/DEVELOPMENT OF MICRO-COMPUTER
PROGRAMS FOR THE ANALYSIS OF AN OPEN SPANDRAL ARCH/
by
JOHN JAY KOONTZ
B.S., United States Military Acadeay, 1971

A MASTER's thesis
submitted in partial fulfillment of the requirements for the degree

MASTER OF SCIENCE

Department of Civil Engineering

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1984

$\angle D$All202 960859
2668
T41984
$1<66$
Page
List of Tables and Figures. iv
CHAPTER 1. Introduction. 1
Equipment and Program Language 2
Assumptions and Limitations. 3
CHAPTER 2. Method of Analysis. 7
Matrix Equation for Linear Elastic Structures. 7
Coordinate Transformation. 8
Global Indexing System 10
Method of Solution 11
Internal Forces. 11
AASHTO Live Loading. 13
Construction of Influence tines. 13
Finding Critical Live Load Conditions. 15
Internal Forces due to Yield of Supports 16
CHAPTER 3. The Internal Force Analysis Package 19
Application Limitations. 19
Structural Data Input Program. 22
Flexibility Matrix Generation. 23
Loading Data Input Program 25
Calculation of Internal Forces 26
Influence Line Program 28
AASHTO Rolling Load Program. 29
AASHTO Equivalent Loading Program. 30
Yielding of Supports Program 31

TABLE OF CONTENTS (continued)

Page
Utility Programs 31
Summary 32
CHAPTER 4. Verification of the Package 34
CHAPTER 5. Descriptive Example 39
Properties Input Program 41
Flexibility Matrix Generation. 43
Loading Input Routine. 44
Joint Displacements 46
Internal Force Calculation 47
Influence Line Generation 48
AASHTO Rolling Load. 49
AASHTO Equivalent Loading. 50
CHAPTER 6. Concluding Remarks. 52
APPENDIX A. Package Listing. 57
Auto-start Program 57
Properties Input Program 59
F1exibility Matrix Program 66
Structural Loading Program 74
Displacement Program 81
Internal Force Program 85
Influence Line Program 90
AASHTO Rolling Load Program. 93
AASHTO Equivalent Loading Program. 96
Support Yielding Program 99

TABLE OF CONTENTS (continued)

Page
Output Printing Program. 104
File Transfer Program. 110
APPENDIX B. Package Output 112
Properties Input File. 112
Comparison of AASHTO Loading 113
Influence Lines of Interest. 115
AASHTO Rolling Load Influence Lines. 134
BIBLIOGRAPHY 136

LIST OF TABLES AND FIGURES

Page
Figure 1.1 Typical Structure. 4
Figure 1.2 General Geometry 5
Figure 2.1 Sign Convention 9
Figure 2.2a Displacement Components. 12
Figure 2.2b End-force Components 12
Figure 2.3 AASHTO Code Live Loading 14
Table 3.1 Memory Requirement Analysis. 21
Figures 4.1-4.4 Trial Structures 35
Figure 5.1 Test Structure 40
Table B. 1 Properties Input File. 112
Table B. 2 Comparison of AASHTO Loading 113
Figures B.1-B. 19 Influence Line Diagrams. 115
Figures B. 20-B. 21 AASHTO Rolling Load Diagrams 134

CHAPTER 1

Introduction

The arrival of the micro-computer has been so rapid that some of the conclusions reached in the twelve month span of this research have been significantly changed. Increased usable memory, miniaturization, increased flexibility and decreased cost have made the micro-computer one of the most important tools available to the professional engineer today. The smallest firm can now afford to own a computer, and in fact needs to do so to stay competetive. The micro-computer has been accepted as a word processor and a valuable accounting tool for some time. Now with the recent increases in usable memory, even the most complicated analysis problems are within the capabilities of the micro. At this point in time, software to take advantage of these capabilities is still being developed. This research effort has produced one set of software to solve such a problem.

Until now, the analysis of a bridge composed of a continuous beam supported by a fixed arch has been restricted to either a very long approximate analysis or use of a mainframe program such as STRUDL. This effort produced a software package to accomplish such an analysis using a micro-computer. Matrices are applied to the displacement method for the solution of the problem. The use of this 'exact' theory has previously been restricted to mainframe computers because of the large memory requirements. In fact, it is the magnitude of the memory requirements that caused
the greatest problems in the development of this package of software.

Equipment and Program Language

The first decision in the process was the selection of a language to be used. The language needed to be one that was universally available for microcomputers. The analysis software would then be adaptable to systems other than the one on which it was programed. BASIC fills this requirement with additional benefits. BASIC is generally the first language available in a micro system. It is often the only language which is contained in ROM, that is, available without the requirement that it be stored on the disk and loaded into the memory. The language is user oriented and programs can be written to provide interaction between the user and the machine. For these reasons, most users will be familiar with the language. This familiarity benefits the user because he has the option of examining the program logic by reading the code. He can verify assumptions or procedures or make changes more readily. Because of it's almost universal availability and acceptance, BASIC is the language used in this package.

The Apple II micro-computer was selected from the two systems available because the author was familiar with it and had easy access to the hardware. The programs developed here are specifically written in Applesoft, a version of BASIC. Very little modification would be required to adapt the programs to any currently available system. Most of the necessary
modifications would involve the DOS (Disk Operating System) commands and some input/output commands rather than language differences. The DOS is used in the storage and retrieval of data files and subprograms within the analysis package.

Assumptions and Limitations

The general problem which is addressed here is how the displacement method can be programmed on a micro-computer for the analysis of a large, complex structure. This is accomplished by writing a special program for a specific structure. This simplifies the solution by selecting the desired boundary conditions and the general geometry of a particular type of structure without invalidating the general solution procedure. This procedure, as developed, can then be adapted for other related structures, or, possibly, as a framework for more general cases. The specific structure selected is a continuous bean bridge supported by a fixed arch. The beam and arch are connected by vertical columns with rigid joints. This structure is most useful in spanning a canyon or other obstacle where mid-span supports are impractical, such as the one in Figure 1.1. Certain initial assumptions and limitations are accepted in order to simplify the structural considerations of this problem. These assumptions and limitations are;
(1) The analysis is two-dimensional. Only the effects due to the forces in the plane of the structure are of interest.
(2) Vibration and temperature analysis are not included in the development.

(3) It is assumed that sufficient cross-bracing is present to eliminate the need of considering lateral sidesway.
(4) Wind load is not considered in the development because of limited time and because of (1) and (3) above.
(4) Torsion is not considered.
(5) Stresses will be in the elastic range.
(6) Displacements are assumed to be relatively small. Therefore the nonlinearity due to deformations can be ignored.
(7) The geometry of the structure is assumed to be of the general form shown in Figure 1.2.

Figure 1.2

The beam supports at ends A and B are rollers. The arch supports at C and D are fixed. The user has the option of placing a column at the arch support if desired.
(8) The arch axis is assumed to be formed by straight line segments between columas.
(9) Gravity loads are assumed to be in the vertical direction and are perpendicular to the beam.

There is no theoretical limit on the size or number of spans which can be considered using this package. However, there is a practical limit which is related to the storage capacity of the system being used. This will be discussed later.

The loading of the structure, which conforms to the AASATO code, is handled in seperate programs within the package. These programs permit consideration of both the rolling load and the equivalent loading. One of the functions of the package is to permit a comparison of the two load conditions.

The package is written to be interactive with the user. The intent of the package is to provide a design aid which eliminates the tedious calculations normally involved with an analysis of this type. At the same time, it improves on the analysis normally done by hand calculations by including the effects due to axial deformations into the analysis. It provides a tool to produce an output which consists of the forces and deformations corresponding to the dimensions selected and loading specified. This can save time, reduce error and enable the user to find ways to improve the approximate solution in a structural design. At the same time, the programs must be 'friendly' in that the user is not constantly bombarded with questions to answer which could be handled by the computer. The realization of this balance results in a program which can be integrated into the design process with confidence and a significant saving of time and materials.

CHAPTER 2

Method of Analysis

Matrix Equation for Linear Elastic Structures

The purpose of this battery of programs is to provide an analysis of a bridge using displacement method. This method is based on linear elastic theory and is well developed and universally accepted. The principal tool used is the slope-deflection equation. Because the structure is statically indeterminant to a large degree, matrix methods are applied to simplify the calculations by expressing them in a format which is most efficient for the computer. This procedure has also been well developed and is commonly used in mainframe computer solutions. The use of matrix methods with the aid of a computer also permits the inclusion of axial deformation in the analysis.

There are three principal assumptions on which this theory is based. First, the members of the structure will behave in the elastic region. Second, the members are homogeneous and isotropic. Third, displacements are small. All of these assumptions remain valid for this structure.

When applying the displacement method, the basic matrix equation which characterizes the relationship between forces and displacements is;

$$
\begin{equation*}
X=k u \tag{2,1}
\end{equation*}
$$

where X is a force vector, K is the stiffness matrix, and u is the corresponding displacement vector of all the joints. The approach of this program is to calculate displacements caused by the applied loading on the structure. In partitioned form, equation 2.1 can be written as;

$$
\left\{\begin{array}{c}
F \tag{2.2}\\
\hdashline R
\end{array}\right\}=\left|\begin{array}{l:l}
K_{f f} & \mathrm{~K}_{\mathrm{f}_{r}} \\
\hdashline \mathrm{~K}_{r f} & \mathrm{~K}_{r r}
\end{array}\right|\left\{\begin{array}{c}
\mathrm{u}_{\mathrm{f}} \\
\hdashline \mathrm{U}_{r}
\end{array}\right\}
$$

where F is a vector of given external forces, R is a vector of unknown reaction forces of grounded supports, and U_{f} and U_{r} are the displacements corresponding to F and R respectively. The displacements are then calculated as;

$$
\begin{equation*}
U_{f}=K_{f f}^{-1} F \tag{2.3}
\end{equation*}
$$

since $\mathbb{K}_{f f}$ is a nonsingular matrix. The displacements are then used to calculate the end-forces on each member using the slope-deflection equations.

Coordinate Transformation

The K matrix is assembled member by member. This is accomplished by considering the stiffness matrix of a single member, K_{1}, of the form;

$$
\mathrm{K}_{1}=\frac{1}{\mathrm{~L}^{3}}\left|\begin{array}{cccccc}
\mathrm{AEL}^{2} & 0 & 0 & -\mathrm{AEL}^{2} & 0 & 0 \\
0 & 12 \mathrm{EI} & 6 \mathrm{EIL} & 0 & -12 \mathrm{EI} & 6 \mathrm{EIL} \\
0 & 6 \mathrm{EIL} & 4 E I L^{2} & 0 & -6 \mathrm{EIL} & 2 \mathrm{EIL}{ }^{2} \\
-\mathrm{AEL}^{2} & 0 & 0 & \mathrm{AEL}^{2} & 0 & 0 \\
0 & -12 \mathrm{EI} & -6 E I L & 0 & 12 \mathrm{EI} & -6 \mathrm{EIL} \\
0 & 6 E I L & 2 \mathrm{EIL}^{2} & 0 & -6 \mathrm{EIL} & 4 \mathrm{EIL}^{2}
\end{array}\right|
$$

This matrix is a local matrix based on a coordinate system where the longitudinal axis of the member is considered to be the x-axis. The order of arrangement of forces and displacements is shown in Figure 2.1.

Sign Convention
Figure 2.1

In order to analyze the entire structure, a global coordinate system must be used. The local K_{1} matrix must then be transformed to the global system. This is accomplished by;

$$
\begin{equation*}
K_{g}=T^{t_{K}} K_{1} T \tag{2.5}
\end{equation*}
$$

Where T is the transformation matrix and T^{t} is the transpose of the transformation matrix. Adopting a sign convention where upward, to the right, and counterclockwise are positive, as shown in Figure 2.1, the transformation matrix will be;
$T=\left|\begin{array}{cccccc}\cos A & -\sin A & 0 & 0 & 0 & 0 \\ \sin A & \operatorname{Cos} A & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & \cos A & -\sin A & 0 \\ 0 & 0 & 0 & \sin A & \cos A & 0 \\ 0 & 0 & 0 & 0 & 0 & 1\end{array}\right|$

For convenience of notation, the order number of the upper end of each column is treated the same as that of the left end of the beam spans.

Global Indexing System

The next step is to assemble the global stiffness matrix for the entire structure by superposing the member matrices. Row and colum numbers of each element of the stiffness matrix of a structural member must be indexed to correspond to the correct order of the joint force and joint displacement matrices in the global system. This is simplified by standardizing the
displacement vector arrangement in the following order and is represented by a row vector as follows;
$u=\left\{d x_{1}, d y_{1}, r_{1}, d x_{2}, d y_{2}, \ldots . . d x_{n}, d y_{n}, r_{n}\right\}$
where the subscripts are the order numbers of the joints and $d x$ and dy are the horizontal and vertical displacements and r is the rotational displacement. The detailed discussion of the mechanics of how the indexing is accomplished is presented in Chapter Three.

Method of Solution

Once the global structural stiffness matrix is assembled, it is inverted by use of the Gauss~Jordan elimination method with a full search for the largest pivot elements. The inverse of the stiffness matrix (which is a flexibility matrix for the structure) is stored on a data disk.

After finding the inverse of the stiffness matrix, the structural displacement vector is calculated by Eqn. 2.3 for any given loading. The displacement vector represents the displacement components of the joints of the structure in the format as shown in Eqn. 2.7 above which result from the given loading.

Internal Forces

The joint displacements are used in the slope-deflection equation to calculate the moments on either end of the member. Taking moments on the resulting free-body diagram then yields the

Figure 2.2a Displacement Components

Figure 2.2b End Force Components
shear and axial forces on the end of the member. These relationships are;
$M_{A B}=E I / L\left(4 r_{A}+2 r_{B}-6 \mathrm{dy}_{A B} / L\right)+F E M_{A B}$
$N_{A}=A E d x_{A B} / L$
where $d y_{A B}=d y_{B}-d y_{A}$ and $d x_{A B}=d x_{B}-d x_{A}$ as shown in Figures 2.2a and 2.2b. These forces are those which correspond to a particular load case.

AASHTO Live Loading
For live load analysis, there are two load cases which are specified by the AASHTO codes for use in the design of a bridge. The first case requires that the maximum positive and maximum negative force components (normal force, shear force and moment) be found for an HS 20 tractor and trailer crossing the bridge. This is referred to as the AASHTO rolling load. The second case requires the use of an equivalent uniform load and a concentrated load placed so as to produce the worst possible condition for the force being considered. These are illustrated in Figure 2.3. In either case, the calculations are made easier by using the appropriate influence line.

Construction of the Influence Lines

Construction of the influence line is readily accomplished by moving a unit load incrementally across the bridge and

We Gondined werphy an the forg' tro gaies athich as the some os for the ferresponding H Froct
$y=$ Voriobly spating-tC fett to SO leet valuswe soocing fo ar wry' if that whigh produres monmem stresser

STANDARÓ H-S TRUCKS

H20-44 Looding HS20-44 Looding

H15-44 Looding
HS15-44 Looding

H $10-44$ Laoding
H LANE AND HS LANE LOADINGS

Figure 2.3 AASHTO Code Live Loading

Abstract

calculating the resulting forces at each step. These force vectors are arranged column by column in a matrix of end forces. The influence lines are then the rows of the matrix and will correspond to the forces in the same order as that of the displacement components given in Eqn. 2.7 above. This method is simple and direct and was used initially. However, limited disk storage and memory made the selection of another method preferrable. Discussion of the computer requirements is dealt with in Chapter Three. The second method is accomplished in two steps. First, unit fixed-end moments and shears are applied to each joint of the beam and the corresponding end-forces are calculated using the matrix methods described above. The results form vectors of end forces which shall be called influence coefficient vectors. Then a unit load is moved incrementally across each span (or beam segment between joints). The fixed-end moments and shear values corresponding to each step are calculated and multiplied by the corresponding elements of the influence coefficient vectors to find the desired influence lines. This indirect method is somewhat more complex, but considerably reduces the amount of disk storage space required. Finding Critical Live Load Conditions

The application of the AASHTO equivalent load is carried out by placing uniform loads and a concentrated load on the structure in such a way as to maximize, in turn, the positive and negative forces on each member, respectively. Knowing the influence line, determination of the load conditions is fairly direct. To obtain the maximum positive force, the value of the uniform load is
multiplied by the total positive area under the influence line first and then the value of the product of the concentrated load and the maximum positive ordinate of the influence line is added to that result. The same procedure is used to obtain the maximum negative force using the negative areas and ordinates of the influence lines.

The AASHTO rolling load results are also obtained by use of the influence lines. The AASHTO code allows variation of the trailer length from fourteen to thirty feet. The front axle of the tractor is moved incrementally across the bridge. At each step, the trailer length is varied to obtain the maximum and minimum values of the force being calculated. The load of each axle is multiplied by the ordinate of the influence line at the location of the axel. The sum of the three products is the force corresponding to that unique location of the tractor-trailer. The front axle is moved another increment and the process is repeated. The new values obtained are compared to previous maximum and minimum values and replace them if appropriate. Once the rolling has completely crossed the structure, the maximum and minimum values have been obtained for the force corresponding to the influence line. It is recognized that this is not the most efficient method to accomplish a comprehensive analysis, but memory restrictions necessitate this procedure. This will be discussed further in Chapters Three and Six. Internal Forces Due to Yield of Supports

In addition to the determination of the maximum force values, the matrix method can be used conveniently to analyze the
effect of support settlement on a structure. When the settlement, translation, or rotation of one or more supports is known the resulting forces imposed on the structure can be determined. In order to accomplish this, it is necessary to return to the original partitioned stiffness matrix Eqn. 2.2. In this case the external loading portion of the force vector is equal to zero. The resulting matrix multiplication yields;

$$
\begin{equation*}
0=K_{f f} J_{f}+K_{f r} U_{r} \tag{2.11}
\end{equation*}
$$

Solving for the joint displacements;

$$
\begin{equation*}
\mathrm{U}_{\mathrm{f}}=-\mathrm{K}_{\mathrm{ff}}{ }^{-1} \mathrm{~K}_{\mathrm{fr}} \mathrm{U}_{\mathrm{r}} \tag{2.12}
\end{equation*}
$$

It is noted that the $K_{f f}$ inverse matrix has been calculated, stored and is ready for use. Only the \mathbf{K}_{fr} protion of the matrix need be constructed to find the joint displacement vector from the known support displacements. Once the joint displacments are known, the end-forces of each member may be determined using the slope deflection formulas.

Established matrix methods are used to complete the structural analysis of this bridge. The structural stiffness matrix is constructed and used in conjunction with either the loading vector or the support displacement vector to determine the end-forces on each member of the structure. The speed and
memory of the computer are used to perform the calculations which would otherwise be very difficult to accomplish by hand.

CHAPTER 3

The Internal Force Analysis Package

Application Limitations

With the system and language selected, and the method of analysis established, the main thrust of this effort was to merge the two into a usable package of software. In the accomplishment of this objective, numerous limitations of the Apple II computer were encountered. These 1 imitations forced changes and modifications to the final product which resulted in both improvements and limitations in the utility of the package. In the process of overcoming the 1 imitations of the system, many important questions regarding the use of micro-computers in structural engineering were answered. It is the development of the software package which is now addressed.

Initially, it was thought that the problem could be solved within the structure of one large program. However, the memory requirements of the required matrix manipulations are so great that the capacity of the micro-computer is exhausted in the solution of a four span structure of the nature considered here. If the computer were restricted to such a small structure, then its utility in the solution of complicated structural analysis problems would be inconsequential. The solution to this problem
is to break the general solutioo into a series of individual programs. Each program is designed to perform a particular task. The results of each program are stored on a data disk for retrieval as needed. The result reduces memory requirements to that needed for the solution of each individual step of the analysis instead of that needed to solve the entire problem.

The problem is broken down into a series of steps. Each step is designed to accomplish one basic operatioo aod store the results on a data disk. In each successive step, only the input data needed for that step is read from the data disk or input from the keyboard. Matrix operatioos of previous steps are not retained in memory so that maximum usage of that memory is obtaioed. The matrix variables dimensioned and used io each program are the greatest memory users, so memory usage may be planned fairly closely by considering principally those variables with some allowaoce made for the needs of the program itself. An analysis of the minimum requirements for each program of the package is showo in Table 3.1. Inspection of the table reveals that the program which calculates deflections uses the most memory and therefore limits the size of the structure which can be solved. Using this table it was predicted that a twelve span bridge with a total of 35 members could be solved using this package. This was verified io trial runs when a twelve span bridge ran without memory problems while the computer was unable to even start the stiffness matrix computation of a thirteeo span trial. Memory constraints of a 48 X system will then limit this program to consideration of a bridge of twelve or fewer spans.

Memory Requirement Analysis		
PROGRAM	MATRICES	MEMORY
Structural and Geometric Properties	$\begin{aligned} & \mathrm{JN}, \mathrm{~L}, \mathrm{CS}, \mathrm{SN}, \\ & \mathrm{X}, \mathrm{Y}, \mathrm{EI}, \mathrm{AE} \end{aligned}$	NB $\times 7+\mathrm{N} \times 2$
Flexibility Matrix Generation	$\begin{aligned} & \mathrm{CK}, \mathrm{~K}, \mathrm{KG}, \mathrm{KT}, \mathrm{KE} \\ & \mathrm{~L}, \mathrm{~T}, \mathrm{SN}, \mathrm{CS}, \mathrm{AE}, \mathrm{EI} \end{aligned}$	$N B \times 5+6 \times 25+N \times N$
Loading	DL, $\mathrm{V}, \mathrm{N}, \mathrm{M}, \mathrm{P}, \mathrm{F}$	$N B \times 8+N+6$
Internal Forces Calculation	$\begin{aligned} & J N, D L, D, C S, S N, \\ & V, M, N, L, E I, A E \end{aligned}$	NB $\times 15+\mathrm{N}$
Displacement Calculation	D, K, P	$\mathrm{N} \times(\mathrm{N}+2)$

Where $N B=$ number of members
$\mathrm{N}=$ number of joints $\times 3-8$

As stated, each progran represents the solution of one phase of the operations needed to complete the analysis of the structure. The first program of the package is the "Hello' program. This unit introduces the user to the problem and presents the options available. Detailed discussion of the options is left until after the various computational programs are discussed, at which time the use of the options is more easily understood.

Structural Data Input Program

The first computational program establishes the geometric and structural properties of the structure. The user is queried from the monitor about the structure to be analyzed. The structural and geometric parameters are input from the keyboard and then the opportunity to review and change any input data desired is given. Because it is assumed that the bridge deck is horizontal, it is only necessary to input the lengths of the beam spans and columns, and the locations of the arch supports. The program itself then automatically determines the geometric properties. This includes numbering the joints, the identification of joint numbers for each member, determination of the global orientation of each member with respect to the structure, and calculation of the length and unit vectors for each member. This is accomplished by establishing a global grid system which sets the left end of the beam as the origin. The user inputs the structural information in the form of AE and EI for each member. The input data is stored in the form in which it will be used in later programs. For example, instead of
storing the grid locations, the length and orientation of each member is stored. Except for loading cases, this is the last data input required of the user. Throughout the remaining programs only available options must be answered.

Flexibility Matrix Generation

The second program is technically the most complicated of all of the programs in the package. In this program, the local stiffness matrix of each member is generated and then transformed into the global system. The stiffness matrix for the structure is then assembled and inverted. As discussed in the development of the theory in Chapter 2, this is accomplished by first assembling the stiffness matrix for each member and transposing it to the global system. There are several decisions which were necessary to accomplish this. First, the order of displacements is standardized to progress joint by joint. At each joint the X displacement is first, the Y displacement is second and the rotation is third. Support displacements are eliminated so that the global matrix may be partitioned as described previously. The sign convention is set with upward, to the right and counterclockwise being selected as positive (see Fig 2.1). This sign convention is then adhered to for the remainder of the solution of the analysis. The member matrices are assembled according to the same format and sign convention using the procedure described in Chapter 2. As each member matrix is transformed to the global coordinate system, it is indexed such that the rows and colurns will correspond to the appropriate global rows and colums. The member matrix elements are then
superposed on the global matrix. This procedure procedes member by member until the structural K_{ff} matrix is assembled. When this is accomplished, the $K_{f f}$ matrix is inverted using the Gauss-Jordan elimination method. The inverted K matrix is the stored on the data disk for use in later programs.

This program is automatic, requiring the user to input only the name of the input file to be used and the name to be assigned to the stiffness data file. The computation portion of the program is very long. It is here that another limitation of the micro-computer is encountered. A six span bridge will require approximately forty-five minutes to complete. This expands logrithmically so that a twelve span structure requires nearly four hours. While this is much slower than a main-frame computer, it is felt that the advantages of having this tool available on a micro-computer outweigh the time inconvenience. It was found during testing that other activities could, if planned effectively, be done during this time. Compiling the program into machine language would, of course, reduce this time factor considerably. A limitation peculiar to the Apple II system is also exposed by this program. Storage of the output data from this program takes up much more disk space than it aparently should. Real numbers require five bytes of memory to store in the computer. However, when they are stored on a data disk, the Apple stores them as string variables requiring twelve bytes for each number. This greatly reduces the flexibility of this package of programs, requiring a minimum of three data disks to complete an AASHTO load analysis for a six span structure.

The resulting disk manipulations also lengthen nearly all of the programs in the package. A system which stores real numbers as such on the data disk would greatly aleviate this problem and make the program more useful.

Loading Data Input Program
The next program of the package assembles the joint loading vectors. Loading may be input in any one of a combination of three different formats. Fixed-end moments and shears, uniform and concentrated loads in the spans, and direct joint loading are the options available. Selection of the appropriate option or combination of options permits the application of nearly any loading condition. In addition, an option is available which will automatically generate the necessary load cases for the calculation of influence lines with this package. While dead loads are not automatically included, selection of the appropriate options permits the inclusion of dead loads in the analysis. If influence lines are desired for the evaluation of AASHTO rolling loads or for other purposes, the user need only select the option and input the name of the input file to be used. The rest is automatic including the storage of the load case files. If other options are selected, loading is input member by member. All loading options are automatically converted to equivalent joint loads and fixed-end moments, shears, and axial forces for storage and use in later programs. While the user is permitted to input downward loading as positive to conform with accepted practice, it is converted to the program sign convention automatically and stored in that form. Error
handing routines prevent the program from stopping due to inadequate data disk storage space. This protection is necessary due to the inefficient storage procedure of the Apple II system as noted in the previous section.

Once the load cases to be analyzed have be stored, the next program uses them in conjunction with the flexibility matrix to calculate the joint displacements. Once again, the user need only identify the flexibility matrix to be used and input whether or not influence lines are to be calculated. If the influence line option is selected, the program automatically calculates and stores the necessary displacement files. If other load cases are to be analyzed, the user need only input the name of the case to be used. As many cases as desired can be calculated using the same flexibility matrix. Each resulting displacement file is stored for later use. An error handling routine is used to prevent the loss of the program or data due to lack of disk storage space or due to other data handling errors, such as identifying a file for input which does not exist.

Calculation of Internal Forces

The next program is the final computation unit for all special load case analysis. Only the analysis of AASHTO loading (either rolling or equivalent) or the settlement of supports requires additional computation. This program calculates the end forces for each member of the structure. This program requires portions of the input file, load case file(s), and displacement file(s) for input. An internal check is made to ensure compatability of these files before any computations are made.

If the user is calculating influence lines, the coefficient files are calculated automatically. The end forces for each member are determined by using the slope-deflection equations. This requires the relative displacement of the ends of the member and the inclusion of fixed-end moments or forces from the loading. The latter are read from the load case files. The displacements are determined from the joint displacements of the structure. Since they are determined in reference to the global coordinate system, they must be transformed to the local coordinate system of the member in question. Once this is accomplished, the shear and axial forces and moments on the ends of the member are calculated directly. After all member forces have been calculated, all end forces relating to the given load case considered are stored. An error handling routine prevents any mismatch of files, such as attempting to use a displacement file which was calculated from a different load case than the one being used here. The routine also prevents loss of the data from such a cause as a full data disk. If the user wishes to construct influence lines, the next program is automatically provided. Otherwise the option to return to the master menu in the 'Hello' program or to the 'Printer' program for hard copies of data files is provided.

This completes the core of the computational programs. The programs which follow are special purpose and will be reached only in certain circumstances.

Influence Line Program

After calculating coefficient files, influence lines for every member are generated by the next program. The influence lines are generated for a unit load at any location along the continous beam of the bridge. This allows the structural engineer a great deal of flexibility in examining any form of loading on the bridge deck without repeating long calculations. As discussed in the theory in Chapter 2, this is accomplished by generating and using influence coefficients. These coefficients have been automatically calculated by applying unit fixed-end moments and shears to the joints of the beam. The resulting forces were calculated for each nember and stored case by case. These files are now read automatically and placed in memory as elements of the influence coefficient matrix. A unit downard load is then applied to each span of the beam sequentially. The load is started an infinitesimal distance to the right of the left end of the span. The fixed end moments and shears are calculated for the span which result from this load. These values are multiplied by the corresponding coefficient file values for a given force on the end of a given member and the results superposed. This establishes the influence line value for the given force corresponding to the location of the unit load. The load is then moved to the right 0.1 times the length of the span and the computations repeated. This process is continued until the unit load reaches the right end of the last span of the beam. At this point the influence line is complete and is stored on a data disk. The entire process is repeated for each of the internal forces on the structure until all influence
lines have been calculated and stored. The error handling routine permits changing data disks without interrupting the program and losing the data.

AASHTO Rolling Load Program

The influence lines are used in the next program to compute the AASHTO rolling load influence lines for the structure. This program uses the AASHTO HS 20 tractor-trailer. The load on each axle is set as well as the spacing of the front two axles. The code allows variable spacing of the rear axle and this is accomplished automatically by the program. One influence line is read from the data disk and the front axle is moved across the structure in increments equal to 0.1 times the length of the span it is in. The locations of the other two axles are then determined for each location of the front axle. The load values corresponding to the three axles are then multiplied by the influence line values corresponding to the locations of the respective axles. The sum of these products is the value of the end force corresponding to the influence line being used. The trailer spacing is incremented one foot and the end force value is recalculated. This continues until the trailer spacing reaches thirty feet. Then the front axle is moved and the variation of the trailer spacing is repeated. At each step a check is made to see if a new maximum or minimum has been found. If so, then the appropriate variable is reset to the new value. Because the front axle leaves the structure first, an illusory span is automatically created so that the load af the rear axles may be evaluated while they are still on the bridge. The process
continues until the last axle departs the last span. A file containing the maximum and minimum values calculated will be stored on a data disk. This file can be compared directly with the output of the equivalent load program described next, as it is stored in the same format. Such a comparison is shown in Table B-2.

AASHTO Equivalent Loading Program
The AASHTO code permits design by using an equivalent loading on the bridge. Since the influence lines have been stored on disk, they may be used effectively to determine the worst case values for equivalent loads. First, an influence lines is read from the data disk. Then the uniform portion of the equivalent loading is multiplied by the total positive area and the total negative area under the influence line. These values are stored separately in memory. At the same time, the concentrated portion of the equivalent loading is multiplied by the maximum positive and negative ordinates of the influence line, The uniform load and concentrated load products are sumed for positive and negative values. These values represent the worst case positive and negative values of the force which the influence line represents. The worst cases for each force are stored in memory and the next case is calculated. When every force for every member has been calculated, they are stored on the data disk in one file. Completion of the last two files permits comparison of the two loading cases permitted by the AASHTO codes. This completes the load analysis of the structure.

Yielding of Supports Program
The final computational program permits the evaluation of the settlement, translation and/or rotation of any support for the structure. Prior to using this program, only the input and stiffness matrix files need to have been calculated. These files are read from the data disk, requiring no additional input from the user. The computation of member forces resulting from support displacement requires the calculation of the joint displacements of the structure. To do this the K_{fr} portion of the flexibility matrix needs to be assembled, per the theory developed at the end of Chapter 2. The assembly of the K_{fr} portion proceeds in the same manner as the assembly of the K_{ff} partition did in the second porgram. The local flexibility matrix is assembled for each member and transposed to the global coordinate system. The difference occurs only when the local matrix rows and columns are indexed to assemble the global R_{fr} partition of the global flexibility matrix. Once this is accomplished, the user is asked to input the support displacements to be examined. The matrix multiplications are performed per Eqn. 2.12. The result is a displacement vector containing the joint displacements of the structure which result from the support displacement. This vector is stored on a data disk. The resulting forces can then be analyzed in the same manner as described earlier.

Utility Programs

The final two programs contained in this package are utility programs. The first program permits the transfer of either an input file or a flexibility file from one data disk to another.

Although each program is protected by an error handling routine, it is often desireable to have either one or both of these files on the data disk which is be used. This is true for all disks except the two which will recieve the influence lines and the AASHTO rolling load files. This program requires only the selection of an option and following the instructions as they appear.

The second utility program permits the user to obtain a hard copy of any data file stored on a data disk which is generated by this package. Again, the user need only select an option and identify the file to be printed. Placing the print routines in a separate program permits the user to complete all calculations without having to wait for printing at each stage. At the same time this program can be used at any time if a copy of intermediate results is desired and then the computations can be continued. This permits maximum flexibility with a minimum of confusion.

Summary
This package is designed to permit the user to pursue any portion of the analysis of this structure desired. Nearly any loading condition may be examined. Special cases of AASHTO loading and support displacement may be examined. Throughout all of the programs in the package, the maximum amount of automation is sought in making computations. At the same time, engineering decisions are left to the user. Breaking the package into several individual programs was originally done because of memory
constraints. In the final analysis, it has given the user a very flexible tool for analysis.

CHAPTER 4

Verification of the Package

Throughout the program design process, test structures were run to ensure that the output of each individual program was correct. After completion of the design of the package, an analysis of a typical structure was run. The final product is a refinement of the lessons learned in each of these runs.

In the early work, structures needed to be devised which could be run within the constraints of the program and still be calculated by hand. Because of the complexity of the type of bridge which the programs are intended to analyze, examples of similar structures with complete solutions are not readily available. Therefore small structures which could be calculated by hand were needed. One such structure (Fig 4.1) was designed to contain the required support conditions and the minimum number of members. An exact solution could be hand calculated using the same steps and procedures as the program. This program was used extensively in refining the first five programs of the package, the core of the analysis.

Other test programs were needed to test the package for three major reasons. First, when a single structure is used to debug and refine a program, there is always a possibility that
trial structures

F16. 4.1
SImulate

with

$\mathbf{E l}=\mathbf{E} \mathbf{I}$
$\mathrm{EH}_{2}=\mathrm{El} / 100$
F16. 4.2
Simulate

WITH

$\mathbf{E} \mid=\mathbf{E}$
SIMULATE
$\mathrm{EI}_{3}=50 \mathrm{EI}$
Fi6. 4.3

the program may become oriented to the solution of that particular program. Second, the symmetry and orthogonality of the members of this structure are not typical of the type of structures for which the package is designed. Problems could remain in the package which would not surface under these conditions. Third, the test structure is the smallest for which this pack could be used. As such, problems related to increased size could pass undiscovered.

Therefore, several structures were designed (Figures 4.2, $4.3 \& 4.4$) which would meet the package requirements of support conditions and geometry while behaving essentially like much simpler structures. This was accomplished by assigning very large or very small relative stiffness to selected members. When the results obtained from the computer package were correct, the program was tested with larger more complex structures.

Several structures were used which varied in size from four to thirteen spans, taking the form of Figure 1.1. This phase of testing revealed several weaknesses with the program concept and the Apple II system. The memory of the computer restrained the use of this package to a twelve span structure (as discussed in Chapter 3). Systems which have been marketed since the start of this project, such as the Zenith model Z-100 and the IBM PC, have much expanded memory which would raise this limit considerably, The Apple II system stores data files as alphanumerics. This uses much more disk space than is necessary. The Apple II also limits the user to 102 separate files to be stored on one disk. These last two problems necessitated the development of error
handling routines in each program which prevent the loss of data while permitting the user to take remedial steps such as changing disks. The Apple II DOS was found to be slow in storing and retrieving data, taking ten minutes to retrieve the stiffness file for a six span structure. Because of the rapid developaent in micro-computers, models are available which eliminate or greatly reduce these difficulties. Because the package is written in basic, it can be transferred to these systems with a minimum of change.

In addition to the constraints detailed above, limitations within the program are revealed when analyzing the large structure. The main limitation is time. The combination of the use of Basic and the Apple II DOS result in very long run times for large structures. Much of the time required does not require monitoring by the user. With experience, this permits other activities to be carried out during these periods so that little actual keyboard time is required. In spite of this, it will take approximately seventeen hours to make a complete analysis of a six span structure. Of this, the final twelve hours are used to find the design values for the AASHTO rolling load. This is completely automatic and may be run unattended. Compiling the programs would reduce this time considerably, as would use of a different system.

While there is no size limit inherent in the logic of the package, the restrictions of the system limit the practical use of this program to a six span bridge. Beyond this, the user would lose the ability to leave the program unattended during
what would otherwise be automatic computations. It would be necessary to either constantly change data disks or manually input each load case. This restriction severly limits the prsctical application of the package for design use.

Because of these restrictions, the final sample problem run through the package is a six spsn bridge (fig 5.1). This example is discussed in detail in Chapter 5 and representative results are included in Appendix B. With the analysis functions of the package verified, this example was used primarily to test and refine the user friendly aspects of the programs. The final results of this last example were also examined to verify that the analysis was functioning properly. This final verification was primarily accomplished by examination of the influence lines and comparison of then with characteristic valuesfor similar structures. The lines correlate very well with what is expected. The ability to generate these influence lines is considered to be one of the strongest features of this package. Their use can save the engineer considerable time as well as provide an invaluable aid to understanding the effects of loading on the internal forces in any given member.

Another strength of the package is that the design engineer may now use the package to explore the effects on the structure caused by changing one or more members. By judicious use of the package, the user is able to spend more time understanding the structure and exploring design options instead of performing lengthy and complex analysis computations.

Chapter 5

Descriptive Example

The final example structure used in the development of this package of programs is used here to demonstrate to the reader the interactive feature of the package. The structure selected is a six span bridge composed of members whose dimensions are realistic for this type of structure. The geometry and structural description are shown on Figure 5.1. A step by step description of the analysis of this structure is described here. The questions and remarks displayed on the video monitor are shown in capitals. The responses which the user makes from the keyboard are shown in small letters between quotes. Comments on the procedure are in parenthesis. The results of this example are included in Appendix B.

The user places the program disk in Drive 1 of the computer and turns it on. The first screen displays the title page in the same format as seen on page A-1. Striking any key gives the user a series of options. It is here that the program begins.

YOUR OPTIONS ARE :
(1) CATALOG OF DISK IN DRIVE \#1
(2) CATALOG OF DISK IN DRIVE \#2
TEST STRUCTURE

(3) CREATE OR MODIFY A BRIDGE
(4) Create new loading for an existing structure
(5) RUN OR LOAD ANY PROGRAM

SELECT YOUR OPTION: "3"

Properties Input Program
(New Screen)
IN THIS PROGRAM, YOU WILL INPUT THE GEOMETRIC AND STRUCTURAL PROPERTIES OF YOUR STRUCTURE. THIS DATA WILL BE STORED ON A DISK IN DRIVE \#2
how many clear spans does the continous beam have? "6"

HOW MANY CLEAR SPANS DOES THE ARCH HAVE? " 6 "
(New Screen)
INPUT GEOMETRIC PROPERTIES

What are the length of each clear span of the beam (numbering FROM LEFT TO RIGHT)?

LENGTH OF SPAN 筑 " 60 " (This continues until all lengths have been entered)

WHAT ARE THE LENGTHS OF THE COLUMNS (NUMBERING FROM LEFT TO RIGHT)?

```
LENGTH OF COLUMN *1 "35" (This message repeats until all lengths
have been entered)
```

HOW FAR TO TEE LEFT OF THE FIRST COLUMN IS THE LEFT ARCH SUPPORT?
" 35 "
how far below the beam is the left arch support?
" 60 "
HOW FAR TO THE RIGHT OF THE LAST COLUMN IS THE RIGHT ARCH
SUPPORT? "35":HOW FAR BELOW THE BEAM IS THE RIGHT ARCH SUPPORT?
"60"
(New Screen)
INPUT THE STRUCTURAL PROPERTIES OF THE MEMBERS

ARE THE CROSS-SECTION PROPERTIES THE SAME FOR EACH SPAN OF THE BEAM
" Y " (If the answer is ' N ' then the computer will ask for each member)

EI FOR THE BEAM $=43.51 * 10^{11}{ }^{11}$
$A E$ FOR THE BEAM $=" 1.659 * 10^{9} n$
(The same procedure is repeated for the columns and archs. The values which are input are: $3.219 * 10^{10}, 8.439 * 10^{8}$, $9.86 * 10^{10}, 2.192 * 10^{9}$)

```
(The input data is printed to the screen or printer at the users
option)
```

EXAMINE THE INPUT DATA CAREFULLY
do you want to change any of the input data? "N"
(Changes may be entered)
(New Screen)
****STORAGE ROUTINE****
CHECK TO BE SURE THAT YOU HAVE A DATA DISK IN DRIVE \#2
TYPE THE TITLE/NUMBER WHICH YOU WANT TO ASSIGN TO THIS INPUT FILE INPUT FILE- "6S"
(The computer automatically adds the words 'Input file-' to file name for the output from this program)
(This completes the data input program)

Flexibility Matrix Generation
(New Screen)
THIS PROGRAM TAKES ANY DESIRED INPUT FILE AND CALCULATES THE STIFFNESS MATRIX AND ITS INVERSE. THE INVERSE IS STORED ON A DATA DISK IN DRIVE *2

DO YOU WISH TO SEE THE CATALOG FOR DRIVE *2? " N "
type the title/number of the input file to be used:
INPUT FILE- " 6 S"

CALCULATING THE BEAM STIFFNESS (These messages appear to mark the progress of the program as this is a long operation)

CALCULATING THE COLUMN STIFFNESS
CALCULATING THE ARCH STIFFNESS
*\#\#ARNING籍 DO NO RESETI!
THIS SUBROUTINE TAKES TIME! (This is the inverse routine which is about twenty minutes for this structure)

K-INVERSE HAS BEEN CALCULATED
What title/number do you want to assign to this matrix?
STIFFNESS MATRIX- " 6 S" (The prefix is again added automatically)
(This completes the automatic generation of the inverse of the stiffness matrix)

Loading Input Routine

THIS PROGRAM ALLOWS LOADING TO BE INPUT IN ONE OF FOUR DIFFERENT OPTION OR A COMBINATION OF THEM
SIGN CONVENTION - DOWNWARD, TO THE RIGHT AND COUNTERCLOCKWISE ARE POSITIVE WHEN ENTERING LOADS.
\#NOTE FHEN USING FIXED-END MOMENTS AND SHEARS, POSITIVE IS UPWARD, TO THE RIGHT AND COUNTERCLOCKWISE,

SELECT YOUR OPTION:
(1) adtomatic influence line cases
(2) FIXED-END MOMENTS AND SHEARS
(3) UNIFORM OR CONCENTRATED LOADS
(4) JOINT LOADING
(5) A COMBINATION OF THE ABOVE
"1" (Influence lines are needed to examine AASHTO live loading)
(New Screen)
THIS PROGRAM REQUIRES AND INPUT FILE TO BE PRESENT ON A DATA DISK IN DRIVE 辛2.

DO YOU WANT TO SEE THE CATALOG OF THAT DISK? "N"

TYPE THE NAME/NUMBER OF THE INPUT FILE TO BE USED:
INPUT FILE- "6S"
MEMBER LOADING
TYPE THE TITLE/NUMBER TO BE USED TO IDENTIFY THIS SERIES OF LOAD CASES:

LOAD CASE- " $6 \mathrm{~S}^{\prime \prime}$ (The computer will automatically add the 'Load Case- ' to the front of the file name and add a sequence number as a suffix for each file. For this structure twenty-four load cases will be required to generate influence lines.)

SPAN ${ }^{45}$, INFLUENCE LOAD CASE ${ }^{*} 3$ (This an example of the information message which marks the progress of the automatic load case generation)
dO YOU HAVE ADDITIONAL LOAD CASES BASED ON THE SAME INPUT FILE? "N" (This option is available no matter which load option was selected at the beginning)

Joint Displacements
(New Screen)
** GLOBAL DISPLACEMENT CALCULATION **
the K INVERSE file and one or more load cases are the input for THIS PROGRAM.
*NOTEF IT IS ImPORTANT THAT THESE TWO FILES ARE BASED ON THE
SAME INPUT FILE (The program checks this to be sure.)
THE DISPLACEMENT VECTOR CORRESPONDING TO THE LOAD CASE IS
CALCULATED AND STORED ON THE DATA dISK IN DRIVE \$2
DO YOU WANI TO SEE THE CATALOG OF THE DISK IN DRIVE \#2? "N"

TYPE THE NAME/NUMBER OF THE STIFFNESS FILE TO BE USED FOR THIS CASE: STIFFNESS FILE- " 6 S"

ARE YOU CALCULATING INFLUENCE LINES? "Y"
THE PROCESS FOR CALCULATING THE DISPLACEMENT VECTORS IS AUTOMATIC
HOWEVER, THE MEMORY SPACE IS CRITICAL IN THIS PHASE. THEREFORE EACH DELTA VECTOR MUST BE STORED AS IT IS CALCULATED. SELECT ONE;
(1) STORE ON THE DATA DISK CURRENTLY IN DRIVE \#2 (MUCH PREFERRED)
(2) STORE ON A FRESH DISK IN DRIVE (If (his option is selected, a message will direct the user to place a disk with storage space available in drive \#1)

HOW MANY BEAM SPANS IN THIS STrUCTURE? " 6 " TYPE THE TITLE/NUMBER OF THE LOAD CASE SERIES TO BE USED IN THIS PROGRAM: LOAD CASE- "6S" WHAT TITLE/NUMBER DO YOU WANT TO USE TO USE TO IDENTIFY THIS SERIES OF DISPLACEMENT VECTORS? DISPLACEMENT FILE- "6S" (Although '6S' was used to identify all files relating to this example, it is not necessary.) CALCULATING DISPLACEMENTS FOR LOAD CASE- 6S14 (This message marks the progress of the automatic displacement vector calculation. Storage is also automatic, permitting the user to leave the terminal as this is another long process.)
dO YOU HAVE ADDITIONAL CASES USING THE SAME STIFFNESS MATRIX? "N"

Internal Force Calculation

(New Screen)
THIS PROGRAM TAKES CALCULATED DEFLECTIONS AND CORRESPONDING INPUT FILES AND CALCULATES THE FORCES ON THE ENDS OF THE MEMBERS. THE internal force matrix is stored.

THIS PROGRAM USES AND INPUT FILE AND ONE OR MORE DEFLECTION FILES TO CALCULATE THE INTERNAL FORCES FOR EACH MEMBER OF THE BRIDGE

DO YOU WISH TO SEE THE CATALOG OF THE DATA DISK IN DRIVE 录2? "N" ** INTERNAL FORCE CALCULATION **

ARE YOU CALCULATING INFLUENCE LINES? " $\mathrm{Y}^{\prime \prime}$
TYPE THE NAME/NUMBER OF THE INPUT FILE TO BE USED:

INPUT FILE- " $6 \mathrm{~S}^{\prime \prime}$

TYPE THE NAME/NUMBER OF THE LOAD CASE(S) TO BE USED:

LOAD CASE- " $6 S^{\prime \prime}$

TYPE THE NAME/NUMBER OF THE DISPLACEMENTS FILE(S) TO BE USED: DISPLACEMENT FILE- " $6 \mathrm{~S}^{\prime \prime}$

ARE THE LOAD CASE FILES AND THE DISPLACEMENT FILES ON THE SAME DATA DISK, DIFFERENT DISKS OR A MIXTURE? ($\mathrm{S} / \mathrm{D} / \mathrm{M}$) " S " (For other situations, messages appear to direct the correct placement of the data disks.)

CALCULATING INTERNAL FORCES FOR LOAD CASE $6 S 10$ (This message marks the progress of the automatic calculations)

FORCE CALCULATIONS ARE COMPLETE, ENSURE THAT THE PROGRAM DISK IS IN DRIVE 舞1. PRESS RETURN WHEN READY.

Influence Line Generation

(New Screen)

THIS PROGRAM ASSEMBLES THE INFLUENCE COEFFICIENT VALUES AND USES THEM TO CALCULATE THE INFLUENCE LINES. AN INPUT FILE AND A COMPLETE SET OF INTERNAL FORCE FILES ARE NEEDED TO RUN THIS PROGRAM. A CLEAN INITIALIZED DISK IS NEEDED TO STORE THE INFLUENCE LINE FILES. IT IS DESIRABLE TO HAVE A COPY OF THE

INPUT FILE ON THE DATA DISK. AT THIS TIME THE DATA DISK IN DRIVE ©2 SHOULD CONTAIN AN INPUT FILE AND THE SET OF FORCE FILES. TYPE THE TITLE/NUMBER OF THE INPUT FLLE TO USED: INPUT FILE- " 6 S"

TYPE THE TITLE/NUMBER OF THE FORCE FILES TO BE USED:
FORCE FILE - " 6 S "
RETRIEVING FORCE FILES
TYPE THE TITLE/NUMBER YOU WANT TO USE TO IDENTIFY THIS SET OF INFLUENCE LINES: INFLUENCE LINE- " 6 " "

A CLEAN DISK MUST BE PLACED IN DRIVE ${ }^{\#} 2$ TO RECIEVE THE INFLUENCE FILES. PRESS RETURN WHEN READY.

CALCULATING INFLUENCE LINE \#56 (This message marks the progreas of the program)

AASHTO Rolling Load
(New Screen)
THIS PROGRAM USES AN INPUT FILE AND A SETIES OF INFLUENCE LINES TO CALCULATE THE AASHTO HS 20 ROLLING LIVE LOADS.

THE DATA DISK IN DRIVE 書2 SHOULD CONTAIN AN INPUT FILE AND THE INFLUENCE LINE FILES TO BE USED. REPLACE THE PROGRAM DISK WITH A CLEAN DATA DISK IN DRIVE \#1.

DO YOU WISH TO CALCULATE AND STORE THE AASHTO ROLLING LOAD INFLUENCE LINES? "Y"
*NOTE THIS IPTION WILL REQUIRE AT LEAST ONE ADDITIONAL DATA DISK.

DO YOU WISH TO STORE THE INFLUENCE LINES? "Y"
TYPE THE TITLE/NUMBER OF THE INPUT FILE TO BE USED:

INPUT FILE- "6S"
WHAT TRAILOR LENGTH IS TO BE USED IN THIS RUN? " 30 "
TYPE THE TITLE/NUMBER OF THE INFLUENCE LINE FILES TO BE USED:
INFLUENCE LINE- " 6 S "
CALCULATING AASHTO FILE 75 (This message marks the progress of the program)

THE MAXIMUM AND MINIMUM VALUES WILL BE STORED ON THE DISK IN DRIVE *2. TYPE THE TITLE/NUMBER YOU WANT TO USE TO IDENTIFY THIS AASHTO FILE: AASHTO MAXIMUMS- "6S"

AASHTO Equivalent Loading

(New Screen) -
THIS PROGRAM USES AN INPUT FILE AND A SET OF INFLUENCE LINE FILES to calculate the maximum positive and negative internal forces on EACH MEMBER.

IN EACH CASE THE STRUCTURE IS LOADED WITH THE 'WORST CASE' AASHTO hS 20 EQUIVALENT LOADING. THE DISK IN DRIVE \%2 WHOULD CONTAIN THE INPUT FILE AND THE SET OF INFLUENCE LINES TO BE USED. TYPE THE TITLE/NUMBER OF THE INPUT FILE TO BE USED:

INPUT FILE- "6S"
TYPE THE TITLE/NUMBER OF THE SET OF INFLUENCE LINES TO BE USED:
INFLUENCE LINE- "6S"
ALL OF THE OUTPUT FOR THIS PROGRAM WILL BE STORED IN ONE FILE. TYPE THE TITLE/NUMBER YOU WANT TO USE TO IDNETIFY THIS AASHTO

FILE: EQUIVALENT LOAD FILE- " 6 S"

This completes the analysis of the structure. For this particular case the total run time will be about six hours. During this time there are very few demands on the user due to the automation of the calculations. Note that only those portions enclosed by quotations need be entered from the keyboard. In order to examine the output, the user need only run the utility program, PRINTER, and select the output to be printed.

Examples of the output from this program are included in Appendix 8. The input file is shown as it is stored. The displacement vectors and influence lines are stored as numeric files. Since they are difficult to visualize, they are presented here in graphic form. AASHTO rolling load influence lines are not normally calculated in conventional analysis, so two of these lines are presented for comparison with the conventional unit load influence lines. Exagerated displacement diagrams are presented for two of the fixed-end load cases to show how these loads affect the structure. Finally, a comparison table is presented for the internal forces resulting from the AASHTO rolling loads and equivalent loads. It can be seen this package provides a powerful tool for the analysis of this type of structure. It also enables the user to examine numerous aspects of the problem which have not been looked at before because of expense or time. Finally, it provides a flexible tool for research into the stresses on this type of structure.

CHAPTER 6

Concluding Remarks

There were two major objectives in the development of this battery of programs. First, it was desired to demonstrate that a complex and lengthy analysis could be programmed on a microcomputer. Second, it was desired to make such a program usable to the practicing engineer by making it 'friendly'. Several secondary goals were also to be examined simultaneously with the accomplishment of the primary goals. One such goal was the analysis of the behavior of a continous beam bridge supported by a fixed arch. This included the use and comparison of the AASHTO codes for live loads on the structure. Another secondary area of interest was analysis of the effects on the structure of support displacement. Finally, while not planned, an examination of the limitations of the Apple II system for this type of application was made.

It is shown that programing an analysis of a complex rigid frame using an exact method, such as displacement theory, on microcomputers is possible. The size or complexity of the structure is restricted by the memory capacity of the system to be used. It is shown that the memory restrictions can be reduced by breaking the computation functions into groups or individual programs. By doing so, it was found that a structure three times
as large could be analyzed. A secondary benefit of breaking the program into a package of several individual programs, is the ability to examine several facets of the problem without increasing the memory demands. This is shown in the special purpose programs which analyze the different AASHTO code loadings and the support displacements. A final benefit of the package concept was the storage of output data files at each computation step. This permits the user to exam several variations of a given problem without reworking the initial phases. It also provides a permanent record of the results of each calculation step for review or checking. Within the limitations noted here and below, it is felt that this concept works well.

The degree to which this package is user friendly must be judged by a user not familiar with the inner workings and possible pitfalls. The interactive portion of the programs are designed with this in mind. First, a balance is struck which automates as much of the analysis as possible while permitting the user flexibility. This is accomplished by permitting the user to select all of the structural and geometric properties of the structure, as well as any combination of loading desired. These are the two areas where engineering judgement is required. All of the rest of the calculations are handled automatically. During the automatic portions, messages are printed to the screen which notify the user of the progress of the computations. Questions and user input formats are standardized to minimize confusion about what is needed. Special check routines are included in every program to protect the user from destroying his
own data. These routines check for anticipated user errors and print notification on the monitor of the problem so that it can be corrected without loss of the work to that point. Other potential errors are eliminated by minimizing user input to those items over which an engineer would desire to retain control. All other data is calculated within the package.

Disappointment with the Apple II system is a result of difficulties encountered during the programming and testing, and the knowledge that much superior systems are now available. Memory restrictions cannot be attributed to the Apple II as any 48 K system would be subject to the same limitations. However, the Apple II DOS creates serious problems in the handling and storage of data on disks. Data storage is found to be inefficient and slow, placing limits on the practical spplication of the package which would otherwise not be present. While memory limits the package to a twelve span structure, the Apple II DOS limits it to a six span bridge for practical use. The DOS makes disk manipulations which are excessive and annoying, necessary for structures of more than six spans. The memory limitation can be lessened by adopting an improved method of solution. One such method would be to arrange the unknowns of the structure to yield a banded stiffness matrix with a minimum band width and solve for the displacements directly without inverting the stiffness matrix. Programing this method is a major research effort in itself. The Apple II system is not recommended for this application.

While this package has immediate practical applications, it should be considered as the starting point for development of improved and expanded models. The first improvement recommended is to transfer it to the Zenith 2100 or a similar systen. Tripled memory, increased speed and improved data storage are only a few of the advantages which would accrue.

Within the existing package there are areas which could be improved or expanded. Memory use could be made more efficient by storing and manipulating only the nonzero diagonal of the flexibility matrix. This is a very complicated procedure and would require a long period of development. User friendliness could be improved by creating an 'option' file in the first program. This file would be created in the 'hello' program where the user would make procedure and option selections in detail. The file would be called in each program where the options would be read instead of being input from the keyboard. This would further increase the efficiency and automation of the analysis. The input of the structural geometry would be changed so that the bridge deck was no longer restricted to a pure horizontal orientation. This would also require changes in the program handling structural loading, but would increase the practical application. Finally, compiling the BASIC code into machine language code would increase the speed 20 to 40 times and reduce the major weakness of the package. It is also recognized that each program contains small inefficiencies which could be eliminated or improved by more research and development work. For example, the program which calculates the maximurn and minimum
live loading due to the AASHTO rolling load could be modified so that it uses a variable trailor spacing to find the most critical value.

This package could also be used as a framework for the development of other analysis programs of other structures. This would mainly involve changes to the boundary constraints and geonetric assumptions. It would not be very practical to try to adapt this package to a different structure. It would be better to use the logic and processes developed here as a framework for such a problem. Certain of the routines developed in this package could be used with little or no change, but great care would be required. Of course the ultimate program would be general and permit the user to input any boundary constraints and solve the general case.

Hello Program：

$1 \quad \mathrm{D} \$={ }^{\text {M＂}}$
5 REM 新 $12 / 28 / 83$ 费多

11 PRINT＂II II＂
13 PRINT＂II A BATTERY OF STRUCTURAL II＂
14
15
16
17
18

PRINT＂II ANALYSIS PROGRAMS FOR THE II＂
PRINT＂II SOLUTION OF A CONTINUOUS II＂
PRINT＂II BEAM BRIDGE SUPPORTED BY A II＂
PRINT＂II FIXED ARCH II＂
PRINT＂II II＂
PRINT＂II CREATED BY JOHN J．KOONTZ II＂
PRINT＂II 1983 II＂

FOR $I=1$ To 10000：NEXT
HOME ：VTAB（5）：PRINT＂YOUR OPTIONS ARE：＂：PRINT ：PRINT SPC（ 5 ）＂（1）CATALOG OF DISK IN DRIVE＂1＂
PRINT SPC（ 5）＂（2）CATALOG OF DISK IN DRIVE 等＂
PRINT SPC（ 5）＂（3）CREATE OR MODIFY A BRIDGE＂
PRINT SPC（ 5）＂ 4 ）CREATE NEW LOADING FOR AN＂：PRINT $\operatorname{SPC}(9)$＂EXISTING STRUCTURE＂

PRINT SPC（ 5）＂（5）RUN OR LOAD ANY PROGRAM＂：PRINT SPC（ 9）＂ON THIS DISK＂

PRINT ：PRINT＂SELECT YOUR OPTION：＂：VTAB（15）：HTAB（21）：GET 0
PRINT ：IF $0>1$ THEN 34
HOME ：PRINT D\＄＂CATALOG，D1＂
PRINT＂PRESS RETURN FOR THE MENU＂：GET OS：GOTO 25
IF $0>2$ THEN 40
HOME ：PRINT D\＄＂CATALOG，D2＂
PRINT＂PRESS RETURN FOR THE MENU＂：GET O\＄：GOTO 25
IF $0>3$ THEN 45
PRINT DS＂RUN PROPERTIES，D1＂
IF $0>4$ THEN 110
PRINT DS＂RUN LOADING，D1＂
PRINT ：PRINT TAB（5）＂ N ）NEW＂：PRINT TAB（5）＂（R）RUN＂：PRINT $\operatorname{TAB}(5) "(\mathrm{~L})$ LOAD＂：GET O\＄
IF $\mathrm{O}={ }^{\mathrm{S}}=\mathrm{N}^{\prime \prime}$ GOTO 170

```
130 INPUT "PROGRAM NAME: ";PN$
140 IF OS = "L" THEN OS = "LOAD"
150 IF OS = "R" THEN OS = "RUN"
160 PRINT D$;O$;PN$
170 HOME : NEW
```


Structural Data Input Program:

7 ONERR GOTO 5000
8 HOME : VTAB (6)
9 PRINT "IN THIS PROGRAM, YOU WILL INPUT THE": PRINT "GEOMETRIC AND STRUCTURAL PROPERTIES OF": PRINT "YOUR STRUCTURE": PRINT : PRINT "THIS DATA WILL BE STORED ON A DISK IN": PRINT "IN DRIVE "2"

REM SPECIAL PROJECT- ARCH REINFORCED WITH A CONTINUOUS BEAM (GENERAL CASE)
$\mathrm{D} \$=\mathrm{m} \cdot$
REM **DEFINE DIMENSIONS**

30
print : input "how many clear spans does the continuous beam HAVE? ";NS
$\mathrm{NC}=\mathrm{NS}-1: \mathrm{CC}=0$
PRINT : INPUT "HOW MANY CLEAR SPANS DOES THE ARCH HAVE?";NA
IF NA = NS THEN AS = "N":CC = I: GOTO 55
$\mathrm{AS}=$ "Y"
$\mathrm{NB}=\mathrm{NS}+\mathrm{NA}+\mathrm{NC}: \mathrm{NJ}=\mathrm{NS}+\mathrm{NA}+2$
$\mathrm{NJ}=\mathrm{NS}+\mathrm{NA}+2$
$\mathrm{N}=3 * \mathrm{NJ}-8$
DIM SN(NB), CS (NB), L(NB) ,EI (NB), AE (NB) , JN(NB,2), X(NJ), Y(NJ)
REM **DEFINE COORDINATES FOR EACH JOINT**
$X(1)=0: Y(1)=0$
HOME : PRINT "INPUT GEOMETRIC PROPERTIES:": PRINT
PRINT "ALL LENGTHS ARE INPUT IN FT.": PRINT
PRINT : PRINT "WHAT ARE THE LENGTHS OF EACH CLEAR SPAN OF THE BEAM (NUMBERING FROM LEFT TO RT) ?": PRINT
FOR $I=1$ TO NS
PRINT "LENGTH OF SPAN \#"I
INPUT L(I)
$X(I+1)=X(I)+L(I): Y(I+1)=0$
NEXT I
PRINT : PRINT "WHAT ARE THE LENGTHS OF THE COLUMNS (NUMBERING FROM LEFT TO RIGHT) ?": PRINT

FOR $I=1$ TO NC

130 PRINT "COLUMN \# "I
135 INPUT L ($\mathrm{I}+\mathrm{NS}$)
$140 \quad \mathrm{X}(\mathrm{NS}+\mathrm{I}+1+\mathrm{CC})=\mathrm{X}(\mathrm{I}+1): \mathrm{Y}(\mathrm{NS}+\mathrm{CC}+\mathrm{I}+1)=-\mathrm{L}(\mathrm{I}+\mathrm{NS})$
145 NEXT I
150 IF A\$ = "Y" GOTO 185
160 PRINT : INPUT "HOW FAR TO THE LEFT OF THE FIRST COLUMN IS THE LEFT ARCH SUPPORT?";D1

PRINT : INPUT "HOW FAR BELOW THE BEAM IS THE LEPT ARCH SUPPORT?";D2 $\mathrm{X}(\mathrm{NS}+2)=\mathrm{L}(1)-\mathrm{D} 1: \mathrm{Y}(\mathrm{NS}+2)=-\mathrm{D} 2$

PRINT : INPU'T "HOW FAR TO THE RIGHT OF THE LAST COLUMN IS THE RIGHT ARCH SUPPORT?";D1

PRINT : INPUT "HOW FAR BELOW THE BEAM IS THE RIGHT ARCH SUPPORT?";D2 REM THE SHAPE OF THE ARCH IS DETERMINED BY THE LOCATIONS OF THE SUPPORTS AND THE LENGTHS OF THE COLUMNS.
$\mathrm{X}(\mathrm{NJ})=\mathrm{X}(\mathrm{NJ}-1)+\mathrm{D} 1: \mathrm{Y}(\mathrm{NJ})=-\mathrm{D} 2$
REM **ESTABLISH JOINT NUMBERS FOR EACH MEMBER**
FOR $I=1$ TO NS
$\operatorname{JN}(I, 1)=I: J N(I, 2)=I+1$
NEXT I
FOR $I=1$ TO NC
$I I=I+N S$
$J N(I I, 1)=I+1: J N(I I, 2)=I I+1+C C$
NEXT I
FOR $I=1$ TO NA
$I I=N C+N S+I$
$\mathrm{JN}(\mathrm{II}, 1)=\mathrm{NS}+\mathrm{I}+1: \mathrm{JN}(\mathrm{II}, 2)=\mathrm{NS}+\mathrm{I}+2$
NEXT I
REM **CALCULATE LENGTHS AND TRIG FUNCTIONS FOR EACH MEMBER**
FOR $I=1$ TO NB
$D X=(X(J N(I, 2))-X(J N(I, 1))) * 12$
$D Y=(Y(J N(I, 2))-Y(J N(I, 1))) * 12$
$L(I)=(S Q R(D X \uparrow 2+D Y \uparrow 2))$
$\mathrm{SN}(\mathrm{I})=\mathrm{DY} / \mathrm{L}(\mathrm{I}): \operatorname{CS}(\mathrm{I})=\mathrm{DX} / \mathrm{L}(\mathrm{I})$
NEXT I
REM **INPUT STRUCTURAL PROPERTIES**
IF CG\$ = "G" THEN 490

HOME : PRINT "INPUT THE STRUCTURAL PROPERTIES OF THE MEMBERS": PRINT : PRINT

395 PRINT "EI FOR COLUMN \& "I
400 INPUT EI (II)
405 PRINT "AE FOR COLUMN \# "I
410 INPUT AE (II)
415 NEXT I
420 PRINT : INPUT "ARE THE CROSS-SECTION PROPERTIES THE SAME FOR EACH SPAN OF THE ARCH? ${ }^{n}$;B\$
IF $\mathrm{B} \$=$ "N" THEN 455
PRINT : INPUT "EI FOR THE ARCH $={ }^{n}$; EI

435
440
$460 \quad \mathrm{II}=\mathrm{NS}+\mathrm{NC}+\mathrm{I}$
465 PRINT＂EI FOR THE ARCH SPAN \＃＂I
470 INPUT EI（II）
475 PRINT＂AE FOR THE ARCH SPAN \＃＂I
480 INPUT AE（II）
485 NEXT I
490 HOME ：INPUT＂DO YOU WANT TO REVIEW YOUR INPUT DATA？＂；BS
495 IF B $\$=$＂N＂THEN 550
496 PRINT ：PRINT＂DO YOU WANT THE INPUT DATA TO BE PRINTED TO THE SCREEN OR PRINTER？（ S / p ）＂：GET O\＄
IF $0 \$=$＂P＂THEN PR部 1
PRINT ：PRINT ：PRINT＂MEMBER＂SPC（ 3）＂LENGTH（FT）＂SPC（ 5）＂EI＂ $\operatorname{SPC}(9)$＂$E A^{\prime \prime}$
FOR $I=1$ TO NB
IF $I=1$ THEN 510
IF $I=N S+1$ THEN 515
$I F I=N S+N C+1$ THEN 520
GOTO 522
PRINT ：PRINT＂BEAM SPAN p＂：PRINT ：J＝I：GOTO 530
PRINT ：PRINT＂COLUNN $y^{\prime \prime}$ ：PRINT ：J＝I－NS：GOTO 530
PRINT ：PRINT＂ARCH SPAN \＃＂：PRINT ：J＝ $\mathrm{I}-(\mathrm{NS}+\mathrm{NC}):$ GOTO 530
IF $I<=$ NS THEN $J=I$ ：GOTO 530
IF $I<=N S+N C$ THEN $J=I-N S:$ GOTO 530
$J=I-(N S+N C)$
PRINT J； $\operatorname{SPC}(6) ; \mathrm{L}(\mathrm{I}) ; \operatorname{SPC}(4) ; \operatorname{EI}(\mathrm{I}) \operatorname{SPC}(4) \mathrm{AE}(\mathrm{I})$
NEXT I
540 PR韦 0
545 PRINT ：PRINT＂EXAMINE THE INPUT DATA CAREFULLY＂
PRINT : INPUT "AE FOR THE ARCH $=$ "; AE
FOR $\mathrm{I}=\mathrm{NS}+\mathrm{NC}+1 \mathrm{TO} \mathrm{NS}+\mathrm{NC}+\mathrm{NA}$
$\mathrm{EI}(\mathrm{I})=\mathrm{EI}: \mathrm{AE}(\mathrm{I})=\mathrm{AE}$
NEXT I: GOTO 490
PRINT
FOR $I=1$ TO NA
$I I=N S+N C+I$
PRINT "EI FOR THE ARCH SPAN \#"I
PRINT "AE FOR THE ARCH SPAN \#"I
SCREEN OR PRINTER? (S / P) ": GET O\$
PRINT : PRINT : PRINT "MEMBER" SPC(3)"LENGTH(FT)" SPC(5)"EI"
SPC(9) "EA"

$506 \quad \mathrm{IF} I=\mathrm{NS}+1$ THEN 515
GOTO 522
PRINT : PRIN HOLJAN PRINT :J = I-NS: GONO 530
$J=1-(N S+N C)$

PRINT : PRINT "DO YOU WANT TO MAKE GEOMETRIC OR STRUCTURAL CHANGES?
(G/S) ": GET CG\$
557 IF CG\$ = "G" THEN 87
560 PRINT : INPUT "CHANGES POR ANY BEAM SPANS? "; B\$
562 IF B\$ = "N" THEN 570
564 PRINT : INPUT "WHICH SPAN? ";J
$566 \mathrm{C} \$=$ "B": GOSUB 600
567 IF ES = "Y" THEN 564
570 PRINT : INPUT "CHANGES FOR ANY COLUMNS? ";B\$
572 IF $\mathrm{B} \$=$ "N" THEN 580
574 PRINT : INPUT "WHICH COLTMN? ";J
576 C\$ = "C": GOSUB 600
577 IF E\$ = "Y" THEN 574
580 PRINT : INPUT "CHANGES FOR ANY ARCH SPANS? ";B\$
582 IF A\$ = "N" THEN 630
584 PRINT : INPUT "WHICH SPAN? ";J
$586 \quad \mathrm{C} \$=$ "A": GOSUB 600
587 IF ES = "Y" THEN 584
588 GOTO 490
600 IF C $\$=$ "B" THEN $I=J: B \$=$ "BEAM SPANS"
602 IF CS $=$ "C" THEN $\mathrm{I}=\mathrm{J}+\mathrm{NS}: \mathrm{BS}=$ "COLUMNS"
604 IF $C \$=$ "A" THEN $I=J+N S+N C: B \$=$ "ARCH SPANS"
606 PRINT : INPUT "NEW EI = ";EI (I)
608 PRINT : INPUT "NEW $A E=" ; A E(I)$
630 PRINT : PRINT : PRINT "CHANGES FOR ANY OTHER "BS"? ": INPUT E\$
634 RETURN
700 HOME : PRINT "****STORAGE ROUTINE****": PRINT : PRINT : PRINT "CHECK TO BE SURE YOU HAVE A DATA DISK IN DRIVE 2!"
$\mathrm{B} \$=$ "INPUT FILE- $"+\mathrm{B} \$$
$\mathrm{ER}=0$
705 PRINT D\$;"OPEN"B\$",D2"
710 PRINT D\$;'DELETE"B\$
712 PRINT D\$;"OPEN"B\$
715 PRINT D\$;"WRITE"B\$

5120 PRINT D\$;"DELETE"B\$:RESUME
5200 PRINT : PRINT : PRINT "THE DATA DISK IS FULL. REPLACE IT WITH AN INITIALIZED DISK WITH SPACE AVAILABLE"

5210 PRINT : PRINT "HIT RETURN WHEN READY TO CONTINUE": GET OES 5220 PRINT : RESUME

5300 PRINT : PRINT : PRINT "FILE TYPE MISMATCH": PRINT "RETYPE YOUR INPUT. BE SURE TO USE THE APPROPRIATE NUMBER OR STRING." 5310 RESUME

Flexibility Matrix Generation:

5 REM **6/13/1983**
$6 \quad \mathrm{D} \$=\mathrm{m}$
7 ONERR GOTO 6000
10 REM THIS PROGRAM TAKES ANY DESIRED INPUT FILE AND CALCULATES THE STIFFNESS MATRIX AND ITS INVERSE. THE INVERSE IS THEN STORED ON THE DISK

HOME ; VTAB (5)
PRINT "THIS PROGRAM TAKES ANY DESIRED INPUT FILE AND CALCULATES THE STIFFNESS MATRIX AND ITS INVERSE.": PRINT "THE INVERSE IS STORED ON A DATA DISK IN DRIVE ${ }^{\prime 2} 2$ PRINT : PRINT "DO YOU WISH TO SEE THE CATALOG FOR YOUR DATA DISK IN DRIVE 排2": GET OS

IF OS > < "Y" THEN 30
DS = "'"
home : PRINT "These are the files CURrently on your data disk:"
PRINT : PRINT DS"CATALOG,D2"
PRINT : PRINT : PRINT "TYPE THE NAME/NUMBER OF THE INPUT FILE": INPUT "TO BE USED: INPUT FILE- ";B\$
$\mathrm{B} \$=$ "INPUT FILE- $"+\mathrm{B} \$$
PRINT D\$;"OPEN";B\$;",D2"
PRINT DS;"READ";B\$
INPUT NS
INPUT NA
$N C=N S-1: N B=N S+N C+N A: N J=N S+N A+2: N=3 * N J-8:$ IF NA $=$ NS THEN AS $=$ "N": CC $=1:$ GOTO 65
$\mathrm{A} \$={ }^{\mathrm{T}} \mathrm{Y}$ " $: C C=0$
$\operatorname{DIM} L(N B), S N(N B), C S(N B), E I(N B), A E(N B), J N(N B, 2), K(N, N), I D(N, 2)$
FOR $I=1$ TO NB
INPUT L(I): INPUT SN(I): INPUT CS(I): INPUT $J N(I, 1): \operatorname{INPUT} J N(I, 2)$: INPUT EI (I): INPUT AE(I)
NEXT I
PRINT D\$"CLOSE"B\$
REM **CONVERT KE TO K FOR THE BEAM**
HOME : PRINT "CALCULATING THE BEAM STIFFNESS"
gosub 3000
$110 \mathrm{CK}(1)=1: \operatorname{CK}(2)=0: \mathrm{CK}(3)=2: \mathrm{CK}(4)=3: \mathrm{CK}(5)=4: \mathrm{CK}(6)=5$
$115 \mathrm{~L}=1$: GOSUB 5000
120 GOSUB 3200
125 IF NC $=1$ THEN 170
130 FOR L $=2$ TO NC
135 GOSUB 3000
140 GOSUB 5000
$145 \mathrm{RN}=(\mathrm{L}-2) * 3+2$
$150 \quad \operatorname{FOR~} I=1$ TO 6
155 CK (I) $=$ RN + I: NEXT
160 GOSUB 3200
165 NEXT L
$170 \mathrm{IJ}=(\mathrm{NS}-1) * 3$
175 GOSUB 3000
$180 \mathrm{CK}(1)=I J: C K(2)=I J+1: C K(3)=I J+2: C K(4)=I J+3: C K(5)=$ $0: \mathrm{CK}(6)=\mathrm{IJ}+4$
185 L = NS: GOSUB 5000
190 GOSUB 3200
195 REM **CONVERT KE TO K FOR THE COLUMNS**
200 PRINT : PRINT "CALCULATING THE COLUMN STIFFNESS"
$205 \mathrm{~A}=2-\mathrm{CC}$
$210 \quad \mathrm{~N} 2=\mathrm{NC}-\mathrm{A}+1$
215 FOR M = A TO N2
220 L $=N S+M$
225 GOSUB 3000
$230 \quad \mathrm{RN}=(\mathrm{M}-1) * 3+2$
235 RL $=(\mathrm{NS}+\mathrm{M}-\mathrm{A}) * 3+1$
240 GOSUB 5000
$245 \mathrm{CK}(1)=\mathrm{RN}+1: \mathrm{CK}(2)=\mathrm{RN}+2: \mathrm{CK}(3)=\mathrm{RN}+3$
$250 \mathrm{CK}(4)=\mathrm{RL}+1: \mathrm{CK}(5)=\mathrm{RL}+2: \mathrm{CK}(6)=\mathrm{RL}+3$
255 GOSUB 3200
260 NEXT M
265 REM **THIS BRANCH ACCOUNTS FOR COLIMNS ATTACHED TO FIXED SUPPORTS**
270 IF A\$ = "N" GOTO 320
$275 \mathrm{~L}=$ NS +1 : GOSUB 3000
280 GOSUB 5000
$\mathrm{CK}(1)=3: \operatorname{CK}(2)=4: \operatorname{CK}(3)=5$ GOSUB 3200
$\mathrm{RN}=(\mathrm{NC}-1) * 3+2$ gosub 3000 $\mathrm{L}=\mathrm{NS}+\mathrm{NC}:$ GOSUB 5000
$310 \mathrm{CK}(1)=\mathrm{RN}+1: \mathrm{CK}(2)=\mathrm{RN}+2: \mathrm{CK}(3)=\mathrm{RN}+3$ GOSUB 3200
$440 \mathrm{CK}(1)=\mathrm{RJ}+1: \mathrm{CK}(2)=\mathrm{RJ}+2: \mathrm{CK}(3)=\mathrm{RJ}+3$

455 REM **INVERT THE K MATRIX**
460 GOSUB 4000
465 REM **STORE THE K MATRIX**
470 HOME : PRINT "K-INVERSE HAS BEEN CALCULATED.": PRINT : PRINT : INPUT "WHAT NUMBER/TITLE DO YOU WANT TO ASSIGN TO THIS MATRIX?";CS
$475 \mathrm{C} \$=$ "STIFFNESS FILE $-{ }^{\mathrm{n}}+\mathrm{C} \$$
$479 \quad E R=0$
480 PRINT D\$;"OPEN"C§",D2"
485 PRINT D\$; "DELETE"C\$
490 PRINT D\$;"OPEN ${ }^{14} \mathrm{C} \$$
495 PRINT D\$; "WRITE"C\$
500 PRINT B\$: PRINT N
505 FOR I $=1$ TO N
$510 \quad$ FOR $J=1$ TO N
515 PRINT K (I,J)
519 IF ER > THEN 479
520 NEXT J, I
525 PRINT D\$; ${ }^{11}$ CLOSE ${ }^{11} \mathrm{C} \$$
530 PRINT D\$;"RUN LOADING,D1"
3000 REM **ZERO CE AND CK**
3005 FOR I $=1$ TO 6
$3010 \quad C K(I)=0$
3015 FOR J $=1$ TO 6
$3018 \operatorname{KT}(I, J)=0: K G(I, J)=0$
3020 NEXT J, I
3030 RETURN
3200 REM **CONVERT KE TO K**
3210 FOR J $=1$ TO 6
3220 RK $=\mathrm{CK}(\mathrm{J})$
3230 FOR K $=1$ TO 6
$3240 \quad \mathrm{CK}=\mathrm{CK}(\mathrm{K})$
$3250 \mathrm{~K}(\mathrm{RK}, \mathrm{CK})=\mathrm{K}(\mathrm{RR}, \mathrm{CK})+\mathrm{KG}(\mathrm{J}, \mathrm{K})$
3260 NEXT K,J
3270 RETURN
4000 REM $\approx * G A U S S$ JORDAN INVERSE SUBROUTINE**
4130 FOR I $=1$ TO N

```
4140 ID (I,1) = 0
4 1 5 0 ~ N E X T ~ I ~
4155 II = 0
4158 REM LOCATE THE ABSOLUTE MAXIMUM VALUE TO USE AS THE NEXT PIVOT
                (EXCLUDE COLUNNS AND ROWS OF PREVIOUS PIVOTS)
4160 AM = - 1
4 1 6 5 ~ F O R ~ I ~ = ~ 1 ~ T O ~ N ~
4170 IF ID (I,1) < > 0 THEN 4210
4 1 7 5 ~ F O R ~ J ~ = ~ 1 ~ T O ~ N
4177 TP = ABS (K (I,J))
4180 IF ID (J,1) > < 0 THEN 4200
4183 IF TP < AM THEN 4200
4184 REM RECORD THE COLUNN AND ROW OF THE PIVOT ELEMENT
4185 IR = I:IC = J:AM = TP
4200 NEXT J
4210 NEXT I
4215 REM CHECK FOR SINGULARITY
4220 IF AM < O THEN 4540
4225 IF AM = 0 THEN 4745
4228 REM MOVE THE PIVOT TO THE DIAGONAL
4230 ID (IC,1) = IR
4240 IF IC = IR THEN }431
4 2 5 0 ~ F O R ~ J ~ = ~ I ~ T O ~ N ~
4255 TP = K(IR,J)
4260 K(IR,J) = K(IC,J)
4270 K(IC,J) = TP
4 2 8 0 ~ N E X T ~ J ~
4285 REM PERFORM THE GAUSS-JORDAN ELIMINATION
4290 II = II + I
4300 ID (II,2) = IC
4 3 1 0 ~ P V ~ = ~ K ( I C , I C )
4320 K(IC,IC) = 1
4 3 3 0 ~ P V ~ = ~ 1 ~ / ~ P V ~
4 3 4 0 ~ F O R ~ J ~ = ~ 1 ~ T O ~ N ~
4350 K(IC,J) = K(IC,J) * PV
4 3 6 0 ~ N E X T ~ J ~ J ~
```

```
4370 FOR I = 1 TON
4380 IF I = IC THEN 4440
4 3 9 0 ~ T P ~ = ~ K ( I , I C ) ~
4400 K(I,IC) = 0
4 4 1 0 ~ F O R ~ J ~ = ~ 1 ~ T O ~ N ~
4420 K(I,J) = K(I,J) - K(IC,J) * TP
4 4 3 0 ~ N E X T ~ J ~
4 4 4 0 ~ N E X T ~ I ~
4450 GOTO 4160
4455 REM RESTORE THE ROWS AND COLUMNS TO THEIR ORIGINAL LOCATIONS
4460 IC = ID (II ,2)
4470 IR = ID(II,1)
4 4 8 0 ~ F O R ~ I ~ = ~ 1 ~ T O ~ N ~
4 4 9 0 ~ T P ~ = ~ K ( I , I R ) ~
4500 K(I,IR)=K(I,IC)
4510 K(I,IC) = TP
4 5 2 0 ~ N E X T ~ I ~
4 5 3 0 ~ I I ~ = ~ I I ~ - ~ 1 ~
4540 IF II < > 0 THEN 4460
4550 GOTO 4760
4746 PRINT "K MATRIX IS SINGULAR!"
4760 RETURN
5000 REM **KE-GLOBAL SUBROUTINE**
5010 REM **INPUT KE-LOCAL**
5020 A1 = AE(L):B=6*EI(L) / L(L):C = 12*EI(L) / (L (L)) & 2
5040
5050 KE (2,2) = C:KE (2,3)=+B:KE (2,5)=-C:KE (2,6) = + B
5060 KE (3,2)=+B:KE (3,3)=4*EI(L):KE (3,5) = - B:KE (3,6) = 2*EI(L)
5070 KE (5,2) =-C:KE (5,3) = - B:KE (5,5)=C:KE (5,6)=-B
5080 KE (6,2)=+B:KE(6,3)=2*EI(L):KE (6,5) = - B:KE (6,6) = 4*EI(L)
5 0 8 2 ~ F O R ~ I ~ = ~ 1 ~ T O ~ 6 ~
5 0 8 4 ~ F O R ~ J ~ = ~ 1 ~ T O ~ 6 ~
5086 KE(I,J) = KI(I,J) / L(L)
5 0 8 8 ~ N E X T ~ J , I ~
5100 REM **INPUT TRANSFORMATION MATRIX (TT)**
5120 T(1,1) = CS(L):T(1,2)= - SN(L)
```

5130	$T(2,1)=\operatorname{SN}(\mathrm{L}): T(2,2)=\operatorname{CS}(\mathrm{L})$
5140	$T(3,3)=1: T(6,6)=1$
5150	$T(4,4)=\operatorname{CS}(\mathrm{L}): \mathrm{T}(4,5)=-\operatorname{SN}(\mathrm{L})$
5160	$T(5,4)=\operatorname{SN}(\mathrm{L}): T(5,5)=\operatorname{CS}(\mathrm{L})$
5200	REM **COMPUTE KE-GLOBAL $=$ TT*KE(L) *T **
5220	FOR $J=1$ TO 6
5230	FOR K $=1$ TO 6
5240	POR $I=1$ TO 6
5250	$\mathrm{KT}(\mathrm{J}, \mathrm{K})=\mathrm{KT}(\mathrm{J}, \mathrm{X})+\mathrm{KE}(\mathrm{J}, \mathrm{I}) * \mathrm{~T}(\mathrm{~K}, \mathrm{I})$
5260	NEXT I, K, J
5280	FOR $J=1$ TO 6
5290	FOR $K=1$ TO 6
5300	FOR $I=1$ TO 6
5310	$K \mathrm{KG}(\mathrm{J}, \mathrm{K})=\operatorname{KG}(\mathrm{J}, \mathrm{K})+\mathrm{T}(\mathrm{J}, \mathrm{I}) * \mathrm{KT}(\mathrm{I}, \mathrm{K})$
5320	NEXT I, K, J
5330	RETURN
5999	REM ERROR HANDLING ROUTINE
6000	ER = PEEK (222)
6010	IF ER $=5$ THEN 6050: REM END OF DATA
6020	IF ER $=9$ THEN 6080: REM DISK FULL
6030	IF ER = 13 THEN 6110: REM FILE TYPE MISMATCH
6040	HOME : PRINT "ERROR \# "ER: END
6050	PRINT : PRINT : PRINT "YOU HAVE EITHER MISTYPED OR INPUT THE NAME OF A FILE WHICH DOES NOT EXIST."
6060	PRINT "TRY AGAIN"
6070	PRINT D\$; "DELETE"B\$: GOTO 30
6080	PRINT : PRINT : PRINT "THE DATA DISK IS FULL. REPLACE IT WITH AN INITIALIZED DISK WITH SPACE AVAILABLE"
6090	PRINT : PRINT "HIT RETURN WHEN READY TO CONTINUE": GET OE\$
6100	PRINT : RESUME
6110	PRINT : PRINT : PRINT "FILE TYPE MISMATCH": PRINT "RETYPE YOUR INPUT. BE SURE TO USE THE APPROPRIATE NUMBER OR STRING."
6120	RESUME
7000	REM 新DEFINITION OF VARIABLES新
7002	REM NB- NUMBER OF MEMBERS
7003	REM NS- NUMBER OF BEAM SPANS

7004

REM NC- NUMBER OF COLUMNS
REM NA- NUMBER OF ARCH SPANS
REM CC,AS- SIGNALS WHETHER OR NOT A COLJMN IS LOCATED AT THE ARCH SUPPORTS

REM SN(I),CS(I) - SINE AND COSINE FUNCTIONS OF MEMBER \#I REM L(I),EI (I) , AE (I) - LENGTH AND STRUCTURAL PROPERTIES OF MEMBER *I REM JN $(1,1), J N(I, 2)-J O I N T$ NUMBERS FOR THE LEFT AND RIGHT ENDS OF MEMBER ${ }^{I}$ (TOP AND BOTTOM FOR COLUMNS)

REM ($\mathrm{K}(\mathrm{I}, \mathrm{J}$) IS USED FOR BOTH THE STIFFNESS MATRIX AND THE INVERSE. (THE ORIGINAL STIFFNESS MATRIX IS LOST IN THE INVERSE PROCESS) REM CK(6) IS USED TO INDEX THE ROWS AND COLUMNS OF THE STRUCTURE STIFFNESS MATRIX FOR SUPERPOSITION OF THE INDIVIDUAL MEMBER MATRICES

REM $\operatorname{T}(6,6)$ IS THE TRANSFORMATION MATRIX CALCULATED FOR EACH MEMBER REM KE $(6,6)$ IS THE LOCAL MEMBER STIFFNESS MATRIX REM KT $(6,6)$ IS THE KE MATRIX TRANSFORMED
REM KG $(6,6)$ IS THE KT MATRIX TIMES THE TRANSPOSE OF THE TRANSFORMATION MATRIX. TEIS IS THE K GLOBAL FOR THE MEMBER

REM L IS THE MEMBER COUNTER
REM IJ, $\mathrm{A}, \mathrm{N} 2, \mathrm{~N} 4$, RL \& RN ARE COUNTERS USED TO INDEX MATRIX LOCATIONS REM THE FOLLOWING VARIABLES ARE USED IN THE INVERSE ROUTINE

REM ID (I,2) STORES THE ORIGINAL LOCATION AND ORDER OF CHANGE OF THE PIVOTS

REM TP,IR,IC \& PV ARE TEMPORARY VARIABLES FOR THE PIVOT, LOCATIONS OF THE PIVOT AND INVERSE OF THE PIVOT

REM AM IS A SIGNAL TO INDICATE THE END OF THE ELIMINATION

Loading Data Input Program：

5 REM＊＊11／23／83＊＊
7 ONERR GOTO 3000

REM THIS PROGRAM TAKES ANY INPUT FILE AND CALCULATES THE CORRESPONDING FORCE VECTOR．THE FORCE VECTOR IS THEN STORED ON DISK．
$D \$=\quad " n$
HOME ：VTAB（6）：PRINT SPC（ 8）；＂帰LOADING ROUTINE 渄＂
PRINT ：PRINT ：PRINT＂THIS PROGRAM ALLOWS LOADING TO BE INPUT IN ONE OF FOUR DIFFERENT OPTIONS OR A COMBINATION OF THEM．＂
PRINT ：PRINT＂＊SIGN CONVENTION＊－DOWNWARD，TO THE RIGHT AND COUNTERCLOCKWISE ARE POSITIVE WHEN ENTERING LOADS，\％NOTE色 WHEN USING FIXED－END MOMENTS AND SHEARS，POSITIVE IS－UPWARD， TO THE RIGHT AND COUNTERCLOCKWISE．＂
PRINT ：PRINT＂SELECT YOUR OPTION：＂
PRINT ：PRINT SPC（ 5）＂（1）AUTOMATIC INFLUENCE LINE CASES＂
PRINT SPC（ 5）＂（2）FIXED－END MOMENTS AND SHEARS＂
PRINT SPC（ 5）＂（3）UNIFORM OR CONCENTRATED LOADS＂
PRINT $\operatorname{SPC}(5)$＂（4）JOINT LOADING＂
PRINT SPC（5）＂（5）A COMBINATION OF THE ABOVE＂
PRINT ：PRINT ：GET LO
HOME ：VTAB（6）：PRINT＂＂THIS PROGRAM REQUIRES AN INPUT FILE TO BE PRESENT ON A DATA DISK IN DRIVE ${ }^{3} 2^{2 \prime}$ ：PRINT ：PRINT＂DO YOU WANT TO SEE THE CATALOG OF THAT DISK？＂：gET O\＄
IF $0 \$<>$＂Y＂THEN 50
HOME ：PRINT＂THESE ARE THE FILES CURRENTLY ON YOUR DATA DISK：＂ PRINT ：PRINT D\＄＂CATALOG，D2＂
PRINT ：PRINT ：PRINT＂TYPE THE NAME／NUMBER OF THE INPUT FILE＂： INPUT＂TO BE USED：INPUT FILE－${ }^{n}$ ；BS
$B \$=$＂INPUT FILE－$"+B \$$
PRINT D\＄；＂OPEN＂；B\＄；＂，D2＂
PRINT D\＄；＂READ＂；B\＄
INPUT NS
INPUT NA
$\mathrm{NC}=\mathrm{NS}-1: \mathrm{NB}=\mathrm{NS}+\mathrm{NC}+\mathrm{NA}: \mathrm{NJ}=\mathrm{NS}+\mathrm{NA}+2: \mathrm{N}=3 * \mathrm{NJ}-8:$ IF NA＝NS THEN $\mathrm{A} \$=$＂N＂：CC＝1：GOTO 85
gosub 2000
IC = IC + 1: GOTO 495
177 REM DETERMINE THE MEMBER $\#$ WHICH IS BEING LOADED
$\mathrm{A} \$=$ " $\mathrm{Y} ": C C=0$
$\operatorname{DIM} \operatorname{SN}(\mathrm{NB}), \mathrm{CS}(\mathrm{NB}), \mathrm{JN}(\mathrm{NB}, 2), \mathrm{V}(\mathrm{NB}, 2), \mathrm{N}(\mathrm{NB}, 2), \mathrm{M}(\mathrm{NB}, 2), \mathrm{P}(\mathrm{N}), \mathrm{F}(6), \mathrm{L}(\mathrm{NB})$ FOR $I=1$ TO NB

INPUT L(I): INPUT SN(I): INPUT CS(I): INPUT JN(I,1): INPUT JN(I,2): INPUT DUM: INPUT DUM

NEXT I
PRINT D\$"CLOSE"B\$
IF LO $=4$ THEN 265

HOME : PRINT " ** MEMBER LOADING **": PRINT : PRINT
IF LO > 1 THEN 168
PRINT : PRINT "TYPE THE TITLE/NUMBER TO BE USED TO": PRINT "IDENTIFY THIS SERIES OF LOAD CASES:": INPUT "LOAD CASE- ";CI\$

REM automatic Influence line load case generation
FOR $M N=1$ TO NS
FOR $\mathrm{IL}=1$ TO 4
REM REZERO FOR EACH LOAD CASE
FOR $I=1$ TO NB
FOR $\mathrm{J}=1$ TO 2
$V(I, J)=0: N(I, J)=0: M(I, J)=0$
NEXT J,I
FOR $I=1$ TO $\mathrm{N}: P(I)=0:$ NEXT I
FOR $I=1$ TO $6: F(I)=0:$ NEXT
IF LO > 1 THEN 178

PRINT : INPUT "FROM LEFT TO RIGHT, WHICH BEAM IS LOADED (ENTER 0 TO CONTINUE TO COLUMNS)";M1
IF M1 $=0$ THEN 200
IF M1 < = NS THEN 190
PRINT : PRINT : PRINT "YOUR STRUCTURE DOES NOT HAVE THAT MANY SPANS!": GOTO 178
$\mathrm{MN}=\mathrm{M1}: \operatorname{GOSUB} 2000$
GOTO 178
HOME : INPUT "STARTING WITH THE LEFTMOST COLUMN, WHICH COLUMN IS LOADED (ENTER 0 TO CONTINUE TO THE ARCH MEMBERS)? ";M2

205

310 PRINT : INPUT "THE X -COMPONENT OF THE LOAD $=$ "; XL

340 PRINT : INPUT "THE APPLIED MOMENT = ";ML
IF M2 $=0$ THEN 235
IF M2 < = NC THEN 225
PRINT : PRINT "YOUR STRUCTURE DOES NOT HAVE THAT MANY COLUMNS!": GOTO 200

IF M2 $=0$ THEN 235
MN $=$ M2 + NS: GOSUB 2000
GOTO 200
HOME : PRINT : INPUT "FROM LEFT TO RIGHT, WHICH ARCH MEMBER IS
LOADED (ENTER 0 WHEN LOADING IS COMPLETE";M3
IF M3 $=0$ THEN 270
$\mathrm{MN}=\mathrm{NS}+\mathrm{NC}+\mathrm{M} 3$
IF MN < = NB THEN 260
PRINT : PRINT "YOUR STRUCTURE DOES NOT HAVE THAT MANY ARCH MEMBERS!": GOTO 235
gosub 2000
REM \#\#\# INPUT THE JOINT LOADING $\|^{\#}$
HOME : PRINT " *** JOINT LOADING ***"
IF LO < 4 THEN 500
PRINT : INPUT "NUMBERING FROM LEFT TO RIGHT ON THE BEAM WHICH JOINT IS LOADED? (0 FOR NO JOINT LOADS ON THE BEAM)"; JN
IF NJ $=0$ THEN 500
$\mathrm{K} 1=0:$ IF $\mathrm{JN}>1$ THEN $\mathrm{K} 1=1$
IF $\mathrm{JN}<=\mathrm{NS}+1$ THEN 305
PRINT : PRINT "THERE AREN'T THAT MANY JOINTS ON THE BEAM!": GOTO 280
RN $=3 *(\mathrm{JN}-1)-\mathrm{Kl}$
$P(R N+1)=P(R N+1)+X L$
IF $\mathrm{N}=1$ THEN 340
IF $\mathrm{JN}=\mathrm{NS}+1$ THEN 340
PRINT : INPUT "THE Y-COMPONENT OF THE LAOD = "; YL
$\mathrm{P}(\mathrm{RN}+2)=\mathrm{P}(\mathrm{RN}+2)+\mathrm{YL}$

IF $J N=1$ THEN 365
IF $J N=N S+1$ THEN 365
$P(R N+3)=P(R N+3)+M L$
GOTO 280

365

375 PRINT : INPUT "FROM LEFT TO RIGHT ON THE ARCH, WHICH JOINT IS LOADED? (O FOR NO ADDITIONAL LOADS) ";JN
IF $J N=0$ THEN 500
IF JN $<=$ NJ THEN 395
PRINT : PRINT "TOO MANY JOINTS!": GOTO 375
$\mathrm{RN}=3 *(\mathrm{~N}+\mathrm{NS}-1)-2$
IF $J N=1$ THEN 415
IF JN = NJ THEN 415
GOTO 420
PRINT : PRINT "THIS JOINT IS FIXED AND WILL NOT AFFECT THE STRUCTURE!": GOTO 375
420 PRINT : INPUT "THE X-COMPONENT OF THE LOAD $=$ "; XL
$425 \quad \mathrm{P}(\mathrm{RN}+1)=\mathrm{P}(\mathrm{RN}+1)+\mathrm{XL}$
430 INPUT "THE Y-COMPONENT OF THE LOAD $=$ "; YL
$435 \quad \mathrm{P}(\mathrm{RN}+2)=\mathrm{P}(\mathrm{RN}+2)+\mathrm{YL}$
440 INPUT "THE APPLIED MOMENT $=$ "; ML
$445 \quad P(R N+3)=P(R N+3)+M L$
450 GOTO 375
$495 \quad \mathrm{C} \$=\mathrm{CI} \$+\operatorname{STR} \$(I C)$
496 GOTO 505
500 HOME : PRINT "THE FORCE VECTOR CORRESPONDING TO THIS LOADING CONDITION IS CALCULATED": PRINT : INPUT "WHAT NUMBER/TITLE DO YOU WANT TO ASSIGN TO THIS VECTOR? ";C\$
$505 \mathrm{C} \$=$ "LOAD CASE- $"+\mathrm{C} \$$
$509 \quad E R=0$
510 PRINT D\$;"OPEN"C\$",D2"
515 PRINT D\$;"DELETE"C\$
520 PRINT DS;"OPEN"C\$
525 PRINT D\$;"WRITE"C\$
530 PRINT B\$: PRINT N: PRINT NB
535 FOR I = 1 TO N
540 PRINT $P(I)$: NEXT I
545 FOR $I=1$ TO NB
550 FOR $J=1$ TO 2

555 PRINT $V(I, J):$ PRINT $N(I, J):$ PRINT $M(I, J)$
559 IF ER > 0 THEN 509
560 NEXT J,I
565 PRINT D\$;"CLOSE"C\$
570 IF LO > 1 THEN 600
572 PRINT "SPAN \#"MN", INFLUENCE LOAD CASE "IC
575 NEXT IL, MN

IF O\$ = "Y" THEN 135

IF LO < 3 THEN 2100

```
IF 01$ = "P" THEN 2050
```

 TO LBS/INCH
 IF 01\$ = "U" THEN 2085
 LOCATED (FT) ?"; X
 \(\mathrm{X}=12\) * X
 REM INPUT CONCENTRATED OR UNIFORM LOADS (NOTE UNIFORM LOADING IS ASSUMED TO BE OVER THE ENTIRE SPAN)
HOME : VTAB (6): PRINT "IS THE LOADING CONCENTRATED, UNIFORM OR A COMBINATION ($\mathrm{P}, \mathrm{W}, \mathrm{C}$) ? ": GET 01\$
IF O1\$ = "W" OR O1\$ = "C" THEN 2030
PRINT : PRINT "WRONG RESPONSE!": FOR I = 1 TO 300: NEXT : GOTO 2010
PRINT : INPUT "WHAT IS THE UNIFORM LOAD RATE (LBS/FT)? ";W
$\mathrm{V}(\mathbb{N}, 1)=+W * L(M N) / 24: V(\mathbb{N}, 2)=+V(\mathbb{N}, 1):$ REM W IS CONVERTED
$\mathrm{M}(\mathrm{MN}, 1)=\mathrm{W} *(\mathrm{~L}(\mathrm{MN})+2) / 144: \mathrm{M}(\mathbb{M}, 2)=-\mathrm{M}(\mathrm{MN}, 1)$
PRINT : INPUT "WHAT IS THE CONCENTRATED LOAD (LBS)? ";P
PRINT : INPUT "HOW FAR FROM THE LEFT END OF THE SPAN IS THE LOAD
$\mathrm{FS}=+\mathrm{P} *(\mathrm{~L}(\mathrm{MN})+2 * \mathrm{X}) *((\mathrm{~L}(\mathrm{MN})-\mathrm{X}) \uparrow 2) / \mathrm{L}(\mathrm{MN})+3$
$F(1)=-S N(M N) * F S: F(2)=+C S(M N) * F S: V(M N, 1)=V(M N, 1)+F S$
$\mathrm{FS}=+\mathrm{P} *(\mathrm{X}) \uparrow 2 *(3 * \mathrm{~L}(\mathrm{MN})-2 * \mathrm{X}) / \mathrm{L}(\mathrm{MN})+3$
$F(4)=-S N(M N) * F S: F(5)=+C S(\mathbb{N}) * F S: V(M N, 2)=V(M N, 2)+F S$

2075
$2077 \quad F(3)=+\operatorname{FS}: M(\mathbb{N}, 1)=M(\mathbb{N}, 1)+F S$
$2080 \mathrm{FS}=-\mathrm{P} *(\mathrm{~L}(\mathbb{M N})-\mathrm{X}) *(\mathrm{X}) \uparrow 2 / \mathrm{L}(\mathrm{MN}) \uparrow 2$
$2082 \mathrm{~F}(6)=+\mathrm{FS}: M(\mathbb{M}, 2)=\mathrm{M}(\mathbb{M N}, 2)+\mathrm{FS}$
2085 PRINT : PRINT "DO YOU HAVE ADDITIONAL LOADS FOR THIS SPAN? (Y / N) ":
GET 02\$
2088 IF 02\$ a "Y" THEN 2010
2090 IF LO $=3$ THEN 2185
2099 REM INPUT FIXED-END EQUIVALENTS FOR ANY GENERAL LOADING CASE
2100 IF MN $=\mathrm{NS}+\mathrm{NC}+1$ THEN 2160
2101 IF IL $=1$ THEN FS $=1$; GOTO 2110
2102 IF IL $=2$ THEN FS $=1$: GOTO 2125
2103 IF IL $=3$ THEN FS $=1$: GOTO 2165
2104 IF IL $=4$ THEN $F(6)=1: M(M N, 2)=M(M N, 2)+F(6):$ GOTO 2185
2105 PRINT : INPUT "FIXED-END SHEAR FOR THE LEFT END: ";FS
$2110 \quad \mathrm{~V}(\mathrm{MN}, 1)=\mathrm{V}(\mathrm{MN}, 1)+\mathrm{FS}$
$2115 \mathrm{~F}(1)=-\mathrm{SN}(\mathbb{M}) * \operatorname{FS}: F(2)=+\operatorname{CS}(\mathbb{N}) * F S$
2116 IF IL $=1$ THEN 2185
2120 INPUT "FIXED-END MOMENT FOR THE LEFT END: ";FS
$2125 \quad \mathrm{~F}(3)=+\mathrm{FS}$
$2130 M(\mathbb{N N}, 1)=M(\mathbb{N}, 1)+F S$
2131 IF IL $=2$ THEN 2185
2135 IF $\mathbb{M N}=\mathrm{NB}$ THEN 2190
2140 IF AS = "Y" THEN 2150
2145 GOTO 2160
2150 IF MN $=\mathrm{NS}+1$ GOTO 2175
2155 IF $\mathrm{MN}=\mathrm{NS}+\mathrm{NC}$ THEN 2175
2160 PRINT : INPUT "FIXED-END SHEAR FOR THE RIGHT END: ";FS
$2165 \mathrm{~F}(4)=-\mathrm{SN}(\mathrm{MN})$ * $\mathrm{FS}: \mathrm{F}(5)=+\mathrm{CS}(\mathrm{MN})$ * FS
$2170 \quad V(\mathbb{N}, 2)=V(\mathbb{N}, 2)+F S$
2171 IF IL $=3$ THEN 2185
2175 INPUT "FIXED-END MOMENT FOR THE RIGHT END: ";F(6)
$2180 \mathrm{M}(\mathbb{M N}, 2)=M(\mathbb{M N}, 2)+F(6)$
2185 REM 非 CONVERT SHEARS AND MOMENTS TO GLOBAL SYSTEM LOADS \#\#
2190 FOR EM $=1$ TO 2
2195 EN $=\mathrm{JN}(\mathbb{N}, \mathrm{EM})$
$\mathrm{KS}=1: \mathrm{Kl}=1: \mathrm{IF} \mathrm{EN}>\mathrm{NS}+1$ THEN $\mathrm{K} 1=2$
2205 IF EN $=1$ THEN K1 $=0$
2210 RN = 3* (EN - 1) - Kl
2215 IF EN $=1$ THEN KS $=2$
2220 IF $\mathrm{EN}=\mathrm{NS}+1$ THEN $\mathrm{KS}=2$
$2225 \mathrm{JS}=0: \mathrm{JJ}=3 *(\mathrm{EM}-1)$
2230 FOR $\mathrm{J}=1$ TO 3 STEP KS
2235 JS = JS + 1
$2240 \quad \mathrm{P}(\mathrm{RN}+\mathrm{JS})=\mathrm{P}(\mathrm{RN}+\mathrm{JS})-\mathrm{F}(\mathrm{JJ}+\mathrm{J})$
2245 NEXT J, EM
2250 RETURN
3000 ER = PEEK (222)
3010 IF ER $=5$ THEN 3050: REM END OF DATA
3020 IF ER $=9$ THEN 3080: REM DISK FULL
3030 IF ER $=13$ THEN 3110: REM FILE TYPE MISMATCH
3040 HOME : PRINT "ERROR \# "ER: END
3050 PRINT : PRINT : PRINT "YOU HAVE EITHER MISTYPED OR INPUT THE NAME
OF A FILE WHICH DOES NOT EXIST."
3060 PRINT "TRY AGAIN"
3070 PRINT D\$; "DELETE"B\$: GOTO 40
3080 PRINT : PRINT : PRINT "THE DATA DISK IS FULL. REPLACE IT WITH AN
INITIALIZED DISK WITH SPACE AVAILABLE"
3090 PRINT : PRINT "HIT RETURN WHEN READY TO CONTINUE": GET OE\$
3100 PRINT : RESUME
3110 PRINT : PRINT : PRINT "FILE TYPE MISMATCH": PRINT "RETYPE YOUR
INPUT. BE SURE TO USE THE APPROPRIATE NTMBER OR STRING."
3120 RESUMR

Displacement Calculation Program:

5 REM **11/28/83**
10 ONERR GOTO 5000
$D \$=m$
$E C=1$

INPUT K (I, J)
NEXT J,I
$C \$=B \$$

REM THIS PROGRAM CALCULATES THE GLOBAL DISPLACEMENTS FOR THE STRUCTURE. A K FILE AND A LOAD CASE ARE INPUT. THE DISPLACEMENTS ARE OUTPUT AND SAVED.

HOME : PRINT "** GLOBAL DISPLACEMENT CALCULATION **"
PRINT : PRINT "THE K INVERSE FILE AND ONE OR MORE LOAD CASES ARE THE INPUT FOR THIS PROGRAM.": PRINT : PRINT "倠NOTE IT IS IMPORTANT THAT THESE TWO FILES ARE BASED ON THE SAME INPUT FILE."
PRINT : PRINT "THE DISPLACEMENT VECTOR CORRESPONDING TO THE LOAD CASE IS CALCULATED AND": PRINT "STORED ON THE DATA DISK IN DRIVE \#2"
PRINT : PRINT "DO YOU WANT TO SEE THE CATALOG OF THE DATA DISK IN DRIVE \#2?": GET O\$
IF $0 \$$ < > "Y" THEN 40
PRINT : PRINT "these are the files Currently on your data disk:"
PRINT DS;"CATALOG,D2"
PRINT : PRINT : PRINT "TYPE THE NAME/NUMBER OF THE STIFFNESS FILE TO BE USED FOR THIS CASE:": INPUT "STIFFNESS FILE- ";B\$
$\mathrm{B} \$=$ "STIFFNESS FILE- $"+\mathrm{B} \$$
REM READ THE STIFINESS FILE FROM THE DATA DISC
PRINT DS;"OPEN"BS",D2"

PRINT DS;"READ"B\$
INPUT E\$: INPUT N
DIM K (N, N) , $\mathrm{D}(\mathrm{N}), \mathrm{P}(\mathrm{N})$
FOR $I=1 T 0 N$
FOR $J=1$ TO N

PRINT D\$;"CLOSE"B\$
IF G\$ = "K" THEN 265

115 PRINT "ARE YOU CALCULATING INFLUENCE LINES? ": GET ILS

PRINT : IF IL\$ < > "Y" THEN 180
HOME : VTAB (3): PRINT "THE PROCESS FOR CALCULATING THE DISPLACEMENT VECTORS IS AUTOMATIC. HOWEVER, THE MEMORY SPACE IS CRITICAL IN THIS PHASE. THEREFORE EACH DELTA VECTOR MUST BE STORED AS IT IS CALCULATED."
PRINT : PRINT "SELECT ONE:": PRINT : PRINT SPC(3)"(1) STORE ON THE DATA DISK CURRENTLY": PRINT SPC (3)"IN DRIVE 2 (MUCH PREFERRED!)"
PRINT SPC (3)"(2) STORE ON A SEPARATE DISC IN": PRINT SPC (3)"DRIVE 1": GET 0
PRINT
IF $0=1$ THEN DOS $=$ "D2"
IF $0=2$ THEN DO\$ = "D1": PRINT "PLACE A DISC WITH SPACE AVAILABLE IN DRIVE $1^{\prime \prime}$
PRINT : INPUT "HOW MANY BEAM SPANS IN THIS STRUCTURE? ";NS
PRINT : PRINT "TYPE THE TITLE/NUMBER OF THE LOAD CASE SERIES TO BE USED IN THIS PROGRAM: ": INPUT "LOAD CASE- ";BIS
PRINT : PRINT "WHAT TITLE/NUMBER DO YOU WANT TO USE TO IDENTIFY THIS
SERIES OF DISPLACEMENT": PRINT "VECTORS?": INPUT "DISPLACEMENT FILE- ";GI\$
FOR IL = 1 TO (4 * NS)
B\$ = "LOAD CASE- " + BI $\$$ + STR\$ (IL): GOTO 190
PRINT : PRINT : PRINT "TYPE THE TITLE OF THE LOAD CASE USED FOR THE
CALCULATION OF THIS DISPLACEMENT:": INPUT "LOAD CASE- ";BS
$B \$=$ "LOAD CASE-" $+\mathrm{B} \$$
PRINT D\$;"OPEN"B\$",D2"
$\mathrm{EC}=2$
PRINT D\$; "READ"B\$
INPUT F\$: INPUT N1: INPUT NB
REM CHECK COMPATIBILITY OF STIFFNESS FILE AND LOAD CASE
IF FS < > ES THEN 235
FOR $I=1$ TO N: INPUT $P(I):$ NEXT I
PRINT DS;"CLOSE"B\$
GOTO 260
HOME : PRINT "THE K MATRIX AND LOAD CASE ARE FROM TWO DIFFERENT STRUCTURES!"
PRINT DS;"CLOSE"C\$

245

330 PRINT D\$;"WRITE"G\$

340 FOR I = 1 TO N
345 PRINT D(I)
350 IF ER > 0 THEN 320
355 NEXT I
360 PRINT D\$;"CLOSE"C\$
365 IF IL\$ > < "Y" THEN 375
370 NEXT IL
375 HOME : INPUT "DO YOU HAVE ADDITIONAL CASES USING THE SAME STIFFNESS MATRIX?"; $0 \$$
IF $0 \$=$ "Y" THEN 110
PRINT : PRINT "BE SURE TO REPLACE THE PROGRAM DISC IN DRIVE 1. PRESS RETURN WHEN READY. ": GET O\$
390 PRINT

395 PRINT D\$;"RUNSTRESS,D1"
5000 ER = PEEK (222): REM USER ERROR HANDLING ROUTINE
5010 IF ER $=5$ THEN 5100: REM END OF DATA
5020 IF ER $=9$ THEN 5200: REM DISK FULL
5030 IF ER $=13$ THEN 5300: REM FILE TYPE MIS-MATCH
5040 IF ER $=6$ THEN 5400: REM FILE NOT FOUND
5080 HOME : PRINT "ERROR \# "ER: END
5100 PRINT : PRINT : PRINT "YOU HAVE EITHER MISTYPED OR INPUT THE NAME OF A FILE WHICH DOES NOT EXIST."
5110 PRINT "TRY AGAIN"
5120 PRINT DS;"DELETE"BS: IF EC $=1$ THEN 30
5130 GOTO 180
5200 PRINT : PRINT : PRINT "THE DATA DISK IN DIRVE 2 IS FULL.": PRINT "PLACE A DISK WITH SPACE AVAILABLE IN DRIVE 1."
5210 PRINT : PRINT "HIT RETURN WHEN READY TO CONTINUE": GET OE\$
5220 PRINT : RESUME
5300 PRINT : PRINT : PRINT "FILE TYPE MISMATCH": PRINT "RETYPE YOUR INPUT. BE SURE TO USE THE APPROPRIATE NUMBER OR STRING."
5310 RESUME
5400 GOTO 385

Internal Force Calculation Program:

5
9
10

REM **11/28/83**
$\mathrm{D} \$={ }^{\prime \prime \prime}: \mathrm{DO} \$=", \mathrm{D} 2{ }^{\prime \prime}$
REM THIS PROGRAM TAKES CALCULATED DEFLECTIONS AND CORRESPONDING INPUT FILES AND CALCULATES THE STRESS ON THE ENDS OF THE MEMBERS. THE STRESS MATRIX IS STORED.
HOME : VTAB (6): PRINT "THIS PROGRAM USES AN INPUT FILE AND ONE OR MORE DEFLECTION FILES TO CALCULATE THE END-FORCES ON EACH MEMBER OF THE": PRINT "BRIDGE"
PRINT : PRINT "THE END-FORCE FILES ARE THEN STORED ON THE DATA dISK IN DRIVE \# 2 "

PRINT : PRINT "DO YOU WISH TO SEE THE CATALOG OF THE DATA DISK IN DRIVE \#2?": GET O\$
IF OS < > "Y" THEN 30
REM **READ INPUT, LOADING AND DISPLACEMENT FILES FROM THE DATA DISKS**
HOME : PRINT "** STRESS CALCULATION **"
PRINT : PRINT "THESE ARE YOUR DATA FILES:": PRINT D\$;"CATALOG,D2"
PRINT : PRINT "TYPE THE NAME/TITLE OF THE INPUT FILE:": INPUT "INPUT FILE-";B\$
$\mathrm{B} \$=$ "INPUT FILE- $"+\mathrm{B} \$$
PRINT DS;"OPEN"B\$
$\mathrm{EC}=1$
PRINT D\$;"READ"B\$
INPUT NS: INPUT NA
$\mathrm{NB}=2 * \mathrm{NS}+\mathrm{NA}-1: \mathrm{N}=(\mathrm{NS}+\mathrm{NA}) * 3-2: \mathrm{NL}=4 * \mathrm{NS}$
$\operatorname{DIM} L(N B), S N(N B), C S(N B), E I(N B), A E(N B), J N(N B, 2), V(N B, 2, N L), N(N B, 2, N L)$, $M(N B, 2, N L), D L(N B, 6), D(N)$
DIM $\operatorname{FV}(\mathrm{NB}, 2), \operatorname{FEN}(\mathrm{NB}, 2), \operatorname{FM}(\mathrm{NB}, 2)$
FOR $I=1$ TO NB
INPUT L(I): INPUT SN(I): INPUT CS(I): INPUT JN(I,1): INPUT JN(I,2): INPUT EI (I): INPUT AE (I)
NEXT I
PRINT DS;"CLOSE"B\$
$\mathrm{E} \$=\mathrm{B} \$$
PRINT : PRINT "ARE YOU CALCULATING INFLUENCE LINES?": GET IL\$
PRINT : PRINT "TYPE THE NAME/NUMBER OF THE LOAD CASE(S) TO BE USED: ": INPUT "LOAD CASE- "; FS

110 PRINT : PRINT "TYPE THE NAME/NUMBER OF THE DISPLACEMENT FILE (S) TO BE USED:": INPUT "DISPLACEMENT FILE- ";G\$
115 IF IL\$ > < "Y" THEN 140
120 GOSUB 1000
125 FOR IL = 1 TO NL
130 B $\$=$ "LOAD CASE- $"+F \$+S T R \$$ (IL)
135 GOTO 145
140 BS = "LOAD CASE- " + F $\$$
145 PRINT D\$;"OPEN "B\$",D2"
$150 \quad \mathrm{EC}=2$
155 PRINT D\$;"READ"B\$
160 FOR $I=1 \mathrm{TO}(\mathrm{N}+3)$
165 INPUT DUM\$: NEXT I
170 FOR $I=1$ TO NB
175 FOR $\mathrm{J}=1$ TO 2
$180 \operatorname{INPUT} \operatorname{FV}(I, J): \operatorname{INPUT} \operatorname{FEN}(I, J): \operatorname{INPUT} \operatorname{FM}(I, J)$
185 NEXT J,I
190 PRINT D\$;"CLOSE"B\$
$195 \mathrm{H} \$=\mathrm{B} \$: \mathrm{B} \$=$ "DISPLACEMENT FILE- $"+\mathrm{G} \$+\mathrm{STR} \$$ (IL)
200 IF IL\$ = "Y" THEN 210
205 B $\$=$ "DISPLACEMENT FILE- $"+G \$$
210 PRINT D\$:"OPEN"B\$ + DO\$
$215 \quad E C=3$
220 PRINT D\$;"READ"B\$
225 FOR I = 1 TO 4
230 INPUT DUM\$: NEXT I
235 FOR I = 1 TO N
240 INPUT D(I): NEXT I
245 PRINT D\$;"CLOSE"B\$
250 I $\$=B \$$
255 NJ $=\mathrm{NA}+2+\mathrm{NS}$
260 HOME : PRINT "CALCULATING THE END-FORCES FOR ": PRINT H\$
265 IF NA = NS THEN AS = "N": GOTO 275
270 AS = "Y"
275 REM \#\# TRANSFORM GLOBAL DEFLECTIONS TO LOCAL \#\#
280 FOR MN = 1 TO NB
285 FOR EM $=1$ TO 2

290 EN = $\mathbb{N}(\mathbb{N}, \mathrm{EM}):$ REM /f\#INDEX DISPLACEMENTS TO EXCLUDE SUPPORT CONDITIONS ${ }^{*}$

295
300
$K 1=1$
IF $E N=1$ THEN K1 $=0$
IF EN $>$ NS +1 THEN Kl $=5$
$\mathrm{DN}=3 *(\mathrm{EN}-1)-\mathrm{K} 1$
$E K=3 *(E M-1)+1$
IF EN = 1 THEN 360: REM \#FCHECK FOR BEAM SUPPORTS\#\#
IF EN = NS +1 THEN 360
IF EN $=\mathrm{NS}+2$ THEN 370: REM \#\&CHECK FOR ARCH SUPPORTS響
IF EN = NJ THEN 370
$D L(M N, E K)=D(D N+1) * C S(M N)+D(D N+2) * S N(M N)$
$\mathrm{DL}(\mathrm{MN}, \mathrm{EK}+1)=-\mathrm{D}(\mathrm{DN}+1) * \mathrm{SN}(\mathrm{MN})+\mathrm{D}(\mathrm{DN}+2) * \mathrm{CS}(\mathrm{MN})$
$D L(M N, E K+2)=D(D N+3)$
GOTO 370
$\mathrm{DL}(\mathrm{MN}, \mathrm{EK})+\mathrm{D}(\mathrm{DN}+1) * \mathrm{CS}(\mathrm{MN})$
$D L(M N, E K+2)=D(D N+2)$
NEXT EM
rem 脐 CALCULATE THE MOMENT AND SHEAR FOR EACH MEMBER $\# \#$
FOR $\mathrm{K}=1$ TO 2
$K Z=6: K X=3:$ IF $K=1$ THEN 395
$X Z=3: K X=6$
$\mathrm{V}(\mathbb{M}, \mathrm{K}, \mathrm{IL})=+12 * \operatorname{EI}(\mathbb{M N}) *(\mathrm{DL}(\mathbb{M N}, 2)-\mathrm{DL}(\mathbb{M N}, 5)) / \mathrm{L}(\mathbb{M N})+3+$ 6 * $\mathrm{EI}(\mathrm{MN})$ * ($\mathrm{DL}(\mathrm{MN}, 3)+\mathrm{DL}(\mathbb{M N}, 6)) / \mathrm{L}(\mathrm{MN})+2$
$\mathrm{N}(\mathrm{MN}, \mathrm{K}, \mathrm{IL})=\mathrm{AE}(\mathrm{MN}) *(\mathrm{DL}(\mathrm{MN}, 4)-\mathrm{DL}(\mathrm{MN}, 1)) / \mathrm{L}(\mathrm{MN})$
$\mathrm{N}(\mathrm{MN}, \mathrm{K}, \mathrm{IL})=(-1 \uparrow \mathrm{~K}) * \mathrm{~N}(\mathrm{MN}, \mathrm{K}, \mathrm{IL})+\operatorname{FEN}(\mathrm{MN}, \mathrm{K})$
$M(M N, K, I L)=6 * E I(M N) *(D L(M N, 2)-D L(M N, 5)) / L(M N) \uparrow 2+$ 2 * $\mathrm{EI}(\mathrm{MN}) * \mathrm{DL}(\mathrm{MN}, \mathrm{KZ}) / \mathrm{L}(\mathrm{MN})+4$ * $\mathrm{EI}(\mathrm{MN}) * \mathrm{DL}(\mathrm{MN}, \mathrm{KX}) / \mathrm{L}(\mathrm{MN})+$ FM(MN, K)
$\mathrm{V}(\mathrm{MN}, \mathrm{K}, \mathrm{IL})=(-1 \uparrow(\mathrm{~K}+1) * \mathrm{~V}(\mathrm{MN}, \mathrm{K}, \mathrm{IL})+\mathrm{FV}(\mathrm{MN}, \mathrm{K})$
NEXT K,MN,IL
PRINT : PRINT : PRINT "\#\# STORAGE ROUTINE \#\#": PRINT : PRINT "PLACE THE DISK ON WHICH YOU WANT TO STORE THE FORCE FILE(S) IN DRIVE 2.": PRINT "REPLACE THE PROGRAM DISK IN DRIVE 1."

PRINT : PRINT : PRINT "WHAT NUMBER/TITLE DO YOU WANT TO ASSIGN to the END-FORCE FILE(S)?": INPUT "STRESS FILE- ";A1\$
IF ILS < > "Y" THEN 440

FOR IL $=1$ TO NL: REM $\|^{4}$ STORE THE MEMBER END-FORCE FILES $\# \#$
AS = "STRESS FILE- " + AlS + STR\$ (IL)
$\mathrm{A} \$=$ "STRESS FILE-" $+\mathrm{A} \$$
PRINT D\$;"OPEN"AS",D2"
PRINT DS;"DELETE"AS
PRINT D\$;"OPEN"AS
$E R=0$
PRINT D\$;"WRITE"A\$
PRINT E\$: PRINT H\$: PRINT I\$: PRINT NB
FOR $\mathrm{I}=1 \mathrm{TO} \mathrm{NB}$
FOR $J=1$ TO 2
PRINT V(I,J,IL): PRINT N(I,J,IL): PRINT M(I,J,IL)
IF ER > 0 THEN 445
NEXT J,I
PRINT D\$;"CLOSE"A\$
NEXT IL
PRINT : PRINT "END-FORCE CALCULATIONS ARE COMPLETE": PRINT : PRINT "ENSURE THAT THE PROGRAM DISK IS IN": PRINT "DRIVE 1. PRESS RETURN WHEN READY.": GET O\$

IF ILS > < "Y" THEN 520
PRINT D\$;"RUN INFL COEF,D1"
PRINT : PRINT : PRINT "DO YOU WANT TO RETURN TO THE MENU OR GO TO THE PRINT ROUTINE? (M / P) ": GET 0 \$
IF $0 \$=$ "P" THEN 535
PRINT DS;"RUN HELLO,DI"
PRINT DS;"RUN PRLNTER,D1"
PRINT : PRINT : PRINT "ARE THE LOAD CASE FILES AND THE": PRINT "DISPLACEMENT FILES ON THE SAME DATA DISKDIFFERENT DISKS OR A MIXTURE? (S/D/M)": GET O\$

IF OS = "S" THEN RETURN
PRINT : PRINT : PRINT "INSERT THE DATA DISK WITH THE DISPLACEMENT FILES IN DRIVE 1 ": PRINT : PRINT "PRESS RETURN WHEN READY": GET 01\$

IF O\$ = "M" THEN 1040
DOS = ",D1"
RETURN

5000 ER $=$ PEEK (222): REM $\$$ \#USER ERROR HANDLING ROUTINE F\#
5010 IF ER $=5$ THEN 5100: REM END OF DATA
5020 IF ER $=9$ THEN 5200: REM DISK FULL
5030 IF ER + 13 THEN 5300: REM FILE TYPE MISMATCH
5040 IF ER $=6$ THEN 5400: REM FILE NOT FOUND
5080 HOME : PRINT "ERROR \# "ER: END
5100 PRINT : PRINT : PRINT "YOU HAVE EITHER MISTYPED OR INPUT THE NAME OF A FILE WHICH DOES NOT EXIST ON THE DATA DISK."
5110 IF EC $=1$ THEN 5180
5115 IF EC $=2$ THEN 5160
5120 IF IL $=1$ THEN 5160
5130 IF O\$ $=$ "M" THEN DO\$ $={ }^{\prime \prime}$,D1": GOTO 130
5160 PRINT "TRY AGAIN": PRINT D\$;"DELETE"B\$: GOTO 105
5180 PRINT "TRY AGAIN"
5190 PRINT D\$;"DELETE "B\$: GOTO 25
5200 PRINT : PRINT : PRINT "THE DATA DISK IS FULL. REPLACE IT WITH AN INITIALIZED DISK WITH SPACE AVAILABLE"
5210 PRINT : PRINT "HIT RETURN WHEN READY TO CONTINUE": GET OE\$
5220 PRINT : RESUME
5300 PRINT : PRINT : PRINT "FILE TYPE MISMATCH": PRINT "RETYPE YOUR INPUT. BE SURE TO USE THE APPROPRIATE NUMBER OR STRING."
5310 RESUME
5400 PRINT : PRINT : PRINT "REPLACE THE PROGRAM DISK IN DRIVE 1": PRINT : PRINT "HIT RETURN WHEN READY": GOTO 520

Influence Line Program:

5 REM THIS ROUTINE ASSEMBLES THE INFLUENCE COEFFICIENT VALUES AND USES THEM TO CALCULATE THE INFLUENCE LINES.

10
20
25

REM ** $12 / 27 / 83 * *$
DIM IC (101,23), L(6),IL(66)
$D \$=\quad " n$
HOME : VTAB (5)
PRINT "THIS PROGRAM ASSEMBLES THE INFLUENCE": PRINT "COEFFICIENT Values and uses them to": PRINT "CALCULATE the influence lines." PRINT : PRINT "AN INPUT FILE AND A COMPLETE SET OF": PRINT "ENDFORCE ('STRESS') FILES ARE NERDED TORUN THIS PROGRAM."

PRINT : PRINT "A CLEAN INITLALIZED DISK IS NEEDED TO": PRINT "STORE THE INFLUENCE LINE FILES": PRINT "IT IS DESIRABLE TO HAVE A COPY OF THE APPROPRIATE INPUT FILE ON THIS DISK."
PRINT " PRINT "AT THIS TIME THE DATA DISK IN DRIVE \#2 SHOULD CONTAIN AN INPUT FILE AND THE SETOF END-FORCE FILES."
PRINT : PRINT : PRINT "TYPE THE TITLE/NUMBER OF THE INPUT FILE TO BE USED FOR THIS PROGRAM":" INPUT "INPUT FILE- ";B\$
PRINT : REM READ THE BEAM SPAN LENGTHS
REM READ THE LENGTHS OF THE BEAM SPANS
$\mathrm{B} \$=$ "INPUT FILE- $"+\mathrm{B} \$$
PRINT D\$;"OPEN"B\$",D2"
PRINT DS;"READ"B\$
INPUT NS,NA
FOR $I=1$ TO NS: INPUT $L(I)$,DUM,DUM,DUM,DUM,DUM,DUM: NEXT
PRINT D\$;"CLOSE"B\$
$\mathrm{NB}=2 * \mathrm{NS}-1+\mathrm{NA}$
NL $=4$ * NS:NI $=6$ * NB:EC $=2$
REM READ FIXED-END MOMENT AND SHEAR COEFFICIENT FILES
PRINT : PRINT : PRINT "TYPE THE TITLE/NUMBER OF THE END-FORCE FILES TO BE USED:": INPUT "STRESS FILE- ";A1\$
HOME : VTAB (6): PRINT "RETRIEVING END-FORCE PILES"
FOR $I=1$ TO NL
$A \$=$ "STRESS FILE- $"+A I \$+S T R \(I)
PRINT DS;"OPEN"AS",D2"
PRINT D\$;"READ"A\$

115
120
125
130
135

INPUT $\mathrm{B} \$, \mathrm{C} \$, \mathrm{E} \$, \mathrm{NB}$
FOR $\mathrm{J}=1$ TO NI
INPUT IC (J - 1,I - 1)
NEXT J
PRINT D\$;"CLOSE"A\$
NEXT I
PRINT : PRINT "TYPE THE TITLE/NUMBER YOU WANT TO USE TO IDENTIFY THIS SET OF INFLUENCE LINES:": INPUT "INFLUENCE LINE- "I1\$
HOME : VTAB (8): PRINT "A CLEAN DISC must be placed IN dRIVE 2 TO RECEIVE THE INFLUENCE FILES": PRINT "PRESS RETURN WHEN READY TO CONTINUE": GET O\$
FOR IL $=1$ TO NI: REM FOR EACH END FORCE OR MOMENT (6 PER MEMBER)
HOME : VTAB (6): PRINT "CALCULATING INFLUENCE LITNE- "I1\$;IL
$I K=0$
PRINT : REM CLEARS GET FOR DOS
FOR MN = 1 TO NS: REM LOAD EACH SPAN SEQUENTIALLY FROM LEFT TO RIGHT
$\mathrm{X}=0: \mathrm{MC}=(\mathrm{MN}-1) * 4$
FOR $J=1$ TO 11: REM MOVE A UNIT LOAD 0.1L ALONG SPAN $\neq \mathrm{MN}$
$P=1: X=X+.1 * L(M N): I K=I K+1$
IF $\mathrm{J}=11$ THEN $\mathrm{X}=\mathrm{L}$ (MN) -.0001
IF $\mathrm{J}=1$ THEN $\mathrm{X}=.0001$
REM CALCULATE FIXED-END MOMENTS AND SHEARS
$\mathrm{V} 1=+\mathrm{P} *(\mathrm{~L}(\mathrm{MN})+2 * \mathrm{X}) *((\mathrm{~L}(\mathrm{MN})-\mathrm{X})+2) / \mathrm{L}(\mathrm{MN})+3$
$\mathrm{V} 2=\mathrm{P} *(\mathrm{X})+2 *(3 * \mathrm{~L}(\mathbb{N})-2 * \mathrm{X}) / \mathrm{L}(\mathbb{N}) \uparrow 3$
$\mathrm{M} 1=\mathrm{P} * \mathrm{X} *(\mathrm{~L}(\mathrm{MN})-\mathrm{X})+2 / \mathrm{L}(\mathbb{M})+2$
$\mathrm{M} 2=-\mathrm{P} *(\mathrm{~L}(\mathrm{MN})-\mathrm{X}) *(\mathrm{X})+2 / \mathrm{L}(\mathrm{MN})+2$
REM CALCULATE INFLUENCE LINE VALUES AS THE SUM OF FIXED-END VALUES TIMES THE INFLUENCE COEFFICIENT VALUES

$$
\begin{aligned}
& I L(I K)=V 1 * I C(I L-1, M C)+M 1 * I C(I L-1, M C+1)+V 2 * I C(I L-1 \\
& M C+2)+M 2 * I C(I L-1, M C+3)
\end{aligned}
$$

NEXT J,MN
REM STORE THE INFLUENCE LINES
IL $\$=$ "INFLUENCE LINE- $"+$ I $1 \$+$ STR $\$(I L)$
HOME : VTAB (10):PRINT "STORING "IL\$
PRINT D\$;"OPEN"IL\$
PRINT D\$;"DELETE"IL\$
PRINT D\$;"OPEN"IL\$

265

5030 IF ER $=13$ THEN 5300: REM FILE TYPE MISMATCH
5080 HOME : PRINT "ERROR \#"ER: END
5100 PRINT : PRINT : PRINT "YOU HAVE EITHER MISTYPED OR INPUT THE NAME OF A FILE WHICH DOES NOT EXIST."
5110 PRINT "TRY AGAIN"
5115 IF EC $=2$ THEN 5130
5120 PRINT DS;"DELETE"B\$: GOTO 35
5130 PRINT D\$;"DELETE"A\$: GOTO 95
5200 PRINT : PRINT : PRINT "THE DATA DISK IS FULL. REPLACE IT WITH AN INITIALIZED DISK WITH SPACE AVAILABLE"
PRINT : PRINT "HIT RETURN WHEN READY TO CONTINUE": GET OE\$
PRINT : GOTO 245
PRINT : PRINT : PRINT "FILE TYPE" MISMATCH": PRINT "RETYPE YOUR INPUT. BE SURE TO USE THE APPROPRIATE NUMBER OF STRING."
5310 RESUME
PRINT D\$;"WRITE"IL\$
PRINT NS * 11
FOR $I=1$ TO (NS * 11) : PRINT IL(I) : NEXT
PRINT D\$;"CLOSE"IL\$
NEXT IL
RUN "AASHTO,D1"
END
ER = PEEK (222)
IF ER $=5$ THEN 5100: REM END OF DATA
IF ER $=9$ THEN 5200: REM DISK FULL

AASHTO Rolling Load Program:

15 REM THIS ROUTINE LOADS THE STRUCTURE WITH AASHO HS20 ROLLING LOAD.
16 HOME : VTAB (6)
17 PRINT "THIS PROGRAM USES AN INPUT FILE AND A": PRINT "SERIES OF INFLUENCE LINES TO CALCULATE THE AASHTO HS2O ROLLING LOAD MAXIMUMS AND MINIMUMS."

PRINT : PRINT "THE DATA DISK IN DRIVE \#2 SHOULD CONTAIN AN INPUT FILE AND THE INFLUENCE LINE": PRINT "FILES TO BE USED. ${ }^{\text {: }: ~ P R I N T ~}$ "REPLACE THE PROGRAM DISK WITH A CLEAN, INITIALIZED DATA DISK IN DRIVE \#1"

PRINT : PRINT "TYPE THE TITLE/NUMBER OF THE INPUT FILE TO BE USED:": INPUT "INPUT FILE- ";A\$
$\mathrm{A} \$=$ "INPUT FILE- $"+\mathrm{A} \$: \mathrm{D} \$="+$
PRINT DS;"OPEN"AS",D2"
PRINT D\$;"READ"AS
INPUT NS,NA
REM DEFINE PARAMETERS
$\mathrm{NB}=2$ * $\mathrm{NS}+\mathrm{NA}-1$
DIM L(NS), IL (NS,11), SL (NS + 1), S((NS + 1) * 11), EQ(6 * NB2)
$\mathrm{SL}(0)=0$
FOR $I=0$ TO NS -1
INPUT L(I), DUM,DUM,DUM,DUM,DUM,DUM
$\mathrm{L}(\mathrm{I})=\mathrm{L}(\mathrm{I}) / 12$
REM ACCUMULATIVE COUNTER GIVES THE TOTAL LENGTH ALONG THE STRUCTURE TO LEFT END OF THE CURRENT SPAN
$\mathrm{SL}(\mathrm{I}+1)=\mathrm{SL}(\mathrm{I})+\mathrm{L}(\mathrm{I}): \operatorname{NEXT}$
$\mathrm{NB}=2$ * NS + NA - 1
PRINT D\$;"CLOSE"AS
$\mathrm{SL}(\mathrm{NS}+1)=\mathrm{SL}(\mathrm{NS})+28$
PRINT : PRINT "TYPE THE TITLE/NUMBER OF THE INFLUENCE LINE FILES TO BE USED: ": INPUT "INFLUENCE LINE- ";C1\$
REM U DEFINES END-FORCES FOR EACH MEMBER
FOR $\mathrm{U}=1$ TO (6 * NB)
HOME : VTAB (6): PRINT "CALCULATING END FORCE \#"U
$110 \mathrm{C} \$=$ "INFLUENCE LINE- $"+\mathrm{Cl} \$+$ STR\$ (U)

115 PRINT DS;"OPEN"C\$",D2"
120 PRINT D\$; "READ"C $\$$
122 INPUT DUM
125 FOR I $=0$ TO NS - 1
127 FOR J = 1 TO 11
130 INPUT IL (I,J): NEXT J,I
$L(N S)=V: E Q(U, 1)=0: E Q(U, 2)=1 E 12$
$165 \quad$ FOR $Q=0$ TO NS
170 FOR R $=1$ TO 11
171 FOR $S=14$ TO 30
$172 \quad V=S+14$
174 REM DISTANCE FROM THE LEFT END OF THE STRUCTURE TO THE FRONT AXLE
$175 \mathrm{X} 1=\mathrm{SL}(\mathrm{Q})+(\mathrm{R}-1) * \mathrm{~L}(\mathrm{Q}) / 10$
176 IF $\mathrm{Q}=\mathrm{NS}$ THEN $\mathrm{Xl}=\mathrm{SL}(\mathrm{Q})+\mathrm{R} * \mathrm{~L}(\mathrm{Q}-1) / 10: \mathrm{Ll}=0$
$177 \quad \mathrm{X} 2=\mathrm{X} 1-14: \mathrm{X} 3=\mathrm{X} 1-\mathrm{V}: \mathrm{T}=\mathrm{T}+1$
180 REM : FIND THE SPAN NUMBERS IN WHICH THE REAR TRACTOR AXLE AND THE TRAILER AXLE ARE LOCATED.
$185 \quad$ Q2 $=0$
187 FOR RAX $=0$ TO $Q+1$
189 IF X2 > = SL (RAX) THEN 193
191 Q2 = RAX - 1: GOTO 195
193 NEXT RAX
$195 \quad$ Q3 $=0$
197 FOR RAX $=0$ TO $Q+1$
199 IF X3 > = SL(RAX) THEN 203
201 Q3 = RAX - 1: GOTO 206
203 NEXT RAX
205 REM CHECK IF THE SECOND AXLE IS ON THE BRIDGE
206 IF Q2 < 0 THEN I2 $=0: I 3=0:$ GOTO 240
208 IF Q2 $=$ NS THEN $\mathrm{Q} 2=0: I 2=0$; GOTO 220
$209 \mathrm{Y} 2=\mathrm{X} 2-\mathrm{SL}(\mathrm{Q} 2)$
$210 \mathrm{~J} 2=\operatorname{INT}(\mathrm{Y} 2 /(\mathrm{L}(\mathrm{Q} 2) / 10))+1$
214 REM INTERPOLATE THE INFLUENCE VALUE $\mathrm{L}(\mathrm{Q} 2) / 10) /(\mathrm{L}(\mathrm{Q} 2) / 10)$

IF Q3 <0 THEN I3 $=0$: GOTO 240
$\mathrm{Y} 3=\mathrm{X} 3-\mathrm{SL}(\mathrm{Q} 3)$
$\mathrm{J} 3=\mathrm{INT}(\mathrm{Y} 3 /(\mathrm{L}(\mathrm{Q} 3) / 10))+1$
REM INTERPOLATE THE INFLUENCE VALUE $\mathrm{L}(\mathrm{Q} 3) / 10) /(\mathrm{L}(\mathrm{Q} 3) / 10)$ CORRESPONDING INFLUENCE VALUES
$\mathrm{ST}=\mathrm{L} 1$ * $\mathrm{IL}(\mathrm{Q}, \mathrm{R})+\mathrm{L} 2 * \mathrm{I} 2+\mathrm{L} 3$ * I 3
IF $\mathrm{ST}>\mathrm{EQ}(\mathrm{U}, 1)$ THEN $\mathrm{EQ}(\mathrm{U}, 1)=\mathrm{ST}$
IF $\mathrm{ST}<\mathrm{EQ}(\mathrm{U}, 2)$ THEN $\mathrm{EQ}(\mathrm{U}, 2)=\mathrm{ST}$
NEXT S, R, Q
NEXT U
$\mathrm{B} \$=$ "AASHTO MAXIMJMS $-"+\mathrm{B} \$$
PRINT D\$;"OPEN"B\$",D1"
PRINT DS;"DELETE"B\$
PRINT DS;"OPEN"BS
PRINT DS;"WRITE"BS

END
$\mathrm{I} 2=\operatorname{IL}(\mathrm{Q} 2, \mathrm{~J} 2)+(\mathrm{IL}(\mathrm{Q} 2, \mathrm{~J} 2+1)-\mathrm{IL}(\mathrm{Q} 2, \mathrm{~J} 2)) *(\mathrm{Y} 2-(\mathrm{J} 2-1) *$

REM CHECK IF THE THIRD AXLE IS ON THE BRIDGE

IF Q3 $=$ NS THEN I3 $=0: T=T-1:$ GOTO 325
$\mathrm{I} 3=\mathrm{IL}(\mathrm{Q} 3, \mathrm{~J} 3)+(\mathrm{IL}(\mathrm{Q} 3, \mathrm{~J} 3+1)-\mathrm{IL}(\mathrm{Q} 3, \mathrm{~J} 3))$ * $(\mathrm{Y} 3-(\mathrm{J} 3-1)$ *

REM OBTAIN THE FORCE VALUE BY MULTIPLYING THE AXLE LOADS BY THE

HOME : VTAB (5): PRINT "THE MAXIMUM AND MINIMUM VALUES OBTAINED WILL BE STORED ON THE DATA DISK $I N^{\prime \prime}$: PRINT "DRIVE \#2"
PRTNT : PRINT "TYPE THE TITLE/NUMBER THAT YOU WISH TO USE TO IDENTIFY THIS AASHTO FILE:": INPUT "AASHTO MAXIMUMS- "BS

AASHTO Equivalent Load Program:

10 REM 䔨 $9 / 13 / 83$ 解

REM THIS ROUTINE LOADS THE STRUCTURE WITH AASHO HS 20 EQUIVALENT LOADING

HOME : VTAB (6): PRINT "THIS PROGRAM USES AN INPUT FILE AND A": PRINT "SET OF INFLUENCE LINE FILES TO CALCULATE THE MAXIMUM POSITIVE AND NEGATIVE END-": PRINT "FORCES ON EACH MEMBER."
PRINT : PRINT "IN EACH CASE THE STRUCTURE IS LOADED": PRINT "WITH THE WORST CASE' AASHTO HS20": PRINT "EQUIVALENT LOADING."
PRINT : PRINT "THE DISC IN DRIVE \#\# SHOULD CONTAIN THE INPUT FILE AND SET OF INFLUENCE LINES ${ }^{*}$
PRINT : PRINT "TYPE THE TITLE/NUMBER OF THE INPUT FILE TO BE USED:": INPUT "INPUT FILE- ";A\$
$\mathrm{A}=\mathrm{F}=$ INPUT FILE- $"+\mathrm{A} \$: D \$=7 \prime$
PRINT DS;"OPEN"AS",D2"
PRINT DS;"READ"A\$
INPUT NS,NA
$N B=2 * N S+N A-1$
DIM L(NS), $\mathrm{IL}(\mathbb{N} S+1,11), \mathrm{EQ}(6$ * NB2)
$\mathrm{SL}(0)=0$
FOR $I=0$ TO NS -1
INPUT L(I), DUM,DUM,DUM,DUM,DUM,DUM
$L(I)=L(I) / 12$
NEXT I
$N B=2 * N S+N A-1$
PRINT D\$;"CLOSE"AS
LI + 1:LI\$ = "MOMENT":EI\$ = "RIGHT"
PRINT : PRINT "TYPE THE TITLE/NUMBER OF THE SET OF": PRINT "INFLUENCE LINE FILES TO BE USED: ": INPUT "INFLUENCE LINE- ";C1\$
PRINT : PRINT "DO YOU WANT TO SEE THE OUTPUT BEFORE IT IS STORED?": GET P\$
IF PS < > "Y" THEN 100
PRINT : PRINT "PRINTER OR SCREEN? (P / S)": GET P1\$
FOR $\mathrm{U}=1$ TO (6 * NB)
$\mathrm{K}=0$
$\mathrm{C} \$=$ "INFLUENCE LINE- $"+\mathrm{C} 1 \$+\operatorname{STR} \(U)

115 PRINT D\$;"OPEN"C\$",D2"
120 PRINT D\$;"READ"C\$
122 INPUT DUM
125 FOR I = 1 TO NS
127 FOR $J=1$ TO 11
130 INPUT IL ($I, J)$
140 NEXT J, I
150 PRINT D\$;"CLOSE"C\$
$155 \mathrm{YX}=0: \mathrm{YN}=10 \mathrm{E} 12: \mathrm{PA}=0: \mathrm{NA}=0: \mathrm{IX}=1: \mathrm{IN}=1$
$160 \quad$ FOR $N=1$ TO NS
$165 \quad \mathrm{SP}=\mathrm{L}(\mathrm{N}) / 120$
170 FOR I = 2 TO 11
175 I1 = $I-1: I 2=I: I 3=I+1$
180 IF I < 9 GOTO 190
$185 \mathrm{I} 1=\mathrm{I}: I 2+\mathrm{I}-1: 13=I-2$
$190 \operatorname{IF} \operatorname{IL}(\mathbb{N}, \mathrm{I}-1) * \operatorname{IL}(\mathrm{~N}, \mathrm{I})<0$ THEN 225
$195 \operatorname{IF} \operatorname{IL}(\mathbb{N}, \mathrm{I}-1)>0$ THEN 215
$200 \operatorname{IF} \operatorname{IL}(\mathrm{~N}, \mathrm{I})>0$ THEN 215
$205 \mathrm{NA}=\mathrm{NA}+\mathrm{SP} *(5 * \operatorname{IL}(\mathrm{~N}, \mathrm{I} 1)+8 * \operatorname{IL}(\mathrm{~N}, \mathrm{I} 2)-\mathrm{IL}(\mathrm{N}, \mathrm{I} 3))$
210 GOTO 270
$215 \mathrm{PA}=\mathrm{PA}+\mathrm{SP}$ * $(5 * \mathrm{IL}(\mathrm{N}, \mathrm{I} 1)+8 * \operatorname{IL}(\mathrm{~N}, \mathrm{I} 2)-\mathrm{IL}(\mathrm{N}, \mathrm{I} 3))$
220 GOTO 270
$225 \mathrm{D} 1=12$ * SP * $\mathrm{IL}(\mathrm{N}, \mathrm{I}-1) /(\mathrm{IL}(\mathrm{N}, \mathrm{I}-1)-\mathrm{IL}(\mathrm{N}, \mathrm{I}))$
$230 \quad \mathrm{D} 2=12$ * SP - D1
$235 \quad \mathrm{~A} 1=\mathrm{D} 1 * \mathrm{IL}(\mathrm{N}, \mathrm{I}-1) / 2$
$240 \quad \mathrm{~A} 2=\mathrm{D} 2$ * $\mathrm{IL}(\mathrm{N}, \mathrm{I}) / 2$
245 IF IL $(\mathrm{N}, \mathrm{I}-1)>0$ THEN 265
$250 \quad \mathrm{NA}=\mathrm{NA}+\mathrm{Al}$
$255 \quad \mathrm{PA}=\mathrm{PA}+\mathrm{A} 2$
260 GOTO 270
$265 \mathrm{PA}=\mathrm{PA}+\mathrm{A} 1: \mathrm{NA}=\mathrm{NA}+\mathrm{A} 2$
270 NEXT I
285 FOR I = I TO 11
290 IF $\operatorname{IL}(N, I)>$ YX THEN 300
295 GOTO 305
$300 \quad \mathrm{IX}=\mathrm{I}: \mathrm{NX}=\mathrm{N}: \mathrm{YX}=\mathrm{IL}(\mathrm{N}, \mathrm{I})$

305 IF IL（N，I）＞YN THEN 320
$310 \quad \mathrm{IN}=\mathrm{I}: \mathrm{NN}=\mathrm{N}: Y \mathrm{~N}=\mathrm{IL}(\mathrm{N}, \mathrm{I})$
320 NEXT I，N
$323 \quad E L=18000$
325 IF $\mathrm{U}><$ LI THEN 340
330 EL $=26000: L I=L I+3$
$340 \mathrm{EQ}(\mathrm{U}, 1)=640 * \mathrm{PA}+\mathrm{EL} * \mathrm{YX}$
$345 \mathrm{EQ}(\mathrm{U}, 2)=640 * \mathrm{NA}+\mathrm{EL} * \mathrm{YN}$
346 IF PS＞＜＂Y＂THEN 390
347 IF P1\＄＞＜＂P＂THEN 350
348 PR意 1
350 IF LI\＄＝＂AXIAL＂THEN LI\＄＝＂MOMENT＂：GOTO 375
355 IF LI\＄＝＂SHEAR＂THEN LI\＄＝＂AXIAL＂；GOTO 375
360 IF LI $\$=$＂MOMENT＂THEN LI $\$=$＂SHEAR＂
365 IF EI $=$＂RIGHT＂THEN EI\＄＝＂LEFT＂：GOTO 375
370 IF EI\＄＝＂LEFT＂THEN EI\＄$=$＂RIGHT＂
375 PRINT EI\＄＂END＂LIS＂：MEMBER 抽 INT（（ $\mathrm{C}=1$ ）／6）＋ 1
380 PRINT EQ $(\mathrm{U}, 1) \operatorname{SPC}(7) E Q(U, 2)$
390 NEXT U
391 PR書 0
395 HOME ：VTAB（5）：PRINT＂ALL OF THE OUTPUT FOR THIS PROGRAM WILL BE STORED ON THE DATA DISK IN DRIVE \＃2 IN ONE FILE．＂
$\mathrm{BS}=$＂EQUIVALENT LOAD FILE $-"+\mathrm{B} \$$
420 PRINT D\＄；＂OPEN＂B\＄＂，D1＂
425 PRINT D\＄；＂DELETE＂B\＄
430 PRINT D\＄；＂OPEN＂B\＄
435 PRINT D\＄；＂WRITE＂B\＄
440 PRINT 12 ＊NB，A $\$$
445 FOR $U=1$ TO $6 *$ NB
450 FOR V $=1$ TO 2
455 PRINT EQ (U, V) ：NEXT V，U
460 PRINT D\＄${ }^{\prime \prime}$ CLOSE ${ }^{\prime \prime}$ BS
475 PRINT D\＄；＂RUN HELLO，D1＂

Support Settlement Program:

10 HOME : VTAB (6)

11

PRINT "THIS PROGRAM CALCULATES THE DISPLACEMENT OF EACH MEMBER CAUSED BY THE SETTLEMENT OR ROTATION OF ANY SUPPORT(S)"
PRINT : PRINT "THE K INVERSE FILE IS REQUIRED FOR INPUT AND MUST BE ON THE DATA DISK IN DRIVE $\$ 2^{\prime \prime}$
PRINT : PRINT "THE RESULTING DISPLACEMENT VECTOR IS": PRINT "STORED ON THE DATA DISK. THIS VECTOR IS THEN USED IN THE STRESS PROGRAM TO": PRINT "CALCULATE THE INDUCED END-FORCES" D\$ = "'"

PRINT : PRINT "DO YOU WANT TO EXAMINE THE CONTENTS OF THE DISK IN DRIVE \#2?": GET O\$
IF $\mathrm{O} \$$ < > "Y" THEN 30
home : PRINT "These are the files currently on your data disk:"
PRINT : PRINT DS"CATALOG,D2"
PRINT : PRINT : PRINT "TYPE THE TITLE/NUMBER OF THE STIFFNESS FILE that you want to use: ": input "Stiffness file- "; CS
C $\$=$ "STIFFNESS FILE- ${ }^{n}-\mathrm{C} \$$
PRINT D\$;"OPEN"CS",D2"
PRINT D\$;"READ"C\$
INPUT B $\$$
PRINT DS"CLOSE"C\$
PRINT D\$;"OPEN";B\$
PRINT D\$;"READ";B\$
INPUT NS
INPUT NA
$N C=N S-1: N B=N S+N C+N A: N J=N S+N A+2: N=3 * N J-8: T F$ $N A=$ NS THEN AS $=$ "N":CC $=1:$ GOTO 90
$\mathrm{AS}=\mathrm{F} \mathrm{Y} ": C C=0$
$\operatorname{DIM} L(N B), S N(N B), C S(N B), E I(N B), A E(N B), J N(N B, 2), K I(N, N), I D(N, 2)$, $\mathrm{KR}(\mathrm{N}, 8), \mathrm{D}(\mathrm{N})$
FOR $I=1$ TO NB
INPUT L(I): INPUT SN(I): INPUT CS(I): INPUT JN(I,1): INPUT JN(I,2); INPUT EI(I): INPUT AE(I)
NEXT I

110 PRINT D\$"CLOSE"B\$
140 REM ** CONVERT KE TO K FOR THE LEFT BEAM SUPPORT **
145 HOME : PRINT "CALCULATING THE K-FR PORTION OF THE STIFFNESS MATRIX"
150 GOSUB 3000
$155 \operatorname{CK}(1)=1: \operatorname{CK}(2)=N+1: \operatorname{CK}(3)=2: C K(4)=3: C K(5)=4: C K(6)=5$
$160 \mathrm{~L}=1: \operatorname{GOSUB} 5000$
165 GOSUB 3200
$170 \quad \mathrm{IJ}=(\mathrm{NS}-1) * 3$
175 GOSUB 3000
$180 \operatorname{CK}(1)=I J: C K(2)=I J+1: C K(3)=I J+2: C K(4)=I J+3: C K(5)=$ $\mathrm{N}+2: \mathrm{CK}(6)=\mathrm{IJ}+4$
$185 \mathrm{~L}=\mathrm{NS}: \operatorname{GOSUB} 5000$
190 GOSUB 3200
195 REM **THIS BRANCH ACCOUNTS FOR COLUMNS ATTACHED TO FIXED SUPPORTS**
200 IF $\mathrm{A} \$=$ "N" GOTO 260
$205 \quad \mathrm{~L}=\mathrm{NS}+1:$ GOSUB 3000
210 GOSUB 5000
$215 \mathrm{CK}(1)=3: \mathrm{CK}(2)=4: \mathrm{CK}(3)=5$
$220 \quad \mathrm{CK}(4)=\mathrm{N}+3: \mathrm{CK}(5)=\mathrm{N}+4: \mathrm{CK}(6)=\mathrm{N}+5$
225 GOSUB 3200
230. $\mathrm{RN}=(\mathrm{NC}-1) * 3+2$

235 GOSUB 3000
$240 \mathrm{~L}=\mathrm{NS}+\mathrm{NC}:$ GOSUB 5000
$245 \mathrm{CK}(1)=\mathrm{RN}+1: \mathrm{CK}(2)=\mathrm{RN}+2: \mathrm{CK}(3)=\mathrm{RN}-3$
$250 \quad \operatorname{CK}(4)=N+6: C K(5)=N+7: C K(6)=N+8$
255 GOSUB 3200
260 REM **ACCOUNT FOR ARCHES ATTACHED TO SUPPORTS**
$265 \quad \mathrm{RJ}=\mathrm{NS} * 3+1$
$270 \quad \mathrm{~L}=\mathrm{NS}+\mathrm{NC}+1$
275 GOSUB 3000
280 GOSUB 5000
$285 \operatorname{CK}(1)=N+3: C K(2)=N+4: C K(3)=N+5$
$290 \mathrm{CK}(4)=\mathrm{RJ}+1: \mathrm{CK}(5)=\mathrm{RJ}+2: \mathrm{CK}(6)=\mathrm{RJ}+3$
295 GOSUB 3200
$300 \mathrm{RJ}=(\mathrm{NS}+\mathrm{N} 4-1) * 3+1$
$305 \mathrm{~L}=\mathrm{NB}$

440 PRINT : PRINT "DISPLACEMENTS AT THE LEFT ARCH SUPPORT;"
GOSUB 3000
GOSUB 5000
$\mathrm{CK}(1)=\mathrm{RJ}+1: \mathrm{CK}(2)=\mathrm{RJ}+2: \mathrm{CK}(3)=\mathrm{RJ}+3$
$C K(4)=N+6: C K(5)=N+7: C K(6)=N+8$
gosub 3200
PRINT D\$;"OPEN"C\$
PRINT DS;"READ"C\$
INPUT B\$,N
FOR $I=1$ TO N
FOR J + 1 TO N
INPUT KI(I,J)
NEXT, J, I
PRINT D\$;"CLOSE"C\$

HOME : VTAB (6): PRINT "\#等 SETTLEMENT DISPLACEMENT INPUT ROUTINE"
PRINT : PRINT : PRINT "IS THERE ANY SETTLEMENT AT EITHER OF THE BEAM SUPPORTS? ": GET OS

IF $0 \$=$ " N^{\prime} THEN 430
PRINT : INPUT "WHAT IS THE SETTLEMENT AT THE LEFT BEAM SUPPORT? (IN)"; S(1)
PRINT : INPUT "WHAT IS THE SETTLEMENT AT THE RIGHT BEAM SUPPORT? (IN)"; S(2)
PRINT : PRINT : PRINT "ARE THERE ANY DISPLACEMENTS AT THE ARCH SUPPORTS": GET O\$

IF $0 \$$ = " N " THEN 470

INPUT " THE X-COMPONENT (IN): "; $\mathrm{S}(3)$
INPUT " THE Y-COMPONENT (IN): ";S(4)
INPUT " THE ROTATION (RAD): ";S(5)
PRINT : PRINT : PRINT "DISPLACEMENTS AT THE RIGHT ARCH SUPPORT:"
INPUT " THE X-COMPONENT (IN): ";S(6)
INPUT " THE Y-COMPONENT (IN): ";S(7)
INPUT " THE ROTATION (RAD): ";S(8)
FOR $I=1$ TO N
$\mathrm{KI}=0$
FOR $\mathrm{J}=1$ TO 8
FOR K $=1$ TO N

$$
K T=K T+K I(I, K) * K R(K, J)
$$

505

3015 FOR J = 1 TO 6
$3018 \mathrm{KT}(\mathrm{I}, \mathrm{J})=0: K G(I, J)=0$
3020 NEXT J, I
3030 RETURN
3200 REM **CONVERT KE TO K**
3210 FOR J = 1 TO 6
$3220 \quad \mathrm{RK}=\mathrm{CK}(\mathrm{J})$
3225 IF RK $>=\mathrm{N}$ THEN RK $=0$
3230 FOR $K=1$ TO 6
$3240 \quad \mathrm{CK}=\mathrm{CK}(\mathrm{K})-\mathrm{N}$
3241 IF $\mathrm{CK}<=0$ THEN CK $=0$
$3250 \mathrm{KR}(\mathrm{RK}, \mathrm{CK})=\mathrm{KR}(\mathrm{RK}, \mathrm{CK})+\mathrm{KG}(\mathrm{J}, \mathrm{K})$
3260 NEXT K,J
3270 RETURN
5000 REM **KE-GLOBAL SUBROUTINE**
5010 REM **INPUT KE-LOCAL**
$5020 \mathrm{~A} 1=\mathrm{AE}(\mathrm{L}): \mathrm{B}=6 * \mathrm{EI}(\mathrm{L}) / \mathrm{L}(\mathrm{L}): \mathrm{C}=12 * \mathrm{EI}(\mathrm{L}) /(\mathrm{L}(\mathrm{L})) \uparrow 2$
$5040 \operatorname{KE}(1,1)=\operatorname{Al}: \operatorname{KE}(1,4)=-\operatorname{A} 1: \operatorname{KE}(4,1)=-\operatorname{Al}: \operatorname{KE}(4,4)=\mathrm{A} 1$
$5050 \operatorname{KE}(2,2)=\operatorname{C:KE}(2,3)=+\mathrm{B}: \mathrm{KE}(2,5)=-\mathrm{C}: \mathrm{KE}(2,6)=+\mathrm{B}$
$5060 \operatorname{KE}(3,2)=+\operatorname{B}: \operatorname{KE}(3,3)=4 * \operatorname{EI}(\mathrm{~L}): \operatorname{KE}(3,5)=-\operatorname{B}: \operatorname{KE}(3,6)=2 * \operatorname{EI}(\mathrm{~L})$
$5070 \operatorname{KE}(5,2)=-\operatorname{C}: \operatorname{KE}(5,3)=-\operatorname{B}: \operatorname{KE}(5,5)=\operatorname{C:KE}(5,6)=-B$
$5080 \operatorname{KE}(6,2)=+\mathrm{B}: \operatorname{KE}(6,3)=2 * \operatorname{EI}(\mathrm{~L}): \operatorname{KE}(6,5)=-\mathrm{B}: \operatorname{KE}(6,6)=4 * \operatorname{EI}(\mathrm{~L})$
5082 FOR I = 1 TO 6
5084 FOR $J=1$ TO 6
$5086 \operatorname{KE}(\mathrm{I}, \mathrm{J})=\operatorname{KE}(\mathrm{I}, \mathrm{J}) / \mathrm{L}(\mathrm{L})$
5088 NEXT J, I
5100 REM **INPUT TRANSFORMATION MATRIX (TT)**
$5120 \mathrm{~T}(1,1)=\operatorname{CS}(\mathrm{L}): T(1,2)=-\mathrm{SN}(\mathrm{L})$
$5130 \mathrm{~T}(2,1)=\operatorname{SN}(\mathrm{L}): T(2,2)=\operatorname{CS}(\mathrm{L})$
$5140 \quad T(3,3)=1: T(6,6)=1$
$5150 \mathrm{~T}(4,4)=\operatorname{CS}(\mathrm{L}): T(4,5)=-\operatorname{SN}(\mathrm{L})$
$5160 \mathrm{~T}(5,4)=\operatorname{SN}(\mathrm{L}): T(5,5)=\operatorname{CS}(\mathrm{L})$
5200 REM $* *$ COMPUTE KE-GLOBAL $=T T * \operatorname{KE}(L) * T * *$
5220 FOR J $=1$ TO 6
5230 FOR K $=1$ TO 6
5240 FOR I $=1$ TO 6
$5250 \operatorname{KT}(\mathrm{~J}, \mathrm{~K})=\operatorname{KT}(\mathrm{J}, \mathrm{K})+\mathrm{KE}(\mathrm{J}, \mathrm{I}) * \mathrm{~T}(\mathrm{~K}, \mathrm{I})$
5260 NEXT I, K, J
5280 FOR J = 1 TO 6
5290 FOR K $=1$ TO 6
5300 FOR $I=1$ TO 6
$5310 \mathrm{KG}(\mathrm{J}, \mathrm{K})=\mathrm{KG}(\mathrm{J}, \mathrm{K})+\mathrm{T}(\mathrm{J}, \mathrm{I}) * \mathrm{KT}(\mathrm{I}, \mathrm{K})$
5320 NEXT I,K,J
5330 RETURN

Data Printer Utility:

5 REM **7/19/83**

10 REM PRINT ROUTINE FOR FILES
12 HOME : VTAB (4): PRINT "静PRINTER ROUTINE \#"

104 PRINT DS;"OPEN";AS;",D2
106 PRINT DS;"READ";A\$
108 INPUT NS,NA
$110 \mathrm{NB}=2 * \mathrm{NS}+\mathrm{NA}-1$
112 DIM L(NB), SN (NB) , CS (NB), JN(NB , 2), $\mathrm{EI}(\mathrm{NB}), \mathrm{AE}(\mathrm{NB})$
114 FOR I $=1$ TO NB
116 INPUT L(I), SN(I), CS (I) ,JN(I, 1), JN (I, 2) , EI (I) , $\mathrm{AE}(\mathrm{I})$
118 NEXT I
120 PRINT D\$;"CLOSE";A\$
122 PR \| 1
124 PRINT AS: PRINT : PRINT "NS = "NS, "NA = "NA

126 PRINT : PRINT "LENGTH","SINE","COSINE","LEFT END","RIGHT END", "EI", "AE": PRINT
128 FOR I $=1$ TO NB
130 PRINT L(I) ,SN(I),CS (I), NN (I, 1), NN(I,2), EI (I) , AE (I)
132 NEXT I
134 PR\# 0
136 GOTO 1000
200 HOME : PRINT : PRINT : PRINT : INPUT "STIFFNESS FILE NAME: ";AS
203 AS $=$ "STIFFNESS FILE- $"+A \$$
206 PRINT D\$;"OPEN"A\$;",D2"
209 PRINT D\$;"READ"AS
212 INPUT B\$,N
215 DIM K (N,N)
218 FOR I = 1 TO N
221 FOR J = 1 TO N
224 INPUT K(I,J): NEXT J, I
227 PRINT D\$;"CLOSE"AS
230 PR库 1
233 PRINT AS: PRINT : PRINT B\$, ${ }^{\text {tN }} \mathrm{N}=$ " N : PRINT
236 FOR I = 1 TO N
239 PRINT "ROW \#I
242 FOR J = 1 TO N
245 PRINT K (I, J),
248 NEXT J,I
251 PR\# 0
254 GOTO 1000
300 HOME : PRINT : PRINT : PRINT : INPUT "LOAD CASE NAME?";A\$
302 A $\$=$ "LOAD CASE- $"+A \$$
304 PRINT D\$"OPEN"AS",D2"
306 PRINT D\$"READ"AS
308 INPUT B $\$, N, N B$
310 DIM $P(N), V(N B, 2), N(N B, 2), M(N B, 2)$
312 FOR I = 1 TO N
314 INPUT P(I): NEXT I
316 FOR I + 1 TO NB
318 FOR $J=1$ TO 2
320 INPUT $V(I, J), N(I, J), M(I, J)$

338 PRINT : PRINT "APPLIED FEM AND FEV:"
340 PRINT "SHEAR","AXIAL","MOMENT"
342 FOR I = 1 TO NB
344 PRINT "MEMBER \#"I
346 FOR $\mathrm{J}=1$ TO 2
348 PRINT V(I,J),N(I,J),M(I,J)
350 NEXT J,I
352 PRiv 0
354 GOTO 1000
400 HOME : PRINT : PRINT : PRINT : PRINT : INPUT "DISPLACEMENT FILE NAME?";A\$
$401 \quad \mathrm{~A} \$=$ "DISPLACEMENT FILE- " $+\mathrm{A} \$$
410 PRINT DS;"OPEN"A\$",D2"
411 PRINT D\$;"READ"AS
412 INPUT B\$,C\$,ES,N
415 DIM D(N)
420 FOR $I=1$ TO N
425 INPUT D(I): NEXT I
430 PRINT D\$;"CLOSE";AS
432 PR非 1
435 PRINT A\$: PRINT : PRINT B\$,C $\mathrm{C}, \mathrm{ES}, \mathrm{N}=\mathrm{N}=\mathrm{N}$
440 PRINT : PRINT "JOINT ${ }^{\text {f }}$ ", "DISPLACEMENTS (IN)"
445 FOR I $=1$ TO N
450 PRINT I,D(I): NEXT I
455 PR\# 0
460 GOTO 1000
500 HOME : PRINT : PRINT : PRINT : PRINT : INPUT "STRESS FILE NAME: ";AS
501 AS = "STRESS FILE-" + A\$
505 PRINT D\$;"OPEN"A\$",D2"
510 PRINT D\$;"READ"AS

515 INPUT B\＄，C\＄，E\＄，NB
520 DIM $\nabla(\mathrm{NB}, 2), \mathrm{N}(\mathrm{NB}, 2), \mathrm{M}(\mathrm{NB}, 2)$
525 FOR I＝ 1 TO NB
530 FOR $\mathrm{J}=1$ TO 2
535 INPUT $V(I, J), N(I, J), M(I, J)$
540 NEXT J，I
545 PRINT D\＄；＂CLOSE＂A\＄
550 PR昔 1
555 PRINT A\＄：PRINT ：PRINT B\＄，C\＄，ES，＂NB＝＂NB
560 PRINT＂SHEAR＂，＂AXIAL＂，＂MOMENT＂：PRINT
565 FOR $I=1$ TO NB
570 PRINT＂MEMBER \＃＂I
575 FOR J＝ 1 TO 2
580 PRINT V（I，J），N（I，J），M（I，J）
585 NEXT J，I
590 PR／ 0
595 GOTO 1000
600 D $\$={ }^{\prime \prime \prime}$
602 HOME ：PRINT＂湖 INFLUENCE LINES 推＂
603 PRINT ：INPUT＂HOW MANY MEMBERS ARE THERE IN THE BRIDGEFOR WHICH YOU WANT THE INFLUENCE LINES？＂；NB
$\mathrm{T}=6$＊NB： $\mathrm{DIM} \operatorname{AF}(\mathrm{T})$
PRINT ：INPUT＂HOW MANY INFLUENCE LINES DO YOU WANT PRINTED？＂；N
FOR $I=1$ TO N
PRINT ：PRINT＂TYPE THE FULL TITLE／NUMBER of THE＂：PRINT＂INFLUENCE LINE FILE INCLIDING THE＂：PRINT＂SEQUENCE NUMBER ASSIGNED BY THE COMPUTER＂：INPUT＂INFLUENCE LINE－＂；A\＄
AS＝＂INFLUENCE LINE－＂＋A\＄
612 PRINT D\＄；＂OPEN＂AS＂，D2＂
614 PRINT D\＄；＂READ＂AS
622 FOR $\mathrm{J}=1$ TO T：INPUT AF（J）：NEXT
624 PRINT D\＄；＂CLOSE＂AS
PRINT D\＄；＂PR济＂
FOR $\mathrm{J}=1 \mathrm{TO} \mathrm{T}: \operatorname{PRINT} \mathrm{AF}(\mathrm{J}):$ NEXT
PR 0

654
658
700
703
705
706
709

712
718
721
724
727
730
733
736
742
745
748 IF U $=103$ THEN 757
751 FOR $\mathrm{J}=1$ TO 5
754 GOTO 760
757 PRINT AF (1,I) , AF (2,I): GOTO 775
772 NEXT J
773 PR辛 0
775 NEXT I
787 END
$800 \quad \mathrm{D} \$=\mathrm{m}=$
804 INPUT "WHAT FILE NAME/NUMBER DO YOU WANT PRINTED? ";A\$
808 A $=$ "EQUIVALENT LOAD FILE $-"+A \$$
812 PRINT D\$;"OPEN"A\$",D2"
816 PRINT D\$;"READ"AS
820 INPUT A,B\$
824 DIM EL(A)
828 FOR I +1 TO A: INPUT EL(I): NEXT
832 PRINT DS;"CLOSE"AS
836 PR \# I
$840 \quad \mathrm{C}=1$
$844 \quad$ FOR $I=1$ TO (A / 12)
848 PRINT "MEMBER "\#'I
852 FOR $J=1$ TO 6
856 PRINT EL(C); SPC(7);EL(C + 1)
$860 \quad C=C+2$
864 NEXT J,I
868 HOME : PRINT "MORE CASES?": GET O\$
872 IF O\$ = "Y" THEN 1010
876 END
$900 \quad \mathrm{D} \$=\mathrm{m}$
904 INPUT "WHAT FILE NAME/NUMBER DO YOU WANT PRINTED? ";A\$
908 AS $=$ "AASHTO MAXIMUMS- " + AS
912 PRINT DS;"OPEN"AS",D2"
916 PRINT D\$;"READ"A\$
920 INPUT $\mathrm{A}, \mathrm{B} \$$
924 DIM EL (A)
928 FOR $I=1$ TO A: INPUT EL(I): NEXT
932 PRINT D\$;"CLOSE"A\$
936 PR\# 1
$940 \quad \mathrm{C}=1$
944 FOR $I=1$ TO (A / 12)
948 PRINT "MEMBER 乍I
952 FOR $J=1$ TO 6
956 PRINT EL(C); SPC(7);EL(C + 1)
$960 \quad \mathrm{C}=\mathrm{C}+2$
964 NEXT J,I
968 HOME : PRINT "MORE CASES?": GET O\$
972 IF O\$ = "Y" THEN 1000
976 END
1000 HOME : PRINT : PRINT : PRINT : PRINT "MORE?": GET 02\$
$1004 \mathrm{D} \$={ }^{\mathrm{mm}}$
1005 IF 02\$ = "N" THEN 1020
1006 PRINT
1010 PRINT DS;"RUNPRINTER,D1"
1020 END

File Transfer Utility:

5 REM **7/19/83**
10 HOME : VTAB (6): PRINT "\#\# FILE TRANSFER ROUTINE \#\#"

15
$17 \quad \mathrm{D} \$={ }^{\prime \prime \prime}$
20 PRINT : PRINT "WHICH TYPE OF FILE?": GET O\$
25 IF $0 \$=$ " 1 " THEN 50
26 IF $0 \$=$ " 2 " THEN 150
27 IF O\$ = "3" THEN 250
35 PRINT : PRINT "TRY AGAIN!": GOTO 20
50
55
60

PRINT
$103 \mathrm{D} \$={ }^{\mathrm{m}} \mathrm{m}$
105 PRINT D\$;"OPEN"A\$
110 PRINT D\$;"WRITE"A\$
115 PRINT NS: PRINT NA
120 FOR $I=1$ TO NB
125 PRINT L(I): PRINT SN(I): PRINT CS(I): PRINT JN(I,1): PRINT JN(I,2): PRINT EI(I): PRINT AE(I)
NEXT I
135 PRINT DS;"CLOSE"AS
140 GOTO 1000
150 HOME : PRINT : PRINT : PRINT : INPUT STIFFNESS FILE NAME: ";AS

151 A\$ = "STIFFNESS FILE- " $+\mathrm{A} \$$
155 PRINT D\$;"OPEN"AS;",D2"
156 PRINT D\$;"READ"AS
160 INPUT B\$,N
165 DIM K (N, N)
170 FOR $I=1$ TO N
175 FOR $\mathrm{J}=1$ TO N
180 INPUT K (I,J) : NEXT J, I
185 PRINT D\$;"CLOSE"A\$
190 HOME : PRINT "INSERT NEW DISC INTO DRIVE 2": PRINT "PRESS RETURN": GET O\$
PRINT :D $=$ " "
PRINT DS:"OPEN"A\$
PRINT D\$;"WRITE"A\$
PRINT B\$: PRINT N
FOR $I=1$ TO N
FOR $\mathrm{J}=1 \mathrm{TO} \mathrm{N}$
PRINT K (I,J) : NEXT J,I
PRINT D\$;"CLOSE"A\$
GOTO 1000
D\$ = $\quad \mathrm{m}$
HOME : VTAB (7): PRINT "PRESS RETURN WHEN YOU ARE READY": GET 01\$ PRINT

PRINT D\$:"CATALOG,D2"
PRINT : PRINT "PRESS RETURN WHEN YOU ARE READY TO RETURN TO THE
MENU": GET OI\$
GOTO 10
HOME : PRINT : PRINT : PRINT : PRINT "MORE?": GET 02\$
$1004 \mathrm{D} \$=7 "$
1005 IF 02\$ = "N" TEEN 1020
1006 PRINT
1010 PRINT D\$;"RUNTRANSFER,DI"
1020 END

TABLE B-1
PROPERTIES INPUT FILE
for Test Structure 6S

Member Number	Length (ft)	$\frac{\mathrm{EI}}{\mathrm{lb}-\mathrm{in}^{2} \times 10^{9}}$	$\begin{gathered} \mathrm{AE} \\ \text { Ib } \times 10^{9} \end{gathered}$	SINE	COSINE	$\begin{gathered} \text { JOINT } \\ \text { NUMBERS } \end{gathered}$	
						Left	Right
$\begin{gathered} \text { (Beams) } \\ 1 \end{gathered}$							
	60.0	351	1.659	0.0	1.0	1	2
2	35.0	351	1.659	0.0	1.0	2	3
3	35.0	351	1.659	0.0	1.0	3	4
4	35.0	351	1.659	0.0	1.0	4	5
5	35.0	351	1.659	0.0	1.0	5	6
6	60.0	351	1.659	0.0	1.0	6	7
(Columns)							
7	35.0	32.2	. 844	-1.0	0.0	2	9
8	20.0	32.2	. 844	-1.0	0.0	3	10
9	16.0	32.2	. 844	-1.0	0.0	4	11
10	20.0	32.2	. 844	-1.0	0.0	5	12
11	35.0	32.2	. 844	-1.0	0.0	6	13
(Arch)							
12	47.2	98.6	2.192	. 530	. 848	8	9
13	38.1	98.6	2.192	. 394	. 919	9	10
14	35.2	98.6	2.192	. 114	. 994	10	11
15	35.2	98.6	2.192	-. . 144	. 994	11	12
16	38.1	98.6	2.192	- . 394	. 919	12	13
17	47.2	98.6	2.192	-. .530	. 848	13	14

Where the number represents the member number and the letter indicates rolling load (R) or equivalent loading (E).

TABLE B-2 (continued)												
LEFT END							RIGHT END					
*	Shear	ips)	Axial (Kips)		Moment ($\mathrm{K}-\mathrm{ft}$)		Shear (Kips)		Axial (Kips)		Moment (K-ft)	
	Max.	Min.										
$\begin{aligned} & 10-R \\ & 10-E \end{aligned}$	$\begin{aligned} & 12.40 \\ & 10.60 \end{aligned}$	$\begin{aligned} & -10.93 \\ & -10.09 \end{aligned}$	$\begin{aligned} & 28.39 \\ & 37.44 \end{aligned}$	$\begin{aligned} & -5.29 \\ & -1.50 \end{aligned}$	$\begin{array}{r} 135.5 \\ 98.0 \end{array}$	$\begin{array}{r} -105.0 \\ -92.2 \end{array}$	$\begin{aligned} & 10.93 \\ & 10.09 \end{aligned}$	$\begin{aligned} & -12.39 \\ & -10.60 \end{aligned}$	$\begin{aligned} & 5.29 \\ & 1.50 \end{aligned}$	$\begin{aligned} & -28.39 \\ & -\quad 37.44 \end{aligned}$	$\begin{array}{r} 113.1 \\ 84.1 \end{array}$	$\begin{aligned} & -114.6 \\ & -84.4 \end{aligned}$
$\begin{aligned} & 11-R \\ & 11-\mathrm{E} \end{aligned}$	$\begin{array}{r} 9.67 \\ 10.01 \end{array}$	$\begin{aligned} & -7.74 \\ & -8.03 \end{aligned}$	$\begin{array}{r} 45.90 \\ 34.49 \\ \hline \end{array}$	$\begin{aligned} & -5.65 \\ & -4.46 \end{aligned}$	$\begin{aligned} & 163.4 \\ & 150.2 \end{aligned}$	$\begin{aligned} & -127.6 \\ & -117.4 \end{aligned}$	$\begin{aligned} & 7.74 \\ & 8.03 \end{aligned}$	$\begin{aligned} & -9.67 \\ & -10.01 \end{aligned}$	$\begin{aligned} & 5.65 \\ & 4.46 \\ & \hline \end{aligned}$	$\begin{array}{r} -45.90 \\ -\quad 34.49 \end{array}$	$\begin{aligned} & 176.7 \\ & 160.2 \end{aligned}$	$\begin{aligned} & -143.3 \\ & -132.8 \end{aligned}$
$\begin{aligned} & 12-R \\ & 12-E \end{aligned}$	$\begin{aligned} & 20.64 \\ & 17.75 \end{aligned}$	$\begin{aligned} & -11.02 \\ & -12.76 \end{aligned}$	$\begin{array}{r} 81.11 \\ 130.48 \end{array}$	$\begin{aligned} & 0.0 \\ & 0.0 \end{aligned}$	$\begin{array}{r} 509.1 \\ 387.1 \end{array}$	$\begin{aligned} & -292.8 \\ & -300.9 \end{aligned}$	$\begin{aligned} & 11.02 \\ & 12.76 \end{aligned}$	$\begin{aligned} & -20.64 \\ & -17.75 \end{aligned}$	$\begin{aligned} & 0.0 \\ & 0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & -81.11 \\ & -130.48 \end{aligned}$	$\begin{aligned} & 464.4 \\ & 337.3 \end{aligned}$	$\begin{aligned} & -227.4 \\ & -242.2 \end{aligned}$
$\begin{aligned} & 13-\mathrm{R} \\ & 13-\mathrm{E} \end{aligned}$	$\begin{aligned} & 5.27 \\ & 4.37 \end{aligned}$	$\begin{array}{r} -11.32 \\ -8.37 \end{array}$	$\begin{array}{r} 79.83 \\ 120.55 \end{array}$	$\begin{aligned} & 0.0 \\ & 0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} 93.9 \\ 114.7 \end{array}$	$\begin{aligned} & -326.8 \\ & -211.6 \end{aligned}$	$\begin{array}{r} 11.32 \\ 8.37 \\ \hline \end{array}$	$\begin{aligned} & -5.27 \\ & -4.37 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.0 \\ & 0.0 \end{aligned}$	$\begin{array}{r} -79.83 \\ -120.55 \\ \hline \end{array}$	$\begin{aligned} & 166.8 \\ & 113.7 \end{aligned}$	$\begin{aligned} & -109.5 \\ & -129.4 \end{aligned}$
$\begin{aligned} & 14-\mathrm{R} \\ & 14-\mathrm{E} \\ & \hline \end{aligned}$	$\begin{aligned} & 7.48 \\ & 6.90 \\ & \hline \end{aligned}$	$\begin{aligned} & -7.14 \\ & -6.02 \\ & \hline \end{aligned}$	$\begin{array}{r} 70.11 \\ 112.51 \\ \hline \end{array}$	0.0 0.0	$\begin{aligned} & 112.6 \\ & 107.8 \end{aligned}$	$\begin{array}{r} -139.7 \\ -95.5 \end{array}$	$\begin{aligned} & 7.14 \\ & 6.02 \\ & \hline \end{aligned}$	$\begin{array}{r} -7.48 \\ -6.90 \\ \hline \end{array}$	$\begin{aligned} & 0.0 \\ & 0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & -70.11 \\ & -112.51 \end{aligned}$	$\begin{aligned} & 157.5 \\ & 111.8 \end{aligned}$	$\begin{aligned} & -120.3 \\ & -94.0 \end{aligned}$
$\begin{aligned} & 15-R \\ & 15-E \end{aligned}$	$\begin{aligned} & 7.26 \\ & 7.14 \\ & \hline \end{aligned}$	$\begin{aligned} & -7.38 \\ & -6.48 \end{aligned}$	$\begin{array}{r} 70.20 \\ 110.01 \end{array}$	$\begin{aligned} & 0.0 \\ & 0.0 \end{aligned}$	$\begin{aligned} & 121.2 \\ & 108.5 \end{aligned}$	$\begin{aligned} & -156.1 \\ & -109.2 \end{aligned}$	$\begin{aligned} & 7.38 \\ & 6.48 \end{aligned}$	$\begin{aligned} & -7.26 \\ & -7.14 \end{aligned}$	$\begin{aligned} & 0.0 \\ & 0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} -70.20 \\ -110.14 \\ \hline \end{array}$	$\begin{aligned} & 141.0 \\ & 121.1 \end{aligned}$	$\begin{aligned} & -111.3 \\ & -96.3 \end{aligned}$
$\begin{aligned} & 16-\mathrm{R} \\ & 16-\mathrm{E} \end{aligned}$	$\begin{array}{r} 11.35 \\ 6.52 \end{array}$	$\begin{aligned} & -5.16 \\ & -4.59 \end{aligned}$	$\begin{array}{r} 79.83 \\ 119.88 \end{array}$	$\begin{aligned} & 0.0 \\ & 0.0 \end{aligned}$	$\begin{aligned} & 110.8 \\ & 101.0 \end{aligned}$	$\begin{aligned} & -166.4 \\ & -131.8 \end{aligned}$	$\begin{aligned} & 5.16 \\ & 4.59 \end{aligned}$	$\begin{aligned} & -11.35 \\ & -6.52 \end{aligned}$	$\begin{aligned} & 0.0 \\ & 0.0 \end{aligned}$	$\begin{array}{r} -79.83 \\ -119.88 \end{array}$	$\begin{aligned} & 326.8 \\ & 171.6 \end{aligned}$	$\begin{array}{r} -94.0 \\ -106.7 \end{array}$
$17-\mathrm{R}$ $17-\mathrm{E}$	11.00 12.06	$\begin{aligned} & -20.65 \\ & -16.75 \end{aligned}$	81.14 130.29	0.0 0.0	$\begin{aligned} & 226.9 \\ & 227.2 \end{aligned}$	$\begin{array}{r} -464.9 \\ 310.3 \end{array}$	$\begin{aligned} & 20.65 \\ & 16.75 \end{aligned}$	$\begin{aligned} & -11.00 \\ & -12.06 \end{aligned}$	$\begin{aligned} & 0.0 \\ & 0.0 \end{aligned}$	$\begin{aligned} & -81.14 \\ & -130.29 \end{aligned}$	$\begin{aligned} & 291.9 \\ & 283.2 \end{aligned}$	$\begin{aligned} & -508.9 \\ & -366.8 \end{aligned}$

Where the number represents the member number and the letter indicates rolling load (R)

MOMENT INFLUENCE LINE

TOP OF COLUMN *

3กาทล ヨวN3กาปำ

ヨกาจง ヨอง3กาปกเ

MOMENT INFLUENCE LINE
BOTTOM OF COLUMN \#1

$\cdot 24.4$
honizontal distance
SHEAR INFLUENCE LINE
BOTTOM OF COLUMN *I

AXIAL INFLUENCE LINE
RIGHT END ARCH, SPAN \#I

3กาฟค 30N3กาปมI

HORIZONTAL DISTANCE
SHEAR INFLUENCE LINE
RIGHT END ARCH. SPAN \#3

AXIAL INFLUENCE LINE
RIGHT END ARCH．SPAN $\# 3$

ヨกาจィ ヨวNヨกาเมก
MOMENT INFLUENCE LINE
RIGHT END ARCH. SPAN $/ 3$

HORIZONTAL DISTANCE

3ก7จィ 30n3กาปมี
aヲOר 9NIרาOצ O\&S-OZSH OLHS $\forall \forall$
SHEAR INFLUENCE LINE
RIGHT END BEAM SPAN ${ }^{3} 3$

hORIZONTAL DISTANCE

AASHTO HS2O-S3O ROLLING LOAD

illusory span
 MOMENT INFLUENCE LINE
RIGHT END BEAM SPAN - 3

3ONYISIC TVINOZIYOH

Agnew, Jeanne and Knapp, Robert C. Linear Algebra With Applications. Monterey, CA: Brooks/Cole Publishing Company, 1978.

Apple II: the DOS Manual. Cupertino, CA: Apple Computer, Inc., 1981.
Apple II: Reference Manual. Cupertino, CA: Apple Computer, Inc., 1981.
Bosseman, Bayard E. and Ford, Maurice E. "Development of Computerized Specifications," presented at the ASCE Houston Convention, October 21, 1983.

Blaszkowiak, S. and Kaczkowski, Z. Iterative Methods of Structural Analysis. London: Permagon Press, 1966.

Cook, Steven, McNiff, Martin and Pode, Lon. Apple II Users' Guide. Berkeley, CA: Osborne/McGraw-H111, 1981.

Fisher, James M. and West, Michael A. "Productivity Changes Using Micro/Mini Computer Systems in Consulting Engineering," presented at the ASCE Houston Convention, October 19, 1983.

Gallagher, Richard H. and McGuire, William. Matrix Structural Analysis. New York: John Wiley \& Sons, 1979.

Gutkowski, Richard M. Structures: Fundamental Theory and Behavior. New York: Van Nostrand Reinhold Co., 1981.

Marshall, W. T. Solution of Problems in Structures. London: Pitman Publishing Limited, 1978.

Martin, Harold C. Introduction to Matrix Methods of Structural Analysis. New York: McGraw-Hill Book Company, 1966.

McCormac, Jack C. Structural Steel Design. Scranton, PA: International Textbook Company, 1969.

Nilson, Arthur H. and Winter, George. Design of Concrete Structures, 9th ed. New York: McGraw-H111 Book Company, 1979.

Norris, John Benson and Wilbur, Charles H. Elementary Structural Analysis, 2nd ed. New York: McGraw-Hill Book Company, 1960.

Wang, Chu-Kia. Matrix Methods of Structural Analysis, Scranton, PA: International Textbook Co., 1966.

Wright, Whitman. "The Use of Conversational Computer Programs in the Structural Engineering Office," Canadian Journal of Civil Engineering, 4, 417 (1977) 417-435.

DEVELOPMENT OF MICRO-COMPUTER PROGRAMS FOR THE ANALYSIS OF AN OPEN SPANDREL ARCH
by

JOHN JAY KOONTZ
B.S., United States Military Academy, 1971

AN ABSTRACT OF A MASTER'S THESIS
submitted in partial fulfillment of the
requirements for the degree
MASTER OF SCIENCE
Department of Civil Engineering
KANSAS STATE UNIVERSITY
Manhattan, Kansas

The objective of this research effort is to produce a computer analysis of an open-spandrel arch which is "friendly" to the user. The displacement method of analysis is used to analyze the structure. Matrix methods are used to simplify the calculations. The analysis includes, but is not limited to, the analysis of any given loading, the generation of influence lines for deck loading, automatic AASHTO code live load analysis, and the analysis of support yielding. Originally intended to be one single program, the final product is a package of several single purpose programs which is necessitated by the memory and data storage limitations of the micro-computer. Each program stores its output on a data disk and uses previously stored files for input. Automation is maximized to reduce the usercomputer interaction to the minimum. A listing of the code for each of the programs and a set of sample output are included as appendices.

