
 

 

 

 

IMPLEMENTATION OF ALGORITHMS FOR COMPUTING 

INFORMATION PROPAGATION DELAYS THROUGH 

SEQUENCES OF FIXED-PRIORITY PERIODIC TASKS 

 

 

by 

 

 

VINEET TADAKAMALLA 

 

 

 

B.TECH, J.N.T.U, INDIA, 2009 

 

 

 

A REPORT 

 

 

submitted in partial fulfillment of the requirements for the degree 

 

 

 

MASTER OF SCIENCE 

 

 

 

Department of Computing and Information Sciences 

College of Engineering 

 

 

 

KANSAS STATE UNIVERSITY 

Manhattan, Kansas 

 

 

2011 

 

Approved by: 

 

Major Professor 

Dr. Rodney Howell



 

 

Abstract 

Nowadays, there is a rapid increase in the complexity of large automotive and control 

systems because of the integration of external software modules in them. Many of these systems 

are based on sampled-data control theory. And because of the different timing constraints of 

individual modules, each module has a different sampling rate. Typically, these systems operate 

with periodic task sequences and the information flows between the tasks. Generally the 

information propagates from tasks operating at one period to tasks operating at different periods. 

When this happens, unusually long information propagation delays can occur which can be 

disastrous because the system cannot respond to the changes until this delay has been elapsed. 

Although for arbitrary set of task sets the delays can be very long, Howell and Mizuno (2010) 

considers a set of task sequences with special constraints and some very useful bounds are 

derived for the worst case occurrences of them. Howell and Mizuno (2011) has laid out 

algorithms that compute the delays for certain special cases of task sequences considered in 

Howell and Mizuno (2010). The purpose of this project is to understand and implement the 

algorithms from Howell and Mizuno (2011). The implementation is done so that it avoids the 

manual computation of the delays and helps in better understanding the ideas presented in 

Howell and Mizuno (2011). The application can be tested against any valid input that meets our 

assumptions, and it constructs a schedule that exhibits the worst case behavior and from the 

schedule it computes the worst case information propagation delays.  

 



iii 

 

Table of Contents 

List of Figures ................................................................................................................................ iv 

Acknowledgements ......................................................................................................................... v 

1. Introduction .............................................................................................................................. 1 

1.1. Goal ................................................................................................................................. 2 

1.2. Motivation ....................................................................................................................... 3 

1.3. Challenges ....................................................................................................................... 3 

1.4. Software and Hardware Requirements ........................................................................... 4 

1.5. Overview ......................................................................................................................... 4 

2. Definitions and Assumptions ................................................................................................... 5 

3. Algorithms and Theorems ....................................................................................................... 9 

3.1 Monotonically Decreasing Priorities .............................................................................. 9 

3.2 Monotonically Increasing Priorities .............................................................................. 10 

4. Design and Implementation ................................................................................................... 11 

4.1 Monotonically Decreasing Priorities: ........................................................................... 11 

4.2 Monotonically Increasing Priorities .............................................................................. 14 

5. Testing and Results ................................................................................................................ 20 

5.1 Types of test cases for Monotonically Decreasing Priorities: ...................................... 21 

5.2 Types of test cases for Monotonically Increasing Priorities: ........................................ 26 

6. Performance Analysis ............................................................................................................ 30 

6.1 Run Time Analysis for Algorithm for Monotonically Decreasing Priorities: .............. 30 

6.2 Run Time Analysis for Algorithm for Monotonically Increasing Priorities: ............... 31 

7. Scope, Conclusion and Future Work ..................................................................................... 32 

7.1 Scope ............................................................................................................................. 32 

7.2 Conclusion .................................................................................................................... 32 

7.3 Future Work .................................................................................................................. 33 

References ..................................................................................................................................... 34 

Appendix A - Code for Algorithm 1 ............................................................................................. 35 

Appendix B - Code for Algorithm 2 ............................................................................................. 48 



iv 

 

List of Figures 

Figure a: Monotonically Decreasing Priorities ............................................................................. 18 

Figure b: Monotonically Increasing Priorities .............................................................................. 19 

 



v 

 

 

Acknowledgements 

 

I would like to thank my major professor Dr. Rodney Howell for his constant guidance  

 

and help throughout the project. I would also like to thank Dr. Torben Amtoft and Dr. Simon Ou  

 

for graciously accepting to be on my committee.  Finally, I wish to thank my family and friends  

 

for all their support and encouragement. 

 

 

 



1 

 

1. Introduction 

In any large scale complex automotive or control systems, there are many modules that 

communicate with each other. So information flows from one module to another module. Most 

of these systems are based on sampled-data control theory [6]. And in such systems periodic 

sampling occurs. And because different modules have different timing constraints the sampling 

rates of these individual modules differ.  

 

Since different sampling rates are used, the modules are driven at different rates using a 

multi-rate driver to be cost effective. Here typically information flows from modules driven at 

one rate to modules driven at a different rate, or in other words information propagates from 

tasks operating at one period to tasks operating at different periods. So when this happens, the 

reaction times can increase drastically because of the end to end delays. These delays can be a 

worry because the system cannot respond to any changes in the input until this delay has elapsed. 

This problem has been addressed in [2] and more work has been done in [1] and subsequently in 

[3]. 

 

Typically these systems operate with periodic task sequences and use rate monotonic 

scheduling (defined in section 2). When tasks operating at larger periods reads information from 

tasks operating at a smaller periods, unexpectedly long end-end delays can occur. Because the 

shorter period task can execute many of its instances before the larger period task finishes its 

instance execution, the information based on which the larger period task is operating might be 

very old. So the output to the latest change in the input is not reflected in the system until very 

late. These delays are known as end-to-end delays. 

 

Although the end-to-end delays are a known phenomenon and some known research has 

been done in this area, what is more interesting is analyzing the worst case occurrences of these 

delays. This has been addressed in [1] and some algorithms for computing the delays have been 

proposed in [3].  

 

In this report we consider two types of information propagation delays, namely, First-

First-delay and Last-Last-delay, whose definitions are given in the section 2 of this report.   



2 

 

 

These delays vary depending on the scheduling algorithms used and also the priorities of 

the tasks and other constraints. The upper and lower bounds for worst case delays for certain 

kinds of task sequences with special constraints are derived in [1].  

 

This project is an implementation that constructs a schedule that produces the worst case 

information propagation delays for any task sequence which is in accordance with the 

assumptions and special constraints given in [3].   

 

1.1. Goal 

 

The main goal of this project is to understand and implement the algorithms mentioned in 

section 4 of this report, which were originally written in [3]. Also the results of the 

implementation should be matched up against the upper bounds mentioned in section IV of [1]. It 

is our aim that these results give us a good idea about how long worst case propagation delays 

can be in a system. It should also show that the bounds are tight by producing many schedules 

where the delays approach these bounds. 

 

Since in the course of the implementation there is always the issue of efficiency, the 

secondary goal is to implement the algorithms in the most efficient way possible so that its run 

time analysis is in accordance with the ones predicted in the paper.  

 

One more goal is to prepare a good number of test cases that cover many possible 

scenarios and perform testing on them to assure that the implementation meets all the 

requirements and produces the results according to our expectations. 

 

The final goal is to provide an easy user interface so that any naive user without much 

knowledge about the technology can use it to provide their own set of test cases and match the 

results with the expected ones. 

 



3 

 

 

1.2. Motivation 

 

Although [3] has laid out the algorithms and also the correctness proofs in a pretty 

comprehensive manner, in order to better understand the ideas presented, an implementation of it 

is required.   

 

This implementation works as a tool for showcasing different examples and avoids the 

tedious task of computing the delays manually for each test case and explaining the results of it 

on paper. So in this way it avoids a lot of time and effort required from the end user side. 

 

The implementation also allows the users to test it with various sets of their own test 

cases, rather than depending on the ones provided by us. They can use the results for better 

understanding the delays and also if possible, they can figure out a way to reduce them.  

 

The implementation can work as a prototype for extending it to work as an analysis tool 

for computing worst case propagation delays in different kinds of task sequences within a given 

task set and different priority assignments apart from fixed priority scheme. 

 

 

1.3. Challenges 

 

The main challenge was learning the theory behind these systems and understanding the 

algorithms and ideas presented in [1], [3] and to some extent [2] completely before starting the 

implementation. 

 

The problem is not only to implement the algorithms exactly as described in the paper but 

also to implement them efficiently so that it takes as little time as possible to compute the worst 

case propagation delays.  

 



4 

 

The other challenge when developing the solution was to decide what data structures are 

useful for implementing the algorithms. Since there was considerable freedom in the design of 

things, the other challenge was how to reuse components and functions inside the program so 

that we do not generate the same things more than once. The details on how this is implemented 

are mentioned in section 5 of this report.  

 

 

1.4. Software and Hardware Requirements 

 

Since the nature of the algorithm uses data structures like priority queues, lists, arrays etc, The 

Java language is a well suited choice because of its inbuilt and efficient implementation of data structures. 

Also my familiarity with the Java language helped me choose it to develop this application. 

 

So the major software requirements for developing this application would be 

 

1. Eclipse Galileo, 

2. Java. 

 

There are no specific hardware requirements for this application since we are developing 

this as a simple application and would run on small test cases, but for better user experience and 

minimum response time we need to have a faster RAM and a higher CPU speed for the computer 

or server where we would be hosting our application. Also since the technology used is Java and 

is platform independent, the application can run on any operating system.  

 

1.5. Overview 

 

Since now we have given an introduction and specified the goals, motivation and 

challenges behind this project, the rest of the report has the definitions, assumptions and 

constraints necessary to understand the implementation in section 2, and mentions the algorithms 

and theorems from [3] that have been implemented in section 3. Section 4 describes how the 

design and implementation has been done. It also has some figures to better understand the 



5 

 

classes and methods in the code. Section 5 talks about the various test cases considered and 

analyses and interprets the results of executing them. Section 6 has a performance analysis which 

gives an idea about the time complexity or the run time analysis of the implementation. Section 7 

concludes this report by mentioning the scope of this implementation and also the future work 

that can be done.  

 

 

2. Definitions and Assumptions 

 

In our implementation, a Task is a structure that has the primary properties Task name, 

Period, Maximum Execution Time and Priority. This task becomes available for execution at 

time kp, where p is the period of the task for each natural number k, and each of these instances 

must be scheduled to completion before the next instance is available. Each instance is 

guaranteed to require no more than its Maximum Execution Time.  

 

A Task Set is a set of Tasks that are to be scheduled. Here each Task is as above. A Task 

Sequence is a sequence of Tasks from a Task set where information flows from one task in the 

sequence to the next in that order. The Information Flows and Information Propagation Delays 

(defined later in this section) have to be computed for this Task sequence. 

 

Scheduling is the process of deciding and executing the task instances in a deterministic 

way according to their priorities. Highest priority tasks are executed first. Fixed Priority 

Scheduling is a scheme of scheduling where every task in the task set is assigned a fixed priority 

at the time of initialization. So the priorities remain unchanged throughout the execution.  In our 

implementation we consider task sets that follow only Fixed Priority Scheduling. 

 

Preemption occurs when a higher priority task becomes available for execution and a 

lower priority task is executing. In this scenario, the lower priority task stops execution and 

higher priority task begins executing. The lower priority task resumes its execution later. In our 

implementation preemption is allowed. 

 



6 

 

A Schedule encapsulates the entire information about the execution times of the task 

instances. It is a timeline which shows what individual task instance is executing at a particular 

time unit. In our implementation a Schedule Prefix is a structure that, for each instance of every 

task in the task set has the task name, start time and end time of its execution. We execute the 

task instances based on the priorities and record the task name, start and end times of the task 

instance. The Schedule Prefix is then the list of all the information for each task instance within a 

certain time period.  

 

Rate Monotonic Scheduling, defined in [5] is a method of scheduling where priorities are 

assigned based on the periods. Shortest period tasks are given the highest priority and vice versa.  

 

If each task period is an integer multiple of every other task period then the periods are 

said to be Harmonic periods. In our implementation we consider task sequences that have 

harmonic periods. 

 

A task schedule is said to be a Feasible Schedule, if every instance of each task in the 

sequence gets executed before the next instance of the same task is ready for execution. In our 

implementation we assume that every task sequence has a feasible schedule. 

 

Worst-case Response Time, R(T) is the maximum difference between the time at which 

an instance of task T becomes available and the completion time of that instance. 

 

The rest of the definitions in this section were defined in [3] and are quoted below.    

 

Let T = <T1, . . . , Tn>   be a task sequence within some feasible task set. Given a 

schedule of the task set and a time t0, the First-First Information Flow from t0 through T 

in this schedule is the sequence of times t0 < …..< tn such that for 1 ≤ i ≤ n, ti is the finish 

time of the first instance of Ti that begins executing no earlier than ti−1 [3].  

 



7 

 

From the above definition, The First-First Information Propagation Delay (dFFT (to) ) of T from 

time t0 within the given schedule is the length tn − t0 of the first-to-first information flow from t0 

[3]. 

 

Worst case First-First Information Propagation Delay (DFFT) is the maximum duration from 

a moment at which input data changes to the earliest moment at which the change and possibly 

subsequent changes due to periodic sampling of input data is reflected in the output.  

 

From the above two definitions, it is the maximum of First-First Information Propagation 

Delays taken over all schedules produced using the given task priorities and all times t0 plus 1 

[3].  

 

This is because in a control system external events do not necessarily occur at integer time 

values. So the actual delay might be nearly 1 more than the delay we have defined. Hence 1 is 

added to compensate for it. 

 

Let T = <T1, . . . , Tn>  be a task sequence within some feasible task set. Given a schedule 

of the task set and a time tn+1, the Last-Last Information Flow (dLLT (tn+1)) to tn+1 through 

T in this schedule is the sequence of times t1 <……..< tn+1 such that for 1 ≤ i ≤ n, ti is the 

starting time of the last instance of Ti that finishes executing no later than ti+1. (Note that 

for small values of tn+1, there may be no Last-Last Information Flow to tn+1.) [3]. 

 

The Last-Last Information Propagation Delay of T to time tn+1 within the given schedule 

is the length tn+1 – t1 of the Last-Last Information Flow to tn+1, if it exists. If there is no 

last-to-last information flow to tn+1, then the delay is undefined [3]. 

 

Worst case Last-Last Information Propagation Delay (DLLT) is the maximum age of data 

used in the computation. That is the maximum duration from the moment the system has 

responded to a change in the input to the moment at which the input has changed.  

 



8 

 

From the above two definitions , it is the maximum of Last-Last Information Propagation 

Delays taken over all schedules produced using the given task priorities and all times tn+1, such 

that tn+1 is the finish time of an instance of Tn. This is required to make this definition consistent 

with DFFT [3]. 

 

The point at which we break a schedule into two parts, where the first part of the schedule has 

certain properties and also the second part of it has other properties is called a pivot. More formal 

definition is given below and is used in various parts of this report. This is useful because all the 

schedules which have the worst case occurrences of the information propagation delays pivot at 

some value which we discuss later in the report. 

 

Let T = < T1, . . . , Tn > be a task sequence with monotonically increasing priorities 

within a feasible task set. For a given natural number t, we say that a schedule S pivots at 

time t if the following properties are satisfied: 

 

1. Any task instance that begins executing before time t receives 1 unit of execution 

time. 

 

2. All other instances of tasks receive their maximum execution time. 

 

3. To break ties in priority, prior to time t, tasks in T are favored over tasks not in T , but 

beginning at time t, tasks not in T are favored over tasks in T [3].   

 

 

 

 

 

 

 



9 

 

 

3. Algorithms and Theorems 

In this implementation we consider two kinds of task sequences. One is a sequence with 

monotonically decreasing priorities and other is a sequence with monotonically increasing 

priorities. 

 

3.1 Monotonically Decreasing Priorities 

 

Theorem for First-First Information Propagation Delay: 

 

The following is quoted from [3].  

Let T = <T1, . . . , Tn> be a task sequence with monotonically decreasing priorities within 

a feasible task set. Suppose P is the largest period of any task in the task set. Let S be any 

schedule that pivots at time P. Then this schedule contains a First-First information flow 

<t0, . . . , tn> with maximum length. Furthermore, tn can be chosen to be P + R(Tn), where 

R(Tn) is the response time of Tn.  

There is a formal proof of this in [3]. 

 

Theorem for relationship between dFFT and dLLT : 

 

The following is quoted from [3].  

Let T = <T1, . . . , Tn> be a task sequence within some feasible task set, and let us fix 

some schedule for this task set. Then for any time t, dFFT (t) ≤ dFFT (t + 1) = d iff dLLT (t 

+ d + 1) ≤ dLLT (t + d) = d.  

There is a formal proof of this in [3]. 

 

Algorithm: 

The algorithm for computing worst case First-First Information Propagation Delay(DFFT) 

first builds a portion of a schedule that pivots at time P, then finds the Last-Last Information 



10 

 

Flow to P + R(Tn) − 1 in this schedule. From above two theorems, DFFT is then the length of 

this information flow plus 1. 

 

 

3.2 Monotonically Increasing Priorities 

 

Theorem for First-First Information Propagation Delay: 

 

The following is quoted from [3].  

Let T = <T1, . . . , Tn> be a task sequence with monotonically increasing priorities within 

a feasible task set. Suppose P is the largest period in the task set. Then there is a schedule 

S containing a First-First information flow <t0, . . . , tn>  such that 0 < t0 ≤ P, S pivots at 

t0, and tn − t0= DFFT – 1.  

There is a formal proof of this in [3]. 

 

Theorem for Last-Last Information Propagation Delay: 

 

The following is quoted from [3].  

Let T = <T1, . . . ,Tn> be a task sequence with monotonically increasing priorities within a 

feasible task set, and suppose n > 1. Let P be the largest period in the task set. Then there 

is a schedule S containing a Last-Last information flow <t1, . . . , tn+1> with length DLLT 

such that 0 ≤ t1 < P, tn+1 is the finish time of an instance of Tn, and S pivots at time t1 + 1.  

There is a formal proof of this in [3]. 

 

Algorithm: 

 

The algorithm for computing worst case First-First Information Propagation Delay 

(DFFT) and worst case Last-Last Information Propagation Delay (DLLT) has to now compute 

several schedules that pivot at any time t0,  which is between 0 and P. And t0  is one time unit after 

the start time of an instance of T1. So for each of these possible t0  values we compute schedules 



11 

 

that pivot at t0 . And from these schedules we compute the maximum First-First Information 

Propagation Delay and Last-Last Information Propagation Delay which are DFFT and DLLT  

respectively. While we are doing this it is necessary to adapt the algorithm for computing DFFT, 

to also compute DLLT in order to increase efficiency and avoid duplication of work. The details 

of how this is implemented are mentioned in section 4 of this report. 

 

4. Design and Implementation 

 

4.1 Monotonically Decreasing Priorities: 

 

Approach: 

 

We begin by creating a class Task (see Task in figure a) with attributes taskName, period, 

maxExecTime, priority, index (index in the task sequence) and present (indicates the presence or 

absence of the task in the task set).  

 

We then create another class Schedule_Prefix (refer to Schedule_Prefix in figure a) with 

attributes taskName, startTime and finishTime. Whenever an instance of a task gets executed, an 

object of this class is created. So a list these objects represents the entire schedule of the task 

sequence within a certain time period. 

 

The execution of the program starts in the main class Delay (refer Delay in figure a). 

Initially, the event handler, action is invoked and then the input file is accepted. This file has the 

task names of the tasks present in the task sequence first. They are stored in an ArrayList. The 

input file then has a set of tasks with task names, periods, maximum execution times and 

priorities. All the information is read and a task object is created by adding the additional 

information about index, present, etc.  

 



12 

 

We proceed by placing all the task objects into a priority queue (refer Priority queues in 

figure a) ordered by priorities. Since Java has an inbuilt priority queue for which we can provide 

any comparator class, I have used that data structure for this implementation.  

 

Next, we sort the task objects by periods and find out the Maximum period and also the 

Minimum period and store this information (see Delay in figure a). All the above things are 

performed in the action method. 

 

Now, we begin scheduling the tasks as follows. For the time period from 0 to P 

(Maximum period), we schedule each task for 1 time unit according to priorities. I have a logical 

global timer (see timer in figure a) set up for this purpose. This is done by just removing the task 

objects from priority queue and increasing the timer. If tasks are of equal priority, we give 

preference to those in the task set. This is taken care of in the comparator class. This is 

accomplished by making a call to the schedulePrefixFirst method in the Delay class. 

 

When the above procedure is being executed, we check for the availability of tasks at 

each Integral multiple of the shortest period. If any task becomes available we place it in the 

priority queue. This is done by making a call to the checkTaskAvailability method in the Delay 

class. 

 

After completion of building the schedule till P, we continue as follows. For the time 

period P to 2P, we schedule each task for a time of its maximum Execution time according to 

priorities. If tasks are of equal priority, we give preference to those not in the task set. And we 

stop if any instance of the last task in the task set has finished execution. All this is implemented 

in the same way as the first part of the schedule prefix that has already been built with the 

necessary changes. This is accomplished by making a call to the schedulePrefixSecond method 

in the Delay class. 

 

Now that we have the schedule prefix, from the computed scheduled prefix, we compute 

the Last-Last Information Flow to P + R(Tn) – 1 by scanning the schedule prefix once backward. 



13 

 

We store the information in an ArrayList. This is done by making a call to the lastLastDelay 

method in the Delay class. 

 

From the above computed Last-Last Information Flow, we compute the First-First 

Information Flow by scanning the schedule prefix once forward and we store the information in 

an ArrayList. Now, the difference of first and last entry in this flow plus 1 gives us the DFFT. 

This is accomplished by making a call to the firstFirstInfoDelay method in the Delay class. 

 

There is also a formal proof that this is the worst possible delay in [3]. 

 

 

Challenges: 

 

In the implementation each task could execute multiple instances. So keeping track of the 

finish times of each individual task instance and taking care of preemption of tasks was the main 

challenge. 

 

The entire implementation and mainly building the schedule prefix and computing the 

delays were to be done efficiently. 

 

Since the two parts of the schedule prefix were very similar to each other, reusing the 

code so that the two parts of the schedule prefix are computed without duplication of work and 

increase of complexity was necessary. 

 

Deciding the appropriate data structures to represent schedule prefix, Information flow 

and other things was important since it could impact the efficiency. 

 

Preparing a comprehensive set of test cases that covers rate monotonic and other forms of 

scheduling was another challenge. 

 



14 

 

Finally, providing an easy to use interface so that the end user can test this tool against 

his own set of test cases was required. This is done using Java applets. 

 

Currently there is no efficient algorithm known for finding the worst case Last-Last Information 

Propagation Delay for this kind of task sequences in [3]. 

 

 

 

4.2 Monotonically Increasing Priorities 

 

Approach: 

 

We start by creating the same classes and data structures that were used in the 

implementation of previous algorithm. The only difference is that the class Task has an additional 

attribute indexInSequence to indicate the index of the task in the task sequence. It is set as -1 if 

the task is not present in the sequence. This indexInSequence is also included in Schedule_Prefix 

class, but called as Index in it (refer figure b).  

 

The execution of the program starts in the main class Delay (refer Delay in figure b). 

Initially, the event handler, action is invoked and then the input file is accepted and we perform 

the same read and store information operations as before. The only difference is we assign the 

indexInSequence attribute its value. 

 

We then store the task objects (see Task in figure b) in the priority queue (see Priority 

queues in figure b) and sort the tasks according to periods and find out the maximum and 

minimum periods in the same way as above. 

 

Now, we construct a schedule as follows. For the time period from 0 to P (max period), 

we schedule each task for a time unit of 1 according to priorities. If tasks are of equal priority, 



15 

 

we give preference to those in the task set. This is implemented exactly as we have done before. 

This is accomplished by making a call to the schedulePrefixFirst method in the Delay class. 

 

From the above computed schedule prefix, we find out all the time values where an 

instance of first task in the task set finishes. We store them in an ArrayList. These are the 

possible values for the start of the second part of the schedule prefix. This is done by making a 

call to the possibletValues method in the Delay class. 

 

From the above computed list, for each value from the list, we compute the information 

flows and information propagation delays as follows 

 

We schedule each task for their maximum execution times from time value plus 1 to P 

using the same techniques as before. We store this information in a list. And we do the same 

from time P to 2P. Notice that this schedule is cyclic with period P. So we store this information 

in a separate list and also add this information to the other list. Here if tasks are of equal priority, 

we give preference to those that are not present in the task set. This is accomplished by making a 

call to the schedulePrefixSecond method in the Delay class. 

 

Now, for each finish time no later than 2P of a task Ti, where 1 ≤ i < n, we compute the 

finish time of the next instance of Ti+1. These finish times are stored in an array F[1..2P] so that if 

Ti finishes at time t, then F[t] gives the finish time of the next instance of Ti+1. To do this, we 

have a temporary list of ArrayLists indexed by the tasks in the task sequence.  

 

We initialize these ArrayLists with nulls. We then proceed by scanning the schedule 

prefix forwards. For each finish time f of a task instance, if its indexInSequence (let us call it j 

for now) is not the last task index, we add f to the ArrayList at index j of the temporary list. Now 

we check if j is greater than 0 and then retrieve the j-1 entry in the temporary list. And for all the 

values V in that ArrayList, if f is greater than V, we write F[V] = f. We continue this way until 

we reach the end of schedule prefix. Now if any of the values V do not have an entry F[V], then 

making use of the cyclic schedule prefix we wrap around it and add the maximum period to its 



16 

 

values to fill in the missing values using the same technique above. This is accomplished by 

making a call to the finishTimesArray method in the Delay class. 

 

We compute the First-First Information flow by traversing through the array F[1..2P]. 

Notice that we might need information beyond 2P in which case we make use of the cyclic 

property of the schedule after 2P and efficiently find out the necessary value by wrapping around 

the array F[1...2P] and adding the maximum period to its values. From this information flow we 

have the First-First-Information propagation delay which is the difference of last and first entries 

in the flow plus 1. This is done by making a call to the firstFirstInfoDelay method in the Delay 

class. 

 

We now calculate the finish time of an instance of Tn that finishes before the last entry in 

the First-First Information Flow (let us call the last entry as L). This is done by first finding out 

all the finish times of instances of Tn in the time period value to 2P and we store them in a list. 

Since the schedule is cyclic after 2P, L can be reduced to be within P and 2P. Hence a single scan 

of the above computed list gives us the greatest value less than the reduced L. This value can be 

elevated to be in the range of the original L value by adding the maximum period necessary 

number of times (let us call it N). Now, N minus value minus 1 gives us the Last-Last 

Information Propagation Delay.  

 

We notice that there might not necessarily be a Last-Last Information Flow to N, because 

it is not guaranteed that all the tasks in the task sequence from T2….Tn-1 have executed at least 

one of their instances between value and N. However it does not affect the overall worst case 

delay because, the N value computed is not even the worst case delay for this particular schedule, 

so it cannot be the worst case delay computed over all schedules. Hence we simply ignore it. All 

of this is accomplished by making a call to the lastLastInfoDelay method in the Delay class. 

 

After computing both the First-First Information Propagation Delay and Last-Last 

Information Propagation Delay for all the values.  We take the maximum for both sets which 

gives us DFFT and DLLT respectively. 

 



17 

 

There is also a formal proof that this is the worst possible delay in [3]. 

 

Challenges: 

 

One of the main challenges while implementing this algorithm was to compute several 

schedule prefixes efficiently. 

Since the information flow might exceed 2P, the other challenge was to figure out an 

efficient way to compute the entire flow without extending the schedule prefix beyond 2P, since 

it could be very large and the run time could increase drastically. This is done just using arrays 

and lists. 

 

The last-last delay could be computed using the same information that is used to calculate 

first-first delay. So using the same functions and components for computing both these delays 

was another challenge. 

 

Also, preparing a comprehensive set of test cases that covers rate monotonic and other 

forms of scheduling for both delays was important. 

 



18 

 

Figure a: Monotonically Decreasing Priorities 

 



19 

 

Figure b: Monotonically Increasing Priorities 

 
 

 

 



20 

 

5. Testing and Results 

 

This implementation requires testing on various kinds of task sequences. I have listed 

some of the test cases and types of sequences considered for both the algorithms. Also the results 

are analyzed and interpreted.  

 

User Interface: 

 

The user interface is very simple. A Java Applet is launched upon running the application 

(you can also run it as a Java application) and has an OPEN and CLOSE button. The user can 

open a text file by clicking on the OPEN button and immediately the output is displayed on the 

applet viewer. The user can continue to open other input text files and each time the output is 

displayed on the same screen. When finished testing, you can exit the application by clicking the 

CLOSE button. 

 

Input Format: 

 

A text file containing a Task set indicated by Task names, followed by the Task 

sequence. Each Task has a Task name, Period, Maximum Execution time and Priority in this 

order. First "END" in the file indicates the end of task set and second "END" indicates the end of 

input. The program assumes that each input file is correct and does not check for obvious errors 

like spelling mistakes, incorrect order of input, values that contradict our assumptions etc. Every 

task sequence should have a feasible schedule. 

 

Output Format: 

 

The computed Information flows and Information propagation delays are printed on the 

Java Applet. Also it might display some additional information about the tasks. 

 

 



21 

 

5.1 Types of test cases for Monotonically Decreasing Priorities: 

 

a. Rate Monotonic Task sequences with all the tasks in the sequence also present in the task 

set:  

Here, the scheduling algorithm used is rate monotonic scheduling. And the task set 

contains all the tasks from the sequence. In this case the worst case First-First Information Flow 

starts from 0 and ends at P(maximum period) + R(TN) and Worst Case First-First Information 

Propagation Delay is always P + R(TN).  

 

 

Sample Input File: 

 

 
 

 

 

 

 

 

 

 

 

 



22 

 

Output for the above Input File: 

 

 

 
 

Analysis and Interpretation: 

 

From the above output screen shot we can see that for the given task sequence, the Worst 

case First-First Information Propagation Delay from Task T4 to Task T1 in the sequence is 400, 

which is exactly as we predicted since P= 200 and R(TN)=200. Hence the task T1 might take up 

to 400ms to produces an output after the task T4 has detected a change in the Input and 

propagated this information to T1. 

 



23 

 

b. Non Rate Monotonic Task sequences with all the tasks in the sequence also present in the 

task set:  

 

Here, the scheduling algorithm used is non rate monotonic scheduling, so the task 

priorities do not depend on the periods. And the task set contains all the tasks from the sequence. 

In this case also the worst case First-First Information Flow starts from 0 and ends at 

P(maximum period) + R(TN) and Worst Case First-First Information Propagation Delay is 

always P + R(TN).  

 

Sample Input File: 

 

 
 

 

 

 



24 

 

Output for the above Input File: 

 

 

 
 

 

 

Analysis and Interpretation: 

 

From the above output screen shot we can see that for the given task sequence, the Worst 

case First-First Information Propagation Delay from Task T3 to Task T1 in the sequence is 60, 

which is exactly as we predicted since P= 40 and R(TN)=20. Hence the task T1 might take up to 

60ms to produces an output after the task T3 has detected a change in the Input and propagated 

this information to T1. 



25 

 

c. Non Rate Monotonic Task sequences with task set containing only some of the tasks from 

the task sequence. 

 

Here, the scheduling algorithm used is non rate monotonic scheduling, so the task 

priorities do not depend on the periods. And the task set does not contain all the tasks from the 

sequence. In this case the worst case First-First Information Flow need not start from 0 and still 

ends at P(maximum period) + R(TN) and Worst Case First-First Information Propagation Delay 

is always less than P + R(TN).  

 

Sample Input File: 

 

 
 

 

 

 

 

 

 

 

 



26 

 

Output for the above Input File: 

 

 
 

Analysis and Interpretation: 

 

From the above output screen shot we can see that for the given task sequence, the Worst 

case First-First Information Propagation Delay from Task T3 to Task T1 in the sequence is 28, 

which is exactly less than 32, since P = 16 and R(TN) = 16. Hence the task T1 might take up to 

28ms to produces an output after the task T3 has detected a change in the Input and propagated 

this information to T1.  

 

5.2 Types of test cases for Monotonically Increasing Priorities: 

 

a. Rate Monotonic Task sequences with all the tasks in the sequence also present in the task 

set:  

 

Here we need to compute only one schedule since there is only one possible t0 value. In 

this case Worst Case First-First Information Propagation Delay and Worst Case Last-Last 

Information Propagation Delay are always less than sum of the periods plus period of the first 

task in the sequence. 



27 

 

Sample Input File: 

 

 

Output for the above Input File: 

 

 



28 

 

Analysis and Interpretation: 

 

From the above output screen shot we can see that for the given task sequence, the Worst 

case First-First Information Propagation Delay from Task T1 to Task T4 in the sequence is 554 

and Worst case Last-Last Information Propagation Delay is 344. Both these are less than 

560(sum of the periods, 360 + 200). Hence the task T1 might take up to 28ms to produces an 

output after the task T3 has detected a change in the Input and propagated this information to T1.  

 

b. Non Rate Monotonic Task sequences with task set containing only some of the tasks 

from the task sequence. 

 

Here we need to compute several schedules since there are many possible t0 values. In 

this case also the Worst Case First-First Information Propagation Delay and Worst Case Last-

Last Information Propagation Delay are always less than sum of the periods plus period of the 

first task in the sequence. 

Sample Input File:  

 



29 

 

Output for the above Input File: 

 

 

 
 

 

Analysis and Interpretation: 

 

From the above output screen shot we can see that for the given task sequence, the Worst 

case First-First Information Propagation Delay from Task T1 to Task T4 in the sequence is 80 and 

the Worst case Last-Last Information Propagation Delay is 20. Both these are less than 170 (sum 

of the periods 130 +40). Hence the task T1 might take up to 28ms to produces an output after the 

task T3 has detected a change in the Input and propagated this information to T1.  

 

The application has been thoroughly tested against various other task sequences and the 

output is exactly as we expected. 

 

 



30 

 

6. Performance Analysis 

 

The performance of this application is measured in terms of time complexity rather than 

the response time since the response time is usually very good for the test cases we used.  

 

 

6.1 Run Time Analysis for Algorithm for Monotonically 

Decreasing Priorities: 

 

For constructing the first part of the scheduled prefix that is from 0 to P(maximum period 

in the task set),  if Pk  is the largest period in the task sequence, then there can be at most Pk task 

instances that can arrive. So adding and removing the tasks into the priority queue can take place 

that many times. Hence this can take O(Pk log m) time, where m is the number of tasks in the 

task set.  

 

Now for constructing the second part of the scheduled prefix that is from P to R(TN),  

where TN is the last task in the task set. If Pn  is its period, then it can take O(Pn log m) time. 

Since Pn is less than or equal to Pk, the run time for this is also in O(Pk log m).  

 

And for computing the Last-Last Information flow and First-First Information flow it is 

sufficient to scan the schedule prefix once. So it is in O(Pk). Hence the total run time is in O(Pk 

log m). 

 

 

 

 

 



31 

 

6.2 Run Time Analysis for Algorithm for Monotonically 

Increasing Priorities: 

 

For constructing the scheduled prefix that is from P(maximum period in the task set) to 

2P,  from the above analysis the run time is in O(P log m), where m is the number of tasks in the 

task set 

 

If P1 is the period of the first task in the task sequence, then there can only be P/ P1 

possible values for the start time of the schedule prefix we need to build.  Hence these schedules 

can be build in O(P
2
 log m/ P1). 

 

Given the schedule prefix, the array to store the finish times can be computed by 

scanning the schedule once. Hence it is in O(P). And from this array, the first-first information 

flow and last-last information flow can be computed in O(n) time, where n is the number of tasks 

in the task sequence. Hence the total run time is in O(P
2
 log m/ P1). 

 

 

 

 

 

 

 

 

 

 

 

 

 



32 

 

7. Scope, Conclusion and Future Work 

 

7.1 Scope 

 

The application clearly demonstrates the ideas and algorithms presented in [1] and [3]. 

Using it the user can test with their own set of test cases and analyze how bad these worst case 

propagation delays can be. They can also try and adjust the priority assignments or periods or 

change other constraints and see if the delays are reduced.  

 

It avoids the manual computation of these delays which saves a lot of time and effort. 

Although currently we are operating on a limited set of tasks that match our assumptions, it can 

be easily extended to include many other kinds of task sequences and also other constraints can 

be added. 

 

 

7.2 Conclusion 

 

We have shown that the worst case first-first Information propagation delays for any task 

sequence that match our assumptions are within the bounds mentioned in [1]. Also we have 

shown several examples where the delays approach the bounds. We have also shown that for the 

commonly occurring case in which the periods within the sequence are monotonically decreasing 

and the priorities are rate monotonic, the delay is always less than three times the longest period, 

though it can come arbitrarily close to this bound. 

 

Also the worst case last-last Information propagation delays are analyzed for the case where task 

sequences are monotonically increasing. The results have been shown using which we can have a good 

idea about the bounds. 

 

The whole process of development has been a great learning experience where concepts of real 

time scheduling along with concepts of Information propagation delays have been covered. Also 



33 

 

programming using the Java language has allowed me to understand the power of its built in data types 

and the advantages of object oriented programming. The whole process of developing this project was 

like being involved in a work from learning concepts to implementing them and every aspect of it has 

been very informative. 

 

 

7.3 Future Work 

 

Implementing the case where task sequences have mixed priorities that are neither 

monotonically increasing nor decreasing. There is an algorithm for these kinds of task sequences 

in [3]. 

 

We can extend the application to operate on task sequences whose periods need not be 

harmonically related. It can be done by making very few changes to the current implementation. 

 

It can also be extended to include task sequences that follow different priority schemes apart 

from fixed priority scheduling.  

 

Finally, if the application can work as an analysis tool which adjusts the priority assignments 

or periods so that the delays are reduced, it would be very useful. 

 

 

 

 

 

 

 

 

 

 

 

 



34 

 

References 

 

[1] Rodney R. Howell and Masaaki Mizuno, “Propagation Delays in Fixed-Priority Scheduling 

of Periodic Tasks,” in 22
nd

 Euromicro Conference on Real-Time Systems, pp. 219-228, Brussels, 

Belgium, 2010.  

 

[2]  N. Feiertag et al., “A compositional framework for end-to-end path delay calculation of 

automotive systems under different path semantics,” in Proceedings of the IEEE Real-Time 

System Symposium (RTSS), Workshop on Compositional Theory and Technology for Real-Time 

Embedded Systems, Barcelona, Spain, 2008. 

 

[3] Rodney R. Howell and Masaaki Mizuno, “Computing Information Propagation Delays 

Through Sequences of Fixed-Priority Periodic Tasks,” Department of Computing and 

Information Sciences, Kansas State University (In Preparation). 
 

[4] Java SE 6 Documentation, http://download.oracle.com/javase/6/docs. 

[5] C. Liu and J. Layland, “Scheduling algorithms for multiprogramming in a hard-real-time 

environment,” J. ACM, vol. 20, pp. 46–61, 1973. 

[6] Y. Yamamoto, “Sampled-data control theory: The past and the future,” Information and 

Control, vol. 40, no. 1, pp. 76–81, 2001. 

 

 

 

 

 

 

  

 

 

http://download.oracle.com/javase/6/docs


35 

 

 

Appendix A - Code for Algorithm 1 

 Delay.java 

/** Program for computing First to First Information 

 *  propagation Delay in a Periodic task sequence with  

 *  decreasing Priorities. 

 

 *  Input : A text file containing the Task set indicated by Task names, 

 *  followed by the Task sequence. Each Task has a Task name, Period, Maximum 

 *  Execution time and Priority in this order. First "END" indicates the end of  

 *  Task set and second "END" indicates the end of input. The program assumes  

 *  each input file is correct and does not check for errors. Every task  

 *  sequence has a feasible schedule. 

 

 *  Output : The First to First Information Flow is printed on the 

 *  java Applet. 

 

 * @author Vineet Tadakamalla 

 */ 

 

import java.io.BufferedReader; 

import java.io.File; 

import java.io.FileReader; 

import java.io.IOException; 

import java.util.*; 

import java.util.List; 

import java.awt.*; 

import javax.swing.*; 

 

/** 

 * This class represents the task structure. All the entries are found from 

 * input except for Index which is the just order of tasks. 

 */ 

class Task { 

 String taskName; // Name of the task 

 Integer period; // Period of the task 

 Integer maxExecTime; // Maximum execution time of the task 

 Integer priority; // Priority of the task 

 Integer index; // Index which is just the sequence in which they are entered 

 Boolean present; // To indicate whether the task is in task set or not 

} 

 

/** 



36 

 

 * This class represents the schedule prefix constructed which helps in 

 * calculating the first to first information flow. 

 */ 

class Schedule_Prefix { 

 String taskName; // Name of the task 

 Integer startTime; // start time of each instance of a task 

 Integer finishTime; // Finish time of each instance of a task 

} 

 

public class Delay extends JApplet { 

 private static final long serialVersionUID = 1L; 

 /** 

  * number of tasks in the sequence timer to keep track of schedule Maximum 

  * period in the sequence 

  */ 

 private int numberOfTasks = 0, timer = 0, maxPeriod = 0; 

 /** 

  * task set for which the delay has to be calculated. Obtained from input 

  * file 

  */ 

 private List<String> taskset = new ArrayList<String>(); 

 /** 

  * used to temporarily store the task names present in the task set 

  */ 

 private Hashtable<String, String> tasksets = new Hashtable<String, String>(); 

 /** 

  * Declare a comparator instance for Priority queue First 

  */ 

 private Comparator<Task> comparatorFirst = new PriorityFirst(); 

 /** 

  * Declare a comparator instance for Priority queue Second 

  */ 

 private Comparator<Task> comparatorSecond = new PrioritySecond(); 

 /** 

  * Declare a comparator instance for Period queue 

  */ 

 private Comparator<Task> comparatorPeriods = new Period(); 

 /** 

  * Declare Priority queue to store tasks in first part of Schedule prefix 

  */ 

 private PriorityQueue<Task> queuePriorityFirst = new PriorityQueue<Task>( 

   10, comparatorFirst); 

 /** 

  * Declare Priority queue to store tasks in second part of Schedule prefix 

  */ 

 private PriorityQueue<Task> queuePrioritySecond = new PriorityQueue<Task>( 



37 

 

   10, comparatorSecond); 

 /** 

  * Declare Priority queue to sort periods and also store tasks 

  */ 

 private PriorityQueue<Task> queuePeriods = new PriorityQueue<Task>(10, 

   comparatorPeriods); 

 /** 

  * used to temporarily store the task set 

  */ 

 private List<Task> periods = new ArrayList<Task>(); 

 /** 

  * last to last delay from which we calculate the actual first to first 

  * delay 

  */ 

 private List<Integer> lastLastDelay = new ArrayList<Integer>(); 

 /** 

  * The first to first information propagation delay 

  */ 

 private List<Integer> firstFirstDelay = new ArrayList<Integer>(); 

 /** 

  * Minimum period of the sequence Worst_time helps in calculating the 

  * information flow. counter to keep track of each task instance execution 

  * time 

  */ 

 private Integer minPeriod = 0, worstTime = 0, counter = 0; 

 /** 

  * stores start time of current task instance reference by task index. 

  */ 

 private Integer[] times = new Integer[10]; 

 /** 

  * The schedule prefix which contains the task name, start and finish times. 

  */ 

 private List<Schedule_Prefix> startFinishTimes = new ArrayList<Schedule_Prefix>(); 

 private File ffile; // Input File 

 private JLabel title; // Title of the Output 

 private JTextArea display; // Display Area 

 private JPanel p; // Panel to hold the text area 

 

 /** 

  * the main method for the program. Creates a Java Applet and a JFrame, 

  *  

  * @param args 

  *            The command-line arguments. Not used in this program, but 

  *            required by Java 

  */ 

 



38 

 

 public static void main(String[] args) { 

  JApplet theApplet = new Delay(); // Create an instance of Delay class. 

  theApplet.init(); // Initialize the Applet 

  JFrame window = new JFrame("Decreasing Priorities"); // Title 

  window.setContentPane(theApplet); 

  window.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); 

  window.pack(); 

  window.setVisible(true); 

 } 

 

 /** 

  * Initializes Applet with dimensions 500*500 

  *  

  * @return Does not return anything. 

  */ 

 public void init() { 

  setSize(500, 500); 

 } 

 

 /** 

  * Constructor for the Class Delay used to set up the user Interface Sets 

  * the Panel and display area. 

  */ 

 public Delay() { 

  p = new JPanel(); // Create a Panel 

  title = new JLabel(); // Create a Label 

  Font f; // Declare a font 

  // Create a Text Area with dimensions 20*30 

  display = new JTextArea(20, 30); 

  // Initialize the font to "Verdana", with Bold and size 14. 

  f = new Font("Verdana", Font.BOLD, 14); 

  display.setFont(f); // Set the font for the display area 

  display.setEditable(false); // Make it non editable 

  // Set where it should be displayed. Here it is South 

  getContentPane().add(new JScrollPane(display), BorderLayout.SOUTH); 

  p.add(title, 0); // Add title to the Panel 

  title.setText("Information Propogation Delay.\n"); // Set title 

  p.setFont(f); // Set Font for panel 

  p.add(new Button("Open"), -1); // Add open button to open the input file 

  p.add(new Button("Close")); // Add close button to close the applet 

  // Set background color to white 

  p.setBackground(new Color(255, 255, 255)); 

  add("North", p); // Add the panel to the north of the applet. 

 

  /* End of UI */ 

 } 



39 

 

 

 /** 

  * action is the Implemented method of the Japlpet interface 

  *  

  * @param A 

  *            mouse click event which is either open or close. 

  * @return Boolean to indicate success 

  */ 

 public boolean action(Event event, Object arg) { 

  if (arg.equals("Close")) { 

   System.exit(0); // If the user clicks close button, exit the applet 

  } 

  if (arg.equals("Open")) { // If the user clicks open 

   Frame parent = new Frame(); // Add a frame 

   FileDialog fd = new FileDialog(parent, "Please choose a file:", 

     FileDialog.LOAD); // Pop the file dialog box to open the 

   // input file 

   fd.setVisible(true); 

   String selectedItem = fd.getFile(); 

   if (selectedItem == null) { 

    // Handle File not found here. 

   } else { 

    ffile = new File(fd.getDirectory() + File.separator 

      + fd.getFile()); // accept the input file into ffile 

    // Declare a buffered reader br to read the file 

    BufferedReader br; 

    String str = null; // Temporary variable to store each entry 

    try { 

     // Store the input file in br 

     br = new BufferedReader(new FileReader(ffile)); 

     str = br.readLine(); // start reading line by line 

     while (!str.contains("END")) { // Stop if line is "END" 

      taskset.add(str); // Add the string into task set list 

      tasksets.put(str, str); // Also make an entry in the 

         // Hashtable 

      str = br.readLine(); // Read next line 

     } 

     str = br.readLine(); // Continue Reading the file 

 

     while (!str.contains("END")) { // Stop if the line is "END" 

     Task task = new Task(); // create a Task instance task 

     numberOfTasks++; // Increase the variable for each task 

     task.taskName = str; // first entry is the task name 

     str = br.readLine(); 

     task.period = new Integer(str); // second is task period 

     str = br.readLine(); 



40 

 

     // third is maximum execution time 

     task.maxExecTime = new Integer(str); 

     str = br.readLine(); 

     task.priority = new Integer(str); // fourth is priority 

     task.index = numberOfTasks - 1; // Add the index 

      /** 

       * If Hashtable contains an entry then the task is 

       * present in the task set. 

       */ 

      if (tasksets.get(task.taskName) != null) 

       task.present = true; 

      else 

       task.present = false; 

      // Store the tasks in the priority Queue 

      queuePriorityFirst.add(task); 

      // Also store it in the Second priority Queue 

      queuePeriods.add(task); 

      str = br.readLine(); 

     } 

 

     /* sorting the periods */ 

     while (queuePeriods.size() != 0) { 

      periods.add(queuePeriods.remove()); 

     } 

     Task per = new Task(); 

     per = periods.get(numberOfTasks - 1); 

     // Set the maximum period which is the last entry of periods 

     // list 

     maxPeriod = new Integer(per.period); 

     per = periods.get(0); 

     // Set the minimum period which is the first entry of 

     // periods list 

     minPeriod = new Integer(per.period); 

     // Set all current task instance start time to zero 

     for (int i = 0; i < times.length; i++) 

      times[i] = 0; 

     // call the below methods 

     schedulePrefixFirst(); 

     schedulePrefixSecond(); 

     lastLastDelay(); 

     firstFirstInfoDelay(); 

     taskset.clear(); 

     periods.clear(); 

     lastLastDelay.clear(); 

     firstFirstDelay.clear(); 

     numberOfTasks = 0; 



41 

 

     timer = 0; 

     startFinishTimes.clear(); 

     queuePeriods.clear(); 

     queuePriorityFirst.clear(); 

     queuePrioritySecond.clear(); 

    } 

 

    catch (IOException e) { 

     e.printStackTrace(); 

    } 

   } 

  } 

  return true; // return true if everything is good 

 } 

 

 /** 

  * Compute the schedule prefix from 0 to maxPeriod 

  *  

  * @return Does not return anything 

  */ 

 public void schedulePrefixFirst() { 

  counter = minPeriod; // set counter to minimum period 

  queuePriorityFirst.clear(); // Remove all entries from priority queue 

  while (timer < maxPeriod) { // Process Upto max period 

   // call this method to check if any task instance is ready for 

   // execution 

   checkTaskAvailability(); 

   /** 

    * If there is any instance available in the queue, Remove the head 

    * of the priority queue, schedule it, add it to the schedule prefix 

    * and increase the timer by 1 and decrease the counter. 

    */ 

 

   if (queuePriorityFirst.size() > 0) { 

    Schedule_Prefix temp = new Schedule_Prefix(); 

    temp.taskName = (queuePriorityFirst.remove().taskName); 

    temp.startTime = timer; 

    temp.finishTime = (timer + 1); 

    startFinishTimes.add(temp); 

    timer++; 

    counter--; 

   } else { 

    /** 

     * Processor is idle since there is no instance ready for 

     * execution Just increase the timer and decrease the counter 

     */ 



42 

 

    timer++; 

    counter--; 

   } 

  } 

 } 

 

 /** 

  * Compute the schedule prefix from maxPeriod to time where the first 

  * instance of last task in the task set is scheduled to completion 

  *  

  * @return Does not return anything 

  */ 

 public void schedulePrefixSecond() { 

  counter = minPeriod; // Reset the counter 

  // Maximum possible time needed to process 

  while (timer < (2 * maxPeriod)) { 

   // call this method to check if any task is available 

   checkTaskAvailability(); 

   Schedule_Prefix temp = new Schedule_Prefix(); 

   /** 

    * Check the head of the queue and schedule the task to its maximum 

    * execution time or the value of counter whichever is minimum. 

    * Increase the timer and decrease the counter accordingly. 

    */ 

   if (queuePrioritySecond.size() > 0) { 

    Task temp1 = new Task(); 

    temp1 = queuePrioritySecond.remove(); 

    String taskName = temp1.taskName; 

    Integer execution_time = temp1.maxExecTime; 

    /* Task instance can be scheduled to completion */ 

    if (execution_time <= counter) { 

     temp.taskName = taskName; 

     // check if the task instance has already started but was 

     // preempted 

     if (times[temp1.index] > 0) { 

      // Add this start time to temp 

      temp.startTime = times[temp1.index]; 

      // reset the Current instance start time to 0 

      times[temp1.index] = 0; 

     } else 

      /** 

       * Add the start time as the current time since there 

       * was no start time earlier 

       */ 

      temp.startTime = timer; 

     // Add the finish time 



43 

 

     temp.finishTime = (timer + execution_time); 

     // Add this to the scheduled prefix 

     startFinishTimes.add(temp); 

     timer = timer + execution_time; 

     counter = counter - execution_time; 

     /** 

      * Check if this is the last task in the taskset, if yes 

      * stop 

      */ 

     if (taskset.get(taskset.size() - 1).equals(taskName)) { 

      worstTime = timer - 1; 

      lastLastDelay.add(worstTime); 

      break; 

     } 

    } 

    /** 

     * The task instance cannot be scheduled to completion because a 

     * higher priority task instance becomes available before this 

     * can be completed. So schedule it till counter 

     */ 

    else { 

     temp1.maxExecTime = (execution_time - counter); 

     queuePrioritySecond.add(temp1); 

     /** 

      * If there is no entry for the start time of this instance 

      */ 

     if (times[temp1.index] == 0) 

      times[temp1.index] = timer;// make an entry 

     timer = timer + counter; 

     counter = 0; // Reset the counter 

    } 

   } else 

    break; // If there is no task instance ready just stop 

  } 

 } 

 

 /** 

  * Check if there is any task instance ready for execution 

  *  

  * @return Does not return anything 

  */ 

 public void checkTaskAvailability() { 

  if (counter == 0 || counter == minPeriod) { 

   /** 

    * Check for the arrival of tasks starting from the minimum period 

    * task until no task arrives and add them to the priority queue. 



44 

 

    */ 

   for (int i = 0; i < numberOfTasks; i++) { 

    Task task_ = new Task(); 

    task_.period = periods.get(i).period; 

    if (timer % (task_.period) == 0) { 

     task_.maxExecTime = periods.get(i).maxExecTime; 

     task_.priority = periods.get(i).priority; 

     task_.taskName = periods.get(i).taskName; 

     task_.index = periods.get(i).index; 

     task_.present = periods.get(i).present; 

     if (timer < maxPeriod) 

      queuePriorityFirst.add(task_); 

     else 

      queuePrioritySecond.add(task_); 

    } else 

     break; 

   } 

   counter = minPeriod; // reset counter 

  } 

 } 

 

 /** 

  * Compute the last-last propagation delay by scanning the schedule prefix 

  * once backwards 

  *  

  * @return Does not return anything 

  */ 

 

 public void lastLastDelay() { 

  display.append("Taskset: " + taskset + "\n\n"); // Display the task set 

  int j = startFinishTimes.size(); // j is the index of last entry in 

      // Schedule Prefix 

  for (int i=taskset.size()-1;i>=0;i--) { 

   String taskName = taskset.get(i); // retrieve each task 

   while (true) { 

    // scan till we reach the first entry 

    Schedule_Prefix temp = new Schedule_Prefix(); 

    temp = startFinishTimes.get(--j); 

    String taskName1 = temp.taskName; 

    if (taskName.equals(taskName1)) { // if this is the task we want 

     Integer finishtime = temp.finishTime; 

     /** 

      * check if the finish time is less than the start time of 

      * next task in the sequence 

      */ 

     if (finishtime <= worstTime) { 



45 

 

      // set it to the current finish time 

      worstTime = finishtime; 

      // add the start time to the lastLastDelay list 

      lastLastDelay.add(temp.startTime); 

      break; 

     } 

    } 

   } 

  } 

  // display the information flow 

  display.append("Last-Last Information Flow: " + lastLastDelay + "\n\n"); 

 } 

 

 /** 

  * Compute the first-first propagation delay by scanning the schedule prefix 

  * once forwards 

  *  

  * @return Does not return anything 

  */ 

 

 public void firstFirstInfoDelay() { 

  /** 

   * declare the start time to be 1 plus the last entry of last to last 

   * flow 

   */ 

   

  Integer starttime = lastLastDelay.get(lastLastDelay.size() - 1) + 1; 

  firstFirstDelay.add(starttime); 

  int j = 0; // declare j to be the index of first entry in Schedule 

     // Prefix 

  for (int i = 0;i < taskset.size();i++) { 

   // scan until the last task in the set 

   String taskName = taskset.get(i); 

   while (true) { 

    Schedule_Prefix temp = new Schedule_Prefix(); 

    temp = startFinishTimes.get(++j); 

    String taskName1 = temp.taskName; 

    // if this is the task we are looking for 

    if (taskName.equals(taskName1)) { 

     Integer startTime = temp.startTime; 

     /** 

      * if start time is greater than the finish time of last 

      * task instance 

      */ 

     if (startTime >= starttime) { 

      // add this to the first to first flow list 



46 

 

      firstFirstDelay.add(temp.finishTime); 

      // set start time to be the finish time of the task 

      // instance 

      starttime = temp.finishTime; 

      break; 

     } 

    } 

   } 

  } 

  // Display the Information flow 

  display.append("First-First Inormation Flow: " + firstFirstDelay + "\n\n"); 

  display.append("Worst Case First-First Inforamtion Propagation Delay: "  

    + ((firstFirstDelay.get(firstFirstDelay.size()-1))- 

      (firstFirstDelay.get(0)-1)) + "\n\n"); 

 } 

} 

 

Priority_Queue.java 

import java.util.Comparator; 

 

/** 

 * Store the tasks in the decreasing order of priorities for the first part of 

 * schedule prefix 

 */ 

class PriorityFirst implements Comparator<Task> { 

 @Override 

 public int compare(Task x, Task y) { 

  if ((x.priority) < (y.priority)) 

   return -1; 

  if ((x.priority) > (y.priority)) 

   return 1; 

  if ((x.priority).equals((y.priority))) { 

   if (x.present) 

    return -1; 

   if (y.present) 

    return 1; 

   return 0; 

  } 

  return 0; 

 } 

} 

 

/** 



47 

 

 * Store the tasks in the decreasing order of priorities for the second part of 

 * schedule prefix 

 */ 

class PrioritySecond implements Comparator<Task> { 

 @Override 

 public int compare(Task x, Task y) { 

  if ((x.priority) < (y.priority)) 

   return -1; 

  if ((x.priority) > (y.priority)) 

   return 1; 

  if ((x.priority).equals((y.priority))) { 

   if (x.present) 

    return 1; 

   if (y.present) 

    return -1; 

  } 

  return 0; 

 } 

} 

 

/** 

 * This class stores the tasks in the increasing order of periods 

 */ 

class Period implements Comparator<Task> { 

 @Override 

 public int compare(Task x, Task y) { 

  if ((x.period) < (y.period)) 

   return -1; 

  if ((x.period) > (y.period)) 

   return 1; 

  return 0; 

 } 

} 

 

 

 

 

 

 

 

 

 

 



48 

 

Appendix B - Code for Algorithm 2 

 Delay.java 

/** Program for computing First to First Information 

 *  propagation Delay in a Periodic task sequence with  

 *  increasing Priorities. 

 

 *  Input : A text file containing the Task set indicated by Task names, 

 *  followed by the Task sequence. Each Task has a Task name, Period, Maximum 

 *  Execution time and Priority in this order. First "END" indicates the end of  

 *  Task set and second "END" indicates the end of input. The programs assumes  

 *  each input file is correct and does not check for errors. Every task  

 *  sequence has a feasible schedule. 

 

 *  Output : The First to First Information Flow is printed on the 

 *  java Applet. 

 

 * @author Vineet Tadakamalla 

 */ 

 

import java.io.BufferedReader; 

import java.io.File; 

import java.io.FileReader; 

import java.io.IOException; 

import java.util.*; 

import java.util.List; 

import java.awt.*; 

import javax.swing.*; 

 

/** 

 * This class represents the task structure. All the entries are found from 

 * input except for Index which is the just order of tasks. 

 */ 

class Task { 

 String taskName; // Name of the task 

 Integer period; // Period of the task 

 Integer maxExecTime; // Maximum execution time of the task 

 Integer priority; // Priority of the task 

 Integer index; // Index which is just the sequence in which they are entered 

 Integer indexInSequence; // Index of the task in the task set, -1 if not 

 // present 

 Boolean present; // To indicate whether the task is in task set or not 

} 

 



49 

 

/** 

 * This class represents the schedule prefix constructed which helps in 

 * calculating the first to first information flow. 

 */ 

class Schedule_Prefix { 

 String taskName; // Name of the task 

 Integer startTime; // start time of each instance of a task 

 Integer finishTime; // Finish time of each instance of a task 

 Integer index; // Index of the task in the task set, -1 if not present 

} 

 

public class Delay extends JApplet { 

 private static final long serialVersionUID = 1L; 

 /** 

  * number of tasks in the sequence timer to keep track of schedule Maximum 

  * period in the sequence 

  */ 

 private int numberOfTasks = 0, timer = 0, maxPeriod = 0; 

 /** 

  * task set for which the delay has to be calculated. Obtained from input 

  * file 

  */ 

 private List<String> taskset = new ArrayList<String>(); 

 /** 

  * used to temporarily store the task names present in the task set 

  */ 

 private Hashtable<String, Integer> tasksets = new Hashtable<String, Integer>(); 

 /** 

  * Declare a comparator instance for Priority queue First 

  */ 

 private Comparator<Task> comparatorFirst = new PriorityFirst(); 

 /** 

  * Declare a comparator instance for Priority queue Second 

  */ 

 private Comparator<Task> comparatorSecond = new PrioritySecond(); 

 /** 

  * Declare a comparator instance for Period queue 

  */ 

 private Comparator<Task> comparatorPeriods = new Period(); 

 /** 

  * Declare Priority queue to store tasks in first part of Schedule prefix 

  */ 

 private PriorityQueue<Task> queuePriorityFirst = new PriorityQueue<Task>( 

   10, comparatorFirst); 

 /** 

  * Declare Priority queue to store tasks in second part of Schedule prefix 



50 

 

  */ 

 private PriorityQueue<Task> queuePrioritySecond = new PriorityQueue<Task>( 

   10, comparatorSecond); 

 /** 

  * Declare Priority queue to sort periods and also store tasks 

  */ 

 private PriorityQueue<Task> queuePeriods = new PriorityQueue<Task>(10, 

   comparatorPeriods); 

 /** 

  * used to temporarily store the task set 

  */ 

 private List<Task> periods = new ArrayList<Task>(); 

 /** 

  * List of possible start time values. 

  */ 

 private List<Integer> tvalues = new ArrayList<Integer>(); 

 /** 

  * The first to first information propagation delay 

  */ 

 private List<Integer> firstFirstDelay = new ArrayList<Integer>(); 

 /** 

  * Minimum period of the sequence Worst_time helps in calculating the 

  * information flow. counter to keep track of each task instance execution 

  * time. t1EndTime to know the first instance where t1 finishes after start 

  * time. 

  */ 

private Integer minPeriod = 0, counter = 0, t1EndTime = 0, worstFirstDelay=0, 

worstLastDelay=0; 

 /** 

  * stores start time of current task instance reference by task index. 

  */ 

 private Integer[] times = new Integer[10]; 

 /** 

  * The schedule prefix which contains the task name, start and finish times. 

  */ 

 private List<Schedule_Prefix> startFinishTimes = new ArrayList<Schedule_Prefix>(); 

 /** 

  * The schedule prefix which contains the task name, start and finish times 

  * from Maxperiod to 2 * Maxperiod, which is cyclic. 

  */ 

private List<Schedule_Prefix> startFinishTimesCyclic = new 

ArrayList<Schedule_Prefix>(); 

 private File ffile; // Input File 

 private JLabel title; // Title of the Output 

 private JTextArea display; // Display Area 

 private JPanel p; // Panel to hold the text area 



51 

 

 

 /** 

  * the main method for the program. Creates a Java Applet and a JFrame, 

  *  

  * @param args 

  *            The command-line arguments. Not used in this program, but 

  *            required by Java 

  */ 

 

 public static void main(String[] args) { 

  JApplet theApplet = new Delay(); // Create an instance of Delay class. 

  theApplet.init(); // Initialize the Applet 

  JFrame window = new JFrame("Increasing Priorities"); // Title 

  window.setContentPane(theApplet); 

  window.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); 

  window.pack(); 

  window.setVisible(true); 

 } 

 

 /** 

  * Initializes Applet with dimensions 500*500 

  *  

  * @return Does not return anything. 

  */ 

 public void init() { 

  setSize(500, 500); 

 } 

 

 /** 

  * Constructor for the Class Delay used to set up the user Interface Sets 

  * the Panel and display area. 

  */ 

 public Delay() { 

  p = new JPanel(); // Create a Panel 

  title = new JLabel(); // Create a Label 

  Font f; // Declare a font 

  // Create a Text Area with dimensions 20*30 

  display = new JTextArea(20, 30); 

  // Initialize the font to "Verdana", with Bold and size 14. 

  f = new Font("Verdana", Font.BOLD, 14); 

  display.setFont(f); // Set the font for the display area 

  display.setEditable(false); // Make it non editable 

  // Set where it should be displayed. Here it is South 

  getContentPane().add(new JScrollPane(display), BorderLayout.SOUTH); 

  p.add(title, 0); // Add title to the Panel 

  title.setText("Information Propogation Delay.\n"); // Set title 



52 

 

  p.setFont(f); // Set Font for panel 

  p.add(new Button("Open"), -1); // Add open button to open the input file 

  p.add(new Button("Close")); // Add close button to close the applet 

  // Set background color to white 

  p.setBackground(new Color(255, 255, 255)); 

  add("North", p); // Add the panel to the north of the applet. 

 

  /* End of UI */ 

 } 

 

 /** 

  * action is the Implemented method of the Japlpet interface 

  *  

  * @param A 

  *            mouse click event which is either open or close. 

  * @return Boolean to indicate success 

  */ 

 public boolean action(Event event, Object arg) { 

  if (arg.equals("Close")) { 

   System.exit(0); // If the user clicks close button, exit the applet 

  } 

  if (arg.equals("Open")) { // If the user clicks open 

   Frame parent = new Frame(); // Add a frame 

   FileDialog fd = new FileDialog(parent, "Please choose a file:", 

     FileDialog.LOAD); // Pop the file dialog box to open the 

   // input file 

   fd.setVisible(true); 

   String selectedItem = fd.getFile(); 

   if (selectedItem == null) { 

    // Handle File not found here. 

   } else { 

    ffile = new File(fd.getDirectory() + File.separator 

      + fd.getFile()); // accept the input file into ffile 

    // Declare a buffered reader br to read the file 

    BufferedReader br; 

    String str = null; // Temporary variable to store each entry 

    try { 

     // Store the input file in br 

     br = new BufferedReader(new FileReader(ffile)); 

     str = br.readLine(); // start reading line by line 

     while (!str.contains("END")) { // Stop if line is "END" 

      taskset.add(str); // Add the string into taskset list 

      tasksets.put(str, taskset.size() - 1); // Also make an 

      // entry in the 

      // Hashtable 

      str = br.readLine(); // Read next line 



53 

 

     } 

     str = br.readLine(); // Continue Reading the file 

 

    while (!str.contains("END")) { // Stop if the line is "END" 

     Task task = new Task(); // create a Task instance task 

     numberOfTasks++; // Increase the variable for each task 

     task.taskName = str; // first entry is the task name 

     str = br.readLine(); 

     task.period = new Integer(str); // second is task period 

     str = br.readLine(); 

     // third is maximum execution time 

     task.maxExecTime = new Integer(str); 

     str = br.readLine(); 

     task.priority = new Integer(str); // fourth is priority 

     task.index = numberOfTasks - 1; // Add the index 

     /** 

      * If Hashtable contains an entry then the task is 

      * present in the task set. 

      */ 

     if (tasksets.get(task.taskName) != null) { 

      task.present = true; 

      task.indexInSequence =tasksets.get(task.taskName); 

      } else { 

       task.present = false; 

       task.indexInSequence = -1; 

      } 

      // Store the tasks in the priority Queue 

      queuePriorityFirst.add(task); 

      // Also store it in the Second priority Queue 

      queuePeriods.add(task); 

      str = br.readLine(); 

     } 

 

     /* sorting the periods */ 

     while (queuePeriods.size() != 0) { 

      periods.add(queuePeriods.remove()); 

     } 

     Task per = new Task(); 

     per = periods.get(numberOfTasks - 1); 

     // Set the maximum period which is the last entry of periods 

     // list 

     maxPeriod = new Integer(per.period); 

     per = periods.get(0); 

     // Set the minimum period which is the first entry of 

     // periods list 

     minPeriod = new Integer(per.period); 



54 

 

     // Set all current task instance start time to zero 

     for (int i = 0; i < times.length; i++) 

      times[i] = 0; 

     // call the below methods 

     schedulePrefixFirst(); 

     possibletValues(); 

     startFinishTimes.clear(); 

     System.out.println(tvalues); 

     /** 

      * For each pivot value compute the first first delay 

      */ 

     for (int i = 0; i < tvalues.size(); i++) { 

      timer = tvalues.get(i); // retrieve pivot value and set 

      // it as timer 

      while ((timer + counter) % minPeriod != 0) 

       // set counter 

       counter++; 

      // call the below methods 

      schedulePrefixSecond(); 

      firstFirstInfoDelay(tvalues.get(i)); 

      LastLastInfoDelay(tvalues.get(i)); 

      firstFirstDelay.clear(); 

      startFinishTimes.clear(); 

     } 

   display.append("Worst case First-First Information Propagation Delay: "  

       + worstFirstDelay+ "\n\n"); 

   display.append("Worst Case Last-Last Information Propagation Delay: "  

       + worstLastDelay+ "\n\n"); 

     taskset.clear(); 

     tvalues.clear(); 

     periods.clear(); 

     numberOfTasks = 0; 

     timer = 0; 

     worstLastDelay=0; 

     worstFirstDelay=0; 

     startFinishTimesCyclic.clear(); 

    } 

 

    catch (IOException e) { 

     e.printStackTrace(); 

    } 

   } 

  } 

  return true; // return true if everything is good 

 } 

 



55 

 

 /** 

  * Compute the schedule prefix from 0 to maxPeriod 

  *  

  * @return Does not return anything 

  */ 

 public void schedulePrefixFirst() { 

  counter = minPeriod; // set counter to minimum period 

  queuePriorityFirst.clear(); // Remove all entries from priority queue 

  while (timer < maxPeriod) { // Process Upto max period 

   // call this method to check if any task instance is ready for 

   // execution 

   checkTaskAvailability(0); 

   /** 

    * If there is any instance available in the queue, Remove the head 

    * of the priority queue, schedule it, add it to the schedule prefix 

    * and increase the timer by 1 and decrease the counter. 

    */ 

 

   if (queuePriorityFirst.size() > 0) { 

    Schedule_Prefix temp = new Schedule_Prefix(); 

    temp.taskName = (queuePriorityFirst.remove().taskName); 

    temp.startTime = timer; 

    temp.finishTime = (timer + 1); 

    startFinishTimes.add(temp); 

    timer++; 

    counter--; 

   } else { 

    /** 

     * Processor is idle since there is no instance ready for 

     * execution Just increase the timer and decrease the counter 

     */ 

    timer++; 

    counter--; 

   } 

  } 

 } 

 

 /** 

  * Compute the possible pivot times of the schedule 

  *  

  * @return does not return anything 

  */ 

 public void possibletValues() { 

  for (int i = 0; i < startFinishTimes.size(); i++) { 

   Schedule_Prefix temp = startFinishTimes.get(i); 

   if ((temp.taskName).equals(taskset.get(0))) { 



56 

 

    tvalues.add(temp.startTime + 1); 

   } 

  } 

 } 

 

 /** 

  * Compute the schedule prefix from pivot time to 2 * MaxPeriod. 

  *  

  * @return Does not return anything 

  */ 

 public void schedulePrefixSecond() { 

  queuePrioritySecond.clear(); 

  // Maximum possible time needed to process 

  while (timer < 2 * maxPeriod) { 

   // call this method to check if any task is available 

   checkTaskAvailability(1); 

   Schedule_Prefix temp = new Schedule_Prefix(); 

   /** 

    * Check the head of the queue and schedule the task to its maximum 

    * execution time or the value of counter whichever is minimum. 

    * Increase the timer and decrease the counter accordingly. 

    */ 

   if (queuePrioritySecond.size() > 0) { 

    Task temp1 = new Task(); 

    temp1 = queuePrioritySecond.remove(); 

    String taskName = temp1.taskName; 

    Integer execution_time = temp1.maxExecTime; 

    /* Task instance can be scheduled to completion */ 

    if (execution_time <= counter) { 

     temp.taskName = taskName; 

     // check if the task instance has already started but was 

     // preempted 

     if (times[temp1.index] > 0) { 

      // Add this start time to temp 

      temp.startTime = times[temp1.index]; 

      // reset the Current instance start time to 0 

      times[temp1.index] = 0; 

     } else 

      /** 

       * Add the start time as the current time since there 

       * was no start time earlier 

       */ 

      temp.startTime = timer; 

     // Add the finish time 

     temp.finishTime = (timer + execution_time); 

     temp.index = temp1.indexInSequence; 



57 

 

     // Add this to the scheduled prefix 

     startFinishTimes.add(temp); 

     if (temp.startTime >= maxPeriod) 

      startFinishTimesCyclic.add(temp); 

     timer = timer + execution_time; 

     counter = counter - execution_time; 

    } 

    /** 

     * The task instance cannot be scheduled to completion because a 

     * higher priority task instance becomes available before this 

     * can be completed. So schedule it till counter 

     */ 

    else { 

     temp1.maxExecTime = (execution_time - counter); 

     queuePrioritySecond.add(temp1); 

     /** 

      * If there is no entry for the start time of this instance 

      */ 

     if (times[temp1.index] == 0) 

      times[temp1.index] = timer;// make an entry 

     timer = timer + counter; 

     counter = 0; // Reset the counter 

    } 

   } else { 

    timer++; // If there is no task instance ready just stop 

    counter--; 

   } 

 

  } 

 } 

 

 /** 

  * Check if there is any task instance ready for execution 

  *  

  * @return Does not return anything 

  */ 

 public void checkTaskAvailability(int num) { 

  if ((counter == 0) || (counter == minPeriod)) { 

   /** 

    * Check for the arrival of tasks starting from the minimum period 

    * task until no task arrives and add them to the priority queue. 

    */ 

   for (int i = 0; i < numberOfTasks; i++) { 

    Task task_ = new Task(); 

    task_.period = periods.get(i).period; 

    if (timer % (task_.period) == 0) { 



58 

 

     task_.maxExecTime = periods.get(i).maxExecTime; 

     task_.priority = periods.get(i).priority; 

     task_.taskName = periods.get(i).taskName; 

     task_.index = periods.get(i).index; 

     task_.indexInSequence = periods.get(i).indexInSequence; 

     task_.present = periods.get(i).present; 

     if (num == 0) 

      queuePriorityFirst.add(task_); 

     else 

      queuePrioritySecond.add(task_); 

    } else 

     break; 

   } 

   counter = minPeriod; // reset counter 

  } 

 } 

 

 /** 

  * Constructs an array that for each finish time no later that 2*Maxperiod 

  * of a task T(i), 1<=i<=(taskset.size), the finish time of the next 

  * instance of T(i+1). 

  *  

  * @return Returns the computed array 

  */ 

 public Integer[] finishTimesArray() { 

  /** 

   * Declare a list of linked lists to hold the temporary finish time 

   * values for each task in the task set. 

   */ 

  List<List<Integer>> finishtimes = new ArrayList<List<Integer>>(); 

  /** 

   * Declare the array to store the finish times. 

   */ 

  Integer[] finishtimes1 = new Integer[(2 * maxPeriod) + 1]; 

  Boolean b = true; 

  /** 

   * Store finish time as 0 for each task in the temporary list. 

   */ 

  for (int i = 0; i < taskset.size() - 1; i++) { 

   List<Integer> temp = new ArrayList<Integer>(); 

   finishtimes.add(temp); 

  } 

 

  /** 

   * Scan through the schedule prefix once and for each finish time record 

   * its next task instance finish time. 



59 

 

   */ 

  for (int i = 0; i < startFinishTimes.size(); i++) { 

   Schedule_Prefix temp = startFinishTimes.get(i); 

   Integer currentFinishTime = temp.finishTime; 

   Integer index = temp.index; 

   if ((index == 0) && b) { 

    t1EndTime = currentFinishTime; 

    b = false; 

   } 

   if (index < (taskset.size() - 1) & index > -1) 

    finishtimes.get(index).add(currentFinishTime); 

   if (index > 0) { 

    List<Integer> temp1 = finishtimes.get(index - 1); 

    while (temp1.size() > 0) { 

     if (temp1.get(0) < currentFinishTime) 

     finishtimes1[temp1.remove(0)] = currentFinishTime; 

     else 

      break; 

    } 

   } 

  } 

  /** 

   * Declare a variable to keep track of how many tasks remain whose 

   * instances finish times does not have a value. 

   */ 

  int count = 0; 

  /** 

   * Scan through the prefix again, this time by adding MaxPeriod to the 

   * finish times since it is a cyclic schedule and record the missing 

   * values. 

   */ 

  for (int j = 0; j < startFinishTimesCyclic.size(); j++) { 

   if (count == finishtimes.size()) 

    break; 

   Schedule_Prefix temp1 = startFinishTimesCyclic.get(j); 

   if (temp1.index > 0) { 

    List<Integer> temp = finishtimes.get(temp1.index - 1); 

    while (temp.size() > 0) { 

    finishtimes1[temp.remove(0)] = temp1.finishTime + maxPeriod; 

     if (temp.size() == 0) 

      count++; 

    } 

   } 

  } 

  return finishtimes1; 

 



60 

 

 } 

 

 /** 

  * Compute the first-first propagation delay by going through the finish 

  * times array. 

  *  

  * @return Does not return anything 

  */ 

 public void firstFirstInfoDelay(Integer t0value) { 

  firstFirstDelay.add(t0value); 

  Integer finishtimes[] = finishTimesArray(); 

  firstFirstDelay.add(t1EndTime); 

  Integer currentIndex = t1EndTime; 

  for (int i = 1; i < taskset.size(); i++) { 

   if (currentIndex <= maxPeriod) { 

    firstFirstDelay.add(finishtimes[currentIndex]); 

    currentIndex = finishtimes[currentIndex]; 

   } else { 

    Integer tempIndex = 0; 

    if (currentIndex % maxPeriod == 0) 

     tempIndex = 2 * maxPeriod; 

    else 

     tempIndex = (currentIndex % maxPeriod) + maxPeriod; 

    Integer tempFinishIndex = finishtimes[tempIndex]; 

    int x = 0; 

    if (currentIndex > tempFinishIndex) 

    x = (int) Math 

     .floor(((currentIndex - tempFinishIndex) / maxPeriod) + 1); 

    tempFinishIndex += x * maxPeriod; 

    firstFirstDelay.add(tempFinishIndex); 

    currentIndex = tempFinishIndex; 

   } 

  } 

  display.append("First-First Information Flow: " + firstFirstDelay 

    + "\n\n"); 

  display.append("First-First Information Propagation Delay" + 

    ": " + (currentIndex-(t0value-1))+ "\n\n"); 

  if(worstFirstDelay<(currentIndex-(t0value-1))) 

   worstFirstDelay=(currentIndex-(t0value-1)); 

 } 

 

 /** 

  * Compute the last-last propagation delay by computing the last task 

  * instance finish time less than the last entry in first-first info flow 

  *  

  * @return Does not return anything 



61 

 

  */ 

 public void LastLastInfoDelay(Integer t0value) { 

  int lastFinishTime = 0, tnFinishTime, temptnFinishTime; 

  List<Integer> lastInstanceFinishTimes = new ArrayList<Integer>(); 

  for (int i = startFinishTimesCyclic.size() - 1; i >= 0; i--) { 

   if (startFinishTimesCyclic.get(i).index == (taskset.size() - 1)) 

    lastInstanceFinishTimes 

      .add(startFinishTimesCyclic.get(i).finishTime); 

  } 

  tnFinishTime = firstFirstDelay.get(firstFirstDelay.size() - 1); 

  if (tnFinishTime % maxPeriod == 0) 

   temptnFinishTime = 2 * maxPeriod; 

  else 

   temptnFinishTime = (tnFinishTime % maxPeriod) + maxPeriod; 

  for(int j=0;j < lastInstanceFinishTimes.size();j++) { 

   if (lastInstanceFinishTimes.get(j) < temptnFinishTime) { 

    lastFinishTime = lastInstanceFinishTimes.get(j); 

    break; 

   } 

  } 

  if (lastFinishTime == 0) 

   lastFinishTime = temptnFinishTime; 

  int x = (int) Math 

    .ceil(((tnFinishTime - lastFinishTime) / maxPeriod) - 1); 

  lastFinishTime += x * maxPeriod; 

  if(worstLastDelay<(lastFinishTime - (t0value - 1))) 

   worstLastDelay=(lastFinishTime - (t0value - 1)); 

 } 

} 

 

 

 

 

 

 

 

 



62 

 

Priority_Queue.java 

 

import java.util.Comparator; 

 

/** 

 * Store the tasks in the decreasing order of priorities for the first part of 

 * schedule prefix 

 */ 

class PriorityFirst implements Comparator<Task> { 

 @Override 

 public int compare(Task x, Task y) { 

  if ((x.priority) < (y.priority)) 

   return -1; 

  if ((x.priority) > (y.priority)) 

   return 1; 

  if ((x.priority).equals((y.priority))) { 

   if (x.present) 

    return -1; 

   if (y.present) 

    return 1; 

   return 0; 

  } 

  return 0; 

 } 

} 

 

/** 

 * Store the tasks in the decreasing order of priorities for the second part of 

 * schedule prefix 

 */ 

class PrioritySecond implements Comparator<Task> { 

 @Override 

 public int compare(Task x, Task y) { 

  if ((x.priority) < (y.priority)) 

   return -1; 

  if ((x.priority) > (y.priority)) 

   return 1; 

  if ((x.priority).equals((y.priority))) { 

   if (x.present) 

    return 1; 

   if (y.present) 

    return -1; 

  } 

  return 0; 

 } 



63 

 

} 

 

/** 

 * This class stores the tasks in the increasing order of periods 

 */ 

class Period implements Comparator<Task> { 

 @Override 

 public int compare(Task x, Task y) { 

  if ((x.period) < (y.period)) 

   return -1; 

  if ((x.period) > (y.period)) 

   return 1; 

  return 0; 

 } 

} 

 


