Paragenesis and geochemistry of the Miocene Milestone sinter, Silver City District, ID: Implications for sinter-hosted epithermal Au-Ag deposits

by

Emily Ruth Fenner

B.S., State University of New York College at Oswego, 2018

### A THESIS

submitted in partial fulfillment of the requirements for the degree

## MASTER OF SCIENCE

Department of Geology College of Arts and Sciences

KANSAS STATE UNIVERSITY Manhattan, Kansas

2020

Approved by:

Major Professor Matthew Brueseke

### Abstract

The Milestone sinter is a mid-Miocene epithermal paleosurface that is spatially associated with the DeLamar silver-gold deposit in the Silver City District, Idaho. The exact connection between Milestone and DeLamar, along with other deposits across the northern Great Basin, remains unknown. Additionally, the economic potential of Milestone has not been evaluated since Barrett (1985), where it was found to host Au and Ag. Geologic mapping of the Main Knob of Milestone reveals five lithofacies in the paleosurface: Matrix-supported breccia, clast-supported breccia, sinter, geyserite, and bioformations. The facies are indicative of a paleohotspring, typical of modern hot spring environments. Reflective light imagery and traditional microscopy show multiple quartz textures, electrum microparticles, pyrite relicts, and pyragyrite crystals. LA-ICP-MS data of trace elements show up to 2.84 wt % Ag and 153 ppm Au in sinter samples. The occurrence of precious metals in the sinter may be indicative of metalrich veins at depth. Across the flow path from vent to distal apron, there is no relationship between precious metal deposition and flow path location (i.e. temperature variations). The fluids of the epithermal system took advantage of the faults and other structural weaknesses in the Silver City District much modern systems in Yellowstone National Park and the Taupo Volcanic Zone. The underlying Silver City rhyolite has an age of about 16.1 Ma (Brueseke and Hames, unpublished), and the mineralized veins in other Silver City District locations (e.g. War Eagle Mountain, Florida Mountain) have ages of ~15.5 to 15.8 Ma (Aseto, 2012; Mason et al., 2015). It is likely that Milestone formed in the same  $\sim$ 15.5 to 15.8 Ma age time interval.

# **Table of Contents**

| Table of Contentsiii                                    |
|---------------------------------------------------------|
| List of Figures                                         |
| List of Tables                                          |
| Acknowledgementsxi                                      |
| Dedication                                              |
| Chapter 1 - Introduction and Background                 |
| Background                                              |
| Geologic Setting                                        |
| <u>Chapter 2 - Methods</u>                              |
| <u>Chapter 3 - Results</u>                              |
| Main Knob Outcrop Description:                          |
| Lithofacies                                             |
| Reflected Light Microscopy:                             |
| Quartz textures:                                        |
| LA-ICP-MS Analysis:                                     |
| <u>Chapter 4 - Discussion</u>                           |
| History of the Main Knob and Paleosurface Formation:    |
| Textural, Elemental and Mineral Associations in Sinter: |
| Milestone and Other LS Deposits                         |
| Milestone in the Silver City District:                  |
| <u>Chapter 5 - Conclusions</u>                          |
| Lithofacies                                             |
| Mineralogy and Chemistry                                |
| Future Work                                             |
| <u>References</u>                                       |
| Appendix A – Thin Section Descriptions                  |
| Appendix B – Supplementary Figures                      |
| Appendix C – LA-ICP-MS Chemistry Results                |

# List of Figures

| Figure 1.1: Simplified schematic of surficial features commonly found around silica-rich hot        |
|-----------------------------------------------------------------------------------------------------|
| spring vents associated with low sulfidation epithermal deposits                                    |
| Figure 1.2: (A) Map of northern Great Basin (U.S.A) (B) General geological map of Owyhee            |
| Mountains, ID 10                                                                                    |
| Figure 1.3: Map of the Milestone deposit and the DeLamar mine in Owyhee County, Idaho 11            |
| Figure 3.1: Geologic map of the Milestone Main Knob 21                                              |
| Figure 3.2: Cross-section of the Main Knob 22                                                       |
| Figure 3.3: Matrix-supported breccia found on the Main Knob at Milestone                            |
| Figure 3.4: Rock sample images of clast-supported breccia and field images of silica infiltrate. 24 |
| Figure 3.5: Hand samples of colorful laminated sinter found on the Main Knob of Milestone 25        |
| Figure 3.6: Geyserite from the Main Knob of Milestone                                               |
| Figure 3.7: Microbial features at Milestone                                                         |
| Figure 3.8: Reflected light (RFL) images of clustered and disseminated pyrite from several          |
| samples of Milestone Sinter                                                                         |
| Figure 3.9: RFL images of anhedral pyrite relict grains                                             |
| Figure 3.10: Photomicrograph on a double-thick fluid inclusion slide of red anhedral pyrargyrite    |
| in sinter                                                                                           |
| Figure 3.11: RFL photomicrographs of electrum across several samples                                |
| Figure 3.12: Cross-polarized images of quartz after calcite (QAC) formations                        |
| Figure 3.13: Transmitted light images of comb quartz in cross-polars                                |
| Figure 3.14: Cross polarized photomicrograph of pseudo-acicular quartz crystallization with         |
| undulatory extinction in bands of sinter                                                            |
| Figure 3.15: Images of chalcedony crystallization as a result of secondary silica-rich fluid        |
| injection41                                                                                         |
| Figure 3.16: LA-ICP-MS transect of proximal slope sample EF19-1                                     |
| Figure 3.17: LA-ICP-MS transect of proximal slope sample EF19-3                                     |
| Figure 3.18: LA-ICP-MS transect of mid-slope apron sample EF19-4                                    |
| Figure 3.19: LA-ICP-MS transect of mid-slope apron sample EF19-5                                    |
| Figure 3.20: LA-ICP-MS transect of mid-slope apron sample EF19-6                                    |

| Figure 3.21: LA-ICP-MS transect of a thin section of mid-slope apron sample EF19-6             |
|------------------------------------------------------------------------------------------------|
| Figure 3.22: LA-ICP-MS transect of vent sample EF19-7                                          |
| Figure 3.23: LA-ICP-MS transect of vent sample EF19-8                                          |
| Figure 3.24: LA-ICP-MS transect of proximal slope sample EF19-11                               |
| Figure 3.25: LA-ICP-MS spot analyses map image of proximal slope sample EF19-153               |
| Figure 3.26: LA-ICP-MS spot analyses map image of mid-slope apron sample EF19-4                |
| Figure 3.27: LA-ICP-MS spot analyses map image of mid-slope apron sample EF19-14 55            |
| Figure 3.28: LA-ICP-MS spot analyses map image of distal slope/marsh sample EF19-24 56         |
| Figure 3.29: LA-ICP-MS spot analyses map image of Wagonwheel sample EF19-25 57                 |
| Figure 3.30: LA-ICP-MS spot analyses map image of distal slope/marsh EF19-26 58                |
| Figure 3.31: Graphical representation of metal(loid)s across the fluid pathway of Milestone 59 |
| Figure 4.1: Comparison of hot spring features between Milestone and Yellowstone                |
| Figure 4.2: Paleosurface schematic for Milestone                                               |
| Figure 4.3: Data graphs of comparing elements commonly associated with low-sulfidation         |
| epithermal deposits against Au 69                                                              |
| Figure 4.4: Data graphs of comparing elements commonly associated with low-sulfidation         |
| epithermal deposits against Ag70                                                               |
| Figure 4.5: Map of sample locations at Milestone attributed with corresponding Au-Ag ranges.   |
|                                                                                                |
| Figure B.1: Map of the Main Knob at Milestone with geographic locations of collected samples   |
| and notable features                                                                           |
| Figure B.2: LA-ICP-MS transect of proximal slope sample EF19-1 and all data                    |
| Figure B.3: LA-ICP-MS transect of proximal slope sample EF19-3 and all data                    |
| Figure B.4: LA-ICP-MS transect of mid-slope apron sample EF19-4 and all data                   |
| Figure B.5: LA-ICP-MS transect of mid-slope apron sample EF19-5 and all data                   |
| Figure B.6: LA-ICP-MS transect of mid-slope apron sample EF19-6 and all data)                  |
| Figure B.7: LA-ICP-MS transect of a thin section of mid-slope apron sample EF19-6 and all data |
|                                                                                                |
| Figure B.8: LA-ICP-MS transect of vent sample EF19-7 and all data                              |
| Figure B.9: LA-ICP-MS transect of vent sample EF19-8 and all data                              |

| Figure B.10: LA-ICP-MS spot analyses map image of proximal slope sample EF19-1 and all       |
|----------------------------------------------------------------------------------------------|
| data                                                                                         |
| Figure B.11: LA-ICP-MS spot analyses map image of mid-slope apron sample EF19-14 and all     |
| data                                                                                         |
| Figure B.12: LA-ICP-MS spot analyses map image of distal slope/marsh sample EF19-24 and      |
| data                                                                                         |
| Figure B.13: LA-ICP-MS spot analyses map image of Wagonwheel sample EF19-25 and all          |
| data                                                                                         |
| Figure B.14: LA-ICP-MS spot analyses map image of distal slope/marsh EF19-26 and all data.98 |

## List of Tables

|--|

## Acknowledgements

The author would like to thank the University of Arkansas for allowing us to use their lab to analyze our samples using LA-ICP-MS. I would also like to thank the Topeka Gem and Mineral Society, the Geological Society of America, and the Society of Economic Geologists for funding this project.

## Dedication

This thesis is dedicated to my family who supported me through this entire journey from afar. Without their encouragement and patience, I would not be where I am today.

### **Chapter 1 - Introduction and Background**

Sinter deposits are the surficial expression of epithermal ore-forming systems where superheated fluids (~150-300°C) and vapors rise through the earth's crust and discharge at the surface. Silica, along with other minerals and mineraloids, are precipitated out of solution upon cooling, and can form deposits up to tens of meters thick (Bonnichsen, 1983; Fournier, 1989; Guido and Campbell, 2011; Lynne, 2012). Siliceous sinters form above or adjacent to epithermal Au-Ag deposits and can therefore be an indicator of an economic deposit at depth. Recent studies, such as Vikre (2007), have focused on the presence of economic minerals and metal(loid)s in sinters that form in low sulfidation Au-Ag epithermal deposits. These studies confirmed the presence of ore minerals (e.g., selenides, sulfides, tellurides, Ag-Au minerals, etc.) in sinter and associated epithermal veins through crystallization and/or transport and deposition of nanoparticles (Saunders et al., 2015). Furthermore, Saunders and Brueseke (2012) also concluded that the degassing and devolatilization of fertile mantle greatly contributes to the formation of economic ores in epithermal systems, much like those in the Silver City District where the Milestone paleosurface is located.

The Miocene Silver City District (SCD) in the Owyhee Mountains in southwestern Idaho is considered the "birthplace" for modern ideas of epithermal precious metal deposits (Lindgren, 1900). The SCD hosts three primary epithermal Au-Ag deposits: Florida Mountain, War Eagle Mountain, and DeLamar, where ~16-15.5 Ma ores are hosted in quartz-adularia-dominated veins or disseminated through porous rhyolite lavas (Fig. 1). Milestone, the focus of this study, may be another epithermal deposit in the SCD. It is a hot spring sinter paleosurface and associated breccia deposit located ~1.2 km northwest of the DeLamar Silver Mine, in a northwest-trending fault zone associated with other mineral prospects (Fig. 1). The goal of this study is to provide geological

constraints on how the Milestone deposit formed to assess whether the Milestone sinter is orebearing, and document the concentrations of trace elements (including Au and Ag), across the different sinter beds within the deposit.

This study presents new evidence for the economic potential of sinters and is a case study in how a small hydrothermal system can form and preserve depositional facies. We examine the preserved textures, mineralogy, and in-situ sinter elemental concentrations of the Milestone "Main Knob". These data are used to reconstruct the paleoenvironment of its formation, and assess the hot spring's role as a fluid pathway for trace metal(loid)/element mineralization in the Silver City District.

#### Background

Geothermal systems that result in hydrothermal surface features and epithermal mineralization are typically characterized by alkali chloride waters that are relatively reduced and have a neutral pH (Sillitoe, 2015). These are sites that have a high convective heat energy that is dissipated into fluids which discharge at the surface, creating a variety of depositional products. Such features are preserved in precious metal deposits, including sinter (Sillitoe, 2015). A magmatic component is commonly associated with such systems, but the compositional nature and physical dimensions of any associated magmatic body are debated across different epithermal deposits. Ratios of magmatic influence to hydrothermal influence vary with each system (Taylor, 1979; Norton, 1982; John, 2001; Saunders et al., 2008; Saunders et al., 2014). Tectonic settings also play a role in the development of epithermal deposits both in content and structural control by normal faults.

Epithermal deposits are commonly divided into three end-member types based on their mineralogical characteristics and alteration facies: high sulfidation (HS), intermediate-sulfidation, and low sulfidation (LS). HS environments contain 10-80% sulfides by volume, including minerals such as alunite, enargite, luzonite, and famatinite, and have metal(loid) signatures of Au-Ag-Cu±Te±Bi; other minerals such as quartz and barite may be common. LS environments are 1-5% sulfides by volume, contain minerals such as quartz, adularia, chalcedony, pyrrhotite, arsenopyrite, and high-Fe sphalerite, and metal(loid) signatures of  $Au\pm Ag\pm Se\pm Te\pm Hg\pm Cu$ (Sillitoe, 2015). Low sulfidation environments are most commonly associated with rift and/or hotspot settings, which are usually characterized by compositionally bimodal, basalt-rhyolite volcanism (Richards, 2009; Sillitoe, 2015) and are also found in volcanic arcs, associated with porphyry deposits at depth. Magmatic fluids are a primary source of several components in hydrothermal ore deposits in volcanic environments, such as metals, ligands, and vapors (Hedenquist and Lowenstern, 1994; John, 2001; Kamenov, 2007). The metal(loid)s and other ligands become concentrated in vapor and hypersaline fluids from various sources (e.g., subducted oceanic crust, leaching of country rock, partial melting of the asthenospheric wedge above a slab, partial melting of lithospheric mantle, etc.; Richards, 2009). The flux of metals measured from a volcano holds evidence that degassing magmas can exsolve metals to create an ore deposit given enough time and mechanisms to concentrate the metals (Hedenquist and Lowenstern, 1994). William-Jones and Heinrich (2005) suggested that significant amounts of ore metals and sulfur can be transported by low-density magmatic fluids via vapor-phase transport from a deeper magmatic setting to a shallow epithermal system. Transportation of minerals and metal(loid)s through epithermal fluids results in the aggregation and deposition of colloids (or nanoparticles)

by boiling and can form high-grade ores, as is shown in detailed textural studies of bonanza epithermal ores (Saunders 1990, 1994; Saunders et al., 2011b, 2012, 2019).

A variety of tectonic settings that have been found to host LS environments have provided structural pathways for rising fluids by rifting (Sillitoe and Hedenquist, 2003). Rifting could occur in intra-, near-, and back-arc settings, postarc settings, and postcollisional settings (Sillitoe and Hedenquist, 2003). In the case of Milestone, postcollisional rifting allowed for bimodal rhyolite-basalt volcanism and hot spring development (Bonnichsen, 1983; Brueseke, 2010). Structural control often comes from localized faults due to such rifting. Commonly, rift basins with normal fault systems or fault-bounded caldera margins provide increased permeability in basement rocks that allow hydrothermal fluids to easily rise through the crust (Rowland and Sibson, 2001; John, 2003; Rowland and Simmons, 2005). Multiple locations with such tectonic controls are centers for hydrothermal activity and epithermal deposits. Notable present-day active locations include Yellowstone National Park (Hames et al., 2009) and the Taupo Volcanic Zone in New Zealand (Rowland and Simmons, 2005).

Paleosurface features are the result of fluids from an epithermal system interacting with surface landforms. These fluids also create hydrothermal alteration zones near the water table (Sillitoe, 2015). These features occur above underlying fracture systems which can, in some cases, host economically significant mineralization in the form of a LS epithermal deposit. Paleosurface features, including sinters and hydrothermal breccias, can thus be used to locate underling mineral resources (Nelson, 1988; Chang et al., 2011; Lynne, 2012; Hamilton et al., 2016). The breccias can be interbedded with sinter, as is the case for Milestone (Barrett, 1985). Hydrothermal systems carry trace metal(loid)s via fluid or vapor-phase transport up to the surface, where they can be discharged along with the silica-supersaturated fluid. As the fluid cools and silica precipitates

upon boiling, the metal(loid)s precipitate and are deposited in the silica. As a result, if boiling occurs at the surface, paleosurfaces have the potential to be another economic resource. In sinters, the multicolored laminations have the potential to hold different amounts of metal(loid)s that could represent changes in fluid composition and/or temperature (Vikre, 2007).

Features commonly found in preserved paleosurfaces include bedded sinter (sometimes recrystallized into chalcedony), irregular/lenticular cavities (bubble-mat texture), geyserite (specular, nodular, columnar), silicified plant material, and hydrothermal breccia (Lynne, 2012; Sillitoe 2015; Hamilton et al., 2019). Better preserved paleosurfaces can be distinguished as having formed in different depositional environments based on their proximity to the hot spring vent (Hamilton et al., 2019). The features found in low-sulfidation epithermal deposits with paleosurfaces depend on the temperature of formation and their locations relative to the vent. From the vent, there is the proximal slope, mid-slope apron, distal slope/apron, and a marsh. The association of paleosurface features with their respective formation temperatures and slope location is depicted in Figure 1.1. The temperatures these features form from range from  $\sim 100^{\circ}$  C at the vent, to the distal and marsh-type areas, which occur further away under temperatures below 35° C, also known as ambient temperatures (Fig. 1.1) (Sillitoe, 2015; Hamilton et al., 2019). Distinctive textures are unique to these different environments, yet are consistent across modern sinters and paleo-deposits (e.g., Belhadi et al., 2002; Vikre, 2007; Lynne, 2012, 2013; Sillitoe, 2015).

#### **Geologic Setting**

The geology of the Owyhee Mountains has been described and summarized by Lindgren and Drake (1904), Piper and Laney (1926), Asher (1968), Ekren et al. (1981), Ekren et al. (1982), Bonnichsen (1983), Halsor et al. (1988), Hasten (2012), and Mason et al. (2015). Prior to 19 Ma, magmatic activity was dominated by Cretaceous to Oligocene calc-alkaline volcanism due to subduction of the Farallon plate. At ~17 Ma, regionally, volcanism became primarily compositionally bimodal (Fig. 1.2), with the eruption of regional flood basalt volcanism (e.g., Columbia River Basalt group; Steens Basalt in the Oregon Plateau study area) and coeval rhyolite centers (John, 2001; Camp and Ross, 2004; Brueseke et al., 2007; Brueseke at al., 2008; Streck, 2014). This phase of magmatism lasted for ~3 myr and also coincided both spatially and temporally with [1] extensional tectonism that was primarily focused in the northern Nevada rift and Oregon-Idaho graben (Brueseke and Hart, 2008); and [2] deposition of abundant epithermal Au-Ag mineralization in locations such as National, Midas, Sleeper, Buckskin-National, and DeLamar (Saunders, 1994; John, 2001; John et al., 2003; Hames et al., 2009; Brueseke, 2010; Saunders et al, 2010; Saunders et al, 2013) (Fig. 1.2).

The SCD extends from War Eagle Mountain and Florida Mountain in the east to the DeLamar in the west. The DeLamar deposit itself is slightly < 5 km-wide and the Milestone sinter lies just to the north (Figs. 1.2, 1.3). The SCD was a mid-Miocene eruptive center and contains locally erupted mid-Miocene flood basalts, andesite-dacite lavas, rhyolite lavas, rhyolite tuffs, and abundant domes/eruptive loci (Fig. 1.2; Halsor et al., 1988; Hasten, 2012; Hasten et al., 2012). These Miocene volcanic units stratigraphically overlie Eocene-Oligocene volcanics and basement composed of Cretaceous granitoid rocks (e.g., Silver City batholith, which is an extension of the Idaho batholith) and Triassic metasedimentary strata (Pansze, 1975; Norman and Leeman, 1989;

Hasten, 2012). In the vicinity of the DeLamar mine and the Milestone deposit, the Miocene stratigraphic sequence consists of overlapping porphyritic and banded rhyolite lavas and domes that overlie rhyolite pyroclastic deposits and an older mafic-intermediate lava package (Barrett, 1985; Hasten, 2012). In the vicinity of Milestone, northwest trending normal faults apparently focused rhyolite eruptions, dome emplacement, fluid flow, and mineralization (Halsor et al., 1988; Hasten, 2012). Saunders et al. (2015) report Cu isotope data from electrum, chalcopyrite, and naumannite in Miocene northern Great Basin epithermal ores, including some data from the SCD. These data, along with Pb isotope studies of SCD ores (Aseto, 2012; Mason, 2015), demonstrate that the ores were likely derived from spatially and temporally associated mafic magmas, thus reflecting a mantle origin for the metal(loid)s.

In the northwest SCD, sinter, low-sulfidation mineralization, and rhyolite domes are located along a series of northwest-trending normal faults (Fig. 1.2). The tectonism responsible was active in the Early to Middle Miocene (Pansze, 1975). Several rhyolite domes, basalt dikes, and mineralized veins are localized along the fault zone (Asher, 1968; Pansze, 1975; Hasten, 2012). Argillic alteration is present along mineralized zones within the host rock (Asher, 1968; Pansze, 1975; Bonnichsen 1983; Barret, 1985). Epithermal deposits such as Milestone, DeLamar, Lucky Day, Twin Peaks, and Georgiana occur along these faults (Fig. 1.2) and most of the mineralization occurs in veins, based on reconnaissance exploration drilling (Gustin et al., 2019).

The Milestone deposit is referred to as a "fossil" geothermal system as it has characteristics of an hot spring, such as mineralized breccia and overlying sinter, and is comparable to other active geothermal systems in Nevada and New Zealand (Barrett, 1985) and at Yellowstone. The paleosurface at Milestone is characterized by its mineralized breccia and overlying hot spring layered sinter (Fig. 1.4). Lindgren (1900) was the first to briefly describe the primary Milestone sinter deposit (hereafter named the "Main Knob") as a "spring deposit" with grayish to brownish quartz. Reconnaissance samples of bulk sinter show Au and Ag grades of 7.09 g/ton Ag and 2.83 g/ton Au (Barrett, 1985), which at the time of sampling, was not considered to be economical. This is in contrast to SCD veins and rhyolite-hosted Au-Ag grades that range from 0-40 g Au/ton and 0-1325.0 g Ag/ton (Gustin et al., 2019). Barrett (1985) broadly mapped the Milestone deposit and created cross-sections of the geology and subsurface alteration from core logs, in an effort to provide more detail on the geological setting and mineralogy of the deposit. Barrett (1985) reported minor argillic hydrothermal alteration (traces of cacoxenite, hematite, and silicification) in the country rock hypogene zone, as well as hypogene ore-minerals (naummanite, pyrargyrite, tetrahedrite, and possible micron-sized native gold), and gangue minerals (e.g., kaolinite, pyrite, jarosite, cocoxenite, illite, marcasite, and quartz).

This study aims to recharacterize the Milestone deposit using geological mapping; new microscopy; and in-situ, microanalytical trace element analysis by laser ablation-inductively couple plasma-mass spectrometer (LA-ICP-MS). Additionally, we aim to connect the site to other deposits in the SCD and analogous present-day hot springs in regard to location, mineralogy, and known surface features. We provide detailed facies descriptions and LA-ICP-MS analysis on minerals and trace metal(loid)s of the Main Knob sinter at Milestone and link the identified facies and geometry to record the history of the paleo-hot spring.



Figure 1.1: Simplified schematic of surficial features commonly found around silica-rich hot spring vents associated with low sulfidation epithermal deposits. The features are sectioned into different areas along the slope starting from the vent onward and are also associated with specific temperatures. Dimensions of the environment vary across locations. Modified from Hamilton et al. (2019).



Figure 1.2: (A) Map of northern Great Basin (U.S.A) showing ~17-14 Ma epithermal Au-Ag deposits/districts, extent of Columbia River Basalt group volcanism (gray shading), and coeval rhyolite volcanism (encompassed by thick black line). Owyhee Mountains study area (Silver City district) is labeled. Abbreviation: OP, Owyhee Plateau. (B) General geological map of Owyhee Mountains, ID (after Ekren, et al., 1981; Bonnichsen, 1983; Bonnichsen and Godchaux, 2006; Mason et al., 2015). Silver City encompasses War Eagle (WE), DeLamar (DM), and Florida (FM) Mountains. Milestone deposit is marked by yellow "M" along with other deposits Georgiana (G), Lucky Day (LD), and Twin Peaks (TP) along the faults. Wagonwheel sinter lies between Milestone and Georgiana.



Figure 1.3: Map of the Milestone deposit and the DeLamar mine in Owyhee County, Idaho. Source: Gustin and Weiss (2017)



Figure 1.4: Field photos of the Main Knob at Milestone. A) View of the Main Knob from the road. B) View from the bottom of the Main Knob pointed up-slope. Rock marked with yellow "X" is matrix-supported breccia in (C) marked with same yellow "X". C) Matrix-supported breccia at the bottom of the Main Knob with road behind author E. Fenner. D) Broken laminated sinter resulting in a relatively flat surface covered in both lichen and oxidation staining.

## **Chapter 2 - Methods**

Samples were collected to determine the trace metal content and ultimately the economic potential of the deposit. Sampling was also focused on determining whether the breccia type across the deposit is homogenous, as suggested by Barrett (1985), and also to provide constraints on the sinter facies present. In partially preserved and ancient paleosurfaces, such as Milestone, these facies are crucial for uncovering the history and environment of the hydrothermal system.

Sampling locations were determined based on geological mapping (Barret, 1985; this study) and our field observations centered on deposit stratigraphy. The observations made at the Main Knob of Milestone were documented to create a detailed geologic map of the site. Most samples were collected on the Main Knob. Different sinter and breccia types on the Main Knob were grouped into five main lithofacies: Laminated sinter, massive plant-rich sinter, matrixsupported breccia, clast-supported breccia, and gevserite along with notable features such as bubble mat and stromatolite bioformations (Table 1 in Chapter 3). Sampling criteria for the sinter included colorful, defined bedding that would be suitable for point and line analysis by LA-ICP-MS. Any sinter that lacked consistent bedding was noted and also sampled for its fossil content, distance from vent location, and/or phreatic/hydrothermal textures immobilized within. Matrixsupported breccias that exemplified the variety in textures such as gradation, fluvial action, and/or interbedding with sinter were chosen for sampling. Clast-supported breccia was sampled to represent the variation in clast-size around the area. Away from the Main Knob, samples were collected based on color, bedding, and plant fossil content to help identify the farthest reaches of the paleosurface. Another sinter deposit, located about 3 km north-northwest of Milestone known as Wagonwheel, was sampled for comparison.

Overall, twenty-six samples were collected from the Milestone Main Knob and the surrounding area, including Wagonwheel. Fourteen traditional thin sections and twelve double-thick sections (for laser ablation analysis) were cut from sinter samples. Traditional thin sections were used to characterize the mineralogy and hydrothermal textures of the paleo-hot spring that comprises Milestone. In order to obtain quantitative high-precision measurements of our chosen suite of trace elements, LA-ICP-MS was used to analyze as many individual beds as possible. The twelve thick sections, along with six slabs of sinter, were chosen for LA-ICP-MS analysis. All thin sections were observed and described using traditional petrographic methods and reflective-light microscopy imaging. Imaging was performed using a Zeiss Axioscope reflective light microscope attached with a Zeiss Axiocam. Mineral identification was completed using references from Marshall et al. (2011).

Quantitative and spatial relationships of trace metal(loid)s were investigated using laser ablation-inductively coupled-mass spectrometry. Nine samples were analyzed using transects to cut perpendicularly across the laminated sinter beds, and six samples were analyzed with spots on areas of interest. The majority of elements are reported in parts per million (ppm), while Si, S, Se, Te, and Hg are reported in counts per second (cps) as there was no standard for these elements. Possible minor interferences for Se include Ar, K, and Ca, but are generally <10 ppb. Se concentrations mimic Au, Ag, and other geochemically similar elements, thus we interpret any possible interference to be low. In total, 27 elements were analyzed: eight major elements (Si, S, Na, Al, K, Mg, Ti, Fe) and 19 trace elements (Au, Ag, Cu, Zn, As, Cd, Sn, Sb, Se, Te, Hg, Tl, Ge, Pb, Pt, Pd, Bi, Th, U). The element Ge was only analyzed in the slab transects, and Pt and Pd were only analyzed in the spot analyses. All elements were detected in the chosen samples. Six slabs and five double-thickness sections were analyzed by transects perpendicular to sinter

bedding or transects that crossed the most beds. Four of the remaining thick sections were chosen for spot analyses where bedding was not as defined. Following Vikre (2007), the transects and spot analyses were used to observe the variations and spatial relationships between individual sinter beds.

LA-ICP-MS trace element analyses were acquired using a New Wave Research/ESI 193nm excimer laser ablation system coupled with a Thermo Scientific iCapQ quadrupole mass spectrometer housed at the Trace Element and Radiogenic Isotope Lab (TRaIL) at the University of Arkansas. For each sample, a line was drawn from left to right across the sample and then expanded for individual spot analyses along the line. Ablation spots were spaced at 350 µm. Each analysis utilized a 100 µm laser spot, a repetition rate of 10Hz with a burst of 200 shots, a fluence of ~9.5 J/cm<sup>2</sup>. The elements analyzed were: <sup>23</sup>Na, <sup>27</sup>Al, <sup>29</sup>Si, <sup>31</sup>P, <sup>32</sup>S, <sup>35</sup>Cl, <sup>39</sup>K, <sup>43</sup>Ca, <sup>47</sup>Ti, <sup>57</sup>Fe, <sup>63</sup>Cu, <sup>66</sup>Zn, <sup>75</sup>As, <sup>77</sup>Se, <sup>107</sup>Ag, <sup>111</sup>Cd, <sup>118</sup>Sn, <sup>121</sup>Sb, <sup>125</sup>Te, <sup>197</sup>Au, <sup>202</sup>Hg, <sup>205</sup>Tl, <sup>208</sup>Pb, <sup>209</sup>Bi, <sup>232</sup>Th, <sup>238</sup>U. NIST standard glass 612 (Jochum et. al, 2011) was used as the primary standard with NIST610 glass as a secondary standard. Data reduction was performed using the Iolite Software Program (Paton et al., 2011). <sup>29</sup>Si (99% for unknowns) was used for standardization. The RSD for all elements were <5% except for S whose RSD was ~8%.

## **Chapter 3 - Results**

#### Main Knob Outcrop Description:

The "Main Knob" is the discharge site of the paleo-hot spring. Its areal extent is  $\sim 0.8$ km<sup>2</sup>, with much of the deposit exposed at the surface. A geologic map (Fig. 3.1) and crosssection (Fig. 3.2) show the spatial relationships of mappable units on the Main Knob. Two types of breccia are present: a matrix-supported breccia and a clast-supported breccia. Clastsupported breccia is found within the center, while the matrix-supported breccia is most common along the outer edges of the knob. The clast-size of the matrix-supported breccia varies from fine pebbles (~0.1 cm) up to large boulders (12 cm) (Fig. 3.3), while the clast-supported breccia has a smaller clast range of 2.5 cm to about 10 cm (Fig. 3.4). The clast-size of these breccias increase with distance from the vent location. The clast-supported breccia is located on the northeast side of the knob, surrounded by the sinter on all sides (Fig. 3.1). Laminated sinter is located in the center of the knob that laterally extends farther than the clast-supported breccia, and massive black sinter exists out to the far edges of the site. The black sinter is found on the outer flanks of the discharge site and contains abundant plant fossils. Petrified wood (twigs, small logs, etc.) is fairly common across the center of the knob in both the sinter and matrixsupported breccia (Fig. 3.5). Geyserite covers most of the central outcrop and can be found as nodular, spicular, ripple, and geyserite eggs (Fig 3.6). Microbial formations such as bubble mat and spherical stromatolites (Fig. 3.7) were found in a large boulder of sinter on the side of the road thought to be moved by previous mining operations. Descriptions of these facies are summarized in Table 1.

#### **Lithofacies**

#### Matrix-supported breccia:

*Description:* The breccia clasts are primarily unsorted argillically-altered Silver City rhyolite that have been rounded, likely through milling in an eruption column. Clast sizes range from small pebbles (<~0.1cm) to medium-large boulders up to ~92 cm. The outer portions of some samples are moderately oxidized and other breccia contains a layer of injected black sinter (Fig. 3.3). The matrix comprises of a whitish tan to a light/dark gray sinter. Thin layers of sinter (~2 mm) are interbedded in the breccia, but these bands are sparse. All samples have both rounded to angular clasts. However, matrix-supported breccias with a predominantly gray sinter tend to have a higher abundance of rounded clasts (~80% of clasts) than those with tan, black, or white sinter (~60-70% of clasts). All clasts are pervasively altered sinter or rhyolite.

*Interpretation:* This lithofacies formed from the result of a violent eruption of the hot spring system at a temperature of over 100°C based on measurements at present day hot spring environments (Hamilton et al., 2019). The sinter matrix and lateral extent of this facies suggest a high-volume eruption. The rhyolite and existing sinter were ripped up through the hot spring conduits and erupted to the surface. The high population of rounded clasts suggest milling in the conduit before erupting, entraining more angular clasts in the process. The higher population of angular clasts in the tan, white, or black matrix-supported breccias suggests an advanced degree of fracturing or a more violent eruption (Tămaş and Milési, 2003).

#### **Clast-supported breccia:**

Description: Angular sinter and argillically-altered rhyolite clasts that are more homogeneous in size compared to the matrix-supported breccia. Clast size ranges from very coarse sand to small cobbles (Fig. 3.4 A-D) and are loosely to moderately packed. Individual clasts are coated in a thin (~1-2 mm) deposit of silica with little to no matrix, leaving open space between clasts (Fig. 3.4 A-D). Fallout of this breccia sometimes rests on a bed of curved sinter, forming bomb sags (Fig. 3.4 A). Silica infiltrate is also present and becomes more common with depth (Fig. 3.4 E, F). The infiltrate is comprised of primarily white and tan silica that fills in the open spaces between clasts of the clast-supported breccia, cracks in the country rock, and between sinter beds. The infiltrate is more localized in the clast-supported breccia on the northeast side of the Main Knob. Petrified wood is preserved in this facies and includes smaller branches to twigs. Interpretation: The angular clasts and lack of matrix, plus areal extent of this deposit, are consistent with a vent conduit. This likely formed via a phreatic explosion that resulted in a collapse of the vent with minor amounts of fluid. Superheated fluid (~70-100°C) broke up laminated sinter and as pressure built up in the vent, a violent explosion ejected the material to the surface. This discharge coated the breccia clasts in silica and ultimately cemented the clasts together. Clast-supported breccias similar to this are a result of a slow decrease in the amount of fluid discharged, precipitation, or a change in groundwater flow direction (Tămaş and Milési, 2003). Other possible causes are joint/fracture development or erosion. The curved sinter bed that some portions of this breccia rest upon suggest that the newest sinter in the area was not yet hardened and still existed as a silica gel at the time of vent collapse. Infiltrate is fed through shallow hydrothermal feeders that are positioned immediately under geyser vents; thus, the presence of infiltrate is consistent with a vent (Campbell et al. 2019). The silica infiltrate was

found to most commonly fill in open spaces of the clast-supported breccia and nearby country rock at depths of about one meter below the current topographic surface (Fig. 3.4 E,F).

#### Sinter:

*Description:* Multi-colored laminated sinter beds form the proximal apron over the Main Knob. Individual beds are ~1 mm thick and envelop epiclastic deposits in some areas. Sinter colors include white, tan, dark-gray, black, red, and brownish (Fig. 3.5). Quartz-after-calcite (QAC) textures are somewhat common between sinter beds and vary in size (Fig. 3.5 G-I). Fossils of petrified wood, from small twigs to logs, are also found within this facies (Fig. 3.5 J-L). *Interpretation:* The variation of color in the sinter samples suggest multiple changes in chemical composition in the discharging hot spring fluid. In several samples, the original horizontal bedding is disturbed through an influx of fluid that either fractures the beds or plastically deforms them (Fig. 3.5 A,D,G). Thin beds (>1cm) of sediment in between sinter beds are interpreted to be the result of changing drainage paths over the surface or smaller eruptions of material (Fig. 3.5 B,D,G,J). As the sinter overlies the matrix-supported breccia, the hydrothermal system likely lowered in temperature following the former eruption. The existence of QAC textures is evidence of boiling fluids.

#### **Geyserite:**

*Description:* Nodular geyserite forms small (~3 mm in height) stalagmite-like features along with botryoidal geyserite proximal to the vent and overlying sinter beds (Fig. 3.6 A-F). Rounded pebbles and spheroids (up to ~4 mm) of geyserite eggs are collected together with a distinct coating of sinter over the eggs, cementing them to the surface on which they were deposited (Fig.

3.6 G). An oxidized crust covers the surface of all geyserite samples. All geyserite was found to be overlying the bedded sinter and exposed to the atmosphere.

*Interpretation:* The geyserite eggs initially formed in extremely shallow pools in the splash-zone around the vent (>~75 °C) and were pushed away by the flow of discharged fluid to be gathered further down-slope. As these eggs are delicate in nature, their preservation suggests their formation occurred after the vent explosion and collapse. Additionally, their collection down-slope of the vent suggests their formation occurred before the formation of the nodular and botryoidal geyserite. The nodular and botryoidal geyserite formed in the splash-zone of the discharged fluid as the fluid was most likely erupting up and out of the vent after the final phreatic eruption that collapsed the vent during a period of relative quiescence.

#### **Microbiological Facies:**

*Description:* Microbiological textures include wavy laminated sinter, rare warm pool-related stromatolites, and flattened bubbles between sinter beds (Fig. 3.7 A,B). The stromatolite features were concentrically built up layers of sinter that formed into a circle in cross section (Fig. 3.7 A). Bubbles in the sinter were overlain by the continuous buildup of sinter, which became too thick to rise through (assuming a silica gel at the time of bubble formation) and spread out laterally to form its oval shape. The highest population of these textures was found in a displaced boulder located on the road surrounding the Main Knob that was most likely moved by drilling operations around the area (Fig. 3.7 C).

*Interpretation:* Concentric features and small, oval-shaped gas bubbles that deformed horizontally-bedded sinter point in the direction of the existence of thermophilic microbes in the flanks of the hot spring vent (Fig. 3.7 D). The circular sphere-like formations in the sinter could

be a type of low-amplitude stromatolite. Oxygen gas bubbles respired by these microbes through photosynthesis were trapped and deformed with the sinter beds (Hamilton et. al, 2019). Thermophiles such as these can be similar to the microbial mats found around hot springs in Yellowstone National Park and their existence requires a temperature of ~45-55°C (Hamilton et. al, 2019) to thrive, thus suggesting the microbes exist in the distal apron. As described earlier, the formation of the older matrix-supported breccia would require temperatures higher than 100°C and extended to about the same distance as the overlying microbial formations. We suggest that the temperature of the hot spring fluid rose to the surface at a significantly lower temperature than its previous eruptions.



Figure 3.1: Geologic map of the Milestone Main Knob. Bx = breccia. Cross-section along line X-X' in Figure 3.2



Figure 3.2: Cross-section of the Main Knob across X-X' (left to right) as shown in Figure 3.1. Fault depicted is representative of the Northwest Fault.



Figure 3.3: Matrix-supported breccia found on the Main Knob at Milestone. Unsorted grain sizes range from ~0.1-8 cm. Matrix consists of white, gray, tan, or black sinter, with fine (~0.3 cm) interbedded layers of laminated sinter. A) Matrix supported breccia consisting of gray-colored sinter matrix with white argillically-altered rhyolite clasts (up to ~2 cm) and a single layer of interbedded black sinter. B) Light-tan matrix breccia with an oxidized surface containing large clasts (~8 cm) of argillically-altered country rhyolite. C) Matrix-supported breccia with overlying dark-gray/black sinter. D) Gray matrix breccia with unsorted clasts and interbedded black sinter overlying the breccia.



Figure 3.4: Rock sample images of clast-supported breccia and field images of silica infiltrate. A) Portion of clast-supported breccia that has fallen onto the sinter bed that at the time existed as a silica gel, thus deforming it upon impact. B-D) Clast-supported breccia with varying clast sizes cemented together by a final coating of sinter. E-F) Silica infiltrate (highlighted by yellow line and arrow) taking advantage of pre-existing cracks in the underlying host rock. Image E is rotated 90° from horizontal.



Figure 3.5: Hand samples of colorful laminated sinter found on the Main Knob of Milestone. A) Beds of sinter deformed by fluid injection while existing as a silica gel. B) Laminated sinter interbedded with sediments. C) Massive black sinter with irregular light gray bedding. D) Defined silica bedding with slight deformation, fracturing, and interbedded sediments. E) Irregular sinter layers deformed by and interbedded with angular sinter clasts. F) Defined silica bedding oxidized from Fe-content, based on LA-ICP-MS chemical analyses.



Figure 3.5 (cont.): G-I) Slightly deformed sinter beds incorporating sinter clasts and contain quartz after calcite pseudomorphs (highlighted by arrows). J) Transitional sinter layering dominated by interbedding of sinter and hydrothermally-altered rhyolite clasts. K & L) Fossilized wood fragments ranging from small twigs to medium-sized logs.


Figure 3.6: Geyserite from the Main Knob of Milestone. A-C) Botryoidal geyserite covering quartz after calcite textures. D-F) Nodular geyserite forming column-like pillars or stalagmites. G) Geyserite eggs collected and cemented together by silica.



Figure 3.7: Microbial features at Milestone. Field book, camera lens cap, and boardwalk included for scale. A) Cross-section of stromatolites (yellow circle) growing off of and with sinter beds. B) Low-amplitude wavy sinter laminations encompassing flattened, oval-like gas bubbles. C) Boulder that shows sinter with microbial textures. D) Microbial mat thermophiles growing in the outflow of discharge in Porcelain Basin at Yellowstone, WY

| Facies                             | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Interpretation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <u>Sinter</u>                      | Multi-colored laminated sinter beds form the proximal apron<br>over the Main Knob (Fig. 3). Individual beds are ~1mm thick<br>and envelop epiclastic deposits in some areas. Colors of the<br>sinter beds include white, tan, dark-gray, black, pink, red, and<br>brownish. Quartz-after-calcite (QAC) textures are somewhat<br>common between sinter beds and vary in size. In several<br>samples, the original horizontal bedding is disturbed through<br>an influx of fluid that either fractures the beds or plastically<br>deforms it. Plant-rich sinter is dark-gray to black and contains<br>silicified remnants of reed and grass-like plants. | The variation of color in the sinter samples suggest multiple changes in trace element composition in the hot spring fluid. Thin beds (>1cm) of sediment in between sinter beds are interpreted to be the result of fluvial action over the surface or smaller eruptions of material. As the sinter overlies the matrix-supported breccia, the hydrothermal system might have lowered in temperature following the former eruption of matrix-supported breccia. The existence of QAC textures is evidence of boiling fluids and deposition of trace elements. Laminated facies form in the proximal slope in fluid temperatures of ~60-75° C. Plant-rich sinter is located in the marsh, furthest away from the vent, and is usually an ambient environment (~25° C) (Hamilton et al., 2019). Silicified branches, logs, and other plant debris were also found near the vent. |
| <u>Geyserite</u>                   | Nodular geyserite forms small (~3mm in height) stalagmite-<br>like features along with botryoidal geyserite. Overlies sinter<br>beds and are proximal to the vent. Geyserite eggs are<br>subrounded (~3.5mm) spheroids and are found further from<br>the vent than other geyserite features                                                                                                                                                                                                                                                                                                                                                            | This facies formed in the "splash zone" of the eruptive vent. Falling water from eruptive episodes of fluids flowing upwards and outwards build up and form various features. The temperature of these formations is $>75^{\circ}$ C (Hamilton et al., 2019 and references within)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Matrix-supported<br>Breccia        | The breccia clasts are primarily unsorted argilically-altered<br>Silver City rhyolite that have been rounded through milling.<br>Clast sizes range from small pebbles to medium-large<br>boulders spanning up to ~92 cm. Moderate oxidation covers<br>parts of samples in a layer-like fashion and contain a layer of<br>injected black sinter. The matrix comprises of a whiteish tan<br>to a light/dark gray sinter. Thin layers of sinter (~2 mm) are<br>interbedded in the breccia, but these bands are sparse.                                                                                                                                    | The result of more violent eruption of the hot spring system at a temperature of over $100^{\circ}$ C (Hamilton et. al, 2019). The host rhyolite was ripped up through the hot spring conduits and erupted out in an apron that ends distal from the conduit (~50m).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Clast-supported<br>Breccia         | Angular sinter and argilically-altered Silver City rhyolite<br>clasts that are more homogeneous in size compared to the<br>matrix-supported breccia. Clast size ranges from very coarse<br>sand to small cobbles. Individual clasts are coated in a thin<br>(~1-2 mm) deposit of silica with little to no matrix. Fallout of<br>this breccia rests on a bed of curved sinter (Fig. 5). Silica<br>infiltrate is present and becomes more common with depth.                                                                                                                                                                                             | The angular state of the clasts paired with the severe lack of matrix suggest a phreatomagmatic explosion which resulted in a collapse of the vent with minor amounts of fluid. Superheated fluid broke up laminated sinter and as pressure built up in the vent, a violent explosion ejected the material to the surface. This discharge coated the breccia clasts in silica and ultimately cemented the clasts together. The curved sinter bed that some portions of this breccia rest upon suggest that the newest sinter in the area was not yet hardened and still existed as a silica gel. Silica infiltrate in this facies suggests underground temperatures up to 180° C, proximal to the vent (Hamilton et al., 2019).                                                                                                                                                |
| Stromatolite<br>Formations         | Rare warm pool-related stromatolites up to ~10 cm in<br>diameter. Stromatolites consist of concentric layers of sinter<br>appearing to grow off the existing laminated sinter beds.<br>Colors range from a light tan to a darker grayish-tan.                                                                                                                                                                                                                                                                                                                                                                                                          | The circular sphere-like formations in the sinter are a type of cyanobacteria (e.g., stromatolites). The existence of these bacteria requires a temperature of $\sim$ 60° C (Hamilton et al., 2019) to thrive, and was located in either a proximal slope channel or a mid-apron pool (Fig. 4). This suggests the temperature of the hot spring fluid rose to the surface at a significantly lower temperature than its previous eruptions.                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| <u>Microbial Mat</u><br>Formations | This facies is characterized by wavy laminated sinter with<br>bubble mat characteristics, i.e. flattened gas bubbles about 1<br>mm in length trapped between sinter beds that become wavy<br>to accommodate the gas bubbles. The layers range from light<br>tan to a darker gray-tan in color.                                                                                                                                                                                                                                                                                                                                                         | Concentric features and small, oval-shaped gas bubbles that deformed<br>horizontally-bedded sinter point to thermophilic microbes in the flanks of<br>the hot spring vent. Oxygen gas bubbles respired by these bacterium through<br>photosynthesis were trapped and deformed with the sinter beds.<br>Thermophiles that create microbial mats such as these require a temperature<br>of ~45-60° C (Hamilton et al., 2019) and can be located in mid-apron<br>pools/channels, or in the distal slope apron. Since the bubble mat exists with<br>the stromatolite facies, we therefore conclude it formed within a mid-apron<br>pool.                                                                                                                                                                                                                                           |

 Table 1: Descriptions and interpretations of the different facies at the Milestone Main Knob.

#### **<u>Reflected Light Microscopy:</u>**

Reflected Light Microscopy (RFL) was primarily used for mineral and quartz identification and description. Here, the minerals and quartz textures found at Milestone are described. Descriptions of all thin sections can be found in Appendix A.

# **Pyrite:**

This phase occurs as both disseminated euhedral pyrite and as clusters. Euhedral cubes and anhedral grains of pyrite exist within the fracture infill of several samples, which could be both crystallized as the infill set and transported from a different source. Clusters include cubic and octahedral crystals up to  $\sim 3\mu m$  in size (Fig. 3.8). Larger crystals (about 100 $\mu m$ ), or relict grains, are thought to be transported from a deeper source due to their rounded and oxidized state (Fig. 3.9). The relict grains and sinter beds with finely disseminated to no visible pyrite are partially oxidized to hematite.

# **Pyrargrite:**

This sulfosalt also known as "ruby silver" was identified in only one sample where it formed as an anhedral crystal about 1 mm in size amongst jigsaw quartz (Fig. 3.10).

#### **Electrum microparticles:**

When visible, these grains can appear disseminated or as an accumulation that reflects the flow direction of the hydrothermal fluids. The deposition and accumulation of particles accumulate on the side of the ripples (Fig. 3.11 C & D); this is inferred to be analogous to nanoparticle accumulation on the leeward side of ripples in epithermal veins, creating a sluice-box texture (Saunders et al., 2011b; Saunders, 2012). The particles are more disseminated in the sinter directly beneath (Fig. 3.11 A & B), which could be the aggregations of colloids or nanoparticles forming dendrites (Saunders et al., 2011b; Saunders, 2012; Saunders, 2012; Saunders and Burke,

2017). Disseminated electrum occurs predominantly within the dark gray/black layers of Milestone sinter (Figs. 3.18, 19, 23, 24, 26). The disseminated grains occur as either small globules or as flecks reaching to about 30  $\mu$ m in size (Fig. 11 E-F).

#### **Quartz textures:**

Quartz is the primary and most abundant gangue mineral in the Milestone Main Knob deposit and occurs in several different textures. The sinter itself is layered amorphous silica characterized by massive, laminated or jigsaw quartz. Jigsaw quartz is the most common texture after amorphous sinter. Late-phase veinlets of silica fluid host colloform, comb, and pseudoacicular quartz.

### Massive/jigsaw quartz:

Massive and jigsaw quartz is what comprises the majority of the Milestone sinter. This texture is characterized by aggregates of microcrystalline to crystalline quartz with interpenetrating grain boundaries that can be recognized under cross-polarization. Jigsaw quartz is a recrystallization texture of (usually) chalcedony that requires a temperature of about 180°C (Fournier, 1989; Saunders, 1995; Moncada et al., 2012). In thin section, this texture contains fine anhedral quartz grains that are, on average, less than 3  $\mu$ m in size, but some grains are up to ~5  $\mu$ m in size (Fig. 3.10).

# Quartz after calcite:

In epithermal formations, bladed calcite is a common formation in veins. The calcite is then replaced by late-stage silica-rich fluids. In Milestone, quartz-after-calcite textures appear as both bladed and lattice-bladed, with the latter being more common. Bladed or platy quartz-aftercalcite swhere calcite blades are stacked on top of each other in thin, parallel to subparallel

arrangements. Lattice-bladed QAC is characterized by blades of calcite that grow in clusters and cross over one another, leaving polygonal voids between blades. Silica-rich fluids will then infiltrate these formations and replace all calcite with quartz. The blades will often have overgrowths of comb quartz growing towards the center of the void space (Fig. 3.12).

#### **Comb quartz:**

Comb quartz is a vein texture where subparallel rows of subhedral quartz grow towards each other in the voidspace of a vein, or open space within sinter. These quartz prisms grow off of and perpendicular to the vein wall and occasionally meet in the center. This texture is most common within QAC textures as empty space is needed to form the subhedral nature of the crystals (Fig. 3.13).

#### **Colloform quartz:**

Quartz can form a colloform habit as a secondary fluid phase infiltrates any fractures/voids in the sinter. Colloform quartz forms parallel to subparallel layers with a rounded or botryoidal upper surface. It is a primarily depositional phase in fractures as siliceous fluids move in to fill those voids and area a result of cooling and pressure decreases (Moncada et al., 2012; Sillitoe, 2015). Impurities in the fluids create differentially colored layers from gray to transparent, as is seen at Milestone.

# Pseudo-acicular quartz:

Plumose-textured quartz forms as subparallel layers alternating with jigsaw and chalcedony. Plumose quartz is characterized by small fibrous crystals radiating out from a singular nucleation point. Under cross-polars, this texture exhibits undulatory extinction. Impurities are arranged across the growth direction in plumose textures (Fig. 3.14).

# **Chalcedony:**

Chalcedony is a form of banded, fibrous, and radially-oriented quartz. Chalcedony forms in a colloform texture and fills up fractures/voids as a secondary texture in most samples. Due to the radial growth of chalcedony, the fibers of the crystal create a plumose extinction. Impurities are common with the chalcedony and form slightly different colored bands and, in one sample, contain inclusions of pyrite (Fig. 3.15).



Figure 3.8: Reflected light (RFL) images of clustered and disseminated pyrite from several samples of Milestone Sinter. A-C) Clusters of sub- to euhedral pyrite interbedded with sinter with slight oxidation; arrow points to cluster of pyrite. D) Pyrite deposited on the lower surface of a silica veinlet. E-F) Disseminated an- to euhedral pyrite grains across multiple sinter beds with arrows pointing to larger grains.



Figure 3.9: RFL images of anhedral pyrite relict grains that have been partially fractured and/or oxidized as a result of their transportation into a water-rich environment and deposited in a silica gel. A) Euhedral pyrite relict just beyond a different sinter bed. Two LA-ICP-MS spots are present in both beds. B) Anhedral pyrite relict in massive sinter. C) Broken pyrite relict fragmented by emplacement within massive sinter. D) Oxidized anhedral pyrite relict in massive sinter.



Figure 3.10: Photomicrograph on a double-thick fluid inclusion slide of red anhedral pyrargyrite in massive/jigsaw quartz.



Figure 3.11: RFL photomicrographs of electrum across several samples. A-B) Dendritic crystals of electrum enveloped by silica with deposition of electrum on the leeward side of these formations. C) An RFL image on low power of chalcedony veinlet and D) the same veinlet on high power showcasing flecks of sluice-box textured electrum. Fluid flow is from right to left. E-F) RFL image of disseminated electrum colloids/nanoparticles in sinter beds.



Figure 3.12: Cross-polarized images of quartz after calcite (QAC) formations. A&B) Closely packed bladed QAC with finer comb quartz (A) and microcrystalline quartz (B) replacing and growing off of the yellow highlighted silica-replaced calcite blades. C-F) Lattice bladed QAC with overgrowths of comb quartz and voids in between the blades.



Figure 3.13: Transmitted light images of comb quartz in cross-polars. A-D) Siliceous fluid flowed into the fractures and voids of the rock and crystallized into subhedral prisms where space allows.



Figure 3.14: Cross polarized photomicrograph of pseudo-acicular quartz crystallization with undulatory extinction in bands of sinter.



Figure 3.15: Images of chalcedony crystallization as a result of secondary silica-rich fluid injection. A) Low-powered RFL image of vein walls coated in chalcedony which display differential layers and a botryoidal habit. B) Cross-polarized transmissive light image of a chalcedony vein showing pseudo-acicular plumose texture and undulose extinction. C) Chalcedony-filled void that contains differentially colored banding and transported cubed pyrite. The chalcedony is discolored due to the oxidation of the pyrite. D) Transmissive-light image of chalcedony displaying its botryoidal habit and transport of precious metals.

#### **LA-ICP-MS Analysis:**

The concentrations of the trace elements vary widely and change between sinter beds. Here, the plots of each sample with measured Au, Ag, Cu, As, Se, Te, and Hg are displayed for simplicity (Figs. 3.16-30). The plots of all measured elements are displayed in Appendix B. Five of the nine transect samples confirmed the presence of electrum by showing significant levels of Au and Ag in the black or dark gray bands of the laminated sinter (Figs. 3.18, 19, 23, 24, 27). White, light gray, and light tan zones have the most consistent and lowest levels of all measured elements (displayed in this section and in Appendix B). Samples that consist of predominantly red sinter (Figs. 3.16, 17, 25, Appendix B) contain elevated levels of Fe and Hg by at least one order of magnitude when compared to the other samples. Spots and transects that go across clasts show elevated levels of Si, Al, and K, confirming the entrainment of the basement rhyolite (Appendix B). The plant-rich black sinters show the lowest ranges of concentrations of Au, Ag, and Cu at 0.26-4.42 ppm, 0.239-30.3 ppm, and 0.39-461 ppm, respectively (Figs. 3.28, 30). The sample from Wagonwheel contained higher levels of Hg (up to 247000 cps) which most likely contributed to the pink and dark red color of the sample (Fig. 3.29). The sinter from Wagonwheel otherwise contained lower concentrations of displayed elements (Au, Ag, Cu, As, Se, and Te) than those at Milestone.

Ranges of Si, S, Se, Te, Hg, Na, Al, Cl, K, Ti, Fe, Au, Ag, Cu, As, Pt, and Pd across all samples analyzed are as follows: Si: 173000-86900000 cps, S: 0-27940000 cps, Se: 0-1580000 cps, Te: 0-445000 cps, Hg: 0-594000 cps, Na: 13.8-357000 ppm, Al: 450-15900000 ppm, Cl: 35.9-5120 ppm, K: 8.6-850000 ppm, Ti: 3.27-78000 ppm, Fe: 2.4-367000 ppm, Au: 0.027-153 ppm, Ag: 0.19-28400 ppm, Cu: 0.11-2590 ppm, As: 0.165-13160 ppm, Pt: 0-0.55 ppm, Pd: 0-1.43 ppm. These specific elements are listed for the sinter's primary constituent (SiO<sub>2</sub>), common

major elements and rhyolite inclusions (Na, Al, Cl, K, Ti, and Fe), sulfur content in the lowsulfidation epithermal system (S), and accepted pathfinder and economic mineral-forming elements (Se, Te, Hg, Au, Ag, Cu, As, Pt, and Pd). These pathfinder elements behave similarly in epithermal systems and are useful for elements that may not be as easily identified (Saunders et al., 2010).

Despite the great variations of the measured elements, there does not appear to be a clear correlation between element concentrations (Au, Ag, Cu, Se, Te, Hg) and distance from the vent (Fig. 3.31). Increasing distance from the vent corresponds to decreasing temperatures. Each sample collected was categorized into different sections of the hot spring slope: Vent, proximal slope, mid-slope apron, and the distal apron/marsh. The sample from Wagonwheel was included as well for comparison. Some sections, such as the mid-slope apron, contain a high population of samples, thereby providing a wider range of chemical data, in some cases. Only one sample from the vent was analyzed, and consequently, a narrower range of elemental concentrations are associated with the vent. What is clear, is that the distal slope and marsh samples (the black plant-rich sinter) have little to no variation in Au, Ag, or Cu concentrations. These black deposits also host the lowest concentrations of metal(loid)s (Au: 0.26-4.42 ppm, Ag: 0.239-30.3 ppm, and Cu: 0.39-461 ppm).



Figure 3.16: LA-ICP-MS transect of proximal slope sample EF19-1 (middle) and data in ppm (above) and cps (below).



Figure 3.17: LA-ICP-MS transect of proximal slope sample EF19-3 (middle) and data in ppm (above) and cps (below).



Figure 3.18: LA-ICP-MS transect of mid-slope apron sample EF19-4 (middle) and data in ppm (above) and cps (below).



Figure 3.19: LA-ICP-MS transect of mid-slope apron sample EF19-5 (middle) and data in ppm (above) and cps (below).



Figure 3.20: LA-ICP-MS transect of mid-slope apron sample EF19-6 (middle) and data in ppm (above) and cps (below).



Figure 3.21: LA-ICP-MS transect of a thin section of mid-slope apron sample EF19-6 (middle) and data in ppm (above) and cps (below).



Figure 3.22: LA-ICP-MS transect of vent sample EF19-7 (middle) and data in ppm (above) and cps (below).







Figure 3.23: LA-ICP-MS transect of vent sample EF19-8 (middle) and data in ppm (above) and cps (below).



Figure 3.24: LA-ICP-MS transect of proximal slope sample EF19-11 (middle) and data in ppm (above) and cps (below).



Figure 3.25: LA-ICP-MS spot analyses map image of proximal slope sample EF19-1 and data in ppm (above) and cps (below).



Figure 3.26: LA-ICP-MS spot analyses map image of mid-slope apron sample EF19-4 and data in ppm (above) and cps (below).







Figure 3.27: LA-ICP-MS spot analyses map image of mid-slope apron sample EF19-14 and data in ppm (above) and cps (below).







Figure 3.28: LA-ICP-MS spot analyses map image of distal slope/marsh sample EF19-24 and data in ppm (above) and cps (below).



Figure 3.29: LA-ICP-MS spot analyses map image of Wagonwheel sample EF19-25 and data in ppm (above) and cps (below).



Figure 3.30: LA-ICP-MS spot analyses map image of distal slope/marsh EF19-26 and data in ppm (above) and cps (below).



Figure 3.31: Graphical representation of metal(loid)s across the fluid pathway of Milestone. As distance from the vent increases (to the right), temperature decreases.

# **Chapter 4 - Discussion**

### History of the Main Knob and Paleosurface Formation:

Geologic mapping of the Main Knob (Fig. 3.1) suggests that the formation of the Main Knob likely began with a discharge silica-rich fluid flow that extended far across the knob, about 480m at its farthest, in the southeastern direction, creating a massive black sinter (e.g., stratigraphically lowest). This massive black sinter hosts of silicified plant life and was deposited across the knob, into the bottom of local topographic lows that existed across a rhyolite-lava-dominated paleosurface (Fig. 3.1). This initial phase was volumetrically the largest out of all observable facies due to the lateral extent. Based on the facies model of Hamilton et al. (2019), it should have higher temperature sinter equivalents that are now buried by younger deposits.

The next phase of the system was a high-volume phreatic eruption that deposited material laterally as far as ~50 m from the vent and created the matrix-supported breccia. As the eruption ceased, less clast-dominant material discharged to create facies of interbedded clast-dominant and fluid-dominant depositional bedding until silica-rich fluids took over as the main discharge. These fluids formed the bedded sinter and was the second longest phase temporally of the hydrothermal system based on the variety of samples and the overall thickness of the sinter facies. Additionally, this phase of discharge had to occur long enough to form an initial environment populated by thermophiles, which formed the bubble mats and stromatolites, much like the microbial mats that populate the Porcelain Basin in Yellowstone National Park (Fig. 4.1).

Eventually gases built up in the conduit, presumably from a decrease in the water table, and exploded upward and outward, creating the clast-supported breccia. We interpret that this

violent eruption broke up the vent conduit and caused its collapse. Then, renewed silica discharge occurred and deposited sinter at the surface and silica infiltrate within the collapsed vent conduit. Geyserite was also deposited at the surface during this phase. First, geyserite eggs formed at the base of the vent. A calmer flow of fluid then pushed the eggs downslope and created a final coating of sinter. Nodular and specular geyserite were also deposited as the hot spring went through more vigorous expulsions of discharge around its vent. All features at the Main Knob are noted with relation to each facies, the vent, temperature formation, and where they lie on a typical schematic for paleosurface features (Fig. 4.2).

#### **Textural, Elemental and Mineral Associations in Sinter:**

Several textures indicative of boiling conditions have been observed in the sinter. Such textures include QAC, acicular quartz, and colloform banding. However, most visible occurrences of economic minerals (e.g., electrum) were found in the depositional flow of the siliceous fluids, rather than in veinlets created by a late-phase injection of fluid. Overall, the highest concentrations of metal(loid)s, particularly gold and silver (up to 153 ppm and 28400 ppm, respectively), are in the black and gray layers of the bedded sinter. Fluid flow formed the sluice box texture of electrum that is present in these deposits (Fig. 3.11). This textural evidence indicates that metal(loid) nanoparticles must have existed prior to their deposition on the surface, consistent with formation and aggregation of nanoparticles at depth due to boiling (Saunders, 2008, 2012; Saunders and Burke, 2017; Saunders et al., 2011b; 2019) and then subsequent transport of the nanoparticles onto the surface (Gartman et al., 2017; 2019; Saunders et al., 2019). This textural evidence is consistent with prior work that conclude the metals were

derived from a co-existing magma (Saunders et al., 2015; Saunders and Burke 2017; Saunders et al., 2019).

The late-phase silica fluid brought forth a more sulfide-rich composition to the sinter as shown by the deposition and crystallization of pyrite in the secondary veinlet walls. Elements like Au, Ag, and Cu have higher concentrations in these veins in four samples (EF19-4, 6, 14, 25) than others with these veinlets. Many of the secondary veinlets that were analyzed have metal concentrations that are similar to or lower than those in the sinter that the veins crossed. The elevated levels of Al and K in all samples can be explained by the presence of argillically-altered rhyolite clasts included in the microbreccias of the sinters (Appendix B). Figures 4.3 and 4.4 plot selected metal(loid)s against Au and Ag, respectively. Across all samples, Au and Ag do not appear to have any significant relationship with elements that form economic minerals typically found in low-sulfidation epithermal deposits (selenides/tellurides/arsenides) (Figs. 4.3 and 4.4). Overall, the concentrations of Au, Ag, and Cu across the Main Knob are 0.027-153 ppm, 0.19-28400 ppm or 2.84 wt %, and 0.11-2590 ppm, respectively, showing that significant amounts of economic elements occur at this location. Albeit, the highest concentrations are within the black laminations rather than throughout the whole facies.

The variable elemental concentrations between individual sinter beds can be attributed to episodic phases of metal-rich and metal-poor discharge. The temperature of fluids affects the degree of mineralization and has been observed in hot spring environments by Sillitoe (2015), Hamilton et al. (2016), and Clark and Gemmell (2018). Precious and base metals are immobile in lower and ambient temperatures, and thus would precipitate out of solution closer to the vent and grade outwards. A good example of this is the Kohuamuri sinter in New Zealand, where the high to low gradation and zonation of elements from vent to marsh due to temperature changes
aided in the identification of ore at depth (Hamilton et al., 2016). The concentrations of Au and Ag as a function of location across the Main Knob is depicted in Figures 4.5 and 3.31, in order to evaluate if there are any apparent changes in metal concentration with distance from the vent (e.g., along inferred flowpaths from the vent). Generally, what is observed is that there are high and low concentrations all across the area in no observable pattern relating to the geometry and facies-based temperature of the system. This suggests that the electrum nanoparticles formed at depth and were later deposited on the surface by the silica-rich fluids. Thus, the temperature of fluids at the surface did not play a role in the formation and deposition of precious metal(loids). They were instead transported from a deeper source to the surface and entrained in the fluid-flow across the Main Knob.

The primary textures observed at the Main Knob were chalcedony, calcite blades, amorphous silica, and electrum sluicebox textures. Late-phase textures include the QAC, comb quartz, jigsaw quartz, and silica/chalcedony veinlets. Chalcedony or amorphous silica needs to be exposed to higher temperatures of about 180°C (Fournier, 1989; Saunders, 1995; Moncada et al., 2012) for jigsaw quartz to form. The amorphous silica that makes up most of the sinter was most likely recrystallized to the jigsaw quartz while the superheated silica-saturated fluid was injected into the sinter at a temperature of over 180°C.

#### **Milestone and Other Low-Sulfidation Deposits**

The facies at the Main Knob of Milestone suggest an environment typical of a lowsulfidation hot spring. The most notable features in support of a low sulfidation hot spring deposit are the laminated sinter, bioformations, geyserite, explosion breccias, and silicified plant material (including large pieces of wood intermingled with the explosion breccia). What is

observed at Milestone is similar to both present-day hot spring environments, and lowsulfidation epithermal deposits with mid-Miocene paleosurfaces in the Northern Great Basin as well. Ivanhoe and Midas are other significant mid-Miocene epithermal deposits within the Northern Great Basin that share a similar geologic history. Mid-Miocene magmatism occurred in all of these locations and the local magmas heated up meteoric water and it discharged along extensional faults (John et al., 2003; Wallace, 2003; Brueseke, 2010). Mercury-gold mineralization at Ivanhoe was coeval with local rhyolite domes and erupted through the extensional fault zones in the area (Wallace, 2003). The hydrothermal fluids associated with mineralization migrated to the surface and argillically altered local rhyolite lavas and tuffs. At Ivanhoe, the mercury deposits are in the sinter, and the gold lies within the underlying tuffs and subsurface vein deposits (Wallace, 2003). At its paleosurface, the sinter deposits at Ivanhoe contain surface vents, outflow breccias, parallel bedding, and massive sinter, similar to Milestone.

Midas is a low-sulfidation epithermal deposit located in the northern Nevada rift. Midas also formed in an extensional rifting environment that is associated with local bimodal basalt-rhyolite volcanism. Mafic dikes and sills, as well as silicic intrusions, populate the area through the structural weaknesses in the area caused by Basin and Range extension (John and Wallace, 2000; Leavitt et al., 2004). Propylitic alteration at Midas is also focused primarily around faults, veins, and the near-surface hot springs, while the argillic alteration is more developed in the host rocks, specifically rhyolite (Leavitt et al., 2004). Midas also hosts a sinter and silicified breccias and the sinter deposits and vents are also aligned with the north-northwest trending faults (Leavitt et al., 2004). Around the vent are brecciated material, laminated sinters, and silicified sediments (Leavitt et al., 2004)

It is also valid to compare Milestone to currently active low-sulfidation hot springs environments, such those found in Yellowstone National Park and the Taupo Volcanic Zone in New Zealand. In Yellowstone National Park, normal faults are related to regional extension and ring fractures adjacent to the Yellowstone caldera (Fournier, 1989; Morgan et al., 2017). Local hydrothermal activity is especially pronounced in these fault zones (Fournier, 1989). Siliceous sinters occur all across the park, but primarily in these normal fault zones, as hot spring pools, mounds, and terraces. Yellowstone contains numerous hot springs with all the same features found at Milestone (e.g., bioformations, sinter, clast-supported breccia, and geyserite) (Fig. 4.1). Furthermore, Beryl Spring, contains up to ~10 ppm gold in its discharging fluids (Fournier et al., 1994; Morgan et al., 2017).

The Taupo Volcanic Zone hosts relatively young (<340 ka) mineralized epithermal systems that are present in a portion of New Zealand that is undergoing intra- and back-arc rifting (Barker, 1993; Rowland and Simmons, 2015). There, rifting produced ~20 km-long arrays of N-NE trending normal faults (Rowland and Sibson, 2001; Rowland et al., 2010). The faults act as a series of structurally-controlled pathways for rising fluids. The Au-Ag mineralization and argillic alteration in the Taupo volcanic zone is associated with the structural weaknesses and fault-aligned eruptive centers in the rift basins, much like the Silver City District has rhyolite domes and mineralized areas localized on the normal faults in the Owyhee Mountains. The silicic vents have produced paleosurface features similar to those found on the Main Knob, such as eruption breccia, plant-rich fabrics, domal stromatolites, and wavy laminated sinter (Drake et al., 2014).

#### Milestone in the Silver City District:

Milestone is just northwest of the DeLamar mine, where notable epithermal deposits such as the North DeLamar, Glen Silver, and Sommercamp zones have been mined for silver and gold in the past several decades. The mineralization at Main Knob primarily exists in the laminated dark-colored beds of sinter (this study), and in the matrix-supported breccia (Barrett, 1985). Economic minerals at DeLamar and Florida Mountain are hosted in both veins, mineralized breccias, and porous rhyolite lava interiors (Lindgren, 1900; Bonnichesen, 1983; Mason, 2015; Gustin et al., 2019). Several major northwest trending faults, including the Northwest Fault, are the local structural pathways for rhyolite domes, sinter discharge, and epithermal deposits (Fig. 1.1). Mineralized areas such as Lucky Day, Twin Peaks, and Georgiana are located along these faults. Milestone is located just next to the Northwest Fault (Fig. 3.1). It is unclear whether Milestone formed before or after the faulting occurred. However, Halsor et al. (1983) suggested that the local rhyolite domes were emplaced along preexisting faults and followed by deposition of the Milestone sinter. Barret (1985) also reported the paleosurface as occurring after the faulting and rhyolite volcanism, consistent with rhyolite clasts in the Milestone breccias and the deposit overlying Silver City Rhyolite.

The rhyolite domes that have been classified as Silver City Rhyolite, which directly underlie the Milestone sinter, have been dated at 16.1 Ma by <sup>40</sup>Ar/<sup>40</sup>Ar dating of sanidine (Brueseke and Hames, unpublished). Milestone was believed to have formed around the same time (Barret, 1985), but the sinter overlies the rhyolite. Adularia from epithermal veins from Florida Mountain and War Eagle Mountain have been dated at ~15.5-15.8 Ma (Aseto, 2012; Mason et al., 2015) and these cross-cut the rhyolite package. It is plausible that the hydrothermal

system that formed Milestone was related to this same event, which affected much of the SCD at ~15.5 to 15.8 Ma.



Figure 4.1: Comparison of hot spring features between Milestone and Yellowstone. From top to bottom: Laminated sinter from the Main Knob (left) and at Beryl Spring (right), clast-supported breccia from the Main Knob (left) and at Porcelain Basin (right), geyserite beads from the Main Knob (left) and at Porcelain Basin (right), silicified wood from the Main Knob (left), and at Porcelain Basin (right).



Figure 4.2: Paleosurface schematic for Milestone. The surface features are aligned with their geographic assemblages, the lithofacies defined in this study, and what temperature they formed under. Modified from Hamilton et al. (2019) to fit the observations at Milestone.



♦ Vent ▲ Proximal slope apron ■ Mid-slope apron ● Distal slope/marsh ★ Wagonwheel Figure 4.3: Data graphs of comparing elements commonly associated with low-sulfidation epithermal deposits against Au. Data points are organized into their slope location across Milestone.



♦ Vent ▲ Proximal slope apron ■ Mid-slope apron ● Distal slope/marsh ★ Wagonwheel Figure 4.4: Data graphs comparing elements commonly associated with low-sulfidation epithermal deposits against Ag. Data points are organized into their slope location across Milestone.



Figure 4.5: Map of sample locations at Milestone attributed with corresponding Au-Ag ranges (ppm).

## **Chapter 5 - Conclusions**

Five lithofacies are present in the Milestone deposit Main Knob: Plant-rich black massive sinter, hydrothermal matrix-supported breccia, laminated sinter beds, clast-supported breccia, and geyserite. Other notable findings at Milestone include bioformations, channel scours, and the hydrothermal vent from which fluids (and explosions) were sourced. Two types of breccia exist at on the Main Knob, the matrix-supported breccia and the clast-supported breccia, representing two different eruption events. Built up pressure in the hydrothermal system injected a second-phase siliceous fluid into the sinter and ultimately resulted in a violent eruption that collapsed the vent. The paleosurface features found at the Milestone Main Knob are similar to those of typical hot springs that exist today.

Reflected Light Imaging revealed that deposition of electrum in thin laminations of black-colored sinter in both a sluice-box texture and possible thin dendrites. Other visible minerals in the sinter include euhedral to anhedral pyrite, anhedral pyrargyrite, and several textures of quartz (jigsaw, pseudo-acicular, quartz-after-calcite, comb quartz, colloform, and chalcedony). According to LA-ICP-MS transects and spot data, the black layers in the laminated sinter contain the highest ppm of trace metal(loids) (Figs. 3.18, 19, 23, 24, 27). There is no observable pattern of trace metal(loid)s with increasing distance from the inferred vent location, leading to the interpretation that micro and nanoparticles of economic minerals crystallized before being transported to the surface and deposited in the sinter.

#### **Future Work**

Based on the data collected, we suggest future drilling operations aim for the Main Knob itself and below. The identification of the hot spring vent and silica infiltrate at the surface, as

well as textures that are consistent with boiling, are likely indications that precious metal-rich veins exist at depth. Given the presence of metal(loid) nanoparticles in the sinter, they are likely present, in veins, below the deposit. Typical vein formation in epithermal deposits is about 150-300 m in depth, therefore we assume the highest concentration of metal(loid)s to exist within this window.

Although few fluid inclusions were identified in the secondary silica veinlets, there is potential for fluid inclusion analysis to constrain the temperatures of these veinlets. It is suspected that vein or veinlets at depths may contain a higher population of inclusions. The use of O isotopes could also be useful to identify the fluid and metal source of the injection and depositional sinter fluid. Additionally, if any adularia (or other suitable K-rich phase) is discovered in the hot spring deposits, an age can be calculated using <sup>40</sup>Ar/<sup>39</sup>Ar dating to confirm the absolute age of the deposit. A bulk XRD analysis of sinter could confirm the presence of adularia, as well as the different silica phases (e.g., opal-types), and overall bulk mineralogy of the deposit facies.

### References

- Aseto, C.O., 2012, Geology, geochemistry, and geochronology of low-sulfidation epithermal Au-Ag ores on War eagle Mountain, Silver City District, Idaho: Unpublished M.S. thesis, Auburn University.
- Barker, R., 1993, The history of epithermal gold-silver exploration in the Taupo Volcanic Zone: New Zealand Mining, v. 12, p. 15–19.
- Barrett, R., 1985, The geology, mineralization, and geochemistry of the milestone hot-spring silver-gold deposit near the Delamar silver mine, Owyhee county, Idaho. *University of Idaho*, M.S. thesis.
- Bonnichsen, B, 1982, Chemical composition of the cougar point tuff and rhyolite lava flows from the Bruneau-Juarbidge eruptive center, Owyhee County, Idaho. *Idaho Geological Survey*, Moscow, Idaho.
- Bonnichsen, B., 1983, Epithermal gold and silver deposits Silver City-Delamar district, Idaho. *Idaho Geological Survey*, Moscow, Idaho.
- Brueseke, M.E., Heizler, M.T., Hart, W.K., Mertzman, S.K., 2007, Distribution of Oregon Plateau (U.S.A.) flood basalt volcanism: The Steens Basalts revisited: *Journal of Volcanology and Geothermal Research*, v. 161, p. 187–214.
- Brueseke, M.E., and Hart, W.K., 2008, Geology and petrology of the mid-Miocene Santa Rosa-Calico volcanic field, northern Nevada: *Nevada Bureau of Mines and Geology*, Bullletin 113.
- Brueseke, M.E., 2010, Magmatism and mineralization in the Oregon Plateau and northern Great Basin: Mid-Miocene volcanism and associated bonanza ore deposits and their relations to the inception of the Yellowstone hotspot, *Geological Society of Nevada*.
- Camp, V.E., Ross, M.E., 2004, Mantle dynamics and genesis of mafic magmatism in the intermontane pacific northwest, *Journal of Geophysical Research*, v. 109, doi: 10.1029/2003JB002838.
- Chang, Z, Hedenquist JW, White NC, Cooke DR, Roach M, Deyell CL, Garcia J Jr, Gemmell JB, McKnight S, Cuison AL (2011) Exploration tools for linked porphyry and epithermal deposits: example from the Mankayan intrusion-centered Cu-Au district, Luzon, Philippines, Economic Geology, v. 106, p. 1365–1398.

- Clark, L.V., and Gemmell, J.B., 2018, Vein stratigraphy, mineralogy, and metal zonation of the Kencana low-sulfidation epithermal Au-Ag deposit, Gosowong Goldfield, Halmahera island, Indonesia, *Economic Geology*, v. 113, p. 209–236. doi: 10.5382/econgeo.2018.4549
- Drake, B.D., Campbell, K.A., Rowland, J.V., Guido, D.M., Browne, P.R.L., Rae, A., 2014, Evolution of a dynamic paleo-hydrothermal system at Mangatete, Taupo Volcanic Zone, New Zealand, *Journal of Volcanology and Geothermal Research*, v. 282, p. 19-35, doi: 10.1016/j.jvolgeores.2014.06.010.
- Ekren, E.B., McIntyre, D.H., Bennett, E.H., and Malde, H.E., 1981, Geologic map of Owyhee County, Idaho, west of longitude 116°W. U.S. Geological Survey, Map 1-1256.
- Ekren, E.B., McIntyre, D.H., Bennett, E.H., and Marvin R.F., 1982, Cenozoic stratigraphy of western Owyhee County, Idaho, in Bonnichsen, B. and Breckenridge, R.M., eds., Cenozoic Geology of Idaho, *Idaho Bureau of Mines and Geology*, Bulletin 26
- Fournier, R.O., 1989, Geochemistry and dynamics of the Yellowstone National Park hydrothermal system, Annual Review of Earth Sciences, U.S. Geological Survey, v. 17, p. 13-53.
- Fournier, R.O., Kennedy, B., Mack, A.M., and Thompson, J.M., 1994, Correlation of gold in siliceous sinters with 3He/4He in hot spring waters of Yellowstone National Park: *Geochimica et Cosmochimica Acta*, v. 58, p. 5401–5419.
- Gartman, A., Hannington, M., Jamieson, J.W., Peterkin, B., Garbe-Schönberg, D., Findlay, A.J., Fuchs, S., Kwasnitschka, T., 2017, Boiling-induced formation of colloidal gold in black smoker hydrothermal fluids. *Geology*, v. 46, p. 39–42.
- Gartman, A, Findlay AJ, Hannington M., Garbe-Schönberg, D., Jamieson, J. W., Kwasnitschka, T., 2019, The role of nanoparticles in mediating element deposition and transport in hydrothermal vents, *Geochim Cosmochim Acta*, v. 231, p. 113–131.
- Guido, D.M., and Campbell, K.A., 2019, Plastic silica conglomerate with an extremophile microbial matrix in a hot-water stream paleoenvironment, *Astrobiology*, v. 19, p. 1433-1441, doi: 10.1089/ast.2018.1998.
- Gustin, M.M., Weiss, S.I., 2017, Technical report and resource estimate, Delamar gold-silver project, Owyhee County, Idaho, USA. *Mine Development Associates*, Integra Resources Corp.

- Gustin, M.M., Weiss, S.I., McPartland, J.S., 2019, Technical report and updated resource estimate for the Delamar and Florida Mountain gold-silver project, Owyhee County, Idaho, USA. *Mine Development Associates*, Integra Resources Corp.
- Halsor, S., 1983, A volcanic dome complex and DeLamar silver mine, Owyhee County, Idaho, *Michigan Technological University*, M.S. thesis.
- Halsor, S.P., Bornhorst, T.J., Beebe, M., Richardson, K., and Strowd, W., 1988, Geology of the DeLamar silver mine, Idaho – A volcanic dome complex and associated hydrothermal system. *Economic Geology*, v. 83, p. 1159-1169.
- Hamilton, A., Campbell, K., Rowland, J., Browne, P., The Kohuamuri siliceous sinter as a vector for epithermal mineralization, Coromandel Volcanic Zone, New Zealand, *Miner Deposita*, doi: 10.1007/s00126-016-0658-8.
- Hamilton, A.R., Campbell, K.A., Guido, D.M., 2019, Atlas of siliceous hot spring deposits (sinter) and other silicified surface manifestations in epithermal environments, *GNS Science*, v. 56, doi: 10.21420/BQDR-XQ16
- Hames, W., Unger, D., Saunders, J., Kamenov, G., 2009, Early Yellowstone hotspot magmatism and gold metallogeny, *Journal of Volcanology and Geothermal Research*, v. 188, pp. 214-224.
- Hasten, Z., 2012, Mid-Miocene magmatism in the Owyhee Mountains, ID: Origin and petrogenesis of volcanic rocks in the Silver City District, *Kansas State University*, M.S. thesis.
- Hasten, Z., Brueseke, M., Saunders, J., and Hames, W., 2012, Mid-Miocene volcanism in the Owyhee Mountains (ID) and implications for coeval epithermal precious metal mineralization: *Geochimica et Cosmochimica Acta*, Goldschmidt Conference Abstracts, 2012.
- Hedenquist, J.W., Lowenstern, J.B., 1994, The role of magmas in the formation of hydrothermal ore deposits, *Nature*, v. 370, p. 519-527.
- Heinrich, C.A., Günther D., Audétat A., Ulrich T., and Frischknecht R., 1999, Metal Fractionation between magmatic brine and vapor, determined by microanalysis of fluid inclusions: *Geology*, v. 27, p. 755-758.
- Jochum, K.P., Wilson, S.A., Abouchami, W., Amini, M., Chmeleff, J., Eisenhauer, A., Hegner, E., Iaccheri, L.M., Kieffer, B., Krause, J., McDonough, W.F., 2011, GSD-1G and MPI-

DING reference glasses for in situ and bulk isotopic determination, *Geostandards and Geoanalytical Research*, v. 35, p. 193-226, doi: 10.1111/j.1751-908X.2010.00114.x

- John, D.A., 2001, Miocene and early Pliocene epithermal gold-silver deposit in the Northern Great Basin, western United States: Characteristics, distribution, and relationship to magmatism, *Economic Geology*, v. 96, p. 1827-1853.
- John D.A., Hofstra, A.H., Fleck, R.J., Brummer, J.E., Saderholm, E.C., 2003, Geologic setting and genesis of the Mule Canyon low-sulfidation epithermal gold-silver deposit, northcentral Nevada, *Economic Geology*, v. 98, p. 425-463.
- Kamenov, G.D., Saunders, J.A., Hames, W.E., Unger, D.L., 2007, Mafic magmas as sources for gold in middle Miocene epithermal deposits of the Northern Great Basin, United States:
  Evidence from Pb isotope compositions of native gold, *Economic Geology*, v. 102, pp. 1191-1195, doi: 0361-0128/07/3696/5/5-1191.
- Leavitt, E. D., Spell, T. L., Goldstrand, P. M., and Arehart, G. B., Geochronology of the Midas low-sulfidation epithermal gold-silver deposit, Elko County, Nevada, *Economic Geology*, v. 99, p. 1665-1686, doi: 0361-0128/01/3475/1665-22.
- Lindgren, W., 1900, The gold and silver veins of the Silver City, De Lamar, and other mining districts in Idaho. U.S. Geological Survey 20<sup>th</sup> Annual Report, Part 3, p. 65-256.
- Liu, Y.S., Hu, Z.C., Li, M., and Gao, S., 2013, Applications of LA-ICP-MS in the elemental analyses of geological samples: Chinese Science Bulletin, *Geochemistry*, v. 58, p. 3863-3878, doi: 10.1007/s11434-013-5901-4.
- Lynne, B. Y., 2012, Mapping vent to distal-apron hot spring paleo-flow pathways using siliceous sinter architecture, *Geothermics*, v. 43, p. 3-24, doi: 10.1016
- Marshall, D., Anglin, C. D., and Mumin H., 2011, Ore mineral atlas, 2<sup>nd</sup> edition, *Geological Association of Canada Mineral Deposists Division*, Newfoundland, Canada.
- Mason, M.S., Saunders, J.A., Aseto, C., Hames, W.E., and Brueseke, M.E., 2015, Epithermal Au-Ag ores of War Eagle and Florida Mountains, Silver City district, Owyhee County, Idaho: in Pennell, W.M., and Garside, L.J., eds., Proceedings of the Geological Society of Nevada Symposium, *New Concepts and Discoveries*, Reno, p. 1067-1078.
- Maynard, A.M., Brueseke, M.E., and Mathur, R.M., 2015, Copper isotope compositions of Cenozoic mafic rocks from the northern Great Basin and Snake River Plain (USA): Geological Society of America Abstracts with Programs, v. 47.

- Moncada, D., Mutchler, S., Nieto, A., Reynolds, Rimstidt, J.D., Bodnar, R.J., 2012, Mineral textures and fluid inclusion petrography of the epithermal Au-Ag deposits at Guanajuato, Mexico: Application to exploration, Journal of Geochemical Exploration, v. 114, p. 20-35.
- Morgan, L.A., Shanks, W.C.P., Lowenstern, J.B., Farrell, J.M., Robinson, J.E., Geologic fieldtrip guide to the volcanic and hydrothermal landscape of the Yellowstone Plateau, U.S. *Geological Survey Scientific Investigations* Report 2017–5022–P, p. 100, doi: 10.3133/sir20175022P.
- Norman, M.D., Leeman, W.P., 1989, Geochemical evolution of Cenozoic-Cretaceous magmatism and its relation to tectonic setting, southwestern Idaho, U.S.A., *Earth and Planetary Science Letters*, v. 94, p. 78-96.
- Norton, D.L., 1982, Fluid and heat transport phenomena typical of copper-bearing pluton environments, *Advances in geology of the Porphyry Copper Deposits of Southwestern North America*, University of Arizona Press, p. 59-72.
- Pansze, A.J., 1975, Geology and ore deposits of the Silver City-De Lamar-Flint Region Owyhee County Idaho, Idaho Bureau of Mines and Geology, no. 161.
- Paton, C., Hellstrom, J., Paul, B., Woodhead, J., Hergt, J., 2011, Iolite: freeware for the visualisation and processing of mass spectrometric data, *Journal of Analytical Atomic Spectrometry*, v. 26, p. 2508-2518, doi: 10.1039/C1JA10172B
- Richards, J.P., 2009, Postsubduction porphyry Cu-Au and epithermal Au deposits: Products of remelting of subduction-modified lithosphere, *Geology*, v. 37, 247-250, doi:10.1130/G25451A.1
- Ridley, J., 2016, Ore deposit geology, Cambridge University Press, ISBN 978-1-107-02222-5.
- Rowland, J.V., and Sibson, R.H., 2001, Extensional fault kinematics within the Taupo Volcanic Zone, New Zealand: Soft-linked segmentation of a continental rift system, *New Zealand Journal of Geology and Geophysics*, v. 44:2, p. 271-283, doi: 10.1080/00288306.2001.9514938
- Rowland, J.V., and Simmons, S.F., 2005, Tectonic controls on the epithermal ore-forming environment, northern New Zealand, p. 695-704.
- Rowland, J.V., Wilson, C.J.N., Gravley, D.M., 2008, Spatial and temporal variations in magmaassisted rifting, Taupo Volcanic Zone, New Zealand, *Journal of Volcanology and Geothermal Research*, v. 190, p. 89-108.

Rowland, J.V., Wilson, C.J.N., Gravley, D.M., 2010, Spatial and temporal variations in magmaassisted rifting, Taupo Volcanic Zone, New Zealand, *Journal of Volcanology and Geothermal Research*, v. 190, p. 89-108, doi: 10.1016/j.jvolgeores.2009.05.004.

Sawkins, F.J., 1990, Metal deposits in relation to plate tectonics, *Springer-Verlag*, 2<sup>nd</sup> edition.

- Saunders, J.A., Unger, D.L., Kamenov, G.D., Fayek, M., Hames, W.E., Utterback, W.C., 2008, Genesis of middle Miocene Yellowstone hotspot-related bonanza epithermal Au-Ag depostits, Northern Great Basin, USA, *Miner Deposita*, doi: 10.1007/s00126-008-0201-7
- Saunders, J. A., Kamenov, G.D., Hofstra, A.H., Unger, D.L., Creaser, R.A., Barra, F., 2010, "Forensic" geochemical approaches to constrain the source of Au-Ag in low-sulfidation epithermal ores, *Great Basin Evolution and Metallogeny*, pp. 693-700.
- Saunders, J.A., Vikre, P., Unger, D.L., Beasley, L., 2011b, Colloidal and physical transport textures exhibited by electrum and naumannite in bonanza epithermal veins from western USA, and their significance. *Great Basin Evolution and Metallogeny Symposium Proceedings*, Geological Society of Nevada, Reno-Sparks, NV, USA, p. 825–832.
- Saunders, J.A., 2012, Textural evidence of episodic introduction of metallic nanoparticles into bonanza epithermal ores, *Minerals*, v. 2, p. 228–243.
- Saunders, J.A., and Brueseke, M.E., 2012, Volatility of Se and Te during subuction-related distillation and the geochemistry of epithermal ores of the western United States, *Economic Geology*, v. 107, pp. 165–172.
- Saunders, J.A., Kamenov, G.D., Mathur, R., Shimizu, T., Brueseke, M.E., 2013, Transport and deposition of metallic nanoparticles and the origin of bonanza epithermal ores, *Society of Geology applied to Mineral deposits*, Biennial SGA Proceedings, Uppsala, Sweden, in press.
- Saunders, J.A., Hofstra, A.H., Goldfarb, R.J., and Reed, M.H., 2014, Geochemistry of Hydrothermal Gold Deposits, In: Holland H.D. and Turekian K.K. (eds.) Treatise on Geochemistry, Second Edition, Elsevier, v. 13, p. 383-424.
- Saunders, J.A., Mathur, R., Kamenov, G.D., Shimizu, T., Brueseke, M. E., 2015, New isotopic evidence bearing on bonanza (Au-Ag) epithermal ore-forming processes. *Miner Deposita*. doi 10.1007/s00126-015-0623-y.
- Saunders, J.A., and Burke, M., 2017, Formation and aggregation of gold (electrum) nanoparticles in epithermal ores, *Minerals*, v. 7, p. 1-11, doi:10.3390/min7090163.

- Saunders, J.A., Burke, M., Brueseke, M.E., 2019, Scanning-electron-microscope imaging of gold (electrum) nanoparticles in middle Miocene bonanza epithermal ores from northern Nevada, USA, *Mineralium Deposita*, v. 55, p. 389-398, doi: 10.1007/s00126-019-00935-y
- Sillitoe, R.H., 2015, Epithermal paleosurfaces, *Miner Deposita*, v. 50, p. 767-793, doi: 10.1007/s00126-015-0614-z.
- Sillitoe, R.H., Hedenquist, J.W., 2003, Linkages between volcanotectonic settings, ore-fluid compositions, and epithermal precious metal deposits, *Society of Economic Geologists*, v.10, p. 1-24.
- Streck, M.J., 2014, Evaluation of crystal mush extraction models to explain crystal-poor rhyolites, *Journal of Volcanology and Geothemal Research*, v. 284, p. 79-94
- Tămaş C.G., and Milési, J.P., 2003, Hydrovolcanic breccia pipe structures—general features and genetic criteria—I. Phreatomagmatic breccias. Geologia, v. 1. P. 127-147, doi: 10.5038/1937-8602.47.1.10.
- Taylor H.P., 1979, Oxygen and hydrogen isotope relationships in hydrothermal mineral deposits. *Geochemistry of hydrothermal ore deposits*, 2<sup>nd</sup> ed., p. 236–277.
- Vikre, P.G., 2007, Sinter-vein correlations at Buckskin Mountain, National District, Humboldt County, Nevada. Society of Economic Geologists, Inc. *Economic Geology*, v. 102, p. 193-224.
- Wallace, A.R., 2003, Geology of the Ivanhoe Hg-Au district, northern Nevada: Influence of Miocene volcanism, lakes, and active faulting on epithermal mineralization, *Economic Geology*, v. 98, p. 409-424.
- White, D.E., Heropoulos, C., and Fournier, R.O., 2001, Gold and other minor elements associated with the hot springs and geysers of Yellostone National Park, Wyoming, Supplemented with data from Steamboat Springs, Nevada, U.S. Geological Survey Bulletin 2001.
- Wilkinson, J.J., 2001, Fluid inclusions in hydrothermal ore deposits, *Lithos*, v. 55, p. 229-272.

## **Appendix A - Thin Section Descriptions**

Descriptions occurred right when K-State was shutting down campus operations due to the 2020 COVID-19 pandemic. Thus, more detailed thin section descriptions, including crystal size measurements, were unable to occur because of the reflected light microscopy lab shutdown.

#### EF19-1:

Layered mosaic quartz, contains QAC with quartz crystals growing in the void as comb quartz. Sinter is more massive than mosaic. Most of the sinter beds contain rounded silicified fragments. Much of the bedding has oxidation staining. Sluice-box textures occur in three different layers. Veinlets that cut across the sinter perpendicularly. Minor jigsaw quartz is the infill of the veins. Much of the sinter contains hematite, and could explain the red color and oxidation staining. Any gold/pyrite is finely disseminated in brown/black sinter.

#### EF19-3:

Much of this sample has oxidation staining. Gray and light brown beds dominate the sinter portion of this sample. The other half of this sample consists of a matrix-supported breccia with shadows of rounded clasts. The clasts have been silicified so that that majority of this area is made up of massive quartz. Quartz after calcite formations are smaller compared to QAC formations in the other samples. Two sub-rounded grains of pyragyrite are found near a vein of quartz. Veins in this sample are filled in by comb quartz.

#### EF19-4:

This sample consists of massive sinter with alternating bands of tan, white, black, and reddish brown. Some layers are more distinct than others. Disseminated gold/pyrite in distinct sinter layers, primarily the reddish-brown layers, lots of QAC with crystallized quartz in the voids. A flood of sinter filled in other voids from the QAC. Much of the fluid includes silicified clasts that have been brecciated and transported. Brecciated/QAC areas are more jigsaw quartz, and the sinter is more massive/rock flour texture.

#### EF19-5:

Alternating bands of brown, black, gray, and white sinter, partially deformed by injections. The whiter the layer, the less gold. Massive quartz mosaic, veinlets of injected quartz which brecciate preexisting sinter in the process. The top of the layers contains the finest quartz, and the size grades downwards. Impurities are settled at the top of the sinter layer. Major voids in the sinter are filled by quartz after calcite formations. Disseminated gold occurs in gray/black layers, no more than 5microns in size.

#### EF19-6:

Massive sinter with jigsaw quartz occupying the very few veinlets that cross perpendicular to the apparent bedding. Three bands contain entrained silicified and rounded fragments. Fragments could be pieces of feldspar. They have yellowish colors in xpl. About 90% of the fragments have been completely silicified. Two anhedral red crystals are found in this sample could be arsenopyrite, but it is difficult to distinguish.

#### EF19-7:

Massive amorphous quartz makes up this sample with alternating bands of gray, red, tan, and black sinter. Disseminated gold is in gray layer, few clusters of gold particles more concentrated in the top of the gray sinter, where it is almost black. Thicker bands of sinter have minor amounts of jigsaw quartz, as if it were just starting to recrystallize. Gold particles in a reddish layer coat a clast of albite. A significant amount of gold is present in the thin black layer, and is more disseminated in top red layer. This black layer exhibits a sluicebox texture. Rust-colored oxidation stains coat some sinter layers. Everything is completely silicified with small entrained clasts that are also oxidized. The brecciated portion is mostly QAC with comb quartz crystallized in the empty space.

#### EF19-8:

Amorphous silica is the dominant phase. Alternating bands of wavy tan, white, and black sinter characterize this sample. The thinner black layer has sluicebox textures where electrum is concentrated at the outermost layer, and become more disseminated below. This could be interpreted as branches of a dendritic crystal cut perpendicularly across the outer branches.

Above the thinnest black layer are quartz after calcite formations with comb quartz growing into the open spaces. The other colored bands of sinter contain both electrum and oxidized subrounded grains of pyrite, which gives the beds a rusted orange color. The rest of the sinter contains massive quartz with impurities coloring the sinter to a light brown. There are also some rounded areas of jigsaw quartz and more QAC at the top of the slide. Curved portions of jigsaw quartz infiltrate the massive sinter. This could be from the fluids that replaced the bladed calcite, and deformed the sinter as it still existing as a silica gel before solidifying completely. Silica injections brecciate small areas of the sample before further fracturing and infilling the rock.

#### EF19-12:

Massive jigsaw quartz dominates this sample with only slight differentiations in color to distinguish any type of bedding. Any color appears as an oxidation stain. Thin (~2mm) beds contain dark brown massive quartz.

#### EF19-13:

Sample is highly fractured with veinlets spreading across wavy sinter that has been recrystallized to jigsaw quartz. Similar to all other black/brown specimens with wavy alternating whiteish gray and brown/black bands. Veinlets of silica are injected and permeate through preexisting cracks and fractures. Veins are filled with transparent chalcedony/acicular quartz and others are filled with jigsaw quartz with brown chalcedony filling the void. Some veinlets are broken formed boudinage. Sparse pyrite populates the veins and veinlets.

#### EF19-14:

Amorphous silica banding predominates. The colors of bands are light tan, red, pink, and brown. Many beds hold rounded inclusions that are not easily identifiable due to the extent of silicic alteration in the laminated sinter. The more brecciated portion contains angular to sub-angular clasts of the matrix-supported breccia, rhyolite, quartz, feldspar, and biotite have been transported by the sinter fluids. Those along with silicified clasts are enveloped in sinter. Highly interbedded with breccia and sinter. Sinter was likely brecciated and cut through by later-phase flows or injections of sinter. Comb quartz occupy those veinlets with jigsaw quartz covering the

vein wall. Disseminated gold flakes exist in the red sinter, perhaps transported with the surficial discharge. Disseminated pyrite and gold in dark brown/black sinter.

#### EF19-24:

Brown, thinly laminated layers of amorphous silica and jigsaw quartz, though difficult to distinguish with the color. Lighter layers could be injected fluid through fractured dark brown/black layers and are composed of mosaic quartz. Where there is a larger void, comb quartz has grown with opaque cubes. Pyrite is mostly disseminated in small clusters of cubes within these veinlets. Larger clusters have been oxidized and are rusted.

#### EF19-25:

White and pick sinter dominate this sample. Jigsaw quartz makes up 95% of the sinter. The remaining 5% is the comb quartz that has crystallized from veinlets in the sample, and the metals within the bedded sinter. A small portion of the sample has distinct layering where rounded pyrite grains lie. Silica injection resulted in the layered sinter and brought with it the pyrite grains, as well as an influx of silver, though not seen in RFL. Late phase silica contains the most metals. Rounded silica grains were observed in the brown layer of sinter, which could possibly be geyserite eggs. Otherwise, sparse pyrite. Dark brown sinter through center has the high points.

#### EF19-26:

Laminated wavy dark brown to light gray sinter that has been deformed by fluid injection. The entire sample that is not obscured by the intense color is composed of jigsaw quartz, suggesting a recrystallization at a later point. Veins and veinlets fill in fractures in the sample and consist of jigsaw and massive quartz.



# **Appendix B - Supporting Figures**

Figure B.5.1: Map of the Main Knob at Milestone with geographic locations of collected samples and notable features.



Figure B.5.2: LA-ICP-MS transect of proximal slope sample EF19-1 (middle) and all data in ppm (above) and cps (below).



Figure B.5.3: LA-ICP-MS transect of proximal slope sample EF19-3 (middle) and all data in ppm (above) and cps (below).



Figure B.5.4: LA-ICP-MS transect of mid-slope apron sample EF19-4 (middle) and all data in ppm (above) and cps (below).



Figure B.5.5: LA-ICP-MS transect of mid-slope apron sample EF19-5 (middle) and all data in ppm (above) and cps (below).



Figure B.5.6: LA-ICP-MS transect of mid-slope apron sample EF19-6 (middle) and all data in ppm (above) and cps (below).



Figure B.5.7: LA-ICP-MS transect of a thin section of mid-slope apron sample EF19-6 (middle) and all data in ppm (above) and cps (below).



Figure B.5.8: LA-ICP-MS transect of vent sample EF19-7 (middle) and all data in ppm (above) and cps (below).



Figure B.5.9: LA-ICP-MS transect of vent sample EF19-8 (middle) and all data in ppm (above) and cps (below).



Figure B.5.10: LA-ICP-MS spot analyses map image of proximal slope sample EF19-1 and all data in ppm (above) and cps (below).



Figure 5.11: LA-ICP-MS spot analyses map image of mid-slope apron sample EF19-4 and all data in ppm (above) and cps (below).



Figure B.5.12: LA-ICP-MS spot analyses map image of mid-slope apron sample EF19-14 and all data in ppm (above) and cps (below).



Figure B.5.13: LA-ICP-MS spot analyses map image of distal slope/marsh sample EF19-24 and data in ppm (above) and cps (below).


Figure B.5.14: LA-ICP-MS spot analyses map image of Wagonwheel sample EF19-25 and data in ppm (above) and cps (below).



Figure B.5.15: LA-ICP-MS spot analyses map image of distal slope/marsh EF19-26 and data in ppm (above) and cps (below).

## Appendix C - LA-ICP-MS Chemistry Results

| Spot #    | Si (cps) | Std. Dev | S (cps)  | Std. Dev | Se (cps) | Std. Dev | Te (cps) | Std. Dev | Hg    | Std. Dev |
|-----------|----------|----------|----------|----------|----------|----------|----------|----------|-------|----------|
|           |          | (2σ)     |          | (2σ)     |          | (2σ)     |          | (2σ)     | (cps) | (2σ)     |
| EF19-1    |          |          |          |          |          |          |          |          |       |          |
| EF19-1.01 | 2.86E+07 | 980000   | 73600    | 3100     | 336      | 72       | 0        | 1        | 1900  | 450      |
| EF19-1.02 | 3.29E+07 | 970000   | 59300    | 3100     | 183      | 49       | 0        | 1        | 2110  | 420      |
| EF19-1.03 | 3.25E+07 | 1.00E+06 | 1.57E+06 | 160000   | 125000   | 38000    | 0        | 1        | 6110  | 670      |
| EF19-1.04 | 3.51E+07 | 1.10E+06 | 223000   | 11000    | 5420     | 270      | 11.6     | 9.9      | 4450  | 470      |
| EF19-1.05 | 2.60E+07 | 720000   | 88100    | 4200     | 1200     | 200      | 0        | 1        | 4700  | 1100     |
| EF19-1.06 | 2.10E+07 | 740000   | 71200    | 5100     | 1260     | 280      | 21       | 15       | 4920  | 470      |
| EF19-1.07 | 3.31E+07 | 750000   | 1.70E+06 | 76000    | 50700    | 2000     | 71       | 63       | 9880  | 720      |
| EF19-1.08 | 3.22E+07 | 930000   | 171000   | 10000    | 6550     | 670      | 29       | 26       | 4980  | 490      |
| EF19-1.09 | 3.11E+07 | 840000   | 1.67E+06 | 180000   | 35400    | 3600     | 7.1      | 8        | 6680  | 500      |
| EF19-1.10 | 2.86E+07 | 1.10E+06 | 191200   | 6600     | 22800    | 1300     | 4.8      | 6.7      | 4650  | 510      |
| EF19-1.11 | 2.95E+07 | 850000   | 850000   | 110000   | 63100    | 4400     | 0        | 1        | 4380  | 560      |
| EF19-1.12 | 2.94E+07 | 1.20E+06 | 116200   | 5900     | 2190     | 220      | 4.7      | 6.5      | 2400  | 480      |
| EF19-1.13 | 2.92E+07 | 700000   | 123400   | 5100     | 3100     | 250      | 4.9      | 6.8      | 3210  | 410      |

| Spot #    | Si (cps) | Std. Dev | S (cps)  | Std. Dev | Se (cps) | Std. Dev | Te (cps) | Std. Dev | Hg (cps) | Std. Dev |
|-----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
|           |          | (2σ)     |
| EF19-1.14 | 2.15E+07 | 1.10E+06 | 79400    | 9000     | 3780     | 330      | 0        | 1        | 2650     | 410      |
| EF19-1.15 | 2.75E+07 | 510000   | 90700    | 3000     | 610      | 100      | 0        | 1        | 3900     | 450      |
| EF19-1.16 | 1.91E+07 | 300000   | 73700    | 3100     | 381      | 67       | 2.4      | 4.8      | 2700     | 370      |
| EF19-1.17 | 3.25E+07 | 700000   | 340800   | 9200     | 7090     | 280      | 2.4      | 4.8      | 10900    | 660      |
| EF19-1.18 | 2.18E+07 | 280000   | 143600   | 7500     | 710      | 110      | 0        | 1        | 6530     | 390      |
| EF19-1.19 | 2.62E+07 | 470000   | 78000    | 2900     | 376      | 59       | 0        | 1        | 2490     | 570      |
| EF19-1.20 | 2.10E+07 | 270000   | 149400   | 6300     | 9190     | 330      | 29       | 14       | 260      | 440      |
| EF19-1.21 | 3.12E+07 | 450000   | 94600    | 3900     | 1110     | 130      | 38       | 25       | 6360     | 970      |
| EF19-1.22 | 2.65E+07 | 520000   | 97600    | 3800     | 650      | 92       | 10       | 11       | 3000     | 460      |
| EF19-1.23 | 2.92E+07 | 880000   | 185000   | 11000    | 1060     | 130      | 11.6     | 9.9      | 1470     | 310      |
| EF19-1.24 | 2.90E+07 | 960000   | 440000   | 80000    | 46000    | 20000    | 9.5      | 9.2      | 4470     | 630      |
| EF19-1.25 | 3.09E+07 | 790000   | 1.28E+06 | 340000   | 12640    | 670      | 12       | 16       | 5060     | 410      |
| EF19-1.26 | 2.84E+07 | 530000   | 611000   | 22000    | 39100    | 1300     | 7.1      | 8        | 6630     | 430      |
| EF19-1.27 | 3.16E+07 | 870000   | 1.43E+06 | 63000    | 54400    | 5000     | 0        | 1        | 19900    | 2900     |

| Spot #    | Na    | Std. Dev | Al     | Std. Dev | Cl    | Std. Dev | K      | Std. Dev | Ti    | Std. Dev |
|-----------|-------|----------|--------|----------|-------|----------|--------|----------|-------|----------|
|           | (ppm) | (2σ)     | (ppm)  | (2σ)     | (ppm) | (2σ)     | (ppm)  | (2σ)     | (ppm) | (2σ)     |
| EF19-1.01 | 3300  | 220      | 191000 | 29000    | 1202  | 72       | 20400  | 4000     | 418   | 42       |
| EF19-1.02 | 1438  | 46       | 83800  | 1000     | 1122  | 59       | 5540   | 200      | 341   | 14       |
| EF19-1.03 | 4570  | 180      | 164800 | 3400     | 1047  | 63       | 46900  | 1300     | 8490  | 390      |
| EF19-1.04 | 3540  | 120      | 125500 | 2000     | 883   | 57       | 29880  | 900      | 1244  | 98       |
| EF19-1.05 | 6060  | 180      | 925000 | 42000    | 1195  | 82       | 140100 | 8300     | 461   | 88       |
| EF19-1.06 | 10820 | 410      |        |          | 1460  | 84       | 294100 | 5700     | 993   | 63       |
| EF19-1.07 | 4160  | 340      | 183800 | 2900     | 1066  | 68       | 73100  | 2400     | 927   | 36       |
| EF19-1.08 | 3260  | 280      | 237000 | 13000    | 960   | 66       | 55100  | 1800     | 737   | 56       |
| EF19-1.09 | 3130  | 130      | 248300 | 3500     | 993   | 57       | 111600 | 3500     | 1940  | 160      |
| EF19-1.10 | 4050  | 130      | 147900 | 4000     | 1007  | 76       | 51700  | 2500     | 1434  | 93       |
| EF19-1.11 | 3970  | 170      | 195300 | 5200     | 1056  | 79       | 76100  | 3100     | 2690  | 160      |
| EF19-1.12 | 3520  | 130      | 185200 | 4100     | 1015  | 76       | 56000  | 2200     | 751   | 66       |
| EF19-1.13 | 3530  | 330      | 369900 | 9800     | 1075  | 82       | 152400 | 5200     | 7060  | 300      |

| Spot #    | Na (ppm) | Std. Dev | Al     | Std. Dev | Cl    | Std. Dev | K      | Std. Dev | Ti    | Std. Dev |
|-----------|----------|----------|--------|----------|-------|----------|--------|----------|-------|----------|
|           |          | (2σ)     | (ppm)  | (2σ)     | (ppm) | (2σ)     | (ppm)  | (2σ)     | (ppm) | (2σ)     |
| EF19-1.14 | 2247     | 58       | 386000 | 25000    | 1344  | 97       | 51200  | 3700     | 78.3  | 5.3      |
| EF19-1.15 | 4420     | 110      | 815000 | 11000    | 1511  | 76       | 264700 | 3800     | 5470  | 380      |
| EF19-1.16 | 6700     | 250      |        |          | 1470  | 120      | 246600 | 5700     | 244   | 13       |
| EF19-1.17 | 3761     | 97       | 158300 | 2100     | 989   | 58       | 68800  | 1200     | 12540 | 480      |
| EF19-1.18 | 9240     | 520      |        |          | 1288  | 97       | 213300 | 9100     | 496   | 31       |
| EF19-1.19 | 4300     | 130      | 879000 | 11000    | 1286  | 78       | 221900 | 3400     | 5260  | 140      |
| EF19-1.20 | 4410     | 130      |        |          | 1660  | 100      | 243900 | 4400     | 3850  | 100      |
| EF19-1.21 | 4200     | 490      | 635000 | 14000    | 1150  | 62       | 253400 | 9100     | 5830  | 260      |
| EF19-1.22 | 6520     | 490      | 936000 | 11000    | 1550  | 82       | 557000 | 8500     | 20490 | 460      |
| EF19-1.23 | 3620     | 320      | 167900 | 3100     | 970   | 63       | 46450  | 850      | 186   | 15       |
| EF19-1.24 | 3420     | 230      | 169200 | 5500     | 974   | 71       | 55900  | 3500     | 1167  | 84       |
| EF19-1.25 | 4550     | 180      | 361000 | 16000    | 1081  | 53       | 207000 | 10000    | 5560  | 410      |
| EF19-1.26 | 4210     | 130      | 324100 | 7800     | 1041  | 64       | 168200 | 4500     | 6030  | 350      |
| EF19-1.27 | 5020     | 330      | 124700 | 1900     | 958   | 65       | 32690  | 720      | 4630  | 180      |

| Spot #    | Ti (ppm) | Std. Dev | Fe (ppm) | Std. Dev | Ni    | Std. Dev | Cu    | Std. Dev | Zn    | Std. Dev |
|-----------|----------|----------|----------|----------|-------|----------|-------|----------|-------|----------|
|           |          | (2σ)     |          | (2σ)     | (ppm) | (2σ)     | (ppm) | (2σ)     | (ppm) | (2σ)     |
| EF19-1.01 | 41.2     | 4.3      | 2140     | 160      | 1.96  | 0.53     | 21.6  | 2.5      | 22.2  | 5.8      |
| EF19-1.02 | 32.5     | 1.3      | 437      | 45       | 1     | 0.34     | 5.88  | 0.43     | 3.9   | 2        |
| EF19-1.03 | 941      | 42       | 16910    | 780      | 9.7   | 1        | 2590  | 990      | 530   | 270      |
| EF19-1.04 | 123      | 10       | 4210     | 220      | 4.63  | 0.69     | 45.3  | 1.9      | 8.1   | 1.3      |
| EF19-1.05 | 52       | 8.5      | 4880     | 200      | 3.01  | 0.74     | 45    | 2.1      | 32.5  | 2.2      |
| EF19-1.06 | 106      | 5.9      | 3220     | 110      | 6.8   | 2        | 48.1  | 6        | 71    | 11       |
| EF19-1.07 | 96       | 4.3      | 24570    | 390      | 13    | 1.6      | 249.9 | 4.8      | 20.1  | 1.5      |
| EF19-1.08 | 71.3     | 5.2      | 2990     | 200      | 3.84  | 0.74     | 34.1  | 2        | 8.5   | 1.2      |
| EF19-1.09 | 191      | 17       | 16360    | 930      | 10.2  | 1.2      | 267   | 27       | 19.3  | 1.7      |
| EF19-1.10 | 139.3    | 8.5      | 7820     | 210      | 4.36  | 0.7      | 93.2  | 3.5      | 33.4  | 3.1      |
| EF19-1.11 | 268      | 18       | 14990    | 650      | 7.5   | 1        | 268   | 15       | 54.4  | 4        |
| EF19-1.12 | 71.2     | 6.4      | 1499     | 96       | 3.29  | 0.64     | 17.1  | 2.8      | 7.1   | 1.1      |
| EF19-1.13 | 776      | 33       | 2910     | 120      | 3.41  | 0.64     | 28.3  | 1.2      | 13.6  | 1.5      |

| Spot #    | Ti (ppm) | Std. Dev | Fe (ppm) | Std. Dev | Ni    | Std. Dev | Cu    | Std. Dev | Zn    | Std. Dev |
|-----------|----------|----------|----------|----------|-------|----------|-------|----------|-------|----------|
|           |          | (2σ)     |          | (2σ)     | (ppm) | (2σ)     | (ppm) | (2σ)     | (ppm) | (2σ)     |
| EF19-1.14 | 8.18     | 0.45     | 112000   | 10000    | 3.3   | 0.78     | 48.9  | 2.9      | 116.8 | 6        |
| EF19-1.15 | 598      | 38       | 6470     | 150      | 4.6   | 1.1      | 66.8  | 1.7      | 31.5  | 2.8      |
| EF19-1.16 | 34       | 1.6      | 6010     | 300      | 7     | 1.2      | 129   | 16       | 94.5  | 9.6      |
| EF19-1.17 | 1392     | 51       | 5501     | 94       | 7.37  | 0.76     | 42.3  | 1.2      | 20.5  | 1.3      |
| EF19-1.18 | 59.5     | 3.1      | 8570     | 330      | 11.5  | 1.3      | 60    | 2.4      | 134   | 10       |
| EF19-1.19 | 594      | 18       | 7230     | 120      | 3.85  | 0.63     | 43.7  | 1.3      | 56.1  | 3.3      |
| EF19-1.20 | 383      | 12       | 217700   | 3200     | 40.6  | 2.6      | 1208  | 27       | 878   | 32       |
| EF19-1.21 | 650      | 31       | 3712     | 92       | 5.4   | 1.5      | 29.1  | 1.3      | 32.7  | 4.1      |
| EF19-1.22 | 2284     | 49       | 1509     | 36       | 5.5   | 3.3      | 26    | 1.1      | 45.8  | 7.1      |
| EF19-1.23 | 18.3     | 1.4      | 2000     | 230      | 2.48  | 0.54     | 16.6  | 1.3      | 15.3  | 1.5      |
| EF19-1.24 | 113.9    | 8.3      | 13030    | 850      | 5.3   | 3        | 56.9  | 2.5      | 54.6  | 5.7      |
| EF19-1.25 | 624      | 44       | 23140    | 740      | 6.27  | 0.97     | 119.8 | 2.9      | 127.1 | 4.2      |
| EF19-1.26 | 664      | 38       | 19810    | 970      | 6.4   | 1.2      | 196.2 | 5.1      | 25    | 1.9      |
| EF19-1.27 | 517      | 22       | 39800    | 1500     | 5.68  | 0.81     | 1210  | 45       | 17.4  | 1.3      |

| Spot #    | As (ppm) | Std. Dev | Pd (ppm) | Std. Dev | Ag    | Std. Dev | Cd    | Std. Dev | Sn    | Std. Dev |
|-----------|----------|----------|----------|----------|-------|----------|-------|----------|-------|----------|
|           |          | (2σ)     |          | (2σ)     | (ppm) | (2σ)     | (ppm) | (2σ)     | (ppm) | (2σ)     |
| EF19-1.01 | 82       | 7.3      |          |          | 162.1 | 5.8      |       |          | 3.73  | 0.85     |
| EF19-1.02 | 25.4     | 2.6      | 0.035    | 0.04     | 113.8 | 3.8      |       |          | 1.6   | 0.22     |
| EF19-1.03 | 1257     | 53       | 0.32     | 0.11     | 23900 | 8400     | 8.4   | 4.1      | 40.2  | 7.3      |
| EF19-1.04 | 371      | 26       | 0.092    | 0.055    | 761   | 39       |       |          | 2.7   | 0.27     |
| EF19-1.05 | 104      | 12       | 0.121    | 0.089    | 348   | 25       | 0.38  | 0.2      | 5.27  | 0.6      |
| EF19-1.06 | 204      | 17       | 0        | 1        | 410   | 37       | 2.2   | 1.6      | 18.5  | 1.4      |
| EF19-1.07 | 3820     | 76       | 0.29     | 0.12     | 24120 | 540      | 1.05  | 0.67     | 3.23  | 0.48     |
| EF19-1.08 | 328      | 22       | 0.102    | 0.061    | 903   | 51       | 0.38  | 0.3      | 3     | 1        |
| EF19-1.09 | 2120     | 120      | 0.32     | 0.12     | 8330  | 850      | 0.51  | 0.27     | 4.31  | 0.86     |
| EF19-1.10 | 701      | 23       | 0.088    | 0.062    | 3840  | 300      | 0.5   | 0.24     | 2.74  | 0.43     |
| EF19-1.11 | 1882     | 83       | 0.3      | 0.12     | 22500 | 1300     | 0.6   | 0.23     | 7.3   | 1.5      |
| EF19-1.12 | 154      | 15       | 0.011    | 0.022    | 1040  | 41       | 0.55  | 0.38     | 1.91  | 0.45     |
| EF19-1.13 | 242      | 15       | 0.209    | 0.093    | 1339  | 49       | 0.36  | 0.46     | 9.17  | 0.83     |

| Spot #    | As (ppm) | Std. Dev | Pd (ppm) | Std. Dev | Ag    | Std. Dev | Cd    | Std. Dev | Sn (ppm) | Std. Dev |
|-----------|----------|----------|----------|----------|-------|----------|-------|----------|----------|----------|
|           |          | (2σ)     |          | (2σ)     | (ppm) | (2σ)     | (ppm) | (2σ)     |          | (2σ)     |
| EF19-1.14 | 1970     | 170      |          |          | 112   | 20       |       |          | 1.53     | 0.27     |
| EF19-1.15 | 136.6    | 6.7      | 0.158    | 0.093    | 777   | 20       | 0.43  | 0.31     | 10.29    | 0.59     |
| EF19-1.16 | 69.9     | 4.4      | 0.019    | 0.037    | 172.6 | 7.3      | 0.93  | 0.38     | 7.48     | 0.8      |
| EF19-1.17 | 570      | 10       | 0.38     | 0.13     | 478   | 10       | 0.52  | 0.54     | 8.64     | 0.65     |
| EF19-1.18 | 23.6     | 2.1      | 0.115    | 0.08     | 520   | 35       | 2.27  | 0.56     | 4.04     | 0.39     |
| EF19-1.19 | 30.9     | 2.2      | 0.175    | 0.083    | 217.3 | 6.7      | 0.41  | 0.21     | 6.9      | 0.53     |
| EF19-1.20 | 3225     | 75       | 0.086    | 0.073    | 146.1 | 4.8      | 2.04  | 0.68     | 16.8     | 0.68     |
| EF19-1.21 | 96.4     | 8.6      | 0.141    | 0.07     | 562   | 22       | 1.31  | 0.88     | 7.51     | 0.87     |
| EF19-1.22 | 66.1     | 4.2      | 0.62     | 0.17     | 549   | 16       | 1.32  | 0.94     | 19.5     | 1.1      |
| EF19-1.23 | 211      | 22       | 0.098    | 0.072    | 947   | 31       | 0.66  | 0.43     | 1.36     | 0.41     |
| EF19-1.24 | 882      | 47       | 0.099    | 0.064    | 9800  | 3700     | 0.46  | 0.27     | 2.32     | 0.34     |
| EF19-1.25 | 1251     | 43       | 0.68     | 0.18     | 6630  | 820      | 0.9   | 0.42     | 5.02     | 0.5      |
| EF19-1.26 | 1533     | 65       | 0.32     | 0.14     | 14740 | 880      | 0.37  | 0.24     | 5.65     | 0.53     |
| EF19-1.27 | 2326     | 98       | 0.212    | 0.09     | 28400 | 1500     |       |          | 11.05    | 0.57     |

| Spot #    | Sb (ppm) | Std. Dev | Pt (ppm) | Std. Dev | Au    | Std. Dev | TI    | Std. Dev | Pb    | Std. Dev |
|-----------|----------|----------|----------|----------|-------|----------|-------|----------|-------|----------|
|           |          | (2σ)     |          | (2σ)     | (ppm) | (2σ)     | (ppm) | (2σ)     | (ppm) | (2σ)     |
| EF19-1.01 | 86.2     | 3        |          |          | 1.36  | 0.32     | 4.47  | 0.97     | 3.97  | 0.61     |
| EF19-1.02 | 76.6     | 2.9      |          |          |       |          | 0.696 | 0.067    | 1.89  | 0.3      |
| EF19-1.03 | 3800     | 1700     |          |          | 24.1  | 1.3      | 50.2  | 1.8      | 87.8  | 2.8      |
| EF19-1.04 | 206      | 13       |          |          | 9.12  | 0.82     | 5.48  | 0.4      | 32.8  | 4.4      |
| EF19-1.05 | 60.3     | 3.4      | 0        | 1        | 4.6   | 1.9      | 10.34 | 0.54     | 7.2   | 1.9      |
| EF19-1.06 | 90.6     | 5.8      |          |          | 2.8   | 0.85     | 19.01 | 0.87     | 50.5  | 8.6      |
| EF19-1.07 | 827      | 14       | 0        | 1        | 80.8  | 2.2      | 48.2  | 1.4      | 197   | 5.7      |
| EF19-1.08 | 125.5    | 6.5      |          |          | 10.38 | 0.82     | 6.66  | 0.33     | 18.9  | 1.6      |
| EF19-1.09 | 373      | 20       | 0        | 1        | 66    | 4.4      | 60.6  | 6.1      | 84.6  | 6.1      |
| EF19-1.10 | 197.1    | 4.7      | 0        | 1        | 17    | 0.88     | 6.22  | 0.41     | 71.4  | 4.2      |
| EF19-1.11 | 455      | 18       |          |          | 50.4  | 2        | 13.2  | 0.89     | 89.2  | 5        |
| EF19-1.12 | 78.6     | 3.8      |          |          | 5.19  | 0.62     | 4.71  | 0.48     | 13.7  | 1.7      |
| EF19-1.13 | 139      | 3.5      |          |          | 16.5  | 1.1      | 10.5  | 0.52     | 31    | 1.9      |

| Spot #    | Sb (ppm) | Std. Dev | Pt (ppm) | Std. Dev | Au    | Std. Dev | Tl    | Std. Dev | Pb (ppm) | Std. Dev |
|-----------|----------|----------|----------|----------|-------|----------|-------|----------|----------|----------|
|           |          | (2σ)     |          | (2σ)     | (ppm) | (2σ)     | (ppm) | (2σ)     |          | (2σ)     |
| EF19-1.14 | 1450     | 130      | 0        | 1        | 1.37  | 0.31     | 8.63  | 0.82     | 15.7     | 1.5      |
| EF19-1.15 | 169      | 5.5      |          |          | 2.53  | 0.28     | 15.41 | 0.54     | 15.06    | 0.87     |
| EF19-1.16 | 40.5     | 1.7      |          |          | 5.62  | 0.72     | 17.65 | 0.65     | 17       | 1.3      |
| EF19-1.17 | 224      | 3.7      |          |          | 16.51 | 0.74     | 5.39  | 0.3      | 53.2     | 1.3      |
| EF19-1.18 | 63.8     | 1.5      |          |          | 47.6  | 4.7      | 16.2  | 1        | 10.93    | 0.92     |
| EF19-1.19 | 103.4    | 2        |          |          | 0.98  | 0.2      | 14.25 | 0.38     | 8.72     | 0.68     |
| EF19-1.20 | 5060     | 120      | 0        | 1        | 4.76  | 0.41     | 12.63 | 0.58     | 219      | 8        |
| EF19-1.21 | 102.1    | 2.3      |          |          | 43    | 34       | 17.1  | 1        | 10.9     | 1.6      |
| EF19-1.22 | 107.1    | 2.4      |          |          | 13.06 | 0.53     | 31.5  | 1.1      | 14.5     | 1.5      |
| EF19-1.23 | 51.1     | 2.9      |          |          | 3.19  | 0.39     | 4.03  | 0.25     | 11.5     | 1.8      |
| EF19-1.24 | 252      | 15       |          |          | 26.9  | 3        | 6.72  | 0.36     | 42.1     | 4.1      |
| EF19-1.25 | 414      | 13       |          |          | 36.5  | 1        | 16.36 | 0.67     | 96.6     | 3.2      |
| EF19-1.26 | 426      | 19       | 0.048    | 0.037    | 43.8  | 2.5      | 27    | 1.2      | 61.2     | 2        |
| EF19-1.27 | 963      | 32       | 0.006    | 0.013    | 28.4  | 1.4      | 28.7  | 2.4      | 166.4    | 9.5      |

| Spot #     | Bi (ppm) | pm) Std. Dev $(2\sigma)$ Th (ppm) Std. Dev |       | Std. Dev (2 $\sigma$ ) | U (ppm) | Std. Dev (2 $\sigma$ ) |
|------------|----------|--------------------------------------------|-------|------------------------|---------|------------------------|
|            |          |                                            |       |                        |         |                        |
| EF19-1.01  | 0.078    | 0.033                                      | 5.5   | 1.9                    | 0.468   | 0.068                  |
| EE10 1 00  | 0.07     | 0.029                                      | 7.22  | 0.0                    | 0.02    | 0.007                  |
| EF 19-1.02 | 0.07     | 0.038                                      | 1.32  | 0.9                    | 0.92    | 0.087                  |
| EF19-1.03  | 0.615    | 0.065                                      | 61.8  | 2.8                    | 9.09    | 0.61                   |
| EF19-1.04  | 0.13     | 0.026                                      | 13.13 | 0.76                   | 2.21    | 0.23                   |
| EF19-1.05  | 0.069    | 0.03                                       | 4.37  | 0.99                   | 2.4     | 1.1                    |
| EF19-1.06  | 5.4      | 8.1                                        | 11    | 1.1                    | 4.8     | 1.6                    |
| EF19-1.07  | 0.78     | 0.3                                        | 6.68  | 0.46                   | 4.8     | 3.4                    |
| EF19-1.08  |          |                                            | 7.4   | 2.7                    | 1.5     | 0.19                   |
| EF19-1.09  | 0.32     | 0.11                                       | 10.65 | 0.84                   |         |                        |
| EF19-1.10  | 0.221    | 0.048                                      | 8.95  | 0.62                   | 1.92    | 0.22                   |
| EF19-1.11  | 0.451    | 0.069                                      | 13.39 | 0.76                   | 2.53    | 0.27                   |
| EF19-1.12  | 0.131    | 0.054                                      | 4.37  | 0.48                   | 1.06    | 0.2                    |
| EF19-1.13  | 0.383    | 0.068                                      | 29.8  | 1                      | 6.88    | 0.45                   |

| Spot #    | Bi (ppm) | Std. Dev (2σ) | Th (ppm) | Std. Dev (2σ) | U (ppm) | Std. Dev (2σ) |
|-----------|----------|---------------|----------|---------------|---------|---------------|
| EF19-1.14 | 0.049    | 0.025         | 0.314    | 0.078         | 0.406   | 0.061         |
| EF19-1.15 | 0.33     | 0.12          | 21.9     | 1.3           | 6.29    | 0.72          |
| EF19-1.16 | 0.051    | 0.026         | 0.99     | 0.11          | 2.49    | 0.2           |
| EF19-1.17 | 0.309    | 0.046         | 66.3     | 2.4           | 14.09   | 0.62          |
| EF19-1.18 | 0.141    | 0.096         | 3.68     | 0.25          | 1.08    | 0.14          |
| EF19-1.19 | 0.203    | 0.067         | 25.3     | 1.9           | 5.73    | 0.59          |
| EF19-1.20 | 2.12     | 0.16          | 21.59    | 0.92          | 8.15    | 0.3           |
| EF19-1.21 | 1.01     | 0.53          | 23.6     | 1.5           | 6.8     | 1.5           |
| EF19-1.23 | 0.83     | 0.68          | 1.95     | 0.18          | 0.54    | 0.22          |
| EF19-1.24 | 0.229    | 0.041         | 5.84     | 0.51          | 1.4     | 0.17          |
| EF19-1.25 | 0.45     | 0.11          | 28.6     | 3.2           | 7.9     | 1.1           |
| EF19-1.26 | 0.465    | 0.067         | 35.2     | 2.1           | 8.96    | 0.95          |
| EF19-1.27 | 0.93     | 0.14          | 38.4     | 1.2           | 5.52    | 0.47          |

| Spot #    | Si (cps) | Std. Dev | S (cps) | Std. Dev | Se (cps) | Std. Dev | Te (cps) | Std. Dev | Hg    | Std. Dev |
|-----------|----------|----------|---------|----------|----------|----------|----------|----------|-------|----------|
|           |          | (2σ)     |         | (2σ)     |          | (2σ)     |          | (2σ)     | (cps) | (2σ)     |
| EF19-4    |          |          |         |          |          |          |          |          |       |          |
| EF19-4.01 | 2.76E+07 | 690000   | 44700   | 3000     | 234      | 57       | 9.5      | 9.2      | 1200  | 370      |
| EF19-4.02 | 2.55E+07 | 360000   | 60100   | 4500     | 560      | 100      | 9.5      | 9.2      | 1020  | 440      |
| EF19-4.03 | 2.44E+07 | 680000   | 53300   | 3600     | 10900    | 2100     | 12       | 10       | 1480  | 440      |
| EF19-4.04 | 3.00E+07 | 720000   | 76400   | 4900     | 900      | 170      | 11.6     | 9.9      | 2240  | 680      |
| EF19-4.05 | 2.68E+07 | 690000   | 62300   | 3200     | 299      | 58       | 0        | 1        | -400  | 450      |
| EF19-4.06 | 2.79E+07 | 920000   | 97200   | 8700     | 551      | 82       | 21       | 16       | 2700  | 570      |
| EF19-4.07 | 2.50E+07 | 510000   | 216000  | 20000    | 920      | 150      | 19       | 14       | 4280  | 680      |
| EF19-4.08 | 3.04E+07 | 550000   | 262000  | 25000    | 4530     | 430      | 0        | 1        | 680   | 600      |
| EF19-4.09 | 3.29E+07 | 1.10E+06 | 248000  | 15000    | 3970     | 510      | 0        | 1        | 2410  | 550      |
| EF19-4.10 | 3.27E+07 | 1.10E+06 | 185000  | 10000    | 3430     | 400      | 24       | 19       | 630   | 590      |
| EF19-4.11 | 3.25E+07 | 1.20E+06 | 91500   | 4700     | 940      | 110      | 4.8      | 6.7      | -90   | 500      |
| EF19-4.12 | 2.80E+07 | 870000   | 237000  | 21000    | 2550     | 290      | 0        | 1        | 1220  | 610      |

| Spot #    | Si (cps) | Std. Dev | S (cps) | Std. Dev | Se (cps) | Std. Dev | Te (cps) | Std. Dev | Hg (cps) | Std. Dev |
|-----------|----------|----------|---------|----------|----------|----------|----------|----------|----------|----------|
|           |          | (2σ)     |         | (2σ)     |          | (2σ)     |          | (2σ)     |          | (2σ)     |
| EF19-4.13 | 2.29E+07 | 570000   | 630000  | 170000   | 3540     | 800      | 67       | 36       | 9000     | 1200     |
| EF19-4.14 | 3.07E+07 | 1.00E+06 | 244000  | 18000    | 2710     | 340      | 0        | 1        | 2260     | 530      |
| EF19-4.15 | 2.91E+07 | 870000   | 127000  | 9700     | 1380     | 200      | 0        | 1        | 3280     | 540      |
| EF19-4.16 | 1.79E+07 | 900000   | 210000  | 42000    | 6700     | 1600     | 43       | 25       | 3570     | 660      |
| EF19-4.17 | 3.04E+07 | 1.10E+06 | 57600   | 3400     | 60       | 44       | 33       | 18       | 1180     | 500      |
| EF19-4.18 | 2.81E+07 | 1.10E+06 | 70900   | 4300     | 339      | 65       | 9.5      | 9.2      | 1080     | 480      |
| EF19-4.19 | 2.79E+07 | 700000   | 48800   | 3000     | 44       | 37       | 48       | 61       | 970      | 540      |
| EF19-4.20 | 2.14E+07 | 400000   | 124200  | 8800     | 415      | 85       | 2.4      | 4.8      | 990      | 560      |
| EF19-4.21 | 2.45E+07 | 1.40E+06 | 185000  | 34000    | 850      | 180      | 0        | 1        | 1100     | 350      |
| EF19-4.22 | 2.92E+07 | 1.20E+06 | 199000  | 13000    | 1030     | 170      | 57       | 29       | 2220     | 560      |
| EF19-4.23 | 2.88E+07 | 830000   | 200000  | 15000    | 1360     | 220      | 0        | 1        | 2160     | 600      |
| EF19-4.24 | 2.76E+07 | 1.00E+06 | 69900   | 3600     | 60       | 38       | 0        | 1        | 950      | 600      |
| EF19-4.25 | 2.34E+07 | 670000   | 75800   | 6200     | 1280     | 540      | 0        | 1        | 1660     | 500      |

| Spot #    | Na    | Std. Dev | Al     | Std. Dev | Cl    | Std. Dev | K     | Std. Dev | Ti    | Std. Dev |
|-----------|-------|----------|--------|----------|-------|----------|-------|----------|-------|----------|
|           | (ppm) | (2σ)     | (ppm)  | (2σ)     | (ppm) | (2σ)     | (ppm) | (2σ)     | (ppm) | (2σ)     |
| EF19-4.01 | 1926  | 27       | 17420  | 220      | 982   | 65       | 2592  | 69       | 218   | 13       |
| EF19-4.02 | 8150  | 300      | 104700 | 3200     | 1029  | 64       | 5734  | 78       | 222   | 29       |
| EF19-4.03 | 3730  | 140      | 60300  | 2100     | 1062  | 67       | 6940  | 210      | 349   | 47       |
| EF19-4.04 | 4560  | 250      | 89700  | 1300     | 1020  | 71       | 17150 | 750      | 359   | 31       |
| EF19-4.05 | 2440  | 140      | 31500  | 1600     | 1030  | 66       | 3740  | 230      | 110.1 | 6.2      |
| EF19-4.06 | 9900  | 2200     | 81800  | 9300     | 1128  | 67       | 6300  | 290      | 205   | 43       |
| EF19-4.07 | 26100 | 3400     | 166000 | 17000    | 882   | 80       | 9190  | 670      | 850   | 220      |
| EF19-4.08 | 5750  | 140      | 202900 | 8400     | 1046  | 56       | 80400 | 4400     | 1318  | 96       |
| EF19-4.09 | 5858  | 84       | 155700 | 3500     | 999   | 70       | 56000 | 2200     | 685   | 35       |
| EF19-4.10 | 5450  | 170      | 130200 | 2400     | 916   | 63       | 44000 | 1200     | 639   | 44       |
| EF19-4.11 | 5570  | 150      | 129700 | 2500     | 936   | 58       | 41600 | 1900     | 891   | 20       |
| EF19-4.12 | 4960  | 170      | 167500 | 2400     | 1028  | 73       | 69800 | 2200     | 261   | 24       |

| Spot #    | Na (ppm) | Std. Dev | Al     | Std. Dev | Cl    | Std. Dev | K      | Std. Dev | Ti    | Std. Dev |
|-----------|----------|----------|--------|----------|-------|----------|--------|----------|-------|----------|
|           |          | (2σ)     | (ppm)  | (2σ)     | (ppm) | (2σ)     | (ppm)  | (2σ)     | (ppm) | (2σ)     |
| EF19-4.13 | 4960     | 170      | 167500 | 2400     | 1028  | 73       | 69800  | 2200     | 261   | 24       |
| EF19-4.14 | 53800    | 5300     |        |          | 1230  | 110      | 13100  | 1600     | 1060  | 130      |
| EF19-4.15 | 5940     | 290      | 206500 | 4500     | 1083  | 73       | 88900  | 2700     | 910   | 170      |
| EF19-4.16 | 5280     | 130      | 247000 | 11000    | 1090  | 72       | 118000 | 5800     | 1880  | 560      |
| EF19-4.17 | 12100    | 2000     | 761000 | 67000    | 1180  | 110      | 52600  | 1800     | 1285  | 64       |
| EF19-4.18 | 5850     | 410      | 171200 | 7100     | 1044  | 62       | 67700  | 5000     | 427   | 29       |
| EF19-4.19 | 6700     | 300      | 339000 | 27000    | 1247  | 91       | 177000 | 17000    | 1240  | 140      |
| EF19-4.20 | 1021     | 32       | 16920  | 820      | 1205  | 67       | 1242   | 46       | 109.5 | 6.8      |
| EF19-4.21 | 9860     | 800      | 230000 | 20000    | 1160  | 100      | 15210  | 460      | 1770  | 120      |
| EF19-4.22 | 10600    | 2900     | 240000 | 34000    | 1027  | 98       | 10500  | 1500     | 1120  | 140      |
| EF19-4.23 | 11600    | 1100     | 499000 | 40000    | 948   | 76       | 29000  | 1500     | 1280  | 100      |
| EF19-4.24 | 4570     | 150      | 165500 | 4100     | 1032  | 76       | 62100  | 2800     | 740   | 120      |
| EF19-4.25 | 2840     | 130      | 65700  | 2800     | 1105  | 83       | 7020   | 370      | 44.2  | 3.8      |

| Spot #    | Ti (ppm) | Std. Dev | Fe (ppm) | Std. Dev | Ni    | Std. Dev | Cu    | Std. Dev | Zn    | Std. Dev |
|-----------|----------|----------|----------|----------|-------|----------|-------|----------|-------|----------|
|           |          | (2σ)     |          | (2σ)     | (ppm) | (2σ)     | (ppm) | (2σ)     | (ppm) | (2σ)     |
| EF19-4.01 | 19.1     | 1.1      | 305      | 33       | 0.42  | 0.27     | 2.52  | 0.34     | 3.77  | 0.62     |
| EF19-4.02 | 23.5     | 2.4      | 27300    | 1900     | 54.9  | 4.6      | 112.3 | 8.6      | 84.3  | 8.6      |
| EF19-4.03 | 31.8     | 4.4      | 15400    | 2300     | 1.01  | 0.35     | 140   | 24       | 14.3  | 4.8      |
| EF19-4.04 | 33.9     | 2.7      | 5840     | 470      | 2.79  | 0.67     | 14.78 | 0.98     | 82.2  | 8.2      |
| EF19-4.05 | 9.48     | 0.33     | 2530     | 360      | 4.64  | 0.81     | 11.7  | 1.4      | 10.2  | 1.1      |
| EF19-4.06 | 23       | 6.7      | 10900    | 2900     | 26.9  | 8.5      | 60    | 16       | 390   | 120      |
| EF19-4.07 | 92       | 23       | 64200    | 7200     | 257   | 55       | 346   | 40       | 1900  | 180      |
| EF19-4.08 | 123      | 8.7      | 6940     | 650      | 3.54  | 0.69     | 48.3  | 5.4      | 15.3  | 1.8      |
| EF19-4.09 | 65.9     | 3        | 3170     | 270      | 6.4   | 1.2      | 41.2  | 3.2      | 16.1  | 3.3      |
| EF19-4.10 | 56.5     | 2.8      | 2140     | 220      | 8.6   | 1        | 41.9  | 4.4      | 9.3   | 1.3      |
| EF19-4.11 | 83.4     | 1.4      | 1221     | 68       | 2.86  | 0.53     | 8.48  | 0.69     | 17.2  | 4.2      |
| EF19-4.12 | 25       | 2.4      | 3930     | 420      | 6.47  | 0.81     | 29.3  | 3        | 11.6  | 1.3      |

| Spot #    | Ti (ppm) | Std. Dev | Fe (ppm) | Std. Dev | Ni    | Std. Dev | Cu    | Std. Dev | Zn    | Std. Dev |
|-----------|----------|----------|----------|----------|-------|----------|-------|----------|-------|----------|
|           |          | (2σ)     |          | (2σ)     | (ppm) | (2σ)     | (ppm) | (2σ)     | (ppm) | (2σ)     |
| EF19-4.13 | 120      | 13       | 123000   | 12000    | 357   | 60       | 585   | 45       | 3660  | 530      |
| EF19-4.14 | 86       | 16       | 4850     | 700      | 7.19  | 0.87     | 25.8  | 3.1      | 30.3  | 3.3      |
| EF19-4.15 | 185      | 59       | 5040     | 820      | 2.54  | 0.66     | 27.1  | 3.5      | 16    | 1.7      |
| EF19-4.16 | 127.8    | 6.7      | 121000   | 16000    | 178   | 30       | 620   | 100      | 960   | 220      |
| EF19-4.17 | 41.7     | 2.4      | 2450     | 750      | 4.1   | 1.4      | 19.8  | 9.6      | 39.8  | 4.7      |
| EF19-4.18 | 118      | 13       | 2470     | 330      | 1.88  | 0.67     | 7.85  | 0.89     | 15.5  | 1.8      |
| EF19-4.19 | 8.85     | 0.67     | 124      | 77       | 2.3   | 1.3      | 1.51  | 0.86     | 7.6   | 1.9      |
| EF19-4.20 | 174      | 11       | 74600    | 6000     | 161   | 10       | 335   | 23       | 197   | 35       |
| EF19-4.21 | 120      | 18       | 53000    | 13000    | 213   | 41       | 439   | 91       | 680   | 150      |
| EF19-4.22 | 126.9    | 9.2      | 22000    | 3300     | 134   | 20       | 318   | 40       | 1010  | 130      |
| EF19-4.23 | 72       | 12       | 3790     | 520      | 2.44  | 0.75     | 20.1  | 3        | 12.8  | 2.3      |
| EF19-4.24 | 3.27     | 0.3      | 29       | 20       | 1     | 0.42     | 0.51  | 0.21     | 2.1   | 2.2      |
| EF19-4.25 | 6.2      | 2.4      | 9000     | 5100     | 3.4   | 1.6      | 58    | 31       | 14.5  | 5.6      |

| Spot #    | As (ppm) | Std. Dev | Pd (ppm) | Std. Dev | Ag    | Std. Dev | Cd    | Std. Dev | Sn    | Std. Dev |
|-----------|----------|----------|----------|----------|-------|----------|-------|----------|-------|----------|
|           |          | (2σ)     |          | (2σ)     | (ppm) | (2σ)     | (ppm) | (2σ)     | (ppm) | (2σ)     |
| EF19-4.01 | 20.8     | 2.1      | 0        | 1        | 36.6  | 2.3      | 0.86  | 1.29     | 3.3   | 0.37     |
| EF19-4.02 | 56.4     | 6.2      |          |          | 10.6  | 1.7      |       |          | 9.15  | 0.85     |
| EF19-4.03 | 1000     | 110      | 0        | 1        | 13.3  | 1.3      |       |          | 2.96  | 0.52     |
| EF19-4.04 | 411      | 38       | 0.069    | 0.053    | 18.7  | 1.1      | 0.53  | 0.23     | 2.62  | 0.32     |
| EF19-4.05 | 20.4     | 1.8      |          |          | 9.29  | 0.98     |       |          | 2.67  | 0.26     |
| EF19-4.06 | 73.1     | 8.9      |          |          | 7.65  | 0.88     | 0.29  | 0.18     | 6.7   | 1.3      |
| EF19-4.07 | 159      | 22       | 0.014    | 0.029    | 23.5  | 3.1      | 1.21  | 0.54     | 56    | 13       |
| EF19-4.08 | 481      | 47       | 0.044    | 0.043    | 162   | 33       | 0.27  | 0.16     | 3.71  | 0.43     |
| EF19-4.09 | 189      | 16       | 0.115    | 0.061    | 73    | 8.2      | 0.33  | 0.23     | 2.74  | 0.36     |
| EF19-4.10 | 137      | 16       | 0.053    | 0.045    | 57.9  | 7.4      | 0.66  | 0.48     | 2.68  | 0.27     |
| EF19-4.11 | 72.4     | 3.8      | 0.076    | 0.054    | 24.8  | 4.1      |       |          | 3.3   | 0.39     |
| EF19-4.12 | 218      | 16       | 0.023    | 0.033    | 66    | 7.5      |       |          | 2.4   | 0.34     |

| Spot #    | As (ppm) | Std. Dev | Pd (ppm) | Std. Dev | Ag    | Std. Dev | Cd    | Std. Dev | Sn    | Std. Dev |
|-----------|----------|----------|----------|----------|-------|----------|-------|----------|-------|----------|
|           |          | (2σ)     |          | (2σ)     | (ppm) | (2σ)     | (ppm) | (2σ)     | (ppm) | (2σ)     |
| EF19-4.13 | 1480     | 360      |          |          | 252   | 55       | 1.81  | 0.58     | 121   | 20       |
| EF19-4.14 | 273      | 36       | 0.093    | 0.061    | 84    | 25       |       |          | 4.04  | 0.57     |
| EF19-4.15 | 308      | 39       | 0.088    | 0.062    | 37.4  | 3.4      |       |          | 4.88  | 0.87     |
| EF19-4.16 | 5090     | 930      | 0.114    | 0.089    | 291   | 56       | 1.9   | 1        | 101   | 17       |
| EF19-4.17 | 147      | 13       | 0.109    | 0.074    | 47.5  | 1.8      | 0.59  | 0.36     | 4     | 1.4      |
| EF19-4.18 | 196      | 21       | 0.097    | 0.068    | 17.09 | 0.93     |       |          | 3.71  | 0.44     |
| EF19-4.19 | 10.9     | 3.2      |          |          | 8.78  | 0.68     | 0.66  | 0.57     | 1.44  | 0.38     |
| EF19-4.20 | 118.1    | 7.4      | 0.094    | 0.073    | 31.8  | 2.7      | 0.36  | 0.27     | 25.7  | 2.1      |
| EF19-4.21 | 380      | 46       | 0.49     | 0.22     | 35.6  | 6.3      | 0.81  | 0.34     | 175   | 21       |
| EF19-4.22 | 488      | 74       | 0.141    | 0.076    | 29.1  | 4.8      | 0.75  | 0.35     | 45.9  | 6.8      |
| EF19-4.23 | 830      | 110      | 0.045    | 0.043    | 61.3  | 9.4      | 0.26  | 0.18     | 2.82  | 0.46     |
| EF19-4.24 | 3.8      | 1.2      | 0        | 1        | 1.31  | 0.19     |       |          | 0.78  | 0.17     |
| EF19-4.25 | 230      | 110      | 0.014    | 0.028    | 2.57  | 0.92     |       |          | 1.18  | 0.34     |

| Spot #    | Sb (ppm) | Std. Dev | Pt (ppm) | Std. Dev | Au    | Std. Dev | TI    | Std. Dev | Pb    | Std. Dev |
|-----------|----------|----------|----------|----------|-------|----------|-------|----------|-------|----------|
|           |          | (2σ)     |          | (2σ)     | (ppm) | (2σ)     | (ppm) | (2σ)     | (ppm) | (2σ)     |
| EF19-4.01 | 173.6    | 3.2      | 0        | 1        | 1.05  | 0.25     | 1.01  | 0.14     | 0.167 | 0.069    |
| EF19-4.02 | 77.4     | 2.7      | 0.043    | 0.036    | 3.53  | 0.77     | 1.07  | 0.17     | 3.7   | 4        |
| EF19-4.03 | 437      | 45       |          |          | 3.8   | 1.2      | 1.41  | 0.12     | 4.16  | 0.64     |
| EF19-4.04 | 212      | 21       |          |          | 9.1   | 1.3      | 2.16  | 0.17     | 6.56  | 0.84     |
| EF19-4.05 | 121      | 12       |          |          |       |          | 0.84  | 0.096    | 0.78  | 0.25     |
| EF19-4.06 | 226      | 10       |          |          | 0.94  | 0.27     | 1.39  | 0.12     | 4.46  | 0.86     |
| EF19-4.07 | 97.7     | 5.1      |          |          | 4.2   | 1.1      | 2.01  | 0.16     | 11.34 | 0.87     |
| EF19-4.08 | 131      | 10       | 0        | 1        | 26.9  | 1.9      | 10.8  | 1.1      | 20.9  | 1.7      |
| EF19-4.09 | 80.3     | 5.9      |          |          | 9.8   | 1.3      | 11.2  | 1.1      | 6.01  | 0.61     |
| EF19-4.10 | 79.7     | 5.4      |          |          | 6.63  | 0.72     | 10.7  | 1.1      | 4.8   | 0.51     |
| EF19-4.11 | 64.2     | 1.5      | 0        | 1        | 2.74  | 0.29     | 3.77  | 0.24     | 4.39  | 0.47     |
| EF19-4.12 | 103.2    | 7.1      |          |          | 6.39  | 0.93     | 10.7  | 1.2      | 10.1  | 1        |

| Spot #    | Sb (ppm) | Std. Dev | Pt (ppm) | Std. Dev | Au    | Std. Dev | TI    | Std. Dev | Pb    | Std. Dev |
|-----------|----------|----------|----------|----------|-------|----------|-------|----------|-------|----------|
|           |          | (2σ)     |          | (2σ)     | (ppm) | (2σ)     | (ppm) | (2σ)     | (ppm) | (2σ)     |
| EF19-4.13 | 730      | 120      |          |          | 82    | 17       | 1.33  | 0.2      | 23.6  | 4.4      |
| EF19-4.14 | 110.5    | 8.2      | 0        | 1        | 7.9   | 0.9      | 9.51  | 0.65     | 8.39  | 0.96     |
| EF19-4.15 | 127      | 12       |          |          | 23    | 2.8      | 7.47  | 0.42     | 5.79  | 0.66     |
| EF19-4.16 | 4330     | 780      | 0.06     | 0.052    | 153   | 23       | 6.25  | 0.69     | 104   | 18       |
| EF19-4.17 | 68.7     | 7.7      |          |          | 3.51  | 0.61     | 5.07  | 0.43     | 3.69  | 0.7      |
| EF19-4.18 | 99.4     | 9.6      |          |          | 3.6   | 0.55     | 10.36 | 0.84     | 5.1   | 1        |
| EF19-4.19 | 148.9    | 4.2      |          |          | 0.43  | 0.17     | 0.229 | 0.05     | 0.67  | 0.32     |
| EF19-4.20 | 86       | 3.6      | 0        | 1        | 4.64  | 0.56     | 2.16  | 0.18     | 7.7   | 1.3      |
| EF19-4.21 | 163.5    | 7.3      |          |          | 7.9   | 1.3      | 1.16  | 0.17     | 29.1  | 7.5      |
| EF19-4.22 | 110      | 11       | 0.043    | 0.034    | 4.8   | 1.1      | 3.82  | 0.25     | 36.1  | 4.1      |
| EF19-4.23 | 84.8     | 9.5      |          |          | 23.3  | 4.1      | 4.96  | 0.31     | 96    | 11       |
| EF19-4.24 | 65.1     | 4.7      |          |          |       |          | 1.09  | 0.12     | 0.097 | 0.062    |
| EF19-4.25 | 77       | 12       |          |          | 0.41  | 0.24     | 0.7   | 0.18     | 1.64  | 0.49     |

| Spot #    | Bi (ppm) | Std. Dev (2 $\sigma$ ) | Th (ppm) | Std. Dev (2 $\sigma$ ) | U (ppm) | Std. Dev (2 $\sigma$ ) |
|-----------|----------|------------------------|----------|------------------------|---------|------------------------|
|           |          |                        |          |                        |         |                        |
| EF19-4.01 | 0.057    | 0.029                  | 3.7      | 2                      | 0.51    | 0.058                  |
|           |          | 0.044                  |          |                        | 0.511   |                        |
| EF19-4.02 | 0.201    | 0.061                  | 1.77     | 0.25                   | 0.511   | 0.078                  |
| EF19-4.03 | 0.098    | 0.039                  | 3.73     | 0.81                   | 0.646   | 0.088                  |
| EF19-4.04 | 0.049    | 0.023                  | 2.63     | 0.25                   | 0.481   | 0.06                   |
| EF19-4.05 | 0.068    | 0.033                  | 2.34     | 0.19                   | 0.299   | 0.041                  |
| EF19-4.06 | 0.42     | 0.12                   | 1.45     | 0.46                   | 0.298   | 0.048                  |
| EF19-4.07 | 1.52     | 0.22                   | 2.82     | 0.61                   | 0.88    | 0.14                   |
| EF19-4.08 | 0.163    | 0.036                  | 10.3     | 1.6                    | 1.42    | 0.15                   |
| EF19-4.09 | 0.052    | 0.02                   | 8.93     | 0.43                   | 1.028   | 0.091                  |
| EF19-4.10 | 0.36     | 0.27                   | 6.95     | 0.36                   | 1.55    | 0.42                   |
| EF19-4.11 | 0.081    | 0.032                  | 8.45     | 0.33                   | 1.83    | 0.41                   |
| EF19-4.12 | 0.081    | 0.036                  | 3.16     | 0.25                   | 0.57    | 0.12                   |

| Spot #    | Bi (ppm) | Std. Dev (2 $\sigma$ ) | Dev $(2\sigma)$   Th (ppm)   St |      | U (ppm) | Std. Dev (2 $\sigma$ ) |
|-----------|----------|------------------------|---------------------------------|------|---------|------------------------|
|           |          |                        |                                 |      |         |                        |
| EF19-4.13 | 23.2     | 8.1                    | 3.36                            | 0.47 | 5.7     | 2.6                    |
| EF19-4.14 | 0.184    | 0.056                  | 6.39                            | 0.67 | 1.15    | 0.15                   |
| EF19-4.15 | 0.163    | 0.044                  | 20.2                            | 7.5  | 1.49    | 0.34                   |
| EF19-4.16 | 2.33     | 0.63                   | 45.7                            | 1.4  | 4.14    | 0.37                   |
| EF19-4.17 | 0.26     | 0.13                   | 4.2                             | 0.27 | 1.67    | 0.77                   |
| EF19-4.18 | 0.22     | 0.16                   | 9.88                            | 0.95 | 2.52    | 0.47                   |
| EF19-4.19 | 0.1      | 0.15                   | 15                              | 21   | 0.78    | 0.47                   |
| EF19-4.20 | 0.61     | 0.13                   | 25.4                            | 0.9  | 5.48    | 0.5                    |
| EF19-4.21 | 1.73     | 0.46                   | 25.9                            | 5.3  | 3.04    | 0.46                   |
| EF19-4.22 | 3.45     | 0.5                    | 9.2                             | 0.87 | 2.44    | 0.32                   |
| EF19-4.23 | 0.203    | 0.044                  | 1.93                            | 0.14 | 0.71    | 0.11                   |
| EF19-4.24 | 0.11     | 0.07                   | 37                              | 29   | 0.25    | 0.16                   |
| EF19-4.25 | 0.098    | 0.038                  | 5.1                             | 8.9  | 0.28    | 0.11                   |

| Spot #     | Si (cps) | Std. Dev | S (cps)  | Std. Dev | Se (cps) | Std. Dev | Te (cps) | Std. Dev | Hg (cps) | Std. Dev |
|------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
|            |          | (2σ)     |
| EF19-14    |          |          |          |          |          |          |          |          |          |          |
| EF19-14.01 | 2.78E+07 | 700000   | 594000   | 33000    | 7500     | 480      | 7.1      | 8        | 4910     | 460      |
| EF19-14.02 | 3.05E+07 | 550000   | 744000   | 70000    | 10320    | 540      | 7.1      | 8        | 6050     | 460      |
| EF19-14.03 | 2.68E+07 | 850000   | 152000   | 15000    | 1460     | 290      | 10       | 13       | 3440     | 510      |
| EF19-14.04 | 3.22E+07 | 1.40E+06 | 106000   | 7100     | 391      | 76       | 0        | 1        | 3600     | 510      |
| EF19-14.05 | 2.37E+07 | 620000   | 91900    | 6000     | 670      | 100      | 0        | 1        | 5390     | 480      |
| EF19-14.06 | 2.36E+07 | 570000   | 119900   | 3300     | 1990     | 150      | 4.9      | 6.8      | 5160     | 370      |
| EF19-14.07 | 2.25E+07 | 650000   | 101000   | 4100     | 2010     | 140      | 17       | 13       | 5080     | 470      |
| EF19-14.08 | 3.10E+07 | 660000   | 632000   | 52000    | 5060     | 410      | 0        | 1        | 3670     | 490      |
| EF19-14.09 | 2.67E+07 | 950000   | 5.06E+06 | 310000   | 105600   | 7500     | 45       | 32       | 22700    | 1200     |
| EF19-14.10 | 2.56E+07 | 1.20E+06 | 219000   | 22000    | 1610     | 280      | 7.1      | 8        | 4150     | 430      |
| EF19-14.11 | 2.96E+07 | 620000   | 1.25E+06 | 150000   | 10200    | 1000     | 12       | 12       | 2790     | 630      |
| EF19-14.12 | 2.74E+07 | 560000   | 135600   | 5000     | 1650     | 180      | 0        | 1        | 2800     | 540      |
| EF19-14.13 | 2.65E+07 | 770000   | 49500    | 3600     | 48       | 42       | 0        | 1        | 1900     | 500      |
| EF19-14.14 | 3.32E+07 | 840000   | 725000   | 63000    | 6910     | 420      | 0        | 1        | 23700    | 3100     |
| EF19-14.15 | 3.24E+07 | 520000   | 79000    | 4800     | 482      | 82       | 9.5      | 9.2      | 4750     | 650      |
| EF19-14.16 | 2.60E+07 | 510000   | 650000   | 140000   | 2740     | 370      | 19       | 16       | 12270    | 780      |
| EF19-14.17 | 2.57E+07 | 840000   | 295000   | 16000    | 820      | 110      | 0        | 1        | 5450     | 690      |

| Spot #     | Si (cps) | Std. Dev | S (cps)  | Std. Dev | Se (cps) | Std. Dev | Te (cps) | Std. Dev | Hg (cps) | Std. Dev |
|------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
|            |          | (2σ)     |
| EF19-14.18 | 2.88E+07 | 650000   | 2.99E+06 | 160000   | 27200    | 1400     | 21       | 13       | 8550     | 820      |
| EF19-14.19 | 2.65E+07 | 560000   | 5.74E+06 | 470000   | 62300    | 5400     | 16       | 11       | 17400    | 1200     |
| EF19-14.20 | 1.81E+07 | 650000   | 128500   | 9600     | 1410     | 290      | 102      | 39       | 12090    | 950      |
| EF19-14.21 | 2.50E+07 | 1.10E+06 | 136000   | 17000    | 1960     | 190      | 33       | 28       | 16000    | 1400     |
| EF19-14.22 | 2.82E+07 | 820000   | 318000   | 16000    | 2270     | 200      | 14       | 13       | 4680     | 460      |
| EF19-14.23 | 2.42E+07 | 620000   | 1.30E+06 | 170000   | 9460     | 810      | 44       | 20       | 7700     | 690      |
| EF19-14.24 | 2.47E+07 | 220000   | 124900   | 6000     | 724      | 83       | 9.8      | 9.4      | 3390     | 600      |
| EF19-14.25 | 3.28E+07 | 550000   | 294000   | 20000    | 1130     | 130      | 9.5      | 9.2      | 1750     | 550      |
| EF19-14.26 | 2.94E+07 | 510000   | 168000   | 6600     | 650      | 130      | 14       | 11       | 5420     | 680      |
| EF19-14.27 | 2.72E+07 | 800000   | 2.99E+06 | 110000   | 39500    | 2600     | 79       | 27       | 21600    | 1500     |
| EF19-14.28 | 2.58E+07 | 1.10E+06 | 1.83E+06 | 270000   | 7940     | 900      | 9.5      | 9.2      | 7050     | 810      |
| EF19-14.29 | 1.97E+07 | 270000   | 183000   | 13000    | 680      | 130      | 21       | 13       | 1710     | 720      |
| EF19-14.30 | 3.14E+07 | 500000   | 171200   | 4300     | 6150     | 260      | 7.3      | 8.2      | 4960     | 560      |
| EF19-14.31 | 2.94E+07 | 720000   | 407000   | 49000    | 2050     | 300      | 0        | 1        | 3060     | 670      |
| EF19-14.32 | 2.68E+07 | 930000   | 660000   | 100000   | 24800    | 1700     | 26       | 14       | 40800    | 3400     |
| EF19-14.33 | 2.61E+07 | 550000   | 5.03E+06 | 200000   | 121800   | 4700     | 14       | 11       | 23900    | 1400     |
| EF19-14.34 | 2.78E+07 | 440000   | 489000   | 23000    | 5110     | 310      | 0        | 1        | 2540     | 730      |
| EF19-14.35 | 2.63E+07 | 530000   | 229000   | 6000     | 2140     | 150      | 0        | 1        | 4130     | 450      |

| Spot #     | Na    | Std. Dev | Al     | Std. Dev | Cl    | Std. Dev | К      | Std. Dev | Ti    | Std. Dev |
|------------|-------|----------|--------|----------|-------|----------|--------|----------|-------|----------|
|            | (ppm) | (2σ)     | (ppm)  | (2σ)     | (ppm) | (2σ)     | (ppm)  | (2σ)     | (ppm) | (2σ)     |
| EF19-14.01 | 5440  | 150      | 299000 | 17000    | 1052  | 77       | 193000 | 15000    | 3720  | 370      |
| EF19-14.02 | 9710  | 330      | 784000 | 13000    | 1360  | 81       | 584000 | 13000    | 19280 | 880      |
| EF19-14.03 | 5790  | 290      | 484000 | 15000    | 1188  | 78       | 311000 | 13000    | 12700 | 2500     |
| EF19-14.04 | 3660  | 140      | 80200  | 2400     | 875   | 65       | 14380  | 970      | 1531  | 66       |
| EF19-14.05 | 3610  | 120      | 355000 | 15000    | 1176  | 72       | 196000 | 11000    | 6400  | 300      |
| EF19-14.06 | 7870  | 380      |        |          | 1557  | 93       | 831000 | 12000    | 17060 | 390      |
| EF19-14.07 | 9460  | 190      |        |          | 1673  | 87       | 850000 | 17000    | 34730 | 970      |
| EF19-14.08 | 6100  | 180      | 524000 | 12000    | 977   | 52       | 389000 | 11000    | 7730  | 380      |
| EF19-14.09 | 11710 | 300      | 688000 | 11000    | 1200  | 60       | 489100 | 9000     | 21320 | 560      |
| EF19-14.10 | 6210  | 120      | 720000 | 21000    | 1293  | 69       | 508000 | 14000    | 4550  | 420      |
| EF19-14.11 | 6440  | 320      | 396000 | 17000    | 1051  | 77       | 262000 | 16000    | 3360  | 310      |
| EF19-14.12 | 6880  | 150      | 583000 | 10000    | 1203  | 75       | 401000 | 12000    | 5050  | 310      |
| EF19-14.13 | 1943  | 78       | 85870  | 880      | 960   | 59       | 4100   | 260      | 55.3  | 4        |
| EF19-14.14 | 7090  | 160      | 418100 | 9700     | 1042  | 66       | 310200 | 5900     | 27210 | 690      |
| EF19-14.15 | 5646  | 93       | 323200 | 4500     | 1028  | 62       | 196500 | 3400     | 3580  | 100      |
| EF19-14.16 | 4780  | 170      | 398000 | 14000    | 1101  | 60       | 237000 | 10000    | 25700 | 5100     |
| EF19-14.17 | 6070  | 130      | 400200 | 8100     | 1101  | 70       | 267100 | 6300     | 14290 | 610      |

| Spot #     | Na (ppm) | Std. Dev | Al     | Std. Dev | Cl    | Std. Dev | K      | Std. Dev | Ti    | Std. Dev |
|------------|----------|----------|--------|----------|-------|----------|--------|----------|-------|----------|
|            |          | (2σ)     | (ppm)  | (2σ)     | (ppm) | (2σ)     | (ppm)  | (2σ)     | (ppm) | (2σ)     |
| EF19-14.18 | 7180     | 150      | 466700 | 7200     | 1077  | 54       | 332900 | 8400     | 35410 | 930      |
| EF19-14.19 | 9360     | 270      | 563000 | 11000    | 1172  | 62       | 399900 | 7000     | 32900 | 1200     |
| EF19-14.20 | 3680     | 320      | 468000 | 46000    | 2950  | 210      | 188100 | 9900     | 14500 | 5400     |
| EF19-14.21 | 4480     | 340      | 389900 | 9600     | 2250  | 190      | 222100 | 7000     | 4220  | 810      |
| EF19-14.22 | 5770     | 120      | 373500 | 4600     | 1126  | 78       | 250000 | 3900     | 12800 | 170      |
| EF19-14.23 | 5530     | 170      | 407000 | 11000    | 1163  | 63       | 252100 | 6400     | 17000 | 2700     |
| EF19-14.24 | 3026     | 87       | 563000 | 12000    | 3870  | 230      | 346800 | 7600     | 1820  | 140      |
| EF19-14.25 | 3901     | 95       | 93300  | 1000     | 905   | 53       | 12800  | 260      | 31500 | 610      |
| EF19-14.26 | 5480     | 120      | 221500 | 9900     | 991   | 61       | 107800 | 8300     | 2414  | 63       |
| EF19-14.27 | 5200     | 120      | 364000 | 10000    | 1350  | 85       | 218100 | 8300     | 24710 | 850      |
| EF19-14.28 | 357000   | 75000    | 488000 | 16000    | 5120  | 340      | 270000 | 11000    | 78000 | 15000    |
| EF19-14.29 | 5810     | 290      |        |          | 2350  | 110      | 723000 | 35000    | 13300 | 2000     |
| EF19-14.30 | 6015     | 84       | 512100 | 7000     | 1292  | 52       | 375900 | 4900     | 16190 | 390      |
| EF19-14.31 | 4670     | 390      | 106800 | 2100     | 987   | 57       | 29000  | 1000     | 7750  | 480      |
| EF19-14.32 | 5020     | 170      | 415000 | 14000    | 1231  | 67       | 272000 | 12000    | 44000 | 11000    |
| EF19-14.33 | 10480    | 290      | 746000 | 18000    | 1379  | 67       | 560000 | 12000    | 15800 | 530      |
| EF19-14.34 | 6080     | 120      | 574500 | 7200     | 1244  | 68       | 413600 | 6000     | 18690 | 730      |
| EF19-14.35 | 7490     | 140      | 771600 | 9400     | 1407  | 62       | 579000 | 8400     | 12460 | 370      |

| Spot #     | Ti    | Std. Dev | Fe     | Std. Dev | Ni    | Std. Dev | Cu    | Std. Dev | Zn    | Std. Dev |
|------------|-------|----------|--------|----------|-------|----------|-------|----------|-------|----------|
|            | (ppm) | (2σ)     | (ppm)  | (2σ)     | (ppm) | (2σ)     | (ppm) | (2σ)     | (ppm) | (2σ)     |
| EF19-14.01 | 369   | 39       | 13500  | 1300     | 7.4   | 1        | 96.1  | 9.1      | 35.9  | 2.8      |
| EF19-14.02 | 2122  | 81       | 46700  | 1500     | 16.1  | 1.8      | 218   | 5.6      | 72.4  | 5        |
| EF19-14.03 | 1400  | 280      | 5640   | 580      | 3.9   | 1.1      | 36.1  | 4.3      | 11.2  | 1.5      |
| EF19-14.04 | 151.6 | 6.9      | 1380   | 320      | 2.94  | 0.62     | 14.2  | 3.2      | 7.2   | 1        |
| EF19-14.05 | 705   | 40       | 15190  | 720      | 4.2   | 1.1      | 55.2  | 2.8      | 31.7  | 3.7      |
| EF19-14.06 | 1932  | 45       | 52680  | 820      | 7.7   | 1.6      | 172.8 | 3.8      | 79.4  | 6.7      |
| EF19-14.07 | 3950  | 110      | 74200  | 3500     | 9.3   | 1.3      | 212.6 | 7.6      | 111   | 6        |
| EF19-14.08 | 882   | 44       | 11580  | 530      | 10.6  | 1.1      | 89.3  | 4        | 27.3  | 2.3      |
| EF19-14.09 | 2416  | 67       | 56400  | 2600     | 64.9  | 3.7      | 782   | 23       | 50.7  | 3.1      |
| EF19-14.10 | 486   | 54       | 22000  | 1600     | 5.22  | 0.87     | 63.7  | 4.7      | 37.4  | 2.9      |
| EF19-14.11 | 359   | 39       | 11550  | 870      | 8.22  | 0.99     | 111.1 | 6        | 30.3  | 2        |
| EF19-14.12 | 567   | 38       | 16680  | 430      | 4.2   | 0.67     | 97.8  | 3.6      | 48.2  | 2.7      |
| EF19-14.13 | 5.64  | 0.26     | 2620   | 150      | 1.35  | 0.4      | 9.1   | 1.2      | 4.78  | 0.88     |
| EF19-14.14 | 3017  | 57       | 41100  | 1600     | 14.7  | 1.4      | 363   | 18       | 111.1 | 5.1      |
| EF19-14.15 | 391   | 18       | 4780   | 330      | 1.8   | 0.43     | 20.5  | 1.4      | 14.5  | 1.7      |
| EF19-14.16 | 2780  | 480      | 115200 | 9800     | 25.4  | 2.1      | 484   | 36       | 443   | 42       |
| EF19-14.17 | 1645  | 75       | 3240   | 280      | 8.3   | 0.91     | 62.7  | 5.2      | 98    | 20       |

| Spot #     | Ti    | Std. Dev | Fe     | Std. Dev | Ni    | Std. Dev | Cu    | Std. Dev | Zn    | Std. Dev |
|------------|-------|----------|--------|----------|-------|----------|-------|----------|-------|----------|
|            | (ppm) | (2σ)     | (ppm)  | (2σ)     | (ppm) | (2σ)     | (ppm) | (2σ)     | (ppm) | (2σ)     |
| EF19-14.18 | 3990  | 62       | 42100  | 950      | 30.3  | 1.7      | 321.7 | 7.8      | 22.1  | 1.9      |
| EF19-14.19 | 3780  | 110      | 62400  | 5400     | 54    | 8.4      | 810   | 120      | 85    | 26       |
| EF19-14.20 | 1640  | 620      | 100000 | 19000    | 16.1  | 3.1      | 272   | 53       | 248   | 44       |
| EF19-14.21 | 467   | 96       | 102000 | 11000    | 8.6   | 1.6      | 244   | 20       | 154.6 | 8.4      |
| EF19-14.22 | 1471  | 16       | 8840   | 160      | 6.68  | 0.75     | 58.9  | 2        | 53.3  | 2.4      |
| EF19-14.23 | 1940  | 290      | 275000 | 31000    | 23.4  | 2.6      | 606   | 64       | 256   | 38       |
| EF19-14.24 | 181   | 15       | 72500  | 3300     | 33.8  | 2.9      | 200.6 | 6.6      | 134   | 10       |
| EF19-14.25 | 3570  | 52       | 4380   | 320      | 2.99  | 0.49     | 16.4  | 2.2      | 21.2  | 1.9      |
| EF19-14.26 | 237.7 | 5.8      | 2530   | 330      | 2.76  | 0.51     | 11.6  | 1        | 8.78  | 0.96     |
| EF19-14.27 | 2808  | 96       | 352000 | 26000    | 62.1  | 4.1      | 2360  | 200      | 174   | 11       |
| EF19-14.28 | 7900  | 1500     | 19400  | 1400     | 18    | 2.1      | 191   | 14       | 278   | 21       |
| EF19-14.29 | 1580  | 250      | 58800  | 4100     | 25.9  | 3.1      | 198   | 17       | 115.1 | 8.5      |
| EF19-14.30 | 1857  | 49       | 16970  | 930      | 7.22  | 0.92     | 284   | 7.6      | 19.9  | 1.3      |
| EF19-14.31 | 874   | 54       | 5990   | 710      | 4.86  | 0.9      | 47.4  | 5.4      | 68    | 12       |
| EF19-14.32 | 4600  | 1000     | 288000 | 15000    | 29.5  | 2.2      | 1918  | 93       | 118.8 | 6        |
| EF19-14.33 | 1786  | 60       | 59300  | 3100     | 43.5  | 2.9      | 637   | 22       | 27.8  | 2.1      |
| EF19-14.34 | 2078  | 65       | 22240  | 520      | 11.5  | 0.98     | 199.6 | 4.8      | 157.9 | 6.9      |
| EF19-14.35 | 1391  | 40       | 23850  | 730      | 10.96 | 0.94     | 84.2  | 3.4      | 94.6  | 5.7      |

| Spot #     | As    | Std. Dev | Pd    | Std. Dev | Ag    | Std. Dev | Cd    | Std. Dev | Sn    | Std. Dev |
|------------|-------|----------|-------|----------|-------|----------|-------|----------|-------|----------|
|            | (ppm) | (2σ)     |
| EF19-14.01 | 864   | 76       | 0.41  | 0.13     | 123.9 | 8.3      | 0.4   | 0.22     | 7.48  | 0.69     |
| EF19-14.02 | 2043  | 66       | 0.4   | 0.12     | 217.9 | 9.7      | 1.29  | 0.36     | 68.2  | 2.4      |
| EF19-14.03 | 187   | 24       | 0.126 | 0.076    | 108.7 | 9.3      | 0.43  | 0.26     | 12.1  | 1.8      |
| EF19-14.04 | 72    | 16       | 0.079 | 0.056    | 6.3   | 1.5      |       |          | 3.42  | 0.63     |
| EF19-14.05 | 321   | 14       | 0.2   | 0.14     | 66.8  | 4.9      |       |          | 8.28  | 0.78     |
| EF19-14.06 | 1095  | 30       | 0.36  | 0.17     | 191.5 | 5.1      |       |          | 24.1  | 1.6      |
| EF19-14.07 | 1499  | 61       | 0.73  | 0.25     | 150.5 | 5.5      | 0.96  | 0.42     | 42.8  | 1.7      |
| EF19-14.08 | 455   | 17       | 0.45  | 0.17     | 219.1 | 7.8      | 1.8   | 1.8      | 12.23 | 0.76     |
| EF19-14.09 | 3540  | 140      | 0.28  | 0.14     | 9650  | 600      | 0.9   | 0.35     | 17.9  | 1.1      |
| EF19-14.10 | 651   | 43       | 0.06  | 0.058    | 128   | 19       | 0.77  | 0.28     | 8.45  | 0.72     |
| EF19-14.11 | 573   | 32       | 0.203 | 0.097    | 228   | 23       | 0.58  | 0.29     | 6.75  | 0.89     |
| EF19-14.12 | 1014  | 32       | 0.22  | 0.12     | 95.6  | 3.8      | 0.49  | 0.31     | 16.6  | 2.7      |
| EF19-14.13 | 51.5  | 2.6      |       |          | 80.3  | 2.8      |       |          | 0.9   | 0.18     |
| EF19-14.14 | 2647  | 72       | 0.42  | 0.14     | 283   | 35       | 1.21  | 0.3      | 27.2  | 1.9      |
| EF19-14.15 | 284   | 21       | 0.135 | 0.086    | 91.5  | 2.5      | 0.29  | 0.15     | 6.6   | 0.56     |
| EF19-14.16 | 1700  | 180      | 0.11  | 0.071    | 49.3  | 8.3      | 0.68  | 0.31     | 16.7  | 2.1      |
| EF19-14.17 | 172   | 14       | 0.54  | 0.2      | 221   | 23       | 1.77  | 0.96     | 19.8  | 1.1      |

| Spot #     | As    | Std. Dev | Pd    | Std. Dev | Ag    | Std. Dev | Cd    | Std. Dev | Sn    | Std. Dev |
|------------|-------|----------|-------|----------|-------|----------|-------|----------|-------|----------|
|            | (ppm) | (2σ)     |
| EF19-14.18 | 3900  | 100      | 0.49  | 0.14     | 1353  | 93       | 0.55  | 0.32     | 19.14 | 0.77     |
| EF19-14.19 | 4520  | 300      | 0.23  | 0.11     | 1630  | 150      | 22    | 12       | 47    | 16       |
| EF19-14.20 | 2500  | 440      | 0.2   | 0.13     | 34.1  | 2.6      | 1.31  | 0.49     | 17.8  | 2.8      |
| EF19-14.21 | 2380  | 200      | 0.4   | 0.16     | 69.6  | 3.4      | 1.45  | 0.43     | 18.2  | 2.8      |
| EF19-14.22 | 983   | 20       | 0.34  | 0.15     | 188.6 | 7.4      | 0.98  | 0.4      | 10.01 | 0.55     |
| EF19-14.23 | 10500 | 1100     | 0.37  | 0.15     | 289   | 22       | 4.6   | 1        | 51.3  | 4.7      |
| EF19-14.24 | 1071  | 66       | 0     | 1        | 31.7  | 1.6      | 0.73  | 0.34     | 16.06 | 0.9      |
| EF19-14.25 | 165   | 23       | 0.38  | 0.14     | 427.9 | 9.6      | 0.69  | 0.32     | 18.74 | 0.9      |
| EF19-14.26 | 97    | 12       | 0.099 | 0.064    | 316   | 14       | 0.42  | 0.22     | 5.26  | 0.88     |
| EF19-14.27 | 13160 | 940      | 1.14  | 0.23     | 219   | 35       | 4.79  | 0.88     | 66.8  | 4        |
| EF19-14.28 | 4000  | 510      | 1.43  | 0.32     | 435   | 24       | 1.63  | 0.52     | 35.1  | 3        |
| EF19-14.29 | 801   | 49       | 0.86  | 0.24     | 224   | 14       | 3.4   | 1        | 20.5  | 2.5      |
| EF19-14.30 | 1333  | 45       | 0.113 | 0.078    | 226.8 | 5        | 1.1   | 0.38     | 14.2  | 0.7      |
| EF19-14.31 | 355   | 45       | 0.42  | 0.16     | 68.6  | 7.5      | 3.8   | 1.7      | 9.4   | 0.58     |
| EF19-14.32 | 9390  | 580      | 0.47  | 0.16     | 166.7 | 7.9      | 2.26  | 0.56     | 63.9  | 7.3      |
| EF19-14.33 | 3560  | 210      | 0.18  | 0.11     | 6440  | 300      | 0.88  | 0.35     | 14.7  | 0.57     |
| EF19-14.34 | 1469  | 35       | 0.8   | 0.2      | 127.3 | 5.7      | 1.85  | 0.52     | 26.6  | 1.2      |
| EF19-14.35 | 1378  | 47       | 0.22  | 0.11     | 91.5  | 2.2      | 0.63  | 0.28     | 12.36 | 0.68     |

| Spot #     | Sb    | Std. Dev | Pt    | Std. Dev | Au    | Std. Dev | TI    | Std. Dev | Pb    | Std. Dev |
|------------|-------|----------|-------|----------|-------|----------|-------|----------|-------|----------|
|            | (ppm) | (2σ)     |
| EF19-14.01 | 238   | 17       |       |          | 48.2  | 4.4      | 14.2  | 1.1      | 97.2  | 7        |
| EF19-14.02 | 1087  | 32       | 0.046 | 0.035    | 98.4  | 7.9      | 31.8  | 1.4      | 385   | 18       |
| EF19-14.03 | 100   | 11       | 0.056 | 0.04     | 24.6  | 2.4      | 13.51 | 0.72     | 61    | 7.7      |
| EF19-14.04 | 163.2 | 6.5      |       |          | 0.71  | 0.23     | 1.8   | 0.14     | 11.2  | 2.1      |
| EF19-14.05 | 198.6 | 6.6      | 0.055 | 0.042    | 7.56  | 0.54     | 6.45  | 0.48     | 29    | 2.6      |
| EF19-14.06 | 555   | 13       |       |          | 17.39 | 0.92     | 22.03 | 0.71     | 92.5  | 4.5      |
| EF19-14.07 | 928   | 40       | 0.114 | 0.067    | 24.5  | 1        | 24.19 | 0.66     | 130   | 15       |
| EF19-14.08 | 210   | 10       |       |          | 10.56 | 0.99     | 18.56 | 0.66     | 119   | 6.4      |
| EF19-14.09 | 671   | 36       | 0.056 | 0.04     | 113.4 | 4.4      | 197   | 11       | 179.4 | 6.4      |
| EF19-14.10 | 301   | 18       | 0.028 | 0.027    | 20.3  | 1.4      | 21.01 | 0.83     | 153   | 14       |
| EF19-14.11 | 142.4 | 8.3      | 0.021 | 0.024    | 21.7  | 2        | 27.5  | 2.6      | 59.2  | 8        |
| EF19-14.12 | 256.1 | 8        | 0.064 | 0.042    | 27.5  | 1.7      | 16.54 | 0.69     | 91.7  | 3.3      |
| EF19-14.13 | 68.3  | 1.6      |       |          | 1.66  | 0.21     | 0.543 | 0.066    | 2.47  | 0.43     |
| EF19-14.14 | 439   | 14       | 0.097 | 0.056    | 129.6 | 4.8      | 12.36 | 0.48     | 177.3 | 5.1      |
| EF19-14.15 | 76.2  | 3.7      | 0.047 | 0.033    | 8.71  | 0.85     | 9.79  | 0.29     | 23.6  | 1.5      |
| EF19-14.16 | 236   | 24       |       |          | 4.24  | 0.65     | 18.36 | 0.91     | 562   | 94       |
| EF19-14.17 | 74.8  | 2.6      | 0.067 | 0.044    | 1.39  | 0.23     | 19.11 | 0.52     | 82.1  | 3.3      |

| Spot #     | Sb    | Std. Dev | Pt    | Std. Dev | Au    | Std. Dev | TI    | Std. Dev | Pb    | Std. Dev |
|------------|-------|----------|-------|----------|-------|----------|-------|----------|-------|----------|
|            | (ppm) | (2σ)     |
| EF19-14.18 | 602   | 17       | 0.11  | 0.066    | 97.6  | 2        | 97.3  | 3.7      | 344   | 10       |
| EF19-14.19 | 682   | 47       | 0.056 | 0.039    | 124.9 | 8.5      | 199   | 14       | 520   | 140      |
| EF19-14.20 | 322   | 44       |       |          | 1.58  | 0.58     | 13.25 | 0.72     | 191   | 26       |
| EF19-14.21 | 301   | 22       | 0.093 | 0.058    | 1.95  | 0.7      | 14.14 | 0.72     | 182   | 10       |
| EF19-14.22 | 163   | 3        | 0.054 | 0.038    | 20.31 | 0.79     | 11.69 | 0.37     | 219.8 | 8.1      |
| EF19-14.23 | 2180  | 170      | 0.071 | 0.046    | 30.6  | 4.6      | 16.98 | 0.54     | 3320  | 410      |
| EF19-14.24 | 479   | 26       | 0     | 1        | 0.51  | 0.19     | 21.95 | 0.74     | 85.1  | 7.1      |
| EF19-14.25 | 108.7 | 1.9      | 0.13  | 0.051    | 1.17  | 0.29     | 1.53  | 0.11     | 56.8  | 7.6      |
| EF19-14.26 | 56.4  | 2.8      | 0.05  | 0.035    | 1.72  | 0.32     | 8.12  | 0.62     | 20.7  | 1.4      |
| EF19-14.27 | 1230  | 75       | 0.122 | 0.061    | 115   | 43       | 15.13 | 0.4      | 1660  | 150      |
| EF19-14.28 | 387   | 47       | 0.147 | 0.075    | 37.9  | 4.1      | 11.88 | 0.7      | 423   | 52       |
| EF19-14.29 | 662   | 37       |       |          | 2.16  | 0.42     | 47.1  | 2.8      | 132   | 13       |
| EF19-14.30 | 154.1 | 5.8      | 0.035 | 0.03     | 37.8  | 2        | 13.4  | 0.42     | 119.2 | 5.3      |
| EF19-14.31 | 88.1  | 4.9      | 0.55  | 0.21     | 2.67  | 0.38     | 3.49  | 0.33     | 63.2  | 6        |
| EF19-14.32 | 982   | 40       | 0.146 | 0.074    | 51.4  | 2.6      | 19.73 | 0.9      | 468   | 27       |
| EF19-14.33 | 615   | 32       |       |          | 121.1 | 6.4      | 194.4 | 8.3      | 171.2 | 9        |
| EF19-14.34 | 365   | 11       | 0.047 | 0.036    | 39.1  | 1.6      | 16.41 | 0.41     | 139.9 | 3.5      |
| EF19-14.35 | 349   | 14       |       |          | 34.2  | 2.1      | 23.49 | 0.51     | 191.7 | 4.5      |
| Spot #     | Bi (ppm) | Std. Dev (2 $\sigma$ ) | Th (ppm) | Std. Dev (2σ) | U (ppm) | Std. Dev (2 $\sigma$ ) |
|------------|----------|------------------------|----------|---------------|---------|------------------------|
| EF19-14.01 | 0.364    | 0.075                  | 21.5     | 2.2           | 6.1     | 1.2                    |
| EF19-14.02 | 1.87     | 0.13                   | 69.9     | 2.7           | 18.46   | 0.82                   |
| EF19-14.03 | 0.9      | 0.16                   | 27.7     | 4             | 9.5     | 2.5                    |
| EF19-14.04 | 0.181    | 0.048                  | 14.3     | 1.4           | 3.01    | 0.33                   |
| EF19-14.05 | 0.302    | 0.049                  | 49       | 2.3           | 15.16   | 0.91                   |
| EF19-14.06 | 1.13     | 0.41                   | 92.5     | 2.8           | 26.3    | 0.82                   |
| EF19-14.07 | 1.168    | 0.084                  | 144.6    | 9.9           | 55.3    | 5.9                    |
| EF19-14.08 | 0.58     | 0.31                   | 40.9     | 2.4           | 11.99   | 0.9                    |
| EF19-14.09 | 2.13     | 0.12                   | 57.9     | 4.8           | 19.5    | 3.2                    |
| EF19-14.10 | 0.86     | 0.41                   | 23       | 1.6           | 5.86    | 0.45                   |
| EF19-14.11 | 0.283    | 0.046                  | 15.3     | 1.7           | 4.75    | 0.58                   |
| EF19-14.12 | 0.591    | 0.08                   | 38.5     | 3.5           | 7.78    | 0.56                   |
| EF19-14.13 | 0.062    | 0.025                  | 0.433    | 0.063         | 0.236   | 0.043                  |
| EF19-14.14 | 1.78     | 0.13                   | 75.4     | 1.9           | 21.64   | 0.55                   |
| EF19-14.15 | 0.236    | 0.032                  | 23.97    | 0.9           | 5.96    | 0.28                   |
| EF19-14.16 | 3.07     | 0.54                   | 51       | 4.3           | 22.6    | 3.7                    |
| EF19-14.17 | 0.84     | 0.11                   | 103.7    | 2.9           | 25.27   | 0.98                   |

| Spot #     | Bi (ppm) | Std. Dev (2 <sub>5</sub> ) | Th (ppm) | Std. Dev (2 $\sigma$ ) | U (ppm) | Std. Dev (2 $\sigma$ ) |
|------------|----------|----------------------------|----------|------------------------|---------|------------------------|
| EF19-14.18 | 3.23     | 0.19                       | 74.8     | 1.4                    | 24.53   | 0.38                   |
| EF19-14.19 | 3.3      | 0.29                       | 76.6     | 2.8                    | 24.11   | 0.7                    |
| EF19-14.20 | 1.3      | 0.34                       | 29.6     | 3.9                    | 12.3    | 1.3                    |
| EF19-14.21 | 0.83     | 0.11                       | 54.7     | 9.9                    | 21.2    | 3.2                    |
| EF19-14.22 | 0.86     | 0.24                       | 35.95    | 0.78                   | 12.7    | 3.7                    |
| EF19-14.23 | 11.5     | 1.2                        | 72.1     | 3.7                    | 20.2    | 1.4                    |
| EF19-14.24 |          |                            | 14       | 1                      | 6.13    | 0.37                   |
| EF19-14.25 | 0.769    | 0.095                      | 30.9     | 1.9                    | 13.1    | 1                      |
| EF19-14.26 | 0.238    | 0.052                      | 16.97    | 0.7                    | 3.72    | 0.21                   |
| EF19-14.27 | 18       | 1.2                        | 133.7    | 4.8                    | 39.5    | 2.9                    |
| EF19-14.28 | 2.18     | 0.25                       | 197      | 23                     | 55.2    | 7.8                    |
| EF19-14.29 | 2.09     | 0.23                       | 40.3     | 3.9                    | 19.7    | 1.8                    |
| EF19-14.30 | 1.281    | 0.084                      | 53.9     | 1.3                    | 14.47   | 0.39                   |
| EF19-14.31 | 0.77     | 0.12                       | 540      | 180                    | 295     | 97                     |
| EF19-14.32 | 12.8     | 1.1                        | 123.2    | 6.4                    | 52.5    | 4                      |
| EF19-14.33 | 2.05     | 0.16                       | 42.3     | 2.2                    | 12.38   | 0.41                   |
| EF19-14.34 | 0.85     | 0.1                        | 76.6     | 4.5                    | 19.5    | 1.3                    |
| EF19-14.35 | 1.108    | 0.094                      | 35.5     | 1.4                    | 10.57   | 0.38                   |

| Spot #     | Si (cps) | Std. Dev | S (cps)  | Std. Dev | Se (cps) | Std. Dev | Te    | Std. Dev | Hg     | Std. Dev |
|------------|----------|----------|----------|----------|----------|----------|-------|----------|--------|----------|
|            |          | (2σ)     |          | (2σ)     |          | (2σ)     | (cps) | (2σ)     | (cps)  | (2σ)     |
| EF19-20    |          |          |          |          |          |          |       |          |        |          |
| EF19-20.01 | 3.47E+07 | 780000   | 174600   | 8300     | 68       | 35       | 69    | 35       | 63900  | 3500     |
| EF19-20.02 | 2.77E+07 | 1.00E+06 | 76500    | 7200     | 150      | 57       | 71    | 57       | 11400  | 1200     |
| EF19-20.03 | 2.73E+07 | 720000   | 137000   | 13000    | 50       | 31       | 40    | 26       | 8270   | 510      |
| EF19-20.04 | 2.66E+07 | 660000   | 156000   | 13000    | 67       | 34       | 74    | 67       | 5280   | 700      |
| EF19-20.05 | 2.73E+07 | 540000   | 104500   | 5400     | 98       | 34       | 14    | 11       | 8060   | 470      |
| EF19-20.06 | 2.78E+07 | 940000   | 132900   | 6600     | 75       | 34       | 44    | 30       | 3050   | 480      |
| EF19-20.07 | 2.75E+07 | 480000   | 105900   | 6800     | 79       | 35       | 14    | 17       | 4450   | 390      |
| EF19-20.08 | 2.38E+07 | 480000   | 236800   | 8700     | 247      | 56       | 1560  | 370      | 112600 | 9500     |
| EF19-20.09 | 2.59E+07 | 590000   | 1.05E+06 | 230000   | 156      | 49       | 12    | 12       | 11000  | 1500     |
| EF19-20.10 | 2.80E+07 | 1.10E+06 | 59600    | 4400     | 18       | 22       | 14    | 11       | 9040   | 570      |
| EF19-20.11 | 1.86E+07 | 570000   | 34400    | 2500     | 20       | 25       | 16    | 11       | 5430   | 510      |
| EF19-20.12 | 2.54E+07 | 770000   | 64500    | 9100     | 59       | 35       | 12    | 12       | 13000  | 1400     |

| Spot #     | Si (cps) | Std. Dev | S (cps) | Std. Dev | Se (cps) | Std. Dev | Te (cps) | Std. Dev | Hg (cps) | Std. Dev |
|------------|----------|----------|---------|----------|----------|----------|----------|----------|----------|----------|
|            |          | (2σ)     |         | (2σ)     |          | (2σ)     |          | (2σ)     |          | (2σ)     |
| EF19-20.13 | 2.66E+07 | 960000   | 42500   | 3700     | 107      | 41       | 24       | 19       | 6730     | 470      |
| EF19-20.14 | 2.80E+07 | 1.10E+06 | 219000  | 86000    | 70       | 28       | 0        | 1        | 4600     | 580      |
| EF19-20.15 | 3.38E+07 | 1.10E+06 | 307000  | 20000    | 1410     | 150      | 11.6     | 9.9      | 33900    | 1800     |
| EF19-20.16 | 2.61E+07 | 930000   | 78300   | 7800     | 278      | 87       | 40       | 37       | 22400    | 1400     |
| EF19-20.17 | 2.57E+07 | 890000   | 140000  | 17000    | 51       | 34       | 14       | 11       | 4920     | 440      |
| EF19-20.18 | 2.67E+07 | 710000   | 73900   | 5200     | 135      | 54       | 12       | 10       | 13200    | 2200     |
| EF19-20.19 | 2.43E+07 | 650000   | 272000  | 44000    | 357      | 89       | 2.4      | 4.8      | 79900    | 7400     |
| EF19-20.20 | 2.12E+07 | 840000   | 42100   | 3800     | 49       | 30       | 26       | 26       | 4150     | 580      |
| EF19-20.21 | 2.79E+07 | 1.20E+06 | 60200   | 3400     | 4        | 20       | 0        | 1        | 5000     | 460      |
| EF19-20.22 | 2.80E+07 | 1.10E+06 | 92000   | 14000    | 49       | 28       | 0        | 1        | 8500     | 690      |
| EF19-20.23 | 2.61E+07 | 1.20E+06 | 160000  | 46000    | 299      | 89       | 230      | 130      | 123000   | 23000    |
| EF19-20.24 | 2.46E+07 | 1.00E+06 | 197000  | 30000    | 570      | 100      | 53       | 27       | 153000   | 18000    |
| EF19-20.25 | 3.07E+07 | 1.10E+06 | 156000  | 22000    | 103      | 36       | 4.8      | 6.7      | 4860     | 650      |

| Spot #     | Na    | Std. Dev | Al     | Std. Dev | Cl    | Std. Dev | K     | Std. Dev | Ti    | Std. Dev |
|------------|-------|----------|--------|----------|-------|----------|-------|----------|-------|----------|
|            | (ppm) | (2σ)     | (ppm)  | (2σ)     | (ppm) | (2σ)     | (ppm) | (2σ)     | (ppm) | (2σ)     |
| EF19-20.01 | 3170  | 530      | 26400  | 4800     | 791   | 49       | 977   | 58       | 666   | 34       |
| EF19-20.02 | 4100  | 2200     | 5170   | 890      | 914   | 65       | 1440  | 180      | 133   | 17       |
| EF19-20.03 | 3190  | 310      | 14440  | 430      | 929   | 52       | 4080  | 130      | 109.7 | 7.3      |
| EF19-20.04 | 4300  | 1500     | 22780  | 380      | 974   | 62       | 6490  | 160      | 192.7 | 9.2      |
| EF19-20.05 | 4450  | 970      | 24490  | 470      | 1038  | 57       | 5210  | 77       | 253   | 13       |
| EF19-20.06 | 4500  | 1800     | 17360  | 250      | 909   | 60       | 5324  | 91       | 261   | 14       |
| EF19-20.07 | 3910  | 840      | 18140  | 260      | 971   | 61       | 5572  | 90       | 286   | 18       |
| EF19-20.08 | 11300 | 1500     | 240000 | 63000    | 981   | 78       | 16160 | 830      | 2070  | 140      |
| EF19-20.09 | 2136  | 87       | 8700   | 220      | 939   | 56       | 2205  | 69       | 218   | 12       |
| EF19-20.10 | 1320  | 160      | 7480   | 320      | 870   | 60       | 1956  | 76       | 106   | 5.3      |
| EF19-20.11 | 11.9  | 7.8      | 1196   | 91       | 1013  | 94       | 8.6   | 3.2      | 26.7  | 2.8      |
| EF19-20.12 | 2500  | 370      | 18140  | 850      | 1022  | 54       | 4710  | 320      | 625   | 72       |

| Spot #     | Na    | Std. Dev | Al     | Std. Dev | Cl    | Std. Dev | K     | Std. Dev | Ti    | Std. Dev |
|------------|-------|----------|--------|----------|-------|----------|-------|----------|-------|----------|
|            | (ppm) | (2σ)     | (ppm)  | (2σ)     | (ppm) | (2σ)     | (ppm) | (2σ)     | (ppm) | (2σ)     |
| EF19-20.13 | 2296  | 44       | 22460  | 400      | 1093  | 73       | 5430  | 170      | 1023  | 68       |
| EF19-20.14 | 3450  | 120      | 42540  | 540      | 1005  | 61       | 9450  | 180      | 167   | 13       |
| EF19-20.15 | 2460  | 100      | 8330   | 400      | 996   | 64       | 1545  | 35       | 1760  | 220      |
| EF19-20.16 | 3300  | 2600     | 16200  | 1100     | 1025  | 73       | 3140  | 300      | 1119  | 39       |
| EF19-20.17 | 1349  | 91       | 4390   | 190      | 1116  | 79       | 896   | 11       | 121.8 | 4.7      |
| EF19-20.18 | 1350  | 160      | 5750   | 220      | 1157  | 73       | 1180  | 59       | 130   | 14       |
| EF19-20.19 | 295   | 42       | 1850   | 210      | 1141  | 77       | 209   | 11       | 827   | 57       |
| EF19-20.20 | 209   | 38       | 3789   | 80       | 1144  | 91       | 219.6 | 8.3      | 35.4  | 3.9      |
| EF19-20.21 | 2610  | 340      | 12640  | 410      | 1012  | 61       | 4084  | 67       | 594   | 30       |
| EF19-20.22 | 2060  | 230      | 15120  | 470      | 982   | 66       | 3180  | 100      | 112   | 24       |
| EF19-20.23 | 8700  | 2900     | 264000 | 31000    | 1280  | 290      | 3800  | 1100     | 352   | 74       |
| EF19-20.24 | 8800  | 1900     | 640000 | 140000   | 1110  | 80       | 4640  | 750      | 1260  | 220      |
| EF19-20.25 | 1990  | 110      | 11080  | 890      | 952   | 56       | 2630  | 140      | 90    | 8.7      |

| Spot #     | Ti    | Std. Dev | Fe    | Std. Dev | Ni    | Std. Dev | Cu    | Std. Dev | Zn    | Std. Dev |
|------------|-------|----------|-------|----------|-------|----------|-------|----------|-------|----------|
|            | (ppm) | (2σ)     |
| EF19-20.01 | 69.9  | 3.5      | 5330  | 360      | 4.6   | 0.93     | 59.5  | 4.6      | 232   | 17       |
| EF19-20.02 | 14.1  | 1.9      | 10200 | 1400     | 4.9   | 4.4      | 7.1   | 1.1      | 20.5  | 5.2      |
| EF19-20.03 | 45.3  | 5.5      | 1870  | 290      | 7.9   | 6.8      | 29.5  | 4.7      | 13.4  | 2.3      |
| EF19-20.04 | 24.79 | 0.62     | 1230  | 260      | 3.27  | 0.62     | 9.4   | 1.1      | 12.7  | 2.3      |
| EF19-20.05 | 90.1  | 2.1      | 4600  | 110      | 2.7   | 1.1      | 11.3  | 1.6      | 143.5 | 9.6      |
| EF19-20.06 | 65.1  | 3.3      | 1430  | 350      | 9.8   | 5        |       |          | 14.6  | 1.5      |
| EF19-20.07 | 121.6 | 4.1      | 2277  | 77       | 1.21  | 0.36     | 4     | 1.1      | 48.2  | 4.7      |
| EF19-20.08 | 226   | 18       | 27600 | 3900     | 71    | 11       | 461   | 24       | 695   | 82       |
| EF19-20.09 | 22.8  | 0.69     | 9700  | 2500     | 2.16  | 0.64     | 3.8   | 1.1      | 5.3   | 1.1      |
| EF19-20.10 | 8.99  | 0.43     | 297   | 24       | 1.44  | 0.52     | 2.3   | 0.37     | 4.6   | 1.2      |
| EF19-20.11 | 0.171 | 0.044    | 19.4  | 6.8      |       |          |       |          | 1.55  | 0.69     |
| EF19-20.12 | 62.6  | 7.5      | 720   | 220      | 1.39  | 0.95     | 0.96  | 0.33     | 3.3   | 1        |

| Spot #     | Ti    | Std. Dev | Fe    | Std. Dev | Ni    | Std. Dev | Cu    | Std. Dev | Zn    | Std. Dev |
|------------|-------|----------|-------|----------|-------|----------|-------|----------|-------|----------|
|            | (ppm) | (2σ)     |
| EF19-20.13 | 112.9 | 6.7      | 824   | 64       |       |          | 1.12  | 0.32     | 2.4   | 0.47     |
| EF19-20.14 | 16.5  | 1.6      | 1620  | 600      | 1.02  | 0.38     | 4.32  | 0.49     | 7.7   | 1.3      |
| EF19-20.15 | 181   | 23       | 27800 | 2900     | 3.38  | 0.83     | 14.5  | 1.2      | 20.9  | 1.9      |
| EF19-20.16 | 108.7 | 2.9      | 5520  | 550      | 4.4   | 2.2      | 8.9   | 4        | 31.7  | 4        |
| EF19-20.17 | 10.23 | 0.42     | 560   | 140      | 0.91  | 0.57     | 1.45  | 0.71     | 2.1   | 1.2      |
| EF19-20.18 | 12.2  | 1.3      | 3300  | 1200     | 4.9   | 4.1      | 2.73  | 0.33     | 6.4   | 1.2      |
| EF19-20.19 | 80.6  | 6.1      | 4780  | 490      | 1.21  | 0.38     | 10.6  | 0.94     | 27    | 3.3      |
| EF19-20.20 | 1.51  | 0.24     | 111   | 28       | 0.61  | 0.34     | 0.39  | 0.31     | 5.3   | 1.1      |
| EF19-20.21 | 57.8  | 2.4      | 572   | 44       | 1.32  | 0.38     | 1.35  | 0.54     | 3.4   | 0.89     |
| EF19-20.22 | 8.22  | 0.99     | 870   | 280      | 1.76  | 0.68     | 1.56  | 0.48     | 2.34  | 0.86     |
| EF19-20.23 | 55    | 25       | 8500  | 1600     | 256   | 68       | 133   | 27       | 473   | 71       |
| EF19-20.24 | 148   | 29       | 22300 | 5400     | 430   | 140      | 177   | 30       | 970   | 190      |
| EF19-20.25 | 10    | 1.1      | 2590  | 660      | 1.17  | 0.59     | 1.91  | 0.55     | 4.92  | 0.97     |

| Spot #     | As    | Std. Dev | Pd    | Std. Dev | Ag    | Std. Dev | Cd    | Std. Dev | Sn    | Std. Dev |
|------------|-------|----------|-------|----------|-------|----------|-------|----------|-------|----------|
|            | (ppm) | (2σ)     |
| EF19-20.01 | 32.9  | 4.6      | 0.042 | 0.041    | 5.23  | 0.77     | 2.2   | 1.2      | 6.8   | 1.4      |
| EF19-20.02 | 145   | 17       | 0.097 | 0.063    | 4.1   | 3.7      | 5.2   | 4        | 4.2   | 2.8      |
| EF19-20.03 | 11.8  | 1.8      | 0.155 | 0.081    | 4.2   | 3.7      | 5.2   | 3.1      | 1.71  | 0.77     |
| EF19-20.04 | 13.8  | 3.2      | 0.053 | 0.051    |       |          | 0.76  | 0.54     | 7.5   | 7.8      |
| EF19-20.05 |       |          | 0.35  | 0.12     |       |          | 1.14  | 0.41     | 1.54  | 0.37     |
| EF19-20.06 | 10.7  | 3        | 0.136 | 0.088    | 0.61  | 0.46     | 1.3   | 1.2      | 2.1   | 1.4      |
| EF19-20.07 | 5.8   | 1.8      | 0.39  | 0.14     | 2.9   | 2.5      | 1.16  | 0.38     | 3.2   | 2.1      |
| EF19-20.08 | 57.1  | 3.5      | 0.147 | 0.091    | 22.4  | 1.6      | 1.41  | 0.49     | 244   | 16       |
| EF19-20.09 | 95    | 24       |       |          | 0.24  | 0.21     | 0.69  | 0.47     | 1.32  | 0.75     |
| EF19-20.10 | 4.55  | 0.95     | 0     | 1        | 0.9   | 0.78     |       |          | 1.1   | 0.25     |
| EF19-20.11 | 4.4   | 1.5      | 0     | 1        |       |          |       |          | 0.82  | 0.23     |
| EF19-20.12 | 9.4   | 2.4      |       |          | 0.46  | 0.3      |       |          | 1.57  | 0.49     |

| Spot #     | As    | Std. Dev | Pd    | Std. Dev | Ag    | Std. Dev | Cd    | Std. Dev | Sn    | Std. Dev |
|------------|-------|----------|-------|----------|-------|----------|-------|----------|-------|----------|
|            | (ppm) | (2σ)     |
| EF19-20.13 | 7.11  | 0.75     | 0.091 | 0.064    |       |          |       |          | 1.94  | 0.35     |
| EF19-20.14 | 5.7   | 1.3      |       |          |       |          |       |          | 1.31  | 0.29     |
| EF19-20.15 | 410   | 64       | 0.056 | 0.048    | 0.239 | 0.096    | 0.47  | 0.24     | 1.68  | 0.23     |
| EF19-20.16 | 70.5  | 8.5      |       |          | 0.99  | 1.16     | 4.9   | 5.1      | 4.1   | 3        |
| EF19-20.17 | 10    | 2.6      |       |          |       |          | 0.56  | 0.37     | 1.06  | 0.27     |
| EF19-20.18 | 47    | 16       | 0.011 | 0.023    | 0.38  | 0.19     | 0.55  | 0.5      | 1.03  | 0.22     |
| EF19-20.19 | 120   | 21       | 0.108 | 0.07     |       |          |       |          | 2.61  | 0.39     |
| EF19-20.20 | 4.3   | 1.1      | 0     | 1        |       |          |       |          | 0.89  | 0.2      |
| EF19-20.21 | 5.6   | 1.2      | 0     | 1        | 0.87  | 0.6      |       |          | 1.76  | 0.23     |
| EF19-20.22 | 8.3   | 2.4      |       |          | 0.46  | 0.39     |       |          | 1.03  | 0.25     |
| EF19-20.23 | 43.3  | 8.7      | 0.067 | 0.057    | 17.8  | 6        | 7.9   | 5.9      | 44.6  | 6.8      |
| EF19-20.24 | 124   | 21       | 0.046 | 0.052    | 15    | 3.3      | 1.67  | 0.91     | 44    | 10       |
| EF19-20.25 | 18.5  | 4.4      | 0     | 1        | 0.32  | 0.16     | 0.53  | 0.27     | 1     | 0.24     |

| Spot #     | Sb    | Std. Dev | Pt    | Std. Dev | Au    | Std. Dev | Tl    | Std. Dev | Pb    | Std. Dev |
|------------|-------|----------|-------|----------|-------|----------|-------|----------|-------|----------|
|            | (ppm) | (2σ)     |
| EF19-20.01 | 568   | 16       | 0.033 | 0.034    | 0.38  | 0.14     | 0.5   | 0.34     | 5.25  | 0.74     |
| EF19-20.02 | 214   | 16       | 0.039 | 0.039    | 0.7   | 0.33     | 0.34  | 0.2      | 5.1   | 2        |
| EF19-20.03 | 106.7 | 3.6      | 0.087 | 0.061    | 0.26  | 0.23     | 0.38  | 0.31     | 1.63  | 0.97     |
| EF19-20.04 | 110.3 | 2.6      | 0     | 1        |       |          | 0.292 | 0.081    | 1.29  | 0.35     |
| EF19-20.05 | 209.4 | 3.6      | 0.016 | 0.022    |       |          | 0.41  | 0.23     | 3.05  | 0.86     |
| EF19-20.06 | 182.3 | 5.8      |       |          | 0.39  | 0.35     | 0.62  | 0.32     | 4     | 3        |
| EF19-20.07 | 180.3 | 4.9      | 0.037 | 0.032    |       |          | 0.29  | 0.15     | 2.24  | 0.85     |
| EF19-20.08 | 196.1 | 4.8      |       |          | 3.05  | 0.33     | 0.964 | 0.09     | 29.7  | 3.4      |
| EF19-20.09 | 206   | 27       |       |          | 0.58  | 0.21     | 3.81  | 0.74     | 2.87  | 0.62     |
| EF19-20.10 | 109.3 | 2.9      |       |          |       |          | 0.227 | 0.065    | 0.22  | 0.083    |
| EF19-20.11 | 12.42 | 0.7      | 0     | 1        |       |          |       |          | 0.112 | 0.095    |
| EF19-20.12 | 116   | 17       |       |          |       |          | 0.334 | 0.071    | 1.35  | 0.31     |

| Spot #     | Sb    | Std. Dev | Pt    | Std. Dev | Au    | Std. Dev | TI    | Std. Dev | Pb    | Std. Dev |
|------------|-------|----------|-------|----------|-------|----------|-------|----------|-------|----------|
|            | (ppm) | (2σ)     |
| EF19-20.13 | 119.6 | 4        | 0.033 | 0.032    |       |          | 0.352 | 0.053    | 6.1   | 1        |
| EF19-20.14 | 51.8  | 2.5      |       |          |       |          | 0.98  | 0.24     | 1.68  | 0.52     |
| EF19-20.15 | 1264  | 80       |       |          | 0.32  | 0.12     | 0.64  | 0.16     | 11.3  | 1.4      |
| EF19-20.16 | 200   | 30       | 0.062 | 0.068    |       |          | 0.31  | 0.12     | 8.4   | 2.9      |
| EF19-20.17 | 149.4 | 3.8      |       |          |       |          | 0.48  | 0.25     | 0.45  | 0.24     |
| EF19-20.18 | 351   | 80       |       |          |       |          | 0.09  | 0.05     | 1.17  | 0.4      |
| EF19-20.19 | 298   | 30       | 0     | 1        |       |          | 0.169 | 0.048    | 2.9   | 0.48     |
| EF19-20.20 | 23    | 1.1      |       |          |       |          |       |          | 0.09  | 0.085    |
| EF19-20.21 | 92.6  | 3.4      |       |          |       |          | 0.122 | 0.049    | 0.59  | 0.33     |
| EF19-20.22 | 92.2  | 3.2      |       |          |       |          | 0.223 | 0.071    | 0.64  | 0.41     |
| EF19-20.23 | 68    | 6.6      | 0.3   | 0.14     | 2.41  | 0.85     | 1.87  | 0.92     | 27    | 11       |
| EF19-20.24 | 166   | 22       |       |          | 4.42  | 0.9      | 1.2   | 0.23     | 32.6  | 5.5      |
| EF19-20.25 | 114.1 | 5.4      |       |          |       |          | 0.218 | 0.082    | 0.69  | 0.2      |

| Spot #     | Bi (ppm) Std. Dev (2σ) Th |       | Th (ppm) | Std. Dev (2 <sub>5</sub> ) | U (ppm) | Std. Dev (2σ) |
|------------|---------------------------|-------|----------|----------------------------|---------|---------------|
| EF19-20.01 | 1.32                      | 0.72  | 10.82    | 0.59                       | 9.4     | 6.3           |
| EF19-20.02 | 1.9                       | 1.9   | 0.64     | 0.35                       | 4.8     | 3.7           |
| EF19-20.03 | 4.8                       | 6.5   | 2.35     | 0.81                       | 3.5     | 2.1           |
| EF19-20.04 | 1.5                       | 1.7   | 1.37     | 0.15                       | 0.87    | 0.24          |
| EF19-20.05 | 0.199                     | 0.084 | 2.74     | 0.27                       | 8.3     | 3.9           |
| EF19-20.06 | 0.65                      | 0.45  | 2.19     | 0.21                       | 1.64    | 0.16          |
| EF19-20.07 | 0.139                     | 0.053 | 1.5      | 0.14                       | 3.65    | 0.32          |
| EF19-20.08 | 1.67                      | 0.35  | 11.39    | 0.98                       | 14.7    | 1             |
| EF19-20.09 | 0.25                      | 0.14  | 1.045    | 0.095                      | 0.27    | 0.06          |
| EF19-20.10 | 0.078                     | 0.034 | 0.92     | 0.53                       | 0.155   | 0.04          |
| EF19-20.11 | 0.107                     | 0.037 | 0.13     | 0.2                        | 0.23    | 0.41          |
| EF19-20.12 | 1.3                       | 2.2   | 4.53     | 0.6                        | 1.41    | 0.4           |

| Spot #     | Bi (ppm) | Std. Dev (2σ) | Th (ppm) | Std. Dev (2σ) | U (ppm) | Std. Dev (2σ) |
|------------|----------|---------------|----------|---------------|---------|---------------|
| EF19-20.13 | 0.065    | 0.027         | 16.3     | 1.1           | 1.4     | 0.15          |
| EF19-20.14 | 0.3      | 0.28          | 1.35     | 0.11          | 0.308   | 0.045         |
| EF19-20.15 | 0.563    | 0.083         | 1.098    | 0.089         | 1.82    | 0.4           |
| EF19-20.16 | 0.87     | 1.28          | 4.35     | 0.29          | 3.1     | 2.3           |
| EF19-20.17 | 0.29     | 0.25          | 4        | 6.7           | 0.52    | 0.32          |
| EF19-20.18 | 0.116    | 0.085         | 0.73     | 0.42          | 0.7     | 0.38          |
| EF19-20.19 | 0.159    | 0.052         | 5.52     | 0.41          | 1.05    | 0.11          |
| EF19-20.20 | 0.12     | 0.17          | 2.7      | 3.4           | 0.08    | 0.11          |
| EF19-20.21 | 0.078    | 0.059         | 4.97     | 0.32          | 1.35    | 0.16          |
| EF19-20.22 | 0.2      | 0.12          | 2.3      | 1.7           | 1.1     | 1.1           |
| EF19-20.23 | 10.6     | 6             | 4.1      | 1.4           | 38      | 27            |
| EF19-20.24 | 8.5      | 2             | 8.3      | 1.7           | 5.7     | 2.8           |
| EF19-20.25 | 0.087    | 0.031         | 0.8      | 0.13          | 0.75    | 0.32          |

| Spot #     | Si (cps) | Std. Dev | S (cps) | Std. Dev | Se (cps) | Std. Dev | Te    | Std. Dev | Hg    | Std. Dev |
|------------|----------|----------|---------|----------|----------|----------|-------|----------|-------|----------|
|            |          | (2σ)     |         | (2σ)     |          | (2σ)     | (cps) | (2σ)     | (cps) | (2σ)     |
| EF19-24    |          |          |         |          |          |          |       |          |       |          |
| EF19-24.01 | 3.75E+07 | 810000   | 134100  | 5000     | 21       | 19       | 28    | 18       | 6480  | 460      |
| EF19-24.02 | 3.56E+07 | 1.10E+06 | 119200  | 4800     | 38       | 29       | 7.1   | 8        | 2540  | 450      |
| EF19-24.03 | 4.13E+07 | 640000   | 174100  | 2800     | 39       | 26       | 2.4   | 4.8      | 520   | 360      |
| EF19-24.04 | 3.11E+07 | 450000   | 70000   | 2800     | 21       | 21       | 2.4   | 4.8      | 350   | 400      |
| EF19-24.05 | 3.51E+07 | 670000   | 102700  | 3900     | 30       | 24       | 0     | 1        | -1360 | 400      |
| EF19-24.06 | 3.79E+07 | 420000   | 94900   | 3100     | 55       | 29       | 43    | 47       | 3650  | 410      |
| EF19-24.07 | 3.89E+07 | 650000   | 92300   | 3000     | 48       | 28       | 17    | 15       | 51700 | 3200     |
| EF19-24.08 | 3.24E+07 | 820000   | 68200   | 3800     | 29       | 25       | 9.5   | 9.2      | 1290  | 420      |
| EF19-24.09 | 2.79E+07 | 520000   | 68400   | 3500     | 25       | 24       | 0     | 1        | 2250  | 420      |
| EF19-24.10 | 2.63E+07 | 820000   | 47700   | 3500     | 24       | 21       | 0     | 1        | 6040  | 590      |
| EF19-24.11 | 2.80E+07 | 970000   | 45300   | 3300     | -4       | 13       | 4.8   | 6.7      | 850   | 390      |
| EF19-24.12 | 2.39E+07 | 830000   | 45700   | 2900     | -12      | 12       | 0     | 1        | 1790  | 450      |
| EF19-24.13 | 2.90E+07 | 720000   | 61700   | 3000     | 33       | 18       | 7.1   | 8        | 3070  | 500      |
| EF19-24.14 | 2.11E+07 | 550000   | 35700   | 2300     | 37       | 23       | 0     | 1        | 4660  | 480      |

| Spot #     | Si (cps) | Std. Dev | S (cps) | Std. Dev | Se (cps) | Std. Dev | Te (cps) | Std. Dev | Hg (cps) | Std. Dev |
|------------|----------|----------|---------|----------|----------|----------|----------|----------|----------|----------|
|            |          | (2σ)     |         | (2σ)     |          | (2σ)     |          | (2σ)     |          | (2σ)     |
| EF19-24.15 | 2.32E+07 | 820000   | 45900   | 3100     | 34       | 23       | 0        | 1        | 4580     | 460      |
| EF19-24.16 | 2.78E+07 | 740000   | 58100   | 3200     | 13       | 19       | 0        | 1        | 1030     | 380      |
| EF19-24.17 | 2.68E+07 | 900000   | 60800   | 2500     | 26       | 22       | 0        | 1        | 1130     | 420      |
| EF19-24.18 | 2.97E+07 | 1.30E+06 | 61200   | 3800     | 33       | 25       | 2.4      | 4.8      | 890      | 350      |
| EF19-24.19 | 2.92E+07 | 710000   | 64100   | 2900     | 47       | 24       | 0        | 1        | 750      | 420      |
| EF19-24.20 | 2.96E+07 | 1.10E+06 | 60700   | 2700     | 37       | 22       | 0        | 1        | -2290    | 370      |
| EF19-24.21 | 2.79E+07 | 940000   | 72800   | 4700     | 52       | 31       | 12       | 10       | 1830     | 420      |
| EF19-24.22 | 3.24E+07 | 690000   | 89600   | 3500     | 22       | 24       | 19       | 12       | 960      | 430      |
| EF19-24.23 | 3.11E+07 | 1.10E+06 | 77000   | 3800     | 43       | 24       | 10       | 12       | 160      | 450      |
| EF19-24.24 | 2.70E+07 | 990000   | 50500   | 2600     | 50       | 30       | 4.8      | 6.7      | 510      | 400      |
| EF19-24.25 | 3.19E+07 | 710000   | 80100   | 4500     | 31       | 19       | 31       | 53       | 1380     | 500      |
| EF19-24.26 | 3.47E+07 | 1.00E+06 | 73300   | 3900     | 24       | 18       | 0        | 1        | 1550     | 390      |
| EF19-24.27 | 2.37E+07 | 820000   | 38300   | 2400     | 36       | 21       | 0        | 1        | 480      | 340      |
| EF19-24.28 | 3.12E+07 | 980000   | 74700   | 4100     | 35       | 19       | 0        | 1        | 650      | 340      |
| EF19-24.29 | 3.15E+07 | 370000   | 69300   | 3100     | 32       | 20       | 0        | 1        | 740      | 280      |

| Spot #     | Na    | Std. Dev | Al    | Std. Dev | Cl    | Std. Dev | K     | Std. Dev | Ti    | Std. Dev |
|------------|-------|----------|-------|----------|-------|----------|-------|----------|-------|----------|
|            | (ppm) | (2σ)     |
| EF19-24.01 | 3520  | 120      | 13300 | 800      | 947   | 52       | 815   | 30       | 57.6  | 4.6      |
| EF19-24.02 | 2820  | 190      | 63400 | 3600     | 1049  | 43       | 985   | 35       | 350   | 220      |
| EF19-24.03 | 1250  | 40       | 5180  | 390      | 923   | 55       | 804   | 21       | 480   | 100      |
| EF19-24.04 | 660   | 100      | 4100  | 230      | 972   | 56       | 703   | 16       | 42.6  | 7.7      |
| EF19-24.05 | 2060  | 75       | 7390  | 150      | 903   | 57       | 635   | 17       | 142   | 53       |
| EF19-24.06 | 1580  | 350      | 9660  | 340      | 867   | 57       | 2006  | 63       | 356   | 52       |
| EF19-24.07 | 2440  | 170      | 7390  | 290      | 905   | 44       | 1022  | 35       | 42.2  | 2.8      |
| EF19-24.08 | 1070  | 250      | 5840  | 160      | 985   | 50       | 1143  | 98       | 480   | 190      |
| EF19-24.09 | 1150  | 110      | 30550 | 640      | 951   | 57       | 3523  | 71       | 151   | 19       |
| EF19-24.10 | 423   | 23       | 10200 | 1400     | 891   | 70       | 877   | 35       | 810   | 490      |
| EF19-24.11 | 701   | 25       | 6300  | 130      | 975   | 65       | 979   | 41       | 30.5  | 4.1      |
| EF19-24.12 | 603.1 | 9.9      | 15370 | 330      | 1055  | 77       | 1479  | 33       | 27.3  | 3        |
| EF19-24.13 | 884   | 36       | 5570  | 170      | 927   | 56       | 1133  | 28       | 48.9  | 4.6      |
| EF19-24.14 | 215   | 17       | 24220 | 730      | 907   | 94       | 206.6 | 7.7      | 34.8  | 2.8      |

| Spot #     | Na    | Std. Dev | Al    | Std. Dev | Cl    | Std. Dev | K     | Std. Dev | Ti    | Std. Dev |
|------------|-------|----------|-------|----------|-------|----------|-------|----------|-------|----------|
|            | (ppm) | (2σ)     |
| EF19-24.15 | 943   | 16       | 18910 | 430      | 976   | 71       | 1551  | 33       | 299   | 63       |
| EF19-24.16 | 753   | 31       | 4718  | 40       | 1043  | 57       | 1023  | 13       | 27.1  | 3        |
| EF19-24.17 | 883   | 31       | 5845  | 55       | 975   | 65       | 1164  | 16       | 30.9  | 2.6      |
| EF19-24.18 | 946   | 19       | 6317  | 85       | 951   | 45       | 1547  | 34       | 56    | 27       |
| EF19-24.19 | 860   | 13       | 5080  | 210      | 901   | 64       | 1109  | 18       | 26.2  | 1.9      |
| EF19-24.20 | 966   | 20       | 14360 | 370      | 931   | 58       | 2463  | 78       | 107   | 34       |
| EF19-24.21 | 1070  | 130      | 5090  | 290      | 997   | 58       | 1283  | 13       | 82    | 27       |
| EF19-24.22 | 1550  | 240      | 3520  | 310      | 884   | 58       | 1136  | 29       | 28.4  | 2.6      |
| EF19-24.23 |       |          |       |          | 819   | 56       | 1007  | 73       | 308   | 67       |
| EF19-24.24 | 810   | 110      | 4530  | 190      | 933   | 63       | 1077  | 35       | 36.9  | 7.5      |
| EF19-24.25 | 1230  | 180      | 5890  | 120      | 912   | 66       | 1515  | 33       | 80    | 13       |
| EF19-24.26 | 893   | 24       | 3530  | 100      | 909   | 62       | 896   | 15       | 26    | 2.8      |
| EF19-24.27 | 411   | 24       | 41000 | 1600     | 994   | 65       | 768   | 56       | 42.1  | 4.6      |
| EF19-24.28 | 1292  | 26       | 6950  | 95       | 915   | 62       | 1757  | 39       | 70    | 16       |
| EF19-24.29 | 1299  | 24       | 7033  | 79       | 993   | 54       | 1684  | 25       | 104   | 14       |

| Spot #     | Ti    | Std. Dev | Fe    | Std. Dev | Ni    | Std. Dev | Cu    | Std. Dev | Zn    | Std. Dev |
|------------|-------|----------|-------|----------|-------|----------|-------|----------|-------|----------|
|            | (ppm) | (2σ)     |
| EF19-24.01 | 6.8   | 0.27     | 1745  | 47       | 5.59  | 0.73     | 51.4  | 1.8      | 280.5 | 7.7      |
| EF19-24.02 | 34    | 21       | 1630  | 250      | 3.63  | 0.62     | 25.1  | 1        | 148.4 | 7.1      |
| EF19-24.03 | 48.1  | 9.7      | 3920  | 570      | 2.72  | 0.41     | 16.61 | 0.96     | 34.3  | 3.2      |
| EF19-24.04 | 2.22  | 0.56     | 26.9  | 5        | 0.89  | 0.38     | 2.09  | 0.32     | 6.1   | 0.73     |
| EF19-24.05 | 11.1  | 3.6      | 847   | 22       | 2.43  | 0.48     | 22.37 | 0.89     | 36.1  | 2.9      |
| EF19-24.06 | 35.2  | 5.1      | 194   | 15       | 3.9   | 1.1      | 9.86  | 0.81     | 10.6  | 1.3      |
| EF19-24.07 | 3.46  | 0.43     | 399   | 48       | 2.35  | 0.45     | 12.1  | 1.6      | 58.5  | 4.5      |
| EF19-24.08 | 47    | 18       | 527   | 98       | 2.52  | 0.52     | 11.2  | 1.3      | 5.84  | 0.82     |
| EF19-24.09 | 13.6  | 1.7      | 1602  | 51       | 1.23  | 0.34     | 4.28  | 0.47     | 33.9  | 2.1      |
| EF19-24.10 | 85    | 55       | 128   | 23       | 0.41  | 0.28     | 0.95  | 0.33     | 10.9  | 3.8      |
| EF19-24.11 | 0.93  | 0.15     | 59.9  | 6.6      | 0.52  | 0.29     | 2.1   | 1.2      | 1.12  | 0.43     |
| EF19-24.12 | 1.27  | 0.23     | 96.3  | 6.5      |       |          | 0.68  | 0.27     | 5.6   | 1.6      |
| EF19-24.13 | 4.47  | 0.44     | 89.5  | 9.9      | 0.77  | 0.3      | 18.18 | 0.87     | 2.69  | 0.54     |
| EF19-24.14 | 1.257 | 0.075    | 29    | 12       |       |          |       |          | 1.52  | 0.75     |

| Spot #     | Ti    | Std. Dev | Fe    | Std. Dev | Ni    | Std. Dev | Cu    | Std. Dev | Zn    | Std. Dev |
|------------|-------|----------|-------|----------|-------|----------|-------|----------|-------|----------|
|            | (ppm) | (2σ)     |
| EF19-24.15 | 27.6  | 6.3      | 863   | 90       | 0.49  | 0.23     | 22.5  | 2.1      | 11    | 1.4      |
| EF19-24.16 | 1.21  | 0.2      | 497   | 44       | 2.5   | 3.6      | 1.55  | 0.23     | 3.64  | 0.7      |
| EF19-24.17 | 1.52  | 0.11     | 54.1  | 7        | 0.6   | 0.29     | 1.46  | 0.28     | 1.56  | 0.43     |
| EF19-24.18 | 3.1   | 1.9      | 110   | 19       | 0.87  | 0.38     | 2.24  | 0.34     | 3.86  | 0.66     |
| EF19-24.19 | 1.018 | 0.08     | 37.1  | 5.1      | 1.39  | 0.33     | 0.9   | 0.19     | 4.64  | 0.6      |
| EF19-24.20 | 7.7   | 2.6      | 10260 | 420      | 1.25  | 0.33     | 14    | 0.66     | 46    | 2.9      |
| EF19-24.21 | 8     | 2.7      | 302   | 43       | 1.58  | 0.59     | 7.5   | 1.4      | 8.8   | 2.3      |
| EF19-24.22 | 28.9  | 3        | 900   | 270      | 1.85  | 0.38     | 6.5   | 1.4      | 13.5  | 2.6      |
| EF19-24.23 | 31.5  | 6        | 392   | 20       |       |          |       |          | 9.1   | 1.2      |
| EF19-24.24 | 2.26  | 0.56     | 1020  | 120      | 1.37  | 0.45     | 2.72  | 0.37     | 4.09  | 0.87     |
| EF19-24.25 | 7     | 1.3      | 976   | 97       | 1.68  | 0.82     | 2.67  | 0.43     | 8     | 4.3      |
| EF19-24.26 | 1.19  | 0.35     | 78.1  | 6.2      | 2.2   | 0.38     | 1.46  | 0.26     | 2.27  | 0.41     |
| EF19-24.27 | 2.1   | 0.19     | 46    | 15       | 0.48  | 0.29     | 0.42  | 0.19     | 1.15  | 0.49     |
| EF19-24.28 | 7.1   | 2        | 564   | 41       | 1.15  | 0.43     | 3.51  | 0.4      | 5.33  | 0.78     |
| EF19-24.29 | 9.1   | 1.5      | 203   | 19       | 1.09  | 0.3      | 2.87  | 0.31     | 2.78  | 0.57     |

| Spot #     | As    | Std. Dev | Pd    | Std. Dev | Ag    | Std. Dev | Cd    | Std. Dev | Sn    | Std. Dev |
|------------|-------|----------|-------|----------|-------|----------|-------|----------|-------|----------|
|            | (ppm) | (2σ)     |
| EF19-24.01 | 8.84  | 0.98     | 0.123 | 0.073    | 10.49 | 0.69     | 1.2   | 0.36     | 16    | 1.2      |
| EF19-24.02 | 4.22  | 0.86     | 0.019 | 0.026    | 2.14  | 0.35     |       |          | 4.98  | 0.47     |
| EF19-24.03 | 46.3  | 5.4      | 0     | 1        | 4.48  | 0.26     | 0.5   | 0.24     | 0.88  | 0.15     |
| EF19-24.04 | 2.48  | 0.7      | 0.013 | 0.025    | 1.17  | 0.3      |       |          | 1.9   | 1.7      |
| EF19-24.05 | 5.28  | 0.87     |       |          | 1.95  | 0.19     | 0.36  | 0.19     | 1.03  | 0.18     |
| EF19-24.06 | 7.2   | 1.7      | 0     | 1        | 8.69  | 0.77     | 1.05  | 0.44     | 1.33  | 0.5      |
| EF19-24.07 | 4.57  | 0.79     | 0     | 1        | 4.68  | 0.27     |       |          | 2.02  | 0.43     |
| EF19-24.08 | 8.1   | 1.7      | 0.048 | 0.046    | 10.04 | 0.64     | 0.52  | 0.22     | 1     | 0.21     |
| EF19-24.09 | 9.4   | 1.2      | 0.084 | 0.064    | 3     | 1.4      |       |          | 1.34  | 0.15     |
| EF19-24.10 | 2.94  | 0.85     | 0     | 1        | 0.85  | 0.27     |       |          | 1.47  | 0.41     |
| EF19-24.11 | 2.2   | 0.73     |       |          | 16.7  | 1.5      |       |          | 0.84  | 0.19     |
| EF19-24.12 | 2.31  | 0.95     | 0     | 1        | 0.39  | 0.13     |       |          | 0.67  | 0.16     |
| EF19-24.13 |       |          |       |          | 30.3  | 1.5      | 0.65  | 0.28     | 1.04  | 0.17     |
| EF19-24.14 |       |          |       |          |       |          |       |          | 0.74  | 0.22     |

| Spot #     | As    | Std. Dev | Pd    | Std. Dev | Ag    | Std. Dev | Cd    | Std. Dev | Sn    | Std. Dev |
|------------|-------|----------|-------|----------|-------|----------|-------|----------|-------|----------|
|            | (ppm) | (2σ)     |
| EF19-24.15 | 9.7   | 1.3      |       |          | 1.09  | 0.45     |       |          | 2.13  | 0.56     |
| EF19-24.16 | 12.3  | 1.2      | 0     | 1        | 1.93  | 0.21     |       |          | 0.92  | 0.14     |
| EF19-24.17 | 2.09  | 0.63     |       |          | 3.13  | 0.38     |       |          | 0.95  | 0.22     |
| EF19-24.18 | 3.8   | 0.98     |       |          | 2.19  | 0.89     |       |          | 0.87  | 0.16     |
| EF19-24.19 | 2.06  | 0.65     | 0     | 1        | 0.62  | 0.11     |       |          |       |          |
| EF19-24.20 | 78.9  | 4.6      | 0     | 1        | 1.98  | 0.24     |       |          | 0.84  | 0.16     |
| EF19-24.21 | 16.3  | 2.6      | 0.11  | 0.11     | 4.81  | 0.49     | 0.41  | 0.22     | 2.11  | 0.74     |
| EF19-24.22 | 12.2  | 3.5      | 0.132 | 0.069    | 7.08  | 0.38     | 0.65  | 0.36     | 0.9   | 0.22     |
| EF19-24.23 |       |          | 0.15  | 0.1      |       |          |       |          | 2.15  | 0.94     |
| EF19-24.24 | 20.6  | 2.6      | 0     | 1        | 1.06  | 0.6      |       |          | 1.24  | 0.39     |
| EF19-24.25 | 11.6  | 1.4      |       |          | 11.77 | 0.67     | 0.86  | 0.9      | 1.04  | 0.25     |
| EF19-24.26 | 3.37  | 0.89     | 0.009 | 0.019    | 0.66  | 0.15     |       |          | 0.78  | 0.16     |
| EF19-24.27 | 2.52  | 0.87     | 0     | 1        |       |          | 0.26  | 0.21     | 0.74  | 0.2      |
| EF19-24.28 | 8.3   | 1.1      |       |          | 4.65  | 0.34     | 0.39  | 0.19     | 0.77  | 0.15     |
| EF19-24.29 | 3.56  | 0.76     |       |          | 2.91  | 0.33     |       |          | 0.9   | 0.19     |

| Spot #     | Sb    | Std. Dev | Pt    | Std. Dev | Au    | Std. Dev | Tl    | Std. Dev | Pb    | Std. Dev |
|------------|-------|----------|-------|----------|-------|----------|-------|----------|-------|----------|
|            | (ppm) | (2σ)     |
| EF19-24.01 | 108.3 | 2        |       |          | 0.31  | 0.1      | 0.127 | 0.03     | 1.83  | 0.64     |
| EF19-24.02 | 85.6  | 2.2      |       |          |       |          | 0.088 | 0.035    | 1.64  | 0.31     |
| EF19-24.03 | 110.3 | 5.4      |       |          |       |          | 0.175 | 0.043    | 0.95  | 0.15     |
| EF19-24.04 | 63    | 1.6      |       |          |       |          | 0.043 | 0.02     | 0.102 | 0.047    |
| EF19-24.05 | 70.1  | 1.3      |       |          |       |          | 0.121 | 0.03     | 1.69  | 0.28     |
| EF19-24.06 | 34.3  | 3.6      | 0.018 | 0.02     |       |          | 0.332 | 0.087    | 2.18  | 0.67     |
| EF19-24.07 | 117.1 | 4.7      |       |          |       |          | 0.071 | 0.033    | 1.04  | 0.5      |
| EF19-24.08 | 43.8  | 1.5      | 0.021 | 0.024    |       |          | 0.149 | 0.063    | 1.5   | 0.55     |
| EF19-24.09 | 162.8 | 3.1      |       |          |       |          | 0.242 | 0.05     | 2.79  | 0.32     |
| EF19-24.10 | 179.1 | 5.3      | 0     | 1        |       |          | 0.092 | 0.033    | 0.308 | 0.097    |
| EF19-24.11 | 102.7 | 2.7      | 0     | 1        |       |          | 0.094 | 0.036    | 0.93  | 0.16     |
| EF19-24.12 | 160.2 | 4.1      | 0     | 1        |       |          | 0.09  | 0.041    |       |          |
| EF19-24.13 | 63.6  | 1.3      | 0     | 1        |       |          | 0.165 | 0.045    | 1.82  | 0.24     |
| EF19-24.14 | 35.5  | 2.3      | 0     | 1        |       |          |       |          |       |          |

| Spot #     | Sb    | Std. Dev | Pt    | Std. Dev | Au    | Std. Dev | Tl    | Std. Dev | Pb    | Std. Dev |
|------------|-------|----------|-------|----------|-------|----------|-------|----------|-------|----------|
|            | (ppm) | (2σ)     |
| EF19-24.15 | 127.2 | 2.5      | 0     | 1        |       |          | 0.159 | 0.07     | 1.14  | 0.16     |
| EF19-24.16 | 68.4  | 1.5      | 0     | 1        |       |          |       |          | 0.281 | 0.092    |
| EF19-24.17 | 213.1 | 3.3      |       |          |       |          | 0.205 | 0.056    | 0.139 | 0.051    |
| EF19-24.18 | 81.2  | 1.7      |       |          |       |          | 0.093 | 0.032    | 0.151 | 0.053    |
| EF19-24.19 | 105.8 | 2.5      |       |          |       |          |       |          | 0.117 | 0.086    |
| EF19-24.20 | 110.7 | 3.8      |       |          |       |          | 0.199 | 0.046    | 0.77  | 0.13     |
| EF19-24.21 | 60.8  | 1.9      |       |          |       |          | 0.42  | 0.12     | 0.59  | 0.26     |
| EF19-24.22 | 51.3  | 6.4      | 0     | 1        |       |          | 0.103 | 0.04     | 3.1   | 2.2      |
| EF19-24.23 | 88.7  | 1.7      |       |          |       |          |       |          |       |          |
| EF19-24.24 | 67    | 2.5      | 0     | 1        |       |          | 0.081 | 0.03     | 0.37  | 0.15     |
| EF19-24.25 | 63.2  | 1.6      |       |          |       |          | 0.38  | 0.14     | 1.9   | 1.3      |
| EF19-24.26 | 61.9  | 1.6      |       |          |       |          | 0.092 | 0.052    | 0.32  | 0.31     |
| EF19-24.27 | 27.5  | 1.1      |       |          |       |          | 0.076 | 0.034    |       |          |
| EF19-24.28 | 80.4  | 1.7      | 0     | 1        |       |          | 0.232 | 0.052    | 0.224 | 0.072    |
| EF19-24.29 | 105.9 | 2.7      |       |          |       |          | 0.161 | 0.037    | 0.327 | 0.089    |

| Spot #     | Bi (ppm) | Std. Dev (2σ) | Th (ppm) | Std. Dev (2 <sub>5</sub> ) | U (ppm) | Std. Dev (2 <sub>0</sub> ) |
|------------|----------|---------------|----------|----------------------------|---------|----------------------------|
| EF19-24.01 | 0.08     | 0.019         | 2.53     | 0.29                       | 1.46    | 0.21                       |
| EF19-24.02 | 0.238    | 0.061         | 2.63     | 0.39                       | 1.07    | 0.19                       |
| EF19-24.03 | 0.082    | 0.017         | 0.86     | 0.11                       | 0.507   | 0.063                      |
| EF19-24.04 | 0.078    | 0.071         | 0.141    | 0.049                      | 0.124   | 0.043                      |
| EF19-24.05 | 0.06     | 0.023         | 1.28     | 0.11                       | 0.72    | 0.11                       |
| EF19-24.06 | 0.7      | 0.42          | 1.16     | 0.16                       | 0.99    | 0.44                       |
| EF19-24.07 | 0.24     | 0.23          | 0.69     | 0.19                       | 0.91    | 0.54                       |
| EF19-24.08 | 0.24     | 0.24          | 0.87     | 0.25                       | 0.78    | 0.54                       |
| EF19-24.09 | 0.121    | 0.053         | 3.69     | 0.23                       | 1.35    | 0.32                       |
| EF19-24.10 | 0.04     | 0.022         | 0.169    | 0.074                      | 1.7     | 2.9                        |
| EF19-24.11 | 0.079    | 0.039         | 0.03     | 0.019                      | 0.034   | 0.018                      |
| EF19-24.12 |          |               | 0.91     | 0.94                       | 0.279   | 0.044                      |
| EF19-24.13 |          |               | 0.197    | 0.057                      | 0.18    | 0.1                        |
| EF19-24.14 | 0.08     | 0.12          | 3.2      | 3.7                        | 0.0019  | 0.0037                     |

| Spot #     | Bi (ppm) | Std. Dev (2 $\sigma$ ) | Th (ppm) | Std. Dev (2o) | U (ppm) | Std. Dev (2σ) |
|------------|----------|------------------------|----------|---------------|---------|---------------|
| EF19-24.15 | 0.044    | 0.019                  | 3.9      | 1.3           | 1.67    | 0.61          |
| EF19-24.16 | 0.064    | 0.046                  | 0.044    | 0.026         | 0.12    | 0.12          |
| EF19-24.17 |          |                        | 0.063    | 0.04          | 0.026   | 0.015         |
| EF19-24.18 | 0.045    | 0.042                  | 0.076    | 0.021         | 0.092   | 0.059         |
| EF19-24.19 |          |                        | 0.022    | 0.011         | 0.107   | 0.079         |
| EF19-24.20 | 0.071    | 0.028                  | 0.142    | 0.034         | 0.249   | 0.036         |
| EF19-24.21 | 0.19     | 0.14                   | 0.44     | 0.26          | 0.47    | 0.38          |
| EF19-24.22 | 0.18     | 0.1                    | 0.37     | 0.17          | 1.2     | 1             |
| EF19-24.23 |          |                        |          |               |         |               |
| EF19-24.24 | 0.05     | 0.037                  | 0.14     | 0.16          | 0.11    | 0.13          |
| EF19-24.25 | 0.19     | 0.14                   | 0.214    | 0.049         | 0.48    | 0.33          |
| EF19-24.26 | 0.063    | 0.023                  | 0.14     | 0.045         | 0.163   | 0.069         |
| EF19-24.27 | 0.035    | 0.021                  | 3.7      | 5.7           | 0.036   | 0.05          |
| EF19-24.28 | 0.18     | 0.3                    | 0.109    | 0.024         | 0.26    | 0.38          |
| EF19-24.29 |          |                        | 0.21     | 0.12          | 0.086   | 0.028         |

| Spot #     | Si (cps) | Std. Dev | S (cps) | Std. Dev | Se (cps) | Std. Dev | Te    | Std. Dev | Hg    | Std. Dev |
|------------|----------|----------|---------|----------|----------|----------|-------|----------|-------|----------|
|            |          | (2σ)     |         | (2σ)     |          | (2σ)     | (cps) | (2σ)     | (cps) | (2σ)     |
| EF19-25    |          |          |         |          |          |          |       |          |       |          |
| EF19-25.01 | 4.18E+07 | 1.00E+06 | 77500   | 3500     | 27       | 20       | 0     | 1        | 2450  | 380      |
| EF19-25.02 | 3.74E+07 | 690000   | 59400   | 3100     | 38       | 18       | 0     | 1        | 3540  | 750      |
| EF19-25.03 | 3.82E+07 | 890000   | 62800   | 2700     | 33       | 21       | 0     | 1        | 1140  | 360      |
| EF19-25.04 | 4.03E+07 | 990000   | 54800   | 3000     | 54       | 27       | 0     | 1        | 2240  | 480      |
| EF19-25.05 | 3.79E+07 | 520000   | 55200   | 2800     | 35       | 28       | 0     | 1        | 120   | 380      |
| EF19-25.06 | 3.90E+07 | 520000   | 67700   | 3700     | 28       | 24       | 0     | 1        | -800  | 420      |
| EF19-25.07 | 3.01E+07 | 630000   | 42300   | 4000     | 34       | 30       | 10    | 11       | 1170  | 390      |
| EF19-25.08 | 2.63E+07 | 1.10E+06 | 31000   | 2600     | 26       | 22       | 0     | 1        | 150   | 360      |
| EF19-25.09 | 2.66E+07 | 830000   | 43100   | 2800     | 25       | 25       | 4.8   | 6.7      | 1300  | 410      |
| EF19-25.10 | 3.01E+07 | 680000   | 51300   | 2900     | 15       | 18       | 0     | 1        | 1450  | 490      |
| EF19-25.11 | 3.15E+07 | 640000   | 104600  | 3000     | 960      | 100      | 14    | 11       | 12480 | 720      |
| EF19-25.12 | 3.53E+07 | 410000   | 70000   | 14000    | 128      | 43       | 18    | 16       | 9300  | 1400     |
| EF19-25.13 | 2.10E+07 | 1.30E+06 | 349000  | 61000    | 45       | 26       | 43    | 26       | 6800  | 1000     |
| EF19-25.14 | 3.67E+07 | 1.00E+06 | 63900   | 3200     | 20       | 22       | 11.6  | 9.9      | 14200 | 4400     |
| EF19-25.15 | 2.35E+07 | 860000   | 51200   | 3300     | 26       | 20       | 0     | 1        | 3670  | 480      |

| Spot #     | Si (cps) | Std. Dev | S (cps)  | Std. Dev | Se (cps) | Std. Dev | Te (cps) | Std. Dev | Hg (cps) | Std. Dev |
|------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
|            |          | (2σ)     |
| EF19-25.16 | 3.35E+07 | 990000   | 64900    | 3000     | 67       | 28       | 9.8      | 9.4      | 11600    | 2800     |
| EF19-25.17 | 3.48E+07 | 600000   | 74800    | 3200     | 141      | 37       | 0        | 1        | 7480     | 640      |
| EF19-25.18 | 3.64E+07 | 650000   | 90300    | 6300     | 1800     | 890      | 0        | 1        | 247000   | 85000    |
| EF19-25.19 | 2.50E+07 | 710000   | 42700    | 2700     | 82       | 26       | 0        | 1        | 48100    | 3900     |
| EF19-25.20 | 3.42E+07 | 920000   | 71200    | 3100     | 59       | 33       | 0        | 1        | 31400    | 2300     |
| EF19-25.21 | 1.93E+07 | 450000   | 159000   | 40000    | 20       | 26       | 0        | 1        | 800      | 530      |
| EF19-25.22 | 3.34E+07 | 1.40E+06 | 78000    | 5800     | 409      | 92       | 14       | 11       | 43200    | 9100     |
| EF19-25.23 | 3.05E+07 | 830000   | 98200    | 3700     | 2970     | 290      | 52       | 27       | 65000    | 6200     |
| EF19-25.24 | 3.26E+07 | 930000   | 50900    | 2800     | 20       | 30       | 0        | 1        | 2410     | 430      |
| EF19-25.25 | 2.64E+07 | 570000   | 45100    | 2600     | 21       | 29       | 0        | 1        | 2050     | 420      |
| EF19-25.26 | 2.40E+07 | 860000   | 45300    | 2900     | 12       | 19       | 0        | 1        | 3150     | 480      |
| EF19-25.27 | 3.51E+07 | 1.20E+06 | 66200    | 3700     | 15       | 20       | 0        | 1        | 770      | 330      |
| EF19-25.28 | 2.73E+07 | 1.20E+06 | 49300    | 3000     | 15       | 20       | 0        | 1        | 780      | 370      |
| EF19-25.29 | 3.19E+07 | 1.20E+06 | 65800    | 3300     | 25       | 19       | 7        | 11       | 1450     | 310      |
| EF19-25.30 | 1.69E+07 | 1.70E+06 | 1.53E+06 | 72000    | 165      | 40       | 174      | 37       | 5010     | 490      |
| EF19-25.31 | 3.08E+07 | 1.20E+06 | 20400    | 3600     | 29       | 25       | 0        | 1        | -50      | 380      |
|            |          | 1        | 1        | 1        | 1        | 1        | 1        | 1        | 1        |          |

| Spot #     | Na    | Std. Dev | Al    | Std. Dev | Cl    | Std. Dev | К     | Std. Dev | Ti    | Std. Dev |
|------------|-------|----------|-------|----------|-------|----------|-------|----------|-------|----------|
|            | (ppm) | (2σ)     |
| EF19-25.01 | 961   | 14       | 1650  | 170      | 825   | 45       | 659.5 | 9.1      | 51.4  | 3.2      |
| EF19-25.02 | 1790  | 62       | 3950  | 690      | 890   | 52       | 1303  | 56       | 80    | 4.4      |
| EF19-25.03 | 1040  | 35       | 3300  | 1000     | 802   | 47       | 619   | 20       | 49.2  | 3.6      |
| EF19-25.04 | 1281  | 32       | 4080  | 110      | 779   | 38       | 1468  | 47       | 106   | 16       |
| EF19-25.05 | 1776  | 37       | 6156  | 56       | 867   | 46       | 2460  | 50       | 47.2  | 5.9      |
| EF19-25.06 | 1843  | 41       | 5909  | 64       | 796   | 51       | 2657  | 43       | 48.7  | 3.2      |
| EF19-25.07 | 3980  | 150      | 25150 | 480      | 937   | 60       | 7364  | 91       | 46.9  | 3.8      |
| EF19-25.08 | 2190  | 350      | 15070 | 320      | 975   | 82       | 3783  | 86       | 47.4  | 3.3      |
| EF19-25.09 | 817   | 61       | 9120  | 370      | 864   | 62       | 1377  | 79       | 32.8  | 2.7      |
| EF19-25.10 | 2520  | 100      | 19400 | 580      | 959   | 53       | 5110  | 240      | 60.3  | 7.1      |
| EF19-25.11 | 1444  | 42       | 9970  | 140      | 1033  | 52       | 1520  | 100      | 31630 | 760      |
| EF19-25.12 | 1940  | 120      | 9110  | 180      | 811   | 43       | 2699  | 44       | 2220  | 180      |
| EF19-25.13 | 36500 | 2000     |       |          | 1240  | 100      | 5090  | 320      | 390   | 30       |
| EF19-25.14 | 2070  | 170      | 36600 | 7600     | 802   | 50       | 2490  | 120      | 77.5  | 6.3      |
| EF19-25.15 | 784   | 86       | 10500 | 1400     | 990   | 75       | 1225  | 92       | 70.6  | 6.5      |

| Spot #     | Na     | Std. Dev | Al    | Std. Dev | Cl    | Std. Dev | K     | Std. Dev | Ti    | Std. Dev |
|------------|--------|----------|-------|----------|-------|----------|-------|----------|-------|----------|
|            | (ppm)  | (2σ)     | (ppm) | (2σ)     | (ppm) | (2σ)     | (ppm) | (2σ)     | (ppm) | (2σ)     |
| EF19-25.16 | 2468   | 79       | 15760 | 640      | 836   | 53       | 4000  | 70       | 57.2  | 3.8      |
| EF19-25.17 | 2080   | 56       | 9650  | 270      | 881   | 61       | 3052  | 66       | 1091  | 54       |
| EF19-25.18 | 2183   | 82       | 12500 | 300      | 856   | 50       | 3155  | 85       | 16600 | 650      |
| EF19-25.19 | 1179   | 70       | 12310 | 460      | 924   | 78       | 1890  | 130      | 253   | 37       |
| EF19-25.20 | 1706   | 67       | 7020  | 230      | 797   | 63       | 1879  | 83       | 200   | 35       |
| EF19-25.21 | 2860   | 970      | 40000 | 13000    | 1084  | 83       | 2840  | 770      | 199   | 78       |
| EF19-25.22 | 2560   | 230      | 15880 | 470      | 944   | 65       | 3540  | 160      | 61.8  | 5.3      |
| EF19-25.23 | 2520   | 160      | 24600 | 2000     | 1044  | 62       | 3480  | 280      | 41600 | 1500     |
| EF19-25.24 | 3608   | 83       | 29330 | 580      | 948   | 56       | 7047  | 99       | 71.4  | 5.2      |
| EF19-25.25 | 1121   | 52       | 12280 | 740      | 1066  | 84       | 1791  | 81       | 42    | 3.8      |
| EF19-25.26 | 884    | 77       | 12640 | 920      | 1001  | 86       | 1400  | 140      | 33.7  | 2.9      |
| EF19-25.27 | 3950   | 130      | 25320 | 540      | 911   | 47       | 6300  | 150      | 50.9  | 4        |
| EF19-25.28 | 1144   | 55       | 4250  | 110      | 943   | 73       | 1367  | 46       | 85.7  | 6.5      |
| EF19-25.29 | 870    | 44       | 1527  | 92       | 849   | 65       | 621   | 16       | 77.7  | 4.9      |
| EF19-25.30 | 121000 | 11000    |       |          | 3280  | 460      | 14100 | 1200     | 1870  | 260      |
| EF19-25.31 | 3568   | 66       | 25900 | 1700     | 877   | 65       | 5247  | 92       | 51.6  | 4.1      |

| Spot #     | Ti    | Std. Dev | Fe     | Std. Dev | Ni    | Std. Dev | Cu    | Std. Dev | Zn    | Std. Dev |  |
|------------|-------|----------|--------|----------|-------|----------|-------|----------|-------|----------|--|
|            | (ppm) | (2σ)     | (ppm)  | (2σ)     | (ppm) | (2σ)     | (ppm) | (2σ)     | (ppm) | (2σ)     |  |
| EF19-25.01 | 3.54  | 0.13     | 318    | 10       | 1.62  | 0.4      | 28.6  | 1.2      | 96    | 13       |  |
| EF19-25.02 | 6.06  | 0.26     | 220    | 22       | 2.03  | 0.33     | 55    | 2.4      | 12.2  | 3.8      |  |
| EF19-25.03 | 3.044 | 0.088    | 375    | 11       | 1.36  | 0.39     | 36.6  | 1.5      | 19.5  | 3.5      |  |
| EF19-25.04 | 8.3   | 1.5      | 168    | 23       | 1.08  | 0.29     | 2.1   | 0.26     | 7.5   | 3.1      |  |
| EF19-25.05 | 2.39  | 0.21     | 188.1  | 8.9      | 1.42  | 0.33     | 3.21  | 0.28     | 27.1  | 5.8      |  |
| EF19-25.06 | 2.92  | 0.15     | 230    | 11       | 2.36  | 0.41     | 1.08  | 0.21     | 46.9  | 9        |  |
| EF19-25.07 | 2.8   | 0.13     | 414    | 15       | 1.35  | 0.58     | 2.12  | 0.38     | 6.6   | 1.9      |  |
| EF19-25.08 | 2.545 | 0.071    | 122    | 12       | 0.64  | 0.26     | 0.53  | 0.21     | 1.48  | 0.47     |  |
| EF19-25.09 | 1.37  | 0.12     | 687    | 81       |       |          |       |          | 11.4  | 1.4      |  |
| EF19-25.10 | 3.82  | 0.35     | 1840   | 150      | 1.83  | 0.66     | 7.96  | 0.62     | 5.9   | 1.2      |  |
| EF19-25.11 | 3486  | 79       | 228600 | 3700     | 14.1  | 2        | 757   | 13       | 441   | 28       |  |
| EF19-25.12 | 219   | 18       | 19100  | 1300     | 3.4   | 1.4      | 74.2  | 4.9      | 85.7  | 7.3      |  |
| EF19-25.13 | 42.3  | 3        | 5950   | 620      | 76.5  | 9.4      | 53.2  | 7.1      | 1970  | 380      |  |
| EF19-25.14 | 5.17  | 0.5      | 8300   | 1000     | 5.7   | 2.1      | 6.74  | 0.77     | 64.3  | 7.8      |  |
| EF19-25.15 | 4.62  | 0.43     | 460    | 140      | 45    | 49       | 2.79  | 0.59     | 14.8  | 3.7      |  |

| Spot #     | Ti    | Std. Dev | Fe     | Std. Dev | Ni    | Std. Dev | Cu    | Std. Dev | Zn    | Std. Dev |
|------------|-------|----------|--------|----------|-------|----------|-------|----------|-------|----------|
|            | (ppm) | (2σ)     | (ppm)  | (2σ)     | (ppm) | (2σ)     | (ppm) | (2σ)     | (ppm) | (2σ)     |
| EF19-25.16 | 3.58  | 0.2      | 15800  | 1200     | 2.88  | 0.58     | 7.75  | 0.71     | 36.5  | 6.2      |
| EF19-25.17 | 101.4 | 4.3      | 13200  | 960      | 3.5   | 0.48     | 39.3  | 3        | 106.1 | 8.8      |
| EF19-25.18 | 1823  | 72       | 81000  | 15000    | 6.8   | 1.3      | 250   | 51       | 251   | 35       |
| EF19-25.19 | 22.1  | 3.2      | 11600  | 3200     | 1.44  | 0.45     | 43    | 13       | 18.2  | 4.7      |
| EF19-25.20 | 16.9  | 3.4      | 2700   | 460      | 3.1   | 0.52     | 8.1   | 1.6      | 105   | 11       |
| EF19-25.21 | 16.3  | 6.9      | 31000  | 13000    | 66    | 30       | 121   | 60       | 141   | 55       |
| EF19-25.22 | 4.56  | 0.42     | 22800  | 5000     | 3.6   | 1.2      | 101   | 20       | 70    | 11       |
| EF19-25.23 | 4290  | 120      | 254000 | 20000    | 5.89  | 0.74     | 969   | 78       | 292   | 23       |
| EF19-25.24 | 5.3   | 0.29     | 930    | 180      | 1.06  | 0.32     | 2.39  | 0.51     | 25.2  | 5.1      |
| EF19-25.25 | 2.32  | 0.18     | 42.6   | 6.9      | 0.77  | 0.33     | 0.41  | 0.18     | 1.89  | 0.67     |
| EF19-25.26 | 1.33  | 0.077    | 117    | 15       | 0.59  | 0.26     | 0.62  | 0.2      | 5.6   | 1.3      |
| EF19-25.27 | 3.46  | 0.16     | 2220   | 210      | 1.66  | 0.42     | 1.63  | 0.41     | 18.8  | 4.6      |
| EF19-25.28 | 6.15  | 0.34     | 4890   | 230      | 3.4   | 1.9      | 2.37  | 0.48     | 9.5   | 2        |
| EF19-25.29 | 5.59  | 0.19     | 322    | 17       | 6     | 2.5      | 1.96  | 0.47     | 11.2  | 1.6      |
| EF19-25.30 | 233   | 34       | 115000 | 10000    | 301   | 26       | 1280  | 110      | 5430  | 640      |
| EF19-25.31 | 2.92  | 0.16     | 760    | 130      | 1.2   | 0.35     | 2.89  | 0.38     | 8.9   | 2.1      |

| Spot #     | As    | Std. Dev | Pd    | Std. Dev | Ag    | Std. Dev | Cd    | Std. Dev | Sn    | Std. Dev |
|------------|-------|----------|-------|----------|-------|----------|-------|----------|-------|----------|
|            | (ppm) | (2σ)     |
| EF19-25.01 | 2.89  | 0.48     | 0     | 1        | 0.325 | 0.095    | 0.25  | 0.17     | 0.72  | 0.14     |
| EF19-25.02 | 3.61  | 0.76     | 0.029 | 0.033    | 1.46  | 0.28     | 0.27  | 0.2      | 0.88  | 0.15     |
| EF19-25.03 | 3.57  | 0.66     | 0     | 1        |       |          | 0.28  | 0.16     | 0.91  | 0.16     |
| EF19-25.04 | 5.15  | 0.82     | 0     | 1        | 0.219 | 0.095    |       |          | 0.73  | 0.13     |
| EF19-25.05 | 4.17  | 0.61     |       |          |       |          |       |          | 0.78  | 0.15     |
| EF19-25.06 | 4.31  | 0.72     | 0     | 1        |       |          |       |          | 0.64  | 0.12     |
| EF19-25.07 | 9.6   | 1.6      | 0.059 | 0.05     |       |          |       |          | 1.14  | 0.25     |
| EF19-25.08 | 4     | 1.2      | 0     | 1        | 0.2   | 0.45     | 0.42  | 0.21     | 0.91  | 0.22     |
| EF19-25.09 | 8.6   | 1.4      | 0     | 1        |       |          |       |          |       |          |
| EF19-25.10 | 17    | 2.1      |       |          | 1.02  | 0.45     |       |          | 1.31  | 0.31     |
| EF19-25.11 | 1466  | 41       | 0.071 | 0.054    | 4.7   | 1.1      | 1.49  | 0.48     | 37.3  | 1.1      |
| EF19-25.12 | 141.2 | 9.7      | 0.063 | 0.057    | 1.74  | 0.62     | 0.46  | 0.38     | 3.4   | 0.44     |
| EF19-25.13 | 12.3  | 2.4      | 0     | 1        | 4.99  | 0.74     | 1.02  | 0.5      | 19.9  | 2.4      |
| EF19-25.14 | 52.3  | 6.8      | 0     | 1        | 0.48  | 0.19     |       |          | 1.27  | 0.19     |
| EF19-25.15 | 6.8   | 1.5      | 0     | 1        | 7.4   | 3.2      |       |          | 1.34  | 0.3      |

| Spot #     | As    | Std. Dev | Pd    | Std. Dev | Ag    | Std. Dev | Cd    | Std. Dev | Sn    | Std. Dev |
|------------|-------|----------|-------|----------|-------|----------|-------|----------|-------|----------|
|            | (ppm) | (2σ)     |
| EF19-25.16 | 123.5 | 8.3      |       |          |       |          | 0.81  | 0.32     | 0.71  | 0.15     |
| EF19-25.17 | 124   | 12       | 0.044 | 0.042    | 0.7   | 0.21     | 0.89  | 0.35     | 1.32  | 0.22     |
| EF19-25.18 | 880   | 190      | 0.25  | 0.1      | 1.7   | 0.34     | 2.03  | 0.98     | 13.55 | 0.72     |
| EF19-25.19 | 121   | 32       |       |          | 0.38  | 0.17     | 0.38  | 0.2      | 1.08  | 0.19     |
| EF19-25.20 | 30.6  | 7.3      | 0     | 1        | 0.31  | 0.1      | 0.22  | 0.17     | 0.81  | 0.13     |
| EF19-25.21 | 24.6  | 8.1      |       |          | 3.9   | 1.6      |       |          | 9.1   | 4.1      |
| EF19-25.22 | 399   | 77       | 0.033 | 0.037    | 1.65  | 0.26     | 0.7   | 0.5      | 1.52  | 0.47     |
| EF19-25.23 | 3000  | 240      | 1.32  | 0.24     | 8.6   | 1.2      | 1.89  | 0.42     | 42.7  | 1.9      |
| EF19-25.24 | 9.8   | 1.4      |       |          | 0.19  | 0.1      | 0.37  | 0.21     | 0.78  | 0.13     |
| EF19-25.25 | 2.87  | 0.94     | 0     | 1        |       |          |       |          | 0.77  | 0.19     |
| EF19-25.26 | 3.95  | 0.91     | 0     | 1        |       |          |       |          | 0.79  | 0.22     |
| EF19-25.27 | 16.5  | 1.9      | 0     | 1        |       |          | 0.39  | 0.17     | 0.85  | 0.18     |
| EF19-25.28 | 32.3  | 2.2      | 0     | 1        | 0.25  | 0.11     |       |          | 0.67  | 0.18     |
| EF19-25.29 | 4.89  | 0.95     | 0     | 1        | 1.23  | 0.2      | 0.25  | 0.17     | 0.84  | 0.23     |
| EF19-25.30 | 77.4  | 6.8      | 0.072 | 0.069    | 54.6  | 7.4      | 2.48  | 0.86     | 153   | 19       |
| EF19-25.31 | 6.7   | 1.2      | 0     | 1        |       |          | 0.19  | 0.13     | 0.82  | 0.15     |

| Spot #     | Sb    | Std. Dev | Pt    | Std. Dev | Au    | Std. Dev | TI    | Std. Dev | Pb    | Std. Dev |
|------------|-------|----------|-------|----------|-------|----------|-------|----------|-------|----------|
|            | (ppm) | (2σ)     |
| EF19-25.01 | 662   | 11       |       |          |       |          | 0.03  | 0.015    | 2.73  | 0.2      |
| EF19-25.02 | 292.3 | 4.7      | 0.021 | 0.021    | 0.24  | 0.14     | 0.071 | 0.022    | 2.21  | 0.28     |
| EF19-25.03 | 420.9 | 7.8      |       |          |       |          |       |          | 2.93  | 0.26     |
| EF19-25.04 | 234.2 | 4.6      |       |          |       |          |       |          | 0.79  | 0.17     |
| EF19-25.05 | 143.8 | 4.7      | 0     | 1        |       |          | 0.056 | 0.025    | 0.7   | 0.11     |
| EF19-25.06 | 131.2 | 3.8      | 0     | 1        |       |          | 0.051 | 0.022    | 0.52  | 0.14     |
| EF19-25.07 | 63.4  | 2.2      |       |          |       |          | 0.191 | 0.065    | 0.56  | 0.19     |
| EF19-25.08 | 93.3  | 1.9      |       |          |       |          | 0.096 | 0.037    | 0.09  | 0.062    |
| EF19-25.09 | 46.6  | 1.3      |       |          |       |          |       |          | 0.55  | 0.19     |
| EF19-25.10 | 44.2  | 1.3      |       |          |       |          | 0.108 | 0.034    | 0.62  | 0.14     |
| EF19-25.11 | 1473  | 36       | 0.035 | 0.03     |       |          | 0.137 | 0.038    | 138.2 | 5        |
| EF19-25.12 | 184   | 10       |       |          |       |          | 0.068 | 0.038    | 12.4  | 2.7      |
| EF19-25.13 | 62.8  | 2        |       |          |       |          | 0.19  | 0.057    | 8.6   | 1.7      |
| EF19-25.14 | 153   | 16       |       |          |       |          | 0.041 | 0.023    | 9.4   | 1.6      |
| EF19-25.15 | 60.7  | 2.4      |       |          |       |          | 0.082 | 0.039    | 0.36  | 0.14     |

| Spot #     | Sb    | Std. Dev | Pt    | Std. Dev | Au    | Std. Dev | TI    | Std. Dev | Pb    | Std. Dev |
|------------|-------|----------|-------|----------|-------|----------|-------|----------|-------|----------|
|            | (ppm) | (2σ)     |
| EF19-25.16 | 222   | 13       | 0     | 1        |       |          | 0.07  | 0.04     | 21.2  | 2.1      |
| EF19-25.17 | 125.3 | 3.7      |       |          |       |          | 0.084 | 0.031    | 5.96  | 0.37     |
| EF19-25.18 | 556   | 52       |       |          |       |          | 0.14  | 0.032    | 84.2  | 6.3      |
| EF19-25.19 | 120   | 12       |       |          | 0.45  | 0.21     | 0.086 | 0.059    | 4.4   | 1.2      |
| EF19-25.20 | 72.7  | 2.1      | 0     | 1        |       |          | 0.04  | 0.022    | 1.8   | 0.36     |
| EF19-25.21 | 45.5  | 3.1      |       |          | 0.64  | 0.24     | 0.126 | 0.051    | 11.6  | 1.6      |
| EF19-25.22 | 120   | 12       |       |          |       |          | 0.2   | 0.098    | 8     | 2.1      |
| EF19-25.23 | 1250  | 75       |       |          | 0.53  | 0.16     | 0.197 | 0.05     | 221.8 | 8.8      |
| EF19-25.24 | 58.1  | 1.5      | 0     | 1        |       |          | 0.171 | 0.041    | 0.47  | 0.11     |
| EF19-25.25 | 80.6  | 2.5      | 0     | 1        |       |          |       |          | 0.106 | 0.059    |
| EF19-25.26 | 53.7  | 2        | 0     | 1        |       |          |       |          | 1.1   | 0.37     |
| EF19-25.27 | 96.7  | 2.2      |       |          |       |          | 0.155 | 0.034    | 1.51  | 0.22     |
| EF19-25.28 | 230.5 | 5.9      |       |          |       |          |       |          | 3.3   | 0.34     |
| EF19-25.29 | 460.1 | 8.9      | 0     | 1        |       |          |       |          | 0.36  | 0.19     |
| EF19-25.30 | 74.5  | 4.1      |       |          | 0.59  | 0.36     | 0.8   | 0.14     | 46.1  | 4.9      |
| EF19-25.31 | 89.6  | 1.7      |       |          |       |          | 0.106 | 0.02     | 0.27  | 0.1      |
| Spot #     | Bi (ppm) | Std. Dev (2σ) | Th (ppm) | Std. Dev (2σ) | U (ppm) | Std. Dev (2σ) |
|------------|----------|---------------|----------|---------------|---------|---------------|
| EF19-25.01 | 0.083    | 0.032         | 1.75     | 0.12          | 3.31    | 0.1           |
| EF19-25.02 | 0.052    | 0.025         | 4.75     | 0.14          | 3.68    | 0.18          |
| EF19-25.03 | 0.085    | 0.089         | 0.529    | 0.087         | 3.44    | 0.15          |
| EF19-25.04 | 0.059    | 0.045         | 0.621    | 0.095         | 2.07    | 0.12          |
| EF19-25.05 | 0.133    | 0.067         | 0.078    | 0.027         | 1.84    | 0.21          |
| EF19-25.06 | 0.17     | 0.14          | 0.073    | 0.028         | 1.344   | 0.089         |
| EF19-25.07 | 0.43     | 0.44          | 0.21     | 0.15          | 0.485   | 0.081         |
| EF19-25.08 | 0.05     | 0.027         | 0.3      | 0.44          | 0.214   | 0.038         |
| EF19-25.09 |          |               | 1.6      | 2.2           | 0.373   | 0.099         |
| EF19-25.10 | 0.111    | 0.07          | 0.155    | 0.033         | 0.443   | 0.048         |
| EF19-25.11 | 9.62     | 0.43          | 115.2    | 2.1           | 86.5    | 1.7           |
| EF19-25.12 | 0.99     | 0.15          | 8.35     | 0.77          | 10.11   | 0.57          |
| EF19-25.13 | 13.7     | 3.6           | 0.94     | 0.1           | 2.02    | 0.28          |
| EF19-25.14 | 0.21     | 0.053         | 0.171    | 0.029         | 0.98    | 0.18          |
| EF19-25.15 | 0.095    | 0.059         | 59       | 68            | 0.154   | 0.045         |

| Spot #     | Bi (ppm) | Std. Dev (2σ) | Th (ppm) | Std. Dev (2σ) | U (ppm) | Std. Dev (2σ) |
|------------|----------|---------------|----------|---------------|---------|---------------|
| EF19-25.16 | 0.477    | 0.072         | 0.164    | 0.036         | 0.976   | 0.095         |
| EF19-25.17 | 0.376    | 0.052         | 8.24     | 0.45          | 7.12    | 0.25          |
| EF19-25.18 | 2.36     | 0.24          | 55.4     | 2.3           | 50.6    | 1.5           |
| EF19-25.19 | 0.261    | 0.067         | 0.69     | 0.14          | 2.72    | 0.71          |
| EF19-25.20 | 0.075    | 0.023         | 0.421    | 0.091         | 2.03    | 0.21          |
| EF19-25.21 | 0.27     | 0.11          | 0.53     | 0.15          | 0.81    | 0.21          |
| EF19-25.22 | 0.67     | 0.18          | 1.64     | 0.34          | 6.4     | 1             |
| EF19-25.23 | 15.27    | 0.86          | 159.1    | 5.8           | 154     | 5.4           |
| EF19-25.24 | 0.079    | 0.044         | 0.084    | 0.025         | 0.52    | 0.068         |
| EF19-25.25 |          |               | 13       | 22            | 0.097   | 0.025         |
| EF19-25.26 | 0.04     | 0.026         | 0.23     | 0.38          | 0.085   | 0.023         |
| EF19-25.27 | 0.055    | 0.025         | 0.27     | 0.23          | 0.665   | 0.067         |
| EF19-25.28 | 0.26     | 0.39          | 0.161    | 0.036         | 1.147   | 0.092         |
| EF19-25.29 | 0.053    | 0.02          | 0.152    | 0.03          | 0.907   | 0.073         |
| EF19-25.30 | 94       | 17            | 4.63     | 0.8           | 16      | 2.4           |
| EF19-25.31 | 0.044    | 0.023         | 0.056    | 0.016         | 0.442   | 0.054         |