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Abstract

The inverse scattering problem on half-axis, in other words, in the
spherically symmetric case, consists of finding the unknown potential
from a suitable class from the scattering data S. The other problem of
practical interest is to find this potential from the spectral data dρ(λ).
In the literature there are recovery procedures for finding the potential
from the spectral or from the scattering data. Define the I-function:

I(k) := f ′(0,k)
f(k) , where f(x, k) is the Jost solution. Constructive ways to

find I(k) from dρ(λ) and vice versa, and I(k) from S and vice versa are
given. The theory of Riemann problem is used as an essential tool. If
I(k) is found, then our methods allow one to construct the scattering
data and from these recover the potential by the known procedure.
Alternatively, one can construct from I(k) the spectral data and from
these find the potential by the known procedure.

MSC: 34A55
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1 Introduction

The operator `u = −u′′ + q(x)u is defined in H = L2(R+), R+ = [0,∞)
by the boundary condition u(0) = 0. The q is a real-valued function in
L1,1 := {q :

∫∞
0 (1 + x)|q(x)|dx <∞}. The spectral function{

dρ(λ) = λ1/2dλ
π|f(
√
λ)|2 , λ ≥ 0,∑J

j=1 cjδ(λ+ k2j )dλ, λ < 0.
(1.1)
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Here δ is the delta function, f(k) := f(0, k), k :=
√
λ, the function f(x, k),

the Jost solution, is defined as the unique solution to the problem

`f − k2f = 0, f = eikx + o(1), x→∞; k > 0. (1.2)

The cj > 0 are norming constants (see [2] or [3])

cj = −2ikj
f ′(0, ikj)

ḟ(ikj)
, (1.3)

where f ′(0, k) = ∂f(x,k)
∂x |x=0 and kj > 0 are numbers such that

f(ikj) = 0, 1 ≤ j ≤ J. (1.4)

The numbers ikj are simple zeros of f(k) in the upper half of the complex
plane C.

The I-function is defined as

I(k) :=
f ′(0, k)

f(k)
. (1.5)

Properties of I-function were studied in [3], where, among other things, it
was proved that I-function is identical with the Weyl-Titchmarsh function.

The scattering data S is the collection:

S = {S(k) :=
f(−k)

f(k)
, k ≥ 0, kj , sj , 1 ≤ j ≤ J}, (1.6)

where kj are defined in (1.4) and sj > 0 are the norming constants

sj = −2ikj
1

ḟ(ikj)f ′(0, ikj)
=

cj
[f ′(0, ikj)]2

, (1.7)

and J is the number of negative eigenvalues of the Dirichlet operator `.
This number is finite under our assumptions on q, (see, for example, [2]).
By φ(x, k) let us denote the unique solution of the problem

`φ− k2φ = 0, φ(0, k) = 0, φ′(0, k) = 1. (1.8)

It is known [2] that dρ(λ) and S each determines q uniquely.
The results of this paper can be described as follows:
It is proved that {I(k)}, known for all k ≥ 0, determines dρ(λ) uniquely

and vice versa; that the scattering data S determines {I(k)} uniquely and
vice versa; explicit formulas are given for recovery processes.
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A consequence of the above results is the unique determination of the
potential q ∈ L1,1 from {I(k)}.

These results are obtained using the theory of the Riemann problem and
other tools from complex analysis. The emphasis is on the explicit formulas
for the recovery processes.

Let us formulate some of the results.

Theorem 1.1. The I(k) determines dρ(λ) and S uniquely. Each of the
data dρ(λ) or S determines I(k) uniquely.

Remark. The author [4] published in 1987 paper [4] with the same title.
There the problem of recovery of q from I−function was posed and it was
proved that I−function determines uniquely the potential. In the current
paper much more is proved by the novel method based on the theory of
Riemann problem. Namely, we prove now that both the spectral and the
scattering data can be uniquely and explicitly calculated if the I−function
is known and conversely, the I−function can be uniquely and explicitly
calculated from the spectral or from the scattering data.

If I(k) is given, then by the constructive methods, developed in this
paper, one can construct the scattering data or/and the spectral data. From
the spectral data one can uniquely recover the unknown potential using the
known recovery procedure (see [2] or [3]). Also, from I(k) one can construct
the spectral data, and from these one can uniquely recover the unknown
potential using the known method (see [2] or [3]).

2 Proofs

2.1 Proof of the relation I(k)⇒ dρ.

The zeros of f(k) in C+ := {z : z ∈ C, Imz > 0} are simple poles of I(k)
because ḟ(ikj) 6= 0 and f ′(0, ikj) 6= 0 (see [3] and formula (1.3)). Thus,
I(k) determines uniquely the numbers ikj and, consequently, the numbers
kj , 1 ≤ j ≤ J . Define the numbers

aj := Resk=ikjI(k) =
f ′(0, ikj)

ḟ(ikj)
.

Then, by formula (1.3), one has

cj = −2ikjaj . (2.1)
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Note that f(−k) = f(k) and f(0,−k) = f ′(0, k) for real k, where the overline
stands for complex conjugate. Thus,

ImI(k) :=
1

2i

(
f ′(0, k)

f(k)
− f ′(0,−k)

f(−k)

)
=
f ′(0, k)f(−k)− f ′(0,−k)f(k)

2i|f(k)|2
=

k

|f(k)|2
.

(2.2)
Here the known Wronskian formula was used

f ′(0, k)f(−k)− f ′(0,−k)f(k) = 2ik. (2.3)

Thus, we have proved that I(k) determines dρ(λ) uniquely and explicitly. 2

2.2 Proof of the relation dρ(λ)⇒ I(k).

A trivial way to prove the relation dρ(λ) ⇒ I(k) is to recover q(x) from
dρ(λ) using the known Gel’fand-Levitan (GL) method, then construct the
Jost function f(x, k) uniquely as the solution to (1.2), then find f(k) and
f ′(0, k), and then find I(k) by formula (1.5).

However, we want to show that f(k) and f ′(0, k) can be recovered
uniquely and explicitly directly from dρ(λ), without finding q from dρ(λ).

To recover f(k) we solve the following Riemann problem

f(k) = G(k)
1

f(−k)
, G(k) = |f(k)|2 = f(k)f(−k). (2.4)

If dρ(λ) is given, then G(k) is known explicitly, see formula (1.1). The
function f(k) is analytic in C+, the function 1

f(−k) has finitely many simple

poles in C− := C \ C+ at the points −ikj , 1 ≤ j ≤ J . Define the index of
G(k) as follows:

indG(k) :=
1

2π
∆RargG(k) =

1

2πi

∫ ∞
−∞

d lnG(k) =
1

2πi

∫ ∞
−∞

G′(k)

G)k
dk,

(2.5)
where ∆RargG(k) is the increment of the argument of G(k) when k runs
from −∞ to +∞ along the real axis.

Clearly,

ind
(
f(k)f(−k)

)
= 0. (2.6)

Let us define

Φ−(k) :=
w(−k)

f(−k)
, w(k) :=

J∏
j=1

k − ikj
k + ikj

, (2.7)
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Φ+(k) :=
f(k)

w(k)
. (2.8)

Then Φ+ ∈ H(C+), where H(C+) is the set of analytic in C+ functions,
Φ− ∈ H(C−), and (2.4) can be written as

Φ+(k) =
G(k)

w(k)w(−k)
Φ−(k) = G(k)Φ−(k), (2.9)

because

w(−k) =
1

w(k)
. (2.10)

Let us first assume that f(0) 6= 0. Since indG(k) = 0, it follows from (2.9)
that

Φ+(z) = exp
1

2πi

∫ ∞
−∞

lnG(s)

s− z
ds, z ∈ C+, (2.11)

see [1]. Therefore, by formula (2.8), one gets:

f(k) = w(k) exp
1

2πi

∫ ∞
−∞

lnG(s)

s− k
ds, Imk > 0. (2.12)

On the real axis one has

f(k) = w(k) exp
( 1

2πi

∫ ∞
−∞

lnG(s)

s− k
ds+

1

2
lnG(k)

)
, k ∈ R, (2.13)

where the known Sokhotski-Plemelj formula was used (see [1]):

1

2πi

∫ ∞
−∞

g(t)

t− k − i0
dt =

1

2πi

∫ ∞
−∞

g(t)

t− k
dt+

1

2
g(k), (2.14)

and the integral on the right is understood as the Cauchy principal value.
Let us now assume that f(0) = 0. Then w(k) should be replaced by

w0(k) := w(k) k
k+iκ , where κ > 0 is a number which is not equal to any of

kj , 1 ≤ j ≤ J , and G(k) is replaced by G0(k) := G(k)k
2+κ2

k2
. Note that

indG0(k) = indG(k) + ind(1 +
κ2

k2
) = 0 + 0 = 0,

so formula (2.12) and (2.13) remain valid after replacing of G by G0.
Let us prove that dρ(λ) determines f ′(0, k) uniquely. If not, then there

are two different functions f ′1(0, k) and f ′2(0, k) each of which satisfies relation
(2.3) with the same f(k).
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Let
h(k) := f ′1(0, k)− f ′2(0, k). (2.15)

Then, subtracting from (2.3) with f ′ = f ′1 equation (2.3) with f ′ = f ′2, one
gets

h(k)f(−k) = h(−k)f(k) or
h(k)

f(k)
=
h(−k)

f(−k)
. (2.16)

The function h(k)
f(k) is meromorphic in C+, and h(−k)

f(−k) is meromorphic in C−.

The only poles of h(k)
f(k) in C+ can be the simple poles at the points ikj .

However,
f ′1(0, ikj)− f ′2(0, ikj) = 0, (2.17)

because the numbers cj , see (1.3), and, therefore, the numbers f ′(0, ikj) are
uniquely determined by dρ(λ) (recall that f(k) is already determined and
the numbers ḟ(ikj) are therefore known).

The relation (2.16) and the differentiability of h(k) prove that h(k)
f(k) is

analytic in C+ and h(−k)
f(−k) is analytic in C−. They agree on the real line and,

therefore, they are analytic continuation of each other on the whole complex
plane C. The function h(k)

f(k) is analytic in C and tends to zero at infinity, as

we prove below. Consequently, h(k)f(k) = 0, so h(k) = 0, and f ′1(0, k) = f ′2(0, k).

Thus, f ′(0, k) is uniquely determined by dρ(λ).

Let us prove that h(k)
f(k) → 0 as |k| → ∞. Since

f(x, k) = eikx +

∫ ∞
x

A(x, t)eiktdt, (2.18)

one has

f(k) = 1 +

∫ ∞
0

A(0, t)eiktdt := 1 + a(k), (2.19)

f ′(0, k) = ik −A(0, 0) +

∫ ∞
0

Ax(0, t)eiktdt := ik −A0 + b(k). (2.20)

Integrate by parts and rewrite (2.19) as

f(k) = 1− A0

ik
− 1

ik

∫ ∞
0

At(0, t)e
iktdt, (2.21)

and get
A0 = − lim

k→∞
[ik(f(k)− 1)]. (2.22)
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This constant is known since f(k) is known. Here we have used the relation

lim
k→∞

∫ ∞
0

At(0, t)e
iktdt = 0,

which follows from the Riemann-Lebesgue lemma because At(0, t) ∈ L1(R+).
The last inclusion follows from the assumption

∫∞
0 (1 + s)|q(s)ds < ∞ and

from the known estimates (see, for example, [3]):

|A(x, t)| ≤ c
∫ ∞

x+t
2

|q(s)|ds, |At(0, t) +
1

4
q(t/2)| ≤ c

∫ ∞
t
2

|q(s)|ds, (2.23)

where c > 0 is a constant. Thus, formula (2.20) implies

h(k) = f ′1(0, k)− f ′2(0, k) = b1(k)− b2(k). (2.24)

It follows from (2.21) that f(k) → 1 as |k| → ∞, Imk ≥ 0. It follows from
the definition (2.20) of b(k) and from estimates (2.23) that b(k) → 0 as
|k| → ∞, Imk ≥ 0. Consequently,

lim
|k|→∞,Imk≥0

h(k)

f(k)
= 0, lim

|k|→∞,Imk≤0

h(−k)

f(−k)
= 0.

From this and from formula (2.16) it follows that

lim
|k|→∞

h(k)

f(k)
= 0. (2.25)

Thus, h = 0 and the proof of the uniqueness of recovery of I(k) from dρ(λ)
is completed. 2

We have recovered f(k) explicitly from dρ(λ) and proved that f ′(0, k) is
uniquely determined by dρ(λ).

Let us prove that one can also recover f ′(0, k) explicitly from dρ(λ).
From (2.3), one gets

f ′(0, k)

f(k)
=
f ′(0,−k)

f(−k)
+

2ik

|f(k)|2
, −∞ < k <∞. (2.26)

We consider this problem as the problem of finding piecewise-analytic func-
tion from its jump across the contour (−∞,∞). Compared with the stan-
dard problem of this type the difficulties are:

a) The function f ′(0,k)
f(k) is not analytic in C+,

and
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b) The function 2ik
|f(k)|2 grows as k →∞.

Let us show how to overcome these difficulties.
Using formula (2.20), write (2.26) as

b(k)

f(k)
=
b(−k)

f(−k)
+

2ik − ik[f(−k) + f(−k)]

|f(k)|2
=
b(−k)

f(−k)
− ik[a(k) + a(−k)]

|f(k)|2
(2.27)

The function b(k)
f(k) is meromorphic in C+ with the only poles at the points ikj ,

and these poles are simple. The residues
b(ikj)

ḟ(ikj)
:= bj , 1 ≤ j ≤ J , are known

since f ′(0, ikj) are known if dρ(λ) is known, see formula (1.3). Therefore,
the function

ψ+(k) :=
b(k)

f(k)
−

J∑
j=1

bj
k − ikj

(2.28)

is analytic in C+ and vanishes at infinity in C+.
The function

ψ−(k) :=
b(−k)

f(−k)
+

J∑
j=1

bj
k + ikj

(2.29)

is analytic in C− and vanishes at infinity in C−.
Equation (2.27) can be written as

ψ+(k) = ψ−(k)− ik[a(k) + a(−k)]

|f(k)|2
−

J∑
j=1

bj
k − ikj

−
J∑
j=1

bj
k + ikj

. (2.30)

By the jump formula for the Cauchy integral one gets

ψ+(z) =
1

2πi

∫ ∞
−∞

− is[a(s)+a(−s)]
|f(s)|2 −

∑J
j=1

2sbj
s2+k2j

s− z
ds, Imz > 0. (2.31)

Thus

b(k) = f(k)
(
ψ+(k) +

J∑
j=1

bj
k − ikj

)
, f ′(0, k) = ik −A0 + b(k). (2.32)

The integral in (2.31) converges because by formula (2.21) one has

−is[a(s) + a(−s)] =

∫ ∞
0

At(0, t)(e
ist − e−ist)dt, (2.33)

where At(0, t) ∈ L1(R+) by the estimate (2.23). Thus, b(k) and, conse-
quently, f ′(0, k) are recovered explicitly.

This completes the recovery of I(k) from dρ(λ). 2

8



2.3 Proof of the relation I(k)⇒ S

As in section 2.1, I(k) determines kj , 1 ≤ j ≤ J , and sj by formula (1.7).
Therefore, the data S are uniquely determined by I(k) provided that f(k) is
found. In section 2.2 the function f(k) was uniquely and explicitly recovered
from ImI(k). Thus, S is found uniquely and explicitly from I(k). 2

2.4 Proof of the relation S ⇒ I(k)

A trivial way to find I(k) from S is to use the known (Marchenko) procedure
for finding q from S, then find f(x, k) from from q, and then find I(k).

Let us show that one can find f(k) from S directly and explicitly using
the Riemann problem, and then find f ′(0, k) explicitly as was done in section

2.2. If S is known then S(k) = f(−k)
f(k) is known and kj , 1 ≤ j ≤ J , are known

since ikj are simple poles of S(k) in C+.
One has

f(k) = S(−k)f(−k), (2.34)

since S(−k) = S−1(k) for k ∈ R because S(−k) = f(k)
f(−k) = S−1(k). Let

ψ+ :=
f(k)

w(k)
, ψ− :=

f(−k)

w(−k)
, (2.35)

and let w(k) be defined in equation (2.7). Then (2.34) implies

ψ+(k) =
S(−k)w(−k)

w(k)
ψ−(k) (2.36)

if indS(−k) = 2J (that is, f(0) 6= 0).
Clearly,

ind
S(−k)w(−k)

w(k)
= 0, (2.37)

because
indw(k) = J, indw(−k) = −J. (2.38)

It follows from (2.36) and (2.37) that

ψ+(k) = exp
1

2πi

∫ ∞
−∞

ln
(S(−t)w(−t)

w(t)

) dt

t− k
, Imk ≥ 0. (2.39)

Therefore, f(k) is found explicitly:

f(k) = w(k)ψ+(k), Imk ≥ 0, (2.40)
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where the integral in (2.39) is calculated by formula (2.14) for real k. Thus,
f(k) is recovered uniquely and explicitly from the scattering data S. The
f ′(0, k) is recovered uniquely and explicitly as in Section 2.2. Therefore, I(k)
is recovered from S.

If f(0) = 0 then indS(−k) = 2J+1, and in the above proof one replaces
w(k) by w0(k). 2

Theorem 1.1 is proved. 2
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