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Abstract 

The geographic imbalance of freight moved by the transportation industry requires 

repositioning of empty containers. Empty container repositioning (ECR) describes the strategy 

for empty container relocation to reduce cost and satisfy demand. ECR costs the transportation 

industry billions of dollars per year worldwide, so the efficient and effective execution of ECR is 

necessary for maximal equipment utilization. The trucking industry is greatly impacted by ECR 

decisions because of the high volumes of freight moved every year, leading to thousands of 

empty containers in need of relocation every week. The trucking industry is incentivized to 

partner with other transportation modes, considered intermodal transport, for ECR movements 

because of other modes’ lower transit costs. A breadth of research exists for ECR optimization 

for intermodal ocean networks, but trucking industries operate cross-country and require a low-

cost transcontinental solution. Intermodal railroad networks are the ideal ECR solution for 

trucking companies, but a lack of research exists addressing ECR flow optimization in a strictly 

truck-rail network.  

This thesis focuses on an optimization model for the ECR decisions of a trucking 

company utilizing a truck-rail intermodal network. Imbalances between inbound and outbound 

freight flows in metropolitan areas result in sources and demands for empty containers across the 

network. Empty containers are repositioned via railroad to fulfill demand between these areas. 

The trucking company’s primary goal  is to fulfill demand for empty containers while 

minimizing fees paid to the railroads and its own equipment relocation costs.  

The research objective of this thesis is to develop an optimization model to support ECR 

decisions for realistic truck-rail intermodal systems. The model is demonstrated using data from 



  

a leading trucking company in North America. Comparing the optimization model results to the 

plans developed by the company’s empty-planning team shows that the model produces high-

quality plans, achieves cost savings, can be solved efficiently, and presents novel solutions to the 

business.   
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Chapter 1 - Introduction 

The geographic imbalance of freight moved by the transportation industry requires 

repositioning of empty containers. Containers are standardized equipment used to ship goods; 

they may be transported on ships, rail cars, or truck chassis. Empty container repositioning 

(ECR) describes the strategy for empty container relocation to reduce cost and satisfy demand. 

ECR costs the transportation industry up to $20 billion per year [1]. Efficient and effective ECR 

execution is necessary for maximal equipment utilization, although many trucking companies 

develop ECR plans manually. The trucking industry is greatly impacted by ECR decisions 

because of the high volumes of freight moved every year, leading to thousands of empty 

containers in need of relocation every week.   

The trucking industry is incentivized to partner with other transportation modes, 

considered intermodal transport, for ECR movements because of the lower transit costs of other 

modes. A breadth of research exists for ECR optimization for intermodal ocean freight networks, 

but trucking industries operate cross-country and require a low-cost transcontinental solution. 

Intermodal railroad networks are the ideal ECR solution for trucking companies, but a lack of 

research exists addressing ECR flow optimization in a strictly truck-rail network. 

The efficient, effective transportation of freight across North America is essential to 

economic security. The transportation sector is identified by the U.S. government as a one of the 

16 critical sectors to security and economic security in the nation. Commercial trucking and 

freight rail are called out specifically as key contributors within this sector, and the government 

prioritizes protecting their ability to transport goods through the country quickly and safely [2]. 

The increasing economic impact of the truck-rail intermodal industry is highlighted in research 

for congressional research to promote more efficient intermodal operations [3]. The efficient and 
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effective operations of the North American truck-rail network is of national importance to the 

U.S. government. 

The research objective of this thesis is to develop an optimization model to support ECR 

decisions for realistic truck-rail intermodal systems. The purpose of the model is to identify a 

minimum cost solution, from the trucking company’s perspective, to satisfy demand for empty 

containers using supply available via a combination of truck and rail movements. The 

optimization model was tested with network parameters of a North American Trucking Company 

(referred to as NATC throughout the thesis).   

1.1. Empty Container Repositioning 

In the transportation industry, the unequal movement of loaded containers between 

destinations requires transportation companies to reposition the empty containers. If outbound 

freight moves from an area do not equal inbound freight moves to that area, empty containers 

can begin to accumulate. To continue moving freight through the network, empty containers 

must be relocated to be filled with new freight for shipment. Empty container moves do not 

generate revenue, but they incur fuel and operator costs. In addition, the inability to route empty 

containers in time prevents future freight from being shipped and can incur storage and 

maintenance costs. ECR costs the transportation industry as a whole up to $20 billion per year 

[1]. An efficient and effective ECR plan is necessary for transportation companies to reduce cost, 

making it possible to capitalize on potential profit and available equipment. The challenges of 

ECR are multiplied in an interconnected intermodal network.  

1.2. Empty Container Repositioning in Trucking Intermodal Networks  

ECR is a major concern for the trucking industry and its partnership with other modes of 

transport. Partnering with another transportation mode, like the railroad, decreases the cost of 
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moving freight or empty containers long distances while allowing flexible pick-up and delivery 

locations by truck. The truck-rail transportation method moved 13.7 million containers in 2019 

[4], resulting in the need to reposition thousands of empty containers every week to 

accommodate future freight movements. Repositioning empty containers by rail is 56% cheaper 

to a trucking company than moving by truck [5], so an intermodal ECR strategy is advantageous 

to trucking companies. Many trucking companies currently manually develop ECR plans, 

especially in North America, relying on computational tools like Excel. Manual development is 

time- and expertise-intensive, relies on an experienced team, and does not ensure an optimal 

solution. Intra-terminal empty container management is well researched for intermodal port and 

depot management, but a gap exists for a rail-truck network optimization.  

1.3. Case Study Overview  

The research in this thesis is broadly motivated by rail-truck intermodal empty container 

repositioning challenges. The specific problem definition, model development, and 

computational analyses are informed by a partnership with NATC, one of the largest trucking 

companies in North America. NATC employs almost 30,000 workers and maintains more 

than 100,000 trailers and containers according to an anonymous employee of NATC (personal 

communication, April 12, 2021). The intermodal unit of NATC partners with several major 

railroad companies, including BNSF, Norfolk Southern, CSX and others, providing a generally 

lower-cost transportation solution than standard over-the-road trucking to its customers. NATC 

also operates the largest fleet of 53’ trailer-rail compatible containers of any company in North 

America [6]. The large and complex nature of NATC’s intermodal operations calls for a robust 

ECR plan.  
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The optimization model presented in this thesis was tested using system parameters from 

NATC’s intermodal network and compared to the decisions executed by NATC. Manual ECR 

planning for NATC Intermodal requires nine employee hours per week, relying on expert 

opinion for best practices, and Excel for data tracking and computation. Using demand forecasts, 

data for the containers already in the network, and railroad payment contracts, the team develops 

the lowest cost plan considering equipment positions and variable demand.   

The NATC ECR team assumes several practices to account for variable and 

approximated demand forecasts. The ECR team often chooses to send more than the forecasted 

demand to ensure that the supply of empty containers will not be depleted, regardless of the 

actualized demand. In high-demand areas, the team may choose to send fewer containers than 

demanded, because of finite supply in the network, and rely on containers already in the area to 

supply demand. The team prefers not to send less than 15 containers between metropolitan 

planning areas. This approximation method develops an initial ECR plan for the week, which is 

adjusted daily as demand is realized. 

1.4. Thesis Outline  

This thesis develops an integer programming model to support ECR decision-making in a 

realistic truck-rail intermodal network (Chapter 3). It improves on current literature because of 

the lack of research for ECR flow optimization for truck-rail intermodal networks. The results 

from the decision-making tool are compared to NATC’s intermodal ECR plans over several 

planning periods (Chapter 4). The comparison shows that the decision-making tool can improve 

planning efficiency and reduce cost by producing quality ECR decisions. Recommendations for 

implementation and opportunities for future work  are provided in Chapter 5.  
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Chapter 2 - Literature Review 

This section summarizes the breadth of research around intermodal trucking optimization 

and empty container repositioning.   

2.1. Intermodal Trucking Transportation  

Utilizing multiple transportation modes for freight movement capitalizes on the strengths 

of each individual mode. Intermodal transportation is defined by the movement of freight by two 

or more transportation modes in conjunction. Transportation modes include transit by water, air, 

rail, or road, each with unique advantages and disadvantages. Intermodal freight traveling long 

distance over the rail may rely on truck movements to receive the freight from a depot 

inaccessible by rail. Trucking, as a transportation mode, allows geographic flexibility and 

scheduling agility unique within the transportation industry. Other transportation modes require 

much larger equipment and specific infrastructure, reducing their reach compared to the 

ubiquitous highway network of North America. In tandem, the transportation modes cooperate to 

bring a lower-cost and agile solution to the customer.  

Combining the operations of multiple industries creates a multilayered flow-balance 

problem, considering container and equipment flow for two different networks in parallel. 

Several railroads may have many terminals in a geographic area due to high freight volume or 

logistic convenience. The trucking company that partners with several railroads is easily able to 

move equipment between each of these terminals, so considers them as a group to share access to 

containers and equipment. Individual terminals may also maintain their own volume of trucking 

equipment to handle daily operations.   

This thesis focuses on an intermodal truck and railroad network. The trucking industry 

moved the largest volume of freight in North America of any mode in 2020, followed by the 
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railroad industry [4]. The value of freight moved by truck is forecasted to increase from $11.5 

trillion in 2018 to $37 trillion in 2045 accounting for inflation [5]. Trucking and rail networks 

specifically are competitive in cross-country movements, necessary in North America. Both are 

less expensive than air travel and more accessible inland than water transport. Utilizing a truck-

rail intermodal network opens transportation paths previously unavailable to the railroad at an 

overall cost 56% lower than a trucking haul [5]. The truck-rail intermodal network plays a key 

role in North American freight transportation.  

The magnitude of the trucking industry has encouraged research of logistics optimization 

for the trucking industry and its intermodal partnerships. Studies have considered the impact 

of load assignment and fleet size on trucking operations [7], [8]. Some researchers have focused 

on terminal or local strategies to reduce inventory management costs in intermodal trucking 

networks [9], [10]. Others have used heuristics to find the best path for intermodal networks of 

trucks, railroads, and ocean liners for full and empty containers [11], [12]. Other port intermodal 

research aims to optimize container-driver pairing and drayage routing [13], [14], [15]. The bulk 

of research for truck-rail intermodal networks is for terminal placement and inventory 

management [16], [17], [18]. Other research considers hazardous material management in a 

truck-rail intermodal network [19]. The NATC intermodal network has inspired other studies as 

well; one research team developed a heuristic to maximize the freight moved while minimizing 

empty relocation moves [20]. This thesis focuses on an intermodal truck-rail network, optimizing 

the cost of relocating empty containers from the trucking carrier’s perspective.  

2.2. Empty Container Repositioning  

One of the largest issues that intermodal transportation companies face is repositioning 

empty containers after delivering freight. When freight is unloaded from a container, it will 
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either be refilled at the location, or transported elsewhere in the network to be filled with freight. 

Empty container repositioning (ECR) is the plan to route empty containers from areas that hold 

them in supply to areas demanding containers to fill. Empty containers are moved at a cost to the 

company, without opportunity for revenue, and such moves cost the transportation industry up 

to $20 billion per year [1]. One in three container movements worldwide is an empty move due 

to imbalances of inbound and outbound containers between partners, lack of agility in 

repositioning, and unreliable demand forecasts [21]. The volume of empty containers at a 

terminal can be expressed as supply or demand across the network. Empty containers must be 

repositioned to capitalize on all potential sales in the system and optimize equipment utilization.  

ECR seeks to fulfill the demand for empty containers with available supply at minimal 

cost, subject to available capacity for transport, contract quotas, and equipment positioning. The 

available supply may be insufficient to fulfill the demand for empty containers across the 

network, especially following a week of unexpectedly low freight delivery. The turnover of 

containers from the period before may be insufficient to capture freight demand in the next 

period. Locations with high volume movement and a consistent demand for empty containers can 

handle empty container shortage with minimal disruption to operations due to higher volumes of 

empty containers in the area.  

Both static and dynamic models have been developed to tackle the ECR problem for 

ocean liner freight movements [22], [23]. Some consider non-homogeneous empty containers for 

relocation by ocean liner [24], [25]. Others have combined static and dynamic integer 

programming models to optimize ECR routing for ocean liners in a truck-liner intermodal 

network [26], [27]. Research also addresses optimizing the network flow of empty containers in 

a truck-liner intermodal network shipping internationally [28]. Empty container relocation for 
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seaport operations is slower, higher volume, and more expensive than in a truck-rail network 

because of ocean liner equipment and operations. Ocean liners may take several weeks to 

transport freight, increasing variability in scheduling and cost. Railroads, however, deliver 

freight cross-country in a few days. This thesis specifically analyzes ECR for a truck-rail 

intermodal network.  

2.3. Empty Container Repositioning in Truck-Rail Networks  

Utilizing an intermodal truck-rail network for ECR is advantageous to trucking 

companies in North America. Moving empty containers by a mode other than driving is on 

average 2.25 times more cost effective for trucking companies [5]. Partnering with airlines to 

move freight is infeasible because of incompatible equipment, and seaport and inland waterway 

intermodal networks are cost efficient but only service a minority of markets in North America. 

To fully capitalize on intermodal savings, demands must be satisfied while considering the 

position, availability, and costs of all modes involved. 

Seaport intermodal networks are similar to truck-rail networks because trucks are utilized 

for short agile movements, while railroads and ocean liners carry high volumes over long 

distances for lower cost. Seaport intermodal networks differ from railroad intermodal networks 

in North America because international imports and exports tend to travel by ocean liner, where 

domestic trade tends to travel by the railroad. The international and domestic operations are 

subject to different customers, wait times, and trade agreements. 

Researchers have considered a variety of intermodal partnerships and strategies for ECR 

planning improvement. Some researchers consider ECR decisions for a truck-rail network and 

consider their interaction with ocean liners as well. Others developed a revenue management 

model for routing empty and full containers in this three-mode network [29]. Similar research 
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developed an ECR model for this three-mode network as well, focusing on minimizing cost like 

this thesis [30]. Truck-rail-liner networks share some properties with truck-rail networks, but 

[29] and [30] focus on a single-layer network, not considering the interface of a trucking 

company utilizing an intermodal network. Although analysis has been conducted to understand 

ECR decisions for port interactions, there is a gap in research considering routing optimization 

for truck-rail intermodal networks.  

2.4. Contributions of This Thesis  

This thesis develops an integer programming model to optimize ECR decision-making in 

a realistic truck-rail intermodal network. There is a gap in research for rail-truck intermodal flow 

optimizations for ECR, utilizing a multi-layered network flow model to represent the interfacing 

of different networks. This analysis is unique by finding the optimal solution for a trucking 

company planning ECR in a realistic truck-rail network. Further, the proposed model is applied 

to case study data to demonstrate its potential to support decision-making about empty container 

management in a large intermodal network.    
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Chapter 3 - Optimization Model for Empty Container Management 

In this chapter, the truck-rail intermodal network operations and associated empty 

container repositioning decisions are described. An integer programming model is introduced to 

optimize ECR management. The system and model are partially motivated by the NATC 

intermodal network. However, the framework is generalizable to similar decision problems faced 

by other firms. 

3.1. Truck-Rail Intermodal Empty Container Repositioning System 

Description  

When a trucking company utilizes a truck-rail intermodal network for ECR, it must 

consider the infrastructure and equipment of both the railroad and itself. The partnership reduces 

delivery costs by transporting containers long distances by rail, then utilizing trucks to deliver 

shorter and more direct loads near the destination. A chassis is a piece of trailing equipment 

attached to a truck that carries a container. Freight is transitioned between railcars and chassis at 

physical junctions called ramps. When a chassis delivers a container to a ramp to depart by rail, 

the movement is an ingate. When a container incoming by rail is retrieved by a chassis from a 

ramp, this is a deramp.   

Metropolitan areas may have many ramps operated by different railroads or major 

customers. The trucking company recognizes these geographic ramp clusters as ramp groups 

for operational convenience. The ramps’ proximity in this group allows a trucking company to 

cost-effectively share chassis and empty containers between ramps for ingates and deramps. The 

movement of a container between ramps of a ramp group by chassis is termed a crosstown 

movement. 
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When a full container is deramped from the railroad, a chassis transports the container to 

its destination in the community, considered a drayage movement. After the freight is unloaded, 

the empty container is practically equidistant from all ramps of that group. The company 

considers the volume of empty containers to belong to the group as whole because of the ease of 

transporting the container to any available ramp. A chassis can effectively transport a container 

to any other ramp within the ramp group. A positive empty container volume in a ramp group 

results from more freight deliveries the week before than outbound freight moves. A negative 

volume results from more outbound than inbound freight moves. If there is only one ramp in a 

ramp group, all supply or demand (respectively) must pass through that ramp.   

To travel long distances between ramp groups, the empty containers only travel by 

rail, departing and arriving on ramps connected in the network of the respective railroad 

company. The ramps connected by railroad companies for empty container transport are 

considered rail lane movements. Chassis are necessary for draying the containers away from the 

rail or transporting them by crosstown movements. Crosstown movements are only feasible 

among ramps of a group, and chassis do not move between different ramp groups. Each ramp has 

an accessible balance of chassis (either a supply or deficit), depending on the volumes of ingates 

and deramps in the week before. Ingates increase the chassis volume at the ramp once the freight 

is transitioned to the railroad. Deramps decrease the chassis volume at a ramp since the 

movements transport freight away from the ramp into the community. If the ramp maintains a 

chassis deficit , or the available chassis have already been utilized, then chassis must be relocated 

from another ramp to dray the containers moving through that ramp. These relocation 

movements are avoided because the chassis are moved without fulfilling customer orders and 

at a cost.  
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3.2. Intermodal Empty Container Repositioning Model  

The integer program presented in this section represents a realistic truck-rail intermodal 

network mathematically, optimizing costs considering railroad fees and equipment relocation. 

The section begins with a description of system components and operations, after which the 

mathematical model is described. 

 

Figure 1: Container Movement in a Truck-Rail Network 

 

3.2.1 System Components and Operations 

Figure 1 depicts empty container movement in a truck-rail network in context of the 

parameter notation used in this thesis. The network consists of a set of ramp groups (𝑠 ∈ 𝐺), each 

of which comprises a set of ramps (𝑖 ∈ 𝐿𝑠 for all 𝑠 ∈ 𝐺). The volume of empty containers 

available to or needed by group 𝑠 is represented by 𝐵𝑠. When 𝐵𝑠 is positive, the group maintains 

a net supply of empty containers from a surplus of freight received in the previous period. If 𝐵𝑠 is 
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negative, the group needs empty containers to move new freight in that period. An empty 

container repositioning plan consists of decisions to move empty containers between groups, via 

a combination of rail and chassis movements, to satisfy demands at groups with negative 𝐵𝑠 

values using supplies at groups with positive 𝐵𝑠 values.  

Supply is sent to groups in demand, departing from ramps to travel along the railroad to 

arrive at a ramp of another group. Although empty container supplies and demands are measured 

at the group level, movements occur between ramp pairs.  𝑋𝑖,𝑗  is a decision variable that 

represents the number of empty containers moved by rail from ramp 𝑖 to ramp 𝑗, where 𝑖 and 𝑗 

belong to different ramp groups (in Figure 1, 𝑖 is of group 𝑠 and 𝑗 is of group 𝑡). It may be 

advantageous to route an empty container into ramp 𝑖 by rail but out of ramp 𝑘 by rail to arrive at 

its destination group. The transfer between ramps in the same group is accomplished by a 

crosstown move with a chassis. These crosstown movements are tracked by decision variable 

𝑌𝑖,𝑘, representing the number of empty containers moved via chassis from ramp 𝑖 to ramp 𝑘 in 

the same group (in the example in Figure 1, group 𝑠). The net number of containers moved into 

and out of ramp 𝑖 is decided by variable 𝑂𝑖. Some railroad lanes have a restriction of how many 

empty containers can be moved per period, represented as 𝑃𝑖,𝑗.  

The desirability of moving an empty container by chassis between two ramps depends on 

chassis availability at these ramps. If the origin ramp has chassis available and the destination 

ramp needs chassis, the crosstown move benefits overall network operations. However, in the 

opposite case where the origin needs chassis and the destination has chassis available, moving 

the empty container by chassis exacerbates the imbalance. Chassis availability is connected to 

full container movements in the network. Since chassis may make multiple moves each week, 

the availability of chassis at each ramp 𝑖 is modeled based on a three-week average balance (𝐴𝑖). 
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If 𝐴𝑖 is positive, then the ramp averages a greater volume of full ingates than full deramps. If 𝐴𝑖 

is negative, then ramp 𝑖 averages more full deramps than full ingates. A container leaving ramp 𝑖 

by rail requires a chassis to dray it to the ramp, increasing the number of chassis at ramp 𝑖. The 

number of chassis at ramp 𝑖 is also increased when an empty container is moved to ramp 𝑖 by 

chassis. A container moved to ramp 𝑖 by rail requires a chassis to dray it out, decreasing the 

number of chassis at ramp 𝑖. Moving a container by chassis from ramp 𝑖 also decreases the 

chassis volume at ramp 𝑖. A chassis deficit at a ramp requires chassis to be relocated from 

another ramp within its group to meet the chassis demand for deramps in that period. Decision 

variable 𝑊𝑖 represents the number of chassis sent out from ramp 𝑖 in excess of the available 

chassis. When the chassis supply is depleted at the ramp, chassis must be transported from 

another ramp in the group to ramp 𝑖 to refill its supply; these moves are penalized by value 𝑁. 

3.2.2 Mathematical Model 

The formal mathematical model is now presented. The objective is to minimize overall 

costs in the network while fulfilling supply and demand of empty containers per group. Costs 

include rail transportation and chassis repositioning. To satisfy the net flow for every ramp 

group, a dummy location is defined to siphon excess supply or demand and ensure feasible 

balance. A dummy ramp group maintains the needed balance, and it has a single dummy ramp. 

Feasible rail movement lanes exist between all ramps of all other groups and the dummy ramp. 

These lanes are associated with high penalty costs to discourage their usage unless necessary. 

The chassis balance at the dummy ramp is zero.  

Notation and Parameters 

The model considers the cost 𝐶𝑖,𝑗 of moving a container from ramp 𝑖 to ramp 𝑗 on the 

railroad lane. A cost 𝑁 is associated with chassis relocation because of an excess sent from any 

ramp.  
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Sets 

𝐺 set of groups, indexed by 𝑠, 𝑡 

𝐿𝑠 set of ramps in group 𝑠, indexed by 𝑖, 𝑗, 𝑘 

Parameters 

𝐶𝑖,𝑗 cost of moving a container from ramp 𝑖 to ramp 𝑗 by rail 

𝑃𝑖,𝑗 maximum number of containers moved from ramp 𝑖 to ramp 𝑗 by rail 

𝑁 penalty for chassis relocation 

𝐴𝑖 3-week average chassis availability at ramp 𝑖: 

𝐴𝑖 < 0 indicates chassis deficit, 

𝐴𝑖 > 0  indicates chassis surplus 

𝐵𝑠 empty container balance at ramp group 𝑠: 

𝐵𝑠 < 0  indicates net demand, 

𝐵𝑠 > 0 indicates net supply 

Decision Variables 

The decisions considered in this model include empty container movements by rail and 

by chassis, as well as the number of chassis to relocate to ramp 𝑖 if chassis usage exceeds the 

chassis availability. 

𝑋𝑖,𝑗 number of containers moved from ramp 𝑖 to ramp 𝑗 by rail 

𝑌𝑖,𝑘  number of containers moved from ramp 𝑖 to ramp 𝑘 by chassis crosstown 

𝑂𝑖  net number of containers moved into and out of ramp 𝑖 

𝑊𝑖 number of chassis to relocate to ramp 𝑖 if usage exceeds chassis availability 

Mathematical Formulation 
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Minimize    

∑ ∑ (𝑁 𝑊𝑖 + ∑ ∑ 𝐶𝑖,𝑗𝑋𝑖,𝑗

𝑗∈𝐿𝑡𝑡∈𝐺

)

𝑖∈𝐿𝑠𝑠∈𝐺

 

Subject to 

𝐵𝑠 − ∑ ∑ ∑(𝑋𝑖,𝑗 − 𝑋𝑗,𝑖)

𝑗∈𝐿𝑡𝑡∈𝐺𝑖∈𝐿𝑠

= 0   ∀ 𝑠 ∈ 𝐺 

(1) 

 

( ∑ 𝑌𝑖,𝑘 +

𝑘 ∈ 𝐿𝑠

∑ ∑ 𝑋𝑖,𝑗

𝑗 ∈ 𝐿𝑡𝑡 ∈ 𝐺

) − ( ∑ 𝑌𝑘,𝑖 +

𝑘 ∈ 𝐿𝑠

∑ ∑ 𝑋𝑗,𝑖

𝑗 ∈ 𝐿𝑗𝑡 ∈ 𝐺

) =  𝑂𝑖 

   ∀ 𝑖 ∈ 𝐿𝑠, 𝑠 ∈ 𝐺 

(2) 

 

( ∑ 𝑌𝑘,𝑖 +

𝑘 ∈ 𝐿𝑠

∑ ∑ 𝑋𝑖,𝑗

𝑗 ∈ 𝐿𝑡𝑡 ∈ 𝐺

) − ( ∑ 𝑌𝑖,𝑘 +

𝑘 ∈ 𝐿𝑠

∑ ∑ 𝑋𝑗,𝑖

𝑗 ∈ 𝐿𝑗𝑡 ∈ 𝐺

) + 𝐴𝑖 ≤ 𝑊𝑖  

∀ 𝑖 ∈ 𝐿𝑠: 𝐴𝑖 < 0, 𝑠 ∈ 𝐺 

(3) 

 

( ∑ 𝑌𝑖,𝑘 +

𝑘 ∈ 𝐿𝑠

∑ ∑ 𝑋𝑗,𝑖

𝑗 ∈ 𝐿𝑗𝑡 ∈ 𝐺

) − ( ∑ 𝑌𝑘,𝑖 +

𝑘 ∈ 𝐿𝑠

∑ ∑ 𝑋𝑖,𝑗

𝑗 ∈ 𝐿𝑡𝑡 ∈ 𝐺

) − 𝐴𝑖 ≤ 𝑊𝑖  

∀ 𝑖 ∈ 𝐿𝑠: 𝐴𝑖 > 0, 𝑠 ∈ 𝐺 

(4) 

 

( ∑ 𝑌𝑖,𝑘 +

𝑘 ∈ 𝐿𝑠

∑ ∑ 𝑋𝑗,𝑖

𝑗 ∈ 𝐿𝑡𝑡 ∈ 𝐺

) − ( ∑ 𝑌𝑘,𝑖

𝑘 ∈ 𝐿𝑠

+ ∑ ∑ 𝑋𝑖,𝑗

𝑗 ∈ 𝐿𝑡𝑡 ∈ 𝐺

) ≤ 𝑊𝑖  

∀ 𝑖 ∈ 𝐿𝑠: 𝐴𝑖 ≤ 0, 𝑠 ∈ 𝐺 

(5) 

 

( ∑ 𝑌𝑘,𝑖

𝑘 ∈ 𝐿𝑠

+ ∑ ∑ 𝑋𝑖,𝑗

𝑗 ∈ 𝐿𝑡𝑡 ∈ 𝐺

) − ( ∑ 𝑌𝑖,𝑘 +

𝑘 ∈ 𝐿𝑠

∑ ∑ 𝑋𝑗,𝑖

𝑗 ∈ 𝐿𝑡𝑡 ∈ 𝐺

)  ≤ 𝑊𝑖  

∀ 𝑖 ∈ 𝐿𝑠: 𝐴𝑖 ≥ 0, 𝑠 ∈ 𝐺 

(6) 
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𝑋𝑖,𝑗 ≤  𝑃𝑖,𝑗   ∀ 𝑖 ∈ 𝐿𝑠; 𝑗 ∈ 𝐿𝑡; 𝑠, 𝑡 ∈ 𝐺 

(7) 

 

𝑋𝑖,𝑗 ∈ 𝑍+   ∀ 𝑖 ∈ 𝐿𝑠; 𝑗 ∈ 𝐿𝑡; 𝑠, 𝑡 ∈ 𝐺 

(8) 

 

 𝑌𝑖,𝑘  ∈ 𝑍+   ∀ 𝑖, 𝑘 ∈ 𝐿𝑠; 𝑠 ∈ 𝐺 

(9) 

 

 𝑂𝑖  ∈ 𝑍   ∀ 𝑖 ∈ 𝐿𝑠, 𝑠 ∈ 𝐺  

(10) 

 

 𝑊𝑖  ∈ 𝑍+   ∀ 𝑖 ∈ 𝐿𝑠, 𝑠 ∈ 𝐺  

(11) 

 

The model’s objective function minimizes the cost of meeting demand for empty 

containers using existing supply, where costs include a penalty for chassis over-utilization (first 

term) and those for rail movements (second term). 

Constraint (1) and (2) are flow balance constraints. Constraint (1) is a flow balance 

constraint for empty containers at the ramp group level. For each ramp group 𝑠, the net number 

of containers leaving (respectively, entering) must reflect the ramp group empty container supply 

(respectively, demand). Constraint (2) is a flow balance constraint at the ramp level. For each 

ramp 𝑖, the difference between the volume of outbound and inbound empty containers at a ramp 

must equal the ramp’s empty container balance. Outbound and inbound moves include those 

made both by chassis crosstown and by rail. The ramp’s empty container balance, 𝑂𝑖, is variable, 

and if all the ramp balances of a group are summed, they add to the group’s empty container 

balance.𝑂𝑖 > 0 indicates net supply from this ramp; 𝑂𝑖 < 0 indicates net demand at this ramp. 
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Constraints (3) – (6) relate empty container movements by truck to chassis available to 

support those movements. Constraint (3) and (5) function together when 𝐴𝑖 < 0. Constraint (3) 

states that when 𝐴𝑖 < 0, 𝑊𝑖 = 0 until the negative net flow is greater than the magnitude of the 

chassis balance deficit. Constraint (5) states that if the chassis balance at the ramp is a deficit, a 

net decrease in the number of chassis would incur a penalty. Constraint (4) and (6) function 

together when 𝐴𝑖 > 0. Constraint (4) states that when 𝐴𝑖 > 0, 𝑊𝑖 = 0 until the positive net flow 

of chassis is greater than the supply at ramp 𝑖. Constraint (6) states that if the chassis balance at 

the ramp is a supply, a net increase in the number of chassis would incur a penalty. Additionally, 

Constraints (5) and (6) ensure that, when 𝐴𝑖 = 0, both a positive and negative net flow will incur 

a penalty for the net volume of chassis moved. 

Constraint (7) describes the maximum number of empty containers that can be moved 

from ramp 𝑖 to ramp 𝑗 according to contract agreements. Constraints (8) – (11) define the 

decision variables. Constraint (8) states that the number of containers moved by rail from ramp 𝑖 

to ramp 𝑗 must be a non-negative integer. Constraint (9) expresses that the number of containers 

moved from ramp 𝑖 to ramp 𝑘 by a crosstown chassis move must be a non-negative integer. 

Constraint (10) states that the net number of containers moved into and out of ramp 𝑖 must be an 

integer. Constraint (11) states that the number of chassis that must be relocated to ramp 𝑖 must be 

a non-negative integer. 

This model formulation contributes uniquely to the existing literature because of its 

multi-layered network balance approach. Grouping subsets of ramps into ramp groups allows a 

trucking company to optimize its equipment utilization while capitalizing on the cost savings of a 

truck-rail network for ECR. 
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Chapter 4 - Case Study Analysis 

This chapter describes the application of the model introduced in Chapter 3 to NATC 

data. The data processing steps and computational environment are described. The model 

solutions are then compared to plans generated by the NATC ECR team over three planning 

periods to account for network variability.  

4.1. Computational Settings and Data Requirements 

The computational settings applied to large optimization problems impact run time. Each 

instance was solved on a personal computer with an Intel Core i7-10610U processor, clock rate 

of 1.80GHz, and 32 GB RAM. A web application with a .netcore framework was built in C#, 

utilizing version 2.8 of the COIN-OR CBC mixed integer linear programming solver (COIN) to 

solve the instances [31], [32]. Each instance solved in 0.05-0.06 CPU seconds. 

Implementing the model required querying NATC’s databases and cleaning the data 

before analysis. Since data come from different sources, three distinct queries are required. If a 

ramp or group appears in one query but not all three, that node is not considered in the 

optimization. The model was solved for a network consisting of 55-60 ramp groups and 80-100 

ramps, considering 220-240 rail movement lanes for each instance.  

The cost for every feasible railroad lane was queried, filtering for only lanes utilized 

within the last three years. These ramps and groups were compared with a separate query that 

reported the network ramp groups and their forecasted supply or demand for empty containers in 

the current and upcoming week. If the group was forecast to have a supply of containers this 

week, then that supply would be recorded as the group’s container balance (Bs). If the forecasts 

for this week and next week were negative, the group had a demand for its container balance. If 
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the forecast for this week was negative and next week was positive, the demand is considered 

fulfilled, and the group’s balance is 0. 

The final consideration was the chassis balance at the ramp level. The data gathering 

method used to inform the model required information for each ramp and group from several 

tables, and if a ramp or group had not been utilized for ECR within three months, it would not 

appear in the data set.  

4.2. Decision Comparisons 

The model was implemented using data from three planning periods, namely March 18, 

March 25, and April 1, 2021, and the results were compared to the NATC ECR team’s plan. The 

model produced good quality results and lower cost solutions for ECR planning. For each 

instance, the non-zero empty container movement decisions between ramp groups are compared 

on the ramp level and differences are discussed. The entire ramp-ramp solution comparisons are 

listed for every instance in Appendix A; focused tables are provided in this section to more 

effectively express the discussion points noted. 

4.2.1 Metric Definitions 

This thesis uses a variety of metrics to ensure an accurate analysis of the difference 

between solutions. The total cost of the NATC ECR plan is calculated by multiplying the volume 

of movement on a lane by the cost of moving a container along that lane. The total cost of the 

model solution is calculated by subtracting the cost of dummy node movements and chassis 

relocation penalties. The resulting number accounts only for the cost of moving containers by 

rail, comparable to the NATC total cost. The difference between the total cost of the two plans is 

the difference of the two strategy’s cost of rail movements. 
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The two solutions produced by the ECR team and the model may differ in total volume 

moved in that period. To provide an equitable comparison, the cost per move is shown to 

describe the relative cost per decision. The cost per move for each solution is calculated by 

dividing the total cost by the volume moved, disregarding transient volumes in the model’s 

solution. Transient volumes are defined as the number of moves to ramp groups of supply or 

from ramp groups of demand. In either case, the total volume moved in or out of that group is 

destined to supply another group, since both of those movements exacerbate the group volume 

imbalance rather than resolving it. Transient moves need to be disregarded from the overall 

calculus of cost per move because the model and the ECR team account for these decisions 

differently. The model considers transient moves as two separate decisions, whereas the ECR 

team considers a similar group-group move as a single decision. Thus, the transient volumes 

artificially increase the overall volume of moves decided by the model, deflating its respective 

cost per move. 

4.2.2 Instance Comparisons 

The analysis of the first instance provided a comparison of the empty container 

repositioning decisions of the model presented in Chapter 3 and the NATC ECR at the ramp 

level for the period of March 18. COIN solved this instance in 0.05 CPU seconds. The model’s 

solution moved two more empty containers than did the ECR team’s solution. This is because the 

model must move all supply and demand in the network, whereas the ECR team may ignore a 

group with an operationally insignificant balance. The optimal solution produced by the model 

incurred $761,434.51 in rail movement costs, a decrease of $174,632.99 (18.7%) compared to 

the ECR team’s plan, which resulted in $936,067.50 in rail movement costs. The model solution 

incurred costs of $165.28 per empty container move compared to $203.27 per move of the ECR 
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team. The ECR team’s approach allows for variability in demand and does not reflect the exact 

forecasted supply or demand of the groups. The ECR team’s plan generally differs in volume 

from the optimization model for that reason, but the same lanes or comparable lanes are often 

chosen. To see the full solution comparison, see Table 7 in Appendix A. 

The analysis of the second instance provided the difference between ramp-ramp ECR 

decisions for the model and the NATC ECR for the period of March 25. COIN solved this 

instance in 0.05 CPU seconds. The model’s solution moved 1183 fewer empty containers than 

did the ECR team’s solution because the team considered factors not available to the model. 

During the week of March 25, the system was recovering after several derailments and storms 

across the network, with many containers in the system but few from the previous week’s 

supply. Thus, the team significantly padded empty container movements out of some groups, 

namely Dallas, Harrisburg, and Jacksonville. The model solution incurs costs of $178.39 per 

empty container move compared to $209.18 per move of the ECR team, a savings of 14.7%. The 

model produced a plan with a total cost of $701,599.04, whereas NATC ECR team found a 

solution totaling $1,070,179.00, a savings of $368,579.96. To see the full solution comparison, 

see Table 8 in Appendix A. 

The analysis of the third instance provided the difference between ECR decisions for the 

model and the NATC ECR for the period of April 1. COIN solved this instance in 0.06 CPU 

seconds. The model’s solution moved 310 fewer empty containers than the ECR team’s solution 

because the team considered factors not available to the model. There was a large disparity 

between supply and demand for the week of April 1, so the dummy group moved a larger than 

normal volume. Movement from the dummy group is actualized as shortage in the system. The 

model solution incurs costs of $178.12 per empty container move compared to $206.05 per move 
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of the ECR team, a savings of 13.6%. The model produced a plan with a total cost of 

$803,842.48, whereas NATC ECR team found a solution totaling $993,775.00, a savings of 

$189,932.52. To see the full solution comparison, see Table 9 in Appendix A. 

4.2.3 Decision Similarities 

Table 1 shown below describes comparable moves between the two solutions. 

Comparable moves are decisions where the ECR team and model chose the same ramp to ramp 

move. The differences in volume between the solutions for comparable moves express the 

variability of larger groups, volume in the system, and estimation strategy of the ECR team. 

Comparable decisions make up between 31-33% of the overall solution comparison across the 

instances. 

Table 1: Instance 1 Comparable Decisions 

No. 

Lane Empty Containers Moved 

Origin Ramp Group 

Origin 

Ramp Dest. Ramp Group 

Dest. 

Ramp ECR Team Model 

1 ALBANY A$ BUFFALO B! 225 180 

2 ALLENTOWN N! ST LOUIS R! 75 54 

3 CHAMBERSBURG +P CHICAGO C+ 175 196 

4 CINCINNATI T$ CHICAGO C! 25 40 

5 DALLAS D? SALINAS VICTORIA M? 150 546 

6 DALLAS DR KANSAS CITY E- 100 300 

7 EDMONTON E% VANCOUVER V% 35 25 

8 HARRISBURG H! COLUMBUS O! 50 135 

9 HARRISBURG H! TOLEDO U! 50 30 

10 HOUSTON H- LOS ANGELES CR 100 133 

11 JACKSONVILLE J! MEMPHIS R& 50 66 

12 LAREDO XL SALINAS VICTORIA M? 25 14 

13 MONTREAL M% CHICAGO C% 20 33 

14 ORLANDO O+ CHICAGO C+ 275 196 

15 ORLANDO O+ NORTH BALTIMORE +R 300 415 

16 PHOENIX PR LOS ANGELES CR 300 250 

17 PHOENIX PR SAN BERNARDINO SR 100 50 
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No. 

Lane Empty Containers Moved 

Origin Ramp Group 

Origin 

Ramp Dest. Ramp Group 

Dest. 

Ramp ECR Team Model 

18 PORTLAND P= SEATTLE S= 250 150 

19 SPRINGFIELD +W CHICAGO C+ 35 152 

20 TITUSVILLE #T MEMPHIS R& 35 32 

 

Table 2: Fungible Move Comparison 

No. 

Lane Empty Containers Moved 

Origin Ramp Group 

Origin 

Ramp Dest. Ramp Group 

Dest. 

Ramp ECR Team Model 

1 SAINT PAUL M= CHICAGO IR 0 45 

2 SAINT PAUL M= CHICAGO C= 75 0 

3 SYRACUSE Y+ CHICAGO C+ 50 0 

4 SYRACUSE Y+ CHICAGO G+ 0 73 

5 TAMPA F+ CHICAGO G+ 0 24 

6 TAMPA F+ CHICAGO C+ 20 0 

7 JACKSONVILLE J# CHARLOTTE T! 0 50 

8 JACKSONVILLE J! CHARLOTTE T! 50 0 

 

For some ramp groups, the ECR team and the model produced comparable decisions but 

chose different ramps within a group. Table 2 shows the decisions in Instance 1 for St. Paul 

(Decisions 1-2), Syracuse (Decisions 3-4), and Tampa (Decisions 5-6), which all sent their 

supply to Chicago in both solutions, but the optimization model chose another ramp within the 

group to reduce the chassis relocation penalty. Jacksonville (Decisions 7-8) sent to Charlotte, but 

from different ramps. Similar decisions were observed across all instances. 

4.2.4 Capability Advantage 

The model presented in Chapter 3 provides advantages over the manual process of the 

NATC ECR team by finding more complex solutions and avoiding error. In the case of the 

Denver ramp group in Instance 1, shown in Table 3 below, the ECR team chose to send the 

supply to a single source, San Bernardino, whereas the model found it most cost effective to 

distribute the supply among three groups: El Paso, Los Angeles, and Memphis. This decision 
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represents the advantaged decision-making capabilities of an integer programming model, 

finding a more complex but less costly solution in a complex network. 

Table 3: Instance 1 Advanced Solutions 

No. 

Lane Empty Containers Moved 

Origin Ramp Group 

Origin 

Ramp Dest. Ramp Group 

Dest. 

Ramp ECR Team Model 

1 DENVER D- EL PASO XR 0 40 

2 DENVER D- LOS ANGELES CR 0 276 

3 DENVER D- MEMPHIS MR 0 127 

4 DENVER D- SAN BERNARDINO SR 450 0 

 

The comparable moves for Instance 3, shown in Table 4, provide an example of the 

model’s ability to avoid oversight in decision-making. The forecasted demand for the ramp 

group Buffalo (Decision 1) in Instance 3 was 200 empty containers. The model fulfilled the 

demand of Buffalo exactly, in accordance with the assumptions of the model described in 

Chapter 3. The ECR team, however, planned to send only 150, 25% less than the demand. The 

source, Albany, could have supplied Buffalo its entire demand (as shown in Decision 2). The 

decision to short Buffalo in this instance was a planning oversight by the ECR Team. Shortage of 

empty containers will cause a disruption in a small ramp group’s network and reduce its ability 

to react to future freight demand. This oversight is eliminated by the model. 

Table 4: Instance 3 Error Avoidance 

No. 
Lane Empty Containers Moved 

Origin Ramp Group 
Origin 

Ramp 
Dest. Ramp Group 

Dest. 

Ramp 
ECR Team Model 

1 ALBANY A$ BUFFALO B! 150 200 

2 ALBANY A$ CHICAGO I! 150 18 

 

4.2.5 Shortage Management 

The ECR decisions made by the NATC ECR team and the model are largely similar but 

can differ in what ramp groups are selected for shortage.  
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Table 5: Instance 1 Dummy Moves 

No. 

Lane Empty Containers Moved 

Origin Ramp Group 

Origin 

Ramp Dest. Ramp Group 

Dest. 

Ramp Model 

1 Dummy Group DN VANCOUVER V% 6 

2 Dummy Group DN CLEVELAND +C 45 

3 Dummy Group DN SALINAS VICTORIA M? 25 

4 Dummy Group DN SAN LOIS POTOSI P? 115 

5 Dummy Group DN ELIZABETH E+ 75 

6 Dummy Group DN PHILADELPHIA P+ 40 

7 Dummy Group DN NORFOLK N& 75 

8 TOLUCA T? Dummy Group DN 8 

 

Table 5 relates the decisions of the optimization model for groups receiving from or 

sending to the dummy ramp group in Instance 1. Receiving supply from the dummy node is 

actualized as the group not receiving that supply. Sending to the dummy ramp group is 

actualized as container inventory held at the group. To balance the network in the first instance, 

the dummy ramp group had a supply of empty containers. If there are no rail movement lanes 

indicated in the databases for a group, the dummy ramp group will fill the role of receiver or 

sender to support that group’s empty container balance. The optimization model does not 

indicate preference for which groups to short, whereas the ECR team prefers to short ramp 

groups of consistently high demand, namely Chicago and Los Angeles. In contrast to the groups 

with shortages, Toluca (Decision 8) did not have a lane available to unload its supply, so the 

dummy ramp group absorbed it. The ECR team did not consider Toluca in its solution because 

the empty container volume was too low. Similar dummy relocation decisions were observed 

across the instances. 

4.2.6 Effects of Disruption 

Over the instances studied in this thesis, the NATC network experienced a network-wide 

disruption resulting from a week-long storm in the northeast U.S. and several train derailments 
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across the network. These disruptions impacted the data available to the model and the decisions 

it made in the following period. 

Table 6: Instance 2 Disruption Effect 

No. 

Lane Empty Container Moves 

Origin Ramp Group 

Origin 

Ramp Dest. Ramp Group 

Dest. 

Ramp ECR Team Model 

1 DALLAS D? SALINAS VICTORIA M? 150 330 

2 DALLAS D? SAN LUIS POTOSI P? 50 55 

3 DALLAS DR KANSAS CITY,JA E- 50 175 

4 DALLAS DR CHICAGO C= 0 7 

5 DALLAS DR LOS ANGELES AR 0 36 

6 DALLAS DR LOS ANGELES CR 300 0 

7 DALLAS DR SALINAS VICTORIA M? 600 0 

8 DALLAS DR SAN LUIS POTOSI P? 50 0 

 

The analysis of the two ECR plans for Instance 2 was conducted after a period of 

disruption in the network. A major difference between the NATC ECR team and the model was 

the volume of supply sent; the amount sent from several ramp groups by the NATC team was 

well above its forecasted supply. The decisions made for Dallas in Instance 2 are a prominent 

example, as shown by Table 6. These decisions depend on factors to which the model does not 

have access. The previous period’s network-wide disruptions resulted in uncharacteristically low 

freight movements. This low freight movement resulted in low forecasted supply and demand in 

Instance 2 as the network recovered. The ECR team chose to utilize containers already in the 

system to pad supply movements and accommodate for higher levels of expected demand in the 

future.  

4.2.7 Summary of Results 

The model produced comparable solutions in three instances compared to the ECR team 

at NATC, introducing an option for cost savings and reduced planning time. The COIN solver 

produced a solution in between 0.05-0.06 CPU seconds. Over the three instances, the COIN 
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model averaged $244,381.82 in savings per week. Many of the differences between the solutions 

were due to information not available to the model. Variability in the system due to weather 

events and derailments resulted in differences in the solutions, as well as the team’s foresight 

into future demand. The model would often recommend alternative moves between similar 

groups as the ECR team, but to or from different ramps within that group to account for chassis 

relocation costs. Overall, the analysis showed that the developed model can be an effective 

decision-making tool for ECR and accurately represents a realistic truck-rail network. Utilizing a 

multi-layered network flow model for intermodal ECR optimization can decrease planning time 

and operational costs. 
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Chapter 5 - Conclusions and Future Work 

Empty container repositioning (ECR) is a major concern for the transportation industry 

because of geographic inbound and outbound freight imbalances in every network. The 

economic impact of the trucking industry and its partnership with the railroads escalated it to a 

security necessity for the U.S. government. Truck-rail intermodal networks are responsible for 

repositioning thousands of empty containers every week and require a time efficient and 

effective ECR plan. ECR is a $20 billion problem every year [1]. Many trucking companies 

manually develop their ECR plans, a process that is time intensive and dependent on employee 

experience. This thesis presents an integer programming optimization model to minimize cost 

from the perspective of a trucking company planning ECR in a realistic truck-rail network in 

North America. When compared against the ECR plan for NATC Intermodal, the model 

produced a comparable solution, providing a lower cost plan and a potential reduction in 

employee planning time. A fast and accurate ECR plan ensures availability to capture demand 

for the upcoming week and optimize equipment utilization. 

5.1. Future Work 

This thesis contributes to a base of research in ECR and intermodal trucking logistics, as 

well as providing paths for future implementation and theoretical investigation. Next steps exist 

for improving the results in comparison to the NATC ECR team’s decisions, as well as 

expanding the research and applicability broadly. 

A few of the inconsistencies between the model solution and the ECR team’s decisions 

could be rectified through additional practical changes. The model may be improved if a 

minimum volume of movement were implemented, removing groups unable to send or receive 

enough volume to operationally justify a rail movement. The model implementation could be 
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better suited for the NATC ECR team by including dynamic constraints that allow for the team 

to update daily demand as it is actualized and account for disruptions in the network, such as 

derailments. This would save the team planning time throughout the week as they update the 

empty plan. 

Multi-layered network models such as the one presented here may be generalized to other 

transportation problems. The formulation approach of grouping network nodes into regional 

subsets may allow a transportation firm to represent realistic, geographically driven decision 

processes. In the field of ECR for trucking intermodal transport, incorporating a predictive or 

stochastic modeling element may improve empty container utilization in the network. A reliable 

demand forecast is key to optimized equipment utilization. Additionally, the multi-layered flow-

balance modeling approach would benefit any system where an entity is utilizing another 

network for its purposes or considering resource management. 
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Appendix A 

Appendix A contains the full solution comparisons between the ECR team and the presented 

model. 

Table 7: Instance 1 Full Solution Comparison 

No. 
Lane 

Empty Containers 

Moved 

Origin Ramp Group 

Origin 

Ramp Dest. Ramp Group 

Dest. 

Ramp ECR Team Model 

1 ALBANY A$ BUFFALO B! 225 180 

2 ALBANY A$ CHICAGO I! 0 74 

3 ALLENTOWN N! KANSAS CITY G! 75 0 

4 ALLENTOWN N! ST LOUIS R! 75 54 

5 CALGARY %E VANCOUVER V% 0 14 

6 CHAMBERSBURG +P CHICAGO C+ 175 196 

7 CHAMBERSBURG +P CLEVELAND +C 50 0 

8 CINCINNATI T$ CHICAGO C! 25 40 

9 DALLAS D? SALINAS VICTORIA M? 150 546 

10 DALLAS DR KANSAS CITY E- 100 300 

11 DALLAS DR SALINAS VICTORIA M? 550 0 

12 DALLAS DR LOS ANGELES CR 0 246 

13 DENVER D- EL PASO XR 0 40 

14 DENVER D- LOS ANGELES CR 0 276 

15 DENVER D- MEMPHIS MR 0 127 

16 DENVER D- SAN BERNARDINO SR 450 0 

17 EDMONTON E% VANCOUVER V% 35 25 

18 HARRISBURG H! COLUMBUS O! 50 135 

19 HARRISBURG H! ELIZABETH K! 50 0 

20 HARRISBURG H! TOLEDO U! 50 30 

21 HARRISBURG H! ST LOUIS R! 0 71 

22 HARRISBURG H! PITTSBURG D! 0 20 

23 HARRISBURG P$ CHICAGO I$ 0 213 

24 HOUSTON H- LOS ANGELES CR 100 133 

25 INDIANAPOLIS U+ ELIZABETH E+ 40 0 

26 JACKSONVILLE J# CHARLOTTE T! 0 50 

27 JACKSONVILLE J! CHARLOTTE T! 50 0 

28 JACKSONVILLE J! MEMPHIS R& 50 66 

29 JACKSONVILLE J! SAN BERNARDINO SR 50 0 

30 LAREDO XL SALINAS VICTORIA M? 25 14 

31 MIAMI M# KANSAS CITY G! 50 0 
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No. 
Lane 

Empty Containers 

Moved 

Origin Ramp Group 

Origin 

Ramp Dest. Ramp Group 

Dest. 

Ramp ECR Team Model 

32 MIAMI M# JACKSONVILLE J# 0 63 

33 MIAMI M# MEMPHIS R& 20 0 

34 MONTREAL M% CHICAGO C% 20 33 

35 ORLANDO O+ ATLANTA Q+ 0 25 

36 ORLANDO O+ CHICAGO C+ 275 196 

37 ORLANDO O+ NORTH BALTIMORE +R 300 415 

38 PHILADELPHIA P+ CHICAGO C+ 20 0 

39 PHILADELPHIA V! KANSAS CITY G! 75 0 

40 PHOENIX PR LOS ANGELES CR 300 250 

41 PHOENIX PR SAN BERNARDINO SR 100 50 

42 PORTLAND P= CHICAGO IR 0 50 

43 PORTLAND P= LOS ANGELES CR 0 7 

44 PORTLAND P= SEATTLE S= 250 150 

45 SAINT PAUL M= CHICAGO IR 0 45 

46 SAINT PAUL M= CHICAGO C= 75 0 

47 SASKATOON %K CHICAGO C% 0 2 

48 SPOKANE W= LOS ANGELES CR 0 38 

49 SPOKANE W= CHICAGO C= 75 0 

50 SPRINGFIELD +W CHICAGO C+ 35 152 

51 STOCKTON ER LOS ANGELES CR 400 0 

52 STOCKTON ER SAN BERNARDINO SR 0 150 

53 SYRACUSE Y+ CHICAGO C+ 50 0 

54 SYRACUSE Y+ CHICAGO G+ 0 73 

55 SYRACUSE Y+ ST LOUIS T+ 50 0 

56 TAMPA F+ CHICAGO G+ 0 24 

57 TAMPA F+ CHICAGO C+ 20 0 

58 TITUSVILLE #T MEMPHIS R& 35 32 

59 WINNIPEG %W CHICAGO C% 0 2 

60 WORCESTER R+ CHICAGO C+ 80 0 
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Table 8: Instance 2 Full Solution Comparison 

No. 

Lane 
Empty Containers 

Moved 

Origin Ramp Group 
Origin 

Ramp 
Dest. Ramp Group 

Dest. 

Ramp 
ECR Team Model 

1 ALBANY A$ BUFFALO B! 125 130 

2 ALBANY A$ CHICAGO I! 125 132 

3 ALLENTOWN N! KANSAS CITY G! 25 0 

4 ALLENTOWN N! ST LOUIS R! 25 43 

5 AYER Y! CHICAGO I! 150 0 

6 BALTIMORE B+ CHICAGO G+ 0 17 

7 CALGARY %E VANCOUVER V% 0 14 

8 CHAMBERSBURG +P CHICAGO C+ 200 224 

9 CHICAGO C! CLEVELAND C& 0 35 

10 CHICAGO C! COLUMBUS O! 0 63 

11 CHICAGO C% CALGARY %E 0 14 

12 CHICAGO I$ TOLEDO U! 0 15 

13 CINCINNATI T$ CHICAGO C! 40 25 

14 DALLAS D? SALINAS VICTORIA M? 150 330 

15 DALLAS D? SAN LUIS POTOSI P? 50 55 

16 DALLAS DR KANSAS CITY E- 50 175 

17 DALLAS DR CHICAGO C= 0 7 

18 DALLAS DR LOS ANGELES AR 0 36 

19 DALLAS DR LOS ANGELES CR 300 0 

20 DALLAS DR SALINAS VICTORIA M? 600 0 

21 DALLAS DR SAN LUIS POTOSI P? 50 0 

22 DENVER D- CHICAGO WQ 0 124 

23 DENVER D- EL PASO XR 0 45 

24 DENVER D- MEMPHIS MR 0 7 

25 DENVER D- LOS ANGELES CR 0 254 

26 DENVER D- SAN BERNARDINO SR 450 0 

27 EDMONTON E% VANCOUVER V% 30 26 

28 HARRISBURG H! COLUMBUS O! 100 57 

29 HARRISBURG H! NORFOLK N& 50 30 

30 HARRISBURG H! TOLEDO U! 25 0 

31 HOUSTON H- LOS ANGELES CR 100 75 

32 INDIANAPOLIS U+ ELIZABETH E+ 50 50 

33 JACKSONVILLE J# CHARLOTTE T! 0 25 

34 JACKSONVILLE J! CHARLOTTE T! 50 0 

35 JACKSONVILLE J! KANSAS CITY G! 75 0 

36 JACKSONVILLE J! MEMPHIS R& 50 108 

37 JACKSONVILLE J! SAN BERNARDINO SR 50 0 
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No. 

Lane 
Empty Containers 

Moved 

Origin Ramp Group 
Origin 

Ramp 
Dest. Ramp Group 

Dest. 

Ramp 
ECR Team Model 

38 JERSEY CITY K! CHICAGO I$ 0 50 

39 LAREDO XL SALINAS VICTORIA M? 25 25 

40 MIAMI M# KANSAS CITY G! 25 0 

41 MIAMI M# MEMPHIS R& 25 0 

42 MONTREAL M% EDMONTON E% 0 6 

43 MONCTON %M MONTREAL M% 1 0 

44 ORLANDO O+ CHICAGO C+ 200 153 

45 ORLANDO O+ NORTH BALTIMORE +R 350 390 

46 PHILADELPHIA P+ CHICAGO C+ 30 0 

47 PHOENIX PR EL PASO XR 30 0 

48 PHOENIX PR LOS ANGELES CR 100 325 

49 PHOENIX PR SAN BERNARDINO SR 300 40 

50 PORTLAND P= LOS ANGELES CR 125 0 

51 PORTLAND P= SEATTLE S= 125 150 

52 SAINT PAUL M= CHICAGO C= 75 0 

53 SPOKANE W= LOS ANGELES CR 0 65 

54 SPOKANE W= CHICAGO C= 75 0 

55 SPRINGFIELD +W CHICAGO C+ 35 153 

56 STOCKTON ER LOS ANGELES AR 0 375 

57 STOCKTON ER LOS ANGELES CR 400 0 

58 SYRACUSE Y+ CHICAGO C+ 50 0 

59 SYRACUSE Y+ ST LOUIS T+ 50 32 

60 TAMPA F+ CHICAGO G+ 0 3 

61 TAMPA F+ CHICAGO C+ 15 0 

62 TITUSVILLE #T MEMPHIS R& 0 35 

63 TITUSVILLE #T ST LOUIS R! 40 0 

64 TORONTO T% CHICAGO C% 0 15 

65 TORONTO T% MEMPHIS P% 30 0 

66 WORCESTER R+ CHICAGO C+ 90 0 
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Table 9: Instance 3 Full Solution Comparison 

No. 
Lane 

Empty Containers 

Moved 

Origin Ramp Group 
Origin 

Ramp 
Dest. Ramp Group 

Dest. 

Ramp 
ECR Team Model 

1 ALBANY A$ BUFFALO B! 150 200 

2 ALBANY A$ CHICAGO I! 150 18 

3 ALLENTOWN N! ST LOUIS R! 0 8 

4 AYER Y! CHICAGO I! 225 0 

5 CALGARY %E VANCOUVER V% 15 8 

6 CHAMBERSBURG +P CHICAGO C+ 250 224 

7 CINCINNATI T$ CHICAGO C! 25 8 

8 CLEVELAND +C CHICAGO C+ 0 71 

9 DALLAS D? SALINAS VICTORIA M? 75 0 

10 DALLAS D? SAN LUIS POTOSI P? 100 0 

11 DALLAS DR CHICAGO IR 0 110 

12 DALLAS DR KANSAS CITY E- 0 200 

13 DALLAS DR LOS ANGELES AR 0 187 

14 DALLAS DR LOS ANGELES CR 200 0 

15 DALLAS DR SAN BERNARDINO SR 0 488 

16 DALLAS DR SEATTLE S= 0 15 

17 DALLAS DR SALINAS VICTORIA M? 500 0 

18 DENVER D- EL PASO XR 0 40 

19 DENVER D- LOS ANGELES AR 0 367 

20 DENVER D- SAN BERNARDINO SR 450 0 

21 EDMONTON E% CHICAGO C% 0 1 

22 EDMONTON E% VANCOUVER V% 20 32 

23 ELIZABETH K! CHICAGO I$ 0 191 

24 HARRISBURG P$ CHICAGO I$ 0 15 

25 HARRISBURG H! COLUMBUS O! 150 155 

26 HARRISBURG H! LOS ANGELES CR 100 0 

27 HARRISBURG H! TOLEDO U! 25 20 

28 HOUSTON H- LOS ANGELES CR 125 107 

29 INDIANAPOLIS U+ ELIZABETH E+ 35 31 

30 JACKSONVILLE J! ATLANTA A! 0 125 

31 JACKSONVILLE J# CHARLOTTE T! 0 150 

32 JACKSONVILLE J! CHARLOTTE T! 50 0 

33 JACKSONVILLE J! MEMPHIS R& 100 69 

34 JACKSONVILLE J! SAN BERNARDINO SR 200 0 

35 LAREDO XL SALINAS VICTORIA M? 25 24 

36 MIAMI M# JACKSONVILLE J# 0 72 
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No. 
Lane 

Empty Containers 

Moved 

Origin Ramp Group 
Origin 

Ramp 
Dest. Ramp Group 

Dest. 

Ramp 
ECR Team Model 

37 MIAMI M# CHARLOTTE T! 80 0 

38 MIAMI M# MEMPHIS R& 10 0 

39 MONTREAL M% CHICAGO C% 0 10 

40 ORLANDO O+ CHICAGO C+ 175 503 

41 ORLANDO O+ ATLANTA Q+ 0 25 

42 ORLANDO O+ NORTH BALTIMORE +R 300 0 

43 PHOENIX PR EL PASO XR 30 0 

44 PHOENIX PR LOS ANGELES AR 0 310 

45 PHOENIX PR LOS ANGELES CR 200 0 

46 PHOENIX PR SAN BERNARDINO SR 200 0 

47 PITTSBURGH D! CHICAGO I$ 25 15 

48 PORTLAND P= SEATTLE S= 250 233 

49 SAINT PAUL M= CHICAGO IR 0 2 

50 SAINT PAUL M= CHICAGO C= 50 11 

51 SASKATOON %K CHICAGO C% 3 3 

52 SPOKANE W= LOS ANGELES CR 0 29 

53 SPRINGFIELD +W CHICAGO C+ 35 83 

54 STOCKTON ER LOS ANGELES CR 200 0 

55 STOCKTON ER SAN BERNARDINO SR 0 212 

56 SYRACUSE Y+ CHICAGO G+ 0 71 

57 SYRACUSE Y+ CHICAGO C+ 50 0 

58 SYRACUSE Y+ ST LOUIS T+ 50 0 

59 TAMPA F+ CHICAGO G+ 0 1 

60 TAMPA F+ CHICAGO C+ 15 0 

61 TITUSVILLE #T CHARLOTTE T! 70 0 

62 TITUSVILLE #T MEMPHIS R& 10 56 

63 TORONTO T% MEMPHIS P% 15 0 

64 WINNIPEG %W CHICAGO C% 10 13 

65 WORCESTER R+ CHICAGO C+ 75 0 

 

 


