
Authorization in interoperable medical systems

by

Qais Tasali

B.S., Kabul University, 2009

MSE, Kansas State University, 2013

AN ABSTRACT OF A DISSERTATION

submitted in partial fulfillment of the
requirements for the degree

DOCTOR OF PHILOSOPHY

Department of Computer Science
Carl R. Ice College of Engineering

KANSAS STATE UNIVERSITY
Manhattan, Kansas

2020

Abstract

Robust authentication and authorization are vital to next-generation distributed medical

systems - the Medical Internet of Things (MIoT). Although future interoperable medical

systems carry the potential for improvement of accuracy, consistency, and reliability in the

practice of medicine, they also introduce new concerns – novel risks to patients’ safety and

privacy. For example, unauthorized access to the device(s) connected to a patient or a

medical app (e.g. automated workflow) controlling these devices could result in patient

harm, or even death. Furthermore, while in non-safety-critical systems confidentiality is

generally prioritized over availability – an explicit “fail-closed” requirement – in medical

cyber-physical systems (mCPS) availability must be prioritized over other security properties

(because cessation of therapy may be lethal to the patient). This makes it challenging to

craft least-privilege authorization policies which preserve patient safety and confidentiality

even during emergency situations. Previous work has suggested a virtual version of “Break

the Glass” (BTG), an analogy to breaking a physical barrier to access a protected emergency

resource such as a fire extinguisher or “crash cart”. In healthcare, BTG is used to override

access controls and allow for unrestricted access to resources, e.g. Electronic Health Records.

After a “BTG event” completes, the actions of all concerned parties are audited to validate

the reasons and legitimacy for the override.

In this dissertation, we present a flexible authorization architecture for interoperable

medical systems, and implementation and evaluation of the proposed architecture in the

context of the Medical Device Coordination Framework (MDCF) high-assurance middleware.

We also show how to handle emergency access control override natively within the attribute-

based access control (ABAC) model, maintaining full compatibility with existing access

control frameworks, putting BTG in the policy domain rather than requiring framework

modifications to support it. This approach makes BTG more flexible, allowing for fine-

grained facility-specific policies, and even automated auditing in many situations, while

maintaining the principle of least-privilege. We do this by constructing a BTG “meta-

policy” which works with existing access control policies by explicitly allowing override when

requested, with well-defined procedures to return the system to a known secure state with

minimal manual auditing. Finally, we formally verify that the resulting combined set of

access control policies (as joined with the BTG meta-policy) correctly satisfies the goals of

both the original policy set and of BTG. We show how to use the same verification methods

to check new or modified policies in real time, easing the process of crafting least-privilege

policies.

Authorization in interoperable medical systems

by

Qais Tasali

B.S., Kabul University, 2009

MSE, Kansas State University, 2013

A DISSERTATION

submitted in partial fulfillment of the
requirements for the degree

DOCTOR OF PHILOSOPHY

Department of Computer Science
Carl R. Ice College of Engineering

KANSAS STATE UNIVERSITY
Manhattan, Kansas

2020

Approved by:

Major Professor
Eugene Y. Vasserman

Copyright

c© Qais Tasali 2020.

Abstract

Robust authentication and authorization are vital to next-generation distributed medical

systems - the Medical Internet of Things (MIoT). Although future interoperable medical

systems carry the potential for improvement of accuracy, consistency, and reliability in the

practice of medicine, they also introduce new concerns – novel risks to patients’ safety and

privacy. For example, unauthorized access to the device(s) connected to a patient or a

medical app (e.g. automated workflow) controlling these devices could result in patient

harm, or even death. Furthermore, while in non-safety-critical systems confidentiality is

generally prioritized over availability – an explicit “fail-closed” requirement – in medical

cyber-physical systems (mCPS) availability must be prioritized over other security properties

(because cessation of therapy may be lethal to the patient). This makes it challenging to

craft least-privilege authorization policies which preserve patient safety and confidentiality

even during emergency situations. Previous work has suggested a virtual version of “Break

the Glass” (BTG), an analogy to breaking a physical barrier to access a protected emergency

resource such as a fire extinguisher or “crash cart”. In healthcare, BTG is used to override

access controls and allow for unrestricted access to resources, e.g. Electronic Health Records.

After a “BTG event” completes, the actions of all concerned parties are audited to validate

the reasons and legitimacy for the override.

In this dissertation, we present a flexible authorization architecture for interoperable

medical systems, and implementation and evaluation of the proposed architecture in the

context of the Medical Device Coordination Framework (MDCF) high-assurance middleware.

We also show how to handle emergency access control override natively within the attribute-

based access control (ABAC) model, maintaining full compatibility with existing access

control frameworks, putting BTG in the policy domain rather than requiring framework

modifications to support it. This approach makes BTG more flexible, allowing for fine-

grained facility-specific policies, and even automated auditing in many situations, while

maintaining the principle of least-privilege. We do this by constructing a BTG “meta-

policy” which works with existing access control policies by explicitly allowing override when

requested, with well-defined procedures to return the system to a known secure state with

minimal manual auditing. Finally, we formally verify that the resulting combined set of

access control policies (as joined with the BTG meta-policy) correctly satisfies the goals of

both the original policy set and of BTG. We show how to use the same verification methods

to check new or modified policies in real time, easing the process of crafting least-privilege

policies.

Table of Contents

List of Figures . xi

List of Tables . xiii

Acknowledgements . xiv

Dedication . xv

1 Introduction . 1

1.1 Contributions . 6

1.2 Organization . 10

2 Background & Related Work . 11

2.1 Interoperable Medical Systems . 11

2.2 Attribute Based Access Control Model . 14

2.3 Representing Access Control Policies . 15

2.4 Access Control Override . 17

2.5 Related Work . 17

3 Authorization Architecture† . 22

3.1 Current Workflow . 25

3.2 Authorization Policies . 26

3.3 Plug-and-play Support . 27

3.4 Attribute Inheritance . 28

†This chapter includes results published as part of “A Flexible Authorization Architecture for Systems
of Interoperable Medical Devices”1

viii

3.5 Break the Glass (BTG) . 34

3.6 Modified Workflow . 34

3.7 Implementation Details . 38

3.8 Evaluation . 40

4 Bend-the-Glass: Controlled Emergency Access‡ 46

4.1 Operating States . 48

4.1.1 Normal State . 48

4.1.2 Controlled BTG State . 49

4.1.3 Uncontrolled BTG State . 50

4.1.4 “BTG-restricted” Permissions . 50

4.2 BTG Policy Evaluation . 51

4.3 BTG Policy Specification . 54

4.4 Comparison to Real-World EHR-BTG . 56

4.5 Verification and Validation . 59

4.5.1 Tool Selection . 60

4.5.2 Testing Results . 63

4.6 Facilitating Revisions and Preventing Errors 64

4.6.1 Recovering from a BTG State . 66

5 BTG Audits Using Obligations and System Changes 68

5.1 Logging . 72

5.2 Post-BTG Audits . 75

5.3 Automating the audit process . 76

5.3.1 Obligations and Compatibility . 78

5.3.2 System Architecture . 80

5.4 Evaluation . 83

‡This chapter includes results published as part of “Controlled BTG: Toward Flexible Emergency Over-
ride in Interoperable Medical Systems”2

ix

6 Conclusion . 86

6.1 Future Work . 88

Bibliography . 89

A ALFA Policies . 98

B 3- and 4-way Combinatorial Test Cases . 114

x

List of Figures

2.1 The architecture of the MDCF and its components 12

3.1 The basic architecture of the new authorization system after integration with

the MDCF. 24

3.2 App as an actor and resource. 28

3.3 An example written in ALFA – a subset of the policy used in evaluating our

implementation . 29

3.4 The XML generated from one line code (target clause app.role == “aR1”)

in Figure 3.3. 30

3.5 The workflows for a clinician accessing patient physiological data in the MDCF. 35

3.6 Disk and network I/O of the baseline versus authorization-enabled MDCF

without Shiro caching . 41

3.7 CPU and memory usage of the baseline versus authorization-enabled MDCF

without Shiro caching . 42

3.8 CPU and memory usage of the baseline versus authorization-enabled MDCF

with Shiro caching . 43

4.1 BTG request workflow. Parentheses indicate the state of the system through

condition variables, and steps 3, 4, 7, and 10 denote returned decisions. . . . 47

4.2 BTG state machine showing the normal state and two emergency (BTG)

states, along with transition criteria. 48

4.3 Permissions grouped by access. Each P, N and R represents group of permis-

sions assigned to Physician, N urse, and BTG Restricted, respectively. 51

4.4 Example BTG policy written in ALFA, reformatted for readability 55

xi

4.5 Sample BTG policy from a major medical group, written in ALFA and refor-

matted for readability . 57

4.6 Sample access control matrix based on patient and clinician types, indicating

when BTG access is allowed and when it is denied 59

4.7 A brief comparison of the model checking tools we considered. A more com-

plete treatment can be found in the work of Aqib and Shaikh.3 60

4.8 Results of ACPT heuristic testing reformatted for readability and with meta-

data header removed. 63

4.9 Results of ACPT verification of policy consistency, reformatted for readability.

An inconsistency within a facility’s policy corpus will cause at least one of the

specifications to evaluate as “false” and the tool will provide a counterexample. 65

5.1 The integration of real-time log analysis with the authorization system. . . 81

5.2 Sample Wazuh rule for detecting uncontrolled BTG session. 82

5.3 Sample log event. 83

5.4 Events that resulted in HIPAA alerts. The color-coded labels reflect the spe-

cific regulation number within HIPAA. 84

5.5 Top 7 rules with their counts and levels that triggered alerts. Only showing

alerts from 5 minutes. 85

xii

List of Tables

1.1 Permission assignment based on our approach 4

4.1 Sample access control table for a physician (the “Subject” column is omitted,

as it is always “physician”) . 52

xiii

Acknowledgments

My doctoral journey has been nothing short of amazing, and I have truly enjoyed every

mile of the journey. Of course, this would have not been possible without continuous support

of several individuals.

First of all, I would like to thank my major professor, Eugene Vasserman, for his insight

and unwavering support. I would have never made it this far, if it wasnt for his guidance

throughout my research in the past 5 years. I would also like to thank Prof. Torben Amtoft,

Prof. Mitch Neilsen, and Prof. Caterina Scoglio, for serving as my dissertation committee

members and helping me achieve excellency in my research through their expertise. I am

also thankful to Prof. David A. Gustafson for his encouragement and helping me with the

decision to pursue a doctoral degree.

Next, I would like to thank my colleagues from SyNeSec lab for their contribution to this

dissertation, dearest friends who brought home to me here in Manhattan, and everyone else

who became my family at Kansas State University. I am grateful to Chandan, a best friend

for life, for his authentic interest in my research.

Finally, biggest thanks go to my family for their continuous support and unconditional

love. My dear mom, Malika, for all of the sacrifices that she has made on my behalf to

help me get to this point. My brothers, Hewad and Farhad, who have only ever pushed me

to follow my passions. My sisters-in-law, Sailany and Marghalara, who are like sisters to

me, for always believing in me. My spouse, Fatimah, for having been extremely supportive

of me throughout this entire process. My daughters, Sailghai and Yosra, and my nieces,

Salena, Sana, Maryam and Hela, who have continually provided the much-needed breaks

from philosophy and the encouragement to finish my degree with expediency. I love you

very much.

xiv

Dedication

To the dear memory of my father, Abdul Hakim Tasali.

xv

Chapter 1

Introduction

Future interoperable medical systems hold the promise of improved patient care through

aggregation and manipulation of multiple physiological parameters simultaneously, as well

as closed-loop control and automation of common clinical tasks. An early standard for such

interoperability is the Integrated Clinical Environment (ICE),4 first introduced in 2008. ICE

is a medical system environment which can be created dynamically through a combination

of interoperable heterogeneous medical devices and other integrated equipment. ICE allows

centralized control and monitoring of devices connected to a patient through a medical

applications, which can provide better service to patients, since clinicians can monitor many

patients from a single location, and need not visit each patient as often. The system can

also allow visiting or unaffiliated clinicians (e.g. GPs) to check on their patients.

These benefits come at the cost: open heterogeneous systems face many security chal-

lenges. Without proper authentication and authorization, there is nothing to stop an unau-

thorized or even malicious user from interfering with patient care, underscoring the critical

importance of authorization and authentication (AA) in medical systems. While authenti-

cation and authorization in health record systems is well researched and mature, the same

is not true about new and emerging standards. The ICE standard (ASTM F2761)4 defines

essential safety requirements for equipment comprising the patient-centric care network, it

barely covers authentication and authorization, which is left as a de-facto open area for

1

research. Most research conducted so far in the area of authorization in medical domain

is focused on how to control access to Electronic Medical Records (EMR) and Electronic

Health Records (EHR), which are static data collected from doctor-patient interaction in

healthcare facilities.5–10 The proposed solutions are not entirely generalizable to systems of

interoperable medical devices due to the high number of physiological data channels, the

real-time nature of the communication, and the sheer number of clinicians, each of whom

generally only interacts with the system for a few minutes. Currently, there are few im-

plementations claiming compatibility with the ICE standard, including OpenICE11 and the

Medical Device Coordination Framework (MDCF).12 Only one of these has implemented

authentication.13

Traditionally, restricting access to resources can be achieved by either a) allowing access

to selected resources and denying everything else by default (whitelisting), or b) denying

access to selected resources and allowing everything else by default (blacklisting). While

whitelisting is considered a more secure fail-closed option, blacklisting is less secure but safer

in the context of fail-open (high availability) requirements. Non-safety-critical systems tend

to prioritize confidentiality and authorization over availability, usually expressed in system

authorization policies as a concrete “fail-closed” requirement. However, in certain domains,

particularly in medical cyber-physical systems (mCPS), fail-closed is not always the safest

approach: in some emergency situations, medical systems’ availability must be prioritized

over other security properties, leading to a non-traditional access control model. The Health

Insurance Portability and Accountability Act (HIPAA)14;15 in the United States also requires

that availability of medical resources be prioritized over patient’s privacy (also known as

“fail-open” requirement) to ensure medical systems do not deny life-saving treatment to

patients in unforeseen situations such as medical emergencies. Nevertheless, unauthorized

access to device(s) connected to a patient or an app controlling these devices could result in

patient harm, privacy violation, or even death.1;12;16 This seemingly impossible situation is

encountered in medical facilities all too regularly. As a result, defining an authorization policy

that can follow the principle of least-privilege as closely as possible without compromising

patient safety or confidentiality (e.g. protect patient information from unauthorized access)

2

even during unforeseen situations is an unresolved and ongoing challenge. Previous work

and industry practices have suggested a virtual version of the “Break the Glass” (BTG)

concept,17 an analogy to breaking a physical barrier to access a protected resource such as

a fire extinguisher during a fire, or a “crash cart” or AED for a medical emergency. In

healthcare, BTG is used to override access controls and allow for unrestricted access to

resources, e.g. Electronic Health Records. After a “BTG event” completes, the actions

of all concerned parties are generally audited, requiring detailed logging of what happens

during BTG. Post-hoc analysis can determine the reasons and legitimacy for overriding

access controls. Medical BTG has largely been treated in the literature as an all-or-nothing

scenario: either unrestricted access is provided (BTG allowed; fail-open) or BTG is not

supported (fail-closed). We show how to bridge this gap using an access control model and

set of “BTG-compliant” policies which maintains the power and flexibility of policy-based

dynamic access control decisions, provides structured logging and auditing functionality, and

allows for automated system rollback to a known-secure state after the emergency has passed.

To simplify (for demonstration purposes) the resource categorization and permission

assignment at an arbitrary facility, we use the following listed three groups for all available

resources for an arbitrary clinician role:

1. Resources the clinician is authorized to access in order to fulfill their duties

2. Resources the clinician is not authorized to access, except to deal with unexpected

situations

3. Resources the clinician is never authorized to access regardless of situation

Consider Nurse N (clinician) who is authorized (assigned permissions) to access resources

(e.g. vitals) in group 1 throughout the normal performance of his or her duties. Under

normal circumstances, N will be denied access to resources in groups 2 (e.g. exceeding soft

limit on infusion pumps)∗ and 3 (e.g. access control policies). However, the healthcare

facility understands the need for access (read/write) to resources such as infusion pumps

∗Soft limits are lower or upper dosing limits that are not meant to be overridden and are considered a
safety feature of infusion pumps.18

3

Resource Categorization and Access Control Rules
Clinician Group 1 Group 2 Group 3

N allowed denied unless BTG requested denied

Table 1.1: Permission assignment based on our approach

in unexpected situations and thus allows N to access the resources in group 2 only during

emergencies.

Group 3 represents resources which are not part of N’s job duties or workflow, and would

be disallowed during normal operation. Moreover, group 3 may include critical resources

for maintaining the security and integrity of the authorization system itself, e.g. the access

control policies themselves and the database that contains them, which would be specifically

restricted from access during emergencies (see Section 4.1.4). Therefore, N is not allowed to

access group 3 during normal operation, nor during emergencies. We leave the flexibility for

individual facilities to not restrict access to these resources. Such changes to global defaults

can be implemented purely via policy alterations and require no framework modification.

While it is relatively straightforward to define an authorization policy for the groups 1

and 3 using traditional access control models, defining a policy for group 2 would require an

understanding of all unexpected situations internal and external to a medical system – an

impossible task by definition. Therefore, an alternative solution is to deny access to these

resources by default except when the clinician initiates an emergency access session (i.e.

BTG), which also makes the system “fail-open”. If a system or application is developed to

remain operational and allow access during unexpected situations when failure conditions

are present, it is called to be “fail-open”. A traditional “fail-closed” system will block access

and/or prevent further operation if a failure is detected.

Developing an access control model for a given system entirely depends on system re-

quirements and/or the effort that it takes to tailor or extend a given model to meet those

requirements. In fact, access control models in the medical domain are so diverse that usu-

ally an access control model developed for one environment may not be useful or applicable

in another environment. While a number of access control models are used in medical do-

4

main, RBAC and ABAC are the two most common.9;19–21 They excel in protecting data in

a closed environment, where all resources and users are known. However, they fall short

when used for enforcement of access control in a dynamic environment, which requires tak-

ing into account information context, users, and objects that are not known prior to issuing

a “deny” or “allow” decision. There are additional commonly-used access control models,

such as ReBAC,22;23 which are extensions of RBAC. These are mainly developed to overcome

shortcoming of RBAC.

RBAC is mostly used for modeling organizational authorization/security policies in com-

mercial systems, but it has limited flexibly and lacks dynamic access control capabilities.20

Whereas frameworks that control these “system-of-systems” require more robust and dy-

namic access control. For example, the Medical Device Coordination Framework (MDCF),

which is an open source MAP that facilitates interoperability between heterogeneous medi-

cal devices and is designed to be an open test bed for the conceptual architecture described

by the Integrated Clinical Environment (ICE) interoperability standard, requires a flexible

dynamic authorization architecture to control access to medical devices and apps (scripted

medical workflows) considering context information. In addition, the MDCF also facilitates

implementation of medical device coordination applications through its model-based devel-

opment environment.12. These applications not only increase safety and effectiveness of

medical care but also the efficiency of clinician workflows.16

The use of richer and more granular methods, such as ABAC and ReBAC, has been on the

rise in recent years due to the increasing need for dynamic and context-aware access control.

It is less common now to grant permission based on evaluating a single static attribute

(e.g. role of the user). Instead, an authorization request is evaluated using several different

attributes, such as type of action, access time and location, the relation between subject and

object, etc.24–26 Because some or most of these attributes do not become static once defined,

access decisions must be made dynamically as well. For example, time- and location-aware

access control systems may allow a clinician to access patient data during their shift while in

the hospital, but may not be able to access the same patient data after their shift is over or

if they try to access the data remotely. Dynamic authorization management not only allows

5

organizations to react quickly to regulatory requirements but also offer several other benefits,

such as up-to-date centrally managed authorization policies, consistency in authorization

policies and less administrative work. RBAC requires administrators to reassign and revoke

roles for a user when the users status changes, or even reassign permissions on individual

resources. This means more administrative work, which also results in out-dated and less

consistency in authorization policies.

1.1 Contributions

We enhance ABAC by introducing a new method of attribute inheritance – “user role in-

heritance” – into our access control mechanism. Since in the MDCF there is always an app

intermediary between the clinician and the patient, we need to reason about the roles and

permissions of the clinician and app simultaneously. This is more challenging than it initially

appears, since the app and clinician are both principals in the system, and therefore have

differing permissions, and moreover the app is a long-running clinical workflow, but clinicians

may come and go while the app operates. For instance, while the clinician who launches

and initially configures the app may have one set of permissions, a later operator may have

a completely different permission set. At any given time, an arbitrary operator may need

access to some or all of the data used by the app, requiring evaluation of the operator’s

role separately from that of the app, since the operator may hold a subset or a superset of

permissions for the app’s data and functionality. In a traditional access control workflow,

all that is needed is a single check, at app launch time, whether the operator has permission

to use all data, devices, and functions provided by the app. In our case,, the app is its own

subject, and requires authorization to access any device providing patient’s physiological

data. We solve this problem through permission inheritance: at app launch time, if the

app lacks permissions to access some device(s) that are needed for proper functionality, the

permissions are reevaluated by combining the app’s and requesting operator’s permissions.

If the combined permissions allow the app to function properly, it permanently inherits the

permissions of the operator who started the app. More precisely, the app now runs with

6

permissions which are the union of the app’s inherent permissions and the permissions of the

operating clinician. The details of this important augmentation to traditional ABAC can be

found in Section 3.4.

We present a new flexible authorization architecture and its implementation. Our ar-

chitecture is based on ABAC due to its more flexible access control model (compared to

unmodified RBAC) and dynamic access control capabilities. In addition, defining a relation-

ship among principals (clinicians, devices, and medical applications) using attributes can be

done whereas defining a relationship among devices, apps and clinician, while the first two

can change states between subject and object dynamically as described in 3.4, using roles as

suggested in RBAC framework is not possible.

Furthermore, we approach BTG from a more flexible standpoint, and demonstrate how

to first “Break the Glass” and then “Fix the Glass” within systems of interoperable medical

devices and applications, on a time-bounded, patient-by-patient basis. By scoping a BTG

session to single patients rather than individual resources, and by allowing sessions to last as

long as an emergency is active, we minimize the amount of manual auditing required after

the session ends. BTG will last until a clinician explicitly signals the end of the event, rather

than invoking BTG (and corresponding auditing burdens) for every instance of emergency

access to every different device or health record. We also avoid system-defined “default”

BTG duration windows, since these may easily be forgotten during an emergency, raising

the possibility of an abrupt end to a BTG session, inconveniencing and confusing caregivers

by disrupting their workflow.

When the access control framework is able to accommodate the obligations returned with

an “allow-if-BTG” decision, the system institutes exceptional logging procedures, and allows

a request that may otherwise be denied. Even when obligations cannot be fulfilled, the high-

availability nature of medical systems may still require that the BTG request be allowed:

overly strict enforcement of system obligation can prevent the timely delivery of life-saving

treatment. Among the examples of emergency situations during which obligations may go

unfulfilled is a denial of service attack on the facility’s IT network, resulting in insufficient

bandwidth to fulfill the increased BTG logging requirements. When obligations are met,

7

the system is said to transition to a “controlled BTG” state. If some obligations cannot be

met, the system fulfills as many as it is able, and transitions to an “uncontrolled BTG” state

instead. In short, declaring an emergency will transition the system from a normal operating

state to either a controlled or uncontrolled BTG state based on whether logging obligations

were met.

Finally, by using a real-time resource access log analysis and enforcement of logging obli-

gations, we limit the extent of uncertainty of the system state following a BTG session, and

allow for recovery to a known safe and secure state. When an emergency is declared (BTG is

invoked), the access control policy returns a series of logging obligations along with a more

permissive authorization decision (i.e. the access control decision during a BTG session is

almost always “allow”). When the authorization framework is able to accommodate the

obligations returned with anallow-if-BTG decision, the system institutes exceptional logging

procedures, and allows a request that may otherwise be denied. Real-time log analysis dur-

ing an emergency access control override session can be effective in detecting anomalous user

BTG accesses. We lay out a framework for investigating anomaly detection in the medical

“Break the Glass” (BTG) procedure using statistical analysis. This can be achieved by inte-

grating a semi-supervised learning model into anomaly detection system to flag anomalous

BTG sessions. The model is trained in a supervised fashion with labeled and unlabeled data

(pseudo-labeling) simultaneously. In statistical analysis, the statistical model is trained on

non-anomalous data as an ensemble to calculate aggregated score that defines how likely a

given BTG session is anomalous. The anomaly detection approach also uses users profiling

approach based on users’ behavior (constructed from the users’ past interaction with the

system) to detect deviation form normal behavior.

This work makes the following contributions:

• We show the first proof-of-concept implementation of authorization for systems of

plug-and-play interoperable medical devices.

• Our system is sufficiently rich and fine-grained to accommodate principals in the form

of devices, apps, and clinician of numerous arbitrarily-defined roles.

8

• We augment traditional ABAC with a novel method of attribute inheritance that not

only achieves fine-grained access control and separation of duty requirements, but also

helps in creating genericized policies that support plug-and-play of medical devices for

immediate authorized use by clinicians, such as during an emergency.

• We show that our authorization system performs sufficiently well to support very fre-

quent authorization events, such as for protecting dynamically produced data generated

in real time.

• Our architecture is flexible-enough to support integration into most implementations of

device interoperability standards, such as the Integrated Clinical Environment (ICE).

• We describe a new flexible medical “Break the Glass” (BTG) access control model

which maintains compatibility with existing access control frameworks.

• We formally verify our model, showing that it allows for automatic return to a known-

secure state even after temporarily granting emergency access requests.

• We demonstrate a number of alternate ways to construct access control and BTG

policies such that it is all but impossible to mistakenly grant or withhold resource

access (even during emergencies), backed by tool-based formal analysis of potential

inconsistencies in the overall facility policy set.

• We provide guidance on constructing BTG policies which use the native logging fa-

cilities of the access control framework to facilitate automated, semi-automated, and

fully-manual post-hoc auditing of emergency access requests and resulting resource use.

The level of detail and accuracy would also improve by reducing reliance on human

memory of the event.

• We show how to limit the extent of uncertainty of the system state following a BTG

session, and allow for recovery to a known safe and secure state when needed using

real-time resource access log analysis and enforcement of logging obligations.

9

1.2 Organization

Chapter 2 presents an overview of existing open ICE-compatible implementations, access

control policies representation, state of the art for access control override, and show how

our work is distinguished from other work. In Chapter 3 we present the first proof-of-

concept implementation of authorization for systems of interoperable medical devices, an

augmentation of traditional Attribute Based Access Control (ABAC) model with a novel

method of attribute inheritance. Section 3.3 shows how the presented authorization model

supports “plug-and-play” connectivity of new medical devices. The last Section 3.8 provides

the testing methodology and results for the authorization system after integration into the

Medical Device Coordination Framework.

In Chapter 4 we extend our study on safe and secure emergency access control override

in interoperable medical systems. Sections 4.4 present an emergency access control model

with policy evaluation and specification. A formal verification and validation of the model

is presented in Section 4.5. The last Section 4.6 in this chapter provides guidance on how to

facilitate revisions and preventing errors in access control policies.

Chapter 5 looks further into limiting the extent of uncertainty of the system state fol-

lowing an emergency access control override. This chapter focuses on real-time log analysis

of resource access and enforcement of logging obligations.

Finally, Chapter 6 of this dissertation presents a summary of the main contributions of

this work, and discusses on directions for future work.

10

Chapter 2

Background & Related Work

2.1 Interoperable Medical Systems

Interoperable medical systems are especially beneficial in multi-vendor environments with

different devices on a shared IT network. In essence, by combining independent sensors

and actuators with a coordinating entity (e.g. script or application running on commodity

hardware), the system becomes more than the sum of its parts – a complex multi-featured

device capable of operating in both open- and closed-loop control modes.27 The promise of

easy integration and avoidance of vendor lock-in would allow for significantly more flexible

interoperable systems, able to carry out monitoring and even treatment functions as a group

which no individual system component could accomplish by itself, and can significantly ease

the burden on clinicians leading to more efficient and effective patient care.16

Simplifying connectivity increases the complexity of resulting “Medical Application Plat-

forms” (MAPs), making them more difficult to understand and manage. Frameworks capable

of creating and controlling these “system-of-systems” must be carefully designed to preserve

patient safety despite of the increased complexity.28 Their increased power requires greater

assurance that they will not be misused (intentionally or unintentionally) to harm the pa-

tient(s) they are treating4;12;16. MAPs also present novel problems in terms of privacy and

security. Each device and application within a MAP may require different levels of network

11

Figure 2.1: The architecture of the MDCF and its components

access and quality of service, complicating the resulting access control policies. Policy-based

access control can be used to provide a comprehensive and flexible solution to the problem.

We are aware of only two open implementations which claim compatibility with the ICE

standard, including OpenICE11 and the Medical Device Coordination Framework (MDCF),12

as of writing this dissertation. OpenICE was developed by the Medical Device Plug and

Play Interoperability Program (MD PnP)29 to automate peer-to-peer node discovery, data

publishing and subscribing between nodes, and proprietary medical device protocol transla-

tions.11 OpenICE allows users to convert heterogeneous medical device data from supported

devices into a common structure and protocol and exchange the data on a different ma-

chine using demonstration clinical applications. Like the MDCF, OpenICE does not have

an authorization system. We choose the MDCF over the OpenICE to implement our proof-

of-concept system solution in Chapter 3. This is due to several factors, the most important

being that MDCF has a pluggable communication protocol layer, and therefore does not rely

exclusively on a particular third-party network protocol (DDS, in case of OpenICE).30 We

12

also use the modularity of the MDCF security framework to assist in our design and integra-

tion.13;31 A detailed comparison of the benefits and downsides of the two implementations

is beyond the scope of this paper, but it is worth noting that our proposed authorization

architecture is designed for any ICE-like architecture, and therefore it should be possible to

integrate into OpenICE. Verifying the exact difficulty of integration into OpenICE, and thus

testing the generality of out design, is left for future work.

The MDCF is architected in logical units that closely follows the Integrated Clinical

Environment (ICE) standard.4 In addition to data logging and display capabilities provided

by existing medical device connectivity features, the MDCF also allows medical devices to

be controlled by scripted medical workflows – apps. The system is divided into two large

sub-components according to the ICE architecture: 1) Supervisor (the app and user interface

host), and 2) Network Controller (the communication abstraction layer). Communication

is abstracted as “channels”, allowing the MDCF to use different network communication

library implementations, such as MIDdleware Assurance Substrate (MIDAS)32 and Data

Distribution Service (DDS),30 as message-oriented publish/subscribe middleware.∗ Each

component is described briefly below and illustrated in Figure 2.1.

Supervisor Components

• The App Manager manages the lifecycle of apps. It starts and stops the execution of

apps, manages interactions (communication) between apps, and notifies clinicians of

any medically adverse architectural interactions, if applicable.

• The Clinician Service provides an interface for configuring, instantiating, and selecting

supervisor apps that are used with the clinician graphical user interface (GUI).

• The Administrative Service is the control provider for installation and management of

apps.

Network Controller Components

∗Within the Java code, components that have a registered sender/receiver object for a channel are
the only components that can send or receive messages in that channel, limiting access to the channel by
permitting or denying subscription requests.13

13

• The Channel Service is the function set for direct interaction with the communication

substrate, and contains code for interfaces used between the MDCF publish/subscribe

middleware and any connected components. It contains interfaces for the messag-

ing server, message senders, receivers, and connection listeners, as well as hooks for

pluggable authentication providers.

• The Connection Manager is the means to create, manage, and destroy connections

(abstracted as channels).

• The Device Manager configures devices for use with apps and maintains an internal

view of device status.

• The Device Registry is the known device information store API. These may be device

models for which information has been preloaded, or individual devices which are

currently connected or have connected in the past.

• The Component Manager is analogous to the Device Registry, but is responsible for

apps instead of devices.

2.2 Attribute Based Access Control Model

In ABAC, which is also known as Policy Based Access Control (PBAC), access to objects

is granted by evaluating rules against attributes of user (subject), resource (object), action

and other relevant attributes (environment) to a request. Attributes usually falls into 4

different categories and represents anything that may be defined and to which a value may

be assigned, e.g. user role, resource type, work shift, etc. ABAC model supports conditional

access rules (Boolean logic) that contain “IF, THEN” statements about subject, object and

action. For example, IF the requester is a primacy physician for the patient, THEN allow

read/write access to the patient’s sensitive data. As shown in the example, ABAC is depen-

dant on the proper evaluation of attributes of the subject, attributes of the object, and a

formal relationship defining the allowable operations for subject-object attribute combina-

14

tions. These combinations are presented in a from of policy which express what is allowed

or not allowed – policies can be granting or denying policies. Each access control policy may

present a specific access control scenario.

Traditional identity based access control models, such as Role Based Access Control

(RBAC),33 are based primarily on the identity of a subject requesting access to a resource. In

RBAC permissions are assigned to roles and roles are assigned to users. Access to a resource

(object) is granted to a user (subject) only if the user is a member of a role that contains the

requested permission. RBAC is considered insufficient to express real-world access control

scenarios that may require multi-factor decisions. For example, in healthcare facility a

decision may be dependant on clinician/user type, patient-clinician relationship, physical

location, specialized training such as for Health Insurance Portability and Accountability

Act (HIPAA)14;15 patient records access, etc.

2.3 Representing Access Control Policies

The design of the Medical Application Platform concept27 like the MDCF, and the devices

meant to interoperate within it, implies the expectation of generic but preassigned device and

app attributes that can easily be transformed into access control attributes in authorization

policies.13 These attributes can be preassigned by device vendors, app developers, and/or

the defaults can be overridden by the clinical facility for use in the environment where de-

vices and apps are deployed. A facility administrator, creating policies for use by the clinical

environment, generates a set of authorization rules in a machine-readable, but human-usable,

language, creating device and clinician/operator attributes (which can be modified at any

time, even as the system is running). Runtime changes to these attributes can result in deci-

sion changes between two access requests without the necessity to change the device, app or

user relationships defining any underlying rule-sets. To make the process as easy as possible

for the policymaker, not only are there predefined defaults for common roles and property

sets, but authorization policy generation can be partially or fully automated for common

classes of devices and apps – device instances do not require dedicated policies, and in many

15

cases devices with analogous functionality or new models or product lines, even from different

manufacturers, can reuse policies written for similar devices. Moreover, policies implemented

in ABAC are only limited by the language used to express them, and the richness of the

available attributes.20 Therefore, there is no need to specify individual relationships between

each device (or even device class) and each potential operator without sacrificing granular

user permissions. We use the eXtensible Access Control Markup Language (XACML)34;35

as our back-end, due to its standardization (OASIS) and wide acceptance and portability (it

is one of the most widely used policy language).

XACML. The eXtensible Access Control Modeling Language,34 written in XML, is used

to define a fine-grained attribute-based access control policy. It can also be used to express

an architecture and a processing model that describes how to evaluate access requests ac-

cording to the rules predefined in access polices. XACML is designed to be suitable for a

variety of application environments, such as social networks,36 home automation gateways,37

healthcare domain,24;38;39 distributed systems,35 etc.

ALFA. A major goal of XACML is to promote common terminology and interoperability be-

tween authorization implementations by multiple vendors. It is very general and expressive,

but is verbose and hard to read. The Abbreviated Language for Authorization (ALFA)40 is

a Domain Specific Language (DSL) for XACML. In contrast to policies written in XACML,

ALFA provides a friendlier and more usable syntax, similar to C#. Access control polices

written in “raw” XACML are complex, and make it difficult to find faults which may be

inadvertently introduced.41 Therefore, we chose ALFA as a high-level policy language due

to its increased user-friendliness over XACML, but kept the XACML back-end to maximize

portability. For a quantitative comparison, one of our ALFA policies is 30 lines, while a

XACML policy generated from one line of code (target clause app.role == “aR1”)

taken from the ALFA policy is 16 lines. On average, the policies which we wrote consisted

of 3903 non-whitespace characters in XACML, while the same policies in ALFA had 528

non-whitespace characters.

16

2.4 Access Control Override

Restricting access to resources is the main goal of implementing authorization policy. Tradi-

tional access control mechanisms prevent the information from open access that could result

in misuse, and only restricting privileges of users to what is needed to fulfill their tasks.

Depending on environment (application domain) requirements access control rules are typ-

ically either defined too lax or too restrictive. A less restricted authorization policy gives

users unnecessary access and defeats the purpose of least privilege. And a more restricted

authorization policy than needed could stop users from fulfilling their tasks, which could be

costly. Furthermore, healthcare is one such application domain where restricting access to

only authorized users is not always the best and safest solution. For example, in medical

emergencies allowing for access control override is considered a safer authorization approach

over enforcing a deny decision, also discussed as part of HIPAA.14;15 Overriding access control

requires a mechanism within the authorization engine that enables it to reverse (or reeval-

uate) a returned decision and allow the access request which was initially denied. Certain

user action(s) (e.g. explicitly requesting the override through either a software control or a

physical hardware device/lever/button) are required as a prerequisite to overriding an access

control decision.

2.5 Related Work

The differences between healthcare facilities and their individualized, unique access control

requirements have resulted in many proposed access control models, all suitable for health-

care. Though a detailed discussion of the access control models themselves is not in the

scope of this paper, here we provide several examples of how some of these models work.

Most research on access control in medical domain has focused on Electronic Health

Record systems (EHRs), storing data which is accessed or changed only occasionally. The

variety of EHRs makes it unlikely that a one-size-fits-all access control model will be used.

There are numerous proposed solution that use different methods to achieve patient pri-

17

vacy.24;42–44 Ray et al.24 use ABAC to ensure the disclosure of Protected Health Information

(PHI), in response to requests from researchers, conform to various policies imposed by pa-

tients. Hupperich et al.44 discusses the problems with some current proposed solutions for

privacy, such as the use of smart cards for EHR authorization, and propose a flexible secure

architecture based on attribute-based encryption and scalable authorization secrets to enable

patient-controlled security and privacy. Moreover, availability of resources during emergen-

cies is an active area of access control research.45 Various solutions have been proposed to

override access restrictions in a controlled manner.46;47

None of the proposed models provides a solution and/or addresses the need for an access

control model for real-time patient data generated by medical devices within a heteroge-

neous, interoperable environment such as standardized by the ASTM Integrated Clinician

Environment (ICE) standards or one following the concepts of Medical Application Plat-

forms (MAPs).48 Authorization within ICE-compliant medical middleware has been not

been studied, nor are the concepts covered in the associated standards,4 which do not pro-

vide any authentication or authorization requirements or specifications. Salazar discusses

authentication and authorization requirements for MAPs, and designs out a proof-of concept

authentication framework scheme within the MDCF,13 but does not present an authoriza-

tion architecture, except for a high-level design rooted in the Role-Based Access Control

(RBAC) model.31 Salazar’s main contribution are limited to ensuring the trustworthiness

of medical devices connecting to the MDCF, creation and integration of a flexible authen-

tication system into the MDCF, and evaluation of the implemented system. We show that

RBAC is insufficient to fulfill the requirements for dynamic access control required for an

ICE-compliant system, and provide an alternative design based on ABAC.

Furthermore, the concept of access control override or Break the Glass (BTG) is not new.

In one of the earliest papers on the topic, Povey49 discussed unexpected risks resulting from

static nature of authorization and proposes a new access control paradigm for constraining

access in situations like medical emergencies where a user may need to exceed their normal

privileges.

In a similar work, Rissanen, Firozabadi, and Sergot50 suggest a mechanism for increased

18

flexibility in access control by overriding denied access (when necessary) using the possibility-

with-override concept. It is also suggested that the overrides should be audited using the

access control policy. Ferreira et al.51 proposed a BTG policy within an implemented access

control policy (defined by healthcare professionals) and access control hybrid model for a

hospital.

While the concept of BTG in their work is similar to the previous work done in the same

area, the introduction of BTG policy within a hybrid access control model for presenting

access control policy and its implementation in a healthcare facility is the main contribution

of their work. In a follow-up work Fererira et al. extends the NIST/ANSI RBAC model with

BTG and names it the BTG-RBAC model.46 Their work is mainly focused on overriding

access in a controlled manner using a state-based RBAC authorization infrastructure: in

situations where a user is not allowed to access a resource and a deny decision would normally

be returned, the BTG-RBAC model allows for a third decision option: BTG. Instead of

“deny”, a “BTG” decision is returned for an access request and allows the user to break the

glass and access the requested resource.

The simplest implementation of a BTG-RBAC model allows for the start of BTG, but

makes little or no allowances for how to terminate BTG. A more complete model addresses

this limitation, and incorporates the concepts of BTG obligations as well as post-event

auditing. BTG-RBAC requires policies to consider predefined values of BTG variables meant

to keep track of the system BTG state, making it difficult for humans to reason about the

policies they are writing. While in our work we consider 3 well-defined system states, a

normal operating state and two emergency states, whereas transition from one state to

another is controlled through evaluation of system-wide obligations. In addition, we test

our policies for inconsistencies and incompleteness, and verify the access control model is

expressed correctly.

Brucker and Petritsch47 demonstrate a BTG model that allows for access control over-

ride on a permission basis, with different levels of emergency specified by policy. In their

work, permissions are attached to emergency levels and need to be specified in emergency

policies that are handled by a separate emergency policy manager and policy decision point.

19

While making significant strides toward flexible and controlled BTG, the system has some

drawbacks. There is little built-in verification that BTG policies will behave as expected, es-

pecially when combined with other facility policies, which can be especially dangerous when

they result in denial of availability at the time of emergency. (Like most policies, emergency

level- and permission-specific policies are prone to errors like inter- and intra-policy inconsis-

tencies, insufficient or excessive permissions, etc.) Prior work does not address the situation

wherein the authorization system may fail to fulfill the returned obligations accompanying

a decision from a BTG request, and it is therefore unclear whether a BTG request would be

allowed or denied at that time.46;47 We explicitly address these unmet obligations and show

how they affect the overall authorization process. We handle them by forcing our system

into an alternate BTG state which we call uncontrolled BTG.

Reviewing audit logs for unusual activity in safety critical systems is a common practice.

Audit trails can be used to detect bugs, policy violation and fraudulent activities resulting in

system crashes, unavailability of resources, network slowdowns etc. Emergencies requiring

access control override are one concrete example of unusual activity in healthcare. Post-

BTG audits are regular practice at medical facilities. A post-hoc audit of the override will

suggest appropriate actions, including disciplinary, e.g., if the emergency was inappropri-

ately declared or inappropriate records were accessed. To our knowledge there has been no

previous published work in computer or information science proposing logging mechanisms

for controlling BTG sessions in the medical domain or on logging and auditing requirements

in relation to overall system performance.

In 2016 a conducted research on examining access logs collected from an Electronic

Patient Record (EPR) system used largely in Hospital in Norway insists on analysis of

access logs to be a very useful tool for learning how to reduce the need for exception-based

access.52 After reviewing the access log from eight hospitals in the Central Norway Health

Region (CNHR), the authors discovered that the use of exceptional mechanisms in these

hospitals is too common mostly due to the lack of a stricter form of access control, and the

huge size of the log makes it impracticable to audit the log for misuse. Alizadeh et al.53 has

presented an approach for user behavior analysis by constructing user behavior profile and

20

comparing it with an expected behavior using logs collected from a medical facility. The

authors apply their approach to study the use of “Break the Glass” (BTG). A final “anamoly”

score assigned to user’s profile determines the extent of difference in user’s behavior from

an expected behavior. The application of their approach is not investigated in real-time log

analysis.

Tasali et al.2 presents a controlled BTG model for interoperable medical systems which

is based on well-studied ABAC20;21 model. In their work BTG is specified within policy

and defined in terms of states in which the system is operating, and allows for overriding

deny decisions automatically (instead of on a one-by-one basis) during a BTG session. This

is achieved by constructing a BTG meta-policy which works with existing access control

policies. In addition, previous work have noted the need for log analysis after access control

override, proposing that logging requirements to be returned as obligations attached to a

policy, but it is not immediately obvious what should happen if those obligations are not

met. In this work, we discuss logging methods consistent with requirements for returning a

system from an emergency state (BTG) to normal state, and show how our approach can be

extended to partially or fully automate the post-BTG auditing process.46;47;49;50;54

Current practices require clinical facilities to have individuals or groups who are tasked

with running access control audits. Access reports are usually run by IT or Security and

reviewed by Privacy or Compliance in conjunction with clinical management who would un-

derstand if the access was appropriate. Auditors will review human- and machine-generated

records for any flagged system activities either immediately after an emergency access event

or during the next business day, and take appropriate actions. Automated log analysis may

streamline some of this process while maintaining system-specific requirements. Log analy-

sis tools can be used to provide a summary of user actions, resources accessed, obligations

with their status (met/unmet), system state, etc. and modifications can be made to allow

automation for a certain set of known activities commonly found in such logs.

21

Chapter 3

Authorization Architecture†

This chapter presents an authorization architecture for real-time “plug-and-play” interop-

erable medical systems. Figure 3.1 shows the main architectural components of the autho-

rization system. All XACML requests for access are sent to the Policy Enforcement Point

(PEP). It forwards the request to the context handler in its native request format, which

may include attributes for subjects, resource, action, environment and/or any other custom

categories. Once the context handler receives the request for access, it generates a request

context, which may include attributes, and forwards the request context to the Policy Deci-

sion Point (PDP). The context handler will also handle queries for any additional attributes

requested by the PDP. When additional attributes are requested, the context handler re-

trieves the requested attributes from the Policy Information Point (PIP). It is responsible

for obtaining the requested attributes and returning the requested attributes to the context

handler. After receiving the requested attributes, the PDP evaluates the policy and returns

the response context to the context handler, where the response context is translated to the

native response format of the PEP. After the response context is translated, it is sent to

the PEP to fulfill the obligation. Obligations are additional constraints to an authorization

decision and if PEP cannot fulfill any given obligations then it disallows access. The re-

sponse context also contains the authorization decision and if the access is permitted, the

†This chapter includes results published as part of “A Flexible Authorization Architecture for Systems
of Interoperable Medical Devices”1

22

PEP permits access to the resource. Otherwise, the PEP denies the access to the resource.

The Policy Access Point (PAP) is responsible for policy creation.

Devices connected to a Medical Application Platform27 like the MDCF are expected to

have preassigned attributes that can easily be transformed into access control attributes in

authorization policies. These attributes can be preassigned by device vendors, app develop-

ers, and/or created by the clinical facility for use in the environment where devices and apps

are deployed. A facility administrator, creating policies for use by the clinical environment,

generates a set of authorization rules in a machine-readable, but human-usable, language,

creating device and clinician/operator attributes (which can be modified at any time, even

as the system is running), which results in decision changes without the necessity to change

the device and user relationships defining any underplaying rule sets between the two. To

make the process as easy as possible for the policymaker, not only are there defaults for

common roles and property sets, but authorization policy generation can be partially or

fully automated for common classes of devices and apps – device instances do not require

dedicated policies, and in many cases devices with analogous functionality or new models

or product lines, even from different manufacturers, can reuse policies written for similar

devices. Moreover, policies implemented in ABAC are only limited by the language used

to express them, and the richness of the available attributes.20 Therefore, there is no need

need to specify individual relationships between each device (or even device class) and each

potential operator without sacrificing granular user permissions. We also use the eXtensible

Access Control Markup Language (XACML)34;35 as our back-end, due to its wide acceptance

and tool support (it is an OASIS standard and one of the most widely used policy language)

and portability of our framework. XACML is open but somewhat verbose and hard to read,

so we use ALFA as a higher-level human-readable language for composing and editing poli-

cies, which are then translated to XACML for maximum flexibility of enforcement engine

implementations.

The MDCF provides a channel abstraction for communication. To control access to

the data in the MDCF communication substrate, we need to restrict access to channels,

making decisions before either the user-app (clinician accessing an app) or app-device (app

23

Figure 3.1: The basic architecture of the new authorization system after integration with
the MDCF.

subscribing/publishing to a device) connection is created. Since the Network Controller is

the component of the MDCF that manages all channel services and connections including

creation and destruction of channels, it is the clear choice to host the authorization engine.

When a clinician starts interacting with the console and launches an app, the App Manger

within the Supervisor generates a user-app access request and forwards it to the Network

Controller for evaluation. Only after the authorization engine within the Network Controller

returns “permit” are the connections created.

There are two different phases of access control evaluation which take place before a clin-

ician receives access to some features of an app or to physiological data from device(s) in the

MDCF. The first phase is evaluation of clinician’s access request for accessing app(s). When

a clinician launches an app, a XACML launch access request is generated and forwarded

to the Network Controller and is evaluated by the authorization engine. Once a “permit”

decision for app launch is returned, the second phase is invoked to obtain authorization to

24

access the device(s) that is/are required by the app. The app’s requirements are identified

internally and automatically by the MDCF’s Matching and Binding algorithm.31 Authoriza-

tion requests for required devices are generated and forwarded to the authorization engine.

Note that the second phase comes into play only if the first phase returns a “permit” decision

– if a clinician does not have access to an app, then there is no need to check if the app is

authorized to subscribe/publish to required device(s) – the request is simply denied.

3.1 Current Workflow

We introduce patient Pamela and her primary nurse Nick in order to better illustrate the

workflow of the authorization system. Pamela has had a medical surgery, and is now on pain

relief medication (opioid delivered through a PCA pump) prescribed to her by her surgeon.

Nick wants to access real-time telemetry from sensors monitoring Pamela to watch her vital

signs for indications of an accidental opioid overdose, and to change the dosage (set the

PCA Pump level). To do so, Nick opens the Clinician Console and launches the PCAShutoff

app55 that displays Pamela’s SpO2 (Blood Oxygen Saturation), EtCO2 (End-Tidal Carbon

Dioxide), and RR (Respiratory Rate).

The MDCF workflow, as shown in Figure 3.5a for setting up a PCA pump interaction

with the PCAShutoff app is:

1. Clinician accesses the Clinician Console

2. Console connects to the App Manager to fetch and display the list of available apps

3. Clinician selects and launches the PCAShutoff app from the list of available apps

4. Console relays the request to the App Manager

5. App Manager launches the app

6. Now-running App requests the list of required devices from Device Manager

25

7. Via the Connection Manager, the App requests the Device Manager to connect to

devices and request physiological data (and displays it to the clinician)

8. Clinician changes the infusion dose (PCA pump level) in PCAShutoff app

9. App forwards the new level to the PCA pump

10. PCA pump changes the dose to the new value

11. App requests updated values from the devices (and displays them to the clinician)

Without authentication or authorization, all these steps can be performed by anyone at

any access level, such as any app, any clinician, etc. For example, anyone can access the

Clinician Console and request a change to the PCA pump level. Anyone on the network can

even connect to the PCA pump and directly request that it increase the medication level.

We detail the workflow with added authentication and authorization in Chapter 3.

3.2 Authorization Policies

Authorization policies in the MDCF are divided into two categories based on the the type and

initiator of an access request: user-app authorization policies and app-device authorization

policies. Clinicians and apps are different entities, but both are considered actors, and so

they each require distinct access permission before accessing any device. While access control

rules for the category user-app authorization require use of several different categories of

attributes, the app-device rules only requires subject and action attributes, and/or some

conditions. For example, the below given rule will allow the PCAShutoff app having role aR

(subject attribute) to set the data interval rate for a multimonitor device. (In this access

control rule, app is a subject and the data interval rate – from a device – is a resource.)

Allow access to resource

with attribute "dataIntervalRateForPCA"

if Subject "app" has role "aR"

and action is "set"

26

The authorization policies created for app access by clinicians have more complex rules.

Each has several categories and conditions. The access rule in the example below will allow

a clinician to access a patient’s SpO2 reading only if 1) the clinician is a nurse who 2) is

assigned to the primary physician of the patient, 3) has active role nR, and 4) is working

during his or her assigned shift.

Allow access to resource

with attribute "SpO2"

if Subject "clinician" has role "nR"

and action is "get"

conditions:

Subject "clinician" is "PrimaryPhysicianOfPatient"

and Subject "clinician" is in their "shift"

3.3 Plug-and-play Support

The authorization architecture can also support “plug-and-play” connectivity of new de-

vices29 by encouraging reuse of policies for other, similar device and app types. Admin-

istrators at a clinical environment with the MDCF deployment can define authorization

polices for common classes of devices and apps, categorized based on common functionalities

and components (capabilities). In order for the authorization system to restrict access to

plug-and-play medical devices only to authorized users, all devices and apps are required to

carry a set of attributes predefined in their Device Modeling Language (DML) schemas and

to be parsed by the MDCF built-in DML parser.56 Once a device or app is connected to

the MDCF, the device registry and component manager in the Network Controller retrieve

the DML (configuration) schema for the device or app and store it. The DML parser also

retrieves access control attributes within the schema and automatically generates authoriza-

tion policies based on the access control attributes. If automatic policy generation fails due

to a new component or feature of the device or app not being recognized by the system, or

errors resulting from missing or improper access control attributes, the administrator will

27

Figure 3.2: App as an actor and resource.

receive a notification regarding the failure of the policy generation. They will then be asked

to generate a custom policy for the device or app. More details on this can be found in

Section 3.4, but an extensive discussion of the plug-and-play in the MDCF is beyond the

scope of this paper.

3.4 Attribute Inheritance

We treat clinicians and apps as distinct and independent actors, which makes our design

challenging as well as unique. As a result, clinicians and apps may have differing permissions

for accessing devices. Our solution to this challenge, attribute inheritance, not only improves

permission granularity without exposing the policy writer to additional complexity, but also

allows authorized plug-and-play support with only a few simple additional policies.

User role inheritance, has been in use for decades, first introduced in the RBAC frame-

work.33 Relationship among roles in a given organization are defined by a role hierarchy.

In a typical healthcare facility, if we pick a specialist surgeon who is senior in position to a

resident surgeon, then the specialist inherits any roles held by the resident. However, this

type of role inheritance is not only impractical, but actually impossible in a system like

the MDCF, where apps can also be actors (subjects) at certain times. On other hand, the

relationships among clinicians, apps, and devices can be captured by using their attributes

– yet another reason why we need Attribute-Based Access Control (ABAC).

28

namespace edu.ksu.santoslab.mdcf {

import edu.ksu.santoslab.mdcf.mAttributes.*

rule allowGet {

target clause action.actionId == "GET"

permit

}

rule allowSet {

target clause action.actionId == "SET"

permit

condition exchange.exchangeTime >= user.shiftStart &&

exchange.exchangeTime <= user.shiftEnd

}

policyset polMultiMonitorSample {

target clause resource.resourceId == "*.pulserate.alerts.seperation_interval"

apply denyUnlessPermit

polMultiMonitorSampleSET

polMultiMonitorSampleGET

}

policy polMultiMonitorSampleSET {

target clause app.role == "aR1" or app.role == "aR2"

clause user.role == "Critical Care Nurse"

apply denyOverrides

allowSet

}

policy polMultiMonitorSampleGET {

target clause app.role == "aR2" or app.role == "aR3" or app.role == "aR4"

clause user.role == "Cardiothoracic Surgeon" or user.role == "Agency Nurse"

apply denyOverrides

allowGet

}

}

Figure 3.3: An example written in ALFA – a subset of the policy used in evaluating our
implementation

To explain why user role inheritance (attribute inheritance) is needed, it is worth first

understanding the main entities of the authorization system. A device in the MDCF is

always considered a resource (object).∗ On the other hand, a clinician is always an actor

(subject). An app can be an actor or a resource depending on the access scenario as shown

in Figure 3.2. It is a resource when a clinician tries to access it, but that same app can later

assume the role of an actor (subject) when it tries to access data from device(s), e.g. patient

∗This may change in future work, as devices and apps become increasingly similar.

29

<xacml3:Target>

<xacml3:AnyOf>

<xacml3:AllOf>

<xacml3:Match MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">

<xacml3:AttributeValue

DataType="http://www.w3.org/2001/XMLSchema#string">aR1</xacml3:AttributeValue>

<xacml3:AttributeDesignator

AttributeId="edu.ksu.cis.santos.mdcf.app.role-attrID"

DataType="http://www.w3.org/2001/XMLSchema#string"

Category="urn:oasis:names:tc:xacml:1.0:subject-category:access-subject"

MustBePresent="false">

</xacml3:Match>

</xacml3:AllOf>

</xacml3:AnyOf>

</xacml3:Target>

Figure 3.4: The XML generated from one line code (target clause app.role == “aR1”)
in Figure 3.3.

physiological parameters. Therefore, an app inheriting a user role does not suggest the app

will replace its own role with it. Instead, the user role is added as an extra attribute in the

access request.

The app always plays the role of an interface between a user and a device, so it is illogical

for an app to hold more than one role – there is no way of changing the active role for an

app during a single session, unlike a clinician. Instead, based on the set of components

and features offered by an app, it will be assigned to a specific role. Thus, all apps are

categorized into common classes of features. In contrast, clinicians may be assigned more

than one role, but can only have one active role at a time – we refer to this as the clinician’s

active role. Clinicians can switch between roles whenever needed. The clinician is always

expected to have access to more resources than an app because an app is always restricted

to certain attributes (e.g. one pre-assigned role based on the app’s type, category, or feature

set). Since neither an app nor a clinician can replace each others’ roles, we will not benefit

from permissions from user’s active role unless the app inherits the clinician’s role as an

extra attribute when needed (in the second phase of our two-phase access control evaluation

design). Note when we say the permissions set for a clinician’s active role, we mean the

resources to which the clinicians is granted access when the clinician’s role is added to a

XACML request as a required attribute in the second authorization step. Splitting the

30

access control decision into two phases in this manner is a way to limit having to invoke

attribute inheritance, using it only when it is needed, and allowing us to define a more

fine-grained access control model without writing more complex policies. This achieves

separation of duty.

This method of user role inheritance, or in general attribute inheritance, not only provides

least privilege to both user and app but also can drastically cut the time required to make

newly installed devices available for use (e.g. during an emergency). Note also that this does

not require bypassing the authorization system – devices are available for authorized use.

To examine this concept in detail, consider the example wherein a clinician discovers the

need for some physiological data to be collected from a patient, but none of the already-

connected medical devices is able to provide the data due to lack of features or incompatibility

with the app. The clinician connects a new plug-and-play medical device to the system that

can collect the data from the patient and is compatible with the app. Since this is a new

device, there is a high probability that it will not be available for immediate use due to lack

of authorization policies. There are two possible ways to handle access permissions for a

newly installed device in the MDCF, and we analyze both options below:

1. Use generic predefined authorization policies: The administrator needs to generate a

set of generic policies based on common features sets offered by each device. Similarly,

the administrator ensures that apps which are fully or partially compatible with these

devices are authorized to access these common features. However, we believe that,

for safety, generic predefined authorization policies should only be limited non-safety-

critical features of devices, so apps would not be authorized to access all features, but

rather a conservative, safe subset. Generic policies which allow apps full device access

may, in certain specific cases, violate the goals of the authorization system.

2. Generate new custom authorization policies: The administrator introduces a new set of

attributes, which will require generation of new authorization policies for each feature

each device offers.

In option 1, a newly installed device becomes automatically available for use, but it is

31

expected that any safety-critical features of the device, such as setting infusion rate for a

PCA pump, will not be available until explicitly authorized by the system administrator

since these features can only be used by explicitly authorized apps. This prevents their use

in an emergency. Moreover, creating policies that explicitly authorize apps to use safety-

critical features of a device defeats the purpose of generic predefined policies. Alternatively,

in option 2, all features of the newly-installed device can be made available for use by an

app if an administrator explicitly pre-authorizes the app to access these features by gener-

ating custom authorization policies. However, this requires time and deep understanding

of healthcare facility-specific access control rules for these device-specific (often unique) fea-

tures. Thus, neither option 1 nor option 2 is very effective in an emergency. Regardless

of which option is chosen, the safety-critical features (capabilities) of a device – the ones

most needed in an emergency – will not be available for immediate use after first-time device

connection. Attribute inheritance provides the solution to the above problem in two steps,

one addressing the clinician and the other the app. They are addressed in turn below.

If a clinician meets the access requirements for the use of some safety-critical features

offered by a newly-connected medical device, or any devices that may be connected to the

system at a later time (e.g. during an emergency), then authorization policies for all features

(including critical features) can be governed by simple, generic policies written in advance,

and the clinician will gain authorization for these features dynamically, as needed. For

clinicians, administrators write policies based on a per-facility understanding of the clinician’s

role (responsibilities), and authorize clinician access to known devices. While this seems

identical to option 2, apps introduce a layer of complexity which is still unresolved, and are

less-well understood by administrators.

Clinician authorization alone does not solve the problem, since an app intermediary is

still needed to access the data from a device, and the app may lack permission to interact

with the device. Detailed per-app policies are more complex to write than per-clinician

role policies, since app features, capabilities, and data access requirements are not as well

understood, and may not even be known in advance. Nonetheless, if a clinician has been

previously authorized to access safety-critical features of a device that just connected to the

32

system (through per-clinician role policies), but the clinician is trying to access these features

using an app that lacks access permissions, then if apply attribute inheritance again so the

app inherits the user role as an extra attribute and therefore receives authorization to access

the data from the device, both the device and app become available for immediate use. In

other words, attribute inheritance allows authorized interaction in a new way: even though

neither the clinician nor the app alone are authorized, the clinician-app pair is authorized.

Policies generated for attribute inheritance purposes do not fit into either option 1 nor 2

above, since we are neither writing custom policies at the time of device connection, nor

we are generating generic policies that will allow any single actor full access to the new

device. Instead, our approach is a hybrid third option and allows for full authorized access

to the resource while maintaining the principles of least privilege and separation of duty. The

sample access control rule below shows how user and app roles, with attribute inheritance,

are combined to allow authorized access to a device with safety-critical features.

Allow access to resource

with attribute "medicationInfusionRate"

if Subject "app" has role "aR"

and action is "set"

conditions:

Subject "clinician" has role "nR"

The above policy shows how to merge clinician and app roles in order to allow the

clinician-app pair to access the given resource, and also provide separation of duty. The rule

tells us that an app with role (subject attribute) aR is authorized to set the infusion rate

for a device (infusion pump) connected to the patient only if a clinician with role (subject

attribute) nR is issuing the command. Authorization policies generated for an app that

is compatible with (capable of connecting to) a given medical device should include app

(subject) attributes, (in this example, aR).

A far more extensive authorization example, written in ALFA, is given in Figure 3.3. It

showcases policy-level details on usage of user and app roles (for the purpose of attribute

inheritance). In the policy called “polMultiMonitorSampleSET”, the user role “critical care

33

nurse” needs to be inherited by any app having either role “AppSpO2” or “AppPulse”, in

addition to other required attributes, for the app to set the separation interval for pulse-rate

alerts of a multimonitor device.

3.5 Break the Glass (BTG)

Attribute inheritance should not be considered a substitute for Break the Glass (BTG) fea-

tures,47;51 but it does help achieve safe BTG. While the authorization system in a healthcare

facility ensures the system is only accessed by authorized users, it may also prevent a clinician

from delivering potentially life-saving care to patients during an emergency due to lack of

permissions. In this case, saving the patient outweighs any risks associated from overriding

access controls, which can be partially deactivated by using BTG features of the system.

BTG allows overriding access controls and provides full (or sufficient) access to the system

during an emergency, but attribute inheritance is a step in eliminating the need for a “global”

override. Instead, it can be used to allow controlled, authorized access to medical resources

(e.g. devices) during emergencies. This is achieved using a hybrid of dynamically and

automatically generated app-device interaction polices (at the time of device access) and

pre-defined clinician-app interaction polices.

We understand the importance and challenges of controlled BTG in the medical do-

main, but the scope of this work is deliberately limited to attribute inheritance and lacks

a full treatment of BTG. Detailing the design of a BTG feature within our authorization

architecture is further discussed in Chapter 4.

3.6 Modified Workflow

Here we show the new workflow, with authentication and authorization. Steps which are

modified or added to the original workflow from Section 3.1 are italicized. Figures 3.5b

and 3.5a provides a visual aid.

1. Clinician accesses the Clinician Console

34

(a) Original work-
flow.

(b) Modified workflow. The boxes with green border represent the
modified steps.

Figure 3.5: The workflows for a clinician accessing patient physiological data in the MDCF.

35

2. Console asks for username and password

3. Clinician enters username and password

4. Console forwards the request to Shiro (PEP)

5. Shiro verifies the entered credentials against the stored value and returns permit or

denyto the Console

6. If permit is returned, the clinician is successfully authenticated and is logged in

7. Console connects to the App Manager to fetch and display the list of available apps

8. Clinician selects and launches the PCAShutoff app from the list of available apps

9. Console receives the app launch request and forwards it to Shiro, along with the users’

details

10. Shiro takes the request, adds context (user’s active role, type of request, timestamp

etc.), and forwards it to Balana for an authorization check

11. Balana checks the request against stored XACML policies and returns “permit”, “deny”,

or “not applicable”

12. Shiro receives the authorization result from Balana

13. If Shiro receives “deny”, it forwards it to the Console, and the clinician is denied app

launch permission, ending the workflow (otherwise the workflow continues)

14. Console relays the request to the App Manager

15. App Manager launches the app

16. Now-running App requests the list of required devices from Device Manager

17. The access request is forwarded to Shiro

36

18. Shiro forwards the request to Balana to confirm if the app has been authorized to connect

to devices

19. Balana checks the request against stored XACML policies

20. If “permit” is returned, the app is allowed to connect to devices

21. If “deny” is returned, the request is reevaluated with the clinician’s active role ap-

pended †

22. If “deny” is returned from request reevaluation, the final decision (deny) is returned to

the Supervisor and the clinician is denied access (the app can start, but cannot perform

useful work), ending the workflow (otherwise the app is allowed to connect to devices

and the workflow continues) †

23. The final decision (permit) with obligation(s) is returned to the Supervisor, and the

clinician is allowed to launch the app

If the clinician chooses to view physiological data for a patient or tries to make changes

to either device or app parameters, the requested access request must be evaluated. For

example, after the clinician has successful been authenticated and authorized to launch the

application, the clinician may try to change the infusion rate for the PCA pump connected

to a patient. The steps to authorize the clinician to change the infusion rate are:

1. Clinician changes the infusion dose (PCA pump level) in PCAShutoff app

2. The app requests for access to change the level

3. An access request is generated

4. Shiro adds context to the request and forwards it to Balana

5. Balana checks if the clinician is allowed to change the level

6. If “deny”, the app discards the change and displays a denied message to the clinician

†This step is not yet implemented

37

7. If “permit”, the dose change request is sent to the PCA pump

8. PCA pump changes the dose to the new value

9. App requests updated values from the devices (and displays them to the clinician)

Each action is checked for proper authorization. Authentication prevents malicious ac-

cess to the Clinician Console, and authorization prevents users from doing things they are

not authorized to do. For example, another nurse can be given permission to launch the

PCAShutoff app to monitor the PCA pump and SpO2 level, but not to change the PCA

pump level. An unauthenticated intruder in the network can send request to the PCA pump

to change the level, but the message will be rejected as they are not authenticated. Authen-

ticated malicious actors can likewise request the PCA pump to change the level, but the

message will be rejected as unauthorized.

3.7 Implementation Details

We chose Apache Shiro57 as our Policy Enforcement Point (PEP) framework and WSO2 Bal-

ana58 for the Policy Decision Point (PDP). Balana was a natural choice due to its maturity,

rich feature set and flexibility for XACML. For the Policy Information Point (PIP), which

stores details like usernames, passwords, groups, user-group relations etc., our requirements

were that it be open source and compatible with Balana. Cost was also a significant con-

sideration. We considered several options for PEP, such as Spring Security,59 OACC60 and

Shiro. We looked into Spring Security, but we are not currently using the Spring framework.

OACC offers native Java compatibility, but it is relatively new (compared with Shiro) and

does not come with pluggable authentication protocols, such as for LDAP. For PIP, as per

our requirements, we decided on a simple SQLite database to store the PIP information. In

a future version, the database will be replaced by a enterprise class user-management sys-

tems like LDAP or Kerberos. This will be a relatively easy change, since Shiro provides out

of the box support for these kind of systems via configuration file parameter (for example,

securityManager.realms). Also, we found it easier, at the proof-of-concept state, to use

38

Shiro only for authentication, and delegate all authorization tasks to Balana. In future we

may rethink our strategy and try to implement authentication using OACC.

The MDCF project already has a graphical Clinician Console for local or network access.

Chromium-based and implemented in Dart, the code-base had pre-existing hooks for autho-

rization calls – this is where we integrate our new code. As the PEP, Shiro receives all such

requests from the Clinician Console. Shiro handles the authentication requests itself and

acts as a mediator for authorization between the front-end and Balana. To keep the logic

simple, we implemented two custom classes, MDCFAuthenticator and BalanaAuthorizer,

by extending the AuthorizingRealm class of Shiro. MDCFAuthenticator is only responsible

for authentication, and BalanaAuthorizer is only responsible for authorization.

MDCFAuthenticator performs password-based authentication. If successful, an active

role is assigned to the user. For simplicity, we currently use the first role found in the list

of the user’s available roles rather than ask the user. In future work, we will assign a role

based on a saved user preference. After initial role assignment, the user can always change

the active role using the Clinician Console.

When an action requires authorization, e.g. launching an app, the MDCF front-end

sends the user details and action attributes (e.g. which feature of the medical application

the user is trying to access) to the PDP, which performs the authorization check against

available XACML policies and returns a response. Authorization is implemented as the

BalanaAuthorizer Java class which

• Is initialized with a set of XACML policies,

• Takes as input the attributes of the app or device, and the details of the user requesting

access, and

• Returns true if the user has access via any of the user’s available roles.

39

3.8 Evaluation

In this section we describe the testing methodology and results for the authorization system

as integrated into the MDCF. The tests were designed to exceed the normal expected op-

erational capacity of the system (also called stress-testing) to confirm safe usage limits and

given specifications are met. Our goal was to maintain the same level of system performance

(of the unmodified implementation of the MDCF) for the MDCF with authorization. (Note

that phase two of the two-phase authorization design, including attribute inheritance, is not

yet implemented and was thus excluded from the evaluation.) We compared the unmodi-

fied and modified (authorization-enabled) implementations of the MDCF with 64 medical

devices, and observed the system for usage limits, particularly CPU, memory, network, and

disk I/O. Since the intended use of the MDCF is for a single patient (as specified in the

ICE standard,4) our tests involved far more than the number of devices expected to be used

simultaneously.

We used simulated (virtual) devices for our testing of the system to get around the lack

of readily available medical hardware and the incompatibility of current physical medical

devices with the MDCF,16 and due to the exceptional computing power afforded by our test

harness when compared to physical devices. We used three different types of virtual devices:

capnography (CO2), pulse oximetry (SpO2) and patient-controlled analgesia (PCA), each

with multiple physiological output channels and control (input) channels. The clinician

workflow also included use of a PCAShuttoff medical workflow script (app), which requires

simultaneous use of three devices, one of each type. During the test, each running instance of

the app was subscribed to a different set of virtual devices to simulate simultaneous treatment

of multiple patients, each with an associated set of devices and a controlling PCAShuttoff

app.

For consistency of testing environments between the pre-authorization and authorization-

enabled versions of the MDCF, testing was partially automated. We ran the MDCF server

using a Linux server (dual octa-core 64-bit Intel Xeon E5520 CPUs at 2.27 GHz, with 8

MB/core cache and 64 GB memory). The 64 devices were ran from two different machines

40

0

20

40

60

80

100

120

140

160

180

200

0 1 2 3 4 5 6 7 8 9

KB
/s
ec

Experimental	time	(minutes)

Unmodified	MDCF MDCF	with	authorization

(a) Network (total-read) usage

0

2

4

6

8

10

0 1 2 3 4 5 6 7 8 9

IO
/s
ec

Experimental	time	(minutes)

Unmodified	MDCF MDCF	with	authorization

(b) Disk I/O with error bars omitted. The variability between baseline and modified
versions is not statistically significant.

Figure 3.6: Disk and network I/O of the baseline versus authorization-enabled MDCF with-
out Shiro caching

41

0

2

4

6

8

10

12

14

16

18

20

0 1 2 3 4 5 6 7 8 9

CP
U
	u
til
iz
at
io
n	
(p
er
ce
nt
)

Experimental	time	(minutes)

Unmodified	MDCF MDCF	with	authorization

(a) CPU usage

0

2

4

6

8

10

12

0 1 2 3 4 5 6 7 8 9

G
B

Experimental	time	(minutes)

Unmodified	MDCF MDCF	with	authorization

(b) Memory usage. Error bars are too small to be visible in some places.

Figure 3.7: CPU and memory usage of the baseline versus authorization-enabled MDCF
without Shiro caching

with an identical configuration to the MDCF server. This allows stress-testing of the server

without local interference from devices, i.e. devices and server computing resources are

distinct and do not interfere with each other except through communication. The 64 devices

started connecting to the server after 20 seconds from the time the server began running. The

42

0

1

2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8 9

CP
U
	u
til
iz
at
io
n	
(p
er
ce
nt
)

Experimental	time	(minutes)

Unmodified	MDCF MDCF	with	authorization

(a) CPU usage

0

1

2

3

4

5

6

0 1 2 3 4 5 6 7 8 9

G
B

Experimental	time	(minutes)

Unmodified	MDCF MDCF	with	authorization

(b) Memory usage. Error bars are too small to be visible in some places.

Figure 3.8: CPU and memory usage of the baseline versus authorization-enabled MDCF
with Shiro caching

initial peaks in the performance graphs are the result of 64 devices connecting to the sever

simultaneously. Each device begins sending physiological data after successfully connecting

and authenticating to the MDCF server. Once all devices were connected successfully, the

user launches an app after successfully authenticating and verifying authorization. User

43

interaction with the MDCF clinician console was timed, with the launch command issued

at the 60th second of the experiment. The test was repeated 5 times for each version of the

MDCF.

Figure 3.6 shows the difference(s) in network and I/O usage between the two implementa-

tions. The authorization-enabled MDCF (modified implementation) performed as expected,

within normal parameters, even under stress testing. Furthermore, authorization imposed

no statistically significant I/O overhead, and minimal to no network overhead (one standard

deviation, or 68% confidence). The initial peak (between 0 and 1 minutes) results from the

sudden connection of all 64 devices, as intended for stress testing. The average network usage

for the unmodified and modified MDCF was 78.97 +− 28.91 KB/s and 116.52 +− 30.89 KB/s,

respectively. Similarly, the average I/O usage for the modified and unmodified MDCF was

3.23 +− 4.15 IO/sec and 3.41 +− 1.00 IO/sec, respectively.

Figure 3.7 shows the CPU and memory utilization for the modified and unmodified

versions of the MDCF, showing statistically significant overhead: 95% confidence interval

for CPU and > 99% for memory. CPU utilization for the unmodified and modified MDCF

averaged 0.77 +− 0.05 % and 6.63 +− 0.04 %, respectively. Note that the CPU visualization in

Figure 3.7a is somewhat misleading, as it accounts for only a 5.86% (on average) overhead

from the inclusion of authorization. Memory usage shows the unmodified MDCF using

on average 3.62 +− 0.02 GB of the 64 GB available memory, whereas the modified system

used on average 9.02 +− 0.12 GB, an increase of 5.4 GB: almost 250%. The reason for this

(unexpected) memory overhead was the undocumented excessive use of JDBC connections

to the authorization server: each authorization request created a new, persistent connection.

Since the authorization engine needs to access the database for each access request, we end

up with far too many JDBC connections, which persist throughout the experimental run,

accounting for not only the memory overhead but also its steady increase over time. In fact,

the Clinician Console requests data update from the server at the rate of 16 queries per sec,

resulting in about 1000 new JDBC connection objects per minute, which also explains the

unexpected CPU overhead.

Figure 3.8 shows a significant reduction of both CPU and memory overhead due to

44

several simple optimizations: using the built-in Shiro caching API,61 and limiting JDBC to

one persistent connection, brought CPU usage to within statistical indistinguishability from

the unmodified MDCF (< one standard deviation difference), as shown in Figure 3.8a, and

memory overhead to 20%, also removing the memory growth over the time of the experiment,

as shown in Figure 3.8b. CPU utilization and memory usage for the cache-enabled modified

MDCF averaged 1.32+−0.05 % and 4.55+−0.35 GB of the 64 GB available memory, respectively.

Our initial experiment resulted in overhead of 5.8% CPU utilization and 5.4 GB memory

(on average) from the inclusion of authorization, whereas the optimized modified MDCF

resulted in an overhead of 0.55% CPU utilization and 0.93 GB memory, on average.

45

Chapter 4

Bend-the-Glass: Controlled

Emergency Access‡

Access control override is normally handled on a field-by-field basis in electronic medical

record (EMR) systems, with a BTG request granting an exceptional one-time access to a

single record. With minimal customization, our controlled BTG solution can be implemented

as an extension to existing access control models which already allow for override sessions.

The authorization architecture of Tasali, Chowdhury, and Vasserman1 is used as a starting

point. Since it uses dynamic systems of medical devices attached to a single patient, our BTG

granularity is also per-patient, i.e. if an emergency is declared, access to devices connected to

the patient suffering the emergency, as well as that single patient’s electronic health records,

are made available for the duration of the BTG session. Therefore, multiple access requests

to a single patient’s EMR (even to different fields), or access to that patient’s devices, are

all allowed on an emergency basis as part of the same BTG session. This continues until

the BTG session terminates via explicit action of a clinician, who marks the session as

completed. At that point, a system exiting a controlled BTG state can be automatically (or

via semi-automated audit) rolled back to a known-secure state as shown in Figure 4.2.

Using a modified policy enforcement point design,1 we can allow as-needed access control

‡This chapter includes results published as part of “Controlled BTG: Toward Flexible Emergency Over-
ride in Interoperable Medical Systems”2

46

Figure 4.1: BTG request workflow. Parentheses indicate the state of the system through
condition variables, and steps 3, 4, 7, and 10 denote returned decisions.

override. For any “deny” decision returned by the PDP, the clinician may choose to request

access control override, resulting in a second access request being generated. That request is

forwarded to the context handler and PDP for a second decision, now in a BTG context, as

shown in Figure 4.1. In contrast to the first request, the PDP evaluates this request against

a BTG policy. Other than the change of policy being used for the decision, the PDP behaves

in a similar manner to the previous request. System status and other session attributes are

used to determine what policies are used for evaluation by PDP. A returned decision by

the PDP might include obligations that PEP will enforce prior to allowing access. Due to

the importance of resource availability in medical emergencies, we must explicitly consider

unmet obligations in our model. It is necessary to allow for access even if PEP fails to enforce

the obligations. We allow for access to be successfully overridden even if the obligations are

not met. See Section 5.3.1 for further details on how the PEP meets the requirement for an

OASIS-compliant PEP.

47

4.1 Operating States

The BTG state machine for our system is diagrammed in Figure 4.2. Emergencies are time-

sensitive and dynamic in nature, and the access control framework must take into account

the changing conditions of the system as the emergency runs its course. for the purposes of

implementation simplicity and policy flexibility, we treat BTG as a resource or a system state

variable. Therefore, the access control framework does not need to periodically reevaluate

whether or not BTG is in effect (which would change which policies apply for the purpose of

making access control decisions). Instead, accessing the BTG resource triggers a permission

check, allowing the system to make the transition at that time, if needed. Detecting other

events, such as patient disconnection, is left to future work, and for the moment we assume

that BTG sessions can end only when explicitly specified by a clinician. Whether the system

can then be rolled back to “normal” state automatically or must be flagged for audit depends

on whether it is in the “controlled” or “uncontrolled” state when BTG ends.

4.1.1 Normal State

Controlled
BTG

Normal
Uncontrolled

BTG

sta
rt

BT
G

unmet

obligation

start BTG
with unmet obligation

en
d

BT
G

end BTG (via audit)permission check

perm
ission check

permission check

start

Figure 4.2: BTG state machine showing the normal state
and two emergency (BTG) states, along with transition
criteria.

This is the initial state for autho-

rization system and remains the

current operating state as long as

for every user access request the

Policy Decision Point (PDP) re-

turns a decision and the user has

not initiated an emergency ses-

sion (BTG). Common decisions

after evaluation of an access re-

quest include “permit”, “deny”,

“not applicable”, and “indetermi-

nate”. “Not applicable” means

the PDP could not locate a policy

48

that matches the request, and an “indeterminate” decision means an error was encountered

during policy evaluation. Regardless of the decision, the system performs permission check

for all subsequent access requests and remains in normal state until a state change is forced.

A “permit” decision can have obligations attached – the action is allowed on the condition

that the obligations are fulfilled. It is important to note the differences between the two

types of obligations returned by the PEP. We refer to the obligations that are returned

after evaluation of a non-BTG request as non-BTG obligations, and to obligations that are

required to be met in order to allow BTG as BTG obligations.

4.1.2 Controlled BTG State

The authorization system changes its state from normal to controlled BTG whenever the user

access request is denied and the user overrides the access control by initiating a BTG session.

In order for the system to change its state to controlled BTG, any returned BTG obligations

after requesting BTG session need to be met. Obligations are facility- and policy-specific,

but we expect them to include e.g. a requirement for more detailed logging prior to allowing a

controlled BTG session. (This is further discussed in Section 5.1.) The BTG obligations are

meant to help track the clinicians’ actions for audit and system rollback purposes, and must

include sufficient detail for such a rollback to be performed. If any required BTG obligations

are not met, the system nonetheless allows the request but moves into uncontrolled BTG

state. A system in a controlled BTG state returns to a secure (normal) state once the

clinician explicitly signals an end of emergency. Independent of BTG state, the system

evaluates every access request against existing (non-BTG) policies as it would if the system

were operating in normal mode. Therefore, the only further change to the evaluation process

is allowing an override in the first place, and even that override is subject to BTG policy

evaluation.

49

4.1.3 Uncontrolled BTG State

As shown in the system state diagram in Figure 4.2, the authorization system transitions to

uncontrolled BTG if 1) it is already in a controlled BTG state, but no longer able to fulfill

some or all obligations that were returned with the access control decision that allowed BTG

to start, or 2) it is in a normal state and the user overrides a “deny” decision, declaring

BTG, and yet the system cannot meet some or all BTG obligations returned with the BTG

allow decision. However, a system in uncontrolled BTG cannot return to controlled BTG –

it can only return to normal state via a manual or semi-automated audit.

During uncontrolled BTG, the system performs permission checks similar to controlled

BTG, such that the system evaluates each user access request against authorization policies

and for any decision other than “permit”, access control is overridden and the decision is

logged. In addition, any returned obligation is fulfilled on a best-effort basis. Although the

system is in uncontrolled state, it is still governed by the authorization rules – the policies

are never ignored, only overridden.

Unlike the controlled BTG state, systems which end up in an uncontrolled BTG state

may need to be manually audited before they can be returned to a normal state. Currently,

this would be performed by an audit team either in real time or during the next business

day. Only uncontrolled BTG sessions need to be handled manually, significantly reducing the

workload and turnaround time of these audit teams. Furthermore, the level of automated

logging provided by our system allows for structured log analysis, making even the manual

process more straightforward and less error-prone, especially since automated logging reduces

the reliance of human memory of these BTG incidents.

4.1.4 “BTG-restricted” Permissions

To ensure that the system retains its overall integrity and can be rolled back to a known secure

state, some “deny” decisions cannot be overridden, including changes to the authorization

policies themselves and certain other critical system resources (which may vary between

facilities and can be explicitly specified in the BTG policy). In an example authorization

50

policy in Figure 4.4, we protect resources in this “BTG-restricted” set from any access

during a BTG session, even access which may be permitted when the system is in normal

operating mode. We do not expect that security-critical resources such as the access control

database would need to be accessed during BTG, especially since all other permissions can

be overridden, removing the need to manipulate user roles and/or permissions.

P

N

PN

PR
R

Figure 4.3: Permissions grouped by access.
Each P, N and R represents group of permis-
sions assigned to Physician, N urse, and BTG
Restricted, respectively.

This design is implemented purely via

policy and does not require modification

to the access control framework. A facil-

ity can write an alternate, more permissive

BTG policy so that, e.g. access to the au-

thorization policy database is allowed dur-

ing BTG. This “permit” decision, however,

would only apply to authorized users and

cannot be overridden, i.e. no one can “Break

the Glass” in order to alter access control

policies.

4.2 BTG Policy Evalua-

tion

An effective BTG policy is dependent on proper identification of resources at the time of

policy evaluation. Thus, a method is needed to identify and categorize resources into their

relevant access groups (sets). Additional attributes including resource group information

are retrieved from a policy information point (PIP). We use an easy-to-implement method

for resource identification that can be further extended for use with any domain. However,

this method is dependent on a well-identified list of BTG-restricted resources, i.e. a limited

number of resources marked as not for use during a BTG session – these resources can only

be accessed in normal situations and policy decisions for those rules are not subject to BTG

51

override. The method particularly helps identifying if a resource is available for BTG access

by taking requested resource and list of BTG-restricted resources as inputs and returning a

Boolean value. A false value means the resource is available for BTG access (“BTG-allow”

group) while a true value means resources are not available during BTG (“BTG-restricted”

group). Resource assignment into groups is not fixed and may change like other dynamic

attributes. We take this into account and the system will query for group information only

at policy evaluation time, returning the correct group for a resource even if the group is

subject to change.

Resource System State Decision

1 P any permit

2 PN any permit

3 N normal deny

4 N BTG permit

5 PR normal permit

6 PR BTG deny

7 PNR normal permit

8 PNR BTG deny

9 R any deny

10 /∈ (P ∪N ∪R) normal deny

11 /∈ (P ∪N ∪R) BTG allow

Table 4.1: Sample access control table for a physi-
cian (the “Subject” column is omitted, as it is al-
ways “physician”)

Figure 4.3 shows a diagram of how

resources (grouped by access) work

within our architecture. The outer cir-

cle represents the set of all available re-

sources. The circles marked with let-

ters P (physician) and N (nurse) rep-

resent the set of resources that can be

accessed by physicians and nurses, re-

spectively. The circle R represents the

set of resources that are restricted dur-

ing BTG, but can be accessed by autho-

rized entities outside of BTG events. A

nurse or physician is only allowed to ac-

cess a BTG-restricted resource if it is

included in the set(s) of their accessi-

ble resources (PR and PNR) and the

authorization system is in normal oper-

ating mode. Access to resources in R,

PR, and PNR is unconditionally denied during BTG (see Section 4.1.4). Note that we expect

real-world policy sets PR and PNR to be null (empty), as they would contain e.g. the ac-

cess control database itself, which should not ever require access during BTG since all other

52

permissions can be overridden. (As Nurse and Doctor are chosen arbitrarily, the example is

representative or any two roles in an organization.)

The resources within the outer circle are assigned to sets accessible by other clinicians or

users not shown here. There may exist resources not assigned to any set (e.g. specification

error causing resources to be “orphaned”). These are not included in the outer circle. Access

control decisions for those resources cannot be made conclusively in either normal or BTG

operating modes (see “indeterminate” in Section 4.1.1). One may argue that “indeterminate”

decisions should be overridden to “permit” in a BTG context. This is a design decision, and

is explored further in Section 4.6.

Table 4.1 shows access control requests and decisions for a physician accessing resources

categorized as in Figure 4.3. For ease of illustration, we assume that all obligations are

fulfilled by the PEP, as including state transitions would render the table unreadable.

• In row 1, the physician is allowed access to P regardless of the current state of the

system since P is the set of resources explicitly allowed for physicians.

• In row 2, the physician is allowed to access PN regardless of the current state of the

authorization engine since PN is a subset of P and so explicitly allowed to physicians.

• In row 3, the physician requesting access to N is denied unless the authorization system

is in either controlled or uncontrolled BTG state (row 4). Resources in N are allowed

access to only by nurses. Thus, a physician may need to break the glass to successfully

gain access.

• In row 5, the physician request for PR is permitted only if the authorization system is

in normal state.

• In row 6, access to PR is disallowed during BTG since PR is part of the BTG-restricted

set.

• In row 7, as in row 5, the request is permitted only since the authorization system is

in normal state.

53

• In row 8, access to subsets of R is denied during BTG.

• In row 9, access to R (not PR or PNR) is denied regardless of the current state of

the system because those resources are not within the allowable physician set during

normal operation, and are restricted during BTG.

• In row 10, the physician is requesting access to some resource not diagrammed in

Figure 4.3, meaning permission to access them has not been explicitly granted, and

therefore the request is denied in normal mode.

• Finally, the access request in row 10 also refers to resources not explicitly permitted,

but during BTG it is allowed (row 11) since those resources are not within R.

The above method of identifying BTG-restricted resources (R) ensures that access to all

resources outside (R) is granted via a normal or BTG request. Treating R as a blacklist

simplifies writing least-privilege BTG policies.

4.3 BTG Policy Specification

Figure 4.4 shows an example policy, written in ALFA,40 that contains rules for normal,

controlled, and uncontrolled BTG access. The policy is meant to be very generic, and can

be easily customized to any BTG access control scenario with more fine-grained rules and

obligations. Furthermore, the BTG rules and policies are meant to be easily integrated into

existing authorization policies.

The example policy is expressed as a policyset containing two policies. The first

(polSetFlowRate) specifies the target clauses for resource flowRate, possible actions (read

or write), and contains two rules that come with their own target clauses and conditions.

If a user access request matches the policy polSetFlowRate target clauses, then the autho-

rization engine checks enclosed rules within the policy. The allowSettingFlowRate rule

allows for normal access if 1) the access request matches its target clause (requesting subject

to be a nurse or physician), 2) the access request meets the conditions specified within the

54

namespace org.facility {

import org.facility.BTG.Attributes.*

import Attributes.*

obligation log = "org.facility.normalLog"

obligation btgAudit = "org.facility.btg"

rule allowEmergencyAccess {

target clause EMG.BTG == true

condition not (

integerOneAndOnly(resource.group)

== "BTG-restricted"

)

permit

on permit {

obligation btgAudit {

// example logging obligations

log.message = "BTG access granted"

log.accessTimestamp = currentTime

log.requestingIP =

subjectLocalIpAddress

log.accessedResource =

resource.resourceId

log.resourceGroup = resource.group

log.accessingSubject = user.userId

log.systemState = authSystem.state

}

}

}

rule allowBtg {

condition EMG.BTG == false

permit

on permit {

obligation btgAudit {

// ensure the followings are

// met or true

EMG.state = "Controlled-BTG"

EMG.userAuthenticated = true

EMG.btgLog = true

}

}

}

rule allowSettingFlowRate {

target clause

user.role == "nurse"

or user.role == "physician"

condition integerIsIn(

integerOneAndOnly(user.userId),

patient.assignedClinicianId

)

permit

on permit {

obligation log {

// example logging obligations

log.message = "Normal access granted"

log.accessTimestamp = currentTime

log.accessedResource = resource.resourceId

log.accessingSubject = user.userId

}

}

}

policy polSetFlowRate {

target

clause resource.resourceId == "flowRate"

clause action.actionId == "write"

or action.actionId == "read"

apply permitOverrides

allowSettingFlowRate

allowEmergencyAccess

}

policy polSetBtgFlag {

target clause

resource.resourceId == "btg"

apply permitOverrides

allowBtg

}

policyset authPolicySet {

apply permitOverrides

polSetFlowRate

polSetBtgFlag

}

}

Figure 4.4: Example BTG policy written in ALFA, reformatted for readability

55

rule (checking if care relation exists), and 3) the obligations are fulfilled by PEP. Other-

wise, a deny decision is returned. The sequence is similar for all rules. Assuming either the

condition or target clause in the allowSettingFlowRate rule cannot be matched to the

request, the rule allowEmergencyAccess is evaluated. The target clause and condition in

the allowEmergencyAccess rule ensures that the BTG flag is set to true and the requested

resource (flowRate) is not part of the “BTG-restricted” resources group. The user request

for access to the resource flowRate is permitted regardless of the authorization system state

as long as any of the two rules return permit decisions. This is ensured by the rule combining

algorithm permitOverrides, specified within the policy polSetFlowRate.

The second policy (polSetBtgFlag) controls access to BTG. Its target clause (btg) and

consist of a single rule: allowBtg. That rule has only one condition which checks the status

of the BTG flag. If the user requesting BTG access and the BTG flag is not set then a permit

with obligations decision is returned to the PEP, which in turn ensures the obligations are

fulfilled prior to allowing for a BTG access. If any of the returned obligations cannot be

fulfilled then the BTG access is still granted and the authorization system changes its state

to uncontrolled BTG. Otherwise, access is granted and the authorization system changes

state to controlled BTG.

Access control requirements in general and the example policy in Figure 4.4 are kept

simple on purpose. They provide a “generic” starting point for more complex and lengthy

policies. They are formally verified in Section 4.5 in order to show how we may prove the

correctness (or at least that certain heuristics/invariants hold) in arbitrarily complex policies.

The example and formal verification are short to ease explanation, but the steps show are

meant to scale up and test policies which too large and the interplay too complex to be done

ad-hoc. Additional policies are listed in Appendix A.

4.4 Comparison to Real-World EHR-BTG

We analyze our policy structure design by comparing the available features and flexibility

to real-world procedures for electronic health record access as implemented by one of the

56

namespace org.facility {

obligation log =

"org.facility.normalLog"

obligation btgAudit =

"org.facility.btg"

rule BtgRule {

target clause EMG.BTG == true

condition not (stringIsIn

("Federally Funded Abuse

Clinic", (patient.location)) &&

(user.role == "PCP" ||

user.role == "others"))

&& patient.BtgStatus == true

permit

on permit {

obligation btgAudit {

//obligations

}

}

}

rule readAndWriteRule {

target clause user.role ==

"clinician"

condition

integerIsIn(integerOneAndOnly(user.userId),

patient.assignedClinicianId)

||

user.hasAppt30DaysPriorOrAfter

== true

permit

on permit {

obligation log {

//obligations

}

}

}

rule defaultDeny {

deny

on deny {

obligation log {

//obligations

}

}

}

rule setBtgFlag{

condition EMG.BTG == false

permit

on permit {

obligation btgAudit {

//obligations e.g. BtgStatus,

btgPeriod, etc.

}

}

}

policy polSetBtgFlag {

target clause resource.resourceId

== "btg"

apply permitOverrides

setBtgFlag

defaultDeny

}

policy EHR {

target clause resource.resourceId

== "ehr"

clause action.actionId ==

"write" or action.actionId

== "read"

apply permitOverrides

readAndWriteRule

BtgRule

defaultDeny

}

policyset EHRPolicySet {

apply permitOverrides

EHR

polSetBtgFlag

}

}

Figure 4.5: Sample BTG policy from a major medical group, written in ALFA and refor-
matted for readability

57

largest US health care groups. We studied their procedure for overriding access control

from [medical group redacted for peer review]. The intention for this task was to verify

that our approach meets the requirements for a real-world emergency access control policy

deployed within healthcare facilities. Our BTG “meta-policy” works with existing access

control policies by adding explicit override permissions which are granted or denied based

on various dynamic factors, but the real-world example represents an explicit (rather than

meta) BTG policy for medical record access during emergencies. (We stress that our BTG

design is strictly more powerful and flexible than what is currently used with electronic health

records, as it not only allows access to information, but also differential access to sensing

and treatment device functions based on user identity and properties.) Figure 4.6 provides

an emergency access control (BTG) matrix based on our analysis of BTG functionality in

[medical group redacted]. Figure 4.5 shows a policy within our framework that satisfies the

BTG requirements in Figure 4.6.

[Medical group redacted] uses Epic∗ for managing emergency access control (BTG) to

patient information. A BTG decision is based on patient type (e.g. VIP, confidential),

clinician type (e.g. emergency department (ED), primary care physician (PCP), etc.), and

several other constraints such as timeframe. Access is either granted with a BTG warning,

or not granted at all. We found that only access to information for patients at a Federally

Funded Substance Abuse Clinic (42 CFR) is denied for primary care physicians and clini-

cians of type “other” (but allowed for mental health clinicians). For all other accesses to

information, clinicians are required to provide a reason when invoking BTG. BTG is needed

every 7 days to access information on VIP patients, who may have greater privacy concerns,

but not needed for a clinician who is part of a care team for a patient, or patients whom the

clinician has seen within the last 30 days, or patients scheduled to see the clinician within

the following 30 days.

Figure 4.5 shows that [medical group redacted]’s EHR BTG requirements are easily

expressed in our BTG meta-policy. The BtgRule ensures the requirements (e.g. PCP’s

access to information for a patient with 42 CFR condition should never be granted even if the

∗https://epic.com/

58

https://epic.com/

Patient Type
Clinician Type Mental Health Confidential 42 CFR

Emergency permit permit permit
Mental Health permit permit permit
PCPs permit permit deny

Figure 4.6: Sample access control matrix based on patient and clinician types, indicating
when BTG access is allowed and when it is denied

status of BTG is valid) are met prior to granting access to information. All “normal” access

requests will be evaluated against readAndWriteRule. This rule ensures access to requested

information will only be granted if a care relation exists between patient and clinician, or if

the patient has had appointments 30 days prior or 30 days after the access date. The rest of

the policy matches our meta-policy in Figure 4.4 and is self-explanatory. In addition, while

our approach requires expressing any system-wide requirements (e.g. invoking BTG once

every 7 days) as obligations to avoid adding any complexity to existing policies, there is no

compelling reason why they should be added as target clause or condition. We are not

aware of any further obligations other than the ones listed in the policy that need to be met

prior to granting access to information within [medical group redacted].

4.5 Verification and Validation

Access policies in medical domain are defined by clinical administrators, and translated by

facility technical/IT staff into a set of polices expressed in a formal access control language.

The nature of the policies is governed not only by clinical role but by job title and perhaps

even regulatory and contractual requirements. There is a natural knowledge gap between

clinicians, administrators, and IT staff, who are expert in their respective fields, but must

work together to ensure that formally-written access control policies represent the intent

of the facility administrators and the needs of the clinicians. None of the people involved

in crafting these requirements and policies may simultaneously have a full understanding

of the policy intent and simultaneous grasp of the richness and constraints of the language

59

Tool (col.) / Feature support
(row)

Custom
Attribute

Types

Relational
Rules

Static
Verifica-

tion

Dynamic
Verifica-

tion

t-way
Testing

XACML
Support

Alloy62 - - -

ACPT63

Margrave64 - - -

SPIN65 - - - - -

ACCOn66 - - - - -

Figure 4.7: A brief comparison of the model checking tools we considered. A more complete
treatment can be found in the work of Aqib and Shaikh.3

expressing the authorization policy. As a result, these authorization policies are either too

expressive or not expressive enough. Defining BTG requirements within authorization poli-

cies adds more complexity, which can easily result in misconfigurations and faulty policies,

introducing serious vulnerabilities. Therefore, rigorous verification and validation through

systematic testing are required to ensure the security properties are satisfied, the access

control model is expressed correctly in the authorization policy, multiple policies enforced

simultaneously are consistent, and single policies are self-consistent. Two policies can be

called inconsistent if they are both applicable to a specific access request and yet return

different decisions, e.g. one returns “permit” while the other returns “deny”.

4.5.1 Tool Selection

To formally verify and test authorization policies for our BTG framework, we explored

a series of access control policy test tools that claimed to be ideal solutions for testing

access control policies. However, we were only able to perform experiments with one tool

due to the fact the other tools either not compatible with our model or missing certain

properties/features that we required for thorough testing. Tools which we would consider

good candidates for validating our work should support model-based verification in addition

to properties enumerated below. The features marked bold are required while others are

helpful but not crucial.

1. Different types of attributes: XACML has four categories for attributes by default,

subject, action, resource, and environment categories. These categories are supported

60

by available XACML implementations such as WSO2 Balana.58 We are looking for

support for the default and additional categories, including customized contextual

categories of attributes with discrete and continuous values, since the types of attributes

used in practice (e.g. at a medical facility) are not limited to these four categories.

Additional categories can be added as needed.

2. Rules with relational expressions: a simple XACML policy such as in Figure 4.4

can contain conditions composed of relational expressions (written as logical expres-

sions).

3. Static and dynamic verification: Although we currently only use static verification,

both are useful in detection and resolution of inconsistency and incompleteness in

policies. In a realistic deployment, we envision a static policy check before they are

enacted, and continuous dynamic checking to detect problems after deployment.

4. t-way combination tests: a policy developer can easily end up with hundreds of access

control polices even for a relatively small size organization. t-way combinatorial testing

is useful for generating smaller, more manageable test suites and reducing testing

costs.67

5. Native support for XACML: our access control policies are written in ALFA and then

translated into XACML for reasons of compatibility and portability. Therefore, the

tool needs to support importing, processing, and exporting standard XACML policies.

6. Headless mode: in actual deployments, we view the tool as a background verifica-

tion process rather than a dedicated step in testing new policies or policy changes.

Continuous, unobtrusive operation is therefore very desirable, allowing the tool to be

easily integrated into existing policy processing workflows as an additional, intermedi-

ary step which does not require explicit operator intervention (unless an inconsistency

is discovered).

Finding a tool that could support all or most of the above listed features was a challenging

task due to the differences in approaches taken by authors for testing and validation of

61

access control policies. Our search resulted in more than 12 tools or approaches. We filtered

these tools by methods used and only focused on the approaches that were based on model

checking. This reduced the list to only 5 tools. Our next step in filtering was to check for the

tools that use or support XACML for policy specifications. But filtering by XACML would

have left us with a very limited number of tools. Therefore, we also looked into tools that

did not support XACML but some other policy specification language. A brief summary of

the tools or approaches based on model checking is given in Table 4.7. We refer the readers

to Aqib and Shaikh3 for a detailed survey of verification and validation tools and approaches

for access control policies.

The Access Control Policy Testing (ACPT) tool,63;68 developed by the National Institute

of Science and Technology (NIST) comes closest to fulfilling our requirements above. It

can be used not only to compose and generate access control polices, but also to verify

and test these policies, supporting both static and dynamic verification. The tool uses

Symbolic Model Verification (SMV) model checker69 for property checking and Automated

Combinatorial Testing for Software (ACTS)70 for test suite generation. In addition, ACPT

can export verified access control policies in XACML format. ACPT supports importing

existing policies, but only in its specified format. Since our policies are written in XACML

format instead, we implemented a simple translator for a subset of XACML, which allowed

us to translate our polices and import them. We use the example policy set in Figure 4.4.

ACPT allows for policies to be either merged or combined prior to verification or testing.

Merged policies means the policies selected for testing or verification will be merged without

any order among them. Combining policies means policies will be combined based on the

algorithm specified (e.g permit-overrides). In addition, the tool also provides a “default deny

rule” option for each individual policy to be combined. By selecting this option, a default

deny rule will be added to the resulting policy.

62

(resource = "btg")&(BTG = "False")&(role = "sys_admin")&(group = "BTG-allow"
) ->decision = Permit

(resource = "auth_policy")&(BTG = "True")&(role = "sys_admin")&(group = "
normal") ->decision = Deny

(resource = "flowRate")&(BTG = "False")&(role = "sys_admin")&(group = "BTG-
restricted") ->decision = Deny

(resource = "btg")&(BTG = "False")&(role = "physician")&(group = "normal") -
>decision = Permit

(resource = "auth_policy")&(BTG = "True")&(role = "physician")&(group = "BTG
-restricted") ->decision = Deny

(resource = "flowRate")&(BTG = "True")&(role = "physician")&(group = "BTG-
allow") ->decision = Permit

(resource = "btg")&(BTG = "True")&(role = "visitor")&(group = "BTG-
restricted") ->decision = Deny

(resource = "auth_policy")&(BTG = "False")&(role = "visitor")&(group = "BTG-
allow") ->decision = Deny

(resource = "flowRate")&(BTG = "False")&(role = "visitor")&(group = "normal"
) ->decision = Deny

(resource = "btg")&(BTG = "False")&(role = "nurse")&(group = "BTG-allow") ->
decision = Permit

(resource = "flowRate")&(BTG = "True")&(role = "nurse")&(group = "BTG-
restricted") ->decision = Deny

(resource = "auth_policy")&(BTG = "True")&(role = "nurse")&(group = "normal"
) ->decision = Deny

Figure 4.8: Results of ACPT heuristic testing reformatted for readability and with metadata
header removed.

4.5.2 Testing Results

We use ACPT to validate the BTG policy from Figure 4.4 and verify that out model meets

requirements for emergency override. Our testing set is comprised of two policies: regular

and BTG. Figure 4.9 shows the list of requirements for our authorization policy in form of

properties along with status for each of the properties returned by the tool after verifying

it. The result confirms that all properties hold. To avoid confusion we use BTG (in capital

letters) as a flag indicating status of the BTG state of the system and btg (in small letters) as

63

a resource in policies. A property is specified by adding attributes from different categories

and an expected decision (minimum one attribute and a decision is required).

The testing result from the same policy set is given in Figure 4.8. The tool generates test

cases and return the testing results that can be used for identifying conflicts, inconsistencies

and other type of faults in the given policies. A property like the ones in Figure 4.9 can be

written for an identified fault and run with ACPT for verification. Note not all possible cases

are covered due to the use of t-way combinatorial testing. We were able to perform 2-way,

3-way and 4-way combinatorial testing on the given policy set. For ease of reading, we only

discuss 2-way testing in this chapter. The 3-way and 4-way testing results are provided in

Appendix B.

A default deny rule is added to the polices. This ensures that in cases where not a single

policy matching an access request a deny decision is enforced. The testing result shows

access requests for resources not in R are allowed even if the clinician does not have access

to these resources (“BTG-allow” group). Similarly, access requests to resources that are in R

are denied if BTG is true. In cases where resources belong to the “normal” group (expected

to be allowed according to user identity and/or job function) but a false decision is returned,

it means not a single applicable policy could be found by decision point. Since for this test

setting our goal was if not a single applicable policy could be found to be evaluated against

a request then a default deny should be returned. In Section 5.3.1 we provided details on

the PEP logic for access situations like these.

4.6 Facilitating Revisions and Preventing Errors

Mistakes such as misconfigurations or faulty policies can remain undetected even after some

thorough verification and testing. Our approach is designed to make “misassigning” a BTG-

restricted resource difficult, unless one also adds or modifies the resource-specific policy in

addition to the overall BTG policy. “Misassinging” a BTG-restricted resource, which is

similar to not including a resource in a blacklist, can introduce system vulnerabilities. We

built on the concept of a policy fault model presented in71;72 to check for misassigned re-

64

spec AG (((((role = "physician" & resource = "flowRate") & group = "BTG-
allow") & DefaultAction = "write") & BTG = "True") -> decision = Permit)
is true

spec AG ((((role = "physician" & resource = "flowRate") & group = "BTG-
restricted") & BTG = "True") -> decision = Deny) is true

spec AG (((role = "physician" & group = "BTG-restricted") & BTG = "True") ->
decision = Deny) is true

spec AG ((group = "BTG-restricted" & BTG = "True") -> decision = Deny) is
true

spec AG (((((role = "physician" & resource = "auth_policy") & group = "BTG-
restricted") & DefaultAction = "write") & BTG = "True") -> decision =
Deny) is true

spec AG (((((role = "sys_admin" & resource = "auth_policy") & group = "BTG-
restricted") & DefaultAction = "write") & BTG = "False") -> decision =
Permit) is true

spec AG (((((role = "sys_admin" & resource = "auth_policy") & group = "BTG-
restricted") & DefaultAction = "write") & BTG = "True") -> decision =
Deny) is true

spec AG (((resource = "btg" & group = "normal") & BTG = "False") -> decision
= Permit) is true

spec AG (((((role = "visitor" & resource = "flowRate") & group = "BTG-allow"
) & DefaultAction = "write") & BTG = "True") -> decision = Permit) is
true

Figure 4.9: Results of ACPT verification of policy consistency, reformatted for readability.
An inconsistency within a facility’s policy corpus will cause at least one of the specifications
to evaluate as “false” and the tool will provide a counterexample.

sources. We introduced new resources and misassigned them to the list of resources other

than BTG-restricted resources. Testing results for these resources were either “indetermi-

nate” or “not applicable”. By re-running the tests and adding default deny rules to these

policies, the results changed to “deny”. However, access to resources, for which we also added

new policies or modified their existing policies, the authorization engine returned decisions

as expected. Therefore, the testing confirmed the need for a policy modification step for

already misassigned resources before they can allow unwanted access.

65

4.6.1 Recovering from a BTG State

During a medical emergency, a clinician forces the authorization system to allow BTG access.

Once the clinician ends the emergency session, the system is now ready to be returned to a

normal state. To safely and securely roll back the authorization system to a normal state,

an audit may be required. This depends on multiple factors, including whether the system

was in a controlled or uncontrolled BTG state, the amount of logging information which was

collected (e.g. via partially fulfilled obligations during uncontrolled BTG), as well as general

facility policies. Traditionally an authorization system is reset to normal state followed by a

post-hoc log analysis performed by a person or team (e.g. privacy and/or security auditor(s)

in conjunction with a clinical manager). Note that a manual audit cannot guarantee that a

system will be returned to a known-good state, and in some cases rollback of the system is

not possible without a fully manual audit going beyond the logs. An inappropriate rollback

may occur through human error, such as not noticing a particularly critical event – leading

to a system which is not truly restored to correct operation even though it has been manually

set to “normal” operating mode. An incorrect rollback, e.g. a system which is not restored

to a secure state, may occur if there have been unnoticed or uncorrected modifications

to authorization procedure or policy. In both cases, the state of the system, connected

devices, EMRs, and even the authorization policy database must be carefully examined, and

reconfiguration by facility biomedical engineers or IT staff may be required.

For this reason, we argue for the creation of a BTG-restricted resource set. While our

framework is sufficiently flexible to define policies wherein authorized access to the autho-

rization policy database may occur during BTG, we strongly recommend that any access to

the BTG-restricted set be disallowed during BTG for the simplification of specifying poli-

cies and performing audits. The manual system examination and reconfiguration mentioned

above is an extremely time-consuming and expensive process, requiring specialized expertise.

Therefore, marking certain resources (e.g. safety, security properties of medical devices, au-

thorization policies) as BTG-restricted simplifies the reasoning about system state following

both controlled and uncontrolled BTG, with at least the certainty that the security sub-

66

system was not modified. The formally defined behavior of the policy enforcement

point described in Section 5.3.1, along with the access control policy, ensures a

BTG-enforced session will not alter the security state of the overall system.

It is important that access controls to resources in R are specified properly. Constructing

a list of BTG-restricted resources (R) is easily achieved considering the limited number of

resources a facility can mark as BTG-restricted resources – recall that our example BTG pol-

icy specified that resources in set R are only accessible by authorized individuals, as enforced

by the authorization system, in the normal state. Verifying policies prior to implementation

can also help in detecting faulty policies as discussed in Section 4.5.

67

Chapter 5

BTG Audits Using Obligations and

System Changes

In Chapter 4 we propose a solution that allows for automated BTG audit during a controlled

BTG state (Section 4.1). In Section 4.6.1 we also discuss how audits, which are tedious and

introduce aspects of human error, require manual intervention only if the system is in an

uncontrolled BTG state. In this chapter we further investigate how this can be automated

using log analysis to detect access events and real-time system changes.

Patient health information (e.g. electronic health record) is considered confidential data

and need to be protected from misuse. To this end, medical systems use a complex composi-

tion (policy) of fine-grained access control mechanisms to enforce separation of privilege and

and ensure patient privacy. Such traditional mechanisms perform well in preventing misuse

of patient health information by restricting users’ access to that which is needed to fulfill

their tasks. For example, in the Role-Based Access Control (RBAC) model,19 clinicians

are assigned roles based on their job descriptions (roles are usually tied very closely to job

titles).73 Each role is assigned one or more permissions. In order to ensure the authorization

policies are consistent and represent the intent of the healthcare facility administrators and

the needs of the clinicians, who are expert in their respected fields, they must work together

to define access control policies following the principle of least-privilege to preserve patient

68

safety and privacy. A least-privilege authorization policy limits users access to minimum

permissions that are needed to perform their routine authorized activities. For example, a

registered nurse should not be able to prescribe a medication, but should be able to start a

prescribed medication for a patient.

During a medical emergency, however, clinicians need immediate access to patients infor-

mation or medical components to provide the best possible care, and the strict enforcement

of these policies during an emergency may prevent timely delivery of life-saving treatment.

Therefore, an access control override mechanism is incorporated into healthcare facility au-

thorization framework to override a denied decision and allow for an access request for dosage

change or any other activity that could save patient’s life during a medical emergency (which

would have been denied otherwise).

Many governments have developed data protection legislation, such as the Healthcare

Insurance Portability and Accountability Act14;15 (HIPAA) in the United States, and the

General Data Protection Regulations74 (GDPR) in Europe. Healthcare providers must ad-

here to these rules, and ensure compliance to the established regulations for electronic data

transmission, such as HIPPA and GDPR. HIPPA requires that availability of medical re-

sources to be prioritized over patients’ privacy or other security properties, in order to ensure

medical systems do not deny life-saving treatment to patients in unforeseen situations.14;15

This requirement, also known as “fail-open”, makes it more challenging to craft least-privilege

authorization policies (see Chapter 4).

Emergency access control override procedures such as BTG can be implemented without

any modification to access control mechanism. For example, pre-staged emergency user ac-

counts could be used to allow clinicians to override access control. Such emergency accounts

are created in advance for one-time use and carry “sufficient” permissions for emergency

use.47 Administrators need to make sure these accounts are accessible in a reasonable man-

ner, and clinicians are trained on how to use them. Furthermore, audit trials must be

created for post-hoc analysis to determine appropriate actions and accountability in case of

misuse. By performing a post-hoc audit, facilities try to determine the reasons (legitimacy)

for overriding access control.

69

Emergency access sessions are normally logged for post-hoc audit and review to protect

patients’ privacy. Information such as the reason for access control override, user access

session and any data access or modification should be clearly logged and communicated to

the relevant workforce. Procedures for emergency access control override need to be well

documented. And staff need to be trained how to use such mechanisms and made aware

of the consequences of any inappropriate use. Moreover, a cleanup procedure is required to

restore the system back to a safe operating state,∗ which includes tasks such as removal or

changing passwords of any pre-staged emergency user accounts.47

Emergency access control override mechanisms defeat the purpose of least-privilege con-

cept within medical domain, since during an override, patient data is no longer protected

from misuse. For example, a clinician who is normally denied access to a VIP patient’s

electronic healthcare records can force the authorization system to operate in a “fail-open”

mode, which is also known as uncontrolled BTG state 4.1,2 by initiating a BTG access ses-

sion and accessing the patient’s data. Therefore, previous work has suggested constraining

access during situations such as medical emergencies, when a user may need to exceed their

normal privileges.49 A very simple emergency access control policy may specify who can

and who cannot request access control override during medical emergencies. In other words,

the policy has to at least specify type of clinicians that are allowed to request BTG access.

In some systems, clinicians are required to provide the reason for the BTG access before

it is granted.46;47;51 This is not enough and cannot prevent against misuse of the system

for obtaining patient’s confidential information. Confirmation of BTG by a clinician only

self-reports the clinician’s intention, and does not proactively protect against misuse.

Previous work has also suggested increased logging for tracing user actions and performing

post-hoc audit.46;47;50 Unfortunately, this does not proactively protect against misuse, but

may provide for identification and punishment of a culprit after the fact. A recent survey of

audit trails from a large group of hospitals in Norway reveals the use of BTG is a very common

occurrence and thus generates logs at such a volume that reviewing them is a challenging

∗Recall that a system is considered to be in normal operating state if it is following the principle of least-
privilege, and access decisions are governed by the authorization policy and not overridden, as described in
Section 4.1.

70

task.52 Stark et al. propose a classification solution to the huge amount of transactions (logs

from BTG access) from a university medical center in an attempt to decrease the number of

transactions that need to be reviewed.75 Their solution involves use of attributes (information

within logs such as time/date, clinician job title, patient and clinician locations, etc.) and

assigns them a score based on how likely they are to represent anomalous BTG access. For

example, a BTG access transaction during a weekend night is scored higher (more likely

anomalous) than a similar transaction that occurred during a weeknight.

Similarly, we propose a controlled BTG concept within policy domain in Chapter4. we

show it is possible to construct a BTG “meta-policy” to allow users to exceed their normal

privileges during a medical emergency while maintaining system safety and security pro-

tections. Three different operating states (normal, controlled BTG and uncontrolled BTG)

represent the context of an override and a decision reevaluation is forced in the context of

the override to provide “as-needed” access. They authors claim their approach significantly

reduces the need for manual audit – only limiting manual audits to uncontrolled BTG ac-

cesses. Both work come short of presenting solution for automating log auditing for BTG

accesses.

In this chapter we discuss how using real-time resource access log analysis and enforce-

ment of logging obligations allows us to limit the extent of uncertainty of the system state

following an emergency access session, and further allows for an automatic recovery to a

known safe and secure state for most sessions. When an emergency is declared (BTG is

invoked), the access control policy returns a series of logging obligations along with a more

permissive authorization decision (i.e. the access control decision during a BTG session

is almost always “permit”). When the access control framework is able to accommodate

the obligations returned with an “allow-if-BTG” decision, the system institutes exceptional

logging procedures, and allows a request that may otherwise be denied. Even when obli-

gations cannot be fulfilled, the high-availability nature of medical systems may still require

that the BTG request to be allowed, since overly strict enforcement of system obligations

can prevent the timely delivery of life-saving treatment. Among the examples of emergency

situations during which obligations may go unfulfilled is a denial of service attack on the

71

facility’s IT network, resulting in insufficient bandwidth to fulfill the increased BTG logging

requirements. Currently, all emergency access control override (BTG) sessions are manually

audited. This would be performed by an audit team either in real time or during the next

business day. But in our work we identify only a limited number of BTG sessions that need

to be handled manually, significantly reducing the workload and turnaround time of these

audit teams. Furthermore, the level of automated logging provided by our system allows

for structured log analysis, making even the manual process more straightforward and less

error-prone, especially since automated logging reduces the reliance on human memory of

these BTG incidents.

5.1 Logging

There has been limited work in the area of access control systems with BTG audit logging.

Some previous work has noted the need for log analysis after access control override,46;47

proposing that logging requirements be returned as obligations attached to a policy, but

it is not immediately obvious what should happen if those obligations are not met. In this

section, we discuss logging methods consistent with requirements for returning a system from

a BTG to normal state, and show how our approach can be extended to partially or fully

automate the post-BTG auditing process.

Reviewing audit logs for unusual activity is common in critical systems. Audit trails can

be used to detect policy violation resulting in system crashes, unavailability of resources, net-

work slowdowns etc. Emergencies requiring access control override are common in healthcare,

and post-BTG audits are regular practice at medical facilities.53;75 A post-hoc audit of the

override will suggest appropriate actions, including disciplinary, e.g., if the emergency was

inappropriately declared or inappropriate records were accessed.

Clinical facilities have individuals or groups who are tasked with running access control

audits. Access reports are usually run by IT or Security and reviewed by Privacy or Com-

pliance in conjunction with clinical management who would understand if the access was

appropriate.75 Auditors will review human- and machine-generated records for any flagged

72

system activities either immediately after an emergency access event or during the next

business day, and take appropriate actions. Automated log analysis may streamline some

of this process while maintaining system-specific requirements. Log analysis tools can be

used to provide a summary of user actions, resources accessed, obligations with their status

(met/unmet), system state, etc. and modifications can be made to allow automation for a

certain set of known activities commonly found in such logs. Some analyses can be quite

voluminous due to the practice of requesting emergency medical override at individual edit or

individual field granularity within current electronic health record systems. We are unaware

of timed BTG sessions.

To attempt to streamline analysis without decreasing log granularity, levels are specified

for the amount of logs to be generated. (This is in addition to tools intended to create log

summaries and flag outlier events.) For example logs which only meet minimum requirements

for audit would correspond to the normal state of the authorization system described in

Section 4.1.1. The authorization system records request for access, returned decisions with

evaluation details, changes to system resources and session specific information. Logging level

set to “normal” ensures that the overall system performance is not significantly affected

adversely by the amount of data processed, transferred, and stored. Logging granularity

adjusts (via log “level” changes) as the system state changes. A state change from normal

to BTG will require increased logging for auditing purposes (e.g. more frequent resource

integrity checks). These logs should collect enough information to allow reconstruction of

a timeline of what happened, and be able to restore the system back to a last known safe

(normal) state. The logging level can be determined and set in a form of obligation within

policies. When a decision is returned with logging obligations, the policy enforcement point

(PEP)3.1 tries to fulfill the obligation and enforce the decision. If the PEP fails to fulfill an

obligation, the original returned decision (e.g. “permit”) is invalidated and returned to user

as “deny”. Contrasting this with BTG as currently practiced in the medical domain where

availability is prioritized, we must allow the original decision (“permit”) even if the returned

obligations with the decision were not fulfilled. Our authorization system is designed to be

flexible enough to allow for such steps to be taken automatically (as shown in Section 5.3.1)

73

while maximizing the amount of useful data collected for later auditing.

When a BTG is requested, the policy decision point (PDP) will evaluate the BTG policy

and return a decision (e.g. permit) with BTG obligations, which specifies logging require-

ments along with other requirements to be fulfilled prior to granting access. If all the

requirements in form of BTG obligations are met then the system changes its state to a

controlled BTG and will try to fulfill all the non-BTG obligations that are returned with

decisions for other access requests during the same session.These obligations are not specific

to BTG policy and will not affect the state of the system. Therefore, failing to fulfill one

or all of non-BTG obligations will not result in a change in system state or logging level.

However, if a logging or any other BTG-specific obligation is not fulfilled by PEP during

a request for BTG, then the authorization system changes its state to uncontrolled BTG

and prompts PEP to fulfill as many obligations as possible (both BTG and non-BTG) while

allowing for access. This ensures logging requirements are set in accordance to the authoriza-

tion state. For the sake of simplicity, from now on we refer to the levels of logging that are

set for a controlled BTG state and uncontrolled BTG state as medium level and high level,

respectively. The intent of differentiating between the levels of logging is to set requirements

and specify what is necessary to log at each level.

Logging requirements are facility-specific, as each facility has its own customized system

with facility-specific properties. Therefore, we want to avoid listing specific logging require-

ments but rather let them be specified as obligations in the facility-specific authorization

policies. This design can be generalized to work with all logging requirements that can be

specified by the policy language (e.g. can be written in a form of obligation in a policy)

and are compatible with logging system components (e.g. the logging requirement can be

translated into an input accepted by the logging system). We also understand that increased

logging comes with a cost and in some situations may cause denial of service. Therefore, we

suggest that logging requirements should be met only if there are enough system resources

(network bandwidth) available to perform logging while not interrupting critical system pro-

cesses.

Implementation and performance testing of a logging system is future work.

74

5.2 Post-BTG Audits

Medical emergencies requiring access control override are one concrete example of a usual

activity in healthcare. Post-BTG audits are regular practice at medical facilities. A post-

hoc audit of the override will suggest appropriate actions, including disciplinary, e.g., if

the emergency was inappropriately declared or inappropriate records were accessed. To

our knowledge there is no previously published work in computer or information science

proposing logging mechanisms for controlling BTG sessions in the medical domain or on

logging and auditing requirements in relation to overall system performance.

In 2016, research on examining access logs collected from an Electronic Patient Record

(EPR) system used largely in a hospital in Norway found access logs to be a very useful

tool for learning how to reduce the need for exception-based access.52 After reviewing the

access log from eight hospitals in the Central Norway Health Region (CNHR), the authors

discovered that the use of exceptional mechanisms in these hospitals is too common mostly

due to the lack of a stricter form of access control, and the huge size of the log makes it

impracticable to audit the log for misuse. In a similar study of logs from a university med-

ical center in Germany, Stark et al.75 propose a solution to categorize transactions (BTG

accesses) into two groups – A and B – representing normal transactions that need no manual

audits, and anomalous transactions that need to be manually audited, respectively. Their

proposed solution distinguishes anomalous transactions from normal transactions by inves-

tigating frequency of certain attributes (e.g. transaction timestamp, clinician job title) in

the log. Each attribute is assigned a specific value range and a total value (sum of attributes

score) for each transaction is calculated. For example, the “time and date” attribute has a

range of 0 – 2 values. A value of 0 is assigned to daytime transaction while 1 is assigned

to nighttime transaction. A maximum value of 2 is assigned to weekend transactions. The

higher the total score for a transaction, the more likely it is for the transaction to be flagged

as anomalous.

Using logs from a medical facility, Alizadeh et al.53 presented an approach for user be-

havior analysis by constructing user behavior profiles and comparing them with expected

75

behaviors. A final “anomaly” score assigned to a user’s profile which determines the extent

of the difference in that user’s behavior from expected behavior. The authors applied their

approach to study the use of “Break the Glass” (BTG). They do not investigate this ap-

proach in the content of real-time log analysis. In Chapter4 we present a controlled BTG

model for interoperable medical systems which is based on well-studied ABAC model.20;21 In

our work, BTG is specified within policy and defined in terms of states in which the system

is operating, and allows for overriding “deny” decisions automatically (instead of on a one-

by-one basis) during a BTG session. This is achieved by constructing a BTG “meta-policy”

which works with existing access control policies. In addition, previous work have noted the

need for log analysis after access control override, proposing that logging requirements to be

returned as obligations attached to a policy, but it is not immediately obvious what should

happen if those obligations are not met.46;47;49;50;54

Current practices require clinical facilities to have individuals or groups who are tasked

with running access control audits. Access reports are usually run by IT or Security and

reviewed by Privacy or Compliance in conjunction with clinical management who would

understand if the access was appropriate.14;15 Auditors will review human- and machine-

generated records for any flagged system activities either immediately after an emergency

access event or during the next business day, and take appropriate actions. Automated log

analysis may streamline some of this process while maintaining system-specific requirements.

Log analysis tools can be used to provide a summary of user actions, resources accessed,

obligations with their status (met/unmet), system state, etc. and modifications can be

made to allow automation for a certain set of known activities commonly found in such logs.

5.3 Automating the audit process

In this section we present our approach of automating BTG audit using fine-grained struc-

tured logging and tracking system operating states. Our approach is compatible with any

existing authorization framework that uses the Attribute Based Access Control (ABAC)

model20;21 and implements an emergency override mechanism. Furthermore, We discuss

76

how our proposed solution integrates into an existing BTG model.2 The BTG framework is

based on a policy-based access control model (e.g. ABAC)20 and has the properties enu-

merated below. The features marked in bold are required while others are helpful but not

crucial for our work.

1. Emergency override mechanism (BTG): our solution is dependant on existing im-

plementation of emergency access override mechanism within an authorization frame-

work to provide a base for integrating real-time log analysis. Authorization frameworks

that lack emergency access override mechanism are outside the scope of this study.

2. Definition of BTG within policy: specifying BTG in the policy domain makes BTG

more flexible, allows for fine-grained facility-specific policies and logging requirements,

and facilitates for automation of auditing. This property is discussed in details in Sec-

tion 4.3. A BTG procedure implemented outside the policy domain requires framework

changes, and needs to be verified before we could reason about its compatibility with

our approach.

3. Medical systems with high number of physiological data channels and real-time com-

munication: while our solution is not limited to the medical domain – it is flexible

enough to be applied to any other safety critical-system that use emergency access

control override mechanism and prioritize safety over privacy – in this work we only

focus on interoperable medical systems that come with high number of physiological

data channels, the real-time nature of the communication, and the large number of

authorized users.

4. Based on (compatible with) XACML: our logging requirements are predefined in the

Abbreviated Language for Authorization (ALFA),40 a high-level domain-specific lan-

guage used in the formulation of access-control policies, and translated into XACML

before use. Therefore, a framework that supports processing standard XACML poli-

cies is preferred. This is not a requirement, but helpful since XACML polices are

represented in eXtensible Markup Language (XML) format and can be translated into

77

another policy language as long as the language can represent XACML policy elements.

Also, the policy language need to support logging requirements returned to a policy

decision enforcement point. For example, XACML has four default categories for at-

tributes, subject, action, resource, and environment. These categories are supported

by available XACML implementations such as WSO2 Balana.58 We extend the default

categories list with additional categories that include customized contextual and log-

ging categories of attributes with discrete and continuous values, because the types

of attributes used in practice (e.g. at a medical facility) are not limited to these four

categories. Additional categories can be added as needed.

5.3.1 Obligations and Compatibility

Obligations are constraints that need to be met before a final decision is made by a policy

decision point (PEP). For example, a permit decision returned to PEP along with obligations

is changed to a deny decision if the any of the returned obligation cannot be met by PEP as

shown in Section 4.1. During a BTG session, however, the state of the authorization system

is used by a policy enforcement point to decide if obligations that cannot be fulfilled can

be disregarded. To meet the “fail-open” requirement of medical systems, the authorization

framework allows for the enforcement point and logging/obligations services to disregard

obligations unless the authorization engine is in the normal state (see Section 4.1). Note

that although the PEP is modified to meet the “fail-open” requirement, we still maintain

XACML architecture compatibility – the enforcement point still functions as a compliant

PEP.

According to OASIS XACML specifications, there are three different types (“flavors”)

of PEP: deny-biased PEP, permit-biased PEP and base PEP.34 Each PEP flavor deals dif-

ferently with situation where neither a permit or deny decision can be returned. A deny-

biased PEP only allows an access request for which a permit decision is returned and all

returned obligations can and will be fulfilled. In all other cases, it will deny the request. A

permit-biased PEP denies an access request for which a deny decision was returned and

78

all returned obligations can and will be fulfilled. In all other cases, it will permit access. iIn

base PEP, an access request is granted if a permit decision is returned by decision point

and obligations can and will be fulfilled. Similarly, base PEP will deny an access request if a

deny decision is returned by PEP and obligations can and will be fulfilled. In all other cases,

an access request could either be allowed or denied. It is up to developers to decide on how

the base PEP will treat such access requests. However, according to XACML specifications

for base PEP, to be complaint it has to meet the following requirements:

• PEP permits access if PDP returns permit. If obligations are returned with the permit

decision, then PEP permits access only if those obligations will be fulfilled by PEP.

• PEP denies access if PDP returns deny. If there are obligations returned with the deny

decision, then PEP denies access only if those obligations will be fulfilled by PEP.

• In all other cases the PEP’s behaviour is undefined. One such case is if an access

request results in neither a permit nor a deny decision, e.g. if no rule can be found

that matches the request – the policy simply does not specify what happens in case of

that particular request.

In our approach, the PEP must additionally handle situations where obligations cannot

be fulfilled. We use the state of the authorization engine as a pivotal factor in the decision

process. By letting PEP query the state of the authorization engine, the PEP can be made

to behave as follows:

• PEP permits access if PDP returns permit. If obligations are returned with the permit

decision, then PEP permits access only if those obligations will be fulfilled by PEP.

• PEP denies access if PDP returns deny. If there are obligations returned with the deny

decision, then PEP denies access only if those obligations will be fulfilled by PEP. An

example application of this behavior of PEP is implementing access control based on

the concept of blacklisting to ensure certain resources such as the resources in group

R (as show in Figure 4.1.4) are denied access only if the returned obligations are met.

79

• In cases where the authorization system state is determined to be in either controlled

BTG or uncontrolled BTG, PEP allows access only if PDP returns permit. If there

are obligations returned with the permit decision, then PEP fulfills those obligations

on a best-effort basis. If the obligations cannot be fulfilled, the PEP disregards them.

• In all other cases, PEP denies access.

The above list maintains the requirements for a complaint base PEP by only specifying

its undefined behaviour to allow access during a controlled or uncontrolled BTG session only

if PDP returns permit decision – recall that PDP is the policy decision point and PEP is

the policy enforcement point (see Section 3). Obligations that cannot be fulfilled by PEP

are disregarded. Note that when the authorization system is in controlled or uncontrolled

BTG state, the BTG policy will be evaluated by PDP for a decision. For an access request if

PDP returns deny after policy evaluation, then PEP denies access even if the authorization

system is in a BTG state. This may seem counter-intuitive, but it is the intended behaviour

since we require that BTG-restricted resources (resources that belong to set R)2 must not

be accessed to during a BTG session. An example policy has been provided in Figure 4.4.

5.3.2 System Architecture

A high level architecture of our approach is given in Figure 5.1. We choose Wazuh for log

analysis because of its flexibility and open source.76 It supports log analysis, file integrity

checking, and policy monitoring. It was forked from the OSSEC host-based intrusion detec-

tion system (HIDS) project.77 In practice, any system capable of preforming real-time log

analysis integrity checking could be used. We only require a limited set of modules from

Wazuh and the architecture presented in Section 3.1 in order to perform log analysis, shown

in Figure 5.1. The main components of the architecture in Figure 5.1 are briefly described

below:

• Interoperable medical system (a detailed description of the components of the interop-

erable medical system is provided in Section 3.1): the supervisor component forwards

80

Figure 5.1: The integration of real-time log analysis with the authorization system.

access request to authorization engine for a decision. As shown in the Figure 3.5b

an access request is created when a user (e.g. clinician) tries to access an applica-

tion that communicates with a device attached to a patient via a data channel to get

physiological data. The request is forwarded to authorization engine for decision.

• Authorization engine: the policy enforcement point (PEP) ensures a returned decision

(after evaluation against a policy) is enforced along with its returned obligations (see

Section 3). The obligation service component is responsible for: (a) fulfilling obliga-

tions (such as notifications to admins on BTG access request), and (b) returning a

confirmation to the PEP. Logging levels, like any other obligations, are set in policy

and returned to the PEP, as well. Obligation service handles all obligations except log-

ging obligations. In order to ensure logging levels are set in accordance to the policy,

logging service, an independent component, is required to communicate with all system

components. The logging service handles logs for all components including obligation

81

service within authorization engine and forwards the logs to the remote daemon for

real-time log analysis.

• Real-time log analysis: the remote daemon collects logs and event data from all other

system components. Agents are installed in the authorization engine and the medical

system to collect system logs, configuration data, and forward them to the remote

daemon. The analysis daemon receives data from remote daemon and analyzes it for

changes in policy, systems states, and if any configurations are not compliant with

policy. Rules are pre-written to identify events of interest and stored in ruleset. An

alert will be generated if a received event (log record) matches a pattern. The analysis

daemon uses decoders to process and extract information (e.g. user, system operating

state, eventId, etc.) from received data.

<rule id="100005" level="11">

<program_name>Balana</program_name>

<match>CurrentSystemState:UncontrolledBtg</match>

<description>system is in uncontrolled btg</description>

<group>pci_dss_10.2.7,pci_dss_10.2.5,pci_dss_8.1.2,gpg13_4.13,gdpr_IV_35

.7.d,gdpr_IV_32.2,hipaa_164.312.b,hipaa_164.312.a.2.I,hipaa_164.312.a

.2.II,nist_800_53_AU.14,nist_800_53_AC.7,nist_800_53_AC.2,

nist_800_53_IA.4,</group>

</rule>

Figure 5.2: Sample Wazuh rule for detecting uncontrolled BTG session.

All events generated during an access control session are analyzed in near real-time for

abnormal activities. Information that are decoded and forwarded for analysis include but

are not limited to userId, patientId, deviceId, AppId, obligation(s) status, system operating

state, resources accessed, access request parameters, policy evaluation results, target policy

and timestamp. Information are extracted from logs using customized decoders written for

the authorization engine, medical devices and other components of the architecture in Fig-

ure 5.3.2. Decoded log events are later used by Wazuh ruleset for detection of software

82

May 18 01:56:36 AuthServer Balana[2665]: WARN CurrentSystemState:UncontrolledBtg

Figure 5.3: Sample log event.

misuse, configuration problems, application errors, system anomalies or security policy vi-

olations. We use customs rules in addition to the out-of-the-box set of rules in Wazuh to

provide system state detection capabilities. An example rule to detect system transition to

uncontrolled BTG is given in Figure 5.2. The rule level is set to 11 indicating the level of

generated log event severity. Rule level values range from 0 (lowest) to 15 (maximum).76

Each level indicates the severity of each triggered alert.An alerts is generated if a rule is

matched against a log event. For example, the log event in Figure 5.3 is matched by the

rule in Figure 5.2 and an alert of level 11 is generated. The list of groups in the rule are

optional tags that define a behaviour. Similar rules are added to detect other events gener-

ated by the authorization engine, medical devices, etc. See the Wazuh website for a detailed

documentation on rule definitions and how to write new customized rules.76

5.4 Evaluation

In this section we show how our implemented approach allows for logging and monitoring

access control override mechanism – particularly an uncontrolled BTG session. We also show

how our approach results in reduced administrative overhead by allowing administrators to

focus only on a small subset of sessions and events. Our approach supports automatic return

of the system to a normal operating state for all controlled BTG sessions, and uncontrolled

BTG sessions, for which all BTG obligations (See Section 4.1) are met or no alerts of level

4 or above are generated.† Rules with level 4 or above identify some type of system error or

software bad configurations. In the presence of any alerts with level 4 or above the system

requires manual audit through human intervention.

We have run several simulated tests for generating reports and evaluating our imple-

†Implementation and performance testing of such a system is future work.

83

Figure 5.4: Events that resulted in HIPAA alerts. The color-coded labels reflect the specific
regulation number within HIPAA.

mentation for monitoring access control override or BTG sessions. The simulation testing

process was carefully designed to represent the possible states of the system (normal, con-

trolled BTG and uncontrolled BTG) and generate specific types of alerts. For example, to

demonstrate a state change from normal to controlled BTG, we generated test cases that

would result in unfulfilled obligations. As discussed in Section 4.1, unfulfilled obligations

forces the system to transition to controlled or uncontrolled BTG. Our tests have resulted

in thousands of events generated an hour. For simplicity, in our evaluation we report only

on log events and generated alerts from a testing window of 5 minutes.

A total of 78 alerts were generated during the selected 5 minute widow. The alerts

were filtered from a set of 4320 log events. Figure 5.4 shows only the alerts that were

triggered by HIPAA rules. In Figure 5.4 we see five different groups of alerts. Each group

represent a specific HIPAA requirement. For example, group id 164.312.a.2.II represent

the HIPAA requirement to establish a procedure for overriding access control during an

emergency (also known as BTG). We refer the readers to HIPAA documentations14;15 for a

detailed description of each requirement.

Figure 5.5 shows a summarized graph of number of generated alerts and description for

84

Figure 5.5: Top 7 rules with their counts and levels that triggered alerts. Only showing
alerts from 5 minutes.

each rule resulting in the alerts. As shown, the number of uncontrolled BTG events triggering

alerts of level 11 are one of the two more frequent events. The other more frequent event

represent triggering alerts of level 5 is for unmet obligations. Other shown generated alerts

belong to the auditing process, which is run during the uncontrolled BTG session to monitor

system state. The auditing process is also responsible for detecting and logging changes to

files (e.g. healthcare records, device configurations). Figure 5.5 shows two alerts from events

of file addition (in red color) in the system.

85

Chapter 6

Conclusion

In this work we study authorization in interoperable medical systems. We explore different

solutions with a focus on access control models that are applicable to the medical domain.

We show how these models are not entirely generalizable to interoperable medical systems

due to the core differences between interoperable and traditional systems – higher number of

physiological data channels, real-time communication, and the sheer number of participants

such as patients, clinicians, etc. We also investigate the use of emergency access control

override mechanisms in medical systems and show how these mechanisms may compromise

patients’ privacy when not carefully designed. We the explore design strategies for emergency

access control override mechanisms, placing them in the policy domain while minimized the

required changes in already used authorization frameworks.

The Healthcare Insurance Portability and Accountability Act (HIPAA) requires health-

care provide to adhere to, and ensure compliance with, the established protocols for electronic

data transmission. It also states that patient’s safety must be prioritized over patient’s pri-

vacy, which requires medical systems to follow “fail-open” concept. Clinicians should be

granted access regardless of authorization policy to save a patient life.

We present the design, architecture, and evaluation of a flexible authorization architec-

ture for systems of interoperable medical devices with a proof-of-concept implementation

within the Medical Device Coordination Framework (MDCF). Our work is a first attempt

86

to implement an authorization system within an ICE standards-compliant medical middle-

ware and provide access control to real-time data generated by the systems of interoperable

medical devices. Our unique approach to attribute inheritance, maintaining granularity

and expressive power of past models, makes our access control model significantly different

from prior models used in medical domain, which have historically protected mostly static

electronic medical records. Attribute inheritance also provides clinicians with authorized

emergency access to medical devices, especially interoperable “plug-and-play” devices. Eval-

uation results show that our authorization architecture performs well, scales to many devices

with many distinct physiological data channels, and is sufficiently flexible to integrate with

other implementations of the ICE standard or Medical Application Platforms (MAPs). We

extend our study by proposing “Bend the Glass” access control model and show how to

handle emergency access control override natively within the ABAC model, maintaining full

compatibility with existing access control framework.

Current access controls override mechanisms in medical systems allow for uncontrolled

access when needed, which may leave systems open to misuse and unnecessarily compromise

patients’ privacy, resulting in irreversible damage. The controlled emergency access model

in our work allows for a flexible emergency access control override while ensuring system

safety- and security-critical resources are protected even during the Break the Glass state

by managing system state and BTG obligations as specified in a well-structured formally

verified and validated authorization policy. Furthermore, we show how the authorization ar-

chitecture allows for the system to return to a known safe state and reduce or eliminate the

need for manual audits when returning from a controlled BTG session. Currently, manual

audits, which are tedious and introduce aspects of human error including faulty and incom-

plete memory of events. We reduce the requirement for full manual intervention in audits,

mostly falling back on human operators only when the system has been in an “uncontrolled

BTG” state. Even the latter can be automated using a system to simplify log analysis by

automatically distilling data related to access events and real-time system changes. Addi-

tionally, we formally show that our example BTG “meta-policy” policy is expressed correctly

and that policy specifications are satisfied.

87

6.1 Future Work

While our work makes some headway towards flexible authorization in interoperable medical

systems, there are several important limitations, derived mostly from our limited access to

non-PHI healthcare data. Given the difficulty in locating healthcare providers willing to

participate in data sharing regarding their facility-specific authorization system policies,

access control override mechanisms, authorization policies, and log data, we could only

achieve a limited understanding of how our model would fit in a real healthcare setting.

An in-depth qualitative and quantitative case studies of emergency access control override

mechanisms in hospital settings is a subject for future work.

We have been able to restrict manual audits to uncontrolled BTG sessions – eliminat-

ing the need for manual audits for normal and controlled BTG sessions. We understand,

however, investigating the effectiveness of anomaly detection during log analysis process for

uncontrolled BTG sessions could further ease the human burden of post-hoc audits, and

might entirely eliminate the need for most BTG sessions and fully automate auditing. Only

sessions from uncontrolled BTG sessions that are tagged anomalous will require manual

audits.

Another direction for future research includes investigation of system recovery procedure

to determine if, using real-time resource access log analysis and enforcement of logging

obligations, we can limit the extent of uncertainty of the system state following an emergency

access session, and allow for recovery to a known safe and secure state. In our work we only

propose a model. Implementation and performance testing of such a system is future work.

88

Bibliography

[1] Qais Tasali, Chandan Chowdhury, and Eugene Y Vasserman. A flexible authorization

architecture for systems of interoperable medical devices. In ACM Symposium on Access

Control Models and Technologies (SACMAT), pages 9–20. ACM, 2017.

[2] Qais Tasali, Christine Sublett, and Eugene Y. Vasserman. Controlled BTG: Toward flex-

ible emergency override in interoperable medical systems. EAI Endorsed Transactions

on Security and Safety, Online First, February 2020. doi: 10.4108/eai.13-7-2018.163213.

[3] Muhammad Aqib and Riaz Ahmed Shaikh. Analysis and comparison of access con-

trol policies validation mechanisms. International Journal of Computer Network and

Information Security, 7(1):54–69, 2015.

[4] Medical devices and medical systems-essential safety requirements for 5 equipment com-

prising the patient-centric integrated clinical environment 6 (ICE)-part 1: General re-

quirements and conceptual model 7. ASTM F2761, 2008.

[5] Sofia K. Tzelepi, Dimitrios K. Koukopoulos, and George Pangalos. A flexible content

and context-based access control model for multimedia medical image database systems.

In Workshop on Multimedia and Security: New Challenges, pages 52–55. ACM, 2001.

[6] Mor Peleg, Dizza Beimel, Dov Dori, and Yaron Denekamp. Situation-based access

control: Privacy management via modeling of patient data access scenarios. Journal of

Biomedical Informatics, 41(6):1028–1040, 2008.

[7] Ramaswamy Chandramouli. A framework for multiple authorization types in a health-

care application system. In Annual Computer Security Applications Conference (AC-

SAC), pages 137–148, 2001.

89

[8] Junzhe Hu and Alfred C. Weaver. A dynamic, context-aware security infrastructure

for distributed healthcare applications. In Workshop on Pervasive Privacy Security,

Privacy, and Trust, pages 1–8, 2004.

[9] Longhua Zhang, Gail-Joon Ahn, and Bei-Tseng Chu. A role-based delegation framework

for healthcare information systems. In ACM Symposium on Access Control Models and

Technologies (SACMAT), pages 125–134. ACM, 2002.

[10] Jing Jin, Gail-Joon Ahn, Hongxin Hu, Michael J Covington, and Xinwen Zhang.

Patient-centric authorization framework for sharing electronic health records. In ACM

Symposium on Access Control Models and Technologies (SACMAT), pages 125–134.

ACM, 2009.

[11] OpenICE User Introduction. https://www.openice.info/docs/1_overview.html.

(Accessed on 01/26/2017).

[12] Andrew L. King, Sam Procter, Daniel Andresen, John Hatcliff, Steve Warren, William

Spees, Raoul Praful Jetley, Paul L. Jones, and Sandy Weininger. An open test bed for

medical device integration and coordination. In ICSE Companion, pages 141–151, 2009.

[13] Carlos Salazar and Eugene Y. Vasserman. Retrofitting communication security into a

publish/subscribe middleware platform. In International Workshop on Software Engi-

neering in Healthcare (FHIES/SEHC), 2014.

[14] 45 CFR 164.312 - Technical safeguards, 2013. URL https://www.law.cornell.edu/

cfr/text/45/164.312.

[15] U.S. Department of Health and Human Services Office for Civil Rights. HIPAA Ad-

ministrative Simplification, March 2013.

[16] Andrew King, Dave Arney, Insup Lee, Oleg Sokolsky, John Hatcliff, and Sam Procter.

Prototyping closed loop physiologic control with the medical device coordination frame-

work. In ICSE Workshop on Software Engineering in Health Care (SEHC), pages 1–11,

2010.

90

https://www.openice.info/docs/1_overview.html
https://www.law.cornell.edu/cfr/text/45/164.312
https://www.law.cornell.edu/cfr/text/45/164.312

[17] National Electrical Manufacturers Association. Manufacturer disclosure statement for

medical device security (MDS2). HIMSS/NEMA Standard HN 1-2013, 2013.

[18] Karen J Arthur, Ann Christine Catlin, Amanda Quebe, and Alana Washington. Chang-

ing smart pump vendors: Lessons learned. Hospital pharmacy, 51(9):782–789, 2016.

[19] David F Ferraiolo, Ravi Sandhu, Serban Gavrila, D Richard Kuhn, and Ramaswamy

Chandramouli. Proposed NIST standard for role-based access control. ACM Transac-

tions on Information and System Security (TISSEC), 4(3):224–274, 2001.

[20] Vincent C. Hu, David Ferraiolo, Rick Kuhn, Arthur R. Friedman, Alan J. Lang, Mar-

garet M. Cogdell, Adam Schnitzer, Kenneth Sandlin, Robert Miller, Karen Scarfone,

et al. Guide to attribute based access control (ABAC) definition and considerations

(draft). NIST Special Publication 800-162, 2013.

[21] Vincent C. Hu, D. Richard Kuhn, and David F. Ferraiolo. Attribute-based access

control. IEEE Computer, 48(2):85–88, 2015.

[22] Syed Zain R. Rizvi, Philip W.L. Fong, Jason Crampton, and James Sellwood.

Relationship-based access control for an open-source medical records system. In ACM

Symposium on Access Control Models and Technologies (SACMAT), pages 113–124.

ACM, 2015.

[23] Xin Jin, Ravi Sandhu, and Ram Krishnan. RABAC: Role-centric attribute-based access

control. In International Conference on Mathematical Methods, Models, and Architec-

tures for Computer Network Security, pages 84–96. Springer, 2012.

[24] Indrakshi Ray, Toan C Ong, Indrajit Ray, and Michael G Kahn. Applying attribute

based access control for privacy preserving health data disclosure. In IEEE-EMBS

International Conference on Biomedical and Health Informatics (BHI), pages 1–4. IEEE,

2016.

[25] Ming Li, Shucheng Yu, Kui Ren, and Wenjing Lou. Securing personal health records

in cloud computing: Patient-centric and fine-grained data access control in multi-owner

91

settings. In International Conference on Security and Privacy in Communication Sys-

tems, pages 89–106. Springer, 2010.

[26] Philip WL Fong. Relationship-based access control: protection model and policy lan-

guage. In Proceedings of the ACM conference on Data and application security and

privacy, pages 191–202. ACM, 2011.

[27] John Hatcliff, Andrew King, Insup Lee, Alasdair MacDonald, Anura Fernando, Michael

Robkin, Eugene Y. Vasserman, Sandy Weininger, and Julian M. Goldman. Rationale

and architecture principles for medical application platforms. In International Confer-

ence on Cyber-Physical Systems (ICCPS), 2012.

[28] John Hatcliff, Eugene Y. Vasserman, Todd Carpenter, and Rand Whillock. Challenges

of distributed risk management for medical application platforms. In IEEE Symposium

on Product Compliance Engineering (ISPCE), 2018.

[29] Medical device “plug-and-play” interoperability program. http://mdpnp.org. (Ac-

cessed on 2/20/2017).

[30] Gerardo Pardo-Castellote. OMG data-distribution service: Architectural overview. In

International Conference on Distributed Computing Systems, Workshops, pages 200–

206. IEEE, 2003.

[31] Carlos Salazar. A security architecture for medical application platforms. Master’s

thesis, Kansas State University, 2014.

[32] Andrew L. King, Sanjian Chen, and Insup Lee. The middleware assurance substrate:

Enabling strong real-time guarantees in open systems with OpenFlow. In IEEE In-

ternational Symposium on Object/Component/Service-Oriented Real-Time Distributed

Computing (ISORC), pages 133–140. IEEE, 2014.

[33] Ravi S. Sandhu, Edward J. Coyne, Hal L. Feinstein, and Charles E. Youman. Role-based

access control models. IEEE Computer, 29(2):38–47, 1996.

92

http://mdpnp.org

[34] OASIS. eXtensible access control markup language (XACML) version 3.0.

http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html, Jan-

uary 2013.

[35] Markus Lorch, Seth Proctor, Rebekah Lepro, Dennis Kafura, and Sumit Shah. First

experiences using XACML for access control in distributed systems. In ACM Workshop

on XML Security, pages 25–37. ACM, 2003.

[36] Anna Carreras, Eva Rodŕıguez, and Jaime Delgado. Using XACML for access control

in social networks. In W3C Workshop on Access Control Application Scenarios, 2009.

[37] Markus Jung, Georg Kienesberger, Wolfgang Granzer, Martin Unger, and Wolfgang

Kastner. Privacy enabled web service access control using SAML and XACML for

home automation gateways. In International Conference for Internet Technology and

Secured Transactions (ICITST), pages 584–591. IEEE, 2011.

[38] Snezana Sucurovic. An approach to access control in electronic health record. Journal

of medical systems, 34(4):659–666, 2010.

[39] A.A. Abd El-Aziz and A. Kannan. Access control for healthcare data using extended

XACML-SRBAC model. In International Conference on Computer Communication and

Informatics (ICCCI), pages 1–4. IEEE, 2012.

[40] Alfa, Mar 2015. URL https://www.axiomatics.com/solutions/

products/authorization-for-applications/developer-tools-and-apis/

192-axiomatics-language-for-authorization-alfa.html.

[41] Dianxiang Xu, Zhenyu Wang, Shuai Peng, and Ning Shen. Automated fault localization

of XACML policies. In Proceedings of the ACM on Symposium on Access Control Models

and Technologies (SACMAT). ACM, 2016.

[42] Jean Eyers, David M.and Bacon and Ken Moody. OASIS role-based access control for

electronic health records. IEEE Proceedings – Software, 153(1), 2006.

93

http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html
https://www.axiomatics.com/solutions/products/authorization-for-applications/developer-tools-and-apis/192-axiomatics-language-for-authorization-alfa.html
https://www.axiomatics.com/solutions/products/authorization-for-applications/developer-tools-and-apis/192-axiomatics-language-for-authorization-alfa.html
https://www.axiomatics.com/solutions/products/authorization-for-applications/developer-tools-and-apis/192-axiomatics-language-for-authorization-alfa.html

[43] Jing Jin, Gail-Joon Ahn, Hongxin Hu, and Xinwen Covington, Michael J.and Zhang.

Patient-centric authorization framework for electronic healthcare services. Computers

& Security, 30(2):116–127, 2011.

[44] Thomas Hupperich, Hans Löhr, Ahmad-Reza Sadeghi, and Marcel Winandy. Flexible

patient-controlled security for electronic health records. In ACM SIGHIT International

Health Informatics Symposium, pages 727–732. ACM, 2012.

[45] Lillian Røstad. Access control in healthcare information systems. PhD thesis, Norwegian

University of Science and Technology, 2008.

[46] Ana Ferreira, David Chadwick, Pedro Farinha, Ricardo Correia, Gansen Zao, Rui

Chilro, and Luis Antunes. How to securely break into RBAC: The BTG-RBAC model.

In Annual Computer Security Applications Conference (ACSAC), pages 23–31. IEEE,

2009.

[47] Achim D Brucker and Helmut Petritsch. Extending access control models with break-

glass. In ACM Symposium on Access Control Models and Technologies (SACMAT),

pages 197–206. ACM, 2009.

[48] Eugene Y. Vasserman and John Hatcliff. Foundational security principles for medical

application platforms. Information Security Applications, 8267:213–217, 2014.

[49] Dean Povey. Optimistic security: A new access control paradigm. In New Security

Paradigms Workshop (NSPW), pages 40–45. ACM, 1999.

[50] Erik Rissanen, Babak Sadighi Firozabadi, and Marek Sergot. Towards a mechanism

for discretionary overriding of access control. In International Workshop on Security

Protocols (SPW), pages 312–319. Springer, 2004.

[51] Anna Ferreira, Ricardo Cruz-Correia, Luis Antunes, Pedro Farinha, E. Oliveira-

Palhares, David W. Chadwick, and Altamiro Costa-Pereira. How to break access control

in a controlled manner. In IEEE International Symposium on Computer-Based Medical

Systems (CBMS), pages 847–854. IEEE, 2006.

94

[52] Lillian Rostad and Ole Edsberg. A study of access control requirements for healthcare

systems based on audit trails from access logs. In Annual Computer Security Applica-

tions Conference (ACSAC), pages 175–186. IEEE, 2006.

[53] Mahdi Alizadeh, Sander Peters, Sandro Etalle, and Nicola Zannone. Behavior analysis in

the medical sector: theory and practice. In Proceedings of the Annual ACM Symposium

on Applied Computing, pages 1637–1646, 2018.

[54] Joint NEMA/COCIR/JIRA Security and Privacy Committee (SPC). Break glass pro-

cedure: Granting emergency access to critical ePHI systems. https://hipaa.yale.

edu/security/, December 2014.

[55] Steve Barrett. The MDCF PCA Shutoff App 0.3 Documentation. http://people.cs.

ksu.edu/~scbarrett/pcashutoff-doc/, 2015. (Accessed on 01/12/2017).

[56] Yu Jin Kim, Sam Procter, John Hatcliff, Venkatesh P. Ranganath, and Robby. Eco-

sphere principles for medical application platforms. In International Conference on

Healthcare Informatics (ICHI), pages 193–198, October 2015. doi: 10.1109/ICHI.2015.

30.

[57] Apache Shiro Documentation. Apache Shiro — Simple. Java. Security. https://shiro.

apache.org/documentation.html. (Accessed on 1/12/2017).

[58] Maduranga Siriwardena. Balana. https://github.com/wso2/balana, 2017. (Accessed

on 1/12/2017).

[59] Pivotal Software, Inc. Spring security. https://projects.spring.io/

spring-security/, 2017. (Accessed on 2/21/2017).

[60] Acciente, LLC. OACC — Java application security framework. http://

oaccframework.org/, 2016. (Accessed on 2/21/2017).

[61] Apache Shiro Caching. Apache Shiro — Simple. Java. Security. https://shiro.

apache.org/caching.html. (Accessed on 4/25/2017).

95

https://hipaa.yale.edu/security/
https://hipaa.yale.edu/security/
http://people.cs.ksu.edu/~scbarrett/pcashutoff-doc/
http://people.cs.ksu.edu/~scbarrett/pcashutoff-doc/
https://shiro.apache.org/documentation.html
https://shiro.apache.org/documentation.html
https://github.com/wso2/balana
https://projects.spring.io/spring-security/
https://projects.spring.io/spring-security/
http://oaccframework.org/
http://oaccframework.org/
https://shiro.apache.org/caching.html
https://shiro.apache.org/caching.html

[62] Mahdi Mankai and Luigi Logrippo. Access control policies: Modeling and validation.

In NOTERE Conference (Nouvelles Technologies de la Répartition), pages 85–91, 2005.

[63] JeeHyun Hwang, Tao Xie, Vincent Hu, and Mine Altunay. ACPT: A tool for modeling

and verifying access control policies. In IEEE International Symposium on Policies for

Distributed Systems and Networks (POLICY), pages 40–43. IEEE, 2010.

[64] Kathi Fisler, Shriram Krishnamurthi, Leo A Meyerovich, and Michael Carl Tschantz.

Verification and change-impact analysis of access-control policies. In Proceedings of the

International conference on Software engineering (ICSE), pages 196–205, 2005.

[65] Jianli Ma, Dongfang Zhang, Guoai Xu, and Yixian Yang. Model checking based security

policy verification and validation. In International Workshop on Intelligent Systems and

Applications, pages 1–4. IEEE, 2010.

[66] Loreto Bravo, James Cheney, and Irini Fundulaki. Accon: checking consistency of xml

write-access control policies. In Proceedings of the International conference on Extending

database technology: Advances in database technology, pages 715–719, 2008.

[67] Yu Lei, Raghu Kacker, D Richard Kuhn, Vadim Okun, and James Lawrence. IPOG:

A general strategy for t-way software testing. In IEEE International Conference and

Workshops on the Engineering of Computer-Based Systems (ECBS), pages 549–556.

IEEE, 2007.

[68] NIST. Access control policy tool (ACPT). https://www.nist.gov/

programs-projects/access-control-policy-tool-acpt, 2018. (Accessed on

3/13/2018).

[69] Alessandro Cimatti, Edmund Clarke, Fausto Giunchiglia, and Marco Roveri. NuSMV: A

new symbolic model verifier. In International conference on computer aided verification

(CAV), pages 495–499. Springer, 1999.

[70] NIST. Automated combinatorial testing for software (ACTS). https://csrc.nist.

gov/Projects/Automated-Combinatorial-Testing-for-Software, 2018.

96

https://www.nist.gov/programs-projects/access-control-policy-tool-acpt
https://www.nist.gov/programs-projects/access-control-policy-tool-acpt
https://csrc.nist.gov/Projects/Automated-Combinatorial-Testing-for-Software
https://csrc.nist.gov/Projects/Automated-Combinatorial-Testing-for-Software

[71] Evan Martin and Tao Xie. A fault model and mutation testing of access control policies.

In International conference on World Wide Web (WWW), pages 667–676. ACM, 2007.

[72] Dianxiang Xu, Roshan Shrestha, and Ning Shen. Automated coverage-based testing

of XACML policies. In ACM Symposium on Access Control Models and Technologies

(SACMAT), pages 3–14. ACM, 2018.

[73] Ravi Sandhu and Qamar Munawer. How to do discretionary access control using roles.

In Proceedings of the third ACM workshop on Role-based access control, pages 47–54,

1998.

[74] Paul Voigt and Axel Von dem Bussche. The EU general data protection regulation

(GDPR). A Practical Guide, 1st Ed., Cham: Springer International Publishing, 2017.

[75] Benjamin Stark, Heiko Gewald, Heinrich Lautenbacher, Ulrich Haase, and Siegmar

Ruff. Misuse of ‘break-the-glass’ policies in hospitals: Detecting unauthorized access to

sensitive patient health data. International Journal of Information Security and Privacy

(IJISP), 12(3):100–122, 2018.

[76] Wazuh. URL https://documentation.wazuh.com/3.12/user-manual/overview.

html.

[77] Rory Bray, Daniel Cid, and Andrew Hay. OSSEC host-based intrusion detection guide.

Syngress, 2008.

97

https://documentation.wazuh.com/3.12/user-manual/overview.html
https://documentation.wazuh.com/3.12/user-manual/overview.html

Appendix A

ALFA Policies

1 namespace healthcare_facility {

2 import BTG_Attributes.*

3 import Attributes.*

5 obligation log = "obligations.normal"

6 obligation btgAudit = "obligations.btg"

8 // ehr specific btg access rule

9 rule emg_ehr_rule {

10 target clause EMG.BTG == true

12 //42 refers to 42CFR

13 conditio "clinician" == stringOneAndOnly(user.userType)

14 && not (integerOneAndOnly(resource.group) == 3)

15 && (integerOneAndOnly(patient.currentLocationId) ==

integerOneAndOnly(user.currentLocationId)

16 || integerOneAndOnly(patient.currentLocationId) == 9110)

17 && not (integerOneAndOnly(patient.currentLocationId) == 42)

98

19 permit

20 on permit {

21 // logging info

22 obligation btgAudit {

23 log.btgMessage = "emg_ehr sample 1"

24 }

25 }

26 }

28 // device data specific btg access rule

29 rule emg_device_rule {

30 // Any clinician can set infusion rate up to hard limit for a patient during

an emergency if:

31 // a. system is in emergency state (controlled or uncontrolled BTG) due to a

requested emergency access control override

32 // b. clinician is denied access to infusion rate settings

33 // c. clinician is physically located within the same facility as patient

34 // d. the requested resource (infusion rate) is NOT identified as emergency

exempt (BTG-restricted) resource

35 // e. the patient and clinician are two different individuals

37 target clause EMG.BTG == true

39 condition "clinician" == stringOneAndOnly(user.userType)

40 && device.devType == "pca"

41 && not (integerOneAndOnly(resource.group) == 3)

42 && (integerOneAndOnly(patient.currentLocationId) ==

integerOneAndOnly(user.currentLocationId))

99

43 && not (integerOneAndOnly(patient.currentLocationId) == 42)

44 && not (integerOneAndOnly(patient.patientId) ==

integerOneAndOnly(user.userId))

46 permit

47 on permit {

48 // logging info

49 obligation btgAudit {

50 log.btgMessage = "emg_dev sample 1"

51 }

52 }

53 }

55 rule ehr_clinician_rule {

56 target clause user.role == "nurse"

57 or user.role == "physician"

59 // making sure a care relation exits between patient and care giver

60 condition integerIsIn(integerOneAndOnly(user.userId),

patient.assignedClinicianId)

61 && patient.hasOrHadAppointmentWithin30Days == true

62 && integerIsIn(integerOneAndOnly(user.currentLocationId),

patient.appointmentLocationId)

64 permit

65 on permit {

66 // logging info

67 obligation log {

68 log.message = "ehr_clinician_rule sample 1"

100

69 }

70 }

71 }

73 rule ehr_patient_rule {

74 target clause user.userType == "patient"

76 // making sure the user is the patient whose ehr is being accessed

77 condition not (stringOneAndOnly(resource.resourceType) == "clinician_note")

78 && (integerOneAndOnly(user.userId) ==

integerOneAndOnly(patient.patientId))

80 permit

81 on permit {

82 // logging info

83 obligation log {

84 log.message = "ehr_patient_rule sample 1"

85 }

86 }

87 }

89 rule ehr_others_rule {

90 target clause user.userType == "others"

91 clause resource.resourceType == "med_history"

93 // making sure the user is the patient whose ehr is being accessed

94 condition integerIsIn(integerOneAndOnly(user.userId),

patient.authorizedIndividuals)

101

96 permit

97 on permit {

98 // logging info

99 obligation log {

100 log.message = "ehr_others_rule sample 1"

101 }

102 }

103 }

105 rule vitals_patient_rule {

106 target clause resource.resourceType == "vitals"

108 condition

timeGreaterThanOrEqual(timeOneAndOnly(resource.resourceExchangeTime),

timeOneAndOnly(currentTime))

109 && (

110 user.role == "remote_clinician"

111 || user.userType == "device"

112 || user.userType == "app"

113 || (

114 user.userType == "clinician"

115 && user.status == "active"

116 && integerOneAndOnly(user.currentLocationId) ==

integerOneAndOnly(patient.currentLocationId)

117)

118)

120 permit

121 on permit {

102

122 // logging info

123 obligation log {

124 log.message = "vitals_patient_rule sample 1"

125 }

126 }

127 }

129 rule personal_info_patient_read_rule {

130 target clause resource.resourceType == "personal_info"

132 condition ((

133 user.role == "physician"

134 || user.role == "nurse"

135)

136 && user.status == "active"

137 && integerIsIn(integerOneAndOnly(user.userId), patient.assignedClinicianId)

138 && patient.hasOrHadAppointmentWithin30Days == true

139 && integerIsIn(integerOneAndOnly(user.currentLocationId),

patient.appointmentLocationId)

140)

141 || ((integerOneAndOnly(user.userId) == integerOneAndOnly(patient.patientId))

142 && user.userType == "patient")

144 permit

145 on permit {

146 // logging info

147 obligation log {

148 log.message = "personal_info_patient_read_rule sample 1"

149 }

103

150 }

151 }

153 rule personal_info_patient_write_rule {

154 target clause resource.resourceType == "personal_info"

156 condition (not (resource.resourceName == "patient_vip_status")

157 && ((

158 user.role == "physician"

159 || user.role == "nurse"

160)

161 && user.status == "active"

162 && integerIsIn(integerOneAndOnly(user.userId), patient.assignedClinicianId)

163 && patient.hasOrHadAppointmentWithin30Days == true

164 && integerIsIn(integerOneAndOnly(user.currentLocationId),

patient.appointmentLocationId))

165)

166 || (resource.resourceName == "patient_vip_status"

167 && user.userType == "admin")

169 permit

170 on permit {

171 // logging info

172 obligation log {

173 log.message = "personal_info_patient_write_rule sample 1"

174 }

175 }

176 }

104

178 rule device_alarm_rule {

179 // only <<other>> med devices and apps can set or get alarm status

181 condition ((integerIsIn(integerOneAndOnly(user.userId),

patient.assignedClinicianId))

182 && (integerOneAndOnly(user.currentLocationId) ==

integerOneAndOnly(patient.currentLocationId))

183)

184 //should we also consider device/app location and relation, or it is

assumed to be in the same location (maybe for the time)?

185 || user.userType == "device"

186 || user.userType == "app"

188 permit

189 on permit {

190 // logging info

191 obligation log {

192 log.message = "device_alarm_rule sample 1"

193 }

194 }

195 }

197 rule device_configuration_rule {

198 // only admins can change the config on a device

200 condition (integerOneAndOnly(user.currentLocationId) ==

integerOneAndOnly(patient.currentLocationId))

201 //should we also consider device/app location and relation, or it is assumed

to be in the same location (maybe for the time)?

105

202 && (user.userType == "admin"

203 || user.userType == "app")

205 permit

206 on permit {

207 // logging info

208 obligation log {

209 log.message = "device_configuration_rule sample 1"

210 }

211 }

212 }

214 rule device_infusion_rate_write_rule {

215 target clause device.devType == "pca"

216 clause action.actionId == "write"

218 // An assigned clinician for a patient can set the infusion rate up to soft

limit for the patient (e.g. write access for infusion rate for a PCA

pump).

219 //

220 // or:

221 //

222 // An assigned physician can only set infusion rate above soft limit (but not

beyond hard limit).

223 //

224 // or:

225 //

226 // An ER clinician can set infusion rate (up to hard limit) for a patient

while in ER

106

227 // (think of a new patient admitted to ER)

229 condition ((integerIsIn(integerOneAndOnly(user.userId),

patient.assignedClinicianId)

230 && integerOneAndOnly(user.currentLocationId) ==

integerOneAndOnly(patient.currentLocationId))

231 && (

232 (device.userProvidedInfusionRate <= device.infusionRateSoftLimit &&

user.role == "nurse")

233 || (user.role == "physician"

234 && device.userProvidedInfusionRate <= device.infusionRateHardLimit)))

235 ||

236 (user.role == "er_clinician"

237 && patient.currentStatus == "emg"

238 && device.userProvidedInfusionRate <= device.infusionRateHardLimit)

241 permit

242 on permit {

243 // logging info

244 obligation log {

245 log.message = "device_infusion_rate_write_rule sample 1"

246 }

247 }

248 }

250 rule device_infusion_rate_read_rule {

251 target clause device.devType == "pca"

252 clause action.actionId == "read"

107

254 // An assigned clinician for a patient can set the infusion rate up to soft

limit for the patient (e.g. write access for infusion rate for a PCA

pump).

255 //

256 // or:

257 //

258 // An assigned physician can only set infusion rate above soft limit (but not

beyond hard limit).

259 //

260 // or:

261 //

262 // An ER clinician can set infusion rate (up to hard limit) for a patient

while in ER

263 // (think of a new patient admitted to ER)

265 condition (device.infusionRate >= 0)

266 && (((integerOneAndOnly(user.currentLocationId) ==

integerOneAndOnly(patient.currentLocationId))

267 && (user.userType == "clinician" || user.userType == "patient")

268)

269 || (user.userType == "app"

270 || user.userType == "device")

271)

273 permit

274 on permit {

275 // logging info

276 obligation log {

108

277 log.message = "device_infusion_rate_read_rule sample 1"

278 }

279 }

280 }

282 rule device_pca_vital_read_rule {

283 target clause device.devType == "pca"

284 clause action.actionId == "read"

285 // An assigned clinician for a patient can set the infusion rate up to soft

limit for the patient (e.g. write access for infusion rate for a PCA

pump).

286 //

287 // or:

288 //

289 // An assigned physician can only set infusion rate above soft limit (but not

beyond hard limit).

290 //

291 // or:

292 //

293 // An ER clinician can set infusion rate (up to hard limit) for a patient

while in ER

294 // (think of a new patient admitted to ER)

296 condition (((integerOneAndOnly(user.currentLocationId) ==

integerOneAndOnly(patient.currentLocationId))

297 && (user.userType == "clinician" || user.userType == "patient")

298)

299 || (user.userType == "app"

300 || user.userType == "device")

109

301)

303 permit

304 on permit {

305 // logging info

306 obligation log {

307 log.message = "device_pca_vital_read_rule sample 1"

308 }

309 }

310 }

312 rule default_deny {

313 deny

314 on deny {

315 // logging info

316 obligation log {

317 log.message = "device_pca_vital_read_rule sample 1"

318 }

319 }

320 }

322 policy ehr_clinician_policy {

323 target clause resource.resourceCategory == "ehr"

324 clause action.actionId == "write" or action.actionId == "read"

325 apply permitOverrides

326 ehr_clinician_rule

327 emg_ehr_rule

328 }

110

330 policy ehr_patient_policy {

331 target clause resource.resourceCategory == "ehr"

332 clause action.actionId == "read"

333 apply permitOverrides

334 ehr_patient_rule

335 }

337 policy ehr_personal_info_policy {

338 target clause resource.resourceCategory == "ehr"

339 clause action.actionId == "read"

340 apply permitOverrides

341 personal_info_patient_read_rule

342 personal_info_patient_write_rule

343 }

346 policy ehr_others_policy {

347 target clause resource.resourceCategory == "ehr"

348 clause action.actionId == "read"

349 apply permitOverrides

350 ehr_others_rule

351 }

353 policy vitals_patient_policy {

354 target clause resource.resourceCategory == "ehr"

355 clause action.actionId == "read"

356 or action.actionId == "write"

357 apply permitOverrides

358 vitals_patient_rule

111

359 }

361 policy device_pca_alarm_policy {

362 target clause resource.resourceName == "pca_alarm"

363 clause action.actionId == "read"

364 or action.actionId == "write"

365 apply permitOverrides

366 device_alarm_rule

367 }

369 policy device_pca_infusion_rate_policy {

370 target clause resource.resourceName == "pca_infusion_rate"

371 clause action.actionId == "write"

372 or action.actionId == "read"

373 apply permitOverrides

374 device_infusion_rate_write_rule

375 device_infusion_rate_read_rule

376 emg_device_rule

377 }

379 policy device_pca_vitals_policy {

380 target clause resource.resourceName == "pca_vitals"

381 clause action.actionId == "read"

382 apply permitOverrides

383 device_pca_vital_read_rule

384 emg_device_rule

385 }

387 policy device_pca_configuration_policy {

112

388 target clause resource.resourceName == "pca_configuration"

389 clause action.actionId == "write"

390 or action.actionId == "read"

391 apply permitOverrides

392 device_configuration_rule

393 emg_device_rule

394 }

396 policy default_deny_policy {

397 apply permitOverrides

398 default_deny

399 }

401 policyset ehr_policy_set {

402 apply permitOverrides

403 ehr_personal_info_policy

404 ehr_clinician_policy

405 vitals_patient_policy

406 ehr_others_policy

407 ehr_patient_policy

408 device_pca_alarm_policy

409 device_pca_infusion_rate_policy

410 device_pca_configuration_policy

411 device_pca_vitals_policy

412 }

413 }

113

Appendix B

3- and 4-way Combinatorial Test

Cases

Listing B.1: Results of ACPT heuristic 3-way merged testing: BTG policy

1: (resource_id = btg)&(BTG = True)&(resource_group = normal)&(role =
sys_admin)->decision = Deny

2: (resource_id = btg)&(BTG = False)&(resource_group = btg_restricted)&(role
= sys_admin)->decision = Permit

3: (resource_id = btg)&(BTG = True)&(resource_group = btg_allowed)&(role =
sys_admin)->decision = Deny

4: (resource_id = auth_policy)&(BTG = False)&(resource_group = normal)&(role
= sys_admin)->decision = Deny

5: (resource_id = auth_policy)&(BTG = True)&(resource_group = btg_restricted
)&(role = sys_admin)->decision = Deny

6: (resource_id = auth_policy)&(BTG = False)&(resource_group = btg_allowed)
&(role = sys_admin)->decision = Deny

7: (resource_id = flowRate)&(BTG = True)&(resource_group = normal)&(role =
sys_admin)->decision = Deny

8: (resource_id = flowRate)&(BTG = False)&(resource_group = btg_restricted)
&(role = sys_admin)->decision = Deny

9: (resource_id = flowRate)&(BTG = True)&(resource_group = btg_allowed)&(
role = sys_admin)->decision = Deny

114

10: (resource_id = btg)&(BTG = False)&(resource_group = normal)&(role =
physician)->decision = Permit

11: (resource_id = btg)&(BTG = True)&(resource_group = btg_restricted)&(role
= physician)->decision = Deny

12: (resource_id = btg)&(BTG = False)&(resource_group = btg_allowed)&(role =
physician)->decision = Permit

13: (resource_id = auth_policy)&(BTG = True)&(resource_group = normal)&(role
= physician)->decision = Deny

14: (resource_id = auth_policy)&(BTG = False)&(resource_group =
btg_restricted)&(role = physician)->decision = Deny

15: (resource_id = auth_policy)&(BTG = True)&(resource_group = btg_allowed)
&(role = physician)->decision = Deny

16: (resource_id = flowRate)&(BTG = False)&(resource_group = normal)&(role =
physician)->decision = Deny

17: (resource_id = flowRate)&(BTG = True)&(resource_group = btg_restricted)
&(role = physician)->decision = Deny

18: (resource_id = flowRate)&(BTG = False)&(resource_group = btg_allowed)&(
role = physician)->decision = Deny

19: (resource_id = btg)&(BTG = True)&(resource_group = normal)&(role =
visitor)->decision = Deny

20: (resource_id = btg)&(BTG = False)&(resource_group = btg_restricted)&(
role = visitor)->decision = Permit

21: (resource_id = btg)&(BTG = True)&(resource_group = btg_allowed)&(role =
visitor)->decision = Deny

22: (resource_id = auth_policy)&(BTG = False)&(resource_group = normal)&(
role = visitor)->decision = Deny

23: (resource_id = auth_policy)&(BTG = True)&(resource_group =
btg_restricted)&(role = visitor)->decision = Deny

24: (resource_id = auth_policy)&(BTG = False)&(resource_group = btg_allowed)
&(role = visitor)->decision = Deny

25: (resource_id = flowRate)&(BTG = True)&(resource_group = normal)&(role =
visitor)->decision = Deny

26: (resource_id = flowRate)&(BTG = False)&(resource_group = btg_restricted)
&(role = visitor)->decision = Deny

27: (resource_id = flowRate)&(BTG = False)&(resource_group = btg_allowed)&(
role = visitor)->decision = Deny

115

28: (resource_id = btg)&(BTG = True)&(resource_group = normal)&(role = nurse
)->decision = Deny

29: (resource_id = btg)&(BTG = False)&(resource_group = btg_restricted)&(
role = nurse)->decision = Permit

30: (resource_id = btg)&(BTG = True)&(resource_group = btg_allowed)&(role =
nurse)->decision = Deny

31: (resource_id = auth_policy)&(BTG = False)&(resource_group = normal)&(
role = nurse)->decision = Deny

32: (resource_id = auth_policy)&(BTG = True)&(resource_group =
btg_restricted)&(role = nurse)->decision = Deny

33: (resource_id = auth_policy)&(BTG = False)&(resource_group = btg_allowed)
&(role = nurse)->decision = Deny

34: (resource_id = flowRate)&(BTG = True)&(resource_group = normal)&(role =
nurse)->decision = Deny

35: (resource_id = flowRate)&(BTG = False)&(resource_group = btg_restricted)
&(role = nurse)->decision = Deny

36: (resource_id = flowRate)&(BTG = True)&(resource_group = btg_allowed)&(
role = nurse)->decision = Deny

116

Listing B.2: Results of ACPT heuristic 3-way merged testing: flowRate policy

1: (resource_id = btg)&(BTG = True)&(resource_group = normal)&(role =
sys_admin)->decision = Deny

2: (resource_id = btg)&(BTG = False)&(resource_group = btg_restricted)&(role
= sys_admin)->decision = Deny

3: (resource_id = btg)&(BTG = True)&(resource_group = btg_allowed)&(role =
sys_admin)->decision = Deny

4: (resource_id = auth_policy)&(BTG = False)&(resource_group = normal)&(role
= sys_admin)->decision = Permit

5: (resource_id = auth_policy)&(BTG = True)&(resource_group = btg_restricted
)&(role = sys_admin)->decision = Deny

6: (resource_id = auth_policy)&(BTG = False)&(resource_group = btg_allowed)
&(role = sys_admin)->decision = Deny

7: (resource_id = flowRate)&(BTG = True)&(resource_group = normal)&(role =
sys_admin)->decision = Deny

8: (resource_id = flowRate)&(BTG = False)&(resource_group = btg_restricted)
&(role = sys_admin)->decision = Deny

9: (resource_id = flowRate)&(BTG = True)&(resource_group = btg_allowed)&(
role = sys_admin)->decision = Permit

10: (resource_id = btg)&(BTG = False)&(resource_group = normal)&(role =
physician)->decision = Permit

11: (resource_id = btg)&(BTG = True)&(resource_group = btg_restricted)&(role
= physician)->decision = Deny

12: (resource_id = btg)&(BTG = False)&(resource_group = btg_allowed)&(role =
physician)->decision = Deny

13: (resource_id = auth_policy)&(BTG = True)&(resource_group = normal)&(role
= physician)->decision = Deny

14: (resource_id = auth_policy)&(BTG = False)&(resource_group =
btg_restricted)&(role = physician)->decision = Deny

15: (resource_id = auth_policy)&(BTG = True)&(resource_group = btg_allowed)
&(role = physician)->decision = Deny

16: (resource_id = flowRate)&(BTG = False)&(resource_group = normal)&(role =
physician)->decision = Permit

17: (resource_id = flowRate)&(BTG = True)&(resource_group = btg_restricted)
&(role = physician)->decision = Deny

117

18: (resource_id = flowRate)&(BTG = False)&(resource_group = btg_allowed)&(
role = physician)->decision = Deny

19: (resource_id = btg)&(BTG = True)&(resource_group = normal)&(role =
visitor)->decision = Deny

20: (resource_id = btg)&(BTG = False)&(resource_group = btg_restricted)&(
role = visitor)->decision = Deny

21: (resource_id = btg)&(BTG = True)&(resource_group = btg_allowed)&(role =
visitor)->decision = Deny

22: (resource_id = auth_policy)&(BTG = False)&(resource_group = normal)&(
role = visitor)->decision = Deny

23: (resource_id = auth_policy)&(BTG = True)&(resource_group =
btg_restricted)&(role = visitor)->decision = Deny

24: (resource_id = auth_policy)&(BTG = False)&(resource_group = btg_allowed)
&(role = visitor)->decision = Deny

25: (resource_id = flowRate)&(BTG = True)&(resource_group = normal)&(role =
visitor)->decision = Deny

26: (resource_id = flowRate)&(BTG = False)&(resource_group = btg_restricted)
&(role = visitor)->decision = Deny

27: (resource_id = flowRate)&(BTG = False)&(resource_group = btg_allowed)&(
role = visitor)->decision = Deny

28: (resource_id = btg)&(BTG = True)&(resource_group = normal)&(role = nurse
)->decision = Deny

29: (resource_id = btg)&(BTG = False)&(resource_group = btg_restricted)&(
role = nurse)->decision = Deny

30: (resource_id = btg)&(BTG = True)&(resource_group = btg_allowed)&(role =
nurse)->decision = Deny

31: (resource_id = auth_policy)&(BTG = False)&(resource_group = normal)&(
role = nurse)->decision = Deny

32: (resource_id = auth_policy)&(BTG = True)&(resource_group =
btg_restricted)&(role = nurse)->decision = Deny

33: (resource_id = auth_policy)&(BTG = False)&(resource_group = btg_allowed)
&(role = nurse)->decision = Deny

34: (resource_id = flowRate)&(BTG = True)&(resource_group = normal)&(role =
nurse)->decision = Permit

35: (resource_id = flowRate)&(BTG = False)&(resource_group = btg_restricted)

118

&(role = nurse)->decision = Deny

36: (resource_id = flowRate)&(BTG = True)&(resource_group = btg_allowed)&(
role = nurse)->decision = Permit

119

Listing B.3: Results of ACPT heuristic 4-way combined testing: BTG policy

1: (resource_id = btg)&(BTG = True)&(resource_group = normal)&(role =
sys_admin)->decision = Deny

2: (resource_id = btg)&(BTG = False)&(resource_group = normal)&(role =
sys_admin)->decision = Permit

3: (resource_id = btg)&(BTG = True)&(resource_group = btg_restricted)&(role
= sys_admin)->decision = Deny

4: (resource_id = btg)&(BTG = False)&(resource_group = btg_restricted)&(role
= sys_admin)->decision = Permit

5: (resource_id = btg)&(BTG = True)&(resource_group = btg_allowed)&(role =
sys_admin)->decision = Deny

6: (resource_id = btg)&(BTG = False)&(resource_group = btg_allowed)&(role =
sys_admin)->decision = Permit

7: (resource_id = auth_policy)&(BTG = True)&(resource_group = normal)&(role
= sys_admin)->decision = Deny

8: (resource_id = auth_policy)&(BTG = False)&(resource_group = normal)&(role
= sys_admin)->decision = Deny

9: (resource_id = auth_policy)&(BTG = True)&(resource_group = btg_restricted
)&(role = sys_admin)->decision = Deny

10: (resource_id = auth_policy)&(BTG = False)&(resource_group =
btg_restricted)&(role = sys_admin)->decision = Deny

11: (resource_id = auth_policy)&(BTG = True)&(resource_group = btg_allowed)
&(role = sys_admin)->decision = Deny

12: (resource_id = auth_policy)&(BTG = False)&(resource_group = btg_allowed)
&(role = sys_admin)->decision = Deny

13: (resource_id = flowRate)&(BTG = True)&(resource_group = normal)&(role =
sys_admin)->decision = Deny

14: (resource_id = flowRate)&(BTG = False)&(resource_group = normal)&(role =
sys_admin)->decision = Deny

15: (resource_id = flowRate)&(BTG = True)&(resource_group = btg_restricted)
&(role = sys_admin)->decision = Deny

16: (resource_id = flowRate)&(BTG = False)&(resource_group = btg_restricted)
&(role = sys_admin)->decision = Deny

17: (resource_id = flowRate)&(BTG = True)&(resource_group = btg_allowed)&(
role = sys_admin)->decision = Deny

120

18: (resource_id = flowRate)&(BTG = False)&(resource_group = btg_allowed)&(
role = sys_admin)->decision = Deny

19: (resource_id = btg)&(BTG = True)&(resource_group = normal)&(role =
physician)->decision = Deny

20: (resource_id = btg)&(BTG = False)&(resource_group = normal)&(role =
physician)->decision = Permit

21: (resource_id = btg)&(BTG = True)&(resource_group = btg_restricted)&(role
= physician)->decision = Deny

22: (resource_id = btg)&(BTG = False)&(resource_group = btg_restricted)&(
role = physician)->decision = Permit

23: (resource_id = btg)&(BTG = True)&(resource_group = btg_allowed)&(role =
physician)->decision = Deny

24: (resource_id = btg)&(BTG = False)&(resource_group = btg_allowed)&(role =
physician)->decision = Permit

25: (resource_id = auth_policy)&(BTG = True)&(resource_group = normal)&(role
= physician)->decision = Deny

26: (resource_id = auth_policy)&(BTG = False)&(resource_group = normal)&(
role = physician)->decision = Deny

27: (resource_id = auth_policy)&(BTG = True)&(resource_group =
btg_restricted)&(role = physician)->decision = Deny

28: (resource_id = auth_policy)&(BTG = False)&(resource_group =
btg_restricted)&(role = physician)->decision = Deny

29: (resource_id = auth_policy)&(BTG = True)&(resource_group = btg_allowed)
&(role = physician)->decision = Deny

30: (resource_id = auth_policy)&(BTG = False)&(resource_group = btg_allowed)
&(role = physician)->decision = Deny

31: (resource_id = flowRate)&(BTG = True)&(resource_group = normal)&(role =
physician)->decision = Deny

32: (resource_id = flowRate)&(BTG = False)&(resource_group = normal)&(role =
physician)->decision = Deny

33: (resource_id = flowRate)&(BTG = True)&(resource_group = btg_restricted)
&(role = physician)->decision = Deny

34: (resource_id = flowRate)&(BTG = False)&(resource_group = btg_restricted)
&(role = physician)->decision = Deny

35: (resource_id = flowRate)&(BTG = True)&(resource_group = btg_allowed)&(

121

role = physician)->decision = Deny

36: (resource_id = flowRate)&(BTG = False)&(resource_group = btg_allowed)&(
role = physician)->decision = Deny

37: (resource_id = btg)&(BTG = True)&(resource_group = normal)&(role =
visitor)->decision = Deny

38: (resource_id = btg)&(BTG = False)&(resource_group = normal)&(role =
visitor)->decision = Permit

39: (resource_id = btg)&(BTG = True)&(resource_group = btg_restricted)&(role
= visitor)->decision = Deny

40: (resource_id = btg)&(BTG = False)&(resource_group = btg_restricted)&(
role = visitor)->decision = Permit

41: (resource_id = btg)&(BTG = True)&(resource_group = btg_allowed)&(role =
visitor)->decision = Deny

42: (resource_id = btg)&(BTG = False)&(resource_group = btg_allowed)&(role =
visitor)->decision = Permit

43: (resource_id = auth_policy)&(BTG = True)&(resource_group = normal)&(role
= visitor)->decision = Deny

44: (resource_id = auth_policy)&(BTG = False)&(resource_group = normal)&(
role = visitor)->decision = Deny

45: (resource_id = auth_policy)&(BTG = True)&(resource_group =
btg_restricted)&(role = visitor)->decision = Deny

46: (resource_id = auth_policy)&(BTG = False)&(resource_group =
btg_restricted)&(role = visitor)->decision = Deny

47: (resource_id = auth_policy)&(BTG = True)&(resource_group = btg_allowed)
&(role = visitor)->decision = Deny

48: (resource_id = auth_policy)&(BTG = False)&(resource_group = btg_allowed)
&(role = visitor)->decision = Deny

49: (resource_id = flowRate)&(BTG = True)&(resource_group = normal)&(role =
visitor)->decision = Deny

50: (resource_id = flowRate)&(BTG = False)&(resource_group = normal)&(role =
visitor)->decision = Deny

51: (resource_id = flowRate)&(BTG = True)&(resource_group = btg_restricted)
&(role = visitor)->decision = Deny

52: (resource_id = flowRate)&(BTG = False)&(resource_group = btg_restricted)
&(role = visitor)->decision = Deny

122

53: (resource_id = flowRate)&(BTG = True)&(resource_group = btg_allowed)&(
role = visitor)->decision = Deny

54: (resource_id = flowRate)&(BTG = False)&(resource_group = btg_allowed)&(
role = visitor)->decision = Deny

55: (resource_id = btg)&(BTG = True)&(resource_group = normal)&(role = nurse
)->decision = Deny

56: (resource_id = btg)&(BTG = False)&(resource_group = normal)&(role =
nurse)->decision = Permit

57: (resource_id = btg)&(BTG = True)&(resource_group = btg_restricted)&(role
= nurse)->decision = Deny

58: (resource_id = btg)&(BTG = False)&(resource_group = btg_restricted)&(
role = nurse)->decision = Permit

59: (resource_id = btg)&(BTG = True)&(resource_group = btg_allowed)&(role =
nurse)->decision = Deny

60: (resource_id = btg)&(BTG = False)&(resource_group = btg_allowed)&(role =
nurse)->decision = Permit

61: (resource_id = auth_policy)&(BTG = True)&(resource_group = normal)&(role
= nurse)->decision = Deny

62: (resource_id = auth_policy)&(BTG = False)&(resource_group = normal)&(
role = nurse)->decision = Deny

63: (resource_id = auth_policy)&(BTG = True)&(resource_group =
btg_restricted)&(role = nurse)->decision = Deny

64: (resource_id = auth_policy)&(BTG = False)&(resource_group =
btg_restricted)&(role = nurse)->decision = Deny

65: (resource_id = auth_policy)&(BTG = True)&(resource_group = btg_allowed)
&(role = nurse)->decision = Deny

66: (resource_id = auth_policy)&(BTG = False)&(resource_group = btg_allowed)
&(role = nurse)->decision = Deny

67: (resource_id = flowRate)&(BTG = True)&(resource_group = normal)&(role =
nurse)->decision = Deny

68: (resource_id = flowRate)&(BTG = False)&(resource_group = normal)&(role =
nurse)->decision = Deny

69: (resource_id = flowRate)&(BTG = True)&(resource_group = btg_restricted)
&(role = nurse)->decision = Deny

70: (resource_id = flowRate)&(BTG = False)&(resource_group = btg_restricted)
&(role = nurse)->decision = Deny

123

71: (resource_id = flowRate)&(BTG = True)&(resource_group = btg_allowed)&(
role = nurse)->decision = Deny

72: (resource_id = flowRate)&(BTG = False)&(resource_group = btg_allowed)&(
role = nurse)->decision = Deny

124

Listing B.4: Results of ACPT heuristic 4-way combined testing: flowRate policy

1: (resource_id = btg)&(BTG = True)&(resource_group = normal)&(role =
sys_admin)->decision = Deny

2: (resource_id = btg)&(BTG = False)&(resource_group = normal)&(role =
sys_admin)->decision = Permit

3: (resource_id = btg)&(BTG = True)&(resource_group = btg_restricted)&(role
= sys_admin)->decision = Deny

4: (resource_id = btg)&(BTG = False)&(resource_group = btg_restricted)&(role
= sys_admin)->decision = Deny

5: (resource_id = btg)&(BTG = True)&(resource_group = btg_allowed)&(role =
sys_admin)->decision = Deny

6: (resource_id = btg)&(BTG = False)&(resource_group = btg_allowed)&(role =
sys_admin)->decision = Deny

7: (resource_id = auth_policy)&(BTG = True)&(resource_group = normal)&(role
= sys_admin)->decision = Permit

8: (resource_id = auth_policy)&(BTG = False)&(resource_group = normal)&(role
= sys_admin)->decision = Permit

9: (resource_id = auth_policy)&(BTG = True)&(resource_group = btg_restricted
)&(role = sys_admin)->decision = Deny

10: (resource_id = auth_policy)&(BTG = False)&(resource_group =
btg_restricted)&(role = sys_admin)->decision = Deny

11: (resource_id = auth_policy)&(BTG = True)&(resource_group = btg_allowed)
&(role = sys_admin)->decision = Deny

12: (resource_id = auth_policy)&(BTG = False)&(resource_group = btg_allowed)
&(role = sys_admin)->decision = Deny

13: (resource_id = flowRate)&(BTG = True)&(resource_group = normal)&(role =
sys_admin)->decision = Deny

14: (resource_id = flowRate)&(BTG = False)&(resource_group = normal)&(role =
sys_admin)->decision = Deny

15: (resource_id = flowRate)&(BTG = True)&(resource_group = btg_restricted)
&(role = sys_admin)->decision = Deny

16: (resource_id = flowRate)&(BTG = False)&(resource_group = btg_restricted)
&(role = sys_admin)->decision = Deny

17: (resource_id = flowRate)&(BTG = True)&(resource_group = btg_allowed)&(
role = sys_admin)->decision = Permit

125

18: (resource_id = flowRate)&(BTG = False)&(resource_group = btg_allowed)&(
role = sys_admin)->decision = Deny

19: (resource_id = btg)&(BTG = True)&(resource_group = normal)&(role =
physician)->decision = Deny

20: (resource_id = btg)&(BTG = False)&(resource_group = normal)&(role =
physician)->decision = Permit

21: (resource_id = btg)&(BTG = True)&(resource_group = btg_restricted)&(role
= physician)->decision = Deny

22: (resource_id = btg)&(BTG = False)&(resource_group = btg_restricted)&(
role = physician)->decision = Deny

23: (resource_id = btg)&(BTG = True)&(resource_group = btg_allowed)&(role =
physician)->decision = Deny

24: (resource_id = btg)&(BTG = False)&(resource_group = btg_allowed)&(role =
physician)->decision = Deny

25: (resource_id = auth_policy)&(BTG = True)&(resource_group = normal)&(role
= physician)->decision = Deny

26: (resource_id = auth_policy)&(BTG = False)&(resource_group = normal)&(
role = physician)->decision = Deny

27: (resource_id = auth_policy)&(BTG = True)&(resource_group =
btg_restricted)&(role = physician)->decision = Deny

28: (resource_id = auth_policy)&(BTG = False)&(resource_group =
btg_restricted)&(role = physician)->decision = Deny

29: (resource_id = auth_policy)&(BTG = True)&(resource_group = btg_allowed)
&(role = physician)->decision = Deny

30: (resource_id = auth_policy)&(BTG = False)&(resource_group = btg_allowed)
&(role = physician)->decision = Deny

31: (resource_id = flowRate)&(BTG = True)&(resource_group = normal)&(role =
physician)->decision = Permit

32: (resource_id = flowRate)&(BTG = False)&(resource_group = normal)&(role =
physician)->decision = Permit

33: (resource_id = flowRate)&(BTG = True)&(resource_group = btg_restricted)
&(role = physician)->decision = Deny

34: (resource_id = flowRate)&(BTG = False)&(resource_group = btg_restricted)
&(role = physician)->decision = Deny

35: (resource_id = flowRate)&(BTG = True)&(resource_group = btg_allowed)&(

126

role = physician)->decision = Permit

36: (resource_id = flowRate)&(BTG = False)&(resource_group = btg_allowed)&(
role = physician)->decision = Deny

37: (resource_id = btg)&(BTG = True)&(resource_group = normal)&(role =
visitor)->decision = Deny

38: (resource_id = btg)&(BTG = False)&(resource_group = normal)&(role =
visitor)->decision = Permit

39: (resource_id = btg)&(BTG = True)&(resource_group = btg_restricted)&(role
= visitor)->decision = Deny

40: (resource_id = btg)&(BTG = False)&(resource_group = btg_restricted)&(
role = visitor)->decision = Deny

41: (resource_id = btg)&(BTG = True)&(resource_group = btg_allowed)&(role =
visitor)->decision = Deny

42: (resource_id = btg)&(BTG = False)&(resource_group = btg_allowed)&(role =
visitor)->decision = Deny

43: (resource_id = auth_policy)&(BTG = True)&(resource_group = normal)&(role
= visitor)->decision = Deny

44: (resource_id = auth_policy)&(BTG = False)&(resource_group = normal)&(
role = visitor)->decision = Deny

45: (resource_id = auth_policy)&(BTG = True)&(resource_group =
btg_restricted)&(role = visitor)->decision = Deny

46: (resource_id = auth_policy)&(BTG = False)&(resource_group =
btg_restricted)&(role = visitor)->decision = Deny

47: (resource_id = auth_policy)&(BTG = True)&(resource_group = btg_allowed)
&(role = visitor)->decision = Deny

48: (resource_id = auth_policy)&(BTG = False)&(resource_group = btg_allowed)
&(role = visitor)->decision = Deny

49: (resource_id = flowRate)&(BTG = True)&(resource_group = normal)&(role =
visitor)->decision = Deny

50: (resource_id = flowRate)&(BTG = False)&(resource_group = normal)&(role =
visitor)->decision = Deny

51: (resource_id = flowRate)&(BTG = True)&(resource_group = btg_restricted)
&(role = visitor)->decision = Deny

52: (resource_id = flowRate)&(BTG = False)&(resource_group = btg_restricted)
&(role = visitor)->decision = Deny

127

53: (resource_id = flowRate)&(BTG = True)&(resource_group = btg_allowed)&(
role = visitor)->decision = Permit

54: (resource_id = flowRate)&(BTG = False)&(resource_group = btg_allowed)&(
role = visitor)->decision = Deny

55: (resource_id = btg)&(BTG = True)&(resource_group = normal)&(role = nurse
)->decision = Deny

56: (resource_id = btg)&(BTG = False)&(resource_group = normal)&(role =
nurse)->decision = Permit

57: (resource_id = btg)&(BTG = True)&(resource_group = btg_restricted)&(role
= nurse)->decision = Deny

58: (resource_id = btg)&(BTG = False)&(resource_group = btg_restricted)&(
role = nurse)->decision = Deny

59: (resource_id = btg)&(BTG = True)&(resource_group = btg_allowed)&(role =
nurse)->decision = Deny

60: (resource_id = btg)&(BTG = False)&(resource_group = btg_allowed)&(role =
nurse)->decision = Deny

61: (resource_id = auth_policy)&(BTG = True)&(resource_group = normal)&(role
= nurse)->decision = Deny

62: (resource_id = auth_policy)&(BTG = False)&(resource_group = normal)&(
role = nurse)->decision = Deny

63: (resource_id = auth_policy)&(BTG = True)&(resource_group =
btg_restricted)&(role = nurse)->decision = Deny

64: (resource_id = auth_policy)&(BTG = False)&(resource_group =
btg_restricted)&(role = nurse)->decision = Deny

65: (resource_id = auth_policy)&(BTG = True)&(resource_group = btg_allowed)
&(role = nurse)->decision = Deny

66: (resource_id = auth_policy)&(BTG = False)&(resource_group = btg_allowed)
&(role = nurse)->decision = Deny

67: (resource_id = flowRate)&(BTG = True)&(resource_group = normal)&(role =
nurse)->decision = Permit

68: (resource_id = flowRate)&(BTG = False)&(resource_group = normal)&(role =
nurse)->decision = Permit

69: (resource_id = flowRate)&(BTG = True)&(resource_group = btg_restricted)
&(role = nurse)->decision = Deny

70: (resource_id = flowRate)&(BTG = False)&(resource_group = btg_restricted)
&(role = nurse)->decision = Deny

128

71: (resource_id = flowRate)&(BTG = True)&(resource_group = btg_allowed)&(
role = nurse)->decision = Permit

72: (resource_id = flowRate)&(BTG = False)&(resource_group = btg_allowed)&(
role = nurse)->decision = Deny

129

Listing B.5: Results of ACPT heuristic 3-way testing: combined policies

For the combined policies, we assign default dummy values for unused
attributes.

1: (resource_id = btg)&(BTG = True)&(resource_group = normal)&(role =
sys_admin)->decision = Deny

2: (resource_id = btg)&(BTG = False)&(resource_group = btg_restricted)&(role
= sys_admin)->decision = Permit

3: (resource_id = btg)&(BTG = True)&(resource_group = btg_allowed)&(role =
sys_admin)->decision = Deny

4: (resource_id = auth_policy)&(BTG = False)&(resource_group = normal)&(role
= sys_admin)->decision = Permit

5: (resource_id = auth_policy)&(BTG = True)&(resource_group = btg_restricted
)&(role = sys_admin)->decision = Deny

6: (resource_id = auth_policy)&(BTG = False)&(resource_group = btg_allowed)
&(role = sys_admin)->decision = Deny

7: (resource_id = flowRate)&(BTG = True)&(resource_group = normal)&(role =
sys_admin)->decision = Deny

8: (resource_id = flowRate)&(BTG = False)&(resource_group = btg_restricted)
&(role = sys_admin)->decision = Deny

9: (resource_id = flowRate)&(BTG = True)&(resource_group = btg_allowed)&(
role = sys_admin)->decision = Permit

10: (resource_id = btg)&(BTG = False)&(resource_group = normal)&(role =
physician)->decision = Permit

11: (resource_id = btg)&(BTG = True)&(resource_group = btg_restricted)&(role
= physician)->decision = Deny

12: (resource_id = btg)&(BTG = False)&(resource_group = btg_allowed)&(role =
physician)->decision = Permit

13: (resource_id = auth_policy)&(BTG = True)&(resource_group = normal)&(role
= physician)->decision = Deny

14: (resource_id = auth_policy)&(BTG = False)&(resource_group =
btg_restricted)&(role = physician)->decision = Deny

15: (resource_id = auth_policy)&(BTG = True)&(resource_group = btg_allowed)
&(role = physician)->decision = Deny

16: (resource_id = flowRate)&(BTG = False)&(resource_group = normal)&(role =
physician)->decision = Permit

130

17: (resource_id = flowRate)&(BTG = True)&(resource_group = btg_restricted)
&(role = physician)->decision = Deny

18: (resource_id = flowRate)&(BTG = False)&(resource_group = btg_allowed)&(
role = physician)->decision = Deny

19: (resource_id = btg)&(BTG = True)&(resource_group = normal)&(role =
visitor)->decision = Deny

20: (resource_id = btg)&(BTG = False)&(resource_group = btg_restricted)&(
role = visitor)->decision = Permit

21: (resource_id = btg)&(BTG = True)&(resource_group = btg_allowed)&(role =
visitor)->decision = Deny

22: (resource_id = auth_policy)&(BTG = False)&(resource_group = normal)&(
role = visitor)->decision = Deny

23: (resource_id = auth_policy)&(BTG = True)&(resource_group =
btg_restricted)&(role = visitor)->decision = Deny

24: (resource_id = auth_policy)&(BTG = False)&(resource_group = btg_allowed)
&(role = visitor)->decision = Deny

25: (resource_id = flowRate)&(BTG = True)&(resource_group = normal)&(role =
visitor)->decision = Deny

26: (resource_id = flowRate)&(BTG = False)&(resource_group = btg_restricted)
&(role = visitor)->decision = Deny

27: (resource_id = flowRate)&(BTG = True)&(resource_group = btg_allowed)&(
role = visitor)->decision = Permit

28: (resource_id = btg)&(BTG = True)&(resource_group = normal)&(role = nurse
)->decision = Deny

29: (resource_id = btg)&(BTG = False)&(resource_group = btg_restricted)&(
role = nurse)->decision = Permit

30: (resource_id = btg)&(BTG = True)&(resource_group = btg_allowed)&(role =
nurse)->decision = Deny

31: (resource_id = auth_policy)&(BTG = False)&(resource_group = normal)&(
role = nurse)->decision = Deny

32: (resource_id = auth_policy)&(BTG = True)&(resource_group =
btg_restricted)&(role = nurse)->decision = Deny

33: (resource_id = auth_policy)&(BTG = False)&(resource_group = btg_allowed)
&(role = nurse)->decision = Deny

34: (resource_id = flowRate)&(BTG = True)&(resource_group = normal)&(role =
nurse)->decision = Permit

131

35: (resource_id = flowRate)&(BTG = False)&(resource_group = btg_restricted)
&(role = nurse)->decision = Deny

36: (resource_id = flowRate)&(BTG = True)&(resource_group = btg_allowed)&(
role = nurse)->decision = Permit

132

Listing B.6: Results of ACPT heuristic 4-way testing: Combined policies

For the combined policies, we assign default dummy values for unused
attributes.

1: (resource_id = btg)&(BTG = True)&(resource_group = normal)&(role =
sys_admin)->decision = Deny

2: (resource_id = btg)&(BTG = False)&(resource_group = normal)&(role =
sys_admin)->decision = Permit

3: (resource_id = btg)&(BTG = True)&(resource_group = btg_restricted)&(role
= sys_admin)->decision = Deny

4: (resource_id = btg)&(BTG = False)&(resource_group = btg_restricted)&(role
= sys_admin)->decision = Permit

5: (resource_id = btg)&(BTG = True)&(resource_group = btg_allowed)&(role =
sys_admin)->decision = Deny

6: (resource_id = btg)&(BTG = False)&(resource_group = btg_allowed)&(role =
sys_admin)->decision = Permit

7: (resource_id = auth_policy)&(BTG = True)&(resource_group = normal)&(role
= sys_admin)->decision = Permit

8: (resource_id = auth_policy)&(BTG = False)&(resource_group = normal)&(role
= sys_admin)->decision = Permit

9: (resource_id = auth_policy)&(BTG = True)&(resource_group = btg_restricted
)&(role = sys_admin)->decision = Deny

10: (resource_id = auth_policy)&(BTG = False)&(resource_group =
btg_restricted)&(role = sys_admin)->decision = Deny

11: (resource_id = auth_policy)&(BTG = True)&(resource_group = btg_allowed)
&(role = sys_admin)->decision = Deny

12: (resource_id = auth_policy)&(BTG = False)&(resource_group = btg_allowed)
&(role = sys_admin)->decision = Deny

13: (resource_id = flowRate)&(BTG = True)&(resource_group = normal)&(role =
sys_admin)->decision = Deny

14: (resource_id = flowRate)&(BTG = False)&(resource_group = normal)&(role =
sys_admin)->decision = Deny

15: (resource_id = flowRate)&(BTG = True)&(resource_group = btg_restricted)
&(role = sys_admin)->decision = Deny

16: (resource_id = flowRate)&(BTG = False)&(resource_group = btg_restricted)
&(role = sys_admin)->decision = Deny

133

17: (resource_id = flowRate)&(BTG = True)&(resource_group = btg_allowed)&(
role = sys_admin)->decision = Permit

18: (resource_id = flowRate)&(BTG = False)&(resource_group = btg_allowed)&(
role = sys_admin)->decision = Deny

19: (resource_id = btg)&(BTG = True)&(resource_group = normal)&(role =
physician)->decision = Deny

20: (resource_id = btg)&(BTG = False)&(resource_group = normal)&(role =
physician)->decision = Permit

21: (resource_id = btg)&(BTG = True)&(resource_group = btg_restricted)&(role
= physician)->decision = Deny

22: (resource_id = btg)&(BTG = False)&(resource_group = btg_restricted)&(
role = physician)->decision = Permit

23: (resource_id = btg)&(BTG = True)&(resource_group = btg_allowed)&(role =
physician)->decision = Deny

24: (resource_id = btg)&(BTG = False)&(resource_group = btg_allowed)&(role =
physician)->decision = Permit

25: (resource_id = auth_policy)&(BTG = True)&(resource_group = normal)&(role
= physician)->decision = Deny

26: (resource_id = auth_policy)&(BTG = False)&(resource_group = normal)&(
role = physician)->decision = Deny

27: (resource_id = auth_policy)&(BTG = True)&(resource_group =
btg_restricted)&(role = physician)->decision = Deny

28: (resource_id = auth_policy)&(BTG = False)&(resource_group =
btg_restricted)&(role = physician)->decision = Deny

29: (resource_id = auth_policy)&(BTG = True)&(resource_group = btg_allowed)
&(role = physician)->decision = Deny

30: (resource_id = auth_policy)&(BTG = False)&(resource_group = btg_allowed)
&(role = physician)->decision = Deny

31: (resource_id = flowRate)&(BTG = True)&(resource_group = normal)&(role =
physician)->decision = Permit

32: (resource_id = flowRate)&(BTG = False)&(resource_group = normal)&(role =
physician)->decision = Permit

33: (resource_id = flowRate)&(BTG = True)&(resource_group = btg_restricted)
&(role = physician)->decision = Deny

34: (resource_id = flowRate)&(BTG = False)&(resource_group = btg_restricted)
&(role = physician)->decision = Deny

134

35: (resource_id = flowRate)&(BTG = True)&(resource_group = btg_allowed)&(
role = physician)->decision = Permit

36: (resource_id = flowRate)&(BTG = False)&(resource_group = btg_allowed)&(
role = physician)->decision = Deny

37: (resource_id = btg)&(BTG = True)&(resource_group = normal)&(role =
visitor)->decision = Deny

38: (resource_id = btg)&(BTG = False)&(resource_group = normal)&(role =
visitor)->decision = Permit

39: (resource_id = btg)&(BTG = True)&(resource_group = btg_restricted)&(role
= visitor)->decision = Deny

40: (resource_id = btg)&(BTG = False)&(resource_group = btg_restricted)&(
role = visitor)->decision = Permit

41: (resource_id = btg)&(BTG = True)&(resource_group = btg_allowed)&(role =
visitor)->decision = Deny

42: (resource_id = btg)&(BTG = False)&(resource_group = btg_allowed)&(role =
visitor)->decision = Permit

43: (resource_id = auth_policy)&(BTG = True)&(resource_group = normal)&(role
= visitor)->decision = Deny

44: (resource_id = auth_policy)&(BTG = False)&(resource_group = normal)&(
role = visitor)->decision = Deny

45: (resource_id = auth_policy)&(BTG = True)&(resource_group =
btg_restricted)&(role = visitor)->decision = Deny

46: (resource_id = auth_policy)&(BTG = False)&(resource_group =
btg_restricted)&(role = visitor)->decision = Deny

47: (resource_id = auth_policy)&(BTG = True)&(resource_group = btg_allowed)
&(role = visitor)->decision = Deny

48: (resource_id = auth_policy)&(BTG = False)&(resource_group = btg_allowed)
&(role = visitor)->decision = Deny

49: (resource_id = flowRate)&(BTG = True)&(resource_group = normal)&(role =
visitor)->decision = Deny

50: (resource_id = flowRate)&(BTG = False)&(resource_group = normal)&(role =
visitor)->decision = Deny

51: (resource_id = flowRate)&(BTG = True)&(resource_group = btg_restricted)
&(role = visitor)->decision = Deny

52: (resource_id = flowRate)&(BTG = False)&(resource_group = btg_restricted)

135

&(role = visitor)->decision = Deny

53: (resource_id = flowRate)&(BTG = True)&(resource_group = btg_allowed)&(
role = visitor)->decision = Permit

54: (resource_id = flowRate)&(BTG = False)&(resource_group = btg_allowed)&(
role = visitor)->decision = Deny

55: (resource_id = btg)&(BTG = True)&(resource_group = normal)&(role = nurse
)->decision = Deny

56: (resource_id = btg)&(BTG = False)&(resource_group = normal)&(role =
nurse)->decision = Permit

57: (resource_id = btg)&(BTG = True)&(resource_group = btg_restricted)&(role
= nurse)->decision = Deny

58: (resource_id = btg)&(BTG = False)&(resource_group = btg_restricted)&(
role = nurse)->decision = Permit

59: (resource_id = btg)&(BTG = True)&(resource_group = btg_allowed)&(role =
nurse)->decision = Deny

60: (resource_id = btg)&(BTG = False)&(resource_group = btg_allowed)&(role =
nurse)->decision = Permit

61: (resource_id = auth_policy)&(BTG = True)&(resource_group = normal)&(role
= nurse)->decision = Deny

62: (resource_id = auth_policy)&(BTG = False)&(resource_group = normal)&(
role = nurse)->decision = Deny

63: (resource_id = auth_policy)&(BTG = True)&(resource_group =
btg_restricted)&(role = nurse)->decision = Deny

64: (resource_id = auth_policy)&(BTG = False)&(resource_group =
btg_restricted)&(role = nurse)->decision = Deny

65: (resource_id = auth_policy)&(BTG = True)&(resource_group = btg_allowed)
&(role = nurse)->decision = Deny

66: (resource_id = auth_policy)&(BTG = False)&(resource_group = btg_allowed)
&(role = nurse)->decision = Deny

67: (resource_id = flowRate)&(BTG = True)&(resource_group = normal)&(role =
nurse)->decision = Permit

68: (resource_id = flowRate)&(BTG = False)&(resource_group = normal)&(role =
nurse)->decision = Permit

69: (resource_id = flowRate)&(BTG = True)&(resource_group = btg_restricted)
&(role = nurse)->decision = Deny

70: (resource_id = flowRate)&(BTG = False)&(resource_group = btg_restricted)

136

&(role = nurse)->decision = Deny

71: (resource_id = flowRate)&(BTG = True)&(resource_group = btg_allowed)&(
role = nurse)->decision = Permit

72: (resource_id = flowRate)&(BTG = False)&(resource_group = btg_allowed)&(
role = nurse)->decision = Deny

137

Listing B.7: Results of ACPT heuristic 4-way testing: Combined policies with default deny

rules added

The test result for the combined policies
For the combined policies, we assign default dummy values for unused

attributes.

1: (resource_id = btg)&(BTG = True)&(resource_group = normal)&(role =
sys_admin)->decision = Non-applicable

2: (resource_id = btg)&(BTG = False)&(resource_group = normal)&(role =
sys_admin)->decision = Permit

3: (resource_id = btg)&(BTG = True)&(resource_group = btg_restricted)&(role
= sys_admin)->decision = Deny

4: (resource_id = btg)&(BTG = False)&(resource_group = btg_restricted)&(role
= sys_admin)->decision = Permit

5: (resource_id = btg)&(BTG = True)&(resource_group = btg_allowed)&(role =
sys_admin)->decision = Non-applicable

6: (resource_id = btg)&(BTG = False)&(resource_group = btg_allowed)&(role =
sys_admin)->decision = Permit

7: (resource_id = auth_policy)&(BTG = True)&(resource_group = normal)&(role
= sys_admin)->decision = Permit

8: (resource_id = auth_policy)&(BTG = False)&(resource_group = normal)&(role
= sys_admin)->decision = Permit

9: (resource_id = auth_policy)&(BTG = True)&(resource_group = btg_restricted
)&(role = sys_admin)->decision = Deny

10: (resource_id = auth_policy)&(BTG = False)&(resource_group =
btg_restricted)&(role = sys_admin)->decision = Non-applicable

11: (resource_id = auth_policy)&(BTG = True)&(resource_group = btg_allowed)
&(role = sys_admin)->decision = Non-applicable

12: (resource_id = auth_policy)&(BTG = False)&(resource_group = btg_allowed)
&(role = sys_admin)->decision = Non-applicable

13: (resource_id = flowRate)&(BTG = True)&(resource_group = normal)&(role =
sys_admin)->decision = Non-applicable

14: (resource_id = flowRate)&(BTG = False)&(resource_group = normal)&(role =
sys_admin)->decision = Non-applicable

15: (resource_id = flowRate)&(BTG = True)&(resource_group = btg_restricted)
&(role = sys_admin)->decision = Deny

138

16: (resource_id = flowRate)&(BTG = False)&(resource_group = btg_restricted)
&(role = sys_admin)->decision = Non-applicable

17: (resource_id = flowRate)&(BTG = True)&(resource_group = btg_allowed)&(
role = sys_admin)->decision = Permit

18: (resource_id = flowRate)&(BTG = False)&(resource_group = btg_allowed)&(
role = sys_admin)->decision = Non-applicable

19: (resource_id = btg)&(BTG = True)&(resource_group = normal)&(role =
physician)->decision = Non-applicable

20: (resource_id = btg)&(BTG = False)&(resource_group = normal)&(role =
physician)->decision = Permit

21: (resource_id = btg)&(BTG = True)&(resource_group = btg_restricted)&(role
= physician)->decision = Deny

22: (resource_id = btg)&(BTG = False)&(resource_group = btg_restricted)&(
role = physician)->decision = Permit

23: (resource_id = btg)&(BTG = True)&(resource_group = btg_allowed)&(role =
physician)->decision = Non-applicable

24: (resource_id = btg)&(BTG = False)&(resource_group = btg_allowed)&(role =
physician)->decision = Permit

25: (resource_id = auth_policy)&(BTG = True)&(resource_group = normal)&(role
= physician)->decision = Non-applicable

26: (resource_id = auth_policy)&(BTG = False)&(resource_group = normal)&(
role = physician)->decision = Non-applicable

27: (resource_id = auth_policy)&(BTG = True)&(resource_group =
btg_restricted)&(role = physician)->decision = Deny

28: (resource_id = auth_policy)&(BTG = False)&(resource_group =
btg_restricted)&(role = physician)->decision = Non-applicable

29: (resource_id = auth_policy)&(BTG = True)&(resource_group = btg_allowed)
&(role = physician)->decision = Non-applicable

30: (resource_id = auth_policy)&(BTG = False)&(resource_group = btg_allowed)
&(role = physician)->decision = Non-applicable

31: (resource_id = flowRate)&(BTG = True)&(resource_group = normal)&(role =
physician)->decision = Permit

32: (resource_id = flowRate)&(BTG = False)&(resource_group = normal)&(role =
physician)->decision = Permit

33: (resource_id = flowRate)&(BTG = True)&(resource_group = btg_restricted)

139

&(role = physician)->decision = Deny

34: (resource_id = flowRate)&(BTG = False)&(resource_group = btg_restricted)
&(role = physician)->decision = Non-applicable

35: (resource_id = flowRate)&(BTG = True)&(resource_group = btg_allowed)&(
role = physician)->decision = Permit

36: (resource_id = flowRate)&(BTG = False)&(resource_group = btg_allowed)&(
role = physician)->decision = Non-applicable

37: (resource_id = btg)&(BTG = True)&(resource_group = normal)&(role =
visitor)->decision = Non-applicable

38: (resource_id = btg)&(BTG = False)&(resource_group = normal)&(role =
visitor)->decision = Permit

39: (resource_id = btg)&(BTG = True)&(resource_group = btg_restricted)&(role
= visitor)->decision = Deny

40: (resource_id = btg)&(BTG = False)&(resource_group = btg_restricted)&(
role = visitor)->decision = Permit

41: (resource_id = btg)&(BTG = True)&(resource_group = btg_allowed)&(role =
visitor)->decision = Non-applicable

42: (resource_id = btg)&(BTG = False)&(resource_group = btg_allowed)&(role =
visitor)->decision = Permit

43: (resource_id = auth_policy)&(BTG = True)&(resource_group = normal)&(role
= visitor)->decision = Non-applicable

44: (resource_id = auth_policy)&(BTG = False)&(resource_group = normal)&(
role = visitor)->decision = Non-applicable

45: (resource_id = auth_policy)&(BTG = True)&(resource_group =
btg_restricted)&(role = visitor)->decision = Deny

46: (resource_id = auth_policy)&(BTG = False)&(resource_group =
btg_restricted)&(role = visitor)->decision = Non-applicable

47: (resource_id = auth_policy)&(BTG = True)&(resource_group = btg_allowed)
&(role = visitor)->decision = Non-applicable

48: (resource_id = auth_policy)&(BTG = False)&(resource_group = btg_allowed)
&(role = visitor)->decision = Non-applicable

49: (resource_id = flowRate)&(BTG = True)&(resource_group = normal)&(role =
visitor)->decision = Non-applicable

50: (resource_id = flowRate)&(BTG = False)&(resource_group = normal)&(role =
visitor)->decision = Non-applicable

140

51: (resource_id = flowRate)&(BTG = True)&(resource_group = btg_restricted)
&(role = visitor)->decision = Deny

52: (resource_id = flowRate)&(BTG = False)&(resource_group = btg_restricted)
&(role = visitor)->decision = Non-applicable

53: (resource_id = flowRate)&(BTG = True)&(resource_group = btg_allowed)&(
role = visitor)->decision = Permit

54: (resource_id = flowRate)&(BTG = False)&(resource_group = btg_allowed)&(
role = visitor)->decision = Non-applicable

55: (resource_id = btg)&(BTG = True)&(resource_group = normal)&(role = nurse
)->decision = Non-applicable

56: (resource_id = btg)&(BTG = False)&(resource_group = normal)&(role =
nurse)->decision = Permit

57: (resource_id = btg)&(BTG = True)&(resource_group = btg_restricted)&(role
= nurse)->decision = Deny

58: (resource_id = btg)&(BTG = False)&(resource_group = btg_restricted)&(
role = nurse)->decision = Permit

59: (resource_id = btg)&(BTG = True)&(resource_group = btg_allowed)&(role =
nurse)->decision = Non-applicable

60: (resource_id = btg)&(BTG = False)&(resource_group = btg_allowed)&(role =
nurse)->decision = Permit

61: (resource_id = auth_policy)&(BTG = True)&(resource_group = normal)&(role
= nurse)->decision = Non-applicable

62: (resource_id = auth_policy)&(BTG = False)&(resource_group = normal)&(
role = nurse)->decision = Non-applicable

63: (resource_id = auth_policy)&(BTG = True)&(resource_group =
btg_restricted)&(role = nurse)->decision = Deny

64: (resource_id = auth_policy)&(BTG = False)&(resource_group =
btg_restricted)&(role = nurse)->decision = Non-applicable

65: (resource_id = auth_policy)&(BTG = True)&(resource_group = btg_allowed)
&(role = nurse)->decision = Non-applicable

66: (resource_id = auth_policy)&(BTG = False)&(resource_group = btg_allowed)
&(role = nurse)->decision = Non-applicable

67: (resource_id = flowRate)&(BTG = True)&(resource_group = normal)&(role =
nurse)->decision = Permit

68: (resource_id = flowRate)&(BTG = False)&(resource_group = normal)&(role =
nurse)->decision = Permit

141

69: (resource_id = flowRate)&(BTG = True)&(resource_group = btg_restricted)
&(role = nurse)->decision = Deny

70: (resource_id = flowRate)&(BTG = False)&(resource_group = btg_restricted)
&(role = nurse)->decision = Non-applicable

71: (resource_id = flowRate)&(BTG = True)&(resource_group = btg_allowed)&(
role = nurse)->decision = Permit

72: (resource_id = flowRate)&(BTG = False)&(resource_group = btg_allowed)&(
role = nurse)->decision = Non-applicable

142

	Title Page
	Abstract
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements
	Dedication
	Introduction
	Contributions
	Organization

	Background & Related Work
	Interoperable Medical Systems
	Attribute Based Access Control Model
	Representing Access Control Policies
	Access Control Override
	Related Work

	Authorization Architecture[2]This chapter includes results published as part of ``A Flexible Authorization Architecture for Systems of Interoperable Medical Devices'' tasali2017flexible
	Current Workflow
	Authorization Policies
	Plug-and-play Support
	Attribute Inheritance
	Break the Glass (BTG)
	Modified Workflow
	Implementation Details
	Evaluation

	Bend-the-Glass: Controlled Emergency Access[3]This chapter includes results published as part of ``Controlled BTG: Toward Flexible Emergency Override in Interoperable Medical Systems'' controlledBtg
	Operating States
	Normal State
	Controlled BTG State
	Uncontrolled BTG State
	``BTG-restricted'' Permissions

	BTG Policy Evaluation
	BTG Policy Specification
	Comparison to Real-World EHR-BTG
	Verification and Validation
	Tool Selection
	Testing Results

	Facilitating Revisions and Preventing Errors
	Recovering from a BTG State

	BTG Audits Using Obligations and System Changes
	Logging
	Post-BTG Audits
	Automating the audit process
	Obligations and Compatibility
	System Architecture

	Evaluation

	Conclusion
	Future Work

	Bibliography
	ALFA Policies
	3- and 4-way Combinatorial Test Cases

