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Abstract 

 

Sensory transduction in the cochlea depends on regulated ion secretion and absorption.  Results 

of whole-organ experiments suggested that Reissner’s membrane may play a role in the control 

of luminal Cl-.  We tested for the presence of Cl- transport pathways in isolated mouse Reissner’s 

membrane using whole-cell patch clamp recordings and gene transcript analyses using RT-PCR.  

The current-voltage (I-V) relationship in the presence of symmetrical NMDG-Cl was strongly 

inward-rectifying at negative voltages, with a small outward current at positive voltages.  The 

inward-rectifying component of the I-V curve had several properties similar to those of the ClC-

2 Cl- channel.  It was stimulated by extracellular acidity and inhibited by extracellular Cd2+, 

Zn2+, and intracellular ClC-2 antibody.  Channel transcripts expressed in Reissner’s membrane 

include ClC-2, Slc26a7 and ClC-Ka, but not Cftr, ClC-1, ClCa1, ClCa2, ClCa3, ClCa4, Slc26a9, 

ClC-Kb, Best1, Best2, Best3 or the beta-subunit of ClC-K, barttin.  ClC-2 is the only 

molecularly-identified channel present that is a strong inward rectifier.  This thesis incorporates 

the publication by KX Kim and DC Marcus, Inward-rectifier chloride currents in Reissner’s 

membrane epithelial cells, Biochem. Biophys. Res. Commun., doi:10.1016/j.bbrc.2010.03.048, 

2010 (in press) with permission of the publisher Elsevier, and is the first report of conductive Cl- 

transport in epithelial cells of Reissner’s membrane and is consistent with an important role in 

endolymph anion homeostasis. 
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CHAPTER 1 - Introduction 

 

Hearing depends on proper transduction of sound to nerve impulses in the cochlea, the peripheral 

hearing organ.  Transduction depends on a carefully controlled ionic composition of the fluid, 

endolymph, in the cochlear lumen.  The work presented in this thesis is a contribution toward 

understanding the processes that control endolymph composition and that thereby support 

normal hearing.   

 

Cochlear structure: Knowing the cochlear structure is important for understanding ion 

movement mechanisms in the cochlea because the cochlear structure provides us the clues of ion 

transport pathways. Although there are differences of cochlear structure (such as number of 

turns) among different species, many similarities have been observed between human specimens 

and rodents [31]. In this study, we used C57BL/6 mice. 

The cochlea has a spiral structure. One cochlear turn is illustrated in Figure 1. The  light 

pink region indicates endolymph, which fills the luminal compartment, scala media (SM). The 

endolymph has a high K+ concentration (Table 1) with high endocochlear potential (EP; 80-100 

mV) with respect to other “grounded” body fluids, such as blood (the EP is generated by stria 

vascularis (StV) [22]), whereas the scala vestibuli (SV) and scala tympani (ST) are filled with 

perilymph, which is characterized by a high Na+ concentration (Table 1). Main sources to 

maintain and drive the scala media ion composition can be identified in epithelial cells that 

bound this structure. These include Reissner’s membrane epithelial cells, strial marginal cells of 

stria vascularis, spiral prominence, outer sulcus, sensory epithelium of organ of Corti, and inner 
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sulcus. Net ion transport via epithelial cells surrounding endolymph will contribute to cochlear 

homeostasis [21]. 

 

Table 1. Fluid composition of cochlear endolymph and perilymph [22] 

 Unit Cochlear Endolymph Cochlear Perilymph 

Na+ mM 1.3 148 

K+ mM 157 4.2 

Cl- mM 132 119 

HCO3
- mM 31 21 

Ca2+ mM 0.023 1.3 

pH  7.5 7.3 
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Figure 1 - Schematic drawing of one cochlear turn. The scala vestibuli (SV) and scala tympani 

(ST) are filled with a high-sodium solution called the perilymph. The scala media (SM) is filled 

with a high-potassium solution called the endolymph and is surrounded by the stria vascularis 

(StV), Reissner’s membrane (RM), inner sulcus, the organ of Corti (OC), outer sulcus, and spiral 

prominence (SP). The lateral wall contains the stria vascularis (StV) and the spiral ligament (SL).  

The tectorial membrane (TM) is an acellular structure that couples the mechanical auditory 

stimulus to the hair cells in the organ of Corti.  Individual cells are not shown.  



4 

 

Reissner’s membrane: The scala vestibuli and scala media are separated by Reissner’s 

membrane, which consists of two cell layers: a continuous epithelial cell layer faces the 

endolymph and a discontinuous mesothelial cell layer faces the perilymph. In addition, 

Reissner’s membrane is attached to insertions of both spiral limbus and spiral ligament.   

These distinct tissues at the insertion regions require careful exclusion from experimental 

measurements.  For example, possible contamination in RNA isolation procedures can occur, but 

care was taken to exclude the adjacent tissues and we changed the dissection solution twice 

during the isolation procedure to reduce cross contamination from other tissues.   

 Several studies have been performed to determine ion transport mechanisms in Reissner’s 

membrane. Na+ absorption in the epithelial cells of Reissner’s membrane was demonstrated by 

pharmacological agents with electrophysiological measurements of transepithelial current using 

a vibrating probe [17;20].  An ATP-gated ion channel was observed in the apical side of 

Reissner’s membrane epithelial cells [18]. Cochlear perfusion studies suggested that the primary 

function of Reissner’s membrane may be to transport Cl- [19].  

Although Cl- ion concentrations are similar between endolymph and perilymph (Table 1), 

the presence of the high endocochlear potential suggests that there is likely significant Cl- 

transport by the bounding epithelium. Because Reissner’s membrane forms much of the 

boundary between these two fluids, and because previous studies implicated Reissner’s 

membrane in Cl- transport (see Chapter 2), it became important to investigate Cl- ion transport in 

Reissner’s membrane in order to increase our understanding of ion homeostasis in the cochlea. 
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CHAPTER 2 - Inward-rectifier chloride currents in Reissner’s 

membrane epithelial cells 

 

 

 

These data have been published in the following refereed journal article: 

K.X. Kim, D.C. Marcus, Inward-rectifier chloride currents in Reissner’s membrane epithelial 

cells, Biochem. Biophys. Res. Commun. (2010), doi:10.1016/j.bbrc.2010.03.048 

 

This chapter is reproduced with permission by the publisher Elsevier (see Appendix). 
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Introduction 

 The transduction of sound into neural activity depends on the creation and maintenance 

of a luminal fluid, endolymph, in the inner ear that is high in K+ concentration ([K+]) and low in 

both [Na+ ] and [Ca2+] [22].  However, there is little difference in [Cl-] (~120 to 130 mM) 

between endolymph and the basolateral fluid, perilymph, in spite of the large transepithelial 

endocochlear potential (EP) of +80 to +100 mV [22].  The EP and perilymphatic [Cl-] predict 

(via the Nernst equation) an extremely high endolymphatic [Cl-] of ~2600 mM based on simple 

passive electrochemical diffusion.  Dysfunction of Cl- regulation would be expected to lead to 

large osmotic disturbances that would result in luminal volume changes and the consequent 

disruption of normal hearing.  Gross volume changes have been associated with pathological 

states such as Meniere’s syndrome (swelling) and Schiebe’s deformity (shrinking).   

On that basis, it has long been thought that some epithelial cells lining the cochlear duct 

may actively absorb Cl- from endolymph to maintain its [Cl-] near that of perilymph, and 

radiotracer experiments in the intact cochlea point to Reissner’s membrane as a mediator of Cl- 

transport [19].  Reissner’s membrane is an epithelial monolayer (with a discontinuous 

mesothelial layer on the basolateral side) that forms much of the boundary of the cochlear lumen.  

The present study was undertaken to resolve at the single cell level whether there are significant 

Cl- conductive pathways in Reissner’s membrane epithelial cells that could support its putative 

role in endolymph Cl- homeostasis.  
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Methods 

 Tissues were obtained for RNA isolation and for electrophysiology following protocols 

approved by the Institutional Animal Care and Use Committee of Kansas State University as 

described earlier [17].  The compositions of the solutions for electrophysiological recordings 

were (in mM):  pipette  150 NMDG-Cl, 1 MgCl2, 0.273 CaCl2, 1 EGTA, 10 Hepes, pH 7.3, ~300 

mOsm, and bath 150 NMDG-Cl, 1 MgCl2, 0.7 CaCl2, 10 Hepes, 5 glucose, pH 7.3, ~300 mOsm.  

The pH was adjusted at room temperature (~25 oC) and expected to be about 7.2 at 37 oC.  The 

free Ca2+ at this temperature and pH is predicted to be 100 nM [30].  All solutions for patch 

clamp were passed through 0.22 µm cellulose acetate filters (Corning).  ClC-2 antibody against 

an intracellular domain was obtained from Alomone Labs.  Other chemicals were purchased 

from Sigma Chemical Co. (St Louis, MO). 

 Currents were recorded using the whole-cell configuration of the patch clamp technique, 

similar to our previous study [3].  Patch pipettes were made from borosilicate glass capillaries 

(1B150F; World Precision Instruments, Sarasota, FL), pulled in three stages.  Inner diameter of 

the tip was approximately 2 µm and after heat polishing the pipettes had resistances of 3.6 – 5.2 

MΩ (n=46) in NMDG-Cl solutions. 

 Currents were recorded with an Axopatch 200A amplifier (Axon Instruments, Foster 

City, CA) and low-pass filtered at 1 kHz.  Current signals were digitized at 5 kHz using a 

computer with a Digidata 1322A (Axon Instruments) and pCLAMP 9 software (clampex9, Axon 

Instruments).  In addition, AxoScope software (Axon Instruments) with MiniDigi 1A (Axon 

Instruments) data acquisition hardware was simultaneously used for continuous trace recordings 

and current signals were digitized at 1 kHz. The temperature was maintained at 37°C on a glass-
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bottomed bath chamber by a continuous, warmed perfusion with supplemental chamber heater.  

Liquid junction potentials in symmetrical NMDG-Cl were near zero.   Voltage protocols were 

used as described in the figures.  Data were plotted with Origin software, version 7 (OriginLab 

Software, Northampton, MA).   

 Real-time RT-PCR experiments were performed on total RNA using QuantiTect SYBR 

Green RT-PCR Kit (Qiagen) and an iQ5 Real-Time PCR Detection System (Bio-Rad).  Primers 

were designed using Primer3 (http://frodo.wi.mit.edu/primer3) and produced by Integrated DNA 

Technologies (Table 1).  Reverse transcription for 30 min at 50 ºC was followed by 15 min at 95 

ºC and 40 PCR cycles.  Each PCR cycle consisted of 94 ºC for 20 sec, 56 ºC for 30 sec, and 72 

ºC for 30 sec and readings of fluorescence were made at 78 oC.  PCR products were analyzed by 

Bioanalyzer, purified with a PCR purification kit (Qiagen) and sequenced to validate the identity 

of the RT-PCR products.  

Data were expressed as the mean ± S.E.M. (n=number of whole cell patches).  Increases 

and decreases in current and conductance were determined by Student’s paired or unpaired t-test 

and correlation coefficients were calculated and tested for significance.  Differences were 

considered statistically significant at a level of P < 0.05.   
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Table 1. Primer sequences for RT-PCR and expression of gene transcripts.   

Gene Sequence (5´-3´) 
Product Size 

(bp) 
Exp. /Meas.a 

GenBank P / Ab 

Slc26a7 
S GGAAAAAGAGAAGCGTGCTG 

309 / 317 NM_145947 P 
AS AGGATGTCAAGGCAAAGGTG 

Slc26a9 
S CCTGACTGCTGTCATCCAGA 

324/323 NM_177243 A 
AS GTAGGGATGGGGAAGTGGAT 

ClC-1 
S CTGGGTCACCTTCCCACTTA 

292 / 284 NM_013491 A 
AS TGGCTGCTCATAGACACCAG 

ClC-2 
S CTGGATGTCTGCACTGGCTA 

271 / 271 NM_009900 P 
AS AGGCAGAATGTGAGCGATCT 

ClC-Ka 
S ACTCCCAGAGCTGAAGACCA 

337 / 337 NM_024412 P 
AS CCAGACGGAGAAGTGAGAGG 

Barttin 
S CAGAGCCTCCCAGACTTCAC 

399 / 387 NM_080458 A 
AS TGTAGGGGTGTCGTCAATCA 

Best1 
S TACAAGCGCTTTCCCACTCT 

366/376 NM_011913 A 
AS CATCTCATGGCCTGGGTAGT 

Best3 
S GCTGCCGACTACTGCATACC 

368/362 NM_001007583 A 
AS GTCTCCCTGATGGTGGACAG 

ClCa1 
S CTACAAGTGGCAGCGTCTCC 

367/358 NM_009899 A 
AS GCAGTAGCCAGGAGTGGTTC 

 
S, sense primer; AS, antisense primer; Product Size, length in the base pairs (bp) of RT-PCR 
product including primers.  aExpected/Measured product size; bPresent/Absent.  
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Results 
 
 Whole cell patch clamp recordings from Reissner’s membrane epithelial cells were made 

under conditions where Cl- was the only major permeating ion.  The Cl- currents were 

characterized by a) strong inward-rectification with slow activation at negative voltages and b) 

weak outward-rectification (Fig. 1).  The prominent inwardly-rectifying currents were similar to 

those described for ClC-2 and were investigated in more detail.   

 We tested the effects of agents (external pH, Cd2+, Zn2+ and intracellular ClC-2 antibody) 

known to stimulate and inhibit ClC-2 Cl- channels on the Cl- currents in Reissner’s membrane 

epithelial cells (Figs. 2, 3, 4).   

 Acidifying the bath pH from 7.2 to 6.7 caused a reversible increase in I-100 by 79.4 ± 11.1 

% (from -104 ± 26 pA to -181 ± 37 pA, n=5)  (Fig. 2A).  By contrast, alkalinizing the bath pH 

from 7.2 to 7.7 caused a reversible decrease in I-100 by 37.9 ± 3.7 % (from -106 ± 37 pA to -69 ± 

28 pA, n=4) (Fig. 2B).  These pH changes are in the monophasic pH response region of inward-

rectifier Cl- channels in mouse parotid acinar cells [1]. 

 Similar experiments were performed with Zn2+ (Fig. 3A) and Cd2+ (Fig. 3B) at 

concentrations known to inhibit ClC-2 channels [12;38].  I-100 was reversibly decreased by 50 

µM Zn2+ by 45.6 ± 7.5 % (from -248 ± 24 pA to -132 ± 15 pA, n=4) and by 500 µM Cd2+ by 

45.3 ± 7.1 % (from -138 ± 28 pA to -79 ± 23 pA, n=5).   

 Antibodies against intracellular epitopes of ClC-2 have been reported to block inward-

rectifier Cl- currents in native cells [9;27].  Intracellular ClC-2 antibody (3 µg/ml) [9] 

significantly reduced the conductance at -120 mV from 11.5 ± 2.5 nS (control with heat-

inactivated antibody) to 3.8 ± 1.1 nS, n=5 (Fig. 4).   



11 

 

 

 

Figure 1.  Strong inward-rectifier and smaller outward Cl- currents.  A, Step pulses were 

applied from -140 mV to +40 mV, returning to the holding voltage -100 mV.  B, The mean 

current voltage relationship was obtained from 24 cells. 
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Figure 2.  Dependence of inward-rectifier Cl- currents on pH.  The voltage protocol consisted 

of holding at -100 mV for 13 s with a 2 s pulse at +40 mV.  All effects of pH were reversible.  A, 

The activation of the current at -100 mV by external acidification from pH 7.2 to pH 6.7.  B, The 

inhibition of the current at -100 mV by external alkalinization from pH 7.2 to pH 7.7.   
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Figure 3.  Dependence of inward-rectifier Cl- currents on inhibition by Zn2+ and Cd2+.  

Representative recordings; voltage protocol as in Figure 2.  All effects of Zn2+ and Cd2+ were 

reversible.  A, The inhibition of the current at -100 mV by 50 µM Zn2+.  B, The inhibition of the 

current at -100 mV by 500 µM Cd2+. 
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Figure 4.  Inhibition of inward-rectifier Cl- currents by ClC-2 antibody.  Summary I-V 

relationships; voltage protocol as in Figure 1.  Currents recorded with antibody (3 µg/ml) raised 

against an intracellular epitope of ClC-2 added to the pipette solution (Anti-ClC-2 Ab; up 

triangles) were significantly reduced at negative membrane voltages compared to those serving 

as “Control” with heat-inactivated antibody (down triangles). 
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 Candidate anion channel genes were determined by their presence call in our gene array 

database (GEO accession number GSE6196 [17]), compared to expression levels in the 

neighboring tissue, stria vascularis (GSE4749 [11]).  Genes related to Na+ absorption and its 

regulation in Reissner’s membrane were reported previously [17].  Several Cl- channels were 

found to be present (Table S1).  ClCa1 was called ‘present’ by the gene array, but the signal 

strength was less than twice the background level of the chips.   

 On the basis of those results, RT-PCR experiments were conducted to validate the 

presence or absence of selected genes (Table 1, Fig. S1).  Cl- channels for which mRNA was 

present and which are known to be located in the plasma membrane include ClC-2, Slc26a7 and 

ClC-Ka.  Interestingly, the beta-subunit of ClC-K (barttin) was not expressed in Reissner’s 

membrane.  Cl- channels for which mRNA was not detectedinclude Cftr, ClC-1, ClCa1, ClCa2, 

ClCa3, ClCa4, Slc26a9, ClC-Kb, Best1, Best2, Best3.   

These results are not specific to the epithelial cells since Reissner’s membrane also 

consists of a discontinuous subepithelial layer of mesothelial cells.  Whole cell currents, 

however, originated solely from the epithelial cells. 
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Table S1.  Gene array detection of Cl- channels in Reissner’s membrane.  

Gene Affymetrix 
Probe Set ID 

Average Signal 
Ratio  

(RM/SV) 

Present (P) 
Marginal(M) 
Absent (A) 

RMa  
Mean 

SVb  
Mean 

Cftr 1420579_s_at 8 52 0.2 AAA/APAd 

Cftr 1427767_a_at 9 30 0.3 AAA/AAAd 

Slc26a7 1425841_at 1909 76 25 PPP/AAA 

ClC-1 1427591_at 17 95 0.2 AAA/AAA 

ClC-2 1449248_at 296 97 3.1 PPP/PAA 

ClC-Ka 1450182_at 362 1458 0.2 PPP/PPP 

ClC-Ka 1455677_s_at 372 2030 0.2 PPP/PPP 

ClC-Kb 1450340_a_at 46 837 0.1 AAA/PAAc 

Barttin 1421482_at 52 550 0.1 AAA/AAAc 

ClCa1 1417852_x_at 66 104 0.6 PPP/PPM 

ClCa1 1417853_at 28 31 0.9 PPA/AAA 

ClCa2 1419463_at 2 107 0.0 AAA/PPA 

ClCa2 1437578_at 7 10 0.7 AAA/AAA 

ClCa3 1416306_at 5 6 0.8 AAA/AAA 

ClCa3 1459889_at 32 95 0.3 AAA/AAA 

ClCa4 1451823_at 28 94 0.3 AAA/AAA 

Best 1 1428841_at 366 177 2.1 PPP/AAA 

Best 2 1425729_at 12 77 0.2 AAA/AAA 

Ano1/tmem16a 1426571_at 5 62 0.1 AAA/AAA 

Ano1/tmem16a 1459713_s_at 46 414 0.1 AAA/PPP 

Clns1a 1423181_s_at 2463 1913 1.3 PPP/PPP 

Clns1a 1427548_a_at 145 234 0.6 PPP/PAA 

Clns1a 1436935_x_at 10426 11084 0.9 PPP/PPP 
Affymetrix annotation date is July 13, 2009; results are from three gene chips for each tissue; 

mean signal background for RM= 57, SV=100; GEO accession numbers: aGSE6196, 
bGSE4749.  cThese proteins are known to be present in SV.  dReported earlier [17]. 
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Figure S1. Electropherograms of PCR products for Cl- channels in Reissner’s membrane.  

Analyses of DNA products of RT-PCR by Agilent Bioanalyzer.  Transcripts for all genes tested 

in column “+RNA” were present except for ClC-1, barttin, Best1, Best3; ClCa1 was judged to be 

absent.  NTC, no template controls. 
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DISCUSSION 

 The contribution of Cl- transporters to the support of auditory and vestibular neural 

processes has been reviewed recently [22].  However, the present paper is the first report of a 

significant involvement of conductive Cl- pathways in Reissner’s membrane epithelium.  We 

identified by means of gene array, RT-PCR and electrophysiology several channels that carry  

Cl-.  The molecular identities of the channels that carry the observed currents were not 

unambiguously determined, but candidate genes were identified.   

 The voltage-dependence of the current under symmetrical Cl- conditions has some 

similarities to channels reported in the literature.  The strong inward rectification has been 

observed in expression systems and native cells.  The strongest candidate for a molecularly-

identified, inward-rectifier Cl- channel in Reissner’s membrane is ClC-2, although many Cl- 

channels have been demonstrated functionally whose molecular identity remains unknown 

[12;38].  Few plasma membrane Cl- channels are known to be inwardly-rectifying [12] and of 

those that are molecularly identified, the only candidate channel transcript in Reissner’s 

membrane was ClC-2. 

 ClC-2 has an established electrophysiological and pharmacological fingerprint [13;33].  

Salient features include whole-cell currents that a) are slowly activated by negative voltages; b) 

sensitive to extracellular pH (activated by acid); c) inhibited by Cd 2+ and Zn2+ [4;28;38]; d) 

inhibited by antibodies directed against intracellular epitopes of the ClC-2 channel [9;27].  All of 

these characteristics were observed for currents in Reissner’s membrane epithelial cells and 

transcripts for ClC-2 were present in the tissue.   
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 ClC-2 was said earlier to be ‘broadly’ or ‘ubiquitously expressed’, although many studies 

have since shown a more specific distribution [12].  The view of cell-specific distribution is 

supported by our finding in the cochlea that Reissner’s membrane expresses over 3 times as 

much transcript for ClC-2 as the neighboring tissue, the stria vascularis (Table S1).  The stria is 

composed of numerous types of cells, including surface epithelial cells, intermediate cells of 

neural crest origin, basal cells, capillary endothelial cells and pericytes.   

 Nonetheless, Cl- currents have been found in mouse choroid plexus epithelial cells that 

have many of the characteristics of ClC-2 but also display some differences, such as dependence 

on intracellular ATP [14]; in fact, it was found that those currents persisted in ClC-2 knockout 

mice, pointing to an unidentified channel with characteristics that overlap those of ClC-2 [32].  

The lack of an antibody with convincing specificity for ClC-2 in fixed tissues [37] precluded 

localization of the protein to the apical or basolateral membrane in Reissner’s membrane, 

although the effective inhibition of the inward current by ClC-2 antibody supports a similar 

epitope on the underlying channel or an associated protein.   

 Cellular functions ascribed to ClC-2 include Cl- absorption in the colon, volume 

activation, volume inhibition, regulation of cardiac pacemaker activity and maintaining Cl- 

homeostasis in rat rod bipolar cells of the retina [2;4;9;26], but the physiological function in 

mouse salivary gland epithelium is unknown [28].  The inward rectifier may participate in 

transepithelial Cl- transport across Reissner’s membrane, but a possible alternative or additional 

function includes regulation of cell volume [8].      

 Transcripts of additional Cl- channels identified by gene array and/or RT-PCR in 

Reissner’s membrane are Slc26a7 and ClC-Ka.  Slc26a7 is a Cl- channel with a nearly linear I-V 

relationship [16] that remains a candidate for the channel mediating the outward current in 
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Reissner’s membrane.  Studies of inward-rectifier currents in other native cells (e.g., rat parotid 

acinar cells and both rat and mouse choroid plexus epithelial cells) have also noted an additional 

minor outward current [14;15;25], even though heterologously expressed ClC-2 and the inward 

rectifier conductance of rat neocortical cultured astrocytes are nearly perfect inward-rectifiers 

[6;25].   ClC-K alpha-subunits require the presence of the beta-subunit, barttin, in order to be 

functional channels [5].  Barttin, however, was not detected  by RT-PCR, suggesting that ClC-Ka 

does not form a functional channel in Reissner’s membrane.   

 The Ca2+-activated Cl- channels (ClCa isoforms), bestrophin isoforms and Tmem16a 

were either absent or had weak gene array signal strength (Table S1).  Clns1a is a putative Cl- 

channel that was present at very low signal strength in the gene array.  However, the protein is 

ubiquitously expressed and has been reported to have diverse functions that make it essential for 

cell viability, making it impossible to unambiguously determine whether it is indeed a Cl- 

channel [7].   

Previous reports of ion transport by Reissner’s membrane epithelium have focused 

predominantly on cation transport.  Observations include demonstrations of electrogenic 

transepithelial absorption of Na+ from endolymph via Na+-permeable, amiloride-sensitive 

channels in the apical membrane [17;20].  Na+/K+-ATPase in the basolateral membrane and 

Ca2+-ATPase in the apical membrane [10;36] were found by histochemistry.  Several patch-

clamp studies have demonstrated the presence of ATP-gated cation channels [18], stretch and 

voltage-sensitive nonselective cation channels and potassium channels in the apical membrane 

[34;35].   Single-channel recordings of voltage-sensitive chloride channels were obtained from 

the apical membrane [35], but these channels had the opposite voltage sensitivity to those 

reported here and therefore may not play a significant role under physiological conditions.
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Conclusion   

In summary, we have identified a complex Cl- current in Reissner’s membrane epithelial 

cells that may be carried by multiple transport proteins.  Cl- is known to play a critical role in 

sensory outer hair cell tuning and amplification through its involvement with the motor protein, 

prestin [23;24;29], although the influence of luminal (endolymphatic) [Cl-] is not known.  Our 

findings support a possible role of Reissner’s membrane in Cl- homeostasis of endolymph in the 

support of hearing.  Dysfunctions of Cl- transport may contribute to pathological states such as 

Meniere’s syndrome and Schiebe’s deformity.   
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CHAPTER 3 - Conclusion and future directions 

Our recent studies showed that Reissner’s membrane epithelial cells participate in Cl- ion 

transport, especially indicating characteristics of an inward-rectifier Cl- channel. This finding is 

the first demonstration of electrogenic Cl- transport pathways in Reissner’s membrane epithelial 

cells using whole-cell patch-clamp experiment. The characteristics shown in Chapter 2 with 

strong inward rectification are consistent with ClC-2 Cl- channel, whose transcript was 

confirmed to be present in Reissner’s membrane. Furthermore, an ongoing project has been 

testing cyclic AMP-dependent Cl- currents; preliminary findings were presented at a recent 

meeting (Kyunghee X. Kim and Daniel C. Marcus, “ClC-2 chloride channel in Reissner’s 

Membrane”, ARO Midwinter Research Meeting, Anaheim, California, USA, February 2010) and 

the abstract is reproduced below.  

 

“Sensory transduction in the cochlea depends on regulated ion secretion and absorption.  

Flux studies have provided evidence for Cl- transport by Reissner’s membrane (Konishi 

& Hamrick, 1978) and biochemical assays demonstrated a highly-active cAMP signal 

pathway (Thalmann & Thalmann, 1978).  The present investigation utilized whole cell 

patch clamp, gene array and RT-PCR to determine the presence of Cl- channels and 

transporters in mouse Reissner’s membrane and to test for regulation by cAMP.  Whole 

cell patch clamp recordings from epithelial cells under conditions where Cl- was the only 

major permeant ion showed strong inward rectification.  Channels expressed in the 

epithelial and/or mesothelial cells include ClC-2, Slc26a7 and ClC-Ka, but not ClC-1, 

ClCa1, ClCa2, ClCa3, ClCa4, Slc26a9, ClC-Kb, Best1, Best2, Best3 or the beta-subunit 
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of ClC-K, barttin.  ClC-2 is the only channel present that is a strong inward rectifier.  The 

inward currents matched additional key characteristics of ClC-2 Cl- channels, including 

activation by lowered external pH and inhibition by the divalent cations Zn2+ and Cd2+.  

Further, inward currents were stimulated by membrane-permeant analogs of cAMP.  

Electroneutral Cl- transporters found to be expressed in Reissner’s membrane include 

K+/Cl--cotransporter isoforms Kcc1, Kcc3, Kcc4, anion exchanger isoforms Ae2 and Ae3 

but not Kcc2, Ae1, Ae4, Slc26a3 or Slc26a6.  This is the first direct evidence that 

Reissner’s membrane epithelial cells contain a transport pathway for Cl- under control of 

cAMP mediated by ClC-2.   Supported by NIH grants R01-DC000212 and P20-

RR017686.”   

 

We also found that Cl- currents have slight outward rectification (Chapter 2), which could be 

accounted for by the Cl- anion transporter Slc26a7, whose expression in Reissner’s membrane 

was also determined (Chapter 2).  Preliminary findings on the location and importance of this 

transporter were presented at a recent meeting and the abstract (Kyunghee X. Kim, Joel D. 

Sanneman, Hyoung-Mi Kim, Donald G. Harbidge, Jie Xu, Daniel C. Marcus, Manoocher 

Soleimani, Philine Wangemann, “ Loss of Slc26a7 in Reissner’s membrane leads to hearing loss 

in mice”, ARO Midwinter Research Meeting, Anaheim, California, USA, February 2010) is 

reproduced below. 

 

“Slc26a7 is a member of the Slc26 family that includes both pendrin (Slc26a4) and 

prestin (Slc26a5).  Slc26a7 can function in two modes, as a Cl- channel or as a Cl-/HCO3
- 

exchanger.  Gene array analyses revealed high levels of Slc26a7 expression in Reissner’s 
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membrane, which prompted us to investigate whether Slc26a7 is functional in Reissner’s 

membrane epithelial cells and whether Slc26a7 is essential for cochlear homeostasis, for 

hearing and, by extension, for balance.  Cl- currents were recorded in whole-cell patches 

of Reissner’s membrane epithelial cells.  Expression of Slc26a7 protein was localized by 

immunocytochemistry in developing and adult mice.  Hearing and balance were 

evaluated by auditory brain stem recordings and RotaRod testing and cochlear 

morphology was assessed by immunocytochemistry in wild-type (Slc26a7+/+) and in mice 

lacking Slc26a7 (Slc26a7-/-).  Reissner’s membrane epithelial cells expressed Slc26a7 

protein in the basolateral membrane and carried Cl- currents that carried NO3
- 

significantly better than Cl- and that were characterized by a slight outward rectification 

when studied with symmetrical NMDG-Cl solutions in whole-cell patches.  The onset of 

protein expression was postnatal.  At 10 month of age, two out of three Slc26a7-/- mice 

studied so far had a significant hearing loss at 16 and 32 kHz.  No balance deficits were 

detected.  Cochlear morphology was evaluated in one deaf Slc26a7-/- mouse.  Reissner’s 

membrane had a reduced number of nuclei and enlarged apical surface areas of the 

epithelial cells.  Outer hair cell losses were found in the 16 and 32 kHz regions. In 

conclusion, the data demonstrate that Reissner’s membrane epithelial cells express the Cl- 

channel Slc26a7 in the basolateral membrane.  Based on a very limited dataset it appears 

that lack of this channel leads to a degeneration of Reissner’s membrane, to a loss of 

outer hair cells and to a loss of hearing. Supported by NIH-R01-DC01098, NIH-R01-

DC00212, NIH-P20-RR017686.” 
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Future directions will include determining the first and second messenger pathways that regulate 

the Cl- currents and determining the physiological significance of Slc26a7 in the cochlea.   
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