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INTRODUCTION

The method of steepest descent can be applied in a conver-

gent procedure to determine the zeros of polynomials having

either real or complex coefficients. In many practical problems

involving the solution of algebraic equations, there is sufficient

a priori knowledge of the roots to permit application of the

easily applied, rapidly converging synthetic division methods.

The limitation of such synthetic division methods as Newton-

Raphson's method, Lin's method, Bairstow's method and other syn-

thetic division methods is that their convergence is dependent

upon the initial approximations.

For problems in which the a priori information about the

location of the roots is inadequate, the Lehmer-Schur method,

Graeffe's root-squaring method, Bernoulli's method, and others,

may be used and convergence is guaranteed. These methods are

by no means simple and straightforward and are not rapidly con-

vergent, and thus for efficiency are usually used to calculate

only the approximate root locations so that one of the more

rapidly converging synthetic division methods may then be applied.

The method of steepest descent is a straightforward method which

always converges and which has a rapid convergence in the region

of the root

.

The method of steepest descent can be readily applied to

a digital computer with some slight modifications. The stated

purpose of this paper is to show the development of the particular

form of the method of steepest descent given by J. B. Moore in



the "Journal of the Association for Computing Machinery", Vol. 14

No. 2, April, 1967. Many other forms of the method can be found,

but Dr. Moore's form of the methoo is most suitable for adapta-

tion to the digital computer through the use of Siljak functions.

Dr. Moore states the problem in the following way. Consider

the equation f(z) = u(x,y) + iv(x,y), where f(z) is an entire

function of the complex variable z, with z = x + iy; x and y will

be considered as being functions of a parameter t. The differen-

tial equations

dx _ , 3F , dy . 3F
3T = - h ?— and -r£- = - h — ,dt 9x dt 3y >

where h is a positive constant and F = F(x,y) is some function

derived from f(z) satisfying the following conditions, are a

basis for the algorithm:

1. F is non-negative.

2. The derivatives 3F/3x and 3F/3y exist.

3. The zeros of F are located at the roots of f(z) = Q.

4. These zeros are the only minima of F.

It is suggested that F(x,y) = u
2

+ v
2
and

h = - °- 5

iwiT
are suitable choices for these two quantities F and h. Other

authors have suggested that F(x,y) = |u| + |v|, while the choice

of h generally proves to be quite arbitrary and somewhat elusive,



The following algorithm, which arises out of theoretical

computations, is the basis for a convergent method for finding

the zeros of analytic functions.

(1) Scale to have some roots within the unit circle.

(2) Choose initial approximations other than on the real

axis, i.e. , x
Q , y Q

.

(3) Compute u(x,y), v(x,y), 8u/3x, dv/dx and F(x,y) for

x = x 0> y = y 0'

(4) Compute new approximations for x and y by using

x
i+1

= x. + Ax, yi+1
= y ±

+ Ay,

where

u— vlY- 8v 8u

Av •
3x 8x . .

u
83?

" V
9x"Ax - rs 7T and Ay =

75 r-

for x = x
i5 y = y±

.

(5) Take x as x
Q
and y as y Q

and recompute the parts of (3).

(6) If the value of F(x,y) as now computed is greater than

that of the previous iteration, reduce the- increments Ax and Ay

used previously until the value of F is smaller than for the

preceding iteration (Dr. Moore suggests reduction by one quarter

each trial)

.

(7) If F is sufficiently close to zero, stop. Otherwise

repeat the process beginning at step (3).

With the algorithm now at hand, the theoretical development

will follow next and then the application to digital computer

use will be discussed.



THEORETICAL ASPECTS OF THE ALGORITHM

The first aspect of the algorithm to be considered is the

pair of differential equations

dy _ , 3F , dx . 9F
dt - - h

87
and

at
=

- h
fc

For the use in the algorithm the corresponding incremental

equations

Ax = - h § and Ay - - hfl

replace the differential equations. First recall the four

conditions imposed upon F(x,y).

(1) F is non-negative.

(2) The derivatives 3F/3x and 3F/3y exist.

(3) The zeros of F are located at the roots of f(z) = 0.

(4) These zeros are the only minima of F.

Accepting Dr. Moore's choice of F, i.e., F(x,y) = u
2

+ v
2
where

u = u(x,y) and v = v(x,y), it is immediately apparent that the

first three conditions are satisfied. To show that the fourth

2 2condition is satisfied, consider that u + v is the square of

the modulus of f(z). Since the modulus of a complex number is

zero if and only if the complex number is zero, the fourth

condition follows immediately.

Now it will be shown that the direction of steepest descent

is indeed given by the differential equations



dx _ ,3F , dy , 3F .

dt " ' h ^ and
at

= ~ h
3y' h > °-

Consider now the function F(x,y), defined above, as assigning

a functional value to each point of the two dimensional Euclidean

space whose coordinates are denoted by the arguments x and y, in

other words, the x, y plane. The question is, at a point p(K,y),

what direction of motion in the Euclidean space decreases the

value of the function F(x,y) most rapidly with respect to the

distance moved. This would be the direction of steepest descent.

The idea of a curve in the Euclidean space enters into the

development. In particular, a curve may be thought of as gener-

ated by a moving point whose coordinates are given as functions

of time. Let x = x(t), y = y(t). At any time t this curve may

be approximated by a line through p(x,y) with direction numbers

equal to the derivatives dx/dt and dy/dt evaluated at p(x,y).

This is the tangent line which approximates this curve more

closely than any other curve for points corresponding to times

close to the chosen time. If the parameter s represents the

length of the arc from p(x,y) to the point corresponding to a

time t on the curve, then the relation between s, t, x(t) and

y(t) can be expressed as

n^ 2 *^ 2

The question of finding the path of steepest descent can

now be posed in the following analytic formulation. Consider

a curve originating at point p(x 5 y). Other points may be denoted



w

either by the time parameter t or by the parameter s denoting the

length of the arc of the curve joining them with p(x,y). A

choice of a value of t or of s gives a point, and at each point,

F(x,y) has a numeric value. Therefore the rate of change of F

ith respect to s along the curve at any point on the curve has

meaning.

This rate of change may be evaluated by elementary calculus.

It follows that

dx dx dt _ dx , ds , dy dy , ds
?s~ ~ df ' ds" ~ dt ' dt

and
d"i~

=
dt ' dt

and the rate of change of F(x,y) with respect to s may be written

dF _9F dx
+

_3_F dy
ds ~ 3x cfs 3y ds

It must be assumed that, at t = 0, the moving point is not

stationary momentarily, so that ds/dt t 0. Note that the value

of dF/ds is completely determined at any point by the values of

dx/dt and dy/dt. This indicates that the rate of descent depends

momentarily upon the direction of descent and not on the curva-

ture of the curve followed. Also note that dF/ds is unchanged

if dx/dt and dy/dt are multiplied by a constant.

If the quantities dx/dt and dy/dt are temporarily denoted

by g and h respectively, the simple rules of calculus will give

the desired direction of steepest descent. The problem can be

written as asking for values of g and h which maximize dF/ds.

In other words, it is necessary to solve



3 dF/ds 3 dF/dsW 3h
= 0.

The solution of these equations yield

r- -2 ,; A 2-|

H. fe*\ + feyj '
£x II ^i +'H dy

3x [\dtj \dt/ dt[_3x dt 3y dt

and

3F

3yM * «
:

j

dy
dt

3F dy
+

3F dx
"3~y dt "3~x dt

Though the above two equations may not seem simple at first

glance, the equations may be interpreted as meaning that a

necessary condition for maximal ascent or maximal descent at

p(x,y) is that the derivatives dx/dt and dy/dt be proportional

to the partial derivatives 3F/3x and 3F/3y respectively at the

point p(x,y). In other words, steepest descent occurs when

dx/dt = - k(3F/3x) and dy/dt = - k(3F/3y) with k > 0.

Hence it has been shown that these differential equations

can be used to determine the path of steepest descent. This

direction with components 3F/3x and 3F/3y is usually called the

gradient of F. Kence , the direction with components - k(3F/3x)

and - k(3F/3y) can be considered as being the negative gradient

of F. This negative gradient vector is orthogonal to a level

line through p(x,y) and points in the direction of steepest

descent

.

For the numerical evaluation of the zeros of f(z), the

difference equations corresponding to the above differential

equations are used. These difference equations are



3.F _„ ... _ fc 3F

3y
Ax = - h -r— and Ay = - h

oX

It can be seen that the direction of steepest descent Ax/Ay

is independent ox h, i.e.,

Ax 8F/8x
Ay " 3F/3y .

The role that h plays is important, however; h should be chosen

to minimize the value of F along the path of steepest descent.

This choice of h will be the next aspect of the problem

considered before looking at each step of the algorithm. The

choice made is dependent upon the choice for F(x,y) that Dr.

7 7Moore works with, namely, F = u + v .

First consider the Taylor expansions for u(x,y) and v(x,y),

in the neighborhood of a zero of f(z).

utx.y) 5 u(x ,y ) . §£<* - X() ) |i(y - y
Q

)

v(x,y) = v(x ,y ) g(x - x
Q

> §X(y - ,Q i

where z = x + iy is a zero of f(z). Then it is evident that

- u<xo-V '- f^ x + &y

- vUo>?a >
~= &» + &y

where all partial derivatives are evaluated at (x„ ,y ) , and Ax

and Ay are the distances in the x and y directions respectively

from the point (x
Q
,y

Q
) in the neighborhood of the zero of f(z) to

the point (x,y) which is a zero of f(z).



Now by using the two above equations, the forms of Ax and

Ay that facilitate the algorithm and a choice of h that is appro-

priate can be obtained. The Cauchy-Riemann equations and the

above equations derived from the Taylor expansion may be combined

as follows:

„ _ 3u. , 3u. 3v. 3v.
- u = -5—Ax + 5—Ay, - v = -s—Ax + v~Ay3x 3y J ' 3x 3y J

,
3v 3u 3v. 3u 3v.
3x 3x 3x 3y 3x y

„ 3u _ 3u 3v. 3u 3v.
" V

3^ " 37 37
AX + W37Ay

Subtracting the respective sides of the above equation from those

of the second equation above, there results:

_ u
|v

+ v *± = flii iZ _ 3u 3v\ .

3x
v

3x \3y 3x 3x 3yj
Ay *

Using the Cauchy-Riemann equations

,

_3_u _3_v , 3u 3v
3x "

3y
ana

3y " " 3x»

results in

3x
3u '/3v _3v 3u 3_u\

3x ' ^3x 3x 3x 3xj
Ay

or

u $L - v |H.

Ay =
9x

($ (£
The similar procedure will now be carried out to obtain an

expression for Ax. The two equations obtained from the Taylor
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expansion are multiplied by 3v/3y and 3u/3y respectively to

obtain the following:

,, 3v 3u 3v. 3u 3v.- u -*— = -7T— tt—Ax + *— -^-Ay
3y 3x 3y 3y 3y y

„ 3u _ 3u 3u. 3u 3v.

3y 3x 3y 3y 3y y

Subtracting yields

3y 3y (3x 3y 3x 3y"j
Ax#

By use of the Cauchy-Riemann equations, the following expression

for Ax is obtained.

3u 3v

* <r»xj
Now an appropriate choice for h may be obtained by using these

expressions for Ax and Ay. The choice of F is, as before,
2 2

F = u + v . Therefore,

and

3F _ o ,
3u _ 3v

33? " 2 U
3x-

+ 2 v
37

3F _ 9 3u 8v
7f— - 2 U ^r— + 2 V *—
3y 3y 3y

Recalling the difference equations

31 .^ ».. '_ . 3F

3y »

Ax = - h j^ and Ay = - h

it follows that
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or that

Ax = - h (2u ^ + 2v |X)
3x Sx

Ay = - h (2u <| + 2v |Z)

h = - i
u £* + V U

3x Sx

0.5

Hence, a method of calculating a suitable value for h nas

been found. This value is in agreement with the choice that
2 2

F - u + v . A simple example will now be given to illustrate

the use of the algorithm. Consider

f(z) = z
2

- z + 1/2

which has zeros z = 1/2 + i/2. For this polynomial,

u(x,y) = x
2

- y
2

- x + 1/2,

v(x,y) = 2 xy - y,

recalling that f(z) = u(x,y) + iv(x,y). Also,

— - 2v 1
8v - 9

F(x,y) = u
2

+ v
2

= x - 2x + 2x
2

- x - 3xy
2

+ 3x
2
y
2

+ y
4

+ 1/4
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Step one of the algorithm can be neglected as there are

roots within the unit circle. Step two is to choose initial

approximations other than on the real axis. For this example,

choose x
Q

= 0.3 and y Q
= 0.4.

Step three is to compute u, v, ^, ~ and F at the initial
oX oX

point.

u( .3, .4) = 0.13000

v( .3, .4) = -0.16000

u (.3, .4) = -0.40000

v (.3, .4) = 0.80000

F( .3, .4) = 0.04250

Step four is to compute the new approximations for the x

and y values, using x
i+1

= x
±

+ Ax and y. +
. = y. + Ay. First,

computing

-U U - V V U V - V u
A* = "

2 ^ and Ay =
*

1 ,

U
x

+ V
x

it follows that

Ax = 0.22500 and Ay = 0.05000.

Hence

x
2

= 0.52500 and y = 0.45000.

Now these new approximations of x
2

= 0.52500 and y„ = 0.45000

are used to compute new values of u, v, u , v and F, which in

turn lead to new approximations x
3
and y 3

. For this example,



u(.525, .45) = C. 04813

vC.525, .45) = 0.02250

u (.525, .45) = 0.65000

v (.525, .45) = 0.90000

F(.525, .45) = 0.02822

The newly computed value of F(x
2 ,y 2

) should now be compared

with the value of FCx^y^). For this example F(x
2 ,y

2
) < F(x y )

so the algorithm may be continued in the normal manner. However,

should any computed value be larger than the one for the previous

iteration, the values used for Ax and Ay in the last iteration

should be reduced and the iteration done again with the new x

and y values. Dr. Moore suggests reducing Ax and Ay by a factor

of one-fourth for such occurrences.

From the last computed values for u, v, u , and v , the new

values for Ax and Ay may be computed.

Ax = 0.00287

Ay = -0.00193

From this it follows that

x
3

= 0.49712

y 3
= 0.50192

Then it follows that

u(. 49712, .50192) = -0.00192

v(. 49712, .50192) = -0.00300
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u (. 49712, .50192) = -0.00577

v (. 49712, .50192) = 1.00385

F(. 49712, .50192) = 0.00001

Note that the new value for F is less than that for the

previous iteration. This indicates that the new approximations

for x and y are getting closer to the actual zeros of f(z) where

z = x + iy. The new values for Ax and Ay are

Ax = 0.00287

Ay = -0.00193 .

Hence, x = 0.5000 and y. = 0.5000. The next iteration will

2
yield that Ax = Ay = . Hence, the zeros of z - z + 1/2 are

z = 1/2 + i/2 .



SCALING A POLYNOMIAL

A technique will now be given to scale a polynomial so that

all zeros lie within the unit circle. First of all, an upper

bound for the zeros of the polynomial must be determined. There

are many possible techniques for finding an upper bound for the

roots of a polynomial equation; however, the following technique

is very simple.

Consider that a general polynomial may be denoted as follows

p(z) = a z
n

+ a
n
z
n~ + + a, z + a n

=
, a t ti.n n-1 1 n

Any polynomial can be transformed into an equivalent monic poly-

nomial by dividing all terms by the leading coefficient. Hence,

the polynomial denoted above is equivalent to the polynomial

z
n

+ b^ .z
1^" 1

+ --- + b,z + b n = ,n-1 1 '

where b. = a, /a . Once a polynomial is in monic form, an upper

bound on the roots of the polynomial equation is one plus the

maximum of the absolute values of the coefficients. This follows

by considering the companion matrix of the polynomial

p(z) = z
n

+ b^
n
z
n_1

+ --- + b, z + b n .n-1 1

The zeros of this polynomial will be the characteristic roots of

the companion matrix of the polynomial.

The companion matrix of the polynomial above is the matrix
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-b
l - b 2

b _ -b' ,n-2 n-1

It will be true that any characteristic root of a matrix is

less than or equal to the minimum of the maximum row surr and

maximum column sum. Hence, any characteristic root must be less

than the maximum column sum regardless of what the row sums are.

Prom the form of the companion matrix of a polynomial , it then

follows that a bound on the zeros of a polynomial is one plus the

maximum absolute value of the coefficients of the monic polynomial,

The method for scaling the zeros of a polynomial was chosen

for its simplicity and because It can be easily adapted for use

on a digital computer.

An example of the technique follows. Consider the polynomial

pCz) = 2z
5

- 7.4z
4

+ 14. 8z
3

- 21. 6z
2

+ 20. 6z - 13.6 .

First change p(z) into the equivalent monic polynomial

z - 3.7z
4

+ 7.4z
3

- 10. 8z
2

+ 10. 3z - 6.8

The maximum of the absolute values of the coefficients is 10

Hence, an upper bound on the zeros is 11.8. For use on the

computer, 11.8 will suffice; however, to work the example by
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hand, 12 will be chosen as the upper bound. Let z = 12w. Then

substitution into the polynomial yields a new polynomial of the

complex variable w,

(12w)
5

- 3.7(12w)
4

+ 7.4(12w) 3
- 10.8(12w)

2
+ 10.3(12w) - 6.8

This new polynomial in w is equal to

248,832w
5

- 76723. 2w
H

+ 12787. 2w
3

- 1555. 2w
2

+ 129. 5w - 5.8 .

While this new polynomial might look quite formidable, the

computer can handle it readily.
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ADAPTATION OF THE ALGORITHM FOR USE ON THE DIGITAL COMPUTER

Now consider the problem of adapting the method of steepest

descent for efficient use on the digital computer. It would not

bo entirely practical to use the algorithm as given previously

on page 3 of this report, unless one has a very special case to

consider. It can be done, however. As an example of the

straightforward use of the given algorithm on a digital computer,

the program written in FORTRAN IV language for the example

f(z) = z
2

- z + 1/2

is given on the following page.

This program will readily solve the particular equation

f(z) = z
2

- z + 1/2 = ,

but it is useless for solving any other polynomial with real or

complex coefficients. What is needed is a way to write a program

which will readily find the zeros of any polynomial with real or

complex coefficients by simply supplying the coefficients and

the degree of the polynomial. This type program would have a

great deal of usefulness to anyone with the problem of finding

the zeros of many polynomials, or to a person with a single poly-

nomial to solve even though he has a very limited knowledge of

programming and computer usage.

Let the general polynomial with real or complex coefficients

be denoted by
n

f (z) = Y^ (a, + ib. )z
k

<£—i k k
k=0
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IMPLICIT REAL+8(A-H,0-Z)
CIMFNSION X(25),Y(25>,U(25),V(25>,DX(25),DY<25)
CIMENSION UX(25),VX(25) ,F(25)

ICC FORMAT t' 't4FK.8)
101 FORMAT (0* f 4F14.8)
102 FORMAK 'lSVX, »X«,i2X» , Y« , I2X,«DX , ,12X, •DY» )

X{ 1 ) = .3
Yd )=.4
CO 10 1=1,5
U( I ) = X( I )*X( I )-Y( I)*Y(I)-X(I)+.5
V( I)=2*X(I)*Y(I)-Y(I)
UX{ I )=2*X{ I )-1.0
VX(I)=2*Y(I)
F( I ) = U( I)**2+V(I)**2
DX(I)=(-U( I)*UX( I)-V( I )*VX( I ))/(UX( I)**2+VXII )**2)
X(I + 1) = DX( I)+X(I)
DY(

I

)=tU(I )*VX(I )-V(I)*UX( I) )/(UXU)**2+VX(I)**2)
10 Y( 1 + 1 ) = DYl I )+Y(I

)

WRITE(3, 102)
WRITE (3, 101) X(1),Y( 1),DX( i) ,0Y(1)
DC 11 1=2,5

11 WRITE (3, 100) Xm,Y(I),DX(I),DY(I)
WRITE<3,103)
WRITEOtlOl) UCl)tV(l) t F{ 1)
DC 12 I=2 T 5

12 URITE<3,100) U( I) ,V(I) ,F(I)
103 FORMATP • * ///7/7X, • U« , 12X, ' V» , 12X, • F» )

STOP
END

X Y OX OY

C.3CCCCC01 0.39999998 0.225C0C00 0.05COC003
0.525CCCC1 0.45000000 -0.02788463 0.05192307
0.49711538 0.5C192308 0.00287354 -0.00192762
0.49998892 0.49999546 O.0CGOUO8 0.00000454
0.5CCCCC00 0.5CC00000 -0.00000000 0.00000000

u

0.13CC0001 -0.15999998 0.04250000
C. 04812500 0.02250001 0.00282227
•0.001^1845 -0.00289571 0.00001207
0.CCCCG454 -0.00001108 0.00000000
O.CCCCCCCO O.OCCCOCCO O.OGOCOCOO



20

where a, and b, are real numbers. It is easily seen that f(z)

as defined above is an entire function of the complex variable

z = x + iy

.

By the use of Siljak functions, X, and Y. , the algorithm

can now be adapted for a general use on the digital computer.

Define the Siljak functions X, and Y, by the following equation:

z
k

= X, + iY, .

k k

kHence X^ is the real part of the complex number z and Y, is the

imaginary part . Note that X
Q

= 1 , Y
Q

= , X
±

- x and Y = y

where z = x + iy

.

2 2 2Consider the identity z - 2xz + (x + y ) = 0, noting that

z - 2xz + x + y = (x + iy)
2

- 2x(x + iy) + x
2

+ y
2

2.22 22
= x + 2ixy - y - 2x - 2ixy + x + y =

,

Hence, it is also true that z (z - 2xz + x + y ) = 0. It

follows that z
+

- 2xz
+

+ (x
2

+ y
2

) z = , or writing this in

terms of Siljak functions and equating real and imaginary

coefficients

,

x
k+2

= 2xX
k + i - (x +

y )x
k

2 2.

k+2 fcA
*k+l v * y yi

k
Y,.,, = 2xY,.+1

- (x' + y')Y

Thus a recurrence relationship has been found for the Siljak

functions. This means that given any particular value for z,

the Siljak functions X
k

and Y
R

may be easily calculated for all
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values of k = 0, 1, 2, . .., n, for any desired integer n. This

recurrence relationship can be very efficiently used and computed

on any digital computer.

The partial derivatives of the Siljak functions with respect

to the real variable x are easily obtained from the defining

equation z = X, + iY. '. Consider

3 k , k-1 3z
•x— z = kz *— •

3x 3x

Since 3z/3x = 1, it follows that

I- z
k

= kz
k 1

= k(X, . + iY. .) .

3x k-1 k-1

This says that

k (x
k

+ iY
k>

k(x
k-i

+ iY
k-i)

which yields, upon equating real and imaginary coefficients, that

- k\-i
3x

3Y

3x

It can be shown that in general

,

kY
k-i

and

3
n
X—-£ = k(k-l) ... (k-n+l)X,

3x
n k "n

n
3 Y.—-£ = k(k-l) ... (k-n+l)Y,
3x

n k " n
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It now follows that

n

f(z) = ]T (a
k

+ ib
k
)z

}

k=0

n

Z <a
k

+ lb
k
Hx

k
+ iY

k
}

k=0

n

T. iuA - bkV + i(b
k
x
k * aA )]

k=0

Comparing f(z), written as above, with f(z) = u + iv, where

u = u(x,y) and v = v(x,y), yields

n n

u(x,y) = Yl (a
k
X
k " b

k
Y
k

) and V(X '^ ) = H U
k
Y
k

+ bkV
k=0 k=0

Using the rules of calculus and the ideas developed above

about the partial derivatives of the Siljak functions with

respect to x, the following expressions for 3u/3x and 3v/3x can

be derived.

n

^ = S k(a, X, - - b.Y, , )ox Z—. k k-1 k k-1
k =

n

& H k(a
k
Y
k-i

+ Vk-^
k=0

Using the above two expressions for 3u/3x and 3v/3x, the

need of directly finding derivatives of any functions has been
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eliminated. The fact that no derivatives need be calculated makes

the algorithm simpler than when Siljak functions are not utilized.

The algorithm can now be restated in terms of the Siljak

functions

:

(1). Scale to have some roots within the unit circle.

(2). Choose initial approximations other than on the real

axis .

(3a). Compute the Siljak functions X, and Y, for k = 0, 1,

..., n, where n is the degree of the polynomial f(z).

(3). Compute u(x,y), v(x,y), 3u/3x, 3v/3x, and F(x,y)

using the formulas

n

uCx.y) B ]T (aA - b
k
Y
k

)

k=0

n

v(x,y) - ]T (a
k
Y
k

+ b^)
k=0

n

3u
3x

k =

E k(a
k
x
k-i - Vk-i 1

n
3v
3x

k=0

= E k(a
k
Y
k-i

+ VW
v _ 2 2
F = u + v

(4). Compute new approximations from the relationships

X
i+1

= x
i

+ Ax
' yi+i = Yi + Ay
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where

3u 3v 3v 3u

Ax = »2 E*_ . Ay = 5 5L-

(5). Take x, as x„ and y. as y n
and repeat steps 3a, 3, 4,

5 and 6

.

(6). If the value of F is greater than the value calculated

for F on the previous iteration, reduce the values of Ax and Ay

used previously until the value for F is smaller than on the

preceding iteration.

This algorithm differs from the one given on page two in

only two respects. First, an additional step, (3a), has been

added. Secondly, in (3), the manner in which the functions u, v,

3u/3x and 3v/3x are calculated has been changed. Step (3) in the

new algorithm achieves the same results as the corresponding step

in the first algorithm. It is only the method of getting the

results that has been changed. It is this second method of

computing u, v, 3u/3x and 3v/ 3x that is well suited for use on

a digital computer.

A program written in FORTRAN IV for use on a digital computer

follows. This particular program was run on an IBM 360/50

digital computer. The program is quite simple to use and requires

only a very limited knowledge of computers . The program is

designed to find the zeros of any polynomial and is limited only

by the accuracy of the machine in use. Better and quicker results



could undoubtedly be attained if double precision were used:,

however, double precision routines for operating with complex

numbers are not available for the machine used. The results, for

the particular polynomial solved as an example, are given in

tabular form following the program itself.

To use the program a few data cards must be prepared by the

user. The actual number of data cards needed is three more than

the degree of the polynomial to be solved. Three types of infor-

mation must be read into the machine by these data cards . The

first data card contains a parameter to specify the degree of

the polynomial. This parameter, called k, is an interger one

greater than the 'degree of the polynomial. The parameter k is

read in by an 13 format statement. This means that the number k

appears in the first three columns of the first data card with

the last digit in the third column.

The next k data cards will contain the coefficients of the

polynomial beginning with constant term, next the coefficient of

the first power of the variable, continuing up to the coefficient

of the variable to its highest power. Each coefficient is

punched onto one data card in two F10.6 fields. The first F10.6

field is the real part of the coefficient and the second F10.6

field is the imaginary part.

The last data card will contain the guessed initial approxi-

mation for the zero of the polynomial. This number is read into

the machine in the same manner as are the coefficients. The real

part of this initial approximation is read in on the first F10 .

6

field and the imaginary part on the second F10.6 field.
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IMPL I C I T RL*AL*8 (A- 11,0-7. )

R£AL*4 SAdOC ) ,SBd00 )

COMPLEX* 16 Z/N( 100) ,CZZN( 100) ,ZN(100) ,ZZUOO)
CGMPLEX«8 SCOFF ( 100)
COMPLEX* 16 CCMP{ 100) ,COEF( 100) , BOMP( 100),

Z

DIMENSION G(1C0) ,H( 100) ,XDX(100) , YDY < 100) , FF ( 100)

DIMENSION X{ ICO.Yl 100) ,XSJ( 100) ,YSJ( 100) ,A(100),B(100)

100
101
200
201
404
444
20 3

305
306
505
506
777

1C

998

999

11

D I M E N S I (

F0RPA1

(

FCRMAT(2F10.6)

N PRDdOO) , AA(IOO) , BB( 100 ), A.N (100), ON { 100)
5)

, 13X

r//t
,7X,

,7X,« I' ,3X,'Xd )«, 17X,'Y( I ) • )

, 5X ( 13 f 2X, 015.8 .IQX, 015.8)
.•METHOD OF STEEPEST DESCENT')
11X,'F0R FINDING ZEROS OF POLYNOMIALS 1

)

[« ,8X, 'Ad ) • ,17X, «B(I ) •

)

• ,1CX,////)
,1CX, 'COEFFICIENTS OF REDUCED POLYNOMIAL*)
,///)
,//)
,015.8)

505)
404)
444)

12

FORMAT

(

FCRMAT(
FORMAT

(

FCRMATt
FCRMAT(
FORMAT
FORMAT

(

FORMAT

(

FORMAT I

FORMAT(
WRITEO
WRITE(3
NRITEtJ
READ( 1,100)K
CO 10 1=1,

K

READd.101) Ad) ,B( I)

READ(1,101) X(1),Y{1)
J=0.0
L=0
WRITE(3,506)
WRITE (3, 200)
WRITE (3, 506)
XSJ{1)=1.0
XSJ(2)=X(1)
YSJd) = 0.0
YSJ(2)=Yd)
P=X(1)
C=Y{ 1)

KK=K-2
DO 11 1=1, KK
XSJ( I+2) = 2*P*XSJ(I + 1)-(P*P+Q*Q)*XSJ(I)
YSJ( I+2) =2*P*YSJd + l)-(P*P +Q*Q)*YSJd)
U=0.0
V =0.0
UX=0.0
VX=0.0
F=10*#60
DC 12 1=1,

K

U=U+A(I)*XSJd )-B( I )*YSJ(I)
V=VtA(I)«YSJ(I )+B(I )*XSJ(I)



27

on n 1=2 tK

UX = UXM I-i )*(M I )*XSJ< 1-1 )-B( I )*YSJ£ I-l) )

13 VX = VX+( 1-1 )*(/M I )+YSJ( I- 1 )+B( I )*XSJt I-l)>
S=OABS(U)
T=DABS(V)
II : (S.L1'.2.S*1C.**(-A0.0) ) GO TO 14

IFtT.LT. 2.5*10.**{-40.0) ) GO TO 14

J = J+1
F*U*U+V*V

14 CX=-(U*UX+V*VX)/(UX*UX+VX#VX)
0Y= ( U*VX-V*UX ) / I UX*UX+VX*VX

)

xu+l ) = x< j)+dx
Y(J + 1 ) = Y(J )+CY
P=X( J+l

)

G=Y(J+l)
FFU) = F

IF{J.LE.2)G0 TO 23
IF(FF(J-1 ).LT.FFU) ) GO TO 22
GO TO 23

22 J=J-1
IF(J.eQ.15) GC TO 888
L = L + 1

IF (l.EQ.10) GO TO 1000
XDX(L)=OX
YCY(L)=DY
WRITE (3,201) L,DX,DY
3X=XCX(1)
CY=YDY(1)
KRITE(3,201) L,DX,DY
DX=DX-L*.25*0X
CY=CY-L*.25*CY
WRITC(3,20U L.OX.DY
IF(DX.EG.O) GC TO 1000
G(L)=X(J)
H(U=YU)
P=G(1)+DX
Q=H(1 )+DY
GC TO 999

23 WRITE(3,201) J,X(J) ,YU)
IF(F.NE.O) GO TO 999

888 7. = DCMPLX(P,Q)
CO 24 1 = 1,

K

24 CGKP( I)=OCMPLX(A(I) ,8(1) )

ECI/P(K) = COMP(K)
KL=K-1
CO 301 1=1, KL
L = K-I
LL=L+1

301 3CMP(L)=C0MP(L)+B0MP(LL)*Z
CO 302 1=1, KL
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CGEF ( I ) = RCWP( I + l)

scgef(I)=cqefu)
sa( i )=real($ccefu) )

SDt I )=AIMAG(SCOEF{ I )) '

A ( I ) = S A ( I )

302 B(I)=SB(IJ
K=K-1
IF(K.EQ.l) GO TO 1000
IF{C.EC.O) GO TO 998
W*r-Q

Z=DCMPLX(P»W)
60KP(K)*COEFIK)
KJ=K-1
DC 3C3 1=1, KJ
L=K-I
LL=L+1

3C3 DCMP(L)=CCEF(L)+BCMP(LL)*Z
KKKK=K-1
IF(KKKK.EQ.l) GO TO 1000
KRITEC3,305)
WRITE (3,306)
WRITE(3,2031
DC 304 1=1, KJ
CCEF( I)=bOKP(I+l)
SCOEF( I)=COEF(I)
SA( I ) = REAL(SCCEF(I) )

SE( I)=AIKAG(SCCEF(I) )

A{ I )=SA(I)
B{ I) = SB( I )

304 WRITE(3,201) I, Ad), BID
K=K-1
IF(K.EG.1)G0 TO 1000
GO TO 998

1000 CONTINUE
STOP
ENO



KETHGC CF STEEPEST DESCENT

FCR FINDING ZEROS OF POLYNOMIALS

xm Yd)

1 C.3CCCCCCCD CO C4CCCCC000 cc

2 C.23956155C GO C35228385D CO

2 C. 23135642D CO C. 330959950 CC

A C.333812C7C CO C.33323567D CC

5 C.23335252D CO C.33333296D CC

6 C. 333333280 CO 0.333334080 CC

7 C.23233316D CC C33333410D CC

8 C.333333150 CO 0.333334100 CC

9 C-23333315C 00 C3333341CD CC

1C C.23233215C 00 C3333341CD CC

11 C.23333315C CO C3333341C0 CC

11 C33333315D 00 C3333341CD 00

COEFFICIENTS CF RECUCEC POLYNOMIAL
I All) BID
1 C49999857D CO -0-138777880-15
2 -C1CCC0CCCC 01 CO
2 C1CCCCCCCD 01 CO

xm Yd)

1 C3CCCCCCCC CO C4CCCCC00D CC
2 C52499928C CO C44999857D CC
3 C. 52343745D 00 0.496873460 CC
4 C5C1282C10 CO C49943948D CC
5 C.5CC27656C CO C499996610 CC
6 C.5C0CCC94C 00 C49999849D CO
7 C5CCCGCC4D CO 0.499998570 CC
6 C5CCCCCCCD CO C499998570 CC
9 C.5CCCCCCC0 CO

' C499998570 CC
9 C5CCCCCCCD 00 0.499998570 CO
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The method of steepest descent is a straightforward method

for finding zeros of polynomials which is very useful in some

situations, namely when information about the location of the

zeros of a polynomial is inadequate to use the synthetic division

methods. For the method of steepest descent, convergence to a

zero is guaranteed and convergence to the zero is rapid in a

region of the zero.

The method of steepest descent can be readily applied for

use on a digital computer with only slight modifications. The

purpose of this paper is to show the development of the particular

form of the method of steepest descent given by J. B. Moore in

the "Journal of The Association for Computing Machinery ", Vol. 14,

No. 2, April, 1967, pp. 311-315. Other methods of this type are

available, but the form which Moore gives is easily adaptable

for use on a digital computer.

Dr. Moore states the problem in the following way. Consider

the equation f(z) = u(x,y) + iv(x,y), where f(z) is an entire

function of the complex variable z, with z = x + iy ; x and y will

be considered as being functions of a parameter t. The differen-

tial equations

dx _ . 3F , dy , 3F
tt = - h-r— and -i = - h^r-dt 3x dt 3y

are a basis for the algorithm, where h is a positive constant

and F = F(x,y) is a function satisfying the following conditions:

(1) The derivatives — and ~ exist.
3x 3y



(2) F is nonnegative.

(3) The zeros of F are located at the roots of f(z) = 0.

(4) These zeros are the only minima of F.

The following algorithm, which arises out of theoretical

computations, is the basis for a convergent method for finding

the zeros of a polynomial.

(1) Scale to have some roots within the unit circle.

(2) Choose initial approximations other than on the real

axis, i.e. , x
Q , y

Q
.

(3) Compute u(x,y) , v(x,y), -~— , ~— and F(x,y), for x = x n ,oX dX U

y = y

(4) Compute new approximations for x and y by using

x.^_ = x. + Ax and y . , -,
= y- + Ay

,

l+l 1 J i+l J 1 J '

where

3u 3v 3v 3u
- UW - V

3x-
" U

3x-
- V

37
~ n ', tt ' Ay -

~r n—;

—

n
3u\
ax).3xj \3x/ [dx] \3x

for x = x
± , y = y

±
.

(5) Take x as x
Q
and y as y„ and recompute the parts of (3)

(6) If the value of F(x,y) as now computed is greater than

that of the previous iteration, reduce the increments Ax and Ay

used previously until the value of F is smaller than for the

preceding iteration (Dr. Moore suggests reduction by one quarter

each trial)

.

(7) If F is sufficiently close to zero, stop. Otherwise

repeat the process beginning at step (3).


