field dissociation of aligned H+
2 by solving the time-dependent Schrödinger

equation including rotation. We examine the dependence of the final angular distribution, the kinetic energy
release spectrum, and the total dissociation yield on the initial nuclear angular distribution. In particular, we look
at the dependence on the relative angle θ0 between the laser polarization and the symmetry axis of a well-aligned
initial distribution, as well as the dependence on the delay between the “pump” pulse that prepares the alignment
and the few-cycle probe pulse. Surprisingly, we find the dissociation probability for θ0 = 90◦ can be appreciable
even though the transitions involved are purely parallel. We therefore address the limits of the commonly held
“ball-and-stick” picture for molecules in intense fields as well as the validity of the axial recoil approximation.
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I. INTRODUCTION

Despite significant current interest in strong-field processes
for initially well-aligned molecules, theoretical treatments
that include the full nuclear dynamics, including rotation,
for this problem have essentially not been pursued. Instead,
the argument is usually made that rotation is slow compared
to the electronic and vibrational dynamics as well as to the
laser pulse and can thus be excluded from calculations [1].
It has been shown, though, that neglecting nuclear rotation
can qualitatively change the dynamics; vibrational trapping,
for example, is strongly suppressed by rotation, essentially
eliminating it [2–4].

When rotation is neglected—but the angular distribution
is desired—it is often obtained using the axial recoil ap-
proximation whereby the nuclei are assumed to dissociate
along the same line they were held to during the pulse.
Recent work [5], however, shows that this simple approach is
insufficient for accurately describing the angular distribution
of the nuclei following strong-field dissociation of H+

2 —even
in an ultrashort pulse. This result can be understood [5] as
impulsive alignment [6,7] of the dissociating fragments. That
is, the ultrashort pulse produces a broad distribution of angular
momenta that leads to substantial evolution of the angular
distribution after the pulse. The axial recoil approximation is
thus insufficient in these cases. However, Ref. [5] assumed an
isotropic initial distribution of the molecule. What happens if
the molecule is instead initially well aligned? Is the axial recoil
approximation better in this case? Is the dissociation larger for
an aligned molecule?

In this article, we begin to answer these questions by
studying the influence of the initial angular distribution on
H+

2 dissociation in intense, few-cycle pulses. We imagine
a pump-probe scheme in which the pump pulse—linearly
polarized at an angle, θ0, relative to the probe pulse—produces
a well-aligned distribution at time ti and the linearly polarized
probe pulse dissociates the molecule after a delay, �t .
The initial angular distribution is thus characterized by its
alignment angle θ0 and its width.

We study the dependence of the angular distribution, the ki-
netic energy release (KER) spectrum, and the total dissociation
yield on θ0 and the initial angular width. We also investigate
the �t dependence of these dissociation observables. Among
other things, we have found the surprising result that the

dissociation probability for perpendicular alignment can be
appreciable even though the transitions involved are purely
parallel.

II. THEORY

A. Time-dependent Schrödinger equation

The time-dependent Schrödinger equation (TDSE) for
three-dimensional H+

2 is written as

i
∂

∂t
�(RRR,rrr,t) = [H0 − ddd · EEE(t)]�(RRR,rrr,t), (1)

with field-free Hamiltonian H0 and nuclear and electronic
coordinates RRR and rrr . Atomic units are used throughout this
work unless otherwise noted. We use the dipole approximation
in the length gauge with dipole operator ddd . The probe electric
field EEE(t) is explicitly expressed as [8]

EEEprob(t) = ẑE0e
−t2/τ 2

cos(ωt + ϕ). (2)

We use pulses with a full width of the intensity at half
maximum, τFWHM = τ

√
2 ln 2, of 10 fs and a wavelength of

790 nm. The intensity is taken as 1.5×1013 W/cm2 throughout
the paper except where specified otherwise. Carrier-envelope
phase effects are minimal for these pulse parameters [9], so
we set ϕ = 0 for simplicity.

We solve Eq. (1) in the Born-Oppenheimer (BO) represen-
tation. The details of our method can be found in Refs. [4,10].
Here we provide a brief summary for completeness. First,
the BO potentials and dipole matrix elements are calculated
using the formulation in Ref. [10]. Then, the total wave
function �(RRR,rrr,t) is expanded on the BO basis, and the nuclear
rotation is treated via an expansion over symmetrized Wigner
D functions. For our pulse parameters, retaining only the 1sσg

and 2pσu channels is a good approximation [4]. In this case,
both the Coriolis and non-Born-Oppenheimer couplings are
zero. Equation (1) thus reduces to the coupled radial equation

i
∂

∂t
Fα =

(
− 1

2μ

∂2

∂R2
+ J (J + 1)

2μR2
+ Uβ

)
Fα

−EEE ·
∑
α′

DDDαα′Fα′ , (3)
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where Fα = Fα(R,t) is the nuclear radial wave function.
The index α collectively represent the quantum numbers
βJM , with J and M the total orbital angular momentum
and its laboratory-frame z projection, respectively, and β the
electronic state label. In this work, β = 1sσg and 2pσu—or
simply g and u. Consequently, only parallel transitions are
allowed. The precise form of the dipole matrix element DDDαα′

is given in Ref. [4].
To solve Eq. (3), we use a generalized finite difference

scheme for the radial coordinate [11–13] and split operator
techniques combined with the Crank-Nicolson method for the
time evolution, as implemented in Refs. [4,13,14]. We use a
uniform radial grid distribution with 3000 points in the range
0.05 a.u. � R � 80 a.u. Time evolution starts at tmin when the
pulse envelope first reaches 108 W/cm2 and ends at tf when it
reaches 106 W/cm2, with a time step of 0.5 a.u. All the results
shown in this paper are tested to be converged to at least two
digits.

B. Preparing the initial state

To study the effects of the initial angular alignment
on strong-field molecular dissociation, we must prepare an
appropriately aligned initial state. Instead of using an actual
pump pulse for this purpose in our calculations, we directly
construct the desired aligned state by superposing different
JM states at time ti . Due to the linearity of the TDSE,
these states can be propagated independently and the results
superposed as dictated by the initial state. In this section, we
discuss the details of this procedure.

As shown in Fig. 1, our goal is to construct a state aligned
along a line defined by the angles θ0 and φ0 with respect to the
probe-pulse polarization, which also defines the quantization
axis. Because the probe is linearly polarized, the choice of
φ0 is arbitrary—the results for any φ0 can be obtained from
another by a simple rotation about the z axis.

As the first step, we create a state aligned along z:

�aligned =
∑
vJ

avJ 
v
JM, (4)

where 
v
JM = χvJ �J�

M0, with χvJ the bound rovibrational
radial eigenstate in the 1sσg channel and �J�

M0 the sym-
metrized total orbital angular momentum state [4], with

FIG. 1. Schematic representation of the pump-probe scheme
considered. The pump pulse creates a distribution at ti aligned along
Êpump. After a delay �t , a probe pulse polarized at the angle θ0 to the
pump pulse dissociates the molecule.

� the total parity. Without loss of generality, we assume
�aligned ∼ cosn θ ; therefore the coefficients avJ are defined by
projecting cosn θ with n = 6 and 8 onto the eigenstates and
normalizing the result. By choosing n even, only even J s (up to
J = 6 or 8) contribute to Eq. (4), mimicking the production
of �aligned by an impulsive pump pulse [6,7]. The phase of
avJ , however, does not necessarily match that produced by
impulsive alignment. The lack of R dependence in our target
distribution primarily serves to enforce a phase convention
on our numerically calculated χvJ (R). To have appreciable
dissociation, we limit the sum to v = 9. With these choices,
〈cos2 θ〉 for �aligned is 0.81 and 0.89 for n = 6 and n = 8,
respectively, which are the two initial angular widths discussed
throughout this work.

In the second step, the aligned state is rotated to the final
angles (θ0,φ0) in the laboratory frame:

�(ti) = R̂(φ0,θ0,0)�aligned =
∑
JM

avJ DJ
M0(φ0,θ0,0)
v

JM, (5)

using the rotation operator R̂. As mentioned above, the choice
of φ0 is arbitrary; we thus set it to zero. We note that the
solutions Fα of the TDSE in Eq. (3) depend only on |M|.
The −M solutions are thus identical to the +M solutions.

Finally, the aligned initial state is prepared by propagating
it freely from ti to the beginning of the probe pulse at tmin.
This interval depends on the pump-probe delay as depicted in
Fig. 1. The free evolution from ti to tmin is purely analytic.

C. Superposing final states

Because the time evolution operator U (tf ,ti) is linear,
applying it to �(ti) only requires knowledge of the action of
U (tf ,ti) on the individual rovibrational initial states in Eq. (5).
Practically, we obtain this knowledge by solving Eq. (3), but
we can write it conveniently as


v
JM (tf ) = U (tf ,ti)


v
JM (ti), (6)

since M is conserved by the linearly polarized probe pulse. To
be clear, we note that the labels on 
v

JM (tf ) refer to the initial
state—
v

JM (tf ) itself will include all partial waves and both
electronic states due to the action of U (tf ,ti).

According to Eq. (5), the total final state is thus expressed
as

�(tf ) = U (tf ,ti)�(ti) =
∑
JM

avJ DJ
M0(0,θ0,0)
v

JM (tf ). (7)

In this way, we can propagate each initial state independently
and superpose them with, in principal, arbitrary coefficients
afterwards, providing a very efficient means of examining
many initial angular distributions. It has the additional benefit
of making the dependence on θ0 explicit and analytic, which
could be potentially useful.

D. Analysis

The complete formalism we use for analyzing H+
2 dis-

sociation with rotation can be found in Ref. [15]. Here,
we only provide the modifications necessary for the present
problem. For dissociation to p + H, where H is in the 1s
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state asymptotically, the relative momentum distribution of
fragments is

∂2P

∂θK∂E
=

∫ 2π

0
dφK

∣∣〈�(−)
KKK,1s

∣∣�(tf )
〉∣∣2

, (8)

where �
(−)
KKK,1s is the energy-normalized scattering wave function

with outgoing plane-wave boundary conditions, and KKK is the
relative nuclear momentum pointing from H to p. Note that
the full momentum distribution depends on the azimuthal angle
φK . It is peaked at φ0, and the discussion of φ0 above applies
here. However, since we are concerned primarily with the
behavior relative to the laser polarization—i.e., θK and θ0—we
integrate over φK for all the results shown in this work.

The angular distribution can be obtained from the momen-
tum distribution using

dP

dθK

=
∫ ∞

0

∂2P

∂θK∂E
dE, (9)

whereas the KER distribution is

dP

dE
=

∫ π

0

∂2P

∂θK∂E
sin θKdθK. (10)

In practice, these integrations were carried out numerically.

III. RESULTS AND DISCUSSION

In our pump-probe scheme, the molecule is aligned at
ti . After a delay �t , an infrared probe pulse stimulates the
dissociation. However, the rotational wave packet evolves
freely from ti until the probe arrives and will thus exhibit
revivals or partial revivals [7,15]. One might therefore expect
the results to be sensitive to the pump-probe delay. We
address this question in Sec. III A using the total dissociation
probability, the angular distribution, and the KER spectrum
of dissociation fragments. We address the θ0 and width
dependence in Secs. III B and III C, respectively.

A. Pump-probe delay dependence

In this section, we discuss the �t dependence of dissocia-
tion for a well-aligned initial state (�aligned ∝ cos8 θ , giving a
width of 0.89) with θ0 restricted to zero.

In Fig. 2(a), we show the delay dependence of the field-free
〈cos2 θ〉 at t = 0, the total dissociation yield P , and 〈cos2 θK〉
for the dissociation fragments. The field-free 〈cos2 θ〉 gives
the alignment at t = 0 with no probe pulse. And, as one might
expect, P follows the field-free 〈cos2 θ〉—in other words, P

grows when 〈cos2 θ〉 grows, indicating that the more aligned
the molecule is, the more it dissociates since only parallel
transitions are possible between 1sσg and 2pσu. The alignment
of the dissociation fragments 〈cos2 θK〉 generally also follows
〈cos2 θ〉, but is larger at all delays. This result is consistent
with the observation in Ref. [5] that a short pulse impulsively
aligns the dissociating fragments.

Figure 2(b) shows the fragments’ alignment in detail via
dP/dθK sin θK as a function of �t . One can see that at
�t ≈ 270 fs, for example, where Fig. 2(a) shows the molecule
is at a local maximum of the initial alignment, the final angular
distribution is localized near 0 and π . Similar localization
occurs at �t = 0 and �t ≈ 130 fs, where 〈cos2 θ〉 peaks. In
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FIG. 2. The pump-probe delay dependence of: (a) 〈cos2 θK〉
(solid red line), the dissociation yield (dashed green line), and the
field-free 〈cos2 θ〉 (dot-dashed blue line); (b) the angular distribution
dP/dθK sin θK ; and (c) the kinetic energy release spectrum.

contrast, when 〈cos2 θ〉 is near a minimum—e.g., at �t ≈ 70,
200, and 350 fs—the peaks in the final angular distribution
move away from 0 and π , producing corresponding local min-
ima in 〈cos2 θK〉. Since these minima in 〈cos2 θ〉 correspond
to both aligned and antialigned initial distributions, the fact
that they all produce a minimum in 〈cos2 θK〉 implies that
properties of the rovibrational wave packet beyond its width
are important. In particular, many different distributions—with
different phases—can have the same 〈cos2 θ〉. It is natural that
the dynamics of these various wave packets differ. In fact,
Figs. 2(a) and 2(b) demonstrate this since different angular
distributions and yields result from initial states with the same
〈cos2 θ〉.

In Fig. 2(c), we show the delay-dependent KER spec-
trum for the dissociation fragments. For v = 9, one-photon
absorption should be dominant for the current laser param-
eters [1,4,16], which is consistent with Fig. 2(c) since the
position of the peak matches that expected for net one-photon
dissociation. An obvious feature of this plot is the oscillation
between the double-peaked structure and the single-peaked
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structure. The double peak occurs near the delays with strong
alignment, whereas the single peak happens at delays when
〈cos2 θ〉 is near a minimum. We discuss such double-peaked
KER more fully below.

B. Alignment angle dependence

Previous studies [17–21] indicate that molecular ionization
and electron rescattering are sensitive to the molecule’s
alignment. In this section, we investigate the dependence
of dissociation on the alignment angle. We again use a
well-aligned initial state (∝ cos8 θ ), and the time delay is
restricted to �t = 0.

In Fig. 3(a), we show the total dissociation yields for two
different intensities. For 1.5×1013 W/cm2, we find that, for
such a narrow initial angular distribution, there is a surprisingly
large probability of dissociation at θ0 = π/2 compared with
θ0 = 0, especially given that we do not include perpendicular
transitions in the calculation. The simple no-rotation model
employed by many for the nuclear dynamics would, of course,
predict no dissociation for θ0 = π/2 at its simplest level of
application. This suggests that the dissociation from such a
narrow initial state must be due to its nonzero angular width.
For comparison, we also show the result for 1.5×1011 W/cm2.
It can be seen that even for this much lower intensity, there
is still appreciable dissociation for perpendicular alignment—
about 11% of that for parallel alignment.

To help understand the dependence of dissociation on θ0,
we show in Fig. 3(b) the angular distribution of the fragments
for 1.5×1013 W/cm2 as a function of θ0. At θ0 ≈ 0, the
dissociation probability peaks near θK = 0 and θK = π as
expected. As θ0 becomes larger—but smaller than π/4—the
peak of the angular distribution in θK approximately follows θ0.
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FIG. 3. The alignment angle (θ0) dependence of: (a) the total
dissociation probability, and (b) the angular distribution of the
dissociation fragments dP/dθK sin θK for 1.5×1013 W/cm2.

That is, θK ≈ θ0 and, by symmetry since we integrate over φ0,
θK ≈ π − θ0. This is the behavior one would expect according
to the axial recoil approximation under the assumption that
there is negligible change in the angular distribution during
the pulse, which is probably a reasonable assumption for the
10-fs pulse used here. For θ0 larger than about π/4, however,
the peak in θK is no longer approximately θ0. In this case, the
assumption that the molecule does not rotate during the pulse
implies that the axial recoil approximation at its simplest level
is failing.

As suggested above, the axial recoil approximation might
be salvaged by taking into account the finite angular width
of the initial state rather than imagining it as a δ function at
θ0. For concreteness, let us consider the limiting θ0 = π/2
case with the simplified initial angular distribution |�|2 ∝
cos16(θ − π/2) with a FWHM of just under 0.2π . In the axial
recoil approximation, the θK distribution in Fig. 3(b) must
originate from the wings of the initial distribution since there
should still be no rotation during the pulse. However, if one
calculates the probability that the molecule initially lies in
the wings—i.e., 0 � θ � 0.4π or 0.6π � θ � π—it turns out
to be 18%, capturing only 60% of the dissociation shown
in Fig. 3(a) for θ0 = π/2. Using this reasoning, one must
therefore have dissociation originating from θ closer to π/2,
which means, in turn, that these fragments must rotate after the
pulse to give the distribution in Fig. 3(b). The bottom line is
that the axial recoil approximation breaks down. Thus, while
a nonzero initial angular width is required for dissociation at
larger θ0, rotational dynamics are also required to explain the
final result.

We note that the common no-rotation treatment would pre-
dict a distribution superficially resembling Fig. 3(b) through
the use of an effective intensity [7], Ieff = I0 cos2 θ0 (the
intensity due to the component of the laser field along the
molecular axis). For a one-photon transition, this approach
would predict an angular distribution immediately after the
pulse proportional to cos16(θ − π/2) cos2 θ for θ0 = π/2. This
distribution peaks at θ = 0.4π and 0.6π . Post-pulse rotation
would thus still be required to obtain the observed distri-
bution. Considering three-photon transitions—i.e., cos16(θ −
π/2) cos6 θ—moves the peaks less than 0.1π , still leaving the
peak ∼0.05π short of the result in Fig. 3(b). All evidence thus
points to the importance of rotation—and the breakdown of
the axial recoil approximation—for quantitatively predicting
the final angular distribution.

Figure 4 shows the KER distribution as a function of θ0. The
most striking feature is probably the transition from a single
peak to a double peak much like in Fig. 2(c). The overall posi-
tion of the peaks matches that for net-one-photon dissociation
of v = 9 as expected. To understand the KER dependence,
consider that the energy dependence of a purely one-photon
dissociation peak is given in first-order perturbation theory
by the pulse’s power spectrum, the energy dependence of the
dipole matrix element [15], and the spread in energy of the
initial rovibrational states. In the present case, the pulse is
Gaussian, giving a Gaussian power spectrum of width ≈0.2 eV;
the dipole matrix element is smooth over this energy range with
no zeros; and the initial states cover an energy range of about
0.19 eV. Thus, a one-photon transition cannot give two KER
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FIG. 4. Kinetic energy release spectrum of the dissociation
fragments in terms of the alignment angle θ0 for (a) 1.5×1013 W/cm2

and (b) 2×1013 W/cm2.

peaks in the present case—higher-order processes must be
responsible. For instance, when three-photon processes—the
next order that can contribute to the spectra in Fig. 4—become
possible, then

dP

dE
= ∣∣A1E0 + A3E3

0

∣∣2
, (11)

where Ai are the energy-dependent, complex, first- and third-
order perturbation theory amplitudes. Only when |A3E3

0 | ≈
|A1E0| can the nearly completely destructive interference
required to produce two peaks occur. This observation can
be used to understand Fig. 4.

Generally speaking, one would think to increase the three-
photon contribution by increasing the intensity. However, the
same result can be obtained by increasing the magnitude
of the dipole matrix elements: A1 is proportional to a
dipole matrix element; and A3, to a product of three dipole
matrix elements. These dipole matrix elements depend on the
quantum number M via the Clebsch-Gordan coefficients. With
the M dependence analytic [4], it is straightforward to verify
that the dipole matrix element decreases with increasing |M|.
Further, the decrease can be roughly a factor of 2 from M = 0
to |M| = J , which is equivalent to reducing the intensity
by a factor of 4. In an initial state with small θ0, M = 0
dominates the distribution [see Eq. (5)], yielding a larger dipole
matrix element. As θ0 increases, larger |M|’s get populated, so
the dipole matrix element is smaller and higher-order effects
become negligible.

A more simplistic picture for understanding the emergence
of the double-peaked spectrum can be found in the no-rotation
model [1,22]. Specifically, with no rotation of the nuclei
and only parallel transitions included, only the effective field
Eeff = E0 cos θ0 enters the dipole interaction. This implies
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FIG. 5. Dissociation probability as a function of the alignment
angle θ0 for initial alignment widths 0.89 (dashed green line) and
0.81 (solid red line).

that the smaller θ0 is, the greater Eeff is. Thus, higher-order
processes become more probable as θ0 decreases, permitting a
double-peaked spectrum as described above. While this simple
picture does qualitatively explain the figure and should apply
so long as the molecule does not have time to rotate during
the pulse [5], we have already detailed why including rotation
after the pulse is essential for correctly predicting the final
angular distribution.

C. Initial angular width

The previous sections have assumed an initial angular
width of 0.89. Here, we address how the quality of the initial
alignment affects the molecular dissociation. Specifically, we
compare the θ0 and the �t dependence of dissociation for
alignment widths of 0.89 and 0.81.

In Fig. 5, we show the θ0 dependence of the total
dissociation probability, repeating P for 0.89 from Fig. 3(a)
for comparison. Overall, the trends are quite similar—parallel
alignment leads to more dissociation than perpendicular
alignment, as explained in the discussion of the θ0 dependence
in Sec. III B. Moreover, as θ0 approaches zero, the narrower
initial angular distribution gives a larger dissociation yield.
This can be understood by noting that the dipole matrix
elements also depend on the quantum number J via the
Clebsch-Gordan coefficients. The initial J distribution is
determined by the angular width in Eq. (4): the narrower the
width, the broader the J distribution. Since the maximum
populated J is larger, the dipole matrix elements are larger.
The increase is about 15% from J = 6 to J = 8 given M = 0
for a parallel transition. Therefore, the narrower the angular
distribution is, the more the molecule dissociates.

Finally, in Fig. 6 we compare the �t dependence of the
yield P and the field-free 〈cos2 θ〉 (at t = 0) for different initial
angular widths. As in Fig. 2(a) for the narrower initial angular
distribution, the yields follow the same trend as the field-free
〈cos2 θ〉. The yields for the different initial angular widths
cross each other at approximately the same �t as the field-free
〈cos2 θ〉 equal each other for �t < 200 fs. Such behavior,
however, does not hold for larger �t . This is simply because
the details of the molecule’s angular distribution might be
different, even for the same 〈cos2 θ〉.
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FIG. 6. Dissociation probability (dashed blue and solid green
lines) and field-free 〈cos2 θ〉 (dashed red and dot-dashed black lines)
in terms of the time delay �t for 〈cos2 θ〉 = 0.89 and 〈cos2 θ〉 = 0.81,
both with θ0 = 0.

IV. SUMMARY

We have presented a study of the dependence of strong-
field, few-cycle dissociation on the initial alignment of the

molecule. We focused on H+
2 and on initial distributions well

aligned along an axis different from the polarization of the
probe pulse. We have found evidence for post-pulse rotation—
and thus the breakdown of the axial recoil approximation—
especially when the angle between the alignment axis and
probe polarization exceeds 45◦. Our calculations thus provide
further evidence that the rotation of the nuclei must be
included to quantitatively predict the momentum (or angular)
distribution of strong-field dissociation. We have provided
quantum-mechanical explanations of the observed phenom-
ena, comparing and contrasting them with those based on
simplified pictures commonly found in the literature. We
expect these results to apply not just to H+

2 , but to any
diatomic molecule dissociating via parallel transitions due
to a laser pulse that is short compared to the free rotation
period.

ACKNOWLEDGMENTS

This work was supported by the Chemical Sciences,
Geoscience, and Biosciences Division, Office for Basic Energy
Sciences, Office of Science, U.S. Department of Energy.

[1] A. Giusti-Suzor, F. H. Mies, L. F. DiMauro, E. Charron, and B.
Yang, J. Phys. B 28, 309 (1995).

[2] A. Giusti-Suzor and F. H. Mies, Phys. Rev. Lett. 68, 3869 (1992).
[3] E. E. Aubanel, A. Conjusteau, and A. D. Bandrauk, Phys. Rev.

A 48, R4011 (1993).
[4] F. Anis and B. D. Esry, Phys. Rev. A 77, 033416 (2008).
[5] F. Anis, T. Cackowski, and B. D. Esry, J. Phys. B 42, 091001

(2009).
[6] F. Rosca-Pruna and M. J. J. Vrakking, Phys. Rev. Lett. 87,

153902 (2001).
[7] H. Stapelfeldt and T. Seideman, Rev. Mod. Phys. 75, 543 (2003).
[8] The laser electric field in atomic units is E0 = √

I/Iau, where I

is intensity in W/cm2 and Iau = 3.51 × 1016 W/cm2 is defined
based on the proton’s electric field in the first Bohr orbit, see
App. 14, B. H. Bransden and C. J. Joachain, Physics of Atoms
and Molecules (Prentice Hall, New York, 2003).

[9] F. Anis and B. D. Esry, Phys. Rev. Lett. 109, 133001 (2012).
[10] B. D. Esry and H. R. Sadeghpour, Phys. Rev. A 60, 3604 (1999).
[11] S. E. Koonin, K. T. R. Davies, V. Maruhn-Rezwani, H.

Feldmeier, S. J. Krieger, and J. W. Negele, Phys. Rev. C 15,
1359 (1977).

[12] J. Colgan, M. S. Pindzola, and F. Robicheaux, Phys. Rev. A 68,
063413 (2003).

[13] M. W. J. Bromley and B. D. Esry, Phys. Rev. A 69, 053620
(2004).

[14] F. Anis, V. Roudnev, R. Cabrera-Trujillo, and B. D. Esry,
Phys. Rev. A 73, 043414 (2006).

[15] F. Anis, Ph.D. thesis, Kansas State University, 2009.
[16] J. H. Posthumus, Rep. Prog. Phys. 67, 623 (2004).
[17] E. Volkova, A. Popov, and O. Tikhonova, J. Exp. Theor. Phys.

97, 702 (2003).
[18] T. K. Kjeldsen, L. B. Madsen, and J. P. Hansen, Phys. Rev. A

74, 035402 (2006).
[19] H. Yu and A. D. Bandrauk, J. Chem. Phys. 102, 1257

(1995).
[20] M. Lein, N. Hay, R. Velotta, J. P. Marangos, and P. L. Knight,

Phys. Rev. A 66, 023805 (2002).
[21] C. B. Madsen and L. B. Madsen, Phys. Rev. A 74, 023403

(2006).
[22] P. Q. Wang, A. M. Sayler, K. D. Carnes, J. F. Xia, M. A.

Smith, B. D. Esry, and I. Ben-Itzhak, Phys. Rev. A 74, 043411
(2006).

023423-6

http://dx.doi.org/10.1088/0953-4075/28/3/006
http://dx.doi.org/10.1088/0953-4075/28/3/006
http://dx.doi.org/10.1088/0953-4075/28/3/006
http://dx.doi.org/10.1088/0953-4075/28/3/006
http://dx.doi.org/10.1103/PhysRevLett.68.3869
http://dx.doi.org/10.1103/PhysRevLett.68.3869
http://dx.doi.org/10.1103/PhysRevLett.68.3869
http://dx.doi.org/10.1103/PhysRevLett.68.3869
http://dx.doi.org/10.1103/PhysRevA.48.R4011
http://dx.doi.org/10.1103/PhysRevA.48.R4011
http://dx.doi.org/10.1103/PhysRevA.48.R4011
http://dx.doi.org/10.1103/PhysRevA.48.R4011
http://dx.doi.org/10.1103/PhysRevA.77.033416
http://dx.doi.org/10.1103/PhysRevA.77.033416
http://dx.doi.org/10.1103/PhysRevA.77.033416
http://dx.doi.org/10.1103/PhysRevA.77.033416
http://dx.doi.org/10.1088/0953-4075/42/9/091001
http://dx.doi.org/10.1088/0953-4075/42/9/091001
http://dx.doi.org/10.1088/0953-4075/42/9/091001
http://dx.doi.org/10.1088/0953-4075/42/9/091001
http://dx.doi.org/10.1103/PhysRevLett.87.153902
http://dx.doi.org/10.1103/PhysRevLett.87.153902
http://dx.doi.org/10.1103/PhysRevLett.87.153902
http://dx.doi.org/10.1103/PhysRevLett.87.153902
http://dx.doi.org/10.1103/RevModPhys.75.543
http://dx.doi.org/10.1103/RevModPhys.75.543
http://dx.doi.org/10.1103/RevModPhys.75.543
http://dx.doi.org/10.1103/RevModPhys.75.543
http://dx.doi.org/10.1103/PhysRevLett.109.133001
http://dx.doi.org/10.1103/PhysRevLett.109.133001
http://dx.doi.org/10.1103/PhysRevLett.109.133001
http://dx.doi.org/10.1103/PhysRevLett.109.133001
http://dx.doi.org/10.1103/PhysRevA.60.3604
http://dx.doi.org/10.1103/PhysRevA.60.3604
http://dx.doi.org/10.1103/PhysRevA.60.3604
http://dx.doi.org/10.1103/PhysRevA.60.3604
http://dx.doi.org/10.1103/PhysRevC.15.1359
http://dx.doi.org/10.1103/PhysRevC.15.1359
http://dx.doi.org/10.1103/PhysRevC.15.1359
http://dx.doi.org/10.1103/PhysRevC.15.1359
http://dx.doi.org/10.1103/PhysRevA.68.063413
http://dx.doi.org/10.1103/PhysRevA.68.063413
http://dx.doi.org/10.1103/PhysRevA.68.063413
http://dx.doi.org/10.1103/PhysRevA.68.063413
http://dx.doi.org/10.1103/PhysRevA.69.053620
http://dx.doi.org/10.1103/PhysRevA.69.053620
http://dx.doi.org/10.1103/PhysRevA.69.053620
http://dx.doi.org/10.1103/PhysRevA.69.053620
http://dx.doi.org/10.1103/PhysRevA.73.043414
http://dx.doi.org/10.1103/PhysRevA.73.043414
http://dx.doi.org/10.1103/PhysRevA.73.043414
http://dx.doi.org/10.1103/PhysRevA.73.043414
http://dx.doi.org/10.1088/0034-4885/67/5/R01
http://dx.doi.org/10.1088/0034-4885/67/5/R01
http://dx.doi.org/10.1088/0034-4885/67/5/R01
http://dx.doi.org/10.1088/0034-4885/67/5/R01
http://dx.doi.org/10.1134/1.1625060
http://dx.doi.org/10.1134/1.1625060
http://dx.doi.org/10.1134/1.1625060
http://dx.doi.org/10.1134/1.1625060
http://dx.doi.org/10.1103/PhysRevA.74.035402
http://dx.doi.org/10.1103/PhysRevA.74.035402
http://dx.doi.org/10.1103/PhysRevA.74.035402
http://dx.doi.org/10.1103/PhysRevA.74.035402
http://dx.doi.org/10.1063/1.468913
http://dx.doi.org/10.1063/1.468913
http://dx.doi.org/10.1063/1.468913
http://dx.doi.org/10.1063/1.468913
http://dx.doi.org/10.1103/PhysRevA.66.023805
http://dx.doi.org/10.1103/PhysRevA.66.023805
http://dx.doi.org/10.1103/PhysRevA.66.023805
http://dx.doi.org/10.1103/PhysRevA.66.023805
http://dx.doi.org/10.1103/PhysRevA.74.023403
http://dx.doi.org/10.1103/PhysRevA.74.023403
http://dx.doi.org/10.1103/PhysRevA.74.023403
http://dx.doi.org/10.1103/PhysRevA.74.023403
http://dx.doi.org/10.1103/PhysRevA.74.043411
http://dx.doi.org/10.1103/PhysRevA.74.043411
http://dx.doi.org/10.1103/PhysRevA.74.043411
http://dx.doi.org/10.1103/PhysRevA.74.043411



