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Abstract 

Soil erosion due to an underlying claypan layer ultimately impairs water resources and limits crop 

yield in agricultural fields. Claypan soils cover approximately 40,469 km2 in the United States and 

are characterized by a highly impermeable layer underlying surficial soil. The objective of this 

research was to delineate the variability of soil properties, including soil erodibility, in claypan 

soils. Understanding how soil properties change in the subsurface is critical to understanding the 

processes exacerbating soil loss in claypan regions. Geophysical methods were used to determine 

the spatial variability of surface soil (apparent electrical conductivity) and the soil stratigraphy 

between a high and low apparent electrical conductivity areas (electrical resistivity tomography). 

Laboratory (erosion function apparatus) and in-situ (“mini” jet erosion test), erosion methods were 

used to identify the variability in soil erosion with depth in claypan soils. Laboratory test were 

used to classify and determine the strength and permeability of claypan soils. The results of this 

study indicate the surficial soil has a higher hydraulic conductivity and is more erodible than the 

underling claypan layer, which has a lower hydraulic conductivity and is resistant to erosion. As a 

result, surficial soil is being eroded by the process of undermining due to an underlying 

impermeable claypan layer. This research is significant because there is limited knowledge of 

erosion on claypan soils. The knowledge gained from this study will aid in the quantification of 

erosion on claypan soils in existing erosion models at field and watershed scales. 
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Chapter 1 - Introduction 

Soil loss is an environmental problem which impacts all aspects of society from impaired water 

resources to infrastructure stability. Claypan soils are characterized by a highly impermeable layer 

below surficial soil and covers approximately 40,469 km2 of the United States (Jamison et al., 

1968; Blanco-Canqui et al., 2002). Soil erosion reduces water quality by fostering toxic algal 

blooms and limiting reservoir capacity by sedimentation (Kansas Water Office, 2016). In 

agriculture, claypan soils impact crop productivity by restricting root growth, impeding water flow 

through the subsurface, and limiting soil nutrient availability. Moreover, erosion in claypan soils 

decreases surficial soil thickness, exposing the impermeable claypan layer at the surface. For 

example, in Figure 1.1 the creation of an ephemeral gully occurs in an agricultural field due to a 

shallow surficial soil overlying an impermeable claypan layer in periods of high rainfall. 

Geophysical, erosion, and laboratory tests were performed in this research to examine the soil 

properties at two different sites, to better understand the spatial variability in claypan soil erosion. 

 

Figure 1.1. Ephemeral gully erosion. 
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 In this research, geophysical methods included apparent electrical conductivity (ECa) and 

electrical resistivity tomography (ERT). Soil ECa measurements were used to determine the spatial 

variability of the surface soil. Correlating corn yield measurements and soil ECa measurements, 

an area of interest was determined for performing ERT surveys. Therefore, ECa measurements 

were used to guide the location of ERT surveys. ERT surveys were performed moving from an 

area where a suspected claypan layer was near the surface (i.e., high ECa area) to an area where 

there was no suspected underlying claypan layer (i.e., low ECa area). Unlike ECa measurements, 

ERT measurements allowed for the determination of changing soil stratigraphy between a high 

ECa area and low ECa area with depth. ERT measurements at both sites guided the location of 

disturbed and undisturbed soil sample collection. Two different erosion methods (i.e., erosion 

function apparatus (EFA) and “mini” jet erosion test (JET)) were used to identify the variability in 

soil erosion with depth in claypan soils. The EFA is a laboratory test that directly measured the 

erosion rate of undisturbed soil samples due to sheet flow erosion at high hydraulic loading; 

whereas the JET is an in situ test which directly measured the erosion rate due to free-fall erosion 

without sample disturbance. The goal of the erosion testing was to obtain the critical shear stress. 

The critical shear stress is the applied hydraulic stress at which a soil starts to erode (Bernhardt et 

al., 2011) and a higher critical shear stress indicates that a soil is more erosion-resistant. This 

research combined surface ECa measurements, ERT surveys, EFA tests, and JET to characterize 

where soil erosion was likely occurring. Laboratory tests included soil classification, undrained 

shear strength, and hydraulic conductivity testing of samples collected in a high and low ECa area. 

Soil undrained shear strength may aid in determining erosion potential between distinct soil layers. 

The hydraulic conductivity may aid in understanding the interaction of water flow between two 

distinct soil layers. The goal of laboratory tests was to characterize the soil properties of claypan 

soils to better understand the process by which surficial soil was being eroded. 

 The objective of this research was to delineate the variability of soil properties, including 

soil erodibility, in claypan soils. Understanding how soil properties change with the soil profile is 

critical to understanding the processes exacerbating soil loss in claypan regions. This research is 

significant because there is limited knowledge on the processes driving surficial soil erosion in 

claypan regions. The knowledge gained on erosion processes in claypan regions will contribute 

data for modeling, allowing more accurate simulation of soil losses at field and watershed scales. 
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There are six chapters in this thesis. The problem statement, background, and the research 

objective are described in Chapter 1 - . In Chapter 2 - , a detailed literature review on claypan soils, 

soil erosion, erosion devices, and geophysical tests used in this research are described. The 

methodology of this research including the site description, ECa test, setup for ERT surveys, 

subsurface sampling, test procedure for the EFA test and JET, and procedures for laboratory tests 

are provided in Chapter 3 - . Chapter 4 -  presents the results for both sites. Next, Error! Reference 

source not found. is the discussion of the results. Finally, the conclusions and recommendations 

for future work are provided in Chapter 6 - . 
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Chapter 2 - Literature Review 

 2.1 Claypan soils 

Claypan soil formation and characteristics 

Claypan soils cover approximately four million hectares in the central United States, including 

portions of southern Illinois, northeastern and southwestern Missouri, southeastern Kansas and 

Oklahoma, and northwestern Texas (USDA-NRCS, 2006). Claypan soils are characterized by a 

dense, compact, and slowly permeable subsurface layer that contains higher clay-sized particle 

percentage than overlying materials, from which it is separated by a sharp boundary (Soil Science 

Terms committee, 2008). There is no clear delineation of clay-sized particle percentage, but a 

typical description is a sharp increase in clay-sized particles over an abrupt boundary (Buckley et 

al., 2008). The major mechanism in claypan soil formation is a change in parent material 

stratigraphy. In southeastern Kansas, the claypan soils are formed by clay translocation and loess 

deposition on top of clayey alluvium or residuum weathered mainly from Permian and 

Pennsylvanian sandstone, shale, and limestone (Hartley et al., 2014). The formation of claypan 

soil directly influences its physical, geochemical, and biological properties (Fanning and Gray, 

1959; Schaetzl and Thompson, 2015). 

 2.2 Soil erosion 

Erosion rate and critical shear stress 

Erosion is the process of soil loss due to water flow and occurs when erosive forces exceed the 

resistive forces (i.e., gravity, cohesion, and adhesion) within the soil (Winterwerp and van 

Kesteren, 2004; Sanford, 2008; Grabowski et al., 2011). Erodibility is a measure of these resistive 

forces and is often expressed as a threshold for erosion (Sanford, 2008; Grabowski et al., 2011). 

Erosion rate, 𝜺𝒓, is the mass of sediment eroded per unit time once the erosion threshold exceeds 

the critical shear stress of the soil. Critical shear stress, 𝝉𝒄, is the shear stress exerted by flowing 

water on the soil surface that initiates erosion. A shear stress lower than the critical shear stress 

will not cause the soil to erode. So, a soil resistant to erosion will have low erodibility and a high 

critical shear stress; conversely, a highly erodible soil will have high erodibility and a low critical 

shear stress. The excess shear stress equation is commonly used to describe cohesive soil erosion 

(Partheniades, 1965; Hanson, 1990a, 1990b; Al-Madhhachi et al., 2013). The excess shear stress 

equation is: 
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𝜺𝒓 =  𝒌𝒅(𝝉 − 𝝉𝒄)𝒂    Equation 2.1 

where 휀𝑟 is the erosion rate (m s-1), 𝑘𝑑 is the rate of soil erosion when the boundary shear stress is 

greater than the critical shear stress (m3 (N-s)-1), 𝜏 is the shear stress exerted on the soil surface 

(Pa), and 𝜏𝑐 is the critical shear stress (Pa). The empirical exponent 𝑎 is usually assumed to be 

unity (Hanson and Cook, 1997; Al-Madhhachi et al., 2013) although researchers have determined 

a can be as high as 6.8 (Van Klaveren and McCool, 1998; Knapen et al., 2007). Research 

conducted by Smerdon and Beasley (1959), Kamphius and Hall (1983), Hanson (1996), and 

Briaud et al. (2001) have tried to find a simple relationship between 𝑘𝑑 or 𝜏𝑐 to other soil index 

parameters (i.e., plasticity index or percent clay) of cohesive soils. However, Grabowski et al. 

(2011) suggested that erosion of cohesive soils is a complex system dependent on different 

physical, chemical, and biological factors as shown in Figure 2.1. 

 

Figure 2.1. Factors affecting erosion in cohesive soils. (Grabowski et al., 2011) 

Factor affecting erodibility 
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 Dry unit weight. Hanson and Robinson (1993) conducted a study on compacted clay 

samples to determine a relationship between the jet index (Ji) and dry unit weight. The jet index is 

a dimensionless parameter that characterizes erosion potential. The relationship between the jet 

index and dry unit weight is shown in Figure 2.2. The results showed as dry unit weight increased 

the jet index decreased. Hanson (1991) developed a relation between the jet index (Ji) and the max 

depth of scour measurements (𝐷𝑠) from the submerged jet erosion test. The relationship between 

the jet index and the maximum depth of scour measurements is: 

𝐷𝑠

𝑡
 =  𝐽𝑖𝑈𝑜 (

𝑡

𝑡1
)

−0.931

    Equation 2.2 

where 𝐷𝑠 is the maximum depth of scour (cm), 𝑡 is the time (s), 𝐽𝑖 is the jet index (unitless), 𝑈0 is 

the jet nozzle velocity (cm s-1), and 𝑡1 is the time equivalent of 1 s if t is in time units other than 

seconds A jet index value of 0.02 indicated a high erodibility, whereas a value of 0.002 indicated 

a low erodibility. Therefore, clay soil was more erodible at a relatively high jet index (0.02) and 

low dry unit weight, whereas the clay soil was more erosion-resistant at a higher dry unit weight 

and low jet index (0.002). 

 

Figure 2.2. Relationship between erosion potential and dry unit weight. (Hanson and 

Robinson, 1993) 
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Water content. Hanson and Robinson (1993) also correlated the jet index and water 

content from four dynamically compacted and three statically compacted clay samples (Figure 

2.3). Dynamic compaction was accomplished by dropping a 79.4-kg hammer 30 cm and 

controlling the number of blows. Static load compaction was achieved by using a pneumatic press 

to apply loads of up to 46 kN. The clay soil parameters exhibited a liquid limit of 23, a plasticity 

index between 7 and 12, a maximum dry unit weight of 1.92 g cm-3, an optimum water content of 

12.5%, and was classified as a CL or CL-ML according to the Unified Soil Classification System. 

The compacted dry unit weight was determined by dividing the weight of the solid in the soil 

element by the total volume occupied by the entire element. The compacted dry unit weight 

remained constant throughout the seven compacted clay samples. The results showed that the 

erosion resistance of the soil material is sensitive to water content at the time of compaction. Also, 

the erosion resistance increased as the water content increased. It was noted that the resistance 

decreased for the sample compacted at saturation which suggested that there may be an optimum 

water content slightly less than saturation. As previously noted, a jet index of 0.02 indicated a high 

erodibility (low resistance to erosion), whereas a value of 0.002 would indicate a low erodibility 

(high resistance to erosion). 

 

Figure 2.3. Relationship between erosion potential and water content. (Hanson and 

Robinson, 1993) 
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Soil compaction. The magnitude of compaction of fine-grained soils strongly influences 

soil behavior (Lambe and Whiteman, 1979). Laflen and Beasley (1960), Enger (1963), Lyle and 

Smerdon (1965), Grissinger (1966), Kuti and Yen (1976), Shaikh et al. (1988), and Hanson (1992) 

have examined the relationship between soil compaction and erosion potential. Hanson and 

Robinson (1993) evaluated the relationship between the jet index (i.e., erosion potential) of clay 

samples and compaction technique (i.e., dynamic or static). Three clay samples were dynamically 

compacted at a gravimetric water content of 13.1% and three clay samples were statically 

compacted at a gravimetric water content of 16.2%. The jet index of these samples were measured 

with a submerged jet apparatus. The results, previously shown in Figure 2.2, showed the 

dynamically and statically compacted clay samples had the same general trend. Hanson and 

Robinson (1993) also noted that soils compacted at similar unit weights and water contents showed 

insignificant difference in erosion which indicated that water content and dry unit weight were the 

dominant variables controlling erosion potential of compacted soils. 

Types of erosion  

Soil erosion is a complex phenomenon investigated across many disciplines. Soil erosion by water 

flow is generally divided into three categories: sheet, rill, and gully (Hillel, 2004). Sheet erosion 

is the removal of thin layers of soil from a more or less smooth slope, carried by the distributed 

(rather than concentrated) flow of runoff water over the soil surface. Watson and Laflen (1986) 

described sheet flow erosion as inter-rill erosion and developed an empirical equation to determine 

the inter-rill erosion rate. The inter-rill erosion rate can be calculated as: 

𝐷𝑖 =  𝐾𝑖𝑖
2𝑆𝑓    Equation 2.3 

where 𝐷𝑖 is the inter-rill erosion rate (kg m-2 s-1), 𝐾𝑖 is the inter-rill soil erodibility (kg s m-4), 𝑖 is 

the rainfall intensity (m s-1), and 𝑆𝑓 is an empirical slope factor (unitless). As sheet erosion 

continues and is repeated over the course of successive rainstorms rill erosion occurs (Hillel, 

2004). Rill erosion is the scouring and transport of soil by a concentrated flow of water (Schwab 

et al., 1993; Hillel, 2004). An empirical equation to calculate the rill detachment rate can be 

determined as: 

𝐷𝑟 =  𝐾𝑟(𝜏𝑟 −  𝜏𝑐) (1 −  
𝑄𝑠

𝑇𝑐
)   Equation 2.4 

where 𝐷𝑟 is the rill detachment rate (kg m-2 s-1), 𝐾𝑟 is the rill erodibility (s m-1), 𝜏𝑟 is the hydraulic 

shear stress of the water flowing in the rill (Pa), 𝜏𝑐 is the critical shear stress of the soil (Pa), 𝑄𝑠 is 
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the rate of sediment flow in the rill (kg m-1 s-1), and 𝑇𝑐 is the sediment transport capacity of the rill 

(kg m-1 s-1). As rill erosion continues the rill gradually becomes deeper and forms a gully. The 

formation of gullies occurs from the process of continued scour into the soil subsurface until 

eventually reaching a practically impervious subsoil. Soil erosion may decrease at the bottom of 

the gully but further erosion may occur along the slumping sides of the gullies (Hillel, 2004). 

 2.3 Erosion devices 

Erosion function apparatus (EFA) 

The EFA was originally developed to measure the erosion rate of fine-grained soils for bridge 

scour. In an EFA test, a thinned walled Shelby tube containing a soil sample is placed flushed into 

an opening in the 1.33 m long rectangular flume with the cross-section of 101.6 x 50.8 m. A pump 

is used to drive the flow of water over the soil sample in the flume. As the soil erodes, a piston is 

pushed upwards to extrude the sample from the Shelby tube such that the top of the sample is 

always kept flush with the flume bottom during testing. The amount of sample eroded is equal to 

the length of sample lifted by the piston during each velocity, the movement of the piston is 

automatically measured in the EFA. The temperature of the water in the flume is maintained 

constant throughout testing as increased water temperature also increases soil erodibility (Tran et 

al., 2019). The sample is tested for one hour at water velocities of 1, 2, 3, 4, 5, and 6 m/s. After 

each velocity test, two photographs of the soil surface are taken and processed with a custom 

photogrammetry computational program to compute the soil surface roughness (as described by 

Tran et al., 2017). The applied hydraulic shear stress on the surface of the sample, 𝝉 (Pa), and 

erosion rate, �̇� (mm/hr), is calculated for each velocity. The equations for calculating the applied 

hydraulic shear stress and erosion rate at each velocity are described in Chapter 3 - . These data 

are used to create a plot of erosion rate versus shear stress for each sample on a hydraulic 

engineering circular no. 18 (HEC-18) graph to characterize the erosion potential of the soil. 

“Mini” jet erosion test (JET) 

The “original” JET apparatus was developed by the United States Department of Agriculture - 

Agricultural Research Service (Hanson, 1990b) for testing the in situ erodibility of surface 

materials. The JET apparatus has been used for the assessment of the erosion of cohesive soils in 

river channel degradation, bridge scour, and earthen spillway erosion. Hanson (1991) developed a 

soil-dependent jet index to empirically relate resistance of a soil to erosion. However, Hanson et 
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al. (2002) later developed an analytical procedure based on the jet diffusion principles (Stein et al., 

1993) to remove empiricism for determining soil erodibility. The Hanson et al. (2002) analytical 

procedures for determining soil erodibility parameters for a submerged circular jet followed the 

basis of the jet diffusion principles developed for a submerged planar jet impinging on a soil 

surface developed by Stein et al. (1993). The “mini” JET apparatus is a modified version of the 

“original” JET apparatus and was developed to increase the convenience and flexibility of in situ 

and laboratory testing. 

The “mini” JET apparatus (JET here after) can be used for any type of soil but the time 

interval for which scour is measured throughout jet-testing will vary between cohesionless and 

cohesive soils. Suggested scour measurements for cohesionless soil is every one to five minutes 

and every five to ten minutes for cohesive soil (Al-Madhhachi et al., 2011). Scour of the soil 

surface beneath the hydraulic jet is measured over two hours and at least 10 to 12 scour 

measurements are recommended for analysis purposes. The procedure for the JET setup followed 

Hanson and Cook (2004). The Blaisdell method and scour depth method were used for predicting 

the critical shear stress of the soil in this research. The Blaisdell method predicts the critical shear 

stress based on estimates of equilibrium scour at time equal to infinity. An alternate method, the 

scour depth method, uses an iterative approach that minimizes the error between measured and 

estimated scour depths in solving for the critical shear stress (Wahl, 2016). The Blaisdell method 

tends to under-predict the critical shear stress, caused by its tendency to yield large estimates of 

the equilibrium scour depth (Karamigolbaghi et al., 2017). Conversely, the scour depth method 

tends to over-predict the critical shear stress. The scour depth method was used to determine the 

critical shear stress from JET data in this research because the estimated scour depth measurements 

closely followed the observed scour measurements in all JET measurements. The equations for 

calculating the critical shear stress are described in Chapter 3 - . 

 2.4 Geophysical tests 

Apparent electrical conductivity (ECa) 

Soil electrical conductivity is a measure of the ability of a material to transmit (i.e., conduct) an 

electrical current through a representative volume of soil. Soil ECa is a bulk measurement and is 

affected by different soil properties, including soil clay content, soil water content, bulk density, 

temperature, and salinity (Rhoades et al., 1989). Soil ECa is a function of soil particle size and 
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texture; as such, it is useful in identifying the soil type. As shown in Figure 2.4, sands have a low 

conductivity, silts have medium conductivity, and clays have high conductivity. 

 

Figure 2.4. Soil type conductivity variation. (Lund and Christy, 1998) 

The standard units of measure of ECa are milliSiemens per meter (mS m-1). Siemens are the inverse 

of Ohms and are the measurement of a material’s conductance (Lund and Christy, 1998). 

Therefore, one mS m-1 is equivalent to 1000 Ohm-m. Ohm-m are the common units for electrical 

resistivity described in the next section. The software used in this study reports ECa units in μS 

cm-1. A Veris model 3100 sensor cart system (Veris Technologies of Salina, KS), in concert with 

a global positioning system mounted on a tractor, was used to create a soil ECa map which 

quantitatively delineated similar and contrasting regions of a field. The system used six 43 cm 

diameter disc electrodes that remain in direct contact with the soil at a depth of approximately 6 

cm. The Veris system uses two discs that serve as the current/sink and the remaining two-disc 

electrodes measure the resulting voltage potential at the surface. The disc spacing controls the 

depth of penetration of the electrical survey, which were 30 cm and 80 cm vertical depth in the 

soil profile in this study. The main advantage of soil ECa measurements is the ability to quickly 

collect data over large areas as opposed to discrete sampling methods. The disadvantage of soil 

ECa measurements is that data are only collected near-surface (30 cm - 80 cm). The measurement 

of ECa is a valuable tool used for identifying the soil physical-chemical properties influencing crop 

yield patterns and for establishing the spatial variation of soil properties (Corwin et al., 2003b). 
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Studies conducted in Missouri (Kitchen et al., 1996) and central Iowa (Jaynes et al., 1995) showed 

substantial correlation between soil ECa and crop yield. ECa of clay soil has also been used to 

predict the depth of surface soil overlying a clay layer (e.g., Doolittle et al., 1994; Jaynes, 1996; 

Kitchens et al., 2003). Data processing is not needed for this test due to the shallow depth of 

measurement. It is assumed that the representative volume of soil in each ECa measurement is 

homogenous within the spatial resolution of surface ECa mapper (Friedman, 2005). 

Electrical resistivity tomography (ERT) 

Electrical resistivity tomography is a near-surface geophysical method commonly used to delineate 

soil stratigraphy (Groves et al., 2011). The term “near-surface” generally means down to 

approximately 9 m in the subsurface. ERT has been used for identifying bridge foundations 

(Arjweh et al., 2013), mapping landfills (Bernstone et al., 2000), predicting soil erodibility (Karim 

and Tucker-Kulesza, 2018), and geotechnical site characterization (Hiltunen and Roth, 2003). 

Electrical resistivity is the reciprocal measurement of electrical conductivity; therefore, both 

systems measure differences in the same soil properties. ERT measurements are different than 

surface electrical conductivity measurements because ERT collects a “slice” of data into the 

subsurface, as opposed to only spatial variability at the surface. Relative measurements, like those 

collected in an electrical conductivity survey, are collected; however, in ERT surveys the data are 

mathematically inverted to yield the true electrical resistivity of the changing soil properties with 

depth.  

In a four-electrode ERT survey, an electrical current (I) is injected into the ground through 

a current/sink electrode pair (A,B) and the resulting voltage potential (V) is measured across 

another electrode pair (P,Q) a depth below the surface as shown in Figure 2.5.  

 

Figure 2.5. Schematic of the source/sink electrode pair (A,B) and voltage potential 

electrode pair (P,Q). (Everett, 2013) 
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In Figure 2.5, the voltage potential measured between electrodes P and Q, VPQ, from the 

current/sink electrode pair (A,B) is calculated as: 

𝑉𝑃𝑄 =  𝑉𝑃 −  𝑉𝑄 =  (
𝐼𝜌

2𝜋
) [

1

𝑟𝐴𝑃
−

1

𝑟𝐴𝑄
−

1

𝑟𝐵𝑃
+

1

𝑟𝐵𝑄
]

−1

  Equation 2.5 

where ρ is the resistivity in the subsurface (Ohm-m), 𝑟𝐴𝑃 is the distance between current electrode 

A and voltage electrode P, 𝑟𝐴𝑄 is the distance between current electrode A and voltage electrode 

Q, 𝑟𝐵𝑃. is the distance between sink electrode B and voltage electrode P, and 𝑟𝐵𝑄 is the distance 

between sink electrode B and voltage electrode Q. Note that current flows radially outward 

creating a hemispherical electric field in the subsurface because current cannot flow through the 

non-conducting air. In the field, VPQ and I are measured. Rearranging equation 2.5, the resistivity 

in the subsurface, ρ, is obtained. The resistivity in the subsurface is assumed to be homogenous 

with uniform resistivity; therefore, the resistivity is called apparent resistivity, 𝜌𝑎 (Ohm-m). The 

apparent resistivity is calculated as: 

𝜌𝑎 =  
𝑉𝑃𝑄

𝐼
∗ 𝑘    Equation 2.6 

where 𝑘 = 2𝜋 [
1

𝑟𝐴𝑃
−

1

𝑟𝐴𝑄
−

1

𝑟𝐵𝑃
+

1

𝑟𝐵𝑄
]

−1

is the geometric factor for a four-electrode ERT survey 

In this research, a 56-electrode ERT survey was performed utilizing a hybrid array (arrays are 

discussed below). This hybrid inverted Schlumberger and Dipole-dipole array produced high 

lateral and high vertical resolution. 

Multi-channel array types 

The advancement of data acquisition systems allows for the collection of multiple electrical 

resistivity measurements with a single current injection. The current/sink electrode pair (A,B) and 

potential electrode pair (P,Q) configuration is different in each array. Depth of penetration, signal-

to-noise ratio, lateral and vertical resolution are criteria used to determine which array type will 

yield optimum results for a particular study (Everett, 2013). A hybrid array is a combination of 

two or more array types and allows for higher resolution of the subsurface composition. In this 

research, a hybrid array, which included the Dipole-dipole and inverted Schlumberger arrays, is 

selected because high lateral and vertical resolution is needed to accurately image the soil 

stratigraphy of near-surface soils. A Wenner array is used in the Veris 3100 system to collect 

electrical conductivity measurements at the surface. Each array type is described below. 



14 

Schlumberger array. Schlumberger array is designed for determining the Earth resistivity 

profile beneath a single location, also called sounding (Everett, 2013). In Figure 2.6, using a four-

electrode ERT survey, the potential electrode pair (P,Q) are kept centered at a fixed location with 

constant separation 2a. The current/sink electrode pair (A,B) are centered at the same location but 

voltage readings are made as the separation between them is expanded about the common 

midpoint. Apparent resistivity, 𝜌𝑎, is expressed as a function of half the spacing between the 

current/sink electrodes. Excellent depth penetration is achieved with a large current/sink-potential 

electrode separation and high vertical resolution is typical of this array. In this research, a hybrid 

array which included an inverted Schlumberger array was selected because it allows for the 

collection of multiple resistivity measurements from a single current injection. An inverted 

Schlumberger array is opposite the Schlumberger array in that the current/sink electrode pair (A,B) 

is centered at a fixed location inside the potential electrode pair (P,Q). In this way, the voltage 

readings are made as the separation between the potential electrode pair is expanded about the 

current/sink electrode pair. 

 

Figure 2.6. Four-electrode Schlumberger array configuration. (Everett, 2013) 

Dipole-dipole array. Dipole-dipole array offers advantages of both Schlumberger depth 

sounding and Wenner lateral profiling (Everett, 2013). For this reason, this array is one of the most 

popular arrays in resistivity applications (Loke, 1999). In Figure 2.7, using a four-electrode ERT 

survey, the current/sink electrode pair (A,B) and potential electrode pair (P,Q) have the same 

spacing a  but the two pairs are separated by a distance na. A disadvantage of this array is the 

distortion of voltage measurements across the potential electrode pair by small-scale, near-surface 

heterogeneities caused by the deterioration of the signal-to-noise ratio at large values of n. 
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Figure 2.7. Four-electrode Dipole-dipole array configuration. (Everett, 2013) 

Wenner array. Wenner array is designed for lateral profiling of the Earth resistivity at a 

roughly constant depth of penetration (Everett, 2013). The current/sink electrode pair (A,B) and 

potential electrode pair (P,Q) follow a similar four-electrode configuration as the Schlumberger 

array where the potential electrode pair (P,Q) is placed inside the current/sink electrode pair (A,B). 

Unlike the Schlumberger array, the Wenner array has a fixed separation of a between the 

current/sink electrode pair and potential electrode pair as shown in Figure 2.8. In this array, the 

depth of penetration into the subsurface depends on the a spacing. Hence, the larger the a spacing 

the greater depth of penetration and vice versa. 

 

Figure 2.8. Four-electrode Wenner array configuration. (Everett, 2013) 

Data processing: forward modeling and data inversion 

The purpose for performing a multi-electrode ERT survey is to estimate the apparent resistivity of 

the subsurface. The pseudosection contouring method is typically used to plot the apparent 

resistivity ((𝜌𝑎)𝑖) measurements from a 2-D imaging survey (Loke, 1999), as shown in Figure 2.9. 
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Figure 2.9. Resistivity pseudosection for a Dipole-dipole array. (Everett, 2013) 

The apparent resistivity measurements were plotted such that an electrical current is shown at the 

center of the current/sink electrode pair (A,B) and the voltage potential is shown at the center of 

the corresponding potential electrode pair (P,Q). Note that the current/sink electrode pair and 

potential electrode is plotted at the intersection of the 45-degree angle from the horizontal drawn 

from the center of the electrodes (Hallof, 1957). The corresponding apparent resistivity is 

measured at a depth below the surface where the current/sink electrode pair and the corresponding 

potential electrode pair intersect each other. This procedure is repeated until all the current/sink 

electrode pairs and potential electrode pairs are covered. An estimate of the true subsurface 

resistivity is obtained (Everett, 2013); however, the pseudosection gives a distorted picture of the 

subsurface so the measured apparent resistivity is inverted through an iterative process to produce 

a true representation of the subsurface. 

 In this research, EarthImager 2D software was used to model and invert the measured 

apparent resistivity to obtain a subsurface resistivity distribution which was closely correlated with 

the true subsurface geology. Forward modeling mathematically models the apparent resistivity for 

given electrical properties and boundary condition using Fourier-transformed partial differential 

equations (Binley et al., 2005); similarly, data inversion produces the subsurface distribution of 

electrical properties from a set of given measurements. A 2.5D resistivity forward model using 

numerical methods by discretization of the domain investigation is used because earth is modeled 

as 2D but an electrical field due to a point source is modeled as 3D. Therefore, to reduce computing 

time, the governing 3D partial differential equation is Fourier-transformed into a 2D equation 
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(AGI, 2007). The forward solution is obtained by solving the 2D partial differential equation in 

the Fourier transform domain as:  

𝜕

𝜕𝑥
(𝜎

𝜕𝑉

𝜕𝑥
)  +  

𝜕

𝜕𝑧
(𝜎

𝜕𝑉

𝜕𝑧
) − 𝑘2𝜎𝑉 =  −𝐼 ∗ 𝛿(𝑥) ∗ 𝛿(𝑧)  Equation 2.7 

where V is the scalar electrical potential in the Fourier transform domain, I is the electrical current 

source, k is the wavenumber in the transform domain, and 𝜎 is the electrical conductivity as a 

function of (x,z). The procedure for resistivity measurement inversion begins by constructing a 

resistivity model based on the subsurface average apparent resistivity distribution. Next, forward 

modeling is performed to predict (or, calculate) the apparent resistivity distribution. Then the root 

mean squared error is used to characterize the goodness of fit between field apparent resistivity 

measurements and calculated resistivity measurements of the reconstructed model. Note that RMS 

error gives an average data misfit over all data points. The RMS error (%) is calculated as: 

𝑅𝑀𝑆 =  
√∑ (

𝑑𝑖
𝑃𝑟𝑒𝑑− 𝑑𝑖

𝑀𝑒𝑎𝑠

𝑑𝑖
𝑀𝑒𝑎𝑠 )

2

𝑁
𝑖=1

𝑁
 × 100%  Equation 2.8 

where N is the total number of measurements, 𝑑𝑃𝑟𝑒𝑑 is the predicted data, and 𝑑𝑀𝑒𝑎𝑠 is the 

measured data. Another measure of data misfit is the normalized L2-norm. Unlike RMS error, the 

L2-norm is defined as the sum of the squared weighted data error. The L2-norm is calculated as: 

𝐿2 − 𝑁𝑜𝑟𝑚 =  ∑ (
𝑑𝑖

𝐶𝑎𝑙𝑐− 𝑑𝑖
𝑀𝑒𝑎𝑠

𝑊𝑖
)𝑁

𝑖=1

2

   Equation 2.9 

where 𝑊𝑖 is the data weight, 𝑑𝐶𝑎𝑙𝑐 is the calculated data, and 𝑑𝑀𝑒𝑎𝑠 is the measured data. When 

the L2-norm reduces to unity (1.0) or lower, the inversion is converged. The resistivity model is 

updated and the new inverted resistivity distribution is obtained. Forward modeling, using the 

updated model is performed in the next iteration to obtain calculated resistivity. This procedure is 

repeated until a new RMS error and L2-norm between the predicted data and the measured data 

criteria is satisfied. Otherwise, the stop criteria described in Chapter 3 - is modified and the 

procedure for inversion of resistivity measurements is repeated until inversion stop criteria is 

satisfied. For example, Figure 2.10 shows the results of an ERT survey performed at site one 

following the procedure described previously for inverting measured apparent resistivity. The 

inverted resistivity section converged in three iterations, had a root mean squared error of 3.47%, 

and an L2-norm of 0.94. All desired criteria (described below) were met and the inverted resistivity 

section accurately represented the true subsurface image. 
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Figure 2.10. Example of inversion of an ERT survey performed at site one: A) Measured 

data collected in the field; B) Calculated apparent resistivity with forward modeling; C) 

Final inverted resistivity section converged after three iterations; RMS = 3.47%; L2-Norm 

= 0.94.  

In this research, the goal is to obtain an RMS less than five percent, an L2-norm close but not 

exceeding unity (1.0), and no more than five iterations to achieve an inverted ERT section which 

accurately represents the true resistivity of the subsurface. All final inversions met the stop criteria 

and indicated excellent or good agreement between measured and calculated resistivity according 

to Tucker et al. (2015). 

Factors affecting subsurface electrical resistivity 

Soil type. The soil type (i.e., particle size distribution and mineralogy) is correlated with 

the measured electrical resistivity. Figure 1.1 shows the typical range of electrical resistivity for 

earth materials. Electrical resistivity measurements are the reciprocal of electrical conductivity 

(EC) measurements. EC measurements are dependent on the electrical charge density at the surface 

of solid constituents. Higher electrical charges are associated with clay particles and lead to high 

EC measurements and low electrical resistivity measurements (Fukue et al., 1999). Conversely, 

coarse-grained soils (i.e., sands and gravels) have larger voids than fine-grained soils and lead to 

very low EC measurements and high electrical resistivity measurements. A study conducted on 25 

A 

B 

C 
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different clay samples found the electrical resistivity measurements ranged from 1 to 12 Ohm-m 

(Giao et al., 2003); conversely, electrical resistivity measurements for sand were variable 

depending on water content and ranged from 20 to 200 Ohm-m (Everett, 2013). 

 

Figure 2.11. Typical ranges of electrical resistivities of earth material. (Palacky, 1987) 

Abu-Hassanein et al. (1996) found a relationship between the liquid limit and plasticity 

index and the electrical resistivity on ten compacted clay samples (A, B, C, D, E, F, G, H, I, J). 

Figure 2.12 shows the electrical resistivity plotted versus the liquid limit and plasticity index for 

the samples with a liquid limit ranging from 23 to 70 and a plasticity index ranging from 5 to 46. 

The results from this study indicated a trend of higher liquid limit and plasticity index yielding 

lower electrical resistivity values. However, sample C did not fit this trend even though high liquid 

limit and plasticity index were determined for the sample which passed the No. 4 sieve. Therefore, 

only the soil passing the No. 200 sieve was used to determine the electrical resistivity for sample 

C. As a result, the sample C was consistent with electrical resistivity of the other soils having 

similar liquid limit or plasticity index. 
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Figure 2.12. Relationship between electrical resistivity: (A) Liquid limit; (B) Plasticity 

index. (Abu-Hanssanein et al., 1996) 

 The electrical resistivity was also correlated to the percent of fines and coarse fracture of 

soils. Using the same ten clay samples (A, B, C, D, E, F, G, H, I, J) previously mentioned, Abu-

Hanssanein et al. (1996) found that by increasing the percentage of fines a lower electrical 

resistivity measurement was obtained (Figure 2.13(A)). Soils with higher percent of fines generally 

have a higher specific surface, which improves surface conductance (Kwader, 1985; Abu-

Hanssanein et al., 1996). Conversely, increasing the percentage of coarse fraction resulted in a 

higher electrical resistivity measurement (Figure 2.13(B)). Keller and Frischknecht (1996) 

attributed this behavior to the coarse fracture soil containing primarily quartz and feldspar which 

have high electrical resistivity. 

 

Figure 2.13. Relationship between electrical resistivity: (A) Percentage fines; (B) Coarse 

fraction percentage. (Abu-Hassanein et al., 1996) 

A B 

A B 
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Soil water content. Kibria and Hossain (2012) correlated soil electrical resistivity to the 

gravimetric water content of four clay samples. This study was performed using gravimetric water 

contents that varied between 10 and 50% while keeping the dry unit weight constant. In Figure 

2.14, the results indicated that soil electrical resistivity in all samples decreased with increasing 

gravimetric water content up to approximately 20%. The average soil electrical resistivity 

reduction was 13.8 Ohm-m for change in gravimetric water content from 10 to 20%. The soil 

electrical resistivity was affected at gravimetric water contents less than 40%. Minimal variation 

in soil electrical resistivity was observed at 50% gravimetric water content between the four 

samples. 

  

  

Figure 2.14. Relationship between electrical resistivity and gravimetric water content. 

(Kibria and Hossain, 2012) 

 Soil unit weight. The correlation between electrical resistivity and moist unit weight was 

developed by Kibria and Hossain (2012) using the same four clay samples shown in Figure 2.14. 

In this study, electrical resistivity tests were conducted at different moist unit weights while 

keeping the gravimetric water content constant. In Figure 2.15, the electrical resistivity was plotted 

for the four samples at a gravimetric water content of 18%. The results from this study indicated 



22 

that soil electrical resistivity decreased as the moist unit weight increased. Minimal change in soil 

electrical resistivity was observed after 15.72 kN m-3 in the four samples, which was likely caused 

by flocculated fabric breakdown at a high unit weight and reduction in the current flow path (Kibria 

and Hossain, 2012). According to Mitchell and Soga (2005), reduction in large pores and 

breakdown in flocculated open fabric occurs during the remolding of clay soil. As result, the 

conduction path in the soil reduces at a high unit weight. 

  

  

Figure 2.15. Relationship between electrical resistivity and moist unit weight. (Kibria and 

Hossain, 2012) 
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Chapter 3 - Methodology 

 3.1 Overview 

This section includes the research methodology for this project including field and laboratory 

work. In order to determine the spatial variability of the claypan layer, ERT surveys were 

conducted in a high electrical conductivity area moving towards a low electrical conductivity area 

as measured with a surface conductivity mapper. Two field locations with identical land 

management practices were tested. Soil sample locations were determined using the ERT data. 

Undisturbed samples were used to preform erosion, strength, and permeability tests. Grab samples 

were used for soil classification. 

 3.2 Site description 

Two agricultural sites near Bartlett, KS were selected in collaboration with the land owner for this 

research. Site one is 44.5 ha and site two is 30.8 ha. Sites one and two are approximately 1 km 

from each other and were converted from conventional tillage to no-tillage in the past 10 years. 

Sites one and two are shown in Figure 3.1. 

 

Figure 3.1. Regional and local location of sites one and two. 
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 3.3 Geophysical methods 

Apparent electrical conductivity (ECa). The goal of mapping the apparent electrical conductivity 

(ECa) was to determine the relative soil property variability across both sites. A Veris model 3100 

sensor cart system (Veris Industries, Salina, KS), in concert with a global positioning system 

mounted on a tractor was used to measure the ECa (Figure 3.2(A)). The system used six 43 cm 

diameter disc electrodes that remain in direct contact with the soil at an approximate depth of 6 

cm (Figure 3.2(B)). Similar to ERT surveys discussed in Chapter 2, the Veris 3100 system used 

two discs that served as the current/sink and the remaining two-disc electrodes measured the 

resulting voltage potential. The disc spacing of 30 cm was used because this was the depth of 

interest for this study based on regional knowledge. Data processing was not needed for this test 

because due to the shallow depth of measurement, the representative volume of soil in each ECa 

measurement is statically homogenous within the spatial resolution of surface ECa mapper 

(Friedman, 2005). The ECa measurements were mapped in SMS Advanced (AgLeader, Ames, IA). 

Boundary conditions were determined using the ECa map and corn yield map at both sites. High 

ECa and low corn yield indicated a claypan layer was likely near the surface and was designated a 

“high ECa” area. Low ECa and high corn yield indicated there was likely no claypan layer near the 

surface and was designated a “low ECa” area. An area of interest was determined from the ECa 

map and corn yield map of both sites and ERT surveys were performed in these locations. 

  

Figure 3.2. Electrical conductivity testing: (A) Tractor mounted Veris 3100 system used to 

measure the ECa. (B) Schematic of Veris 3100 mapping system (Lund and Christy, 1998). 

A B 
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Electrical resistivity tomography (ERT). The goal of the ERT surveys were to determine the 

soil stratigraphy and soil sample locations at both sites. ERT surveys were conducted moving from 

an area where there was likely a claypan layer near the surface (i.e., high ECa area) to an area 

where the claypan layer was likely not near the surface (i.e., low ECa area). 

An Advanced Geosciences Inc. (AGI) ‘SuperSting with Wi-Fi Eight-Channel Earth Resistivity, 

Induced Polarization and Self Potential Instrument for Geo-Electrical Tomography’ (SuperSting) 

meter was used to collect all ERT data. The SuperSting recorded up to eight voltage reading per 

single current injection which reduced the data collection time. There were 14 cables with four 

stainless steel electrodes per cable allowing for an ERT survey with 56 electrodes. Each stainless-

steel electrode was fastened to a 30 cm long, 20 cm diameter stainless steel stake. To ensure contact 

for the injection current, the stainless-steel stakes were driven into the ground so that the electrodes 

sat just above the ground surface. All debris, such as corn stalks, were removed from around each 

stainless-steel stake and stainless-steel electrode. 

AGI’s SuperSting Administrator was used to create a command file prior to going to the 

field. The command file settings allow the user to set the number of electrodes, spacing of 

electrodes, type of array (i.e., sequence of current injection), number of commands per readings, 

and approximate measurement time per electrode. Simulating the command file allows the user to 

determine an approximate survey depth and data collection time to optimize data collection. The 

command file is saved and loaded to the SuperSting. 

The primary intention of ERT surveys was to delineate near-surface (i.e., less than 9 m) 

soil stratigraphy, so the criteria considered for the selection of array type included vertical and 

horizontal resolution. Vertical resolution mapped horizontal features which helped distinguish 

distinct soil layers. Horizontal resolution mapped vertical features which helped identify discrete 

soil features within soil layers. The strong gradient array was selected because it provided high 

vertical and horizontal resolution near the surface and minimized near-surface noise, which was 

useful in distinguishing near-surface soil stratigraphy (Butler, 2005). The strong gradient, a hybrid 

array, combined the Dipole-dipole and inverted Schlumberger arrays, as discussed in Chapter 2 - 

. 

A 56 electrode ERT survey line with an electrode spacing of 15 cm or 31 cm was used at 

both sites (Figure 3.3(A)). All ERT surveys were setup in such a way that the midpoint of the one 

ERT survey was the starting point of another ERT survey (Figure 3.3(B)) or the end of one ERT 
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survey was the starting point for another survey (Figure 3.3(C)). The red dashed line in Figure 3.3 

(B-C) indicates the areas of interest determined from the ECa map and corn yield map at both sites. 

The ERT surveys began in a high ECa area and ended in a low ECa area for both sites. A tape 

measure was used to determine placement of each stainless-steel stake. The stainless-steel stakes 

were driven into the ground with a hammer at a predetermined electrode spacing and the electrodes 

were fastened to the stainless-steel stakes. The cables adjacent to the 28th and 29th electrodes were 

connected to the SuperSting. Two 12V DC batteries were used to power the SuperSting. After 

completing setup, a contact resistance test was performed to ensure each stainless-steel electrode 

was properly fastened to each stainless-steel stake. The data collection time for each ERT survey 

using a strong gradient was approximately one hour. Terrain analysis was conducted using a Total 

Station surveying system to record the ground-surface elevation at each stainless-steel electrode. 

A terrain file was created from the recorded relative elevation values and utilized for post 

processing of the ERT survey data. ERT data collected from each survey was processed using 

AGI’s EarthImager 2D software. 

   

Figure 3.3. ERT experimental setup: (A) ERT survey line; (B) Site one ERT survey 

location; (C) Site two ERT survey location. 

Data processing. All ERT data were processed using AGI’s EarthImager 2D software to 

determine the true resistivity distribution in the subsurface. Initial settings criteria for data removal 

used for the processing of all ERT data included removal of negative apparent resistivities, removal 

of anomalous and singular spikes on the apparent resistivity pseudosection, a minimum voltage of 

0.2 mV, a minimum voltage measurement normalized by the injected current of 0.0001 Ohm, a 

A 

B C 
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minimum apparent resistivity of 0.1 Ohm-m, and a maximum apparent resistivity of 100,000 Ohm-

m. These criteria were selected to remove noisy data and improve the data inversion. 

A Smooth Model inversion method was selected for all ERT data processing. Forward 

modeling settings were chosen after selecting the initial settings criteria. A Finite Element Method 

utilizing the Cholesky Decomposition Method equation solver and a mixed boundary condition 

were used for all forward models. Resistivity inversion settings for all ERT data included the 

following stop criteria: a maximum of eight iterations, a maximum root mean squared (RMS) error 

of 5%, and using the L2-norm criteria. The following data weight criteria were selected: use of 

reciprocal error, and suppression of noisy data. 

 3.4 Soil sampling 

Sample collection procedure. Soil sample locations were determined from the ERT sections. 

Undisturbed and disturbed soil samples were collected where ERT sections indicated a claypan 

layer was likely near the surface (i.e., high ECa area) and not (i.e., low ECa area). All soil samples 

were collected via a direct push method using a tractor mounted Giddings soil sampler (Giddings 

Machine Comp, Windsor, CO). The sampler was left in the ground a minimum of ten minutes to 

ensure there was no sample disturbance and to maximize push recovery. The undisturbed soil 

samples’ collection depth was between 30 and 72 cm. Undisturbed soil samples were used to 

perform strength, erosion, and permeability tests. The disturbed samples were collected using 7.6 

cm in diameter and 91 cm long plastic tubes. Disturbed soil samples were used to perform soil 

classification tests. 

After sample collection, all soil samples were sealed at both ends using plastic or rubber 

end-caps. Duct tape was used to seal the end-caps to the soil sample tube. This was done to preserve 

in-situ water content of each soil sample until sample storage. All soil samples were labeled with 

the site number and sample location. Upon returning to the university, all soil samples were stored 

in a 100% humidity-controlled room until performing laboratory tests. A field log of soil samples 

collected at each site was created and recorded the following: the inverted ERT section containing 

the soil sample, the location of the soil sample within the inverted ERT section, the type of sample 

collection, the type of sample, the test preformed on the soil sample, the sample depth, and initial 

water content. 
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 3.5 Erosion test methods 

Erosion function apparatus (EFA). The goal of the EFA test was to directly measure the erosion 

rate and critical shear stress due to sheet flow erosion. The EFA, shown in Figure 3.4, consists of 

the following: flow straightener, water flow pump, piston advancing motor, piston, and flow 

sensor.  

 

Figure 3.4. Schematic of KSU-EFA 

Prior to testing, the water content of each undisturbed soil sample was measured according to 

ASTM D2216-10 (ASTM, 2010). The Shelby tube containing the undisturbed soil sample was 

placed on the EFA piston platform. All Shelby tube samples where 8 cm in diameter and 30 to 38 

cm in length. The top portion of the sample was trimmed level with the Shelby tube and the sample 

was inserted into the opening of the flume by raising the platform using a crank wheel.  

All samples were tested for one hour at six different velocities ranging from 1.0 to 6.0 m/s, 

in 1 m/s increments. At test initiation, the top of the sample was set flush with the bottom of the 

flume and the velocity was set at 0.5 m/s and increased to 1 m/s for the first velocity by pressing 

the flow button on the interactive LCD screen. As soil eroded from the Shelby tube, the piston was 
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pushed to ensure the sample was kept flush with the top of the Shelby tube and bottom of the 

flume. During testing, the velocity and amount of pushing by the piston was monitored and 

recorded continuously. After each velocity, a photo of the soil surface was taken (e.g., Figure 3.5) 

and processed using the custom photogrammetry computational program to quantify the surface 

roughness for determining the applied hydraulic shear stress (as described by Tran et al. (2017)). 

Prior to testing at the next velocity, the top portion of the sample was trimmed level to the Shelby 

tube and bottom of the flume. 

 

Figure 3.5. EFA soil sample surface: (A) Before testing; (B) After testing (Tran, 2018). 

Data processing. The EFA data analysis determines the erosion rate and the applied 

hydraulic shear stress on the surface of the sample at each velocity. The erosion rate at each flow 

velocity was calculated as: 

ż =
ℎ

𝑡
      Equation 3.1 

where ż is the erosion rate (mm hr-1), h is the length of sample eroded (mm), and t is the testing 

time at each velocity (hr). The applied hydraulic shear stress, determined from EFA testing, was 

calculated as: 

𝜏 =  
1

8
 𝑓 𝜌 𝑣2     Equation 3.2 

where τ is the shear stress on the sample surface (Pa), 𝑓 is the friction factor obtained from the 

Moody chart (Moody, 1944) using the soil roughness, ρ is the mass density of water (kg m-3), and 

v is the flow velocity (m s-1). These data were used to create a plot of erosion and shear stress for 

each sample. 

A B 



30 

“Mini” jet erosion test (JET). The JET was performed at the surface and directly on the claypan 

layer (i.e., approximately 25 cm below the surface) at both sites to determine the erosion rate of 

the soil layers. The JET apparatus (Figure 3.6) consists of the following parts: water inlet, rotatable 

plate (containing the jet nozzle and gauge depth), jet nozzle, depth gauge, submergence tank, 

foundation ring, and water outlet. The jet nozzle is 3.18 mm in diameter and the submergence tank 

is 70 mm in height with a wall thickness of 6.4 mm. The foundation ring is 180 mm in diameter 

and 51 mm in height. 

All JET locations were determined based on results from the ERT sections. The JET 

foundation ring was driven 51 mm into the soil surface using a rubber mallet to minimize soil 

disturbance. All debris (e.g., corn stalks) was removed from around the foundation ring. The 

submerged tank was attached to the foundation ring and the depth gauge was locked into place to 

ensure no surface soil disturbance prior to testing. An adjustable metal pipe containing the head 

tank was inserted through a metal tripod stand and set next to the JET testing location. Hoses that 

were 1.59 cm in diameter were attached from (1) the water supply tank to the water flow pump, 

(2) the water flow pump to the head tank, (3) the head tank to the JET apparatus water inlet, and 

(4) the excess flow ports back to water supply tank. Two excess flow ports were located near the 

top of the head tank to control the water level inside the head tank. The head tank was attached to 

the metal pole and adjusted within the metal tripod. The predetermined height was measured from 

the excess flow ports to the top of the submerged tank. All JETs were performed with a height 

between 2.08 m and 2.41 m based on known soil layers from classification of samples collected at 

both sites. A 1.59 cm diameter hose was attached to the water outlet and diverted the water from 

the submergence tank away from the testing area. 
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Figure 3.6. Schematic of the KSU-JET apparatus. 

Next the initial depth to the surface was recorded at time zero. The submergence tank was 

filled with water to allow for soil saturation within the JET foundation ring. The jet nozzle was 

closed to protect the soil surface during initial filling of the submergence tank. Testing did not start 

until the submergence tank was completely filled and the water level in the head tank had reached 

a constant head. The head applied to the soil surface was measured from the excess flow ports to 

the top of the rotatable plate. At test initiation the jet nozzle was opened to allow the jet to directly 

impinge on the soil surface. Scour depth measurements were taken with the gauge depth while the 

impinging jet was closed. The scour depth was measured using a time interval according to the 

following: 5 seconds, 10 seconds, 15 seconds, 30 seconds, 1 minute, 2 minute, 3 minutes, 4 

minutes, 5 minutes, 10 minutes, 15 minutes, 20 minutes, and 30 minutes. This time interval was 

selected to increase recorded scour measurements throughout testing. The time interval increased 

when the same scour depth measurement was recorded three times at the same time interval. For 

example, a scour depth of 49 mm was recorded three times using a 5 second time interval so the 

time interval was increased to 10 seconds. This measurement process was performed on all JETs 

with a maximum data collection time of two hours per test at both sites. All JET data were analyzed 

to determine the critical shear stress. 

Data processing. The JET data analysis included determining the critical shear stress of 

soil at the surface and at the claypan layer. The following equations were used to estimate the 
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critical shear stress (Daly et al., 2013; Hanson and Cook, 2004). The critical stress was assumed 

to occur when the rate of scour was equal to zero at the equilibrium scour depth (Hanson and Cook, 

1997) and was calculated as: 

𝜏𝑐 =  𝜏0 (
𝐽𝑝

𝐽𝑒
)

2

    Equation 3.3 

where 𝜏0 is the maximum shear stress due to the jet velocity at the nozzle (Pa), Jp is the potential 

core length from the jet origin (cm), and Je is the equilibrium scour depth (cm). The maximum 

shear stress was calculated as: 

𝜏0 =  𝐶𝑓𝜌𝑤𝑈0
2    Equation 3.4 

where 𝐶𝑓 = 0.00416 is the coefficient of friction, 𝜌𝑤 is water density (kg m-3), and U0 is the jet 

velocity at the orifice (cm s-1). The velocity at the jet nozzle was calculated as: 

𝑈0 =  𝐶√2𝑔ℎ    Equation 3.5 

where C = 0.70 is the discharge coefficient, g is the gravity acceleration constant (cm s-2), and h is 

the differential head measurement (cm). The potential core length from the jet origin was 

calculated as: 

𝐽𝑝 =  𝐶𝑑𝑑0    Equation 3.6 

where Cd = 6.3 is the diffusion constant and do is the nozzle diameter (cm). To determine the 

equilibrium scour depth, Blaisdell et al. (1981) developed an equation which used the scour depth 

data versus time and a hyperbolic function. The general form of this equation is shown as: 

𝐴1
2  =  (𝑓 −  𝑓0)2 −  𝑥2   Equation 3.7 

where 𝐴1 is the value for the semi-transfer and semi-conjugate of the hyperbola, f = log(J/d0) – x, 

x = log[(U0t)/d0], and f0 = log(Je/d0). The coefficients 𝐴1 and 𝑓0 are determined by plotting f versus 

x. The equilibrium scour depth was calculated as: 

𝐽𝑒 =  𝑑010𝑓0    Equation 3.8 

All JET data analysis in this study used the scour depth solution. 

 3.6 Soil classification and parameters 

The water content for each soil sample was determined before and after laboratory testing 

according to ASTM D2216-10 (ASTM, 2010). Most of the samples that were not collected in 

Shelby tubes visually contained two layers with distinctly different soil characteristics. These 

samples were collected in clear plastic tubes that did not maintain the in situ structure. The soil 

properties were measured for each layer (i.e., Top (T) of sample and Bottom (B) of sample) where 
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two layers were observed. All disturbed soil samples were classified according to the Unified Soil 

Classification System (USCS), ASTM D2487-17 (ASTM, 2018). The wet sieve analysis and dry 

sieve analysis were performed according to ASTM C117-17 (ASTM, 2017) and ASTM 

C136/136M (ASTM, 2015), respectively. Although not needed for classification, a hydrometer 

test was performed for all samples according to ASTM D7928-17 (ASTM, 2017). The Atterberg 

limits test was performed according to ASTM D4318-17e1 (ASTM, 2017). The undisturbed soil 

samples collected at both sites in Shelby tubes were taken within close proximity to the disturbed 

samples and were assumed to have the same soil classification corresponding to the nearest 

classified soil sample. The hydraulic conductivity test, ASTM D5084-16a (ASTM, 2016), and 

unconsolidated undrained triaxial compression test, ASTM D2850-15 (ASTM, 2015), were 

performed on the T and B portion of the undisturbed soil samples. 
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Chapter 4 - Results 

 4.1 Site one 

Figure 4.1A shows the ECa measurements of the upper soil layer measured at approximately 30 

cm depth in the soil profile. High ECa measurements from 65 to 109 μS cm-1 were observed in the 

center, highlighted by the dashed black rectangle. In Figure 4.1B, low corn yield measurements 

from 3,276 to 5,229 kg ha-1, highlighted by the black dashed rectangle, directly correlated to the 

high ECa area (Figure 4.1(A)). The solid black line in Figure 4.1(A) shows where the ERT surveys 

were performed moving from a high ECa, low corn yield area to a low ECa, high corn yield area. 

 

Figure 4.1. Site one: (A) Apparent electrical conductivity map measured with a VERIS 

system; (B) Corn yield map measured with a commercial yield monitor on a combine. 

In Figure 4.2, four ERT surveys were performed moving from a high ECa, low corn yield 

area (Surveys 1(A-B)) to a low ECa, high corn yield area (Surveys 1(C-D)). An electrode spacing 

of 15 cm was utilized to identify the near-surface soil stratigraphy. The ERT surveys were 

performed such that the end of Survey 1A was the beginning of Survey 1B. This procedure was 

followed for the remaining ERT surveys. Electrical resistivity measurements in Survey 1A 

highlighted a low resistivity layer (10 Ohm-m or less), shown in purple, from the surface to -0.48 

m below the surface. In Survey 1B, the transition area, the low resistivity layer (10 Ohm-m or less) 

thinned from 0.89 m to less than 0.31 m in thickness as the region measurements moved towards 

a low ECa area. Electrical resistivity measurements in Surveys 1C-1D highlighted a thin low 

resistivity layer (10 Ohm-m or less) near the surface, however it is relatively thinner and appears 

to dissipate across the soil profiles compared to Survey 1A. 

A B 
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Figure 4.2. Site one ERT surveys: (A) Survey 1A; (B) Survey 1B; (C) Survey 1C; (D) 

Survey 1D. Blue arrows indicate the location of the JET surface tests, red arrows indicate 

the locations of the JET tests below the surface (~25 cm), black rectangles in 1B indicate 

location of soil sample collection.  

Two layers were classified in the disturbed sample collected from Survey 1B. All top layers 

were classified as a lean clay (CL) and all bottom layers were classified as a fat clay (CH). The 

black rectangles (covering approximately 60 cm -120 cm) in Survey 1B show the area in which all 



36 

samples were collected. For example, all samples shown in Table 4.1 in the “low yield area” were 

collected within the black box shown on the far left of Figure 4.2(B). Samples 2 and 8 were used 

for undrained shear strength testing, Samples 2-2 and 8-2 (i.e., fat clay) had an undrained shear 

strength two times higher than Samples 2-1 and 8-1 (i.e., lean clay). Samples 3 and 9 were used 

for hydraulic conductivity tests, Samples 3-1 and 9 (i.e., lean clay) had a higher hydraulic 

conductivity than Sample 3-2 (i.e., fat clay). Sample 9, collected where there was no near-surface 

claypan layer, had a higher hydraulic conductivity than Sample 3-1, collected where there was a 

near-surface claypan layer. The EFA results from Samples 4, 6, and 10 indicated the lean clay 

layer had a relatively lower critical shear stress than the underlying fat clay layer. The EFA test 

was performed using undisturbed samples collected from Surveys 1B, note that is was not possible 

to obtain samples with two layers (i.e., top and bottom in Table 4.1) for all EFA samples. 
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Table 4.1. Site one soil parameters and erosion function apparatus results. 

Area of 

Interest 

Sample 

I.D. 

Measurement 

Location 

LL 

(%) 

PI 

(%) 
USCS 

S
u
 

(kPa) 

K
sat

 

(cm/s) 

EFA 

Test 

τ
c
 

(Pa) 

Low yield 

area, near-

surface 

claypan 

layer in 

Figure 

4.2(B) 

1-1 Top 30 14 CL - - - 

1-2 Bottom 53 29 CH - - - 

2-1 Top - - - 47 - - 

2-2 Bottom - - - 103 - - 

3-1 Top - - - - 2.2E-5 - 

3-2 Bottom - - - - 9.1E-7 - 

4 Bottom - - - - - 118.26 

Transition 

area in 

Figure 

4.2(B) 

5-1 Top 38 21 CL - - - 

5-2 Bottom 73 52 CH - - - 

6 Top - - - - - 19.43 

High yield 

area, no 

near-

surface 

claypan 

layer in 

Figure 

4.2(B) 

7-1 Top 27 9 CL - - - 

7-2 Bottom 76 51 CH - - - 

8-1 Top - - - 33 - - 

8-2 Bottom - - - 64 - - 

9 Top - - - - 5.1E-3 - 

10-1 Top - - - - - 18.73 

10-2 Bottom - - - - - 74.49 

 

 Figure 4.3 shows the EFA results collected in a high ECa area, the transition area, and low 

ECa area at site one. Samples 4 and 10-2 were the least erodible, contained fat clay soil, and were 

classified as very low to low erodibility (Figure 4.3). Where possible, samples with two layers 

(i.e., CL overlying CH) were tested individually (i.e., upper and lower portion of the sample). 

There was no measurable erosion (via extrusion in the EFA) in Sample 4 until 6 m s-1 and Sample 

10-2 did not erode until 5 m s-1. In Figure 4.3, Samples 6 and 10-1 were more erodible, contained 

lean clay soil, and were classified as moderate erodibility. Measurable erosion was observed at 3 

m s-1 in Samples 6 and 10-2, where the soil was classified as lean clay. Sample 10-1, collected 

where there was no near-surface claypan layer, was the most erodible; whereas, Sample 4, where 



38 

there was a near-surface claypan layer, was the least erodible. All erosion points were plotted 

according to HEC-18 erodibility categorization (Arneson, 2012), which does not show points 

corresponding to zero erosion rate as it is a log-log plot. Note that the critical shear stress in Table 

4.1 was the shear stress that corresponded 0.1 mm/h erosion rate (Briaud et al. 2001). The EFA 

results for all samples are shown in Table 6.1 of Appendix A 

 

Figure 4.3. Site one EFA results for three sample locations. 

Seven JET were performed in a high ECa, low yield area (i.e., Surveys 1(A-B)) and seven 

in a low ECa, high yield area (i.e., Surveys 1(C-D)). Six JET were performed at the surface, 

indicated by blue arrows in Figure 4.2, labeled as J-4, J-6, J-7, J-9, J-13, and J-14 in Table 4.2. 

Eight JET were performed approximately 25 cm below the surface, indicated by red arrows in 

Figure 4.2, labeled as J-1, J-2, J-3, J-5, J-8, J-10, J-11, and J-12 in Table 4.2. Where it existed, the 

claypan layer was assumed to be 25 cm below the surface. This assumption was validated based 

on the higher measured critical shear stress at 25 cm below the surface compared to the surface 

measurements as shown in Table 4.2. The critical shear stress determined for J-3 and J-8 were 
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erroneous and was not used to calculate the average critical shear stress. All JET data for 

determining the critical shear stress are shown in Tables 6.3, 6.4, and 6.5 of Appendix B. 

Table 4.2. Site one jet erosion results. 

Area of 

Interest 
Location  

Sample 

I.D. 
Test Date  

τ
c 
 

(Pa) 

τ
c,avg

  

(Pa) 

Low yield 

area, near-

surface 

claypan layer 

in Figure 

4.2(A-B) 

Surface 

J-4 12/18/18 6.29 

7.71 J-6 12/18/18 6.80 

J-7 12/18/18 10.03 

25 cm  

Below 

Surface 

J-1 10/17/19 16.75 

15.54 

J-2 10/17/19 16.48 

J-3 04/02/19 25.32 

J-5 04/03/19 13.40 

High yield 

area, no near-

surface 

claypan layer 

in Figure 

4.2(C-D) 

Surface 

J-9 12/18/18 7.33 

6.17 J-13 12/18/18 5.05 

J-14 12/18/18 6.13 

25 cm  

Below 

Surface 

J-8 04/03/19 12.00 

7.10 

J-10 04/03/19 4.97 

J-11 10/17/19 7.83 

J-12 10/17/19 8.51 
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The observed scour depth measurements closely correlated to the predicted scour depth 

method measurements (Figure 4.4). The Blaisdell method overpredicted scour at the claypan layer 

(i.e., Sample J-5) to be greater than 3 cm while scour depth method predicted a scour depth of less 

than 1 cm. The over-prediction of scour using the Blaisdell method verified the selection of the 

scour depth method to determine the critical shear stresses presented in Table 4.2. 

 

Figure 4.4. Site one JET observed and predicted scour depths on the claypan layer. 

 4.2 Site two 

Figure 4.5(A) shows the ECa measurements of the upper soil layer measured at approximately 30 

cm in the soil profile. High ECa measurements from 117 to 313 μS cm-1 were observed in the 

southeast portion of the site, highlighted by the dashed black rectangle. In Figure 4.5(B), low corn 

yield measurements from 1,260 to 4,473 kg ha-1, highlighted by the black dashed rectangle, 

directly correlated to the high ECa area (Figure 4.5(A)). The solid black like in Figure 4.5(A) shows 

where the ERT surveys were performed moving from a high ECa, low corn yield area to a low 

ECa, high corn yield area. 
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Figure 4.5. Site two: (A) Apparent electrical conductivity map measured with a VERIS 

system; (B) Corn yield map measured with a commercial yield monitor on a combine.  

Two ERT surveys were performed moving from a high ECa, low corn yield area (Survey 

2A) to a low ECa, high corn yield area (Survey 2B) (Figure 4.6). Unlike site one, an electrode 

spacing of 30 cm was selected to utilize a more efficient procedure for identifying the transition 

area while reducing the number of ERT surveys performed. Electrical resistivity measurements in 

Survey 2A highlighted a low resistivity layer (10 Ohm-m or less), shown in purple, from the 

surface to approximately -1.01 m below the surface with a thickness of 1.3 m. In Survey 2B, the 

ERT measurements highlighted a low resistivity layer (10 Ohm-m or less) with a thickness of 1.0 

m at a depth of -0.30 m below the surface underlying a 0.5 m thick higher resistivity layer (15.7 

Ohm-m or more). Survey 2B contained the transition area and a low ECa area. The green dashed 

lines drawn in Survey 2B highlights the transition area. Unlike site one, the claypan layer does not 

appear to dissipate but rather it is found at a greater depth below the surface. 

A B 
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Figure 4.6. Site two ERT sections: (A) Survey 2A; (B) Survey 2B. Blue arrows indicate the 

location of the JET surface tests, red arrows indicate the locations of the JET tests below 

the surface (~25 cm), black rectangles indicate location of disturbed soil sample collection. 

In Table 4.3, one layer was classified in Sample 1 (i.e., high ECa area) and Sample 7 (i.e., 

low ECa area) but Sample 5 (i.e., transition area) contained two layers (CL overlying CH). Samples 

1 and 7 were classified as a lean clay (CL) soil according to the Unified Soil Classification System. 

Like site one, the black rectangles drawn in Figure 4.6(A-B) (covering approximately 60 cm -120 

cm) show the location of all sample collection. For example, all samples shown in Table 4.3 in the 

“high yield area” were collected within the black box shown on the far right of Figure 4.6(B). 

Samples 2 and 8 were used for undrained shear strength testing, Sample 2-2 had an undrained 

shear strength two times higher than Sample 2-1; whereas, Samples 8-1 and 8-2 had similar 

undrained shear strength. Samples 3 and 9 were used for hydraulic conductivity tests and had 

relatively similar hydraulic conductivities. Sample 9, collected in the low ECa area, had a higher 

hydraulic conductivity than Sample 3, collected where there was a near-surface claypan layer. The 

EFA results from Samples 4, 6, and 10 indicated the lean clay soil in the high ECa area (i.e., Sample 

4) was more resistant to erosion than the low ECa area (i.e., Sample 10) even though the soils were 

classified as a lean clay. This is evident by the relatively higher critical shear stress value for 
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Sample 4 and the relatively lower critical shear stress value for Sample 10 shown in Table 4.3. 

Note that is was not possible to obtain two layers (i.e., top and bottom in Table 4.3) for Sample 6 

due to the depth of sample collection. 

Table 4.3. Site two soil parameters and erosion function apparatus results. 

Area of 

Interest 

Sample 

I.D. 

Measurement 

Location 

LL 

(%) 

PI 

(%) 
USCS 

S
u
 

(kPa) 

K
sat

 

(cm/s) 

EFA 

Test 

τ
c
 (Pa) 

Low yield 

area, near-

surface 

claypan 

layer in 

Figure 

4.6(A) 

1 Bottom 31 14 CL - - - 

2-1 Top - - - 28 - - 

2-2 Bottom - - - 60 - - 

3 Bottom - - - - 1.7E-6 - 

4 Bottom - - - - - 20.6 

Transition 

area in 

Figure 

4.6(B) 

5-1 Top 28 10 CL - - - 

5-2 Bottom 54 33 CH - - - 

6 Top - - - - - 5.52 

High yield 

area, no 

near-surface 

claypan 

layer in 

Figure 

4.6(B)  

7 Top 30 11 CL - - - 

8-1 Top - - - 42 - - 

8-2 Bottom - - - 47 - - 

9 Top - - - - 2.2E-5 - 

10 Top - - - - - 5.34 
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 Figure 4.7 shows the EFA results in a high ECa, the transition area, and low ECa area at 

site two. Previously noted, Sample 4, collected in a high ECa area, was more resistant to erosion 

than Sample 10, collected in a low ECa area, even though both samples were classified as a lean 

clay. Samples 6 and 10 were the least erodible and classified as moderate erodibility, whereas 

Sample 4 was the most erosion resistant to erosion and classified as low-moderate erodibility. 

Unlike Samples 6 and 10 which had no measurable erosion until 2 m s-1, Sample 4 had no 

measurable erosion until 3 m s-1. Sample 6, collected in the transition area, had a lower erosion 

rate than Sample 10, collected in a low ECa area, at 2 m s-1 and 3 m s-1 flow velocity; however, at 

high water velocities (5 and 6 m s-1), the erosion rates of Sample 6 were relatively higher than the 

erosion rate of Sample 10. Samples 4, 6, and 10 were more erodible than Sample 4, 6, 10-1, and 

10-2 at site one. Like site one, all erosion points were plotted according to HEC-18 erodibility 

categorization (Arneson, 2012) and the critical shear stress in Table 4.3 was the shear stress that 

corresponded 0.1 mm/h erosion rate (Briaud et al. 2001). The EFA results for Samples 4, 6, and 

10 are shown in Table 6.2 of Appendix A. 

 

Figure 4.7. Site two EFA results. 
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Five Jet were performed in a high ECa, low yield area (i.e., Survey 2A) and five in a low 

ECa, high yield area (i.e., Survey 2B). Six JET were at the surface, indicated by blue arrows in 

Figure 4.6, labeled as J-1, J-3, J-5, J-7, J-8, and J-9 in Table 4.4. Four JET were performed 

approximately 25 cm below surface, indicated by red arrows in Figure 4.6, labeled as J-2, J-4, J-

6, and J-10 in Table 4.4. Like site one, the claypan layer was assumed to be 25 cm below the 

surface where it existed. As expected, the critical shear stress at the surface was the same (within 

1 Pa) between a high and low ECa area indicating erodible soil at the surface. Unexpected, the 

critical shear stress 25 cm below the surface was also the same (within 2 Pa) between a high and 

low ECa area. This indicated a more erosion resistant soil 25 cm below the surface. This was unlike 

site one where testing went to a clearly non near-surface claypan area. As discussed further in 

Error! Reference source not found., it was likely that JET did not extend into an area where 

there was no claypan. These results support a claypan layer underlying both a high and low ECa 

area. All JET data for determine the critical shear stress are shown in Tables 6.6, 6.7, and 6.8 of 

Appendix B. 
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Table 4.4. Site two jet erosion results. 

Area of 

Interest 
Location  

Sample 

I.D. 
Test Date  

τ
c 
 

(Pa) 

τ
c,avg

  

(Pa) 

Low yield 

area, near-

surface 

claypan layer 

in Figure 

4.6(A) 

Surface 

J-1 09/20/18 5.00 

5.18 J-3 02/07/19 5.68 

J-5 07/12/19 4.87 

25 cm  

Below 

Surface 

J-2 09/20/18 15.06 

15.19 

J-4 07/02/19 15.31 

High yield 

area, no 

near-surface 

claypan layer 

in Figure 

4.6(B) 

Surface 

J-7 09/20/18 3.75 

4.23 J-8 07/11/19 4.85 

J-9 07/11/19 4.08 

25 cm  

Below 

Surface 

J-6 07/11/19 18.23 

17.18 

J-10 07/11/19 16.12 
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Chapter 5 - Discussion 

Variation in near-surface soil erosion was investigated to determine if undermining of surface soil 

was attributed to an underlying claypan layer and if the depth to the claypan layer influenced the 

rate of surface soil erosion. One geophysical method was used to highlight areas of near-surface 

claypan layers (i.e., ECa Mapping). A related geophysical method was used to determine the 

differences in soil stratigraphy between an area with a near-surface claypan layer and an area with 

no underlying claypan layer (i.e., ERT). While ECa identified bulk areas of interest, ERT was able 

to identify areas where a near-surface claypan layer existed and areas where it did not exist. This 

was used to more accurately guide sample collection. Soil samples were collected utilizing ERT 

surveys to determine the soil classification, undrained shear strength, and hydraulic conductivity 

of an area with a near-surface claypan layer and an area with no underlying claypan layer. Two 

different erosion tests were performed (i.e., EFA test and JET) to determine the critical shear stress 

of the surface soil and claypan layer. The EFA was used because it can test at much higher 

hydraulic shear stresses and because undisturbed samples were collected, which allowed for testing 

the claypan layer at greater depths below the surface. Recall Sample 4, collected from site one in 

a high ECa, low yield area, did not erode until 6 m s-1. The advantage of the JET was its ability to 

perform tests in situ with minimum soil disturbance. The JET apparatus was used to test at the 

surface and 25 cm below the surface to show how rapidly the critical shear stress increases with 

depth in this claypan region. Note it was not possible to dig a hole deep enough to reach a 

comparable depth from which EFA samples were collected. Therefore, we used two different 

erosion tests to fully explore the erodible layers at these unique sites. 

 Site one. The low electrical resistivity measurements (10 Ohm-m or less) near the surface 

in Survey 1A (Figure 4.2) directly correlated to the area of highest ECa measurements and lowest 

corn yield measurements in Figure 4.1. The electrical resistivity measurements in Survey 1A 

indicated a claypan layer at the surface but soil classification of Sample 1 indicated a lean clay 

layer overlying a fat clay layer (Table 4.1). The hydraulic conductivity of Sample 3-1 (i.e., the lean 

clay layer) was 2.2E-5 cm s-1 and was two orders of magnitude higher than Sample 3-2 (i.e., the 

fat clay layer) with a hydraulic conductivity of 9.1E-7 cm s-1 (Table 4.1). The undrained shear 

strength of the underlying fat clay layer (Sample 2-2) was 103 kPa and about two times higher 

than the overlying lean clay layer (Sample 2-1), which was 47 kPa. This supports the hypothesis 
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that although the near-surface soils are clay, there are in fact two distinct near-surface clay layers 

that may be enhancing the erosion of the overlying surface soil layer (i.e., lean clay) by the process 

of undermining. 

As previously noted, Sample 7 collected in the low ECa area from site one contained a lean 

clay layer overlying a fat clay layer and shared a similar trend in undrained shear strength (Sample 

8) and hydraulic conductivity (Sample 9) as Samples 2 and 3 collected in the high ECa area (Table 

4.1). The undrained shear strength of the underlying fat clay layer (Sample 8-2) was about two 

times higher (64 kPa) than the overlying lean clay soil (Sample 8-1) which was 33 kPa. The 

hydraulic conductivity of the lean clay layer (Sample 9) collected where no underlying claypan 

layer existed was 5.1E-3 cm s-1 which was two orders of magnitude higher than the hydraulic 

conductivity of the lean clay layer (Sample 3-1) where a near-surface claypan existed (Table 4.1). 

Even though similar undrained shear strength and hydraulic conductivity trends are shared 

between the high and low ECa area, the undrained shear strength was relatively lower in Samples 

2-1 and 8.1. The observed ERT data and corn yield map also indicated the area where there was 

no existing near-surface claypan layer supporting the hypothesis that the claypan is not uniform 

across the site as previously believed. 

The critical shear stress of soil describes the erosion potential. The higher the critical shear 

stress the more resistant the soil is to erosion and the lower the critical shear stress the more 

erodible the soil. With that, the fat clay layer (Sample 4) in the high ECa area at site one had a 

critical shear stress of 118.26 Pa and the lean clay layer in the transition (Sample 6) and low ECa 

(Sample 10-1) area had a critical shear stress of 19.43 Pa and 18.73, respectively (Table 4.1). 

Having a higher hydraulic conductivity and more erodible soil layer overlying a lower hydraulic 

conductivity and more erosion-resistant claypan layer suggests that water flows through the 

surface soil to the impermeable claypan layer. When the water reaches the impermeable claypan 

layer, it likely flows laterally creating a perched water table. According to Kitchen et al. (2005), 

the presence of a perched water may exacerbate erosion of the topsoil. The increased erosion of a 

surface soil overlying a claypan layer inherently decreases surface soil thickness eventually 

exposing the claypan layer at the surface resulting in much greater runoff potential. This was 

evident where the JET was performed 25 cm below the surface in an area where the near-surface 

claypan layer existed. The critical shear stress determined in the high ECa area (i.e., Surveys 1(A-

B)) using the JET showed a lower average critical shear stress of 8.0 Pa for tests performed at the 
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surface (i.e., J-4,J-6, and J-7) and relatively higher average critical shear stress of 16.0 at the 

claypan layer about 25 cm below the surface (i.e., J-1, J-2, and J-5) (Table 4.2). Interestingly, the 

average critical shear stress in a low ECa area (i.e., Surveys 1(C-D)) was 6.0 Pa at the surface (i.e., 

J-9, J-13, and J-14) and 7.0 Pa at a depth 25 cm below the surface (i.e., J-10, J-11, and J-12) (Table 

4.2). Overall the range of critical shear stress values performed in a low ECa area were lower where 

there was no near-surface claypan layer, whereas the critical shear stress was higher at the claypan 

layer. Again, the critical shear stress determined from the JET highlighted a highly erodible thin 

lean clay layer overlying a more erosion-resistant fat clay layer (i.e., claypan layer) in the high ECa 

area. Conversely, the critical shear stress values determined at the surface and 25 cm below the 

surface in the low ECa area highlighted a more uniformly erodible soil. Again, this observation 

supports the relatively lower undrained shear strength soil in areas of the ERT data where no 

claypan layer existed, highlighting the variability of the claypan layer across the site. 

Site two. Like the ERT surveys and ECa map from site one, the low electrical resistivity 

measurements (Figure 4.6(A)) directly correlated to low corn yield in a high ECa area (Figure 4.5). 

The low electrical resistivity measurements (10 Ohm-m or less) highlighted a thick claypan layer 

at the surface in Survey 2A. Interestingly, unlike site one, two layers (CL overlying CH) were only 

observed in Sample 5, which was collected in the transition area from Survey 2B. However, one 

layer was observed in Samples 1 and 7 in the high and low ECa area, respectively. Samples 1 and 

7 were classified as a lean clay soil. This finding was very unexpected because the claypan layer, 

a low resistivity layer (10 Ohm-m or less), at site one was classified as a fat clay soil, whereas the 

claypan layer at site two was classified as a lean clay soil. The hydraulic conductivity of the lean 

clay soil (Sample 9) in the low ECa area (Survey 2B) was one order of magnitude higher (2.2E-5 

cm s-1) than the lean clay soil (Sample 3) in the high ECa area (1.7E-6 cm s-1). The lean clay soil 

in Survey 2B had a higher hydraulic conductivity than the lean clay soil in Survey 2A indicating 

that water would flow more easily through the subsurface in Survey 2B than Survey 2A, which is 

more likely to flow laterally across the surface as runoff due to the low hydraulic conductivity of 

the soil.  

Previous research has correlated the soil undrained shear strength to susceptibility to 

erosion where higher undrained shear strength soils are more resistant to erosion and lower 

undrained shear strength soils are more erodible, although recent research has found no correlation 

between soil undrained shear strength and erosion susceptibility (Karim and Kulesza, in review). 
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The undrained shear strength results presented in this research were used to validate the presence 

of soil layers determined from soil classification. In Table 4.3, the undrained shear strength of 

Sample 2-2, collected in the high ECa area from Survey 2A, was about two times higher (60 kPa) 

than Sample 2-1 which had a undrained shear strength of 28 kPa. This suggested there were two 

layers present in this sample even though one layer was observed from soil classification. Sample 

8, collected in the low ECa area from Survey 2B, had an undrained shear strength of 42 kPa and 

47 kPa, respectively. This confirmed the presence of one layer in Sample 8 collected in this low 

ECa area. 

The same procedure for interpretation of critical shear stress values determined from the 

EFA test and JET followed site one. The critical shear stress values between a high and low ECa 

area from the EFA test followed a similar trend as site one. Sample 4, collected in the high ECa 

area, had a critical shear stress of 20.6 Pa, whereas Sample 10, collected in the low ECa area, had 

a critical shear stress of 5.34 Pa. The critical shear stress of Sample 4 was about four times higher 

than Sample 10. The critical shear stress values determined from the EFA test indicated the lean 

clay soil in Survey 2A was more erosion-resistant than the lean clay soil in the low ECa area from 

Survey 2B.  

Like site one, the JET performed at the surface in Surveys 2A and 2B (i.e., J-1, J-3, J-5, J-

7, J-8, and J-9) were relatively lower than the JET performed 25 cm below the surface (i.e., J-2, J-

4, J-6, and J-10). The average critical shear stress performed at the surface in the high ECa area 

(i.e., J-1, J-3, and J-5) was 5.0 Pa, whereas in the low ECa area (i.e., J-7, J-8, and J-9) the average 

critical shear stress was 4.0 Pa. The average critical shear stress determined from the JET 

performed 25 cm below the surface in Survey 2B (i.e., J-6 and J-10) was 1.0 Pa, whereas the 

average critical shear stress at the claypan layer in Survey 2A (i.e., J-2 and J-10) was 15.0 Pa. 

Interestingly, the average critical shear stress value 25 cm below the surface in the high and low 

ECa area were similar (within 1 Pa). This suggested that the JET were not performed in an area 

where there was no near-surface claypan layer. Lower critical shear stress values were expected 

where there was no claypan layer at the surface and higher critical shear stress values were 

expected at the claypan layer. One additional JET was performed 25 cm below the surface in a low 

ECa area and confirmed the relatively higher critical shear value in Survey 2B than in Survey 2A. 

The relatively lower average critical shear stress observed at the surface in the high and low ECa 

area highlighted the presence of a thin more erodible lean clay layer overlying a less erodible 
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claypan layer not shown in Surveys 2A and 2B. Interestingly, the critical shear stress determined 

from the JET performed at the surface in the low ECa area (Survey 2B) had lower critical shear 

stress values than all other JET performed at the surface between both sites. Like site one, the JET 

results in Table 4.4 supports the hypothesis that surface soil is being undermined due to an 

underlying impermeable claypan layer. The JET performed in the low ECa area (Survey 2B) did 

not extend far enough to capture an area where there was no near-surface claypan layer. This was 

evident by the similar average critical shear stress value observed 25 cm below the surface between 

the high and low ECa area (Table 4.4). 
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Chapter 6 - Conclusions 

The objective of this research was to delineate the variability of soil properties, including soil 

erodibility, in claypan soils. Understanding how soil properties change in the subsurface is critical 

to understanding the processes exacerbating soil loss in claypan regions. The data from this 

research show that the claypan layer is spatially variable within and between both sites. The extent 

of spatial variability of the claypan layer is likely contributing to different rates of erosion of the 

overlying surficial soil. The claypan layer is higher in undrained shear strength, lower in hydraulic 

conductivity, and more erosion-resistant. The measured range in critical shear stress between two 

distinct soil layers indicated that the rate and extent of soil erosion from within both sites was 

highly variable and based upon soil stratigraphy.  

 Laboratory erosion test results (i.e., EFA) found the claypan layer was characterized as low 

erodibility; conversely the surficial soil was classified as moderate erodibility. Results indicated 

the low erodible soil had higher undrained shear strength but lower hydraulic conductivity. 

Conversely, the moderate erodible soil indicated a lower undrained shear strength and soil with 

higher hydraulic conductivity. Therefore, the presence of a higher undrained shear strength/lower 

hydraulic conductivity soil underlying a lower undrained shear strength/higher hydraulic 

conductivity soil is likely increasing the rate of surficial soil erosion by undermining at the 

interface. In situ erosion test results (i.e., JET) showed how rapidly erosion potential changed from 

the surface of the soil to a depth 25 cm below the surface. Results from both erosion tests (i.e., 

EFA and JET) showed a similar trend in that the surficial soil was more erodible (i.e., had a lower 

critical shear stress) than the claypan layer, which had a higher critical shear stress value. 

Limitations of this research includes the number of EFA tests performed on samples collected in 

the high and low ECa areas, the number of JET performed at the surface and 25 below the surface 

at both sites, and the number of claypan sites investigated. The data from this research will aid in 

the improvement of soil management practices and existing erosion models at field and watershed 

scales. This research shows how variable subsurface composition is within a site and region. 

 6.1 Recommendations 

Recommendations learned from this research includes measuring erosion at the surface and at a 

predetermined depth (e.g., 25 cm) below the surface across the sites to integrate erosion data into 

erosion models. The erosion results, from this research, between two sites with the same land 

management procedures highlighted how variable erosion was within and between the sites. The 
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collection of more erosion data across sites would likely improve erosion model accuracy of 

predicting erosion at field and watershed scales. I would also recommend the use of geophysics to 

identify areas of interest within a site allowing for a more strategic testing procedure. The use of 

geophysical methods to identify near-surface soil changes can also improve the accuracy of 

predicted soil erosion in soil models. Monitoring the flow of water through the subsurface may aid 

in understanding how different soil layers affect each other and may improve the quantification of 

soil loss at the surface. I would recommend the use of cover crops in areas within a site where a 

claypan layer exists near-surface. Cover crops planted in near-surface claypan areas may aid in the 

breaking up of this impervious clay layer and provides greater access to necessary nutrients for 

crop growth. 

 6.2 Future work 

In this study, the number of erosion tests should be increased to increase the amount of erosion 

data between a high and low ECa area in a claypan region. The self-potential test (a passive 

geophysical measurement) should be performed to validate the predicted flow of water at the 

claypan layer and surface soil interface. Two self-potential tests were conducted in this research; 

however the results were affected by power transmission lines over the claypan area resulting in 

noise in the dataset. Other sites with claypan soils but without external sources of noise should be 

used to conduct the self-potential tests. The erosion results from this research should be used to 

quantify soil loss in erosion models. 
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Appendix A - EFA Data 

Table 6.1. Site one EFA results. 

 

  

Sample 

I.D. 
Erosion Test Results 

Critical Shear 

Stress (Pa) 

4 

Water Velocity 

(m/s) 
1 2 3 4 5 6 

118.26 
Erosion Rate 

(mm/hr) 
0.1 0.1 0.1 0.1 0.1 1.8 

Shear Stress (Pa) 4.62 17.98 40.45 77.90 112.36 220.22 

6 

Water Velocity 

(m/s) 
1 2 3 4 5 6 

19..43 
Erosion Rate 

(mm/hr) 
0.1 0.1 2.4 7.8 - - 

Shear Stress (Pa) 4.49 17.98 52.81 91.88 - - 

10-1 

Water Velocity 

(m/s) 
1 2 3 4 5 6 

18.73 
Erosion Rate 

(mm/hr) 
0.1 0.1 10.8 30 - - 

Shear Stress (Pa) 5.12 18.48 46.07 97.88 - - 

10-2 

Water Velocity 

(m/s) 
1 2 3 4 5 6 

74.79 
Erosion Rate 

(mm/hr) 
0.1 0.1 0.1 0.1 15 16.8 

Shear Stress (Pa) 4.24 17.48 49.44 73.91 152.93 220.22 
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Table 6.2. Site two EFA results. 

Sample 

I.D. 
Erosion Test Results 

Critical Shear 

Stress (Pa) 

4 

Water Velocity 

(m/s) 
1 2 3 4 5 6 

20.60 
Erosion Rate 

(mm/hr) 
0.1 0.1 7.2 7.2 11.4 21.8 

Shear Stress (Pa) 4.87 19.97 65.17 107.86 184.14 301.12 

6 

Water Velocity 

(m/s) 
1 2 3 4 5 6 

5.52 
Erosion Rate 

(mm/hr) 
0.1 1.8 3.6 7.2 112 288 

Shear Stress (Pa) 4.49 22.97 58.43 81.90 159.17 247.19 

10 

Water Velocity 

(m/s) 
1 2 3 4 5 6 

5.34 
Erosion Rate 

(mm/hr) 
0.1 3 4.2 6 13.2 18.7 

Shear Stress (Pa) 4.74 22.47 46.07 83.89 137.33 188.76 
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Appendix B - “Mini” JET Data 

Table 6.3. Near-surface claypan area erosion data at site one. 

Time 
 Scour Measurements (mm) 

Surface 25 cm Below Surface 

(min) J-4 J-6 J-7 J-1 J-2 J-3 J-5 

0 0 0 0 0 0 0 0 

1 21 29 17 3 3 0 7 

2 23 34 19 3 5 1 7 

3 24 35 19 5 5 1 8 

4 26 35 19 5 5 1 8 

5 27 37 20 5 6 1 8 

7 31 39 20 5 6 1 8 

9 32 39 20 5 6 1 10 

11 34 39 20 5 6 3 10 

13 35 39 22 5 6 3 10 

15 37 39 22 5 6 3 10 

18 39 40 22 5 6 3 10 

21 39 40 23 5 6 3 11 

24 40 40 23 5 8 3 11 

27 42 40 23 5 8 5 11 

30 43 40 23 6 8 5 11 

34 43 42 23 6 8 5 13 

38 43 42 23 6 10 6 13 

42 43 42 23 6 10 6 13 

46 43 42 25 6 10 6 15 

50 45 42 25 6 10 6 15 

55 45 43 25 6 11 6 15 

60 46 43 25 6 11 6 15 

65 46 45 27 6 11 6 16 

70 46 45 27 6 13 8 16 

80 46 45 28 6 13 8 16 

90 48 45 28 8 13 8 18 

100 50 45 28 8 13 8 18 

110 50 46 30 8 16 8 19 

120 50 46 30 8 18 8 19 
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Table 6.4. No near-surface claypan area erosion data at site one. 

Time 
Scour Measurements (mm) 

Surface 25 cm Below Surface 

(min) J-9 J-13 J-14 J-8 J-10 J-11 J-12 

0 0 0 0 0 0 0 0 

1 28 21 27 3 13 3 16 

2 32 26 29 3 18 3 16 

3 33 27 30 10 18 3 18 

4 33 29 32 10 21 3 20 

5 35 30 34 11 22 3 21 

7 35 32 35 13 26 5 26 

9 36 32 35 14 38 5 27 

11 36 34 37 18 40 10 29 

13 36 37 37 19 43 10 32 

15 36 38 38 21 43 11 32 

18 36 40 38 21 45 11 34 

21 38 41 38 22 45 13 34 

24 38 43 40 22 45 14 34 

27 38 45 40 24 46 18 34 

30 40 46 40 24 46 21 35 

34 40 46 41 26 46 22 35 

38 40 48 41 26 48 24 35 

42 40 48 41 27 48 25 35 

46 41 48 41 27 51 25 35 

50 41 49 41 27 52 25 35 

55 41 49 41 27 52 25 35 

60 41 49 41 29 57 25 35 

65 41 49 43 29 57 25 35 

70 43 51 43 29 59 25 35 

80 43 51 43 30 59 27 35 

90 44 51 43 30 62 27 37 

100 44 53 46 30 62 29 37 

110 44 53 46 32 64 30 37 

120 46 53 46 32 65 30 37 
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Table 6.5. Summary of JET data for site one. 

Area of 

Interest 
Location  

Sample 

I.D. 

τ
c 
 

(Pa) 

τ
c,avg

  

(Pa) 

ε  

(mm s-1) 

τ
o
  

(Pa) 

τ
o,avg

  

(Pa) 

Low yield 

area, near- 

surface 

claypan layer 

in Figure 

4.2(A-B) 

Surface 

J-4 6.29 

7.71 

0.00694 94.47 

94.47 J-6 6.80 0.00639 94.47 

J-7 10.03 0.00417 94.47 

25 cm  

Below 

Surface 

J-1 16.75 

15.54 

0.00111 94.47 

94.22 

J-2 16.48 0.0025 94.47 

J-3 25.32 0.00111 93.46 

J-5 13.40 0.00264 94.46 

High yield 

area, no near- 

surface 

claypan layer 

in Figure 

4.2(C-D) 

Surface 

J-9 7.33 

6.17 

0.00639 94.47 

94.47 J-13 5.05 0.00736 94.47 

J-14 6.13 0.00639 94.47 

25 cm  

Below 

Surface 

J-8 12.00 

7.10 

0.00444 93.46 

93.97 

J-10 4.97 0.00903 93.46 

J-11 7.83 0.00417 94.47 

J-12 8.51 0.00514 94.47 
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Table 6.6. Near-surface claypan area erosion data at site two. 

Time 
Scour Measurements (mm) 

Surface 25 cm Below Surface 

(min) J-1 J-3 J-5 J-2 J-4 

0 0 0 0 0 0 

1 21 19 16 5 1 

2 21 26 20 5 3 

3 24 27 27 5 3 

4 24 27 28 7 3 

5 29 29 28 7 3 

7 31 30 30 7 5 

9 31 30 35 7 5 

11 33 30 38 8 5 

13 34 32 39 8 6 

15 34 32 39 8 6 

18 34 32 41 10 6 

21 35 34 42 10 6 

24 35 35 42 10 6 

27 39 37 42 10 6 

30 40 37 44 10 8 

34 42 37 44 10 8 

38 42 38 44 10 8 

42 45 40 46 12 8 

46 45 40 46 12 8 

50 46 41 46 12 8 

55 46 41 46 12 8 

60 50 41 47 12 8 

65 50 41 47 12 9 

70 51 43 49 12 9 

80 54 43 49 12 9 

90 56 43 50 12 11 

100 58 43 50 12 13 

110 58 43 50 12 13 

120 58 45 52 12 13 
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Table 6.7. No near-surface claypan area erosion data at site two. 

Time 
Scour Measurements (mm) 

Surface 25 cm Below Surface 

(min) J-7 J-8 J-9 J-6 J-10 

0 0 0 0 0 0 

1 18 16 19 2 2 

2 22 30 40 2 2 

3 22 35 41 2 2 

4 24 36 43 4 2 

5 24 38 44 4 2 

7 27 39 47 4 5 

9 32 39 49 4 5 

11 35 39 49 5 6 

13 38 39 51 5 6 

15 41 41 52 5 8 

18 43 42 54 7 8 

21 45 44 54 7 10 

24 45 44 54 8 11 

27 45 44 55 8 11 

30 46 44 57 8 11 

34 49 44 57 8 13 

38 51 46 59 8 13 

42 54 46 59 8 13 

46 56 47 60 10 13 

50 57 47 60 10 14 

55 61 47 60 10 14 

60 61 49 62 10 14 

65 61 49 62 10 14 

70 61 49 62 10 14 

80 61 50 62 10 16 

90 61 50 62 10 16 

100 61 52 63 10 18 

110 61 52 65 12 18 

120 61 54 65 21 19 
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Table 6.8. Summary of JET data for site two. 

Area of 

Interest 
Location  

Sample 

I.D. 

τ
c 
 

(Pa) 

τ
c,avg

  

(Pa) 

ε  

(mm s-1) 

τ
o
  

(Pa) 

τ
o,avg

  

(Pa) 

Low yield 

area, near-

surface 

claypan 

layer in 

Figure 

4.6(A) 

Surface 

J-1 5.00 

5.18 

0.00806 89.39 

86.34 J-3 5.68 0.00625 85.33 

J-5 4.87 0.00722 84.31 

25 cm  

Below 

Surface 

J-2 15.06 

15.19 

0.00333 93.46 

92.95 

J-4 15.31 0.00181 92.44 

High yield 

area, no 

near-

surface 

claypan 

layer in 

Figure 

4.6(B) 

Surface 

J-7 3.75 

4.23 

0.01694 83.30 

84.65 J-8 4.85 0.0075 85.33 

J-9 4.08 0.00903 85.33 

25 cm  

Below 

Surface 

J-6 18.23 

15.62 

0.00292 85.33 

85.33 

J-10 13.00 0.00264 85.33 
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Appendix C - Inverted ERT Sections 

 

Figure 6.1.Inverted resistivity section between Surveys 1A and 1B. 

 

Figure 6.2. Inverted resistivity section between Surveys 1B and 1C. 

 

Figure 6.3. Inverted resistivity section between Surveys 1C and 1D. 

 

Figure 6.4. Inverted resistivity section overlapping Survey 1D at the midpoint. 


