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Abstract

Communication is an integral part of emergency response, and improving the information dissemination

network for crisis communication can save time, resources, and lives. This thesis focuses specifically on

emergency response to a foreign animal disease (FAD) outbreak, an incident in which an animal disease that

is not active domestically is introduced and being spreading in the U.S. In a FAD outbreak, timeliness of

detection and response are critical. An outbreak of foot-and-mouth disease, a particularly significant FAD,

could cripple the agriculture economy and every hour of poor communication could result in the loss of

thousands of animals. Improving this and other such crisis communication networks is of high importance.

There is a comparatively large amount of prior research that critiques past catastrophic events but very little

that aims to quantitatively improve such networks.

This research uses communication data from a FAD response exercise in Kansas to develop a reliable

network model, contributing a general method for creating an information dissemination network from

empirical communication data. The thesis then introduces a simulated annealing heuristic to alter the

network structure, reducing the overall information transmission time by almost 90%. Both the application

of simulated annealing in network design and the use of discrete event simulation to calculate the heuristic

objective function are new contributions to the field of crisis communication and emergency response.

This work begins by extracting data from communication logs, grouping the large numbers of stakeholders

into more manageable clusters, and developing a simulation model framework that accurately depicts the

flow of information in the actual network. Then a simulated annealing heuristic is used to alter the network

structure. The goal is to identify an alternative network structure in which the time for information to reach

all response participants is minimized. The resultant network structures are analyzed to reveal observations

and recommendations for FAD response communication.

This research finds that not only can such a network be improved significantly, but the quantitative

results support the qualitative observations from early in the data extraction process. This paper adds

original methods to the literature and opens the door for future quantitative work in the area of crisis

communication and emergency response.
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1 INTRODUCTION

In a world full of uncertainty and chaos, crises abound. From natural disasters to epidemics to acts of

violence and terror, there is no shortage of events that require emergency coordination and operations. In any

catastrophic event, getting the right information to the right people in an expeditious manner is paramount

to the proper execution of emergency response. Foreign animal disease (FAD) outbreak responses constitute

a type of event in which multi-stakeholder communication is important, and this context is the focus of this

thesis.

Motivated by the need to better understand and improve crisis response communication, this thesis

introduces a network model that represents the dissemination of information among stakeholders. Nodes in

the network represent individuals or organizations, and arcs between them represent the flow of information.

Given a model of an information dissemination network, the thesis then introduces a local search heuristic to

decrease the time required to get information to responding organizations. The methods are demonstrated

using data from a simulated FAD outbreak of foot-and-mouth disease (FMD) in the state of Kansas in

October 2013.

This thesis begins with a discussion of the FAD exercise at hand as well as the goals and contribution

of this research in Chapter 1. Chapter 2 summarizes related literature specific to crisis communication and

information dissemination networks. Chapter 3 introduces a framework to generate a network simulation

model using text-based data from communication logs, emails, call logs, web postings, and other communi-

cation data. Chapter 4 then expands upon this simulation using simulated annealing to develop an improved

set of network structures. After a discussion of the numerical results of these structures in Chapter 5, the

thesis concludes in Chapter 6 with final observations, recommendations, and areas for future research.

1.1 Background

The motivation for this thesis comes from three areas of significance: foot-and-mouth disease (FMD)

and its catastrophic nature as a FAD, information dissemination network modeling, and the Kansas FAD

response exercise in 2013.

1.1.1 Foreign Animal Disease

A FAD is defined by the United States Department of Agriculture (USDA) Animal and Plant Health

Inspection Service (APHIS) as a disease affecting animals that is not currently active in the United States
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[2]. The diseases that threaten animal or human health the most are divided into three tiers. Tier 1 FADs

are the most catastrophic in nature, having the potential to impact the entire nation from one domestic case.

FMD is considered a Tier 1 FAD.

FMD is an extremely contagious viral disease. It affects animals with divided hooves (cows, pigs, sheep,

goats, deer, etc.) but is not a threat to public health or food safety. The illness manifests itself in blisters

around the mouth, mammary glands, and hooves. While the disease itself does not often result in death,

the infected animals are too weakened to produce meat or milk as before [3].

The FMD virus lives in the saliva, excrement, urine, and even breath of infected animals. The virus can

also survive in contaminated materials, like bedding, for several months. This means that the virus can spread

through any number of activities including transportation in contaminated vehicles, drinking contaminated

water, contacting people with contaminated clothing/equipment, and being held in contaminated facilities.

The survivability and numerous transmission modes show why this disease is so feared among agricultural

stakeholders [3].

FMD was eradicated in the United States in 1929 and an outbreak has not happened since [4]. However,

other countries with high exports of susceptible animals have had recent outbreaks. Taiwan had an outbreak

of FMD in 1997 after its eradication in 1930, resulting in an economic loss of $1.6 billion and the slaughter

of 40% of the at-risk population of pigs [5]. Then, in 2001, the United Kingdom had an outbreak resulting

in 7 million animals slaughtered and $12–$18 billion in losses. Estimates for the total economic impact of

a U.S. outbreak range from $23–$34 billion, caused primarily by cuts in both domestic and international

demand [1].

1.1.2 Response Time and Information Dissemination

This research focuses on the flow of information among the key players and stakeholders in a FAD

outbreak response. A FAD outbreak response is broken down into five elements [6]:

1. Incident Identification. Incident identification involves the detection of the outbreak symptoms, typi-

cally by the animal owner or producer and confirmation of the disease by lab results.

2. Incident Management. Incident management describes the establishment of emergency operations

agencies and organizations to include Emergency Operations Centers (EOCs) at the state and local

levels and determining a chain of command for the event.

2



3. Communication and Coordination. Communication and coordination includes establishing lines of

communication with all involved stakeholders across the governmental, industry, and private sectors.

4. Assessment, Control, and Containment. This includes monitoring the spread of the disease, determin-

ing what areas/herds require quarantines, and restricting movement of susceptible animals as needed.

5. Recovery. Recovery occurs after the disease is eradicated and involves hazard evaluations, restoring

movement, and reviewing the actions taken for future improvement.

The expediency of detection, effective and efficient response, and information dissemination play a large

role in the size and scope of an outbreak. Carpenter et. al [4] examine the effect of delayed detection time

on outbreak size and economic impact for a FMD outbreak in California. They found that as detection

time increased from seven to 22 days, the number of animals slaughtered went from 8,700 to 260,400, and

the economic impact to California rose from $2.3 billion to $69.0 billion. They also found that if a 21-day

detection is assumed, every additional hour of delay would result in 2,000 animals slaughtered and $565

million in economic loss. However, the nature of the industry and variation in human contact with the

animals makes improving detection time difficult, thus the time from infection to detection is highly variable

[7].

Given the difficulty of rapid detection, effective response upon detection is essential. Response, including

information dissemination, can be much more closely monitored and improved through practice and proce-

dural changes. Kao et. al [5] discovered that, in the case of the United Kingdom FMD outbreak in 2001, if

a nationwide movement ban had been imposed one day after discovery instead of three, then the number of

infected populations could have decreased by more than 50%. This indecision was independent of the time

taken for detection yet had a high consequence. Information dissemination is critical to the decision makers’

ability to make timely and informed choices.

Part of this critical information flow lies with producers reporting potential infections to their veteri-

narians and following important orders such as stopping movement of cattle. Delgado et. al [8, 9] reveal

results from two surveys showing these tendencies of producers. In general, they found that producers feel a

lot of social pressure to report cattle with FMD symptoms and do understand the positive consequences of

early reporting, but their understanding of the symptoms is lacking. Producers also are likely to follow stop

movement orders during an outbreak due to social pressure and the fear of causing further spreading. Orders

to gather and hold cattle, which helps for analysis and depopulation efforts, are less likely to be followed

because of a lack of knowledge of the benefits and lack of resources to accomplish the tasks.
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1.1.3 Kansas FAD Response Exercise

If this was not sufficient motivation for the state of Kansas to prepare for such an event, Lee et. al

[1] look at the state-by-state impact of an FMD outbreak in California and its effects on the rest of the

nation. Figure 1 shows the five states with the greatest potential economic loss (in millions of dollars). The

lower and upper bounds refer to the lowest and highest losses over the four scenarios in [1]. Note that while

Kansas has the lowest agriculture gross domestic product (GDP) of the five states, its percentage loss is

significantly higher than the rest of the states. Kansas is estimated to lose 40–60% of its agriculture GDP

in the event of a FMD outbreak. In fact, its lower bound is higher than the upper bound of all states except

Nebraska. Making matters worse, only seven states (to include Nebraska and Iowa) have a higher percentage

of their state economy coming from agriculture. This shows the significant impact of an FMD outbreak on

the state of Kansas and why conducting exercises to improve communication and enforce standard operating

procedures is important.

Figure 1: Comparison of the Agricultural Impact on the Five States with Highest Economic Loss from FMD
Outbreak. Created from Data Presented in [1]

.

In October 2013, the Kansas Department of Agriculture (KDA) conducted a FAD response exercise

engaging key stakeholders who would be involved in the event of an actual FAD emergency. This particular
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exercise involved a simulated outbreak of FMD in the United States and the movement of an infected animal

into the state of Kansas. The exercise began at 8:00 AM on October 9, 2013, and ended the next day at

1:00 PM with an overnight pause in the exercise from 5:00 PM to 8:00 AM. The stakeholders, or players, in

the exercise represented many organizations and individuals on the federal, state, local, and industry levels.

Local organizations included county emergency management personnel, law enforcement, and administration

for the most impacted counties in the exercise scenario including Pottawatomie and Riley counties. At the

state level, KDA was represented along with the state veterinarian, the Kansas Department of Health

and Environment (KDHE), the Movement Control Branch (MCB), the Kansas Department of Emergency

Management (KDEM), and state veterinarians from other nearby states. The federal level was represented

by the Animal and Plant Health Inspection Service (APHIS), a division of the United States Department of

Agriculture (USDA). Kansas State University also played a significant role in the exercise due to simulated

events surrounding the College of Veterinary Medicine (CVM) and the Animal Sciences and Industry (ASI)

Department. During an emergency event, many of these organizations and key players co-locate to central

EOCs. In this exercise, there were multiple EOCs in play. The state had its own EOC, called the Kansas

State Emergency Operations Center (KSEOC), each county had an EOC, Kansas State University had one,

and, within KSU, the Animal Science and Industry Department had its own EOC.

An exercise like this is sensitive in nature because publicizing it could lead to public misperceptions or

feelings of insecurity. For this reason and the availability of certain players or organizations, the exercise does

not incorporate everyone that would otherwise have a role in an actual outbreak. An example of this is at the

industry level where the various industry agencies are represented by an industry Multi-Agency Coordination

Center (MACC), located with KDA. Typically, this MACC will have members of many different organizations

such as the Kansas Farm Bureau (KFB), Kansas Livestock Association (KLA), and Dairy Farmers of America

(DFA), to name a few. In this exercise, a member of KDA represented the MACC in the KSEOC. In short,

those stakeholders with a role in a FAD response event but not participating in the exercise were represented

by personnel within KDA.

The notional background of the exercise is that a farm in Alabama had a Wagyu bull present the symptoms

of FMD after selling a heifer and calf from this herd to a farm in Kansas. The heifer was injured in transit

to Kansas and went to the KSU CVM for evaluation where she, too, presented symptoms of FMD. The rest

of the exercise is a response to this situation. Because some important entities did not directly participate

in the exercise, injects for key events were used to represent actions taken in the event. These injects serve

to input information into the exercise environment to observe how the players react to this new information.
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For instance, the inject that begins the exercise is APHIS notifying KDA of a presumptive positive FMD in

Alabama. Other injects occur throughout the exercise in order to observe and evaluate the responses of the

players.

The observers and moderators of this exercise were assigned by KDA to the most important locations

and personnel in the exercise. Their purpose was to evaluate how well these personnel perform their duties

associated with a FAD response and document the communications throughout the exercise. Some of the

locations with a dedicated observer were KDA, KSU Animal Science and Industry EOC, KSEOC, and MCB.

The county EOC communication was logged through a web-based discussion portal.

1.2 Research Goals

This research is motivated by the need for KDA and similar agencies to better understand and improve

crisis response. The author hypothesizes that the flow of information can be greatly improved through

practical alterations in the communication patterns of those involved in a FAD response exercise or actual

event. The first goal of this paper is to propose a generalizable modeling framework based on empirical

data to better understand and manage crisis communication networks that support response efforts to

foreign animal disease. The approach consists of a network model and discrete event simulation. Then,

after developing an accurate simulation model for this response network, the second goal is to identify a

new network structure that improves the information flow in the crisis communication network. This is

accomplished with a simulated annealing heuristic (a type of local search) in which the objective function is

calculated using the discrete event simulation model.

1.3 Research Contributions

This research relates to other areas in the literature, including past research on emergency response

communication, information dissemination networks, and local search heuristics. It makes the following

contributions:

1. First research to be quantitative and prescriptive in analyzing official interactions in

crisis communication. This research fills an important gap in the literature of crisis communication.

To the author’s knowledge, it is also the first publicly available research analyzing a FAD emergency

response communication network of any kind.
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2. Provides a method for creating an information dissemination network model from em-

pirical communication data of varying qualities. There is a shortage of literature on crisis

communication using raw data and only a few instances known to this author where an actual com-

munication network model is developed from such data. Within these, none create a model with the

purpose of simulating that network. This marks the first such model based on empirical data.

3. Uses simulated annealing to alter a communication network. While simulated annealing is a

very research-rich topic in local search heuristics, its application to network design is not. In fact, the

only work related to network alteration with simulated annealing found by this author was in the field

of reverse logistic network engineering, supply network design, and water supply networks [10, 11, 12];

none was found in the field of communication networks.

4. Uses simulation to calculate the objective function value within simulated annealing for

the purposes of network design. To the author’s knowledge, only one other piece of research uses

simulation in determining the simulated annealing objective function [12]; that work does not use it in

the process of complete network construction, but to add an additional element to an existing network.

5. Offers insight into the communication network for a FAD emergency response in Kansas.

This research is the only effort to construct models based on this exercise communication data and

provides insights specific to the FAD response network that are not addressed elsewhere in the literature.

These elements are presented throughout this thesis specifically in dealing with the Kansas FAD re-

sponse of 2013, but the principles herein can be generalized and used in many applications of information

dissemination networks.
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2 LITERATURE REVIEW

The research contributions of this thesis lie in the intersection between multiple streams of literature

that each address components of crisis response communication networks. What makes this thesis unique is

that it simultaneously integrates four characteristics not previously combined in the literature.

1. Communication. It relates specifically to communication and information flow versus other types of

network models.

2. Quantitative. The proposed methods are quantitative in nature rather than qualitative.

3. Prescriptive. It is prescriptive instead of descriptive. This means that this research aims to give a

method or solution to be used in the future and not solely describe attributes of past events.

4. Official. The interactions it studies are primarily among official responders, rather than the general

public or social networks. The data are drawn from official communications and not taken from social

media or other unofficial sources.

There are five areas of research to be reviewed in this chapter, each of which exhibit a subset of these

four core characteristics. Figure 2 shows how these areas reveal a gap in the research, which this thesis aims

to fill. This chapter describes this gap, examining each of the five research areas in relation to this paper.

In addition to these five areas, the chapter begins with network definitions and ends with a summary of the

simulated annealing methodology.

2.1 Network Modeling Characteristics

Critical to this research is an understanding of network modeling and its many capabilities. A network is

a group or system of interconnected entities (people or things). A network model is a structured depiction of

the network using graphs that consist of nodes and arcs/edges/links. Nodes are entities within the network

and usually depict people, places, organizations, and the like. Link is a generic term for the interaction

between nodes that can refer to both edges and arcs. Arcs are one-way interactions between nodes, while

edges refer to bidirectional connections. Thus, a network is modeled on a graph G = (N,A), where N is

the set of nodes and A is the set of all arcs (or E for the set of edges). A network model is a good way

to approach this research because FAD response efforts involve individuals and organizations that can be

represented as nodes while their communication with each other are the arcs. This modeling framework

facilitates quantitative analysis using existing methods [13, 14, 15].
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Figure 2: Gaps in the Literature Filled by This Thesis
.

Numerous metrics and characteristics are proposed in the literature to describe network structures.

Among them are various measures of centrality, or how connected a node is with the rest of the network

[16, 17]. Two other concepts are brokers and bridges. This paper considers the role of brokers and bridges

when analyzing the network structures in the KDA response case study.

The difference between brokers and bridges is subtle but important; brokers are nodes or actors that

provide interaction between two clusters of nodes, while bridges are the edges or communication links that

span these gaps [18]. In cases where knowledge is transmitted across a network, a knowledge broker provides

the critical link to bring useful information from one group to another. Having a broker to relay information

comes at a cost, however; congestion at this broker can result in inefficient information flow [19].

With this general understanding of network models and some of their characteristics, along with how

this research aims to use them, the focus now shifts to the five research areas in the literature most closely

associated with this thesis in order of increasing relevance.
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2.2 Automated Detection and Technology

Automated detection and technology, as it relates to crisis communication in the literature, is prescriptive

and generally denotes official interactions, but it is not quantitative. It ties in with this thesis because

one of the goals of this research is to improve the flow of official communication in an emergency response

network. The prescriptive characteristic (improved response for future emergency events) is joined with crisis

communication in the literature in the field of automation and technology, where organizations experience

improved detection and response times because of technological advances in areas such as oil refineries and

nuclear plants [20, 21, 22, 23]. This paper does not consider direct applications of technology for improvement

of the network, but the literature suggests that there are trends toward exploring what benefits technology

can bring to crisis communication efforts.

2.3 Social Media

Past research in the area of social media network models is quantitative, prescriptive, and can apply to

crisis communication, but the interactions that are studied are not official. Areas within social media that

relate particularly to this research are the ability to turn communication instances into quantifiable data

and methods to evaluate how information moves through the network. As a definition, social media refers

to “forms of electronic communication through which users create online communities to share information,

ideas, personal messages, and other content.” A social network is “a network of social interactions or personal

relationships [24].”

As it relates to the four characteristics of this thesis in the beginning of the chapter, social media is used

in crisis communication analysis often. A search of scholarly articles using the keywords “Social Media”

and “Disaster” returned more than 600 articles and 30 reviews on the topic. Some of these articles are also

prescriptive and discuss how social media can be used to detect future disasters like wildfires [25]. Research

also shows benefits to using social media for official governmental agencies in crisis response to determine

the needs and gravity of the event [26]. While terrorists can use social media to initiate and exacerbate an

attack, public health officials can use social media to improve early warning and protect the people [27].

Finally, the closest relationship of social media to this thesis is when the literature moves from qualitative

discussion to quantitative analysis. Sjoberg et al. [26] look at the use of social media in such bioterrorism

incidents, finding a need for a multidisciplinary approach across law enforcement and health communities

on the implementation of social media data mining. By analyzing keywords in Twitter messages, these
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organizations can gain invaluable information before, during, and after a crisis. For comparison, this method

is quantitative, used officially, and still in the realm of crisis communication, but it is descriptive instead of

prescriptive.

Another quantitative relationship involving social networks and disasters comes from analysis of cell

phone usage during emergency events. The method of extracting phone records to determine a network

structure is very similar to the method used in this thesis. Gao et al. [28] use mobile phone data to quantify

the communication patterns of users during a variety of anomalous events—a bombing, jet scare, concert, and

plane crash. The study does not focus on those directly affected, but on the individuals the affected group

contacts during the event. Do contacts call back to those affected to offer comfort or do they forward the

information on to others and how do these actions compare to normal day activity between the two groups?

The authors conclude that communication with the eyewitness is more critical (by virtue of representing a

larger proportion of the communication) than forwarding on situational awareness for emergency events (the

concert is not an emergency event).

Overall, social media plays an increasingly significant role in disaster communication and has been studied

in kind. Due to its growth in the literature and its fundamental purpose of communication, research in social

media has some models that relate quite closely to this research. Some of these principles can be applied to

the more official communication in the network model associated with this paper.

2.4 Inter-agency Communication

Generally speaking, research related to inter-agency communication lacks quantitative analysis and pre-

scriptive recommendations, but the interactions that are studied are official in nature and relate directly to

crisis communication. A FAD response is dependent on varying organizations working together, communi-

cating, and making good decisions in concert with one another, making inter-agency communication a close

comparison despite not covering two of the four core characteristics. Even so, the literature has significance

in that it reveals the importance of the work in this thesis. Specifically, it emphasizes the importance of

sharing knowledge between organizations and discusses the disproportionally low number of quantitative

models of these processes.

One of the most well known and documented catastrophes exacerbated by poor communication and

information flow was Hurricane Katrina and its aftermath. Garnett and Kouzmin [29] discuss these commu-

nication deficiencies at length while also discussing the four communication lenses in crisis communication:

interpersonal influence, media relations, inter-organizational networking, and technology showcase. Provid-

11



ing further motivation for our crisis communication study, they go on to point out that of these four lenses,

the inter-organizational perspective is the least studied in terms of crisis communication and has great poten-

tial for improvement given this research gap. Another event with well-documented communication findings is

the 2012 Tongariro eruptions in New Zealand. Leonard et al. [30] conducted a case study of the information

flow within this event and focused on the interdisciplinary aspect of assessment and communication regarding

the eruption. The study concluded that there is significant value in collaborative, multi-disciplinary envi-

ronments with pre-existing relationships because they allow for efficient and unified public communication,

whereby limiting public confusion and distrust.

A pair of reviews of public health emergency preparedness literature, [31, 32] provide confirmation that,

despite a recent increase in research, the need for empirical and quantitative analysis in public health

preparedness communication is high. More than half of the publications are reviews as opposed to primary

research and less than 20% are quantitative in nature. In the case of inter-organizational communication

modeling—where research is very limited—this percentage is even smaller.

Perhaps the most pertinent of articles in this section, [33] offers a good merger of the concept of inter-

agency communication with the actual modeling of its characteristics. It relates to this thesis by comparing

multiple strategies in its simulation model, just as this thesis does in the implementation of its simulated

annealing heuristic. [33] differs from other works in this section because it is both prescriptive and quantita-

tive. However, it does not relate directly to crisis communication but focuses instead on inter-organizational

partnerships. Their model is based on empirical data of a known inter-organization collaboration network.

They use agent-based modeling to simulate organizational decisions by looking at the missions and values of

119 organizations and 30 known collaboration projects. Their method looks at four different organizational

strategies and four unique networks to develop the best possible collaboration network (thus, being prescrip-

tive). Similarly, the FAD response network is improved in this thesis using simulation across many possible

networks with four strategies to determine their structures.

Inter-organizational communication is a critical research area with room for quantitative models to com-

plement existing qualitative methods. This last example shows how a quantitative approach can result in

prescriptive results.

2.5 Epidemiology

Epidemiology modeling is the one area of research considered here that is completely outside the field of

crisis communication because its quantitative and prescriptive characteristics can be utilized to also model
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information dissemination, a key part of this research. The spread of disease can be viewed similarly to

the spread of information [34]. While many items (for example, physical goods) move through a network

in such a way that there are no duplicates, information and diseases both propagate by making a copy of

the information/disease being passed before sending it along. This represents the principle that you do not

lose information by passing it along. Likewise, the disease does not leave the host when it is passed on to

someone else.

The backbone of such epidemiological models are their contact networks, just as the backbone of this

thesis is the network created by communication data. Disease spread is often modeled using stochastic

processes where individuals alternate between a discrete number of states. The most common depiction of

this is the Susceptible-Infected-Susceptible (SIS) model, where individuals begin in a susceptible state to an

infection and move to the infected state according to a probability distribution, only to return again after

the infection passes [35, 36]. Similarly, this thesis models information dissemination where nodes (people,

organizations, etc.) transition from being uninformed to informed. A variation of the SIS model is the

Susceptible-Alert-Infected-Susceptible (SAIS) model, which adds in an alert state, wherein the infection

rate changes due to behavior changes [35]. The alert state is determined by proximity to infected or alert

individuals in the contact network among the susceptible and infected populations. This alert state brings

epidemiological modeling even closer to this current research by adding in the alert (informed) state.

The same authors then take their research from being descriptive of the epidemiological network to

prescriptive [37, 38]. In [37], they use heuristics, similar to this thesis, to search through potential contact

adaptation patterns to find the one that minimizes the arcs needed in the information dissemination network

while still effectively mitigating the epidemic. Finally, their most recent research [38] produces an optimal

information dissemination strategy that results in greater suppression of the disease over a wider range

of infection rates using fewer resources. This research combines these two ideas by looking for optimal

information dissemination efficacy through the alteration of the contact network.

2.6 2009 Australian Bushfires

The quantitative analysis of official interactions in crisis communication during past emergency response

events is the closest research field to this thesis, albeit a small one. In fact, after searching multiple scholarly

databases for studies with these three core characteristics (quantitative, official, and crisis communication),

the only relevant research is related to the Australian bushfires in 2009. The empirical communication data

from this event among official responders sets it apart from other such events, and relates it more closely
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to this thesis than other research. Empirical data for this type of event is needed to justifiably model

a communication network because human decision-making is very difficult to predict [39], especially when

faced with crisis circumstances that can easily cloud or shift an otherwise logical choice. This thesis builds on

[40] and [41] by not only developing the network with empirical data, but adding a prescriptive characteristic

in determining a better solution for the future.

Au [40] shows how to use this empirical data to develop a network model and then analyzes this network

using two different network metrics, both important principles of this thesis. The nature of bushfires provides

a repository of time-stamped communications between responders that is translated to a network model. Au

organizes the nodes by organization (like the clusters developed for the FAD response in Section 3.2.1) and

develops a complex network where the weight of the arcs represents the number of communication instances

between the nodes (again, just as in 3.2.2). He then uses sociometric status and centrality as network metrics

with which to analyze the network’s performance. Sociometric status measures node activity based on the

number of nodes it contacts (out-degree) and the number of times it is contacted (in-degree) relative to the

overall communication in the network. These measures reveal some important gaps in the communication

network at various phases of the fires, and while this thesis does not use these metrics specifically, the

principle of using a metric to quantitatively evaluate an entire network applies.

Hamra et al. [41] take the bushfire data and generalize it in a way that is even more applicable to this

thesis. They apply social network analysis (SNA) to determine whether the network interactions of actors

help drive the success or failure of bushfire responses. They use communication data from two separate

bushfire responses, one of which was far more successful than the other, to evaluate which aspects of the

network (density, different types of centrality, and specific interactions) most impact the effectiveness of the

response. This thesis also looks at the impact specific interactions have on the network’s performance in

Section 5.2.3.

With all five research areas reviewed, the most significant articles and their relationships to the four

characteristics of this thesis are shown in Table 1. None of these articles satisfy all four characteristics,

further motivating the need for this research.

2.7 Simulated Annealing and Network Design

This thesis uses a local search metaheuristic, simulated annealing, to identify an improved network for

the FAD response exercise. A local search heuristic is a method of solving hard optimization problems by

using a neighborhood structure to search for the best solution [42]. At any iteration, it considers a small well-
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Table 1: How the Most Relevant Articles Relate to the Four Characteristics of This Thesis
Article Citation Crisis Communication Quantitative Prescriptive Official

[27] X X X
[28] X X X
[33] X X X
[37] X X
[40] X X X
[41] X X X

defined change from the current solution to get a new solution. The neighborhood concept means it develops

a list of feasible “neighboring” solutions from which one can be chosen and evaluated. A metaheuristic is a

heuristic, or improving process, that has a method for moving away from a local optimal result [42]. There

are many heuristics and metaheuristics in the literature for finding locally optimal solutions. Pezzini et al

[43] explain the process for the most commonly used metaeheuristics including genetic algorithm, ant colony,

particle swarm, tabu search, and simulated annealing.

The simulated annealing heuristic comes from Kirkpatrick’s seminal work that draws on an analogy to

the process of annealing metal, where metal is heated to allow for changes in its atomic structure and then

slowly cooled in order to create the desired crystalline structure. As the metal goes from liquid to solid, the

atoms lose their fluidity and that part of the structure cannot be changed [44]. Similarly, the heuristic allows

for acceptance of a worse solution with decreasing probability as the heuristic progresses.

There is little research using simulated annealing to develop optimal network structures, and none relating

to information dissemination or crisis communication. [10] uses simulated annealing to develop a better

supply chain network in reverse logistics, a growing field in logistics. Chibeles-Martin et al [11] use simulated

annealing to construct a locally optimal supply chain but do not use simulation modeling to determine their

objective functions. In contrast, Samora et al [12] use simulation modeling for their simulated annealing

heuristic objective function in finding the optimal locations for turbines in a city water supply network, but

they do not design the entire network itself, only specific locations for new items. This research is the first

to combine these two strategies to develop a simulation-based simulated annealing heuristic that determines

a locally optimal network design structure.

2.8 Conclusion

A review of the scholarly literature in crisis communication and emergency response clearly indicates

there are many opportunities for further research and development in this discipline. The limited research

15



is evidence for how challenging quantitative analysis can be for such a dynamic and subjective concept.

Nonetheless, the benefits of conducting this research are great and many of these authors voice the need for

this advancement.
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3 NETWORK SIMULATION MODEL AND RESULTS

In light of the research already done in the field of crisis communication as well as the gaps recog-

nized therein, this research aims to provide an effective method for determining an improved information

dissemination network structure for emergency management operations using empirical data. Specifically,

this research shows how to use the many types of communication logs gathered from an animal disease

outbreak response exercise to effectively model its information dissemination network. This structure can

then be modified to create a better conduit for information flow. The methods introduced in this thesis are

generalizable to crisis communication networks at large.

This chapter begins by describing the framework of the proposed model through the definition of impor-

tant network principles and an example information dissemination network used in the case study. It then

describes the empirical data and the process developed to extract necessary information from these records,

translating communication instances into a network structure. The model details then are described, after

which the chapter presents results and validation. The final product is a communication network simulation

based on empirical data that observes information from multiple sources as it flows throughout the net-

work. The terms “model” and “simulation” are used inter-changeably in this paper because the model of

the problem is done by means of a simulation.

3.1 Network Definition

This section introduces definitions and notation associated with the network model of information

dissemination during a FAD response. It also provides the foundation for the primary metric used in this

thesis.

3.1.1 Graph Components

Information dissemination among FAD response stakeholders is modeled on a graph G = (N,A), where

nodes in N represent participants (individuals or agencies) and arcs in A represent communications between

participants. Arc (i, j) models information transmitted from node i to node j. The weight wij associated

with arc (i, j) represents the strength of the connection between nodes i and j; pairs of nodes with higher

weights on the arc connecting them are expected to communicate more frequently than those with lower

weights. This information is summarized in an n x n weighted adjacency matrix W , where n = |N | and wij

is the element in the ith row and the jth column of W . Thus, for every position in W where wij > 0, there is
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an arc in the network from i to j. Two arcs between a pair of nodes represent a bi-directional relationship.

Similarly, an arc from a node to itself reveals intra-node communication. Finally, each node has total weight

wi =

n∑
j=1

wij .

There are often cases, such as the exercise this thesis addresses, where the nodes in the network represent

more than a single person or player. In such cases, nodes representing many players may transmit information

quicker than those representing only one individual. Additionally, if a node represents multiple players, it is

possible that only a portion of them have received the information moving through the network. Modeling

these intricacies of the network is important because they could be a very effectual part of the data set. In

order to capture these facets of the network, each node, i, is assigned a maximum capacity λmaxi and current

capacity λi. λ
max
i is assigned as the total number of players represented by node i. The current capacity is

initialized as 0 for each of the nodes and increased each time a node receives information. Figure 3 shows

an example network.

Figure 3: Diagram of Example Network; label on arc (i, j) is wij and label on node i is [wi, λ
max
i ]

3.1.2 Information Flow

Information dissemination through the previously described network is modeled using discrete event

simulation. In this model, information is transmitted from one node (called the “transmitting” node or
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“sending” node inter-changeably) to another “receiving” node. At the beginning of the simulation, one node

is declared to be the originator of the information (more on how this is determined later in the chapter).

The receiving node is determined using a probability matrix, P . In this matrix, pij =
wij
wi

, where pij is the

probability of transmitting node i choosing to transmit to node j.

The actual implementation of this method uses a related rate matrix, R, such that

R =


rij =

wij
wi

, for j = 0

rij = ri(j−1) +
wij
wi

, otherwise

,

and a uniformly distributed random number from 0 to 1 (u[0,1]), produced by a Random Number Generator

(RNG). The cumulative nature R for each sending node, i, makes the determination of the receiving node,

j, easier to find when using a u[0,1]. The model progresses through the transmitting node’s row until it

finds a value that is greater than or equal to the u[0,1]. That column’s index, j, is the receiving node of the

transmission. Tables 2 and 3 give the probability and rate matrix for the example network in Figure 3.

Transmission times for each node are determined according to network paramters, as described in detail

in Section 3.3.3.

Table 2: Probability Matrix for Example Network
P Matrix A B C D

A 0 0.4 0.6 0
B 1 0 0 0
C 0 0.4 0.2 0.4
D 0.6 0 0.4 0

Table 3: Rate Matrix for Example Network
R Matrix A B C D

A 0 0.4 1 1
B 1 1 1 1
C 0 0.4 0.6 1
D 0.6 0.6 1 1

3.1.3 Informed

An important concept in this research is the definition of the term, “informed”. The “inform(ed)”

descriptor can be applied to either individual nodes or to entire networks alike. A node is considered informed

when its maximum capacity has received the information passing through the network, or, mathematically,

when λi = λmaxi . Similarly, a network is informed when all nodes are informed, or λi = λmaxi for all i ∈ N .

Using the example network above, consider the following series of events. The information to be trans-

mitted originates at node A. This means that λA = 1 at the start of the simulation while λB , λC , and λD

are each 0. Because λmaxA = 2, node A is not yet informed. Our RNG will provide a u[0,1] to determine the

node to which A will transmit. Suppose the random number is 0.25. In this case, node A will transmit to
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node B because rAB is the first value in row A of the rate matrix, R, where rAi > 0.25. This makes λB = 1

and, because λmaxB = 1, node B becomes informed. The simulation continues based on the next transmission

times of the nodes until all nodes and, thus, the network, are informed. The time at which the network is

informed is the primary metric in this thesis.

3.2 Converting Data to a Model

The components and parameters of the network simulation model are derived from crisis communication

data. The data for this research come from documented communications during a simulated FAD incident in

the state of Kansas. The Kansas Department of Agriculture serves as the focal point of the exercise. Its work

includes assigning observers (also called moderators) to evaluate the actions of the important personnel in the

FAD response. These moderators log many communication instances throughout the exercise and provide

observations of successes and areas that need improvement. KDA also develops a schedule of injects for the

exercise. An inject is the introduction of a new element to the environment, such as a simulated phone call

from a citizen, and is a way for the observing organization to test how well the emergency response personnel

deal with potential circumstances should such an event actually occur.

The communication records for this research come in the form of call logs, moderator comments, simula-

tion injects, and copies of various emails, all in different levels of organization and clarity. The next step is to

use this data to construct a network model that can be used to understand and improve the communication

system.

3.2.1 Determining Clusters

In a FAD response, many entities are involved, spanning all levels of government and numerous civilian

and industry-related sectors. In a large-scale FAD exercise like this, the players involved can be in the

hundreds to thousands. In an actual event, when the public and news media become involved, that number

is far greater. It is not reasonable in these scenarios to expect accurate or comprehensive communication

logs for each player involved. Additionally, even with that sort of data, altering the structure of the network

in a way that reveals general observations of the structure and information flow would be very challenging.

One method to make a detailed network like this more generalized is to divide the players into groups, or

clusters [13], which are then represented as nodes in the information dissemination network.

One approach to creating clusters is the use of a heuristic. Clustering heuristics use network data and are

applied after the data extraction phase [45, 46, 47]. The KDA scenario does not have enough information
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Table 4: Labels for the Network Nodes
Label Node Name Label Node Name Label Node Name

A
County/Local

Administration
G

Kansas State Emergency
Operations Center (KSEOC)

M
Local

Veterinarians

B
County/Local

Emergency Management
H

Kansas State University
(KSU)

N
Movement Control

Branch (MCB)

C
County/Local Law

Enforcement
I

Kansas Department of
Agriculture (KDA)

O News Media

D Federal J
Kansas Department of Health

& Environment (KDHE)
P Other States

E Individual Producers K
KSU Animal Science &

Industry (KSU ASI)
Q Public

F Industry Associations L
KSU College of Veterinary

Medicine (KSU CVM)
R Unknown

on individual players to create an accurate network depiction. In instances of small or sparse data, expert

knowledge of the system is advantageous and can be applied to create clusters before or after data extraction.

Clusters for the KDA case study are generated prior to data extraction. Table 4 provides the resulting

network nodes and abbreviated labels for easier referencing. Most of these nodes are self-explanatory but the

Unknown (R) node may require further explanation. In the raw data of the communication logs, there are a

few communication instances where the transmission does not have a distinguishable recipient. Posting to a

Web Log is one example of this type of communication. There also are some transmissions where the recipient

is known, but the source is not. Even without complete information, these transmissions are important and

throwing them out would make the network model less representative of the actual communications. To

account for them, they are assigned to an Unknown node with a maximum capacity of 1 so it does not slow

down the network’s informed time but still effectively models these transmissions.

3.2.2 Data Extraction Process

The data extraction process for this research is quite involved and takes a lot of time, depending on the

quality of the data and communication logs. The order of operations for developing this network structure is

specific to this FAD exercise but can be generalized and used for other information dissemination networks

with similar data.

1. Compile all applicable data logs, communication logs, and any standard operating procedures or emer-

gency management policies that help inform proper reporting procedures.
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2. Use the existing documented policies and procedures to develop a list of possible organizations, indi-

viduals or positions within those organizations, and the clusters to which those organizations belong.

Individuals and positions are both encapsulated by the term player in this thesis. The reasoning is

that there are instances where a position is filled by multiple individuals but specifying each person is

not necessary. For instance, an organization may have a role that rotates daily among multiple people,

in which case the importance in the communication is that it comes from that position and not from

the individual. There also are instances where an individual’s name is not provided, in which case the

position must suffice. This is often the case in standard operating procedures that aim to generalize

the requirements to account for turnover of personnel.

3. Create a master communication log, called the Extracted Transmission List, from the collection of com-

munication and data logs tracking the following: time of transmission; the organization, position/name,

and cluster for both the sending and receiving players; and the mode of communication (email, phone

call, conference call, etc). It also is helpful to include what was said in order to track how specific

information flows through the network. Only the time of transmission and sending/receiving clusters

and positions will be used in developing the network structure for this particular thesis. However,

the rest of the extracted information could be used for future work or may be more helpful for other

information dissemination scenarios.

The roles of sending and receiving players are significant and warrant further discussion. For general

purposes, it is assumed that the one making the phone call, sending the email, or initiating the

conference call, is the one passing along information. However, there are instances where the initiator

of the communication (e.g., the person who makes the phone call) is actually on the receiving end of

the information flow. In these cases, the sending and receiving players should be logged according to

the actual flow of information. An example of this from the exercise is the Public (Q) node. In all

but one instance of the actual exercise, the Public initiated communication with another node, but it

was asking for information, not transmitting new information. This is difficult to distinguish in most

transmissions because the content of the conversation is not usually well-documented. But when it is

clear, as in the case of the Public node, the transmission log should follow the flow of information.

4. Reorganize the Extracted Transmission List by time of transmission.

5. Set wij as the number of transmissions from node i to node j and λmaxi as the number of unique players

associated with node i in the Extracted Transmission List.
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For a more detailed example of this process, see Appendix II. In all, there are 431 transmissions from more

than 70 documents with the players in these transmissions broken down into 18 distinct clusters. Table 5

shows the resulting weight matrix, W , for the network, as well as the total weight for each node, wi, and

the maximum capacity for each of the nodes, λmaxi .

Table 5: Weight Matrix and Capacities for the Network
W A B C D E F G H I J K L M N O P Q R wi λmaxi

A 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 4
B 1 4 0 0 0 0 2 2 6 0 0 0 0 0 0 0 5 20 40 20
C 0 0 7 0 0 0 1 0 1 0 0 0 0 30 0 0 0 0 39 16
D 0 3 0 0 0 0 1 1 16 0 0 1 0 0 1 10 0 0 33 13
E 0 0 0 0 0 0 0 0 9 0 0 1 1 0 0 0 0 0 11 6
F 0 2 0 0 0 3 1 1 14 0 0 0 0 0 0 0 0 0 21 14
G 0 1 0 0 0 0 2 0 11 0 0 0 0 0 0 0 0 6 20 11
H 0 3 0 0 0 0 0 6 3 0 5 2 0 0 2 0 7 0 28 9
I 0 13 0 0 0 11 11 3 14 2 7 9 0 1 3 8 20 1 103 13
J 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 8 0 9 1
K 0 0 0 0 0 0 0 4 5 0 26 0 0 0 0 0 0 0 35 7
L 0 1 0 3 1 0 1 0 5 0 1 4 0 0 0 0 3 1 20 9
M 0 4 0 0 0 0 0 0 3 0 0 2 0 0 0 0 0 0 9 5
N 0 0 8 0 0 0 0 0 7 0 0 0 0 6 0 5 0 0 26 10
O 0 2 0 0 0 1 0 0 5 0 0 2 0 1 0 0 2 0 13 9
P 0 0 0 0 0 0 0 0 9 0 0 0 0 0 0 0 0 0 9 8
Q 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 30
R 0 3 0 0 0 0 0 3 2 0 0 0 0 0 0 0 0 0 8 1

Additionally, Figure 4 gives a visual representation of this network with the thickness of the arcs corre-

sponding to their weight.

3.2.3 Observations of KDA Exercise Data

The final representation of the KDA exercise data in Table 5 and Figure 4 brings up some initial

observations of the network to consider:

• KDA is the biggest hub by far in the network, both in receiving and sending information, yet it does

not have a comparatively large capacity to some of the other nodes. This could indicate that it is not

structured to be able to sustain its communication demands.

• Federal receives all of its information from the KSU CVM but sends information to many nodes.

• The Movement Control Branch and County/Local Law Enforcement are very closely related.
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Figure 4: Graph of Network. Blue Nodes are State Nodes, Green are Local, Yellow are Industry-Related,
and Purple are KSU Nodes.
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• KDHE, County/Local Administration, and Individual Producers all receive information from a singular

source (KDA, County/Local Emergency Management, and KSU CVM, respectively).

• More intra-county communication is expected. This could be a byproduct of the large amount of

County/Local Emergency Management to Unknown links. This could be a result of the exercise design

that had limited counties participating.

• Industry Association unexpectedly has no communication with the Individual Producers.

3.3 Simulation Design and Parameter Selection

Given the network representation of the FAD response data, the next objective is to simulate the flow

of information through the network. This section describes the selection of nodes from which information

originates in the simulation, the sequence of simulation events, and the processes used to select simulation

parameters.

3.3.1 Information Injects

The simulation model depicts the flow of information through three injects, each replicated numerous

times. These three injects constitute pieces of information originating at three different nodes and represent

the most common and important sources of information from the exercise itself. The first inject simulates

information originating at KDA (I), the coordinating organization of the FAD exercise. KDA is by far the

most active of all nodes with more than twice the total weight in wI than any other node. It also introduces

the most new information to the FAD exercise of all nodes, making it a natural choice to originate information

in the model. The second inject choice represents initial detection, the most critical piece of information in

an FAD outbreak. In most cases, the symptoms of a possible FAD, like foot-and-mouth disease, are originally

noticed by the owner of the animal, represented in this network as an Individual Producer (E). The critical

nature of this piece of information is why this node is chosen as one of the injects. Finally, another common

source of information in the exercise is the Federal node (D), which passes along requirements and directives

to the various states impacted by the FAD. It also can represent information from an event in another region

where entities are not otherwise connected to the nodes represented in this model. These three nodes are

representative of the most common and critical sources of information in the FAD exercise. It would be

feasible to model information origination from all network nodes or even just one, and some applications
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of these methods may warrant such decisions, but for this particular exercise, the three selected injects are

most relevant.

3.3.2 Sequence of Simulation Events

Algorithm 1 shows the pseudo-code for this simulation. In broad terms, the simulation begins at time

0 initializing the current capacity array for the nodes (set to 0), and the next transmission time for each

node (set to infinity until the node receives the information for the first time). The current capacity of

the originating node is set to one and its first transmission time is determined. The transmitting node is

determined by the smallest transmission time of all the nodes. At the transmission time of a node, the

transmission recipient is determined using the u[0,1] number and the transmitting node’s associated row in

the R matrix. The receiving node’s current capacity is incremented by one (unless it is already at λmax),

and the transmitting node receives a new next transmission time. The receiving node will also receive a next

transmission time if its current time is still at infinity. The simulation loops through the transmission times

until all nodes have reached their maximum capacity, making the entire network informed.

Algorithm 1 Simulation Pseudo-Code

1: Define number of replications as replications and rep = 0
2: for inj as D, E, and I (to represent the three inject origination nodes) do
3: while rep < replications do
4: time = 0. Number of informed nodes, informed = 0.
5: Initialize current capacity, λi = 0 and transmission time, Ti =∞ for all i ∈ N .
6: Increment capacity of origination node λinj = 1.
7: Get transmission time for origination node Tinj .
8: while informed < 18 (number of total nodes) do
9: Find earliest transmission time Ti.

10: time = Ti.
11: Determine recipient j.
12: if λj < λmaxj then
13: Increment λj .
14: if λj = λmaxj then
15: Increment informed.
16: return informed time for node j.
17: end if
18: end if
19: Get new transmission times Ti and Tj .
20: end while
21: return network informed time for replication rep and inject inj
22: end while
23: end for
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3.3.3 Determining Next Transmission Time

The most mathematically intensive part of the simulation is determining the next transmission time for

each of the nodes. The next transmission time is assumed to be a random variable with a distribution esti-

mated from the FAD exercise data. This section describes the process used to select probability distributions

for each node.

The data used to find a distribution for the model are the inter-transmission times. Inter-transmission

times are determined for a node i by finding all the differences in time between subsequent transmissions

where node i is the transmitting node. Each node i has wi − 1 inter-transmission times.

1. A theoretical distribution (i.e., Normal, Exponential, Gamma, Weibull, etc.) should be used in finding

the transmission times. Law [48] recommends the use of a theoretical distribution for simulations that

require randomness. If a distribution does not fit the compared data, then an empirical distribution

can be used. An empirical distribution is using the data itself to run the model, rather than drawing

from a distribution that fits the data. The small number of observed transmission from certain nodes

makes using an empirical distribution impractical, because nodes where the total weight is only 1 would

always have the same transmission time.

2. Some combination of the frequency of a node’s transmissions in the exercise and its capacity should

influence its transmission time in the simulation. If all nodes use the same distribution and same

parameter(s) then they perform identically, which would not be representative of the system itself.

Likewise, for the modified networks discussed in Chapters 4 and 5, it is necessary to choose distributions

that depend on parameters that will be available for each node in each candidate network structure.

Node i’s capacity, λmaxi , and total weight, wi, are the only values available for each of the nodes.

3. Many nodes have too few observed transmission times in the exercise data to fit a distribution. Thus,

the five nodes with at least 30 observations are used to select one distribution type. Then each node’s

parameters (λmaxi and wi) are used to specify the distribution of the selected type that is used for that

node.

4. Goodness-of-fit (GoF) tests are used to determine how well or poorly a distribution may represent a

given data set. Three such tests are typically used in this field: the Chi-Squared test, the Kolmogorov-

Smirnov (K-S) test, and the Anderson-Darling (A-D) test. Each of these have their own strengths

and weaknesses. In small data sets such as this one, the Chi-Squared test loses its validity [48]. Also,
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for the K-S and A-D tests, the small sets limit the number of distributions that can be tested to the

Normal, Lognormal, Exponential, Weibull, and Log-logistic distributions. Both of these tests have

their benefits and can be used in this model. The K-S test looks at the greatest disparity in the data

set from the distribution while the A-D test expands on this to give a higher importance to the tails

of the given distribution function.

With these guidelines in mind, finding a distribution fit for the nodes with the highest number of inter-

transmission times is the next step. These five nodes are County/Local Emergency Management (B),

County/Local Law Enforcement (C), Federal (D), KDA (I), and Kansas State University Animal Science

& Industry Department (K).

EasyFit software [49] is used to automate the goodness-of-fit testing. The null hypothesis is that inter-

transmission times fit the distribution being tested. For a given data set and acceptable Type I error rate α,

a test statistic is computed for each distribution. This is compared to a critical value. If the critical value

is greater than the test statistic, then one fails to reject the null hypothesis at the level of α. Otherwise

the null hypothesis is rejected at the same α level. Failing to reject a null hypothesis is not the same as

accepting it as true. This is because a data set will never completely and perfectly fit a given distribution.

The goal is to be reasonably close. For this research, the desire is to find a distribution that fails to reject

the null hypothesis with an α > 0.10.

Table 6: K-S Test Statistics Against Critical Values (α = 0.1)
Node/Distribution Critical Value Exponential Log-Logistic Lognormal Normal Weibull
Node (B) 0.202 0.258 0.2099 0.2105 0.216 0.162
Node (C) 0.191 0.634 0.3788 0.43 0.393 0.683
Node (D) 0.208 0.644 0.356 0.427 0.337 0.341
Node (I) 0.134 0.466 0.299 0.334 0.276 0.301
Node (K) 0.202 0.686 0.424 0.427 0.413 0.388

Table 7: A-D Test Statistics With Critical Value 1.929 (α = 0.1)
Node/Distribution Exponential Log-Logistic Lognormal Normal Weibull
Node (B) 3.94 2.026 2.137 2.23 1.175
Node (C) 27.085 9.688 6.825 10.239 5.904
Node (D) 35.732 5.668 7.042 5.868 5.429
Node (I) 28.921 8.611 9.011 8.412 6.894
Node (K) 44.511 8.731 6.72 8.765 6.101

Tables 6 and 7 show the test statistics and critical values for the K-S and A-D tests, respectively, for

each of the five nodes. No distribution sufficiently fits all of the nodes. In fact, node B and the Weibull
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distribution is the only test for which the null hypothesis is not rejected. It appears at first glance that

the Normal distribution may be a good choice because it consistently has lower K-S test statistics than

the other distributions. However, the histograms of the data given in Figure 5 reveal characteristics that

goodness-of-fit statistics do not show. Figure 6 illustrates the shapes of the five possible distributions.

Figure 5: Transmission Times for Nodes with the Largest Number of Outgoing Transmissions

Comparing Figures 5 and 6 makes the exponential distribution look like the best choice of the five possible

distributions. The blue curve in each of the graphs in Figure 5 is the exponential distribution fitted to that

data. With insufficient statistical evidence to support a different distribution, and too few data points to use

an empirical distribution, this thesis adopts the exponential distribution to model the transmission times.

3.3.4 Distribution Parameter

Given the choice of exponential distribution to model transmission times, this section describes how

the distribution parameter is chosen for each node in the network model. The exponential distribution is
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Figure 6: Density Function Plot of Allowable Distributions for K-S GoF with Low Sample Size

specified by a single parameter, denoted βi for node i. The expected value of an exponential distribution is

1/βi which means that as βi increases, the expected time until the next transmission from node i decreases.

This is important in considering how to determine the exponential parameter of each node as a function of

known node parameters, weight wi and maximum capacity λmaxi .

The goal is to find a single function of wi and λmaxi that provides a reasonable βi for every node. The

results for the five nodes with largest weight are used to select this function. Table 8 summarizes the known

node parameters, wi and λmaxi , and the best-fitting exponential distribution parameter, βi, for the five nodes.

Table 8: Parameters of the Exponential Function
Node wi λmaxi βi

B 40 20 0.055
C 39 16 0.1198
D 33 13 0.0458
I 103 13 0.108
K 35 7 0.058

Six functional forms are considered, each of which admits a scalar z; these functional forms are provided

in the first column of Table 9. Linear regression is used to select the value of z that minimizes the sum

of squared errors between the predicted β′i = f(z, wi, λ
max
i ) and the best-fitting value βi for each of the
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six functional forms. The best z and the corresponding sum of squared errors for each functional form are

summarized in Table 9. The function β′i = 0.00133(wi + λmaxi ) yields the minimum sum of squared errors,

and thus, this function is used to determine the exponential distribution parameter for transmission times

for every node in the network.

Table 9: Sum of Squared Errors for Exponential Parameter
Parameter Function z Sum of Squared Errors

z(λmaxi ∗ wi) 0.0001 0.00544
z(λmaxi /wi) 0.182 0.01293
z(wi − λmaxi ) 0.0021 0.00743
z(wi + λmaxi ) 0.00133 0.00344

z(wi) 0.0017 0.00425
z(λmaxi ) 0.0053 0.00708

3.3.5 Number of Replications

The final simulation design component is selecting an appropriate number of replications to enable

reporting results with a desired confidence level. The result of interest for this study is the informed time of

the entire network. Each simulation replication produces an informed time. To ensure with 95% confidence

that the true average informed time is within 100 minutes of the observed average informed time from the

simulation replications, an initial sample of 50 replications for each inject is taken. The required number

of replications, r, is determined by the following equation: r =

(
tα/2 ∗ s
B

)2

, where r is the number of runs

required, B is the desired precision level (in our case 100), s is the sample standard deviation, and tα/2 is the

critical value of the student-t test for a Type I error of α (in our case, 0.05) [50]. Table 10 shows the number

of replications needed for each inject to reach the desired confidence. KDA requires the largest number of

all injects at 367.07. For uniformity, and even stronger confidence, 400 replications are used.

Table 10: Number of Replications Required for 95% CI ± 100 minutes
Inject Node KDA (I) Individual Producers (E) Federal (D)

Sample Average Informed Time 3619.23 3463.97 3669.71
Sample Standard Deviation 948.0 846.8 895.74

r =

(
tα/2 ∗ s
B

)2

367.07 292.88 327.72
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3.4 Data Limitations

The nature of the case study data imposes some limitations on this analysis. These are divided into two

categories, namely limitations arising from the fact that the data originate from an exercise rather than an

actual event and those that arise from the data format or content. Some of the data set limitations are:

• Exercise limitations:

– There is no documentation of communication for players that did not actually participate in the

exercise but do play a significant role in a real-life scenario.

– There are a few players or groups of players that could be their own cluster, based on their

importance in the standard operating procedures and other literature, but that are never on the

receiving end of any communications.

• Data format/content limitations:

– Not all communications are properly documented, including all face-to-face conversations.

– Some moderators are better at logging communication transmissions than others, making for some

areas with disproportionately more documented transmissions than others of similar involvement

in the exercise.

– Information that is posted to a message board or online tracking system does not have a designated

recipient, making those messages difficult to incorporate into the model.

These limitations may impact model accuracy, specifically how quickly a network or node becomes in-

formed. As the number of documented transmissions for a node increases, the transmission time of the

node decreases. However, an increase in transmissions would likely mean an increase in maximum capacity

as well, making it impossible to identify whether more communications would necessarily improve network

performance.

Validation of this network is also challenging because of the data. Specifically, there are very few specific

pieces of information that can be tracked through the Extracted Transmission List and none that are docu-

mented as reaching every node. This makes determining if the model accurately reflects the actual network

much more difficult.

There are many ways to improve upon this data set in future exercises, some of which have already been

implemented by KDA as a result of this research. First of all, streamlining communication documentation
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by specifying a common email, electronic log, or data portal can ensure more communications are being

documented. Secondly, increasing the number of moderators will allow for a broader range of documented

communication over more nodes and training them properly will help them understand the importance of

specifying transmission times, members of the conversation, and content discussed. Despite these challenges

in the data set, the Extracted Transmission List is still large and significant enough to create a model that

depicts the general structure and layout of the communication network.

3.5 Model Validation

This section describes model validation efforts based on comparisons between the simulation outputs

and the FAD exercise data. After 400 replications of this network structure on each of the three injects, the

average informed time of the network was more than 3,000 minutes, or 50 hours, for each inject. Considering

the FAD exercise itself was only 30 hours, this would appear to indicate an inaccurate network model.

After all, how could a single piece of information never make it to the entire network over the course of the

exercise? This is a reasonable question to ask, but remember that an informed network is one in which the

current capacity of every node equals its maximum capacity. Unfortunately, the lack of data means there

are no instances in the exercise itself where the information reaches every player represented, making proper

validation of the model difficult.

Ideally, validation for this system would include following a single piece of information from one of the

inject sources through the Extracted Transmission List until it reaches every player at every node, noting the

informed times along the way and comparing them to the simulated results. However, as already discussed,

there is no such information thread available. In an effort to provide the best alternative, there are two

pieces of critical information that can be tracked through the exercise.

The first piece of information coincides with the beginning of the exercise where the Federal node tells

KDA of a presumptive positive FMD case in the state of Alabama. There are 37 transmissions in the

Extracted Transmission List that discuss this information, eventually reaching nine different nodes. This

event is an example of inject 3 of the model, where the Federal node originates information to the network.

The lack of documented transmissions means the actual informed times of nodes cannot be determined, but

the time at which a node first receives the information, or “first informed time”(when λi becomes > 0), can

be compared for these first nine nodes.

Table 11 shows this comparison in detail. Comparing the exercise and simulation times of each row sug-

gests that the simulation is, indeed, representing this information flow in the network closely, particularly for
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the first seven nodes, where the times differ on average by less than 15 minutes. Additionally, the simulation

predicts the actual order of the first three nodes perfectly and the nine exercise nodes are represented in the

first 13 nodes of the simulation.

Table 11: First Informed Times for Presumptive Positive FMD and Inject 3 over 400 Replications
Number of Nodes
First Informed

Node
Exercise Time
(min)

Node
Simulation Time
(min)

1 D 0.00 D 0.00
2 I 0.00 I 25.78
3 P 0.00 P 41.51
4 O 54.00 Q 47.88
5 G 60.00 B 53.85
6 N 60.00 R 67.01
7 F 60.00 G 69.32
8 K 110.00 F 82.48
9 H 150.00 L 82.66
10 H 87.66
11 K 92.59
12 O 142.32
13 N 333.06
14 J 379.19
15 C 403.47
16 A 553.48
17 E 609.69
18 M 1029.17

The only other instance from the exercise with enough transmission documentation to analyze is when

a bull with possible FMD is discovered in the Kansas State University College of Veterinary Medicine (L).

There are 47 such transmissions for this event, though it reaches only seven distinct nodes. This event

most closely resembles inject 2 of the model where an individual producer (E) introduces information to the

network. With this in mind, Table 12 shows the same comparison as the previous instance. Just as in the

previous example, all seven exercise nodes are represented within the first 11 nodes of the simulation. Also,

the average difference in times for the individual nodes is less than 25 minutes, indicating another reasonable

validation.

Differences between this simulation model and the actual data set are expected, particularly because of

the randomized and probabilistic nature of the simulation. And while the limited data prevents a perfect

comparison for validation, the two instances described in this section provide evidence of its fidelity. For

the purposes of this thesis, the model developed throughout this chapter performs sufficiently well and the

remainder of the thesis will build on this network model.

34



Table 12: First Informed Times for Bull at KSU CVM and Inject 2 over 400 Replications
Number of Nodes
First Informed

Node
Exercise Time
(min)

Node
Simulation Time
(min)

1 L 0.00 E 0.00
2 I 0.00 I 42.54
3 K 108.00 Q 69.13
4 G 108.00 B 81.59
5 B 117.00 G 89.30
6 R 117.00 L 91.76
7 H 139.00 R 93.09
8 F 102.61
9 K 111.48
10 P 111.87
11 H 118.61
12 O 195.80
13 D 265.44
14 J 390.85
15 N 395.21
16 M 424.68
17 C 462.76
18 A 561.43

3.6 Simulation Results

The information dissemination network simulation model is run 400 times for each of the three injects

described previously. The informed time for each node and for the whole network are recorded for each

replication. Table 13 shows the average informed time for the 400 replications for each node and inject in

the simulation as well as the average informed time of the overall network. These results provide insight

about the current network structure and help identify future directions for improvement.

Interestingly, information originating at the Individual Producer (node E) moves through the network

quicker than that originating at nodes with both higher total weight and maximum capacity (I and D). This

is due to the decrease in informed time to the Local Veterinarians (node M), which are only contacted in

the network by the Individual Producers. It also indicates a potential need to adjust the network in way

that gives more links to Local Veterinarians.

Another intriguing result is the large difference between the average network informed time and the

highest node informed times for each inject. For instance, the network informed time for inject 1 is 3661.94

minutes but the highest node time is Local Veterinarians (E) at 2953.90 minutes, a difference of almost 700

minutes. This shows the large variance in the network towards the end of the simulation. There are four nodes

for inject 1 that have an average informed time more than 2,000 minutes (County/Local Administration,
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Table 13: Average Informed Time for All Injects over 400 Replications
Node
Informed

Inject 1 (min)
From I

Inject 2 (min)
From E

Inject 3 (min)
From D

County/Local
Administration(A)

2042.14 2017.39 2058.28

County/Local Emergency
Management(B)

381.57 402.16 376.68

County/Local Law
Enforcement(C)

934.73 995.51 929.97

Federal(D) 2248.90 2307.53 2068.25
Individual Producers(E) 2953.98 2604.49 3069.49
Industry Associations(F) 567.34 609.06 602.91
Kansas State Emergency
Operations Center(G)

373.34 413.97 382.61

Kansas State University(H) 318.60 353.37 317.43
Kansas Department of
Agriculture(I)

102.13 133.75 106.88

Kansas Department of Health
& Environment(J)

348.24 390.85 379.19

KSU Animal Science
& Industry(K)

176.43 209.09 190.45

KSU College of
Veterinary Medicine(L)

339.54 345.07 349.66

Local Veterinarians(M) 2822.64 2118.96 2730.95
Movement Control
Branch(N)

516.71 575.36 511.24

News Media(O) 990.36 1023.82 972.2
Other States(P) 354.12 390.87 252.33
Public(Q) 456.28 496.92 472.29
Unknown(R) 55.38 93.08 67.01

Entire Network 3661.94 3291.67 3757.31

Federal, Individual Producer, Local Veterinarians), and these four tend to alternate which node is the last

to be informed. These nodes also exhibit greater variability in average informed times (average standard

deviation of 968 minutes) than the other nodes (average standard deviations of 148 minutes). Again, this

indicates a need to get these four nodes more involved in the network with regards to incoming communication

links.

In Section 3.2.2, some observations were noted based on the network flow chart from Figure 4. The

simulation results confirm and give greater understanding to some of those initial observations.

• KDA was identified as a hub of information and these results confirm that, showing that it has the

second lowest average informed time despite having one of the highest maximum capacities in the

network.

36



• Federal is very much affected by only receiving information from KSU College of Veterinary Medicine

as it is one of the last three informed nodes for all injects.

• The Movement Control Branch and County/Local Law Enforcement are definitely closely related. In

fact, the difference in informed times between the two across the three injects are 418.02 minutes

(934.73−516.71), 420.15 minutes (995.51−575.36), and 418.73 (929.97−511.24) minutes, respectively.

Considering the individual informed times vary among the three injects by more than 60 minutes, this

small variation in their difference is very indicative of a strong correlation between the two.

These discoveries reveal the need for an improved network structure. Without some changes, particularly

to the nodes with the highest informed times, expeditious transfer of critical information to all players in

this FMD response will be impractical at best.

3.7 Conclusion

This chapter explains the basics of information dissemination network structures and shows how raw

data from communication logs can be used to develop a model that accurately depicts the performance

of the network. Specifically, this chapter concludes with a reliable network simulation of the Kansas FAD

exercise. The next chapter will explore how this network can then be altered in an effort to reduce the

average informed time of the network.
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4 IDENTIFYING IMPROVED NETWORK STRUCTURES

While the focus of Chapter 3 was on building a network model based on actual communication data and

simulating the performance of the current network structure, this chapter introduces a method to identify

alternative network structures with improved performance. Improvement of this network requires the ability

to test other network structures and accurately compare them against the original network and each other.

The challenge becomes, with such an enormous number of possible networks, how does one determine

which to test and what metrics should be used to compare them? This chapter introduces a simulated

annealing heuristic to identify improved network structures. In addition, it describes the simulation principles

and experimental design utilized in the implementation.

4.1 Simulated Annealing Algorithm

This section introduces the main components of the simulated annealing algorithm. It includes the

neighborhood, the objective function, the cooling parameter, and the stopping conditions.

4.1.1 Neighborhood

The primary operation in a simulated annealing algorithm is selecting a new solution that is in the

“neighborhood” of the current solution. A solution network structure is defined by its weight matrix. This

section describes feasible network structures and the definition of neighbors. The original weight matrix

used in Chapter 3 is denoted W 0 to set it apart from all subsequent network structures. These subsequent

structures are denoted W k, where k is the iteration number.

Feasible Network Structures

There are a few structural requirements each network must meet in this simulation. When adjusting the

weight matrix, it is important to consider what the changes may indicate if they are to occur in real life. In

some information dissemination networks, it may be feasible for everyone to be able to communicate with

everyone, but that is not the case for this exercise. For instance, the Federal node would not feasibly talk

to the Local Veterinarian node in actuality. To ensure network structure changes that make logical sense, a

n x n boolean potential adjacency matrix, A, is constructed where aij = 1 when transmissions from node

i to node j are allowable and aij = 0 if not. This matrix is constructed based on expert knowledge of the

system and how the various players communicate. Table 14 is the original weight matrix, W 0, from Table 5,
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Table 14: Weight Matrix with Possible Adjustment Cells for the Base Network
W A B C D E F G H I J K L M N O P Q R wi λmax

A 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 4
B 1 4 0 0 0 0 2 2 6 0 0 0 0 0 0 0 5 20 40 20
C 0 0 7 0 0 0 1 0 1 0 0 0 0 30 0 0 0 0 39 16
D 0 3 0 0 0 0 1 1 16 0 0 1 0 0 1 10 0 0 33 13
E 0 0 0 0 0 0 0 0 9 0 0 1 1 0 0 0 0 0 11 6
F 0 2 0 0 0 3 1 1 14 0 0 0 0 0 0 0 0 0 21 14
G 0 1 0 0 0 0 2 0 11 0 0 0 0 0 0 0 0 6 20 11
H 0 3 0 0 0 0 0 6 3 0 5 2 0 0 2 0 7 0 28 9
I 0 13 0 0 0 11 11 3 14 2 7 9 0 1 3 8 20 1 103 13
J 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 8 0 9 1
K 0 0 0 0 0 0 0 4 5 0 26 0 0 0 0 0 0 0 35 7
L 0 1 0 3 1 0 1 0 5 0 1 4 0 0 0 0 3 1 20 9
M 0 4 0 0 0 0 0 0 3 0 0 2 0 0 0 0 0 0 9 5
N 0 0 8 0 0 0 0 0 7 0 0 0 0 6 0 5 0 0 26 10
O 0 2 0 0 0 1 0 0 5 0 0 2 0 1 0 0 2 0 13 9
P 0 0 0 0 0 0 0 0 9 0 0 0 0 0 0 0 0 0 9 8
Q 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 30
R 0 3 0 0 0 0 0 3 2 0 0 0 0 0 0 0 0 0 8 1

but it also includes information from this adjacency matrix, where cell wij is highlighted if aij = 1. In other

words, only highlighted cells are allowed to have a positive weight in future network structures.

The next limitation on alternate network structures is a zero-sum rule for outgoing weights. That is,

any outgoing link weight deducted from wij must be added to some wik with the same transmitting node,

i. For example, if a link weight of 1 is taken away from w3,4 then 1 must be added to w3,j where j is any

other node such that a3,j = 1. The purpose of this, practically speaking, is to force a node to redirect its

communication, not add more or simply stop communicating. This is easily put into practice because it

considers the potential limitations on how many transmissions one cluster of players can actually make. The

network also cannot be altered in such a way that a node no longer receives any communication from other

nodes. Mathematically speaking, this requirement is represented as

n∑
i=1

wij > 0, i 6= j for all j ∈ N .

Similarly, disjoint groups of nodes are not allowed. It is possible for a network change to result in a

group of nodes that only communicate with each other, preventing the information from ever reaching them

or, if the information originates in the group, never leaving. One solution to determine this is to conduct a

breadth first search on the network. Instead, this thesis handles it with a limit on the maximum run time of

a replication at 7,000 minutes. This number is chosen because the highest total run time of any replication in

the base network is 7,003 minutes and this maximum time prevents a potential loop from distorting average

informed time statistics. These rules ensure every network analyzed is feasible and the simulation of that
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network will terminate in a reasonable amount of time.

Neighborhood Definition

Each network structure has a set of feasible neighbors. These neighbors are feasible in that they subscribe

to the aforementioned limitations. In this thesis, four neighborhood variations are considered, named Swap

1, Swap 3, Swap 3-1, and Swap 3-2-1. The four variations relate to how much weight is changed in each

iteration of the simulated annealing. A neighbor of the network defined by weight matrix W 1 is a network

whose weight matrix W 2 satisfies w2
ij = w1

ij − swap and w2
ik = w1

ik + swap for exactly one pair j and k. To

prevent negative weights, if swap > w1
ij then w2

ij = w1
ij − w1

ij = 0 and w2
ik = w1

ik + w1
ij . As an example,

when swap = 1, w2
ij = w1

ij − 1 and w2
ik = w1

ik + 1 for exactly one pair j and k. That is, the only differences

between W 1 and W 2 are two individual cells whose weights differ by one. A neighborhood is the set of all

new network structures that satisfy the above criteria.

By substituting another variable, swap, the size of this alteration can be adjusted. The idea is that a

larger swap will lead to more drastic changes in the network structure. The neighborhood variations are

denoted with a letter, A through D, corresponding to Swap 1, Swap 3, Swap 3-1, and Swap 3-2-1, respectively,

added in the superscript of the weight matrix. So the network structure in the fifth iteration of simulated

annealing for Swap 3 would be represented by W 5B .

Two of the neighborhood variations (Swap 1 and Swap 3) are related only to the swap variable, where

swap = 1 and swap = 3. The other two variations are considered a progressive shift, where swap decreases

as the simulation runs. For Swap 3-1, swap changes from three to one after 50 consecutive non-improving

iterations. Swap 3-2-1 decrements swap from three to two after 25 consecutive non-improving iterations and

from two to one after another 25. These different neighborhoods change how the model converges to its best

solution and each provides a different final network structure as well.

4.1.2 Objective Function

The objective function for simulated annealing is the average informed time of the network across all

1,200 replications. This is calculated within each iteration of the simulation. As discussed in 3.6, there

are many different statistical outputs provided by this model. Naturally, the focus is on those metrics that

provide information on the entire network rather than individual nodes.

In a crisis communication scenario where timeliness and accuracy of information is paramount, a fully

informed network is the safest and most conservative parameter. There are certainly other goals that could
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be desired and a similar approach can be adopted for these. For the purposes of this simulation, however, the

informed time for the network is the preferred metric with which to compare various structures because it is

the only way of ensuring that all players requiring the information have received it. Centrality, as discussed in

Chapter 2, was also considered as a potential predictor of network performance but further experimentation

(explained in detail in Appendix I) found no correlation with the informed time of the network.

Expanding on the discussion of network informed times, all injects are equally important for the purposes

of this research. There is no indication from the exercise that weighing the injects differently would make the

model more accurate. Because of this, the primary metric used for this simulation with which to compare

all iterations is the average informed time of the network for all 1,200 replications (400 replications for all

three injects). The average informed time of a given network W k denoted f(W k).

The goal of this simulated annealing method is to identify a network structure with very good f(W ∗) in a

reasonable computational time. Finding a globally optimal network is also not feasible for the purposes of this

research. Nonetheless, a locally optimal network W ∗—the best network for all tested network structures—

will still provide great insight into network improvement for this exercise.

4.1.3 Cooling Parameter

As the simulated annealing process continues, it “cools”, decreasing the probability of accepting a worse

structure. This probability at iteration k, ρk, is determined using the equation ρk = e(−∆/ck), where ∆ is

the difference between f(W k) and the objective function value of the most recently accepted network WA

and c is the cooling parameter.

The cooling parameter c must satisfy c < 1. This is important because it drives the probability of

acceptance to 0 as k, the number of iterations, increases. If c = 1, then the probability will depend only on

∆, potentially choosing a much worse network structure far into the simulation when the heuristic should be

“fine tuning” the results. On the opposite side, if c > 1 the probability approaches 1 as k increases, resulting

in choosing the new structure no matter what the objective function value is.

With the goal of conducting thousands of iterations, it makes sense to allow the acceptance of a worse

network structure, even at the 500th iteration. Parameter tuning is done to identify an appropriate c value

for this system. After a test of 500 iterations where c = 1 (so as to prevent the probability of acceptance from

approaching 0 or 1), the average ∆ for non-improving iterations was 32.06 minutes. What cooling parameter,

c, will give an acceptance probability of 0.1 (ρk = 0.1) at the 500th iteration (k = 500) using ∆ = 32.06?
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Using the equation above, ρk = e(−∆/ck), and solving for c, reveals c = k

√
−∆

ln(ρk)
= 500

√
−32.06

ln(0.1)
= 1.005.

However, this violates the restriction of c < 1. In order to get the desired probability with an acceptable

parameter, the ∆ must be decreased. This is accomplished by adding a scaling factor, S, to the original

equation, creating ρk = e(−∆/Sck). A scaling factor of 100, for instance, changes the required parameter

from 1.005 to 0.996, satisfying the parameter restriction.

This means, however, that there are now two parameters to define before the model is complete. After

some preliminary testing, S and c are first limited to values from 50 to 500 and 0.9 to 0.9999, respectively;

anything outside of these ranges performs far worse. Next, combinations of these are tested for 400 iterations,

each with the resultant optimal average informed time shown in Table 15. The best times for each S are

highlighted in green. A cooling parameter of 0.99 results in the three lowest optimal average informed times

in the matrix, with S = 100 having the best result at 671.62 minutes. Setting c = 0.99 and running for 1,200

iterations confirmed S = 100 as the top choice as shown in Table 16. Then, the cooling parameter is taken

to further specificity in Table 17 for 15,000 iterations to find c = 0.9995. In the end, the parameter choices

after these tests are S = 100 and c = 0.9995.

Table 15: Optimal Average Informed Time for 400 Iterations
Optimal Average Scaling Factor (S)
Informed Time (min) 50 100 200 300 400 500

0.9 820.09 809.68 764.39 859.01 730.16 744.39
0.91 851.46 832.35 820.51 931.16 794.11 936.00
0.92 851.46 873.24 804.30 931.16 781.09 894.68
0.93 851.46 873.01 799.74 930.63 783.44 881.96
0.94 851.46 836.86 794.12 771.20 792.69 731.30
0.95 828.08 813.32 830.56 796.04 791.79 817.51
0.96 763.34 806.10 821.45 1106.54 923.23 719.03
0.97 759.46 761.78 810.88 796.11 782.83 715.45
0.98 899.07 762.72 738.17 816.51 732.32 692.95
0.99 826.90 671.62 679.19 685.89 756.02 815.56C

o
ol
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)

0.99999 808.04 763.84 835.21 875.51 873.11 1038.74

4.1.4 Stopping Conditions

One aspect of the simulated annealing heuristic not yet discussed is when to conclude the network

structure alterations. Common stopping conditions in the literature are a combination of maximum number

of alternate configurations m and the number of consecutive configurations in which there is no improvement
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Table 16: Informed Time at c = 0.99
1,200 Iterations

Scaling Factor, S Time (min)

1 559.05
50 645.86
100 538.58
200 577.98
300 559.59
400 547.30
500 554.28

10,000 550.16

Table 17: Informed Time at S = 100
15,000 Iterations

Cooling Parameter (c) Time (min)

0.992 463.55
0.994 458.64
0.996 437.43
0.998 430.14
0.999 414.74
0.9995 391.10
0.9999 528.11
0.99999 577.91

n [48]. This research also uses these stopping conditions with a maximum of 50,000 iterations (m = 50, 000)

and no more than 300 consecutive iterations without improvement (n = 300).

4.1.5 Simulated Annealing Algorithm

Given the discussion of components and parameters, Algorithm 2 summarizes the proposed simulated

annealing heuristic steps. It is adapted from [42] to fit the parameters and notation already defined for

this research. After initialization of the simulation, the main loop in the process (line 3) allows subsequent

iterations until one of the stopping conditions is met. The bulk of simulation time occurs in lines 4 and 5,

where a neighbor is chosen and then 1,200 simulation replications are conducted to determine f(W k). Lines

8 and 9 are required because it is possible that the most recently accepted network, WA, is not optimal if

line 14 accepted it in a prior iteration. The algorithm concludes by returning the best network structure

identified and its respective average informed time.

4.1.6 Simulation Principles and Experimental Design

It is now important to focus on the framework of the simulation to ensure that the results are accurate,

are replicable, and provide the information needed to make useful conclusions. This key component to

simulation is experimental design, which aims to find the most impactful factors in a system with the least

amount of simulation. The design used in this thesis is based on the principles described in detail in [48].

There are two main elements of experimental design, factors and responses. Factors are adjustable

aspects, or inputs, of the simulation, while responses are the measurable statistical output of the simulation.

Examples of factors in this simulation are the weight matrix, W k, of the network, which, in turn, informs

the rate matrix, R, as well as all adjustable parameters, like the number of replications per inject. The main
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Algorithm 2 Simulated Annealing Process

1: Start with feasible network, W 0, and with average informed time, f(W 0). The current optimal network
W ∗ = W 0 and the most recently accepted network WA = W 0. Iteration k = 1. m = 50, 000 and
n = 300. Number of Consecutive Non-Improving Iterations, cni = 0.

2: Determine a starting temperature c = 0.9995 and scaling factor S = 100.
3: while k < m and cni < n do
4: Choose a random feasible neighbor, W k, of current solution, WA.
5: Set ∆ = f(W k)− f(WA)
6: if ∆ ≤ 0 (improvement) then
7: Set WA = W k.
8: if f(WA) < f(W ∗) then
9: W ∗ = WA.

10: end if
11: cni = 0.
12: else
13: Choose a u[0,1] random number, r.

14: if r < e−∆/Sck then
15: WA = W k.
16: end if
17: cni = cni+ 1.
18: end if
19: k = k + 1.
20: end while
21: return W ∗ and f(W ∗)

response for this simulation is the average informed time of the network. The built-in challenge of simulation

is that the responses are only as accurate, and therefore, useful, as the experimental structure behind them.

When comparing the performance of various network structures in our simulation, it is critical to ensure

that any changes in performance come from the difference in structure, and not simply as a result of different

random numbers being used. This is where the importance of synchronizing the random number generator

becomes a factor. In this simulation, there are five instances where a random number is required, abbreviated

here as RV1,...,RV5, as in random variate. The first (RV1) is used to determine the transmission time for

a node, as discussed in the previous chapter. The second instance (RV2) is used in conjunction with the R

matrix to determine which node will receive the transmission of a particular node. The final three random

variates relate to the network structure changes. Two random numbers (RV3 and RV4) are needed for

determining which cell in W k loses weight and which gains, respectively. The final random number (RV5)

in the program is used to determine whether a network with worse performance than the previous network

should be kept.

To reiterate, the best way to compare the performance of multiple network structures is to make the

“randomness” in the simulation reproducible for all comparing structures. Law states, “Ideally, a specific
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random number used for a specific purpose in one configuration is used for exactly the same purpose in

all other configurations,” [48] (original emphasis). Failure to accomplish this can cause insufficient and

inaccurate statistical comparisons. For instance, if the first replication of inject 1 has the initial receiving

node as G for one network structure but the first replication of the same inject for another structure has I

as the first receiving node, then the change in network performance could be caused by this node difference,

and not necessarily because of the network structure change.

The way to solve this problem is to establish a seed, or starting point, of a sequence of random numbers.

This sequence, called a stream, will be the same as long as the same seed is used. Multiple streams are used

in this research to account for the different random variates and ensure diversity in the random numbers.

Using the same seed across the same replication ensures that the RV1 used to determine the first transmission

time in a specific replication (say, replication 23) is the same RV1 used in replication 23 of all subsequent

injects and iterations. Table 18 shows how each random variate is used, how many of them are needed, and

if/when they get reset. Note that RV1 and RV2 each use different streams even though they require the

same number and are reset at the same time. This is because they have two completely different purposes

and pulling from two different streams of random numbers eliminates potential crossover of the two. This

simulation uses unique streams of random numbers for RV1, RV2, and RV5. RV3 and RV4 (called RV3/4)

can use the same stream because they are always called together and used for the same purpose, determining

which cells gain and lose weight for W k.

Table 18: Random Variate Characteristics
Random
Variate

Usage Number of Streams When to Reset

RV1 Determining transmission time
400, one for each
replication

Reset all 400 streams
prior to next inject

RV2 Determining transmission recipient
400, one for each
replication

Reset all 400 streams
prior to next inject

RV3/4
Choosing cells to gain and lose
weight in W k One stream

Only reset if testing multiple
simulated annealing parameters
in same simulation

RV5
Determining whether to accept a
non-improving network structure

One stream
Only reset if testing multiple
simulated annealing parameters
in same simulation

The next challenge is in determining when to reset the seeds of these streams. There are really two

sets of random variates in the simulation. RV1 and RV2 are used to run the simulation replications of the

individual networks in line 5 of Algorithm 2, while RV3/4 and RV5 are used in the main simulated annealing
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steps. Table 19 gives a visual representation of the structure of the simulation and when the various random

number seeds are reset. The simulation begins with established base parameters for the simulated annealing.

Then, it cycles through all required iterations of the simulated annealing. For each iteration, there are three

injects, and for each inject, there are 400 replications. Before the start of every inject, all 400 seeds are

reset for both RV1 and RV2. If different parameters are to be tested and compared without restarting the

simulation, the seeds for RV3/4 and RV5 will need to be reset before restarting the simulated annealing

process. An example for this use is in Section 4.1, which describes how this thesis determines the best

cooling parameters to use.

Table 19: Visual Structure of the Simulated Annealing Heuristic
Base Parameters

Iteration 0

Inject 1
Inject 2
(reset RV1 and RV2 seeds)

Inject 3
(reset RV1 and RV2 seeds)

Replication 1 Replication 1 Replication 1
Replication 2 Replication 2 Replication 2
...

...
...

Replication 400 Replication 400 Replication 400
Iteration 1

Inject 1
(reset RV1 and RV2 seeds)

Inject 2
(reset RV1 and RV2 seeds)

Inject 3
(reset RV1 and RV2 seeds)

Rep 1 ... 400 Rep 1 ... 400 Rep 1 ... 400
...
Final Iteration

New Parameter
(reset RV3/4 and RV5 seeds)

Iteration 0 ... Final Iteration

4.2 Conclusion

This chapter provides a detailed description of the proposed simulated annealing heuristic to identify an

improving network structure for the FAD response network. Simulated annealing is a useful search heuristic

for this application because it begins with a single network and allows for a broad range of potential results.

The proposed version of simulated annealing is novel in that it uses discrete event simulation to calculate

the objective function in each iteration. With the necessary parameters and experimental design factors in

place, this model is ready for implementation to find a network structure that minimizes the network average

informed time.
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5 COMPUTATIONAL RESULTS

This chapter describes the results of applying the simulated annealing heuristic to the FAD exercise

data to identify improved network structures. First, convergence characteristics and differences between

neighborhood variations are discussed. This is followed by a discussion of the network with the best average

informed time and the impactful changes in network structure. The chapter then concludes with a focus on

the most significant relationships in the network and some general observations related to this FAD response

exercise.

5.1 Simulated Annealing Process

The simulated annealing heuristic is implemented with four neighborhood variations. In implementing

this simulation, the model runs the entire simulated annealing process five times with different seeds. In

doing this, it ends up searching through five different paths of network changes, providing the best possible

network structure over all of them in a reasonable amount of time.

Although the neighborhoods yield different rates of convergence to the final solutions, the quality of the

solutions is quite similar. The differences in convergence for the first of the five simulated annealing seeds

are illustrated in Figure 7, where the x-axis is total iterations and the y-axis is total improving iterations.

Swap 3 converges to its best solution much faster than Swap 1, because Swap 1 makes smaller changes to

the weights in each iteration. Swap 3, Swap 3-1, and Swap 3-2-1 are the same until around iteration 275,

when 25 consecutive non-improving iterations have been completed. At this point, Swap 3-2-1 breaks off

from Swap 3 and Swap 3-1. Then, around iteration 700, Swap 3-1 changes swap from three to one, while

Swap 3-2-1 moves from two to one. From there, Swap 3-2-1 and Swap 3-1 progress together for the most

part while Swap 1 and Swap 3 continue on their own. In the end Swap 1 has more than two and a half times

more improving iterations than Swap 3 while Swap 3-1 and Swap 3-2-1 each have almost twice as many as

Swap 3.

So how does this convergence time affect the quality of the network structure? Interestingly, the dif-

ferences are quite minimal. A similar graph in Figure 8 shows how the neighborhood variations converge

based on their optimal average informed time, f(W ∗). To make it possible to see differences, ln(f(W ∗)) is

shown. There is actually little variation between the neighborhoods, with the exception being Swap 1 from

iterations 230-1,500. In the end, however, the four neighborhood variations produce network structures with

very similar average informed times, as shown in Table 20. Another important note is that the steep drop in
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Figure 7: Total Number of Improving Iterations for Each Neighborhood Variation

the graph in Figure 8 around iteration 200 indicates that there are certain changes in the network structure

that have particularly large impacts on the network’s performance. In summary, Swap 3-2-1 reaches a better

solution than Swap 1 in 68% as many iterations.

Table 20: Optimal Average Informed Time
Swap 1 Swap 3 Swap 3-1 Swap 3-2-1

f(W ∗)(min) 421.13 424.97 419.93 417.48
Optimal Iteration 5829 3444 5417 3975

The running time for the simulated annealing heuristic is similar for each of the network variations. The

running time of the model is based on the number of iterations conducted; it completes about five iterations

per second of run time, meaning the simulated annealing process described here takes around 92 minutes to

complete depending on the neighborhood variation.

5.2 Most Improved Network

This section focuses on the best information dissemination network structures identified using the pro-

posed simulated annealing heuristic. Specifically, it compares the best networks from each neighborhood
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Figure 8: Log Scale of the Best Average Informed Time for Each Neighborhood Variation over the Number
of Simulated Annealing Iterations

variation with each other and the base network and analyzes the importance of individual arcs on network

performance.

5.2.1 Comparison to Base Network

After conducting five unique simulated annealing processes for all four neighborhood variations, the best

network structure came from Swap 3-2-1 with an average informed time of 417.48 minutes. The resultant

best network structure for that neighborhood, W ∗D, is shown in Figure 9 in the same format as the base

network, W 0, from Figure 4.

In comparing the two network structures from their respective figures, a few observations are apparent,

many of which relate to the observations made regarding W 0 in 3.2.2.
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• There are fewer total arcs in W ∗D than W 0. In other words, it was often better for nodes to limit

the number of nodes they communicate with and focus on those interactions that benefit the network

most.

• KDA loses almost all of its incoming links. This is discussed further in Section 5.2.4.

• There is a large increase in communication between the county/local nodes, following Chapter 3, which

predicted that would be an impactful change.

• The County/Local Administration and Kansas State EOC nodes established bi-directional communi-

cation after having no communication in W 0.

• The Federal, Local Vets, and Individual Producer nodes all dramatically increase their inbound com-

munication. These were four of the last nodes to become informed in the W 0.

• The Unknown node loses most of its incoming communication. This is expected and the reason that

the capacity is set at one, to shift communication to where it is better suited for the network.

5.2.2 Comparing Neighborhood Variations

With these general observations noted regarding W ∗D, it is important to also look at the best networks

found in the other neighborhood variations to determine if there are any consistent trends that all follow. A

reasonable hypothesis for the closeness in f(W ∗) for the neighborhood variations, as shown in Table 20, is

that they all have a similar optimal network. While there are certain arc changes that are similar across all

four variations, denoted by the black arcs, Figure 10 shows that there are also quite a few differences in the

optimal network structures of the neighborhood variations. For instance, Swap 3-1 is the only neighborhood

variation that adds significant weight to the arc from Movement Control Branch to County/Local Emergency

Management. Also, all variations show an increased weight to News Media, but the way nodes from which

that weight is added varies.

The lines in this figure represent changes in each of the best network structures (W ∗A, W ∗B , W ∗C , and

W ∗D) from the base W 0 by at least eight or more. A solid arc from node i to node j represents w∗ij ≥ w0
ij +8

while a dashed arc means w∗ij ≤ w0
ij − 8. The thicker the arcs, the more weight is changed following the

legend in the figure. The presence of black arcs, which indicate similar weight change for all neighborhood

variations, are not surprising. Given that f(W ∗) for each of the neighborhood variations are within eight

minutes of each other, one might expect far more similarities between them. The differences in arcs, coupled
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Figure 9: Flow Chart Representation of the Optimal Network after Simulated Annealing
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with the closely related f(W ∗) of the variations seems to indicate that the black arcs are far more impactful

to the overall performance of the network than others. This graph is a general means of comparison to other

similar graphs, however, and does not show numerically how these arc changes impact the average informed

time of the network.

5.2.3 Important Arc Changes

Up to this point there is no way to definitively tell which arc changes are most important to network

structure improvement. To determine how various arc changes affect network performance, the changes in

average informed time, ∆, are tracked for every iteration of the simulated annealing, regardless of whether

the new network is accepted or not. This requires some additional variables and notation. Let ∆+
ij be the

cumulative ∆ for all iterations where wij gains link weight and ∆−ij be the cumulative ∆ for all iterations

where wij loses link weight. Then for each iteration in which wij increases, ∆+
ij is updated to ∆+

ij + ∆.

Likewise, for each iteration in which wij decreases, ∆−ij is updated to ∆−ij + ∆. Similarly, let swap+
ij be the

cumulative swap for all iterations where wij gains link weight and swap−ij be the cumulative swap for all

iterations where wij loses link weight. Then for each iteration in which wij increases, swap+
ij is updated to

swap+
ij+swap. Likewise, for each iteration in which wij decreases, swap−ij is updated to swap−ij+swap. After

all iterations are complete, the average change in objective function when wij loses weight is E(∆−ij) =
∆−ij

swap−ij

while that for wik gaining weight becomes E(∆+
ik) =

∆−ik
swap+

ik

. The result is a matrix with two cells for every

cell in W ∗, E(∆−ij) and E(∆+
ij).

This matrix shows how specific network structure changes improve or degrade the network. Of all 648

cells in the matrix, only 18 have E(∆−ij) < 0 or E(∆+
ij) < 0, meaning these changes are more likely to reduce

the average informed time of the network. Sometimes improvements result from adding weight to an arc,

while other instances illustrate that decreasing weight can improve average network informed time. Table

21 shows the 14 improving arc changes in green. It also includes the average objective function increase

for when the opposite action occurs in orange. The difference between the two reveals the significance of

an arc, because it shows how important one action is to improving the network as well as how detrimental

the opposite action is on the network. The rows of Table 21 are sorted in non-increasing order of this time

difference. Consider the first network change. Increasing the weight of the arc from Industry Associations to

Individual Producers improves the average informed time by an average of 6.12 minutes for every additional

unit of weight. Decreasing weight degrades network performance by an average of 10.33 minutes per arc
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Figure 10: Flow Chart Showing the Most Significant Changes from the Base Network Structure for All
Neighborhood Variations
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weight. This difference is 6.77 minutes higher than the next best, showing the importance of the relationship

between these two nodes.

The right side of this table shows how the network for each of the neighborhood variations takes advantage

of these important arcs. The four right-most columns summarize the change in weight for the arc (i,j)

between the nodes specified in each row, comparing the final solution weight w∗ij and the initial weight

w0
ij . The only two improving network changes not used are KDHE to KDA and Industry Associations to

County/Local Emergency Management. KDHE has no weight going to KDA in W 0, so using that improving

delta is impractical. For the arc from Industry Associations to County/Local Emergency Management, all

neighborhood variations increase weight instead of decrease. This is because of the two improving changes

directly below in the table. The average total improvement of decreasing Industry Associations to itself

and Industry Associations to KDA is greater than that of decreasing Industry Associations to County/Local

Emergency Management. Taking full advantage of the former two requires adding some weight to the latter.

In the end, this table shows how the most impactful links are altered among the four neighborhood

variations. It also shows why Swap 3-1 (W ∗C) and Swap 3-2-1 (W ∗D) outperformed Swap 1 (W ∗A)and

Swap 3 (W ∗B). W ∗C and W ∗D both utilize the top three average improving deltas better than W ∗A and

W ∗B do. This is at least part of the reason that these network structures perform better.

5.2.4 KDA Change Analysis

Of all the observations about the best network structures produced by simulated annealing, the most

obvious, most impactful, and potentially most concerning is the shift of nearly all arcs away from KDA(I). The

total incoming weight to KDA (

n∑
i=1

wi,I) is only eight or nine in the solution produced by each neighborhood,

compared to 111 in W 0. Given that KDA is the coordinating agency for the FAD response, eliminating

nearly all incoming communication could appear contradictory to the goals of this research. It is important

to consider, however, that this simulation equates all information passing as equal and there is no benefit

for a node to receive information after it is already informed. This means that once KDA has reached its

capacity, it no longer needs to receive anything. Its relatively low λmaxi compared to its outgoing links makes

this surprising change more understandable.

This drastic change in KDA does support a main observation from Chapter 3, that KDA may not have

sufficient capacity to effectively manage all its communication demands. It serves as an information broker

to the rest of the network but does not seem to have enough personnel to pull in communication from other

nodes.
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Table 21: Network Structure Changes That Create a Negative Average Change in Average Informed Time
of the Network

Change in Average
Informed Time (min)

w∗ij − w0
ij for each

Neighborhood Variation
Sending
Node (i)

Receiving
Node (j)

E(∆+
ij) E(∆−ij)

Time
Diff.

Swap
1

Swap
3

Swap
3-1

Swap
3-2-1

Industry
Associations

Individual
Producers

-6.12 10.33 16.45 8 9 12 10

KSU College of
Vet Medicine

KDA 5.36 -4.32 9.68 -3 -5 -4 -5

County/Local
Emergency
Management

County/Local
Administration

-0.4 8.67 9.07 4 2 6 9

KSU College of
Vet Medicine

Unknown 7.9 -0.7 8.6 -1 -1 -1 -1

Industry
Associations

County/Local
Emergency
Management

7.94 -0.16 8.1 2 1 1 1

Industry
Associations

Industry
Associations

5.45 -0.51 5.96 -3 -3 -3 -2

Industry
Associations

KDA 3.05 -2.47 5.52 -14 -14 -14 -14

Federal Federal -0.68 2.68 3.36 3 3 4 3
Other States KDA 1.48 -1.7 3.18 -9 -9 -9 -9
Other States Federal -0.68 2.315 2.995 8 6 6 6
Kansas State
EOC

KDA 2.36 -0.41 2.77 -11 -11 -11 -11

KDHE KDA 1.12 -0.49 1.61 0 0 0 0
MCB KDA 1.11 -0.13 1.24 -5 -7 -5 -5
County/Local Law
Enforcement

KDA 1.01 -0.15 1.16 -1 -1 -1 -1
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Table 22: Effects of KDA Capacity on W ∗D for One Simulated Annealing Instance
KDA Max
Capacity

Total Incoming
Weight

f(W ∗)(min)

100 112 464.3
80 94 454.76
60 69 446.06
40 47 431.79
30 33 423.87
20 16 423
13 9 417.48

To further examine this, the maximum capacity for KDA is increased to examine the relationship between

capacity, total incoming weight, and average network informed time. The Swap 3-2-1 neighborhood is used

and one simulated annealing run is executed for KDA maximum capacity values ranging from 13 (the value of

the original network) to 100. Table 22 summarizes the results of this testing and shows a positive correlation

between KDA’s maximum capacity, the total incoming weight, and the average informed time for W ∗. KDA’s

total incoming weight in W 0 is 111 with an average informed time of 3,570.31 minutes. With a capacity of

100, the total incoming weight is nearly identical (112), yet the average informed time is close to that of

f(W ∗) with the original capacities. Another way to interpret this result is that with the same amount of

total incoming weight and the right configuration in the rest of the network, KDA needs a capacity of 100

to approach a similar average informed time as was achieved in the optimal solutions.

5.3 Conclusion

The results described in this chapter demonstrate that simulated annealing is an effective way to improve

the network structure of this FAD response exercise. By using different variations of neighborhoods, a

collection of strong performing networks are created, with the best network structure coming from Swap

3-2-1. This network structure also decreases the network average informed time from 3,500 minutes in W 0

to just 417 minutes. This best network also yields some useful observations about the network as a whole

when compared with the base network structure.

The collection of best networks for the neighborhood variations allows for further analysis of the arcs

themselves to determine which have the most significant impact on network performance. This chapter shows

that each of these neighborhoods use the most important arc changes to some degree, but the progressive

neighborhoods (Swap 3-1 and Swap 3-2-1) use them better than Swap 1 and Swap 3. The results in this
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chapter provide a strong foundation from which to draw conclusions and give recommendations for future

FAD responses.
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6 CONCLUSIONS AND FUTURE WORK

The research described in this thesis leads to specific recommendations and avenues for future research.

This chapter discusses these areas.

6.1 Recommendations

Recommendations for improvement are divided into three categories: FAD preparedness at KDA and

similar agencies, for other researchers in the field of crisis communication, and for implementation of this

model in other forms. Each will be discussed in turn.

6.1.1 Kansas Department of Agriculture

This research reveals a few areas that can be addressed to improve the communication surrounding

future FAD response exercises or events. Because KDA is the synchronizing organization, these recommen-

dations are primarily directed toward emergency response personnel there, though some also apply to other

stakeholders in such events.

First of all, the best networks found by simulated annealing show the KDA node losing 92% of its

incoming communication links. The discussion in 5.2.4 shows that increasing the capacity of the KDA

node helps maintain the incoming information flow to the node while simultaneously keeping a near-optimal

network informed time. This confirms some of the earlier observations in 3.2.2 that KDA should increase

its capacity to effectively manage information demand across the network and the processing of incoming

information.

Another revealing factor in this research is the relationship between the various county/local nodes and

industry-related nodes. Increasing communication between these two groups of nodes significantly improves

information flow in the network, as all of the best networks have significant increase in the weight among

these relationships.

Another tangible recommendation for future exercises and event responses is to improve the data col-

lection process as outlined in 3.4. Adding moderators and requiring participants to log communications

will help develop a more accurate network for further analysis. Also, expanding the participation in the

exercise to include as many other important groups (industry associations, checkpoint operators, ranchers,

local veterinarians, etc.) as is feasible will improve the quality of the data immensely.
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6.1.2 Other Researchers

For other researchers in the field of information dissemination or crisis communication, one important

application within this research is the idea of clustering of players to develop a more usable communication

network. Dealing with empirical data inevitably leaves gaps and inconsistencies in the model. This is likely a

reason for the lack of applied research in this field. This idea connects with how stakeholders are represented

in such a model. Clustering these groups together and aggregating their data allows for further analysis of

the network without compromising the integrity of the model.

6.1.3 Model Implementation

For others interested in implementing this model with other data sets, the progressive shift Swap 3-2-

1 is the recommendation for future implementation of the model. Section 4.1.1 defines the neighborhood

variations used for the simulated annealing process. The average informed times from those variations were

quite close, but the progressive shift Swap 3-2-1 performed best.

6.2 Future Work

There is a lot of potential for future work in the area of crisis communication networks, particularly

with regards to quantitative methods. Building on the research in this thesis, the future work described in

this section has the potential to yield additional improvements in crisis communication network design.

The first area of future research involves changes in the neighborhood definition and/or objective function

value used in the simulated annealing heuristic. For example, the neighborhood could be based on increased

or altered capacities, not just arc weights. While average informed time is an appropriate objective function

for this context, other FAD response goals should also be explored in the heuristic framework. These include

time to inform priority nodes or priority-weighted informed time depending on the type of information being

shared (corresponding to different injects).

The second area of future research involves extending the network model itself to account for additional

characteristics of a FAD response. For example, the modes of communication transmission (i.e. phone

conversation, text, press release) may play a role in the performance of the network. In addition, through

discussions with KDA, it is clear that relationships and trust between different pairs of nodes vary. This is

probably the most interesting and potentially significant next step with this research. There has been work

related to trust in the literature [18, 39, 51, 52, 53] but nothing that explores it quantitatively as it relates
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to networks. Specifically, an interesting next step is identifying whether the amount of trust one has in the

information he receives based on the sender impacts the best possible network. Another avenue of research

involves some of the assumptions made in this simulation model. The model could be modified such that

information does not necessarily need to reach every node or capacity in the network. Additionally, this

model assumes that one transmission comes from one node to another specific node but certain modes of

communication, especially email, could send the same information to many nodes at the same time. This is

not depicted in the current model but leaves room for future work.
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7 APPENDIX I - CENTRALITY

This appendix serves to describe in detail network centrality, how this thesis addressed its potential use,

and why it does not accurately predict average informed time of the network.

As was discussed in Chapter 1, centrality is one of the most commonly used metrics that help classify

and characterize networks. Freeman develops the three primary types of centrality in his seminal work on

the subject [16]: degree centrality, closeness centrality, and betweenness centrality. Degree centrality relates

to the number of links incident to a particular node and is considered a local centrality metric, meaning it

only takes into account the most immediate neighbors of a node and not the network at large. Closeness and

betweenness centrality are considered global metrics in that they consider the entirety of the network. Both

are calculated using the shortest paths between nodes. The closeness centrality (CC) of a node is equal to

the sum of its shortest paths to all other nodes in the network. The betweenness centrality (CB) of a node

is the number of times that node is included in the shortest paths of all other nodes to all nodes. As an

example, if we assume all arcs to have a weight of 1 in Figure 11, Table 23 shows the shortest paths for all

nodes.

Figure 11: Diagram of Example Network
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Node A in this network has a CC of 4 because the shortest paths from A to B and A to C are 1 arc

long, while the shortest path from A to D is 2 arcs long. The CB of A is 5.5 because A is on the singular

shortest path of 4 node combinations (those originating at A do not count towards CB). It is also on both

shortest paths from C to A, thus gaining a value of 1, but only on one of the two shortest paths from D to

B, gaining an additional .5. Note that the sum of all CC values equals the sum of all CB , just distributed

differently. This reveals the underlying difference of the two metrics.

Table 23: Shortest Paths of Example Network
Shortest Paths A B C D CC CB

A 0 A,B A,C A,C,D 4 5.5
B B,A 0 B,A,C B,A,C,D 6 3.5
C C,B,A & C,D,A C,B 0 C,D 4 5.5
D D,A D,A,B & D,C,B D,C 0 4 3.5

[54, 55, 34] have all pursued centrality in weighted networks to determine how the various measures

relate to each other and the networks they represent. Borgatti looks at many types of networks, two of

which closely resemble our information dissemination network. His Gossip and Infection networks have very

similar properties in that they both represent network flow via serial duplication. This means transmission

is conducted one at a time(serial) as opposed to many nodes at once (parallel) and that the gossip/infection

is not lost by the sending node but duplicated before transmission. He states that low closeness centrality

scores in information flow networks tend to have better access to new information, indicating that closeness

centrality could be our best option for statistical prediction of network performance. He further found that

closeness centrality is the best known centrality measure for geodesic serial duplication (taking the shortest

possible route between two nodes). However, his work was inconclusive as to an appropriate measure for

path and trail serial duplication which represent the infection and gossip networks, respectively. The lack of

a confirmed best centrality statistic leads us to pursue closeness centrality over the other options based on

the general theoretical guidelines of the statistic his research provides.

[56] developed methods to assign centrality metrics to weighted networks. In a weighted network, a higher

weight means a stronger or “closer” link from one node to another. However, to find CC and CB requires

the shortest paths between nodes, something that will be inaccurate in a weighted network because it will

always choose the weaker of the links. In order to find the shortest paths, we must take the inverse of all the

weights before applying a shortest path algorithm. Figure 12 shows how the example network would look
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with inverse weights. From here we can calculate our centrality measurements as in Table 24. In a weighted

network, unlike the previous example, the sum of the CC does not necessarily equal the sum of the CB .

With this information, we can now determine a centrality metric that encapsulates the network as a

whole. Because we are using closeness centrality in our model, we can disregard betweenness. Freeman

offers two such metrics, average and dominance of the network[16]. Average is simply the average centrality

measure of all nodes. In this case,
1 1

12 + 1 5
6 + 1 5

6 + 1 5
12

4
= 1

13

24
. Dominance(CdomC ), however, measures how

strongly one node dominates the activity in the network by comparing the highest centrality value (CmaxC )

in the network to that of all other nodes. The equation for this value and its result in this example is

CdomC =

∑n
i=1(CmaxC − CiC)

n− 1
=

3
4 + 0 + 0 + 5

12

3
=

7

18

Figure 12: Inverse Weighted Example Network

Table 24: Shortest Paths of Example Inverse Weighted Network

Shortest Paths A B C D CC CB

A 0 A,B ( 1
4 ) A,C ( 1

6 ) A,C,D ( 2
3 ) (1 1

12 ) 6.5

B B,A ( 1
3 ) 0 B,A,C ( 1

2 ) B,A,C,D (1) (1 5
6 ) 3.5

C C,B,A & C,D,A ( 5
6 ) C,B ( 1

2 ) 0 C,D ( 1
2 ) (1 5

6 ) 5

D D,A ( 1
3 ) D,A,B ( 7

12 ) D,C & D,A,C ( 1
2 ) 0 (1 5

12 ) 3.5
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One strategy considered in this research, but not ultimately used, is that of utilizing network centrality

to determine how to alter the network structure. Closeness centrality is a network statistic that considers

the entire network and its weights and calculates how close (via the weighted arcs in the network) one node

is to every other node [16]. A more thorough explanation of the different kinds of centrality and an example

for calculating closeness centrality can be found in Appendix I.

The goal in finding these closeness centrality measures is to be able to adjust the network structures

based on their centrality in order to improve the average informed time. However, before implementation, a

correlation between network centrality and average informed time must be verified.

To do this, 4 test structures are considered, each with varying levels of centrality, to determine their

average informed time. The details of the test structures are:

• Test 1 - Increase the lowest five KDA outgoing weights by 3 and decrease the greatest five by 3.

• Test 2 - Add a weight of 2 to all cells with a weight of 0 or 1 whose respective cell in the A matrix is 1.

• Test 3 - Complete graph with links to and from all nodes, keeping the same total number of links from

the base structure and dividing them equally.

• Test 4 - Star graph with KDA as the center, keeping the same total number of links from the base

structure and dividing them equally.

Figure 13 shows how the average informed time of the various test structures compares to their respective

centrality measurements. Average centrality is simply the average of all nodes, maximum and minimum

centralities represent the most and least central node measurements, respectively, and the dominance is the

cumulative difference in centrality value of all nodes from the most central node. While it appears from Test

3 and 4 that centrality may have a positive correlation with average informed time, the comparison of the

base structure shows that to not necessarily be the case. In short, there is not enough evidence to show that

centrality is an accurate predictor of average informed time, and, therefore, it is not used in this model.
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Figure 13: Network Centrality Against Average Informed Time
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8 APPENDIX II - DATA TRANSLATION EXAMPLE

This appendix serves to give a more thorough explanation of the how the extracted data translates into the

network structure. After extracting the raw data and organizing it in the Extracted Transmission List, the

next step is to develop a model from this list. Specifically, this involves using the information from each of

the 431 transmissions to complete the weight matrix, W , and the capacities for each node, all initialized to

0. In general, for every transmission from node i to node j, wij = wij +1. Also, for every player not yet seen

in the Extracted Transmission List for node i, λmaxi = λmaxi + 1. The example set of three transmissions

found in Table 25 is used here to demonstrate this process.

Table 25: Extracted Transmission List Example
Time From Cluster From Player To Cluster To Player
9:23 KDA (O) Kansas State Veterinarian Industry Associations (F) Midwest Dairy Farmers
9:25 KDA (O) Kansas State Veterinarian Industry Associations (F) Kansas Zoological Parks
9:45 Industry Associations (F) Midwest Dairy Farmers KDA (O) KDA Animal Health

Table 26: Extracted Transmission List Example Results
After Time wOF wFO λmaxO λmaxF

9:23 1 0 1 1
9:25 2 0 1 2
9:45 2 1 2 2

Assuming that these are the first three transmissions in the Extracted Transmission List (e.g. wij =

0 for all i, j ∈ {N} and λmaxi = 0 for all i ∈ {N}), Table 26 shows how the weight matrix and capacities

are filled after each transmission. Notice that after the 9:25 transmission, the λmaxO remains 1 because the

Kansas State Veterinarian has already been represented for node O during the 9:23 transmission. Similarly,

λmaxF stays the same after the 9:45 transmission even though the Midwest Dairy Farmers player is now the

sending player instead of receiving as in the 9:23 transmission.
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