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Abstract 

Channel replacement therapy, based on synthetic channel-forming peptides (CFPs) with the 

ability to supersede defective endogenous ion channels, is a novel treatment modality that may 

augment existing interventions against multiple diseases. Previously, we derived CFPs from the 

second transmembrane segment of the α-subunit of the glycine receptor, M2GlyR, which forms 

anionic channels in its native form. Our best candidate, NK4-M2GlyR T19R, S22W (p22-T19R, 

S22W), was water-soluble, incorporated into cell membranes and was non-immunogenic, but 

lacked the structural properties for anion selectivity when assembled into a pore. Further studies 

suggested that the threonine residues at positions 13, 17 and 20 line the pore of assembled p22-

T19R, S22W, and here we used 2, 3-diaminopropionic acid (Dap) substitutions to introduce 

positive charges to the pore-lining interface of the predicted p22-T19R, S22W channel. Dap-

substituted p22-T19R, S22W peptides retained the α-helical secondary structure characteristic of 

their parent peptide, and induced short-circuit transepithelial currents when exposed to the apical 

membrane of Madin-Darby canine kidney (MDCK) cells; the sequences containing multiple 

Dap-substituted residues induced larger currents than the peptides with single or no Dap-

substitutions. To gain further insights into the effects of Dap residues on the properties of the 

putative pore, we performed two-electrode voltage clamp electrophysiology on Xenopus oocytes 

exposed to p22-T19R, S22W or its Dap-modified analogs. We observed that Dap-substituted 

peptides also induced significantly larger voltage-dependent currents than the parent compound, 

but there was no apparent change in reversal potential upon replacement of external Na
+
, Cl

–
 or 

K
+
, indicating that these currents remained non-selective. Our results suggest that the 

introduction of positively charged side chains in predicted pore-lining residues does not improve 

anion selectivity, but results in higher conductance due most likely to an increase in pore size 



3 
 

caused by a higher oligomerization number . Future modifications should include further charge 

substitutions and a staggering of pore-lining cationic charges. 

 

Introduction  

Cystic fibrosis (CF) is a chronic, autosomal recessive disease caused by mutations in the cystic 

fibrosis transmembrane conductance regulator (CFTR) protein, a Cl
–
-selective channel with 

essential roles in ion exchange in epithelial tissues. Impaired CFTR channel activity leads to the 

abnormal accumulation of mucus that underlies the clinical manifestations of the disease, such as 

airway inflammation and infection [1]. A major goal of CF treatment strategies, particularly gene 

therapy, has been the restoration of CFTR channel activity, but none of the methods developed 

so far have been successful in treating all of the genotypes [2].  

A potential alternative may be the use of synthetic channel-forming peptides (CFPs), 

engineered for high Cl
–
 selectivity and permeation, in target tissues and organs. CFPs, either 

designed de novo or based on pore-forming transmembrane segments of natural proteins, have 

been used to generate channel activity in lipid bilayers and cell membranes. Though these CFPs 

have been shown to assemble into ion-permeable pores, a common limitation has been the lack 

of combined high conductance and strong selectivity [3-8].  

In our studies, the anion-selective pores of native channels, primarily the glycine receptor 

(GlyR), have been used as templates to synthesize and reconstitute CFPs that form functional 

synthetic channels in a variety of membrane systems [9-14]. GlyR, a member of the cys-loop 

super family of ligand-gated channels, is a heteropentameric anion channel formed by three α 

subunits and two β subunits [15]. The α subunits alone can assemble into homopentameric 

anionic channels [16], and just the second transmembrane domain (M2) of the α subunit forms 
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ion channels in lipid bilayers and single cells, and facilitates ion transport across epithelial 

monolayers [14, 17]. Our founding CFP, M2GlyR, derived from the wild-type α-subunit M2 

sequence PARVGLGITTVLTMTTQSSGSRA, conferred net transepithelial ion transport 

comparable to the parent GlyR channel pore [14], but had poor membrane insertion efficiency 

and a tendency to aggregate in aqueous solutions [14, 17]. In subsequent studies, modifications 

were introduced into the amino acid sequence of either the full-length peptide or a truncated 

version, including a tetralysyl tail at the N-terminus, and the replacement of C-terminal threonine 

and serine residues with arginine and tryptophan [18-21]. The resulting synthetic peptide 

KKKKPARVGL-GITTVLTMRTQW, termed NK4-M2GlyR p22-T19R, S22W (p22-T19R, 

S22W), demonstrated increased helical content, reduced aggregation, improved efficiency of 

insertion into epithelial cell membranes, and increased net transepithelial ion conductance in 

Madin-Darby canine kidney (MDCK) cell monolayers [22]. The p22-T19R, S22W sequence also 

proved to be non-antigenic in mice at proposed clinical dosages [23], but the putative assembled 

pore still lacked physiologically relevant anion selectivity [24].  

To address these limitations towards the construction of chloride-selective synthetic CFPs 

with therapeutic potential, we have now tested the possibility that increasing the net positive 

charge of the pore environment would improve anion selectivity of the predicted p22-T19R, 

S22W channels. Previous structural analysis suggested that threonine residues at positions 13, 17 

and 20 line the pore of hypothetical assembled p22-T19R, S22W channels; in particular, T13 

would reside in the widest part, whereas T17 and T20 would be located in the narrowest [20, 25]. 

Here, we synthesized analogues of p22-T19R, S22W with 2, 3-diaminopropionic acid (Dap) 

substitutions at T13, T17 and T20 (Table 1), and tested their effect on ion permeation and 

selectivity, by means of electrophysiological methods in MDCK cells and Xenopus oocytes.  
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Materials and Methods 

Chemistry. Peptides were prepared by solid phase (Applied Biosystems Model 431A; Foster 

City, CA), using 9-fluorenylmethoxycarbonyl (F-moc) chemistry as described [21, 25]; the 

peptide sequences are shown in Table 1. CLEAR amide resin (0.3 mmol g
–1

; Peptides 

International, Louisville, KY) and N

-F-moc amino acids (Anaspec Inc., San Jose, CA) were 

used. All peptides were purified by HPLC (System Gold HPLC; Beckman Instruments, Inc., 

Fullerton, CA) with a Phenomenex reversed-phase C-18 column (Torrance, CA), and eluted 

using a linear gradient of 10-90% acetonitrile containing 0.1% trifluoroacetic acid at 1 ml min
–1

 

[26]. Molecular mass was determined by matrix-assisted-laser desorption time-of-flight mass 

spectroscopy (MALDI-TOF/TOF), using a Bruker Ultraflex II spectrometer (Bruker Daltronics, 

Billerica, MA). After characterization, peptides were lyophilized and stored as dry powders. 

Work solutions were prepared immediately before use, and peptide concentrations were 

determined by measuring the absorbance at 278 nm, using the tryptophan extinction coefficient 

of 5579 M
–1

 cm
–1

. The secondary structures of peptides were determined by circular dichroism 

(CD) at 100 µM in 40% water/trifluoroethanol (TFE), with a J-720 spectropolarimeter (Jasco, 

Tokyo, Japan), as described [20, 25]. Under the conditions tested, all peptides were in solution as 

monomers [24]. 

Transepithelial Electrical Measurements. Madin-Darby canine kidney (MDCK) cells were 

generously provided by Lawrence Sullivan (Kansas University Medical Center, KS). The cells 

were cultured in a 1:1 blend of Dulbecco’s Modified Eagle Medium and Ham’s F-12 Nutrient 

Mixture (Life Technologies, Carlsbad, CA), supplemented with 5% fetal bovine serum 

(BioWhittaker, Walkersville, MD) and 10
5
 units l

–1
 penicillin/100 mg l

–1
 streptomycin (Life 

Technologies), and prepared as described [17, 25]. MDCK monolayers were mounted vertically 
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in DCV9 modified Ussing chambers (Navicyte, San Diego, CA), and the apical and basolateral 

surfaces were superfused symmetrically with a modified Ringer’s solution containing (mM) 120 

NaCl, 25 NaHCO3, 3.3 KH2PO4, 0.8 K2HPO4, 1.2 MgCl2, 1.2 CaCl2 and 10 Hepes/Tris (pH 7.5), 

kept at 37 °C and bubbled with 5% CO2. Monolayers with a resistance of at least 800 Ω cm
2
 

were clamped to 0 mV, and exposed on the apical side to increasing concentrations (10-300 µM) 

of test peptide. Transepithelial short-circuit current (Isc) was monitored continuously with a 

custom voltage-clamp setup (Model 558C; University of Iowa Department of Engineering, Iowa 

City, IA), and 3.2.6 AcqKnowledge software (BIOPAC Systems, Santa Barbara, CA) with an 

MP100-CE interface was used for data acquisition. Isc data were fitted by Equation 1, for which 

Imax is the derived maximum current, P is the peptide concentration, K0.5 is the peptide 

concentration at which Isc is half-maximal, and nH is the Hill cooperativity coefficient: 

 (1) 

Two-Electrode Voltage-Clamp Electrophysiology. Mature female Xenopus laevis were 

purchased from Nasco (Fort Atkinson, WI). All animal protocols followed guidelines approved 

by Washington University and the National Institutes of Health. Frogs were anaesthetized with 

0.1% Tricaine (Sigma Chemical Co., Saint Louis, MO) buffered with 0.1% NaHCO3, a portion 

of the ovary was surgically removed, and the frogs were humanely sacrificed after the final 

collection. Oocytes were defolliculated by treatment with 0.5 mg ml
–1

 collagenase (Type 1A) in 

a Ca
2+

-free solution containing (mM) 82.5 NaCl, 2 KCl, 1 MgCl2, 5 Hepes/Tris (pH 7.5). Stage 

V-VI oocytes were selected and maintained at 18 °C in modified Barth’s solution, supplemented 

with antibiotics [27], and used up to three days after preparation. Two-microelectrode voltage-

clamp (TEVC) was used to determine the response of oocytes to exposure to the peptide in 

different ionic environments. The standard extracellular solution, ND96, was (mM) 96 NaCl, 1 
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KCl, 1 MgCl2, 1.8 CaCl2, and 5 Hepes/Tris (pH 7.5). Typically, an oocyte was mounted in the 

TEVC setup, superfused in ND96 solution and held at –30 mV (Vh). In basic experiments, the 

oocyte was exposed to ND96, first in absence, then in presence of synthetic peptide (50 μM), and 

then washed with peptide-free ND96 until the initial conditions were completely restored. In 

further experiments, the oocyte was first stabilized in ND96, subsequently superfused with the 

appropriate ion-substituted buffer, first in absence and then in presence of the peptide; after 

exposure, the oocyte was washed, first with the alternate solution, and then with ND96, to verify 

the reversibility of bath composition-induced changes. The ion-substituted buffers contained 

(mM) 96 KCl, 1 NaCl (KD96); 92.3 Na-gluconate, 9.6 NaCl, 1 KCl (Na-Gluc); or 96 K-

gluconate, 1 Na-gluconate (K-Gluc); and 5 Hepes/Tris (pH 7.5), plus the appropriate amounts of 

CaCl2 and MgCl2 to attain constant free Ca
2+

 and Mg
2+

 concentrations, as calculated by means of 

the CaBuf program (ftp://ftp.cc.kuleuven.ac.be/pub/droogmans/cabuf.zip). At the end of each 

exposure period, a pulse protocol was applied in which membrane potential (Vm) of oocytes was 

stepped from Vh to a test value for 1000 ms before returning to Vh. The test potential varied from 

+60 to −120 mV in 20 mV increments. Steady-state or pseudo steady-state currents were 

measured at the end of 1000 ms. The reversal potential (Vrev) of the current was estimated as the 

intercept of the linear current-voltage (I-V) relationships between +20 and –60 mV. pClamp and 

Axoscope software (Molecular Devices, Union City, CA) were used for pulse protocol 

application and data acquisition. All experiments were carried out at room temperature. Unless 

otherwise noted, experiments were performed in at least three oocytes from different donor 

frogs.  

Data Analysis. Results were analyzed using Excel (Microsoft, Redmond, WA) and Clampfit 

10.1 (Molecular Devices). SigmaPlot 10.0 (Systat Software, San Jose, CA) and CorelDRAW X3 

ftp://ftp.cc.kuleuven.ac.be/pub/droogmans/cabuf.zip
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13.0 (Corel Corporation, Mountain View, CA) were used for curve fitting, statistics, and figure 

preparation. Unless otherwise indicated, results are presented as mean ± S.E.M. (standard error 

of the mean). Where indicated, unpaired Student's t test was applied to evaluate statistical 

differences between groups.  

 

Results and Discussion 

Overall Secondary Structure Characteristics. Our model for the NK4-M2GlyR p22-T19R, 

S22W (p22-T19R, S22W) pentameric channel suggests that the pore interface is lined by three 

stacked rings of five threonines, respectively in positions 13, 17 and 20; the T17 and T20 rings 

form the narrowest part of the pore, whereas the T13 ring defines the widest opening [20, 25]. In 

an attempt to modify the pore electrostatics to increase the conductance and improve the 

selectivity of the assembled channel, we designed and synthesized a series of novel p22-T19R, 

S22W analogues, where T13, T17 or T20 were replaced with positively charged 2, 3-

diaminopropionic acid (Dap), a non-natural amino acid that will introduce a methylamine side 

chain. The sequences and molecular weights of the wild-type (WT) and Dap-substituted peptides 

are shown in Table 1. By means of circular dichroism (CD) analysis, we confirmed that the 

introduction of single or multiple Dap substitutions did not significantly alter the secondary 

structure of the analogues (Figure 1). The CD spectra measured for the WT and Dap-substituted 

analogues indicated similar helical content, with characteristic -helix double minima at 208 and 

222 nm, and maximum at ~192 nm. These results indicate that the replacement of T13, T17 or 

T20 with the cationic Dap residue does not affect the propensity of the peptides to adopt a helical 

conformation in a hydrophobic environment, in agreement with secondary structures determined 

in previous studies [20, 22, 25].  
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Electrophysiological Measurements of Transepithelial Conductance. We tested the effect of 

the peptides on the electrical properties of MDCK cells mounted in Ussing chambers. Figure 2A 

shows a representative experiment, in which MDCK cell monolayers clamped to 0 mV were 

exposed to 10-300 µM of p22-T19R, S22W (WT), or analogues with one, two, or three Dap 

substitutions, and the transepithelial short-circuit current (Isc) response was recorded. Dose-

response data were fitted by Equation 1 to estimate the kinetic parameters of peptide-induced 

transepithelial ion transport, and results are shown in Figure 2B and Table 2. In the presence of 

the WT peptide, the derived current maximum (Imax) was 52 ± 10 µA cm
–2

 (Figure 2B, black 

bar), and the apparent half-saturation constant (K0.5) was 195 ± 42 µM (Table 2) (means ± 

S.E.M. of 6 experiments). For all test peptides, the Hill coefficient (nH) was greater than 1 (Table 

2), suggesting positive cooperativity in the mechanism of action. Furthermore, nH was ~2 for the 

WT sequence and up to two fold higher for the Dap analogues (Table 2), and this was reflected 

in a ~2 to ~2.5-fold increase in Imax in cells exposed to Dap17, all three doubly-substituted 

compounds, and Dap13,17,20 (Figure 2B). No significant differences in K0.5 were found between 

the WT and the Dap-substituted compounds (Table 2). 

Voltage-Clamp Characterization of Peptide-Induced Currents. Next, we examined the 

voltage-dependence and the ion selectivity of the conductances activated by the different test 

peptides, by means of two-electrode voltage-clamp electrophysiology in Xenopus oocytes; 

results are summarized in Figures 3 and 4, and Table 3. Whole cell currents were recorded in 

response to 1-s voltage steps between +60 and –120 mV from a holding potential (Vh) of –30 mV 

(Figure 3A, upper left panel), with a 10-s interval between pulses. As exemplified in Figure 3A, 

oocytes superfused with standard ND96, high K
+
 (KD96) or low Cl

–
 (Na-Gluc) solution showed 

small leak currents (slope conductance, ~1-2 µS), which reversed at –35 mV (ND96), –3 mV 
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(KD96), and –39 mV (Na-Gluc), respectively (Figure 3B and Table 3). In low extracellular Na
+
 

and Cl
–
 (K-Gluc), the leak conductance increased (~15 µS), and the now clearly sigmoidal 

current-voltage (I-V) relationships reversed at –13 mV (Figure 3B and Table 3). When the 

oocytes were superfused in ND96 or KD96 in the presence of p22-T19R, S22W (WT), modest 

outward currents at depolarizing potentials above +20 mV, and larger, slowly-activating, slowly-

deactivating inward currents at hyperpolarizing potentials below –80 mV, were evoked. These 

currents disappeared upon superfusion with peptide-free solution (Figure 3A). In Na-Gluc, 

exposure to WT led to the activation of fully reversible, outwardly rectifying currents (Figure 3A 

and 3C). In oocytes superfused with K-Gluc, the amplitude of the currents increased in presence 

of WT (Figure 3A), but the overall shape of the I-V curve remained unchanged (Figure 3C). In 

all experimental conditions, the WT peptide had a negligible effect on the Vrev (Figure 3C and 

Table 3), indicating that the peptide-activated currents were non-selective. 

The substitution of Dap for putative pore-lining threonines led to an increase in conductance, 

but did not modify the ionic selectivity of the induced currents (Figure 4 and Table 3). As 

exemplified for ND96 (Figure 4A) and Na-Gluc (Figure 4B), the currents evoked by the Dap-

substituted analogues in all solutions were larger but showed similar voltage dependence than 

those induced by the WT peptide, and again no relevant changes in Vrev were observed (Table 3). 

As summarized in Figure 4C for the net peptide-induced currents measured at +60 mV (outward; 

top) and –100 mV (inward; bottom), the increase in current density with respect to the WT 

sequence was substantial (for example, up to 30-fold in presence of extracellular gluconate) but 

overall was similar for all Dap-substituted analogues, and there were no evident synergistic or 

antagonistic effects betwen the different substitutions. 



11 
 

M2GlyR-Derived Channel-Forming Peptides. As part of an ongoing effort to produce 

synthetic channel forming peptides (CFPs) as potential therapeutics for channel-based diseases, 

in previous studies we identified p22-T19R, S22W [22-24], a candidate single-spanning 

membrane protein based on the second transmembrane domain of the glycine receptor (GlyR) α 

subunit, M2GlyR, which lines the pore of a chloride-selective channel [14, 17]. p22-T19R, 

S22W showed desirable properties, such as optimal helical content, minimal aggregation in 

aqueous solutions, enhanced efficiency of membrane insertion and increased induction of ion 

transport across epithelial cell monolayers [22], and was not immunogenic [23]. However, the 

hypothetical assembled pore demonstrated only minimal selectivity for monovalent anions over 

monovalent cations, and relatively low conductance [24], In a further study, we set out to 

identify relevant pore-lining residues that might be modified to rectify this limitation [25]. 

Structural analysis, computational modeling and functional assays in MDCK cells, all suggested 

that the narrowest opening of the putative pentameric assembly is defined by two stacked rings 

of threonines in positions 17 and 20, whereas the ring of threonines in position 13 forms the 

widest part [25]. 

Because electrostatic interactions and the formation of hydrogen bonds within the channel 

cavity are key determinants of ionic selectivity [28, 29], in the present work we replaced the 

predicted pore-lining residues T13, T17 and T20 of p22-T19R, S22W with the non-natural 

diaminopropionic acid (Dap), which carries a net positive charge at physiological pH and can 

potentially form strong hydrogen bonds with Cl
–
 ions. Preliminary computer modeling 

simulations, in which we employed the potential of mean force function [30] to estimate the 

energy required to move different ions across the simulated Dap-substituted channels, suggested 

that the introduction of Dap residues to form rings of positive charge in positions 13, 17 and 20 
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would yield enhanced Cl
–
 versus Na

+
 selectivity. The resulting synthetic Dap-substituted 

analogues (Table 1) had the appropriate solubility and helical content (Figure 1), and were 

subsequently used in functional assays to determine their electrogenic properties (Figures 2, 3 

and 4, and Tables 2 and 3).  

Compared to the WT sequence, transepithelial ion transport rates increased significantly in 

MDCK cell monolayers exposed to Dap17, to the triply-substituted analogues, and to 

Dap13,17,20 (Figure 2). For these, the derived Hill coefficient (nH) was up to 2-fold higher than 

for the WT (Table 2), suggesting enhanced cooperativity in their function. In Xenopus oocytes, 

voltage-dependent currents induced by the Dap-substituted peptides (Figure 4) were also larger 

than those evoked by the WT peptide (Figures 3 and 4). However, replacement of extracellular 

Na
+
 with K

+
, or Cl

–
 with gluconate

–
, did not change the Vrev in any case (Table 3), suggesting 

that, in all cases, the conductance pathway activated by the peptides was non-selective. 

Nevertheless, it is intriguing, and important for the ultimate therapeutic potential of our CFPs, 

that the induced conductances consistently increased with the introduction of positive charges. 

This might reflect the Dap-substituted peptides associating in entities of a higher order than the 

pentameric assembly predicted for the parent sequence [20, 24, 25], consistent with reports of 

variable conductances associated to different aggregation states of channel subunits [31]. Further 

charge substitutions should be considered for future modifications. 
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Table 1. Sequences of NK4-M2GlyR p22-T19R, S22W (p22-T19R, S22W) and Dap-substituted peptides. Abbreviations used in 

the text are shown in parentheses. 

Peptide ID Sequence g mol
–1

 

p22-T19R, S22W (WT)[22] (K)4PARVGLGITTVLTMRTQW 2512.1 

p22-T19R, S22W, T13Dap (Dap13) (K)4PARVGLGIDapTVLTMRTQW 2497.1 

p22-T19R, S22W, T17Dap (Dap17) (K)4PARVGLGITTVLDapMRTQW 2497.1 

p22-T19R, S22W, T20Dap (Dap20) (K)4PARVGLGITTVLTMRDapQW 2497.1 

p22-T19R, S22W, T13Dap, T17Dap (Dap13,17) (K)4PARVGLGIDapTVLDapMRTQW 2482.1 

p22-T19R, S22W, T13Dap, T20Dap (Dap13,20) (K)4PARVGLGIDapTVLTMRDapQW 2482.1 

p22-T19R, S22W, T17Dap, T20Dap (Dap17,20) (K)4PARVGLGITTVLDapMRDapQW 2482.1 

p22-T19R, S22W, T13Dap, T17Dap, T20Dap (Dap13,17,20) (K)4PARVGLGIDapTVLDapMRDapQW 2467.1 
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Table 2. Kinetics of short-circuit currents in MDKC cells exposed to p22-T19R, S22W 

(WT) and Dap-substituted analogs. Dose-response Isc data were fitted by Equation 1 to 

estimate the maximum current (Imax, Fig. 2), the peptide concentration for half-maximal Isc (K0.5), 

and the Hill cooperativity coefficient (nH) of peptide-induced transepithelial ion transport. Data 

are from the same experiments as in Figure 2. Results are means ± S.E.M. of 4–6 experiments. 

*p < 0.05 as compared to the WT sequence (unpaired Student's t test). 

 

Peptide ID nH K0.5 (µM) 

WT 1.8 ± 0.3 195 ± 42 

Dap13 3.3 ± 0.5
*
 161 ± 22 

Dap17 2.6 ± 0.1
*
 198 ± 50 

Dap20 2.5 ± 0.5 145 ± 24 

Dap13,17 2.7 ± 0.3 160 ± 20 

Dap13,20 3.4 ± 0.4
*
 140 ± 16 

Dap17,20 3.8 ± 0.4
*
 105 ± 7 

Dap13,17,20 3.2 ± 0.7 129 ± 20 
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Table 3. Reversal potential (Vrev) of currents recorded in Xenopus oocytes superfused with 

the different experimental buffers, and changes in Vrev (ΔVrev) induced by exposure to NK4-

M2GlyR p22-T19R, S22W (p22-T19R, S22W) or Dap-substituted peptides. Oocytes were 

held at –30 mV and stepped to test values (+60 to −120 mV, in 20 mV increments), and steady-

state or pseudo steady-state currents were measured at the end of each 1000-ms voltage step. Vrev 

was estimated as the intercept of linear I-V relationships between +20 and –60 mV. Data are 

from the same experiments as in Figures 3 and 4. Results are means ± S.E.M. of 3–8 

experiments. 

 

 ND96 KD96 Na-Gluc K-Gluc 

In absence of peptide                                                     Vrev (mV) 

 –35 ± 3 –3 ± 5 –39 ± 4 –14 ± 2 

In presence of peptide                                                  ΔVrev (mV) 

 

WT 4 ± 2 2 ± 1 4 ± 1 6 ± 1 

Dap13 2 ± 3 8 ± 3 3 ± 2 6 ± 1 

Dap17 5 ± 2 2 ± 2 6 ± 3 9 ± 3 

Dap20 5 ± 3 6 ± 1 1 ± 1 6 ± 2 

Dap13,17 5 ± 1 5 ± 3 5 ± 4 7 ± 3 

Dap13,20 3 ± 2 6 ± 1 6 ± 1 3 ± 1 

Dap17,20 5 ± 2 5 ± 3 7 ± 1 4 ± 1 

Dap13,17,20 5 ± 4 4 ± 1 4 ± 2 5 ± 2 
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Figure 1. Circular dichroism spectra of p22-T19R, S22W (WT) and Dap-

substituted analogs. Peptides were reconstituted to 100 µM in 40% 

water/TFE, and spectra were recorded at 25 °C (Neslab RTE-IIM circulator; 

Thermo Scientific, Waltham, MA). Data are the averages of five scans, after 

background subtraction. 
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Figure 2. Concentration-dependence of short-circuit currents (Isc) induced by p22-

T19R, S22W and Dap-substituted peptides in MDCK cells. A, representative experiment. 

MDCK monolayers mounted in Ussing chambers were clamped to 0 mV, and transepithelial 

Isc were measured in presence of increasing concentrations of p22-T19R, S22W (WT, black 

symbols) or analog peptides with one (dark gray), two (light gray) or three (white) Dap-

substituted residues. Lines, Isc data were fitted by Equation 1 to estimate the kinetic 

parameters of peptide-induced transepithelial ion transport; current maxima (Imax) are 

summarized in B, and the peptide concentration for half-maximal Isc (K0.5) and Hill 

cooperativity coefficient (nH) values are shown in Table 2. B, Results are means ± S.E.M. of 

4–6 experiments. *p < 0.05 as compared to the WT sequence (unpaired Student's t test). 
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Figure 3. Voltage dependence of currents measured in Xenopus oocytes. A, representative 

experiments. Oocytes were superfused with ND96 or the appropriate ion-substituted solution, 

first in absence (control), then in presence of 50 µM p22-T19R, S22W (WT), and again in the 

absence of peptide (wash out). Currents were recorded as the membrane potential was held at     

–30 mV and stepped to test values, as in the pulse protocol shown in the upper left panel. The 

dotted lines indicate zero current. B–C, current-voltage (I-V) relationships from the oocytes 

shown in A. For each experimental buffer, steady-state or pseudo steady-state currents induced 

in absence (Icontrol; B) or presence of peptide (IWT; C) were measured at the end of the 1000-ms 

voltage pulse.  
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Figure 4. Currents evoked by p22-T19R, S22W and Dap-substituted peptides in Xenopus 

oocytes. Experiments were performed as in Figure 3. Oocytes were exposed to 50 µM WT (black) 

or singly- (dark gray), doubly- (light gray) or triply- (white) Dap-substituted analogues, and the 

net peptide-induced currents (Inet) were calculated by subtracting the total currents from the 

currents measured in the absence of peptides. A–B, I-V relationships from representative oocytes 

exposed to WT or selected analogues in ND96 (A) or Na-Gluc (B) buffer. C, summary of peptide-

induced outward (+60 mV; top) and inward (–100 mV; bottom) currents measured in the different 

experimental solutions. The background currents were, at +60 mV (in nA), 245 ± 36 (KD96), 114 

± 10 (ND96), 152 ± 15 (Na-Gluc), and 484 ± 137 (K-Gluc); and at –100 mV (in nA), –257 ± 36 

(KD96), –117 ± 16 (ND96), –110 ± 15 (Na-Gluc), and –416 ± 146 (K-Gluc). Results are means ± 

S.E.M. of 3–8 experiments.*p < 0.05 as compared to the WT sequence (unpaired Student's t test). 


