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Abstract

While the Hierarchical Dirichlet Process (HDP) has recently been widely applied to

topic modeling tasks, most current hybrid models for concurrent inference of topics and

other factors are not based on HDP.

In this dissertation, we present two new models that extend an HDP topic modeling

framework to incorporate other learning factors. One model injects Latent Dirichlet Al-

location (LDA) based sentiment learning into HDP. This model preserves the benefits of

nonparametric Bayesian models for topic learning, while learning latent sentiment aspects

simultaneously. It automatically learns different word distributions for each single sentiment

polarity within each topic generated.

The other model combines an existing HDP framework for learning topics from free text

with latent authorship learning within a generative model using author list information.

This model adds one more layer into the current hierarchy of HDPs to represent topic

groups shared by authors, and the document topic distribution is represented as a mixture

of topic distribution of its authors. This model automatically learns author contribution

partitions for documents in addition to topics.
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Chapter 1

Introduction

Nonparametric Bayesian topic model frameworks1 2, such as the Hierarchical Dirichlet Pro-

cess (HDP)3, have been proven to work successfully and more accurately than other extant

approaches such as latent semantic analysis (LSA)4, and its probabilistic analogue5. HDPs

have also been used directly and solely in many real-world applications. However, as a

fundamental text analysis framework, extensions to HDP have not garnered much attention

within the area of natural language processing.

In the real-world applications alluded to above, the topic extraction problem is always

accompanied by other learning needs, such as sentiment analysis6, author identification7,

community detection8 9, and so on. To make full use of the benefits and advantages of

the HDP topic inference framework, and in particular to learn a better hidden structure

of documents, the synthesis of HDP with learning models from other text analysis studies

deserves exploration.

Based on a deep investigation of topic modeling and the theoretical foundations of the

HDP framework, this dissertation aims to extend HDP topic modeling framework to incor-

porate sentiment analysis/author identification learning needs, to form hybrid text analysis

models. These hybrid models can solve topic modeling and sentiment analysis/author iden-

tification problems in the meantime.

1



The primary novel contribution of this work is the systematic and principled extension

of HDP to incorporate sentiment and co-authorship as independent properties of document

corpora, which we accomplish by synthesizing basic HDPs with generative formulations

of sentiment and author components. We treat sentiment as a separate parameter to be

paired with topic parameters, so that the full pair (dyad) of sentiment and topic condition-

ally vary based on hyperparameters governing the disposition of a document author. This

new approach allows us to capture sentiment-topic parameters within a holistic nonpara-

metric Bayesian framework. Independently of this, we treat authors as participating entities

represented within the traditional HDP mixture model, which we extend to capture authors

as DP mixtures of global topics in which they have inferable expertise, and documents in

corpora as finite mixture of its authors, in whose creation they have participated. This is

the first sentiment-topic model we know of that incorporates sentiment as an orthogonal

component of any such HDP-based hybrid topic model, and similarly the first HDP-based

author-topic model.

The central thesis of this work is that extending the HDP using Latent Dirichlet Allo-

cation (LDA), and similar nonparametric Bayesian formulations of sentiment and author

components, allows straightforward extensions to accurately capture and infer meaningful

sentiment-topic combinations, as well as useful author-topic distributions for imputation of

author expertise. This can be empirically evaluated in our applications by looking at our

prediction result for predefined categorical rating values from inferred topic-level sentiment

result from our HDPsent model in domains such as product and service reviews, using fully

unsupervised learning. Furthermore, we are also able to validate the posterior distribution

of authors and attributed topics learned from our HDPauthor model in academic publication

corpora by our performance on some retrieval tasks.

2



1.1 Topic Modeling

Since the rise of text-driven data mining and decision support in a wide variety of application

domains such as recommender systems and personalized decision support, text analytics

systems have been well-studied and developed. Topic modeling, as one major branch in

this field, has been used in many domains, such as discovering and generating topics in

global corpora, identifying and differentiating language patterns for different topics, and

associating topics with documents. Topic models are also helpful in many natural language

processing (NLP) subareas, including document summarization, generation, classification

and organization, and in particular text-based information retrieval (IR) and information

extraction (IE).

The major milestones in topic modeling are based on building probabilistic generative

models10 11. This includes Probabilistic Latent Semantic Indexing (pLSI)5, Latent Dirichlet

Allocation (LDA)12, and nonparametric Bayesian hierarchical model - Hierarchical Dirichlet

Process (HDP)3.

These topic models have been proved to be powerful and robust for learning topics from

corpus. Instead of classifying or clustering documents to separate categories, these models

capture the underlying latent probabilistic mixing proportions of multiple categories for each

document. For example, one document on bioinformatics may admit different proportions of

topics such as ”biology”, ”data mining” and ”statistics”. Meanwhile, another document on

social network analysis may represent a mixture of identifiable topics such as ”graph theory”,

”data mining” and ”statistics”. Global topics may be represented in multiple documents.

This statistical mixture model does not only helps to identify topics for documents more

accurately, but also improves the word distribution gathering for different topics.

3



1.1.1 Problem Definition

There are many ways of defining and solving the topic modeling problem. In this disser-

tation, however, we focus only on probabilistic methods of constructing statistical mixture

models to simulate a generative process of text for documents.

From this point of view, in topic modeling, we generally define and use word sequences

in text collection as data to analyze. Therefore, in the text collection, we only use words

as the basic unit of the data set, representing its granularity. We ignore the punctuation in

documents, the sentence structure of words, as well as the part-of-speech (POS) tagging of

words.

Here we define the following terms:

1. Each distinct word is treated as one distinct variable in data set, denoted as w. The

set of all distinct words in whole text collections is denoted as vocabulary W with size

V . For simplicity, we index each word in vocabulary beforehand as W = {1, ..., V },

and then represent each word by its index id.

2. Each document in collection is considered to be represented by an array of N words, re-

gardless of punctuation and non-word characters. It is denoted as dj = {xj1, xj2, ..., xjN}.

Variable xji represents the ith word token in jth document, whose value should be

one w ∈ {1, ..., V }. Although we refer to each variable xji by its position, we here

assume that each token is generated independently from all other tokens in this docu-

ment, given the generative model. Therefore, the order of word tokens in a document

does not matter. And we also assume that each document is generated independently

from all other documents, so that the order of documents in text collection does not

matter, too. This exchangeability feature allows us to treat each document as a bag

of words (BOW), which means that the positions of words in same document are

interchangeable, and the positions of documents are also interchangeable.

3. The whole data set consists of a collection of documents, hereafter referred to as

4



corpus, which represents the set D = {d1, d2, ..., dm} .

1.1.2 Latent Dirichlet Allocation

Latent Dirichlet Allocation (LDA) was introduced by Blei12 and is a widely used generative

statistical model of text collection. Instead of directly producing multinomial distributions

of words in topics, and multinomial distributions of topics in each document, LDA brings

in the Dirichlet distribution as a conjugate prior for these multinomial distributions.

This model defines a hierarchical Bayesian model for generative process for word tokens

in text. Here we represent a graphical plate model of LDA generative process in figure 1.1:

α θ z w

β

N

M

Figure 1.1: Graphical plate model of LDA

This model predefines K topics in a corpus, and then associates each word with one

latent topic variable z, where z ∈ {1, ...K}. Therefore document j that is originally denoted

as dj = {xj1, xj2, ..., xjN} can also be represented by this sequence of latent topic variables

dj = {zj1, zj2, ..., zjN}, which is sampled according to the multinomial probability distribu-

tion over topic categories for this document, denoted πj = {πj1, ..., πjK}. We also assume

that each topic k is associated with a multinomial probability distribution over the whole

vocabulary W with word size V , denoted as φk = {φk1, ..., φkV }.

Since multinomial distributions can have Dirichlet distributions as prior parameters,

In this model we makes use of this feature, and assume that the topic distributions for

documents {π1, ..., πm} all have Dirichlet distribution Dir(α) as their conjugate prior. And

5



the word distributions for topics {φ1, ..., φK} have Dirichlet distribution Dir(β) as their

conjugate prior.

The generative process of LDA for word tokens can be represented as follows:

1. For each topic k, we sample φk ∼ Dir(β).

2. For each document dj, we sample πj ∼ Dir(α).

3. For each token xji in document dj at position i:

(a) We sample a latent topic label zji ∼Multinomial(πj).

(b) We sample a word w ∼Multinomial(φzji).

The inference part of the LDA model is complex, since it involves posterior distribution

calculation of latent variables θ and z generated by LDA model for documents, given the

observed data w and prior hyper parameters α and β:

p(θ, z|w, α, β) =
p(θ, z, w|α, β)

p(w|α, β)
(1.1)

This posterior distribution is unable to compute directly, so that the exact inference of

LDA model is intractable. There are two major algorithms applied widely for approximate

inference of LDA, Variational Inference 13 and Gibbs Sampling 14.

Here we introduce the inference process using Gibbs sampling algorithm. Gibbs sampling

does not require to infer latent parameters θ and φ explicitly. These parameters can be

integrated out through the assignment of z.

According to the definition of Gibbs sampling, we do not need to sample all latent

variables in whole data set {z11, z12, ..., zmN−1, zmN} together, whose joint probability is

actually intractable. We can sequentially sample each z based on values of all other z.

Thus, following Griffiths14, the conditional posterior distribution of zji given values of

all other variables is:

6



p(zji = k|z−ji,w, α, β) ∝ p(wji|zji = k, z−ji,w−ji, β)p(zji = k|z−ji, α) (1.2)

where z−ji = {zj′i′ |j′i′ 6= ji} and w−ji = {wj′i′|j′i′ 6= ji}.

In this equation, however, p(zji = k|z−ji, α) can be treated as a predictive new sample zji

from multinomial distribution θj with Dir(α) as its conjugate prior, and z−ji as its observed

data set. To calculate this predictive posterior distribution of variable zji, we can infer that:

p(zji = k|z−ji, α) =
n−jijk + α

n−jij· +Kα
(1.3)

Similarly, p(wji|zji = k, z−ji,w−ji, β) can also be deemed as a predictive new sample of

wji from multinomial distribution φk with Dir(β) as its conjugate prior, z−ji and w−ji as

its observed data set. We can similarly infer that:

p(wji|zji = k, z−ji,w−ji, β) =
n−jikw + β

n−jik· +Wβ
(1.4)

Putting equations 1.3 and 1.4 together, we can easily get the conditional sampling prob-

ability p(zji = k|z−ji,w, α, β). Then we can directly use Gibbs sampling schema to sample

each z sequentially until the Markov chain converges and reaches a stable state.

1.1.3 Hierarchical Dirichlet Process

The hierarchical Dirichlet process (HDP) is a widely used generative model for topic learning.

HDPs were introduced by Teh3 and are a type of nonparametric hierarchical Bayesian model.

One of its most favorable features is that the number of topics that a user has to set up

beforehand is not directly bounded, but only regulated by a prior probability of generating

a new topic.

The graphical plate model corresponding to HDP mixture model is shown in figure 1.2:

In this model, H can be treated as a prior distribution over topics. It defines a global

7



H

γ

G0

α0

Gj θji xji

β φ

K

N

D

Figure 1.2: Graphical plate model of HDP

measure G0 for the whole corpora as a Dirichlet Process with H as base measure, and γ

as concentration parameter. For each document dj in this corpora, it generates its own

probability distribution Gj over topics as Dirichlet Process with G0 as base measure, and

α0 as concentration parameter. Then the topic label θji is sampled from Gj, word token xji

then is generated similarly to LDA according to its topic label.

The two-level hierarchical Dirichlet process mixture model can be represented as:

G0|γ,H ∼ DP (γ,H)

Gj|α0, G0 ∼ DP (α0, G0) for each j,

θji|Gj ∼ Gj for each j and i,

xji|θji ∼ F (θji) for each j and i,

(1.5)

Since exact inference over HDPs is also intractable, this model also contains two widely

used approximate inference techniques, Variational Inference 15 16 and Gibbs Sampling 3 as a

special form of Markov chain Monte Carlo (MCMC) algorithm. HDP uses Chinese restau-

rant franchise as a representation framework for building posterior distribution of latent

variables for Gibbs Sampling. Although Gibbs sampling is not as computationally efficient

8



or easy to be scaled as variational inference, it is one more accurate and unbiased way for

parameter estimation, and it is also widely used in many applications.

According to Chen17, with the representation framework of Chinese restaurant fran-

chise 3, the generative process of HDP for word tokens can be represented as follows:

1. Draw an infinite number of topics φk ∼ Dir(β) for k = {1, 2, 3...}.

2. Draw stick-breaking topic proportions as νk ∼ Beta(1, γ) for k = {1, 2, 3...}.

3. For each document dj:

(a) we sample document-level topic atoms kjt ∼ Multinomial(σ(ν)) for each table

t = {1, 2, 3...}.

(b) we then sample document-level stick-breaking proportions as πjt ∼ Beta(1, α)

for each table t = {1, 2, 3...}.

(c) For each token xji in document dj at position i:

i. We sample a latent topic label zji ∼Multinomial(σ(πj)).

ii. We sample a word w ∼Multinomial(φzji).

Here σ(ν) and σ(πj) are distributions constructed by stick-breaking algorithm18 19 with

proportions of ν = {νk|k = 1, 2, 3, ...} and πj = {πjt|t = 1, 2, 3, ...} as:

σk(ν) = νk

k−1∏
i=1

(1− νi)

σt(πj) = πjt

t−1∏
i=1

(1− πji)

(1.6)

Thus the Chinese Restaurant Franchise Process20 could be represented in Figure 1.3:

1.1.4 Markov Chain Monte Carlo and Gibbs Sampling

Since the inference algorithm for the statistical mixture model that I am going to introduce

is basically Gibbs Sampling, which is one specific algorithm developed from Markov Chain

9
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Figure 1.3: HDP: Chinese Restaurant Franchise Representation

Monte Carlo (MCMC) framework21 22, it is also worth writing about the basic theories of

this approximate inference technique.

Monte Carlo Integration23 makes use of Law of large numbers 24. It approximates the

integral of a complex function by a sample mean. We assume that X is a random variable

that draws from a probability distribution π(·). If we want to calculate the expectation of

function f(x) given probability distribution of x as π(·), then we can get:

E[f(X)] =

∫
f(x)π(x)dx∫
π(x)dx

≈ 1

N

N∑
i=1

f(xi) (xi ∼ π(·))
(1.7)

However, in some cases, it is difficult or impossible to draw samples directly and in-

dependently from a complex probability distribution. One way to solve this problem is to

construct a Markov chain25 whose stationary distribution is π(·) and then sample a sequence

of random variables {x1, x2, ..., xN} through this Markov chain. Each state in Markov chain

is a variable value, which is sampled from last sample value using transition function.

Gibbs Sampling is one algorithm developed from MCMC method. It is a special case

of Metropolis-Hastings algorithm26 from MCMC. It is always used for solving the sampling

problem of a multivariate probability distribution, while the joint probability of the set of

variables in intractable.

10



Assume that the random variable X we want to sample is a k-dimensional multivariate

variable as X = {X1, X2, ..., Xk} while its joint probability p(X) = p(X1, X2, ..., Xk) is

infeasible to compute directly. Instead, we can sample component variable i of X in jth

sample xji from its conditional probability on all the other variable as

p(xji|xj1, xj2, ..., xji−1, xj−1i+1, ..., xj−1k) (1.8)

Thus, in Gibbs Sampling, each multivariate variable X is sampled by sequentially sam-

pling each of its component variables, conditionally on current values of all other variables.

1.2 Sentiment-Topic Model: HDPsent

One research area closely related to topic modeling is sentiment analysis, which refers to

the uses of text for learning the underlying polarity (positive or negative tone) and subjec-

tive attitude of author (or authors) of documents. Early approaches towards using machine

learning to detect the overall sentiment polarity of text documents used basic supervised in-

ductive learning for classification. Hypothesis languages and learning algorithms underlying

such techniques include Naive Bayes, Maximum Entropy, and Support Vector Machines, as

applied by Pang27 6 and Liu28.

Compared to overall sentiment polarity learning, however, detailed sentiment polarity

learning combined with topics is more favorable. Topic learning embedded into sentiment

analysis provides users and researchers with a hybrid model for simultaneous topic distribu-

tion and sentiment polarity analysis of documents. Moreover, it also helps to enhance the

ability for isolating sentiment polarities from different topics in same document, and pro-

vides with the ability to infer separate aspect-level sentiment clusters with different word

distributions.

There are some benefits and advantages we can gain from a hybrid topic sentiment model.

By modeling sentiment analysis along with topic learning under HDP framework, we are not

11



restricted by predefined topic size. We can not only discover new topics representing different

data groups, but also form sentiment word clusters under each of the topics generated.

Furthermore, we can identify different word distributions with same sentiment polarity

under different topics, as well as differentiate same word with different sentiment polarities

on different topics. This flexibility improves our ability of learning topic and sentiment

combination clusters across the whole corpora more precisely, also improves our ability of

identifying the aspect-level sentiment polarities on different topics in one document.

1.3 Author-Topic Model: HDPauthor

Another extension of topic modeling is to incorporate author identification information

within documents into the learning process.

This research problem consists of several key technical objectives, one of which is to

identify topic interests for each author according to the documents that one participates

in. For documents finished by cooperation of a set of authors, we also want to learn the

contribution for each author involved in this document. Moreover, author identification

information itself can be very helpful as a supporting learning resource for topic learning

of documents. By constructing global topic interests of authors across corpora, knowledge

of authorship can help us to learn topics for documents better. Finally, by computing the

topic distribution of all documents that same author participates in, the topic interests of

this author can be more accurately inferred as well.

Besides topic learning for documents and authors, our HDPauthor model also achieves

learning of mixing proportions for authors of each document. The learning result can be

used directly for estimation of author contribution.

Examples of applications of topic and author mixture learning model include author

identity disambiguation problem. In scientific publications, distinct authors frequently have

the same name. There are also some authors who show up in different papers with dif-
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ferent names due to variations in abbreviation. Incorporating the feature of topic interest

distributions for authors would help us to alleviate this disambiguation problem.

While author searching, grouping, ranking and recommendation are useful tools in many

document/author retrieval applications, the topic interests of authors learned from this

model also provide features for direct similarity comparison between different authors, using

other advanced machine learning techniques.

1.4 Road Map

This dissertation aims to cover two hybrid inference model as extension of HDP topic learn-

ing framework. The chapters are organized as follows:

In Chapter 2, we present one novel hybrid learning approach based on the existing HDP

topic learning framework, which combines topic modeling with sentiment analysis within one

generative inference process. This model preserves the benefits of nonparametric Bayesian

models for topic learning, while learns latent aspect-level sentiment features for each topic

generated simultaneously.

In Chapter 3, we introduce one novel model that extends the current HDP topic model to

incorporate author cooperation information. This model infers topic interests of each author

involved in a corpus first, and then establishes the topic distribution of each document in

the corpus as a finite mixture of the topic interest of all its authors. This model not only

manages to learn topics for documents, and topic interests for each author, but also is able

to learn author contributions for each document.

In Chapter 4, we describe in detail the data sets we gathered from real-world text for

experiments on our models. We also introduce the criteria we use for evaluation of these

experiments. We then describe our experiments and document results that we collected

from them.

In Chapter 5, we present conclusions regarding the derivation and use of the model, and
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review remaining open problems and some research directions regarding these models that

we propose to explore in future work.
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Chapter 2

Sentiment-Topic Model: HDPsent

With the growing need for analyses of free text that extract both feature information and

sentiment polarity, hybrid probabilistic models that support concurrent topic and sentiment

analysis have also increased in relevance and significance. Many models treat topic modeling

and sentiment analysis as separate and independent processes, which lacks the ability for

isolating sentiment polarity from different topics. We would like to infer the topics of

documents, but also want to infer the sentiment information for these topics.

There are some algorithms which already attempt to build a hybrid inference model for

topic and sentiment learning29 30, but these models do not fully make use of the current

state of the field in nonparametric Bayesian HDP models as a representational framework.

For example, when we analyze product or service reviews, it is crucial that we have sep-

arate sentiment polarity information for each feature aspects, which helps us to differentiate

opinion words for different aspects from one review text. This, in turn, extends our ability

for feature-specific sentiment polarity analysis.

In this chapter we present a technique for simultaneously inferring sentiment and topic

from free text, extending existing HDP models, called HDPsent. Our model is the first

to extend the existing HDP model by adding a sentiment label l along with a topic label

k to each token in a document. This approach uses Gibbs sampling for inference, as do
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implementations of the Chinese restaurant franchise process (CRFP) for the generative

HDP model.

2.1 Related Work

Some significant work in the past decade has begun to combine topic modeling and sen-

timent analysis in a single model. In applications of the Topic Sentiment Mixture Model

(TSM)30, a Probabilistic Latent Semantic Analysis (PLSA) model is used to represent the

generative process. Furthermore, even it assigns topic label for each word (excluding back-

ground words), that word itself is sampled from either general positive, negative model,

or that specific topic model. This generative process generalizes sentiment polarity model

and has limited ability to make different sentiment polarity word distributions for different

topics. However, our intuition is that different topics might treat same words with different

sentiment strength, or even different polarity. For example, the word ”small” might be a

positive word when it is describing the size of a MP3 player, but might be a negative word

when it is describing the storage capacity of that MP3 player. One approach to handling

this problem is word sense induction31, which is beyond the scope of this work.

Our model is mainly inspired by and builds upon the Joint Topic/Sentiment Model29,

which uses a Latent Dirichlet Allocation (LDA) model in topic modeling to incorporate

sentiment analysis. In this model it is assumed that each word is labeled using both a topic

label k and a sentiment label l, and that each word is sampled from a word distribution

given both k and l. However, this inherits several basic limitations from LDA which the

overall model incurs. It predefines and limits the number of topics K initially, which is

impractical for large corpora. For example, for a large corpus with various service/product

reviews (such as Yelp review data32), it is hard for users to regulate the number of topics in

advance. Furthermore, it is also inappropriate for users to predefine this parameter, since

the number of total features would be extremely large but each review document would
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only occupy a few of them. The nonparametric Bayesian features of HDP can help us to

alleviate this problem.

Other hybrid approaches include multi-grain topic models33, which have some flexibility

with respect to local (aspect-level) topics, but are predominantly LDA-based and tied to

fixed, preset numbers of topics. Yet another approach is constrained LDA34, which uses

clustering approaches to discovery synonymy (synonym sets) of words taken as feature terms.

Both of these techniques are aimed at incorporating sentiment into LDA as a monolithic

topic model and thus have limited ability to evolve a topic hierarchy, account for dynamic

topic drift, and incorporate models of topics in relation to authors.

2.2 Model Introduction

In our HDPsent model, we assume that each token in documents does not only carry latent

topic information, but also represents sentiment attitude of writer. Therefore, while HDP

only assigns a topic label k to each word, we add a sentiment label l to each word, along

with its topic label k. We assume that for each topic component existing in each document,

there is a sentiment distribution for it. Thus, each word is sampled from a word distribution

specifically for the combination of its topic and sentiment label. The number of sentiment

polarity values is always small and well-defined in advance. In our model, we therefore fix

the number of sentiment labels in advance, which follows convention in sentiment analysis

research area. We set L = {positive, negative, neutral }, which denote positive words,

negative words, and descriptive words separately. However, this model makes no restriction

on the number of sentiment labels as long as it is predefined and fixed. Sentiment labels as

L = {strongly positive, weakly positive, neutral, weakly negative, strongly negative } is also

a desirable sentiment range segmentation. Because of the simplicity and non-hierarchical

(flat) nature of this independent semantic component, we use a Latent Dirichlet Allocation

(LDA) model for latent sentiment label allocation, while using a nonparametric Bayesian
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HDP model.

Here in Figure 2.1 we show an example about how word distributions of different senti-

ment polarities vary for different topics.

Figure 2.1: Example of topics and sentiment polarities in hotel reviews

There are several other advantages of our model. First and foremost is that it enables us

to infer different word distributions for the same topic, with different sentiment polarities.

Thus, from different word distributions for different sentiment polarities, we can isolate

descriptive words, positive words, and negative words from the same topic.

Another advantage is that our model makes it possible to infer sentiment distributions

for each topic mentioned in the document. This will allow researchers and users to develop

a deeper and more detailed sentiment analysis for not only the whole document, but also

each different aspect in the document. This would potentially aid them in differentiating the

distinct views of an author towards the topic aspects that are reflected within a document.
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2.3 Model Definition

As with the model representation that we described in Chapter 2, we define D = {d1, d2, ..., dm}

to be the corpus that we want to analyze, and xj = {xj1, xj2, ...} to be the word array in

document dj. We then assume that each word xji is associated with a latent dyadic topic-

sentiment combination label, denoted < θ, l >, where θ is the factor corresponding to the

observation variable xji, which is associated with one global topic k, and l is one latent

sentiment label from one predefined sentiment label set L.

We extend the existing generative model for HDP framework to accommodate sentiment

label l for word xji generation as shown in figure 2.2:

H

γ

G0

α0

Gj θji

τ σkj lji

xji

β

φ

N

D

K × L

K

Figure 2.2: Plate model for HDP model with sentiment labels

In this model, the global probability measure G0 represents a global topic distribution,

drawn from a Dirichlet process with two generative hyperparameters: a base measure H and

a concentration parameter γ. Each document j then generates its own probability measure

for local topic distribution Gj from a Dirichlet process with G0 as its base measure and α0

as a concentration parameter:
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G0|γ,H ∼ DP (γ,H)

Gj|α0, G0 ∼ DP (α0, G0) for each j,

(2.1)

Each observation xji in document j position i has two parameters, θji and lji. θji

is independently and identically distributed (i.i.d.), drawn from Gj. Because each θji is

associated with an observation ψjt, which in turn has a corresponding factor kjt sampled from

G0, we can denote θji = ψjt, ψjt = φk where kjt = k. So that each θji is actually associated

with one global topic group k. In our model, for each distinct k emerged in document

j, we assume that there is a particular sentiment distribution for k denoting the author’s

subjective attitude towards this topic. Therefore we generate a Dirichlet distribution σjk

over the sentiment label set L, denoting this sentiment distribution for topic k in document

j, with Dir(τ) as its conjugate prior. Then the sentiment label lji for observation xji is

drawn from this distribution, given its topic label k. This is given by:

σjk ∼ Dir(τ) for each existing k in each j,

θji|Gj ∼ Gj for each j and i,

lji ∼Mult(σjkθji ) for each j and i,

(2.2)

We want to not only discover the differences of word distributions between same sen-

timent polarities in different topics, but also differentiate the word distributions for same

topic with different sentiment polarities. Therefore, we assume that each distinct < k, l >

combination should form a distinct word distribution. Here we denote that F (k, l) is a

Dirichlet distribution over the whole vocabulary for specific < k, l > combination, which

uses Dir(β) as its conjugate prior. Then each observation xji is drawn from this distribution

with the latent < θji, lji > generated through the generative model:
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F (k, l) ∼ Dir(β)

xji|θji, lji ∼ F (k, l) for each j and i,

(2.3)

To illustrate the generative process of our HDPsent model with sentiment and topic

generation, we can extend the generative process of Chinese restaurant franchise framework

for traditional HDP model presented in17 as:

1. Draw an infinite number of topics with predefined set of sentiment polarities: φkl ∼

Dir(β) for k = {1, 2, 3...}, L = {1, 2, ..., l}.

2. Draw stick-breaking topic proportions as νk ∼ Beta(1, γ) for k = {1, 2, 3...}.

3. For each document dj:

(a) we sample document-level topic atoms kjt ∼ Multinomial(σ(ν)) for each table

t = {1, 2, 3...}.

(b) we then sample document-level stick-breaking proportions as πjt ∼ Beta(1, α)

for each table t = {1, 2, 3...}.

(c) For each distinct k, we sample the sentiment distribution σjk ∼ Dir(τ)

(d) For each token xji in document dj at position i:

i. We sample a latent topic label θji ∼Multinomial(σ(πj)).

ii. We sample a latent sentiment label lji ∼Multinomial(σjkθji )

iii. We sample a word w ∼ F (θji, lji).

Here σ(ν) and σ(πj) are distributions constructed by stick-breaking algorithm with

proportions of ν = {νk|k = 1, 2, 3, ...} and πj = {πjt|t = 1, 2, 3, ...} as:
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σk(ν) = νk

k−1∏
i=1

(1− νi)

σt(πj) = πjt

t−1∏
i=1

(1− πji)

(2.4)

2.4 Inference

In this section, we want to use the extended Chinese restaurant franchise process (CRFP)

generative model that we described above to infer the Gibbs sampling schema for HDPsent

model.

Here we define θ−ji and l−ji are latent labels of all data items except observation xji:

θ−ji := {θj′i′ |j′i′ 6= ji}

l−ji := {lj′i′|j′i′ 6= ji}
(2.5)

We assume in this model that each word is drawn from F (< θji, lji >) = φkl, which is

dependent on the combination of θji and lji. We also assume that the latent sentiment label

lji is drawn from a Dirichlet sentiment distribution for the specific topic parameter factor

θji in document dj. So that we can obtain the posterior conditional of < θji, lji > as:

p(θji, lji|xji,θ−ji, l−ji)

∝ p(xji|θji, lji) · p(lji|l−ji,θ−ji, θji) · p(θji|θ−ji)
(2.6)

Here p(θji|θ−ji) denotes the conditional distribution of topic factor θji given all other

data points.

We assume that the topic distribution for observations should follow HDP model; thus,

to integrate out G0 and Gj, the conditional distribution calculation for θji in each Gj and
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ψjt for global G0 should be similar to3 equations (24) and (25). These can in turn be

represented as follows:

θji|θj1, ..., θji−1, α0, G0 ∼
mj·∑
t=1

njt·
i− 1 + α0

δψjt +
α0

i− 1 + α0

G0 (2.7)

and

ψjt|ψ11, ..., ψjt−1, γ0, H ∼
K∑
k=1

m·k
m·· + γ

δφk +
γ

m·· + γ
H (2.8)

Now, we designate τk = {τk1, ..., τkL} to represent the probability distribution of senti-

ment label set L for topic k. Since the size of L is predefined, this is a simple multinomial

distribution across the document; therefore, we can simply choose a Dirichlet distribution

as its conjugate prior:

τk ∼ Dir(σ) (2.9)

We assume that each topic existing in one document has its own sentiment distribution.

Therefore, the sentiment label for one word in document is independent from other words in

this document on different topics. This also follows our intuition in writing a document, our

sentiment attitude in different topics would be quite different even in the same document.

Thus, the posterior sentiment distribution of topic k only takes into consideration the

counts of word tokens with sentiment labels for the same topic:

p(τk|σ, l,k) ∼ Dir(σ1 +Ndkl1 , ..., σL +NdklL) (2.10)

Therefore, the conditional probability of sentiment label lji for each data point xji can

easily obtained by integrating τk out of equation (2.9), given the topic factor θji = φk,

eliminating xji:
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P (lji|l−ji,k−ji,σ, kxji = k)

=

∫
τlDir(τ |σ1 +N−jidkl1

, ..., σL +N−jidklL
)dτ

=
σl +N−jidkl∑
σ +N−jidk·

(2.11)

Finally, with the sampled latent variable combination < θji, lji > associated with data

xji, we can obtain the topic label for table t associated with θji by kjt = k. The word token

of xji should be drawn from word distribution denoted as F (k, l).

For each word distribution for different topic-sentiment combination, we assume that it

is derived from a Dirichlet distribution, with conjugate prior H. Here we can simply use φkl

to denote this word distribution. Therefore, the conditional density of xji under < k, l >

can be calculated depending on all data points in the component k possessing the same

sentiment label l, leaving xji out; Then we can just directly use3 equation(30) to calculate

the conditional probability of word token variable xji as:

f
−xji
kl (xji) = p(xji|k, l) =

∫
f(xji|φkl)

∏
j′i′ 6=ji,
θj′i′=k,
lj′i′=l

f(xj′i′ |φkl)h(φkl)dφkl

∫ ∏
j′i′ 6=ji,
θj′i′=k,
lj′i′=l

f(xj′i′ |φkl)h(φkl)dφkl
(2.12)

And if the data item xji being assigned to a combination with new topic as < knew, l >,

it means that it is assigned to a new φ with no prior data items. So the posterior probability

is only dependent on conjugate prior H, which can be represented as:

f
−xji
knewl(xji) = p(xji) =

∫
f(xji|φkl)h(φkl)dφkl (2.13)
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2.5 Sampling schema

Using all these probabilities that we derived above, we can now work out the Gibbs sampling

schema for posterior sampling of each data item xji using this extended Chinese restaurant

franchise process framework (CRFP) for our HDPsent model.

Sampling t

We denote local index variable for each θji as tji, and sample this index variable directly

using Gibbs Sampling and the marginal represented in equation 2.7:

p(tji = t, lji = l|t−ji, l−jik)

∝


n−jijt · p(lxji|k, l

−ji,k−ji) · f−xjikjtl
(xji) if t previously used,

α0 · p(xji|t−ji, l−ji,k, tji = tnew) if t is new.

(2.14)

For the new table sampled, we can similarly derive the probability as:

p(kjtnew = k, lji = l|t, l−ji,k−jtnew)

∝


m·k · p(lxji |k, l−ji,k−ji) · f

−xji
kl (xji) if k previously used,

γ · p(lxji |knew, l−ji,k−ji) · f
−xji
knewl(xji) if k is new.

(2.15)

Here f
−xji
kl (xji) and f

−xji
knewl(xji) are conditional densities of data xji given all other data

items that can be calculated by equation 2.12 and 2.13.

Sampling k

Similarly, we denote global topic index variable for each ψjt as kjt, and sample this index

variable directly.

Sampling k for each table is a little different from the HDP process. This is because we

only assume that the topic distribution for data items follow HDP framework. Therefore,
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it is possible that the data points being assigned to same table share the same topic label

k, but admit different sentiment labels l.

As a consequence, the data points in the same table may belong to different F (k, l)

components. Here we assume that when we sample global topic k for each table, we do

not change the sentiment labels of word tokens in this table. So that the probability of

one table belongs to a specific k is a combination of probabilities of independent groups of

tokens from different F (k, l) components for all existing l in this table. This probability can

be written as:

f
−xjt
k (xjt) =

∏
l∈L

xjlt={xji|xji∈t,lji=l}

p(l|k, d)f
−xjlt
kl (xjlt) (2.16)

where P (l|k, d) can be calculated using the posterior probability of the Dirichlet senti-

ment distribution that we illustrated in equation 2.11.

And also the probability of one table belongs to a new topic knew should also be calculated

as a combination of probabilities of these tokens from separate F (knew, l) components for

all existing l in this table. Similarly, this probability can be written as:

f
−xjt
knew (xjt) =

∏
l∈L

xjlt={xji|xji∈t,lji=l}

p(l|d)f
−xjlt
knewl (xjlt) (2.17)

Here p(l|d) represents the overall sentiment distribution across the document.

Since we have figured out the calculation of f
−xjt
k (xjt) and f

−xjt
knew (xjt), the probability of

table t is assigned to each k follows the traditional sampling schema according to 2.8 as:

p(kjt = k|t, l−ji,k−jt) ∝


m·k · f

−xjt
k (xjt) if k previously used,

γ · f−xjtknew (xjt) if k is new.

(2.18)

Thus the pseudo-code of our sampling inference algorithm is depicted in Algorithm 1:
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Algorithm 1 HDPsent algorithm

1: procedure Gibbs–HDPsent
2: for each document dj ∈ D do
3: for each word token xji ∈ dj do
4: Incrementally sample < θji, lji > for xji
5: Change lji to its predefined inital value lw given word w = xji
6: Increase statistical counts for < θji, lw >
7: end for
8: end for
9: while not converged do
10: for each document dj ∈ D do
11: for each word token xji ∈ dj do
12: Decrease statistical counts for old < θji, lji >
13: Sample < θ, l > for xji
14: Increase statistical counts for new < θji, lji >
15: end for
16: for each table ψjt ∈ dj do
17: Decrease statistical counts for old kjt
18: Sample k for ψjt
19: Increase statistical counts for new kjt
20: end for
21: end for
22: end while
23: end procedure
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2.6 Model Prior

Traditional HDP model rarely introduce asymmetric priors for both documents and topics.

However, our model imports aspect-level sentiment layer into traditional HDP model, which

requires certain degree of structured asymmetric priors for sentiment modeling.

2.6.1 Sentiment Prior

In our model, the sentiment distribution is dependent only on the data in same topic. This

does not cause problems in LDA models, but does cause problems in HDP models, because

HDP model spawns new topics at certain probabilities:

p(τ |σ, l−ji,k−ji, knew) ∼ Dir(σ1 + 0, ..., σL + 0) = Dir(σ) (2.19)

Without any prior knowledge for sentiment labels for tokens assigned to new topic (or

newly emerged topic with only few tokens assigned to within this document), the sentiment

label for this token, is solely (or largely) dependent on its conjugate prior Dir(σ). This

is still acceptable if we assume that sentiment distributions of different topics are totally

independent from each other in the same document. However, most of the time, we intend

to have similar sentiment attitude across most topics we write about in the same document.

So that we can set up document-specific priors for sentiment distribution, and topic can

have its own sentiment distributions drawn from this prior.

Here we introduce different σ for different documents as its own conjugate prior. Using

the LDA prior schema from35 for sentiment distributions, we use σ′ as a concentration

parameter for σ, and obtain:

σdl =
∑
l

σl ·
Nd·l + σ′l

Nd·· +
∑

l σ
′
l

(2.20)

This allows equation (2.11) to be rewritten as:
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P (lxji|l−ji,k−ji,σ, kxji = k) =


σdl+N

−ji
dkl∑

l σdl+N
−ji
dk·

if k previously used,

σdl∑
l σdl

if k is new.

(2.21)

2.6.2 Word Prior

Since our word distribution F (k, l) has only the global conjugate prior Dir(β), as shown

in figure 2.2, any new < k, l > combination has the same symmetric prior. In pure topic

models, this is acceptable since we do not have and may not set up any prior knowledge for

word distribution in the new topic at all. However, on the one hand, we already have strong

prior bias for sentiment polarity of many words in English vocabulary, according to their

semantic meanings. On the other hand, the sentiment polarity of same word across different

topics although is not fixed, but has less tendency to be changed. For example, even though

we do not have a prior preference for a word such as ”good” in a new topic knew, we shall

have some prior preference for ”good” in a new combination < knew, positive >, versus a

new combination < knew, negative >.

This prior also helps us to adjust the probability for sampling word for sentiment labels.

Without this prior, the sentiment assignment for words in the same topic can easily be

reversed from their usual meaning, with positive words assigned to the predefined negative

category, and negative ones to the positive category.

Using the same prior schema, and defining β′ to be the concentration parameter for β,

we directly obtain:

βlw =
∑
w

βw ·
N·lw + β′w

N·l· +
∑

w β
′
w

(2.22)

Thus, parameters in equation (2.12) can easily be integrated out, resulting in:

29



f
−xji
kl (xji) =


βlw+N

−xji
klw∑

w βlw+N
−xji
kl·

if k previously used,

βlw∑
w βlw

= N·lw+β
′
w

N·l·+
∑
w β
′
lw

if k is new.

(2.23)
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Chapter 3

Author-Topic Model: HDPauthor

While the characterization of topic modeling as estimating the topic distribution of doc-

uments was developed many years and has been used since, there is also a growing need

for topic interest learning of authors. Moreover, the contribution of different authors to

a single document is also a learning problem that needs to be studied. Our objective as

discussed in this chapter to develop a generative mixture model extending current topic

models, which is capable of simultaneously learning and identifying the topic interests of

authors, topic distribution across documents, and author contributions to documents.

Currently there are already many significant works on Bayesian methods for author

mixture models36 37 without topic modeling. There is also some work in the literature on

LDA-based author-topic learning frameworks38 39. However, because these models are vari-

ation and extension based on LDA, using Dirichlet multinomial mixture models, all of them

admit predefined limits on the number of topics.

In real-world applications, the number global topics across whole corpora may not be

fixed or boundable. However, each author usually only works on and is good at a small

set of topics, and each document written by a group of authors is also usually written on a

small set of topics. Therefore, the nonparametric Bayesian feature of hierarchical Dirichlet

process for topic modeling can help us to solve the problem, and infer a better learning

31



algorithm compared to existing LDA-based author-topic learning models.

In this chapter, we present a statistical generative mixture model called HDPauthor, for

scientific articles with authors; this model extends our existing HDP model to incorporate

authorship information. It uses nonparametric hierarchical Bayesian modeling to learn the

topic interests of each author across the documents in which that author participates. It

treats the topic distribution for local multi-author document as a finite mixture of distri-

butions of the authors. It benefits from traditional HDP model features that the global

number of topics is unbounded. Each author from text collection also shares unbounded

number of topics from global topic pool. This model also enables researchers and users to

infer contribution proportions of different authors for one document.

3.1 Related Work

There are many works that have already incorporated co-authorship into topic modeling.

One significant model is the Author-Topic model38 40. This model extends the LDA model

to include authorship information. It makes it possible to simultaneously learn both the

relevance of different global topics in document, and the interests of topics for authors. It

associates not only a mixture of topics with each document but also a mixture of topics with

each author, which makes it able to sample words from probability distributions generated

usng a combination of these two factors. In similar fashion to the LDA model, the total

number of topics for the whole corpus must be predetermined in advance, with no flexibility

over the number of topics generated. This model also lacks the ability to share only a small

subset of topics across different documents, as well as across different authors. Therefore,

it learns distribution of each topic in this large group of topics for each document and each

author.

Models proposed by Dai41 42 are based on nonparametric HDP model for topic-author

problem. This approach combines author identities with associated topics as a group. This
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group defines a Dirichlet process (DP) over author entities and topics, which in turn is then

drawn from a global author and topic DP. This model is mainly geared towards disambigua-

tion of author entities. However, this model combines authors and topics in the same DP,

which fails to decouple topics from authors. Therefore, it lacks the ability to share the same

topics between different authors, and also makes it difficult to infer author contributions to

these documents.

3.2 Model Introduction

Our HDPauthor model is a nonparamatric hierarchical Bayesian model for author-topic

generation. This model assumes that topic distribution of each document is a finite mixture

of distribution components of the authors of this document. We can then infer that each

token in the document is written by one and only one of the authors in the author list of this

document, associated with the topic distribution of this author. This assumption enables

us to set up latent author label for each word token along with its topic label. This latent

author label helps us to infer both topic interests of authors and mixture parameters in

documents for each author.

By using an HDP framework, we also assume that each author is associated with a

topic distribution which is drawn based on the same underlying base measure as global

topic distribution in whole corpora, with different variability. The global topic atoms are

shared by all authors, but each author only occupies a small subset of these global topic

components, with different stick-breaking weights. This local probability measure of each

author represents the topic interests of this author. Different authors share different topic

interests.

The topic distribution of each author is learned using the mixture generative model of

all documents that the author participates in. The topic distribution of each document is

not drawn from the global topic distribution directly, but represented by this mixture model
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of all its authors indirectly. Since we already assume that each token is written by one and

only one of the authors with the particular topic distribution of this author, then the latent

topic labels combined with latent author labels helps us to infer the topic distribution of

documents. Therefore, each document is represented by a union of all topics contributed by

each of its authors.

Here in Figure 3.1 we illustrate an example of document produced through the coop-

eration of several authors. The content of the document is the abstract of one paper43 on

machine learning for gene expression data. Author Yoseph Barash mainly works on biology

and bioinformatics, who contributes more on biology related topics, while author Nir Fried-

man is an expert in Bayesian inference and machine learning, which results in his having

higher probability of machine learning-related topics.

Figure 3.1: Example of topic modeling with author cooperation
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3.3 Model Definition

The document representation in our model also follows our definition stated in Chapter

2. We assume D = {d1, d2, ...} is a collection of scientific articles, composed of a series of

words from vocabulary V as xj = {xj1, xj2, ....}. Furthermore, in our HDPauthor model, we

have extra co-authorship information. We assume that each document has a set of authors

aj = {aj1, aj2, ...} who cooperated in writing this document dj.

Previously we have assumed that each token in a document is written by one of the

authors for this whole document. Therefore, here we associate one latent author label q

from the author set aj for each token in document dj along with original latent topic label

k.

This latent author label a not only helps us to directly calculate the contribution of each

author for the document, but also enables the aggregation of topic distribution for each

author across the whole corpus.

We generate G0 as the corpus-level set of topics as a Dirichlet Process with H as base

measure and γ as its concentration parameter. A topic component is denoted φg. Each

author a that exists in the entire corpus corresponds to a Dirichlet Process Ga that shares

the same global base distribution of topics G0, with concentration parameter η. As with

the HDP model, the author-level Ga only shares a small subset of corpus-level topics.

G0|γ,H ∼ DP (γ,H)

Ga|η,G0 ∼ DP (η,G0)

(3.1)

Unlike in the traditional HDP model, we do not draw a Dirichlet process Gj of each

document dj from the global G0 as Gj ∼ DP (α0, G0). Instead, we set up a mixture of

components from probability measures of all authors of this document. We then denote

the mixing proportion vector as πj =< πj1, ..., πj|aj | >. Therefore, all of its elements must
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be positive and sum to one. Since each document is written by a fixed group of authors,

we can here simply assume that πj is drawn from a symmetric Dirichlet distribution with

concentration parameter ε.

πj ∼ Dir(ε) (3.2)

For a mixing proportion vector πj, there are two ways of drawing Gj from a Dirichlet

process for the mixture of the probability measures of all its authors, designated {Ga|a ∈ aj}.

The first method is to combine the probability measures Ga of authors as a new base measure

first, then draw a DP with this base measure combination for document dj; this DP can be

formulated as follows:

Gj ∼ DP (α0,
∑
a∈aj

πja ·Ga) (3.3)

Another method is to first draw separate DPs from each of the authors of the document

dj with the author’s own probability measure Ga as the base measure, and then calculate

the probability measure of dj as a mixture of these DPs. The mathematical formula we

derive for this method is:

Gj ∼
∑
a∈aj

πja ·DP (α0, Ga) (3.4)

Each observation xji in document dj is associated with a combination of two parameters

< aji, θji > sampled from this mixture Gj. In this combination, aji is author label a ∈ aj,

which indicates the ”class” label of this author mixture model. θji is the parameter specifying

the one of the author’s topic component for xji, which is sampled from the probability

measure Ga of the author a selected. Therefore, this θji is associated with table tji, which

is an instance of mixture component ωak from author a = aji; ωak is then associated with

one global topic component g. Given global topic component g, the token xji arises from

a Dirichlet distribution over the whole vocabulary based on this topic label g, which is the
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component factor assigned to kjt in its associated parameter θji, denoted as F (g):

< aji, θji >|Gj ∼ Gj

xji|θji ∼ F (θji)

(3.5)

As we explained above, the factor θji for each observation xji is associated with global

topic mixture component g. Here we can simply use φg to denote this distribution. There-

fore, the conditional density of each observation xji under this particular φg given all other

observations can be derived similarly to3 equation(30):

f−xjig (xji) =

∫
f(xji|φg)

∏
j′i′ 6=ji,
θj′i′=g

f(xj′i′|φg)h(φg)dφg∫ ∏
j′i′ 6=ji,
θj′i′=g

f(xj′i′|φg)h(φg)dφg
(3.6)

And the conditional probability of data item xji being assigned to a new topic gnew is

also only dependent on the conjugate prior H. This can be represented as:

f−xjignew (xji) =

∫
f(xji|φg)h(φg)dφg (3.7)

Here in figure 3.2 we illustrate the graphical plate model for our HDPauthor model with

one more layer of author probability measures injected into the original HDP model:

To present the generative process of our HDPauthor model within an author layer, we can

extend the generative process of Chinese restaurant franchise framework for the traditional

HDP model presented in17 as:

1. Draw an infinite number of topics φg ∼ Dir(β) for g = {1, 2, 3...}.

2. Draw stick-breaking topic proportions as νg ∼ Beta(1, γ) for g = {1, 2, 3...}.

3. For each author a:
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Figure 3.2: Plate Model for HDP model with authors

(a) we sample author-level topic atoms gak ∼ Multinomial(σ(ν)) for each author

component ka = {1, 2, 3...}.

(b) we then sample author-level stick-breaking proportions as µak ∼ Beta(1, η) for

each author component ka = {1, 2, 3...}.

4. For each document dj:

(a) We sample the author mixing proportions for authors of this document as πj ∼

Dir(ε)

(b) we sample document-level author component atoms kjt from the author mixture

model for each table t = {1, 2, 3...}.
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(c) We then sample document-level stick-breaking proportions as δjt ∼ Beta(1, α)

for each table t = {1, 2, 3...}.

(d) For each token xji in document dj at position i:

i. We sample a latent topic label θji ∼Multinomial(σ(δj)).

ii. We sample a word w ∼Multinomial(φθji).

Here σ(ν) and σ(δj) are distributions constructed by stick-breaking algorithm with

proportions of ν = {νk|k = 1, 2, 3, ...} and δj = {δjt|t = 1, 2, 3, ...} as:

σk(ν) = νk

k−1∏
i=1

(1− νi)

σt(δj) = δjt

t−1∏
i=1

(1− δji)

(3.8)

3.4 Inference

The primary inferential mechanism for our model is based on a Gibbs sampling-based imple-

mentation of the Chinese restaurant franchise process (CRFP) model. We should extend this

representation framework to inject an author layer, and calculate all posterior distributions

for latent variables.

Inference for model (3.3)

Here we compute the marginal of Gj under this author mixture Dirichlet process model

with G0 and Ga are integrated out. We want to compute the conditional distribution of θji

given all other variables; we thus extend3 equation (24) to fit our model for model 3.3, to

obtain:

θji|θj1, ..., θji−1, α0, Gj, Ga0, Ga1, ... ∼
mj·∑
t=1

njt

n−jij· + α0

δψjt +
α0

n−jij· + α0

∑
a∈aj

πja ·Ga (3.9)
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Here, ψjt represents the table-specific indicator that indicates the component choice kjt

from author ajt’s probability measure. A drawing from this mixture model can be divided

into two parts. If the former summation is chosen, then xji is assigned to an existing

ψjt, and we can denote θji = ψjt. If the latter summation is chosen, we have to create a

new document-specific table tnew, and assign it to one of the authors according to mixing

proportion vector of authors for document dj, where each πja ∈ πj represents the probability

that table tnew belongs to author a. Then we can draw one new ψjtnew from the probability

measure of author a represented as Ga.

Ga for each author a in the corpus appears in all documents in which this author par-

ticipates. It should be integrated out through all ψjt that ajt = a. We use mak to indicate

the total number of tables t such that kjt = k and ajt = a. To integrate out each Ga, we

can get:

ψjt|ψ11, ..., ψjt−1, η, G0 ∼
la··∑
k=1

mak

ma·· + η
δωak +

η

ma·· + η
G0 (3.10)

This mixture is also divided into two parts. If we draw sample ψjt from the former part,

then we assign it to an existing component k from author a, we can denote it as ψjt = ωak.

If the latter part is chosen, we will create one new component knew for author a. and we

draw this new ωaknew from global topic probability measure G0.

Finally we can integrate out this global probability measure G0 by all cluster components

ωak from all existing authors in whole corpora. Here we use lg to indicate the total number

of ωak such that gak = g. The integral can then be represented similarly to3 equation (25):

ωak|ω11, ..., ωak−1, γ,H ∼
G∑
g=1

lg·
l·· + γ

δφg +
γ

l·· + γ
H (3.11)

Similarly, if the former is chosen, we assign the existing topic component φg to ωak; if

the latter is chosen, we create a new topic gnew sampled from base measure H.

Inference for model (3.4)
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For mixing model 3.4, each document’s probability measure is divided into |aj| inde-

pendent components, where the probability of each component a ∈ aj to be chosen is

determined by πja ∈ πj from this document-specific mixing proportion vector πj. Once a

specific author a is chosen, the probability distribution of θji follows the Dirichlet process

DP (α0, Ga) where a ∈ aj, using the probability measure of author a denoted as Ga to be

its base measure. Therefore, with G0 and Ga integrated out, we can obtain the distribution

of θji given all other variables, as:

θji|θj1, ..., θji−1, α0, Gj, Ga1, Ga2, ... ∼
∑
a∈aj

πja ·
(mja·∑
t=1

njt

n−jija· + α0

δψjt +
α0

n−jija· + α0

Ga

)
(3.12)

These two models differ only in the construction of the mixture of authors with each

author’s own probability measure, drawn from shared global infinite topic mixture model

in one document. The constructions of each author’s probability measure and global topic

measure are same. Therefore, the posterior conditional calculation of ψjt and ωak for model

(3.4) are same as presented in equation 3.10 and 3.10.

3.5 Sampling schema

According to this series of marginals that we integrated out above, we can now go on to

calculate the posterior sampling schema for our Gibbs sampling inference process.

Since we have two mixture models for combining author topic components into one

document, as stated in mixture model (3.3) and model (3.4), the integrals that we inferred

in equation 3.9 and equation 3.12 will result in two different ways of calculating the posterior

conditional distributions of aji and θji accordingly.
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3.5.1 Sampling schema for author mixture model (3.3)

Sampling t

Using the integral 3.9 inferred for author mixture model (3.3), the probability that tji

takes a particular existing t should be proportional to the number of tokens in this t as n−jijt ,

regardless of the author label ajt for this table t, and the probability that this xji will be

assigned to a new value t is proportional to α0.

p(tji = t|t−ji,a,k, g) ∝


n−jijt

n−jij· +α0
· f−xjigakjt

(xji) if t previously used,

α0

n−jij· +α0
· p(xji|tji = tnew,a,k, g) if t is new.

(3.13)

If the sampled tji is new t, we should then sample the author label ajt for this table t from

the Dirichlet-based finite author mixture model, and then sample k from the probability

measure of author a, given ajt = a:

p(kjtnew = k, ajtnew = a|t−ji,a−jtnew ,k−jtnew , g)

= p(ajtnew = a|a−jtnew) · p(kjtnew = k|ajtnew = a, t−ji,k−jt
new

, g)

(3.14)

We already denote the mixing proportion vector of authors for document dj by πj.

We also assume that this vector follows a Dirichlet distribution with ε as its conjugate

prior. However, since in this model, we use table t as the base granularity for author-mixing

representation, we should use the number of tables m rather than the number of tokens n for

this finite author mixing proportion calculation. Here we use mja to represent the number

of tables assigned to author a in document dj. Thus, we can use the standard Dirichlet

integral to calculate posterior probability of author label ajt for this document-specific table

t given all other observations, as:
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p(ajt = a|a−jt, ε) =
m−jtja + ε

m−jtj· + |aj| · ε
(3.15)

With the author label ajtnew = a selected, we already decide that this table tnew is

assigned to (and assumed to be written by) author a. This is exactly the extra layer we

added to traditional HDP topic models. We should obtain the topic component index of

table tjt, not from the global topic distribution, but from the topic distribution of author

a. Therefore, we now should obtain the value of kjtnew = k be sampled from the probability

measure of author Ga as:

p(kjtnew = k|ajtnew = a, t−ji,k−jt
new

, g)

∝


m−jiak· · f

−xji
gak (xji) if k previously used for a,

η · p(xji|ajtnew = a, kjt = knew, g) if k = knew for author a.

(3.16)

Here we use kjt to denote the local k component index for author ajt in doc dj, table t.

If the sampled kjt is new to author a, this means that it creates a new component k for this

author a, and this new component k should be then sampled from higher global mixture

component g. Similarly to3 equation (33), we can infer that:

p(gaknew = g|t, g−aknew) ∝


lg· · f

−xji
g (xji) if g previously used,

γ · f−xjignew (xji) if g = gnew is new.

(3.17)

Sampling a, k

For author mixture model (3.3), sampling k for each table t is a little different from

traditional HDP sampling schema. Specifically, in this model, we add one more author

layer above local document-specific topic distribution, so that each t is associated not with

one global topic component g directly, but with an author label a and one of the author’s
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own topic component k. We have to sample t from the mixture model including all cluster

components k from all authors a ∈ aj, with the author mixing proportion vector πj.

p(ajt = a,kjt = k|t−ji,a−jt,k−jtg)

∝



p(ajt = a|a−jt, ε) · m−jtak·
m−jta·· +η

· f−xjtgak (xjt)

if k previously used for a,

p(ajt = a|a−jt, ε) · η

m−jta·· +η
· p(xjt|ajt = a, kjt = knew, g)

if k is new for a.

(3.18)

Similarly, when kjt = knew, we have to obtain a new sample from the global topic

probability measure:

p(gaknew = g|t, g−aknew) ∝


lg· · f

−xjt
g (xjt) if g previously used,

γ · f−xjtgnew (xjt) if g = gnew is new.

(3.19)

Sampling g

Finally, we present the sampling schema for global topic distribution g, which is sampled

from all components k of all existing authors a in corpora. However, each component k for

author a contains all tables assigned to author a with its own component index k from

documents across the whole corpora that this author participates in. Changing gak involves

the topic membership of a set of word tokens xak that are assigned to all these tables. We

then can denote this set of variables as xak = {xji|tji = t, ajt = a, kjt = k, a ∈ aj}. Then

the sampling schema can be presented as:

p(gak = g|t, g−ak) ∝


lg· · f−xakg (xak) if g previously used,

γ · f−xakgnew (xak) if g = gnew is new.

(3.20)

44



3.5.2 Sampling schema for author mixture model (3.4)

Sampling t

Using the integral 3.12 inferred for author mixture model (3.4), we discover that the

probability that xji is assigned to a particular author a ∈ aj should be calculated first,

which is proportional to the document-specific mixing proportion vector πj . Thus, the

conditional posterior probability that xji is assigned to a particular table tji is calculated

according to the conditional prior distribution for tji with all data items in document dj

only associated with author a = aji .

p(tji = t|t−ji,a,k, g)

∝ p(aji = a|a−ji) · p(tji = t|aji = a, t−ji,a,k, g)

(3.21)

In this model, since the base granularity for author choice is word token in author-mixing

representation, we should use the number of tokens n in the conditional calculation of πj.

Here we use nja for indicating the number of tokens assigned to author a, we can get:

p(aji = a|a−ji, ε) =
n−jija + ε

n−jij· + |aj| · ε
(3.22)

Given author label aji = a selected, the sample value tji is calculated by integrating out

all possible tji given all data items with latent author label a. Therefore, the probability

that tji takes an existing t from author a in this document dj should be proportional to the

number of tokens n−jijt in this t, and the probability that this xji will be assigned to a new

value t is proportional to α0, following the probability measure of this particular author Ga.

We thus get:
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p(tji = t|aji = a, t−ji,a,k, g) ∝



n−jijt

n−jija· + α0

· f−xjigakjt
(xji)

if t previously used,

α0

n−jija· + α0

· p(xji|tji = tnew, ajtnew = a,a,k, g)

if t is new.

(3.23)

For simplicity, in this mixture model, we assume ε = α0. Thus numerator (nja + α0) in

equation 3.23 and denominator (nja + ε) in equation 3.22 can be canceled. Therefore for all

authors in document as {a|a ∈ aj}, we can rewrite equation 3.21 as:

p(tji = t|t−ji,a,k, g) ∝



n−jijt

n−jij· + |aj| · ε
· f−xjigakjt

(xji)

if t previously used,

α0

n−jij· + |aj| · ε
· p(xji|tji = tnew, ajtnew = a,a,k, g)

if t is new.

(3.24)

According to the integrals calculated, the sampling schema for t in model (3.4) differs

from model (3.3) only when we sample tji and aji for observation xji. The following sampling

schema referring to Ga and G0 remains the same. Therefore, if a new table tji = tnew is

sampled, and the author label ajt = a for this table is also sampled, the calculation of

p(kjtnew = k|ajtnew = a, t−ji,k−jt
new

, g) and p(gaknew = g|t, g−aknew) for model (3.4) is exactly

as same as equation 3.16 and 3.17.

Sampling a, k

For an author mixture model (3.4), we noticed that if we set α0 = ε, then the probability

that a new table tnew drawn from the author mixture model is proportional to α0 ·p(xji|tji =
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tnew, ajtnew = a,a,k, g), for all existing authors a in document dj. Thus we can easily get:

p(kjt = k, ajt = a|t−ji,a−jt,k−jtg)

∝


m−jtak· · f

−xjt
gak (xjt) if k previously used for a,

η · p(xjt|ajt = a, kjt = knew, g) if k is new for a.

(3.25)

Sampling g

Since the global topic distribution g involves only all components k of all existing authors

a in corpora, regardless of the author mixture method in local documents. Thus, integration

of global topic distribution G0 is the same for both models (3.3) and model (3.4), as stated

in equation 3.20.

3.5.3 Summary of Sampling Schema

The resulting pseudo-code for the general process of our gibbs sampling based inference

algorithm is depicted in Algorithm 2:

The graphical representation of this extended Chinese Restaurant Franchise inference

process for the generative process of our HDPauthor model is displayed in Figure 3.3:
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Algorithm 2 HDPauthor algorithm

1: procedure Gibbs–HDPauthor
2: for each document dj ∈ D do
3: for each word token xji ∈ dj do
4: Incrementally sample tji for xji
5: Update statistic values for tji
6: end for
7: end for
8: while not converged do
9: for each document dj ∈ D do

10: for each word token xji ∈ dj do
11: Remove statistic value for old tji
12: Sample tji for xji
13: Update statistic values for new tji
14: end for
15: for each table ψjt ∈ dj do
16: Remove statistic value for old < ajt, kjt >
17: Sample < a, k > for ψjt
18: Update statistic values for new < ajt, kjt >
19: end for
20: end for
21: for each author a ∈ author set do
22: for each component ωak ∈ a do
23: Remove statistic value for old gak
24: Sample g for ωak
25: Update statistic values for new gak
26: end for
27: end for
28: end while
29: end procedure
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Figure 3.3: Inference process for HDPauthor model
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Chapter 4

Experiment

In this chapter, we will show how we use real-world data sets retrieved from different sources

for experiments using our models. We will discuss the evaluation criteria that we use for

performance analysis of learning results. We will also illustrate the experimental results and

performance of our system on the experiments that we conducted.

4.1 HDPsent Model Experiments

4.1.1 Test Bed

We chose two data sets for conducting experiments on our model, both of which are prod-

uct/service review data sets. There are two advantages of conducting experiments for

HDPsent model on product/service reviews. First of all, customers tend to express strongly

subjective evaluations in review text. Reviewers write not only descriptions of products

and their personal experiences, but also sentiments towards the product/service that are

often strong. Secondly, reviewers typically focus on different aspects of same type of prod-

uct/service. It is beneficial for us to fulfill aspect-level sentiment modeling in our HDPsent

model.

TripAdvisor data set
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The first data set is the TripAdvisor hotel review data set provided by Wang, Lu, and

Zhai44. This data set consists of a set of hotel review items retrieved from www.tripadvisor.com.

Each review item contains not only a snippet of the reviewer’s free text content of this re-

view, plus the overall rating score values for the hotel in each review range in {-1.0 (data

missing), 1.0, 2.0, 3.0, 4.0, 5.0}, but also separate rating values on eight different aspects:

{Business Service, Check in / front desk, Cleanliness, Value, Service, Location, Rooms,

Sleep Quality}, with same value range as overall rating score.

Yelp data set

The other data set we are going to use for our experiment consists of Yelp reviews from

Yelp’s academic data set 1. The Yelp review corpus contains customer reviews with high

variety among kinds of businesses, such as restaurants, bars, beauty and spas, although

restaurants occupy the majority. Each review entry in the Yelp review data set consists of

text review content and overall rating score made by reviewer. The rating score for each

business also ranges in {1.0, 2.0, 3.0, 4.0, 5.0}. Because of the variety of business categories

on Yelp, the total intrinsic number of topics in this review data set is hard to estimate; thus,

the categorical features of numerous number of minor businesses are difficult to capture

using other models. This characteristic of Yelp reviews is amenable to our nonparametric

approach to developing topic and sentiment modeling algorithms.

4.1.2 Evaluation Criteria

Aspect-level review score prediction

It is hard to evaluate the topic distribution, the sentiment distribution, and word distri-

bution that we learned from our model, because we do not have observable ”ground-truth”

for these distributions45. However, the aspect-level rating values on different categories such

as {Business Service, Check in / front desk, Cleanliness, Value, Service, Location, Rooms,

1This data set is available at https://www.yelp.com/academic_dataset
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Sleep Quality} in TripAdvisor review data set, can be deemed as ground-truth value for

sentiment polarity on these predefined topic categories.

However, our model is an unsupervised learning method for topic generation, and it has

no direct control on the number of topics generated, nor on the semantic direction of each

topic to be generated. Thus, our HDPsent model is not able to produce direct predictions on

reviewer scores for predefined categories in this data set. For evaluation and performance

comparison, we instead use a simple multivariate linear regression algorithm to model the

prediction of aspect-level review score on learned results of our model, and evaluate our

model by conducting evaluation measure on these predictions, and compare our results with

others.

For categorized aspect-level rating value prediction, we use similar evaluation measures

as introduced in44 and46, such as:

1. Mean square error (MSE) on aspect rating prediction (∆2
aspect)

2. Aspect correlation inside reviews (ρaspect)

3. Aspect correlation across reviews (ρreview)

4. Mean Average Precision (MAP)

Here we illustrate how we use multivariate linear regression for aspect-level review score

prediction. We use the number of tokens labeled as positive/negative for each learned topic

as a feature vector for each review, denoted x
(i)
pos and x

(i)
neg. Next, we set the ground-truth

rating value vector for six aspects, with the overall rating as the target value for machine

learning, denoted y(i) = < yoverall, ycleanliness, yvalue, yservice, ylocation, yrooms, ysleep >. We

then set matrix θpos and θneg as for each x
(i)
pos, predicted ŷ

(i)
pos = x

(i)
pos · θpos, and for each x

(i)
neg,

predicted ŷ
(i)
neg = x

(i)
neg · θneg. Finally, we use gradient descent to learn θpos and θneg with

minimal squared error.

MSE: We use the following definition of mean squared error (MSE) to measure the overall
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rating prediction error.

MSE =

∑D
i=1

∑A
a=1(ŷ

(i)
a − y(i)a )2

D × A
(4.1)

ρaspect: measures the accuracy for relative ranking order of aspects being learned within

review:

ρaspect =

∑D
i=1 ρ(ŷ(i), y(i))

D
(4.2)

where ρ(ŷ(i), y(i)) is the Pearson correlation coefficient between the predicted rating vec-

tor for review i and the corresponding ground-truth rating vector.

ρreview: measures the accuracy for relative ranking order of reviews being learned for

each aspect:

ρreview =

∑A
a=1 ρ(ŷa, ya)

A
(4.3)

where ρ(ŷa, ya) is the Pearson correlation coefficient between the predicted rating vector

for aspect a across all reviews and the corresponding ground-truth rating vector.

MAP: Because the ground-truth rating values are discrete numbers as {1.0, 2.0, 3.0,

4.0, 5.0}, it is impractical to predefine the number of top hotels as a constant, or as a fixed

percentage, in our evaluation. Therefore, we define MAP in this experiment as the accuracy

of ranking the top N hotels as top, where N is assigned dynamically as the total number of

hotels in data set whose rating value is the highest value 5.0 as:

Ra = {i|y(i)a = 5.0}

R̂a = {top |Ra| reviews predicted}

MAP =
R̂a ∩Ra

|Ra|

(4.4)

We also estimate the percentage of top 50 reviews that we ranked, whose ground-truth

review value is 5.0 for each aspect. We denote this value as MAP@50.
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Perplexity

We also use perplexity to test the convergence of this Markov chain and the performance

of our model. The perplexity of our model is calculated as:

perplexity(wd|d) = exp
[
−
∑

d lnp(wd|d)∑
dNd

]
p(wd|d) =

Nd∏
x=1

[
∑
k,l

p(w|k, l)p(l|k, d)p(k|d)]

(4.5)

However since we use Gibbs sampling for inference, the expected p(k|d), should be

estimated according to our HDP sampling schema as:

p(k|d) =

∑
kjt=k

njt

nd + α0

+
α0

nd + α0

· mk

m· + γ

p(knew|d) =
α0

nd + α0

· γ

m· + γ

(4.6)

And the estimation of p(l|k, d) can be calculated according to Equation 2.11, and p(w|k, l)

can be calculated according to Equation 2.12 and 2.13.

4.1.3 TripAdvisor Experiment

We first cleaned our text collections. We used the Stanford CoreNLP tool47 to lemmatize

the tokens in the review text. All stop words were also removed. We also removed some

review items from data set, if any review value of six aspects was missing, or if the review

text was too short. Finally, we filtered out 563 reviews from original data set to construct

the data set for our experiments.

We used the sentiment word list extract from MPQA Subjectivity Lexicon48 to build

lists of positive and negative words as prior knowledge for sentiment label initialization.

Since we ignore the Part-of-Speech (POS) tags49 of tokens in text, we preserve only those

words whose sentiment polarity is same across all possible POS tags. When we run our

model, we first initialize the sentiment label of each word token as positive/negative; if it is
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present in the positive/negative word list that we generated above; we label all other data

tokens as neutral. Then the following learning process will choose to preserve or change the

initial sentiment labels based on the updates by sampling from the posterior probability of

sentiment labels. And according to the feature of Markov chain, the sentiment allocation

will come to a stable stage when it converges, regardless of the initial values.

We ran a set of experiments for our HDPsent model with different initial concentration

parameters of α0, β and γ. Different parameters indicate different degree of variability, which

will result in generating different number of topics. In Table 4.1, we present a comparison

of four different topics learned from this data set with top neutral, positive, and negative

words, with 181 topics learned from this data set.

Topic 5
Neutral Positive Negative
drink good hard
food perfect extremely

restaurant nice bad
service fresh cold
staff outstanding roll
wine excellent slightly

waiter delicious spot
time clean hassle
bar top noisy

Topic 19
Neutral Positive Negative
room clean smoke
bed light dirty

smell sound wipe
door top fall
floor reason tired
towel expect back
day open garbage

shower girl exhaust
wall happy cheap

Topic 27
Neutral Positive Negative
beach great spot
water real hard

lot nice part
chair beautiful low
day warm empty

swim helpful dark
walk white slow
rain spacious bad
sand hot dress

Topic 70
Neutral Positive Negative
room safe back
leave open rude
arrive clean lose
move tour problem
check thankfully complain
make valuable miss
key nice month

towel settle spot
luggage good sad

Table 4.1: Table for four different topics from TripAdvisor reviews

Although TripAdvisor data set consists of reviews on hotels, the variability is constrained
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than reviews on Yelp.com, or Amazon.com, our model is still able to differentiate reviews

on restaurant and dining place, room quality, experience on beach and custom service.

Table 4.2 lists the resulting evaluation measures with different number of topics gener-

ated. In this table (+) means that we only use the number of positive tokens we learned for

each topic in each document as feature vector, and (-) means that we only use the number of

negative tokens as feature vector. We compared our results with LARA model and Support

Vector Regression (SVR) model from44.

Number of topics
(sentiment polarity)

∆2
aspect ρaspect ρreview MAP MAP@50

36(+) 0.792 0.350 0.627 0.691 0.854
36(-) 0.792 0.357 0.626 0.455

137(+) 0.494 0.501 0.789 0.776 0.949
137(-) 0.427 0.518 0.816 0.730
181(+) 0.388 0.555 0.836 0.808 0.951
181(-) 0.371 0.584 0.847 0.712
LARA 1.190 0.180 0.425 0.657 0.703
SVR-A 1.012 -0.081 0.804 0.796 0.95
SVR-O 0.855 -0.007 0.579 0.714 0.79

Table 4.2: Evaluation measures for the TripAdvisor experiment compared to LARA and
baseline models

We can observe that the greater the amount of variability we set for our HDPsent model,

the more topics generated from our HDPsent model, allowing us to get a better prediction on

review scores for each aspect. Even with only 36 topics generated, however, we can obtain

an outstanding prediction performance compared to that of other prediction methods.

We here represent the perplexity of our model in figure 4.1:

From this perplexity figure, we can discover that in all cases, the perplexity of our model

reaches to a stable phrase quickly. This shows that our Markov chain begins to converge

early in our learning process. On the other hand, the more variability that we give the

system, the lower perplexity it can attain. Our model is able to extract and differentiate

minor topics if we give a enough probability for new topic generation.
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Figure 4.1: Perplexity evolution for TripAdvisor experiments

4.1.4 Yelp Experiment

We performed an additional experiment using a subset of the Yelp review corpus. We

extracted review text content from this data set, and applied same strategy for data prepa-

ration, including word token lemmatization, and sentiment label initialization for this ex-

periment as that we used for the TripAdvisor experiment.

We ran our HDPsent model in the same way on a data set of 582 reviews from Yelp.

Similarly, different parameters will result in different number of topics generated. Here in

Table 4.3, we present our learning result for one experiment with 72 topics generated. We

illustrate a comparison of four different topics learned from this data set with top neutral,

positive, and negative words. For example, we can see that the most frequent neutral

words about wedding ceremonies (Topic 3) and restaurants (Topic 8) are quite different.

Also, even some generally positive words as ”great”, ”love”, ”touch” occur in both topics,

some words as ”fresh”, ”delicious”, ”tender” only show up in restaurant-related topics, and

”marry”, ”wonderful” only show up in wedding ceremony-related topics. And in house
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and apartment rent related topic (Topic 31), ”deal” is presented as top positive word, and

”problem”, ”break”, ”smoke” are frequently mentioned as negative words. Therefore, our

HDPsent model can successfully form different sentiment word distributions under different

topics, dig out the most commonly appraised, as well as complained aspects in each topics.

Another interesting phenomena is that negation words appear very frequently in both

negative lists. It is also understandable, since users always use negation words to describe

unpleasant experience, and express negative feelings.

Topic 3
Neutral Positive Negative
wedding choose flower

guest great didnt
day marry handle

estancia top yell
venue special dont
event amazing odd

reception wonderful stress
package touch bad

ceremony love scream

Topic 8
Neutral Positive Negative

taste fresh side
flavor nice wasnt
dish delicious bland

sauce tender miss
bit top finish

food enjoy didnt
order great strong
sweet love lack
bite touch ill

Topic 31
Neutral Positive Negative

apartment live complex
year deal problem
move nice window
place security break
time pretty dont

month complaint wasnt
rent special dog

parking star open
building replace smoke

Topic 39
Neutral Positive Negative
place pretty dont
thing small didnt
good great bad
ive worth long

price nice reason
time fair wouldnt
lot general couldnt

people live decent
make friend expensive

Table 4.3: Table for four different topics from Yelp Reviews
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4.2 HDPauthor Experiments

4.2.1 Test Bed

For our HDPauthor models for author-topic learning, we mainly focus on experiments for

academic publications. There are several advantages to choose academic publications: first,

the cooperation between different authors is frequent. Academic papers are always written

by not only one author, but several authors, which helps us to learn the author mixing

vectors for each document. Second, each author usually works on only one research area,

or a few direction on different research areas that closely related each other. This is also an

advantage for us in modeling the topic distribution for each author that exists in a whole

corpus. Third, most authors publish several papers, therefore the modeling of author topics

can be learned from multiple sources of local documents, rather than a single source.

Hence, here we choose two data sets for conducting experiments on our HDPauthor

model, both of which are text collections of academic papers. We chose the NIPS data set,

which consists of the full text content of papers published in NIPS conferences. We also

chose the DBLP data set, which consists of abstracts of papers published in a high variety

of conferences, but in related research areas.

NIPS data set

The data set we are going to use for this model is NIPS Conference Papers2 Volume

0-12, provided by Sam Roweis 3. NIPS data set contains a collection of OCR processed text

of papers published in the Neural Information Processing (NIPS) Conference from 1987 to

1999, which is mainly focus on researches in artificial intelligence, machine learning and

computational neuroscience. It contains 1,740 papers in total, each paper consists of full

content in text format and an author list of it. And it involves a total of 2,037 authors. This

data set is suitable for our model since it is a set of papers in one general research area with

papers with different research topics as a combination of slightly different specific research

2http://papers.nips.cc/
3This data set is available at http://www.cs.nyu.edu/~roweis/data.html
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directions. Authors in the neural network related research area always cooperate with each

other and publish papers in this conference during this period of 10 years. Therefore, the co-

authorship information in this data set can also help us to infer the topic interests mixture

for each author.

DBLP abstract data set

We here use another citation network data set 4, extracted from the Digital Bibliography

and Library Project (DBLP), ACM Digital Library, and other sources, and provided by

Arnetminer50. Although this data set is mainly for research on citation analysis, co-author

networks and other academic heterogeneous information network analysis, we noticed that

this data set contains the metadata of title, author, conference, and abstract (used as

document content) for each academic publication entry, which is enough for us to conduct

experiments on our HDPauthor model. This data set contains 1,572,277 papers in total,

from all kinds of fields ranging from math and physics to health informatics.

Since there are too many scientific publications from conferences or journals across almost

all research fields in this data set, the research topic range is too comprehensive, and too

sparse for our model. The size of this data set is also too huge for us to conduct an

efficient learning experiment. To better observe the results of our experiment, we selected

only publications from conference in five areas in the computer science category, namely:

{Machine Learning (ML), Information Retrieval (IR) , Artificial Intelligence (AI), Natural

Language & Speech (NLP), Data Mining (DM)}. These are active research fields on different

topics but which are mutually related to each other. We then focused only on publications

from top ranked conferences from each of the area. In Table 4.4 we list the top conferences

we take in our filter that we retrieved from Microsoft Academic Search 5:

4This data set is available at https://aminer.org/billboard/citation
5http://academic.research.microsoft.com/
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Research Area conferences

Machine Learning NIPS, ICML, UAI, IROS, ICPR,
ISNN, COLT, ECML, ICDAR, ICANN

Data Mining KDD, ICDE, CIKM, ICDM, SDM,
PKDD, PAKDD, RIAO, DMKD, DASFAA

Natural Language & Speech NIPS, ACL, ICASSP, COLING, NAACL, EACL,
ANLP, HLT, LREC, EMNLP, ASRU

Information Retrieval SIGIR, TREC, CIKM, DL, JCDL,
ECDL, RIAO, ECIR, CLEF, SPIRE

Artificial Intelligence AAAI, IJCAI, ICML, ICRA, ICGA, AAMAS,
UAI, KR, IROS, CEC, ECAI

Table 4.4: Table for top conferences in computer science research areas

4.2.2 Evaluation Criteria

Comparison of topic models with associated authors is also difficult, since we do not have

concrete ground truth for evaluating the results of learning. We compare our model to others

by conducting an information retrieval (IR) task and evaluating our system’s performance

on the overall task based on measurable performance on this IR task. Although this is an

indirect method for model comparison, finding similar documents, or documents in same

research area, is an widely-used application for topic models.

Comparison to other models

For our DBLP experiment, we used publications from top conferences listed in 4.4 from

five major research areas in computer science: {ML, IR, AI, NLP, DM}. These five major

research area headings can be used as category labels for each publication in our data set,

according to the category of conference in which they were published. Publications with

same category label are assumed to be relevant in our retrieval evaluation.

Some conferences, however, are presented as top conferences in multiple search areas.

For example, NIPS (Neural Information Processing Systems) is ranked the top 1 in ML, as

well as top 1 in NLP, while ICML (International Conference on Machine Learning) is ranked

number 2 in ML and number 3 in AI. In these cases, we allow for multiple labels for papers
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published in these conferences. Each paper is associated with a set of category labels, if

they are published in such conferences. Since document retrieval tasks only predict retrieved

documents as relevant, or non-relevant, we here assume that two documents are relevant

if there is at least one category label that matches from the label sets of both sides. For

example, papers published in NIPS are relevant to papers published in conferences either in

the ML conference list or in the NLP conference list.

We then obtained 100 papers other than the training data set, 20 papers in each category,

and used these as the query set for our experiment. For simplicity, we avoided papers from

conferences in multiple areas, so that each paper is only associated with exactly one label.

We built query word tokens from each query paper using several different methods, and we

treated each query consisting of list of word tokens as also as a bag-of-words. We then used

information retrieval methods to calculate the relevance of query to each document in corpus.

We then ranked the document according to the degree of relevance that we calculated. We

compared the relevance ranking result of our model with three other models: Okapi BM25

algorithm51 for the term frequency - inverse document frequency (TFIDF) retrieval metric,

traditional HDP model for pure topic learning, and Author-Topic model38.

Okapi BM25 algorithm is one variation of the TFIDF-based method, which ranks doc-

uments dj for a given query q by score calculated as:

score(dj, q) =
∑
w∈q

IDF (w) · Njw · (k1 + 1)

Njw + k1 · (1− b+ b · Nj ·
N̂

)
(4.7)

Here N̂ is the averaged document length for all document in corpus. We ues D to denote

the number of total documents in corpus, and Dw to be the number of documents in corpus

that contains word w, as Dw = |{dj|w ∈ dj}|. And then IDF (v) is calculated as follows:

IDF (w) = log
D −Dw + 0.5

Dw + 0.5
(4.8)

For traditional HDP topic models, we calculate P (q|d) for document ranking, which is
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the probability of the sequence of words in a query q be produced by a certain document d.

This probability can be calculated as:

p(q|d) =
∏
w∈q

K∑
k=1

p(w|k)p(k|d) (4.9)

Here p(w|k) and p(k|d) are estimated word distribution for each topic, and topic distri-

bution for each document that learned from HDP model.

We also implemented the Author-Topic (AT) model, to compare our HDPauthor model

to an LDA-based author-topic mutual learning model. This model is an extension of LDA

topic modeling, which assumes that the topic distribution for each author is drawn from

a Dirichlet distribution, and the word distribution for each topic is also drawn from a

Dirichlet distribution. The generative AT model assumes that the author label for each

token is sampled uniformly from the author list of document, and then the topic label for

each token is sampled according to the topic distribution for this author. We then used the

query likelihood calculation that Rosen presents in equation (11) of38 as:

p(q|dj) =
∏
w∈q

[ 1

|aj|
∑
a∈aj

K∑
k]1

p(w|k)p(k|a)
]

∝
∏
w∈q

[ 1

|aj|
∑
a∈aj

K∑
k=1

Nkw + β

Nk· + V β
· Nak + α

Na· +Kα

] (4.10)

In our HDPauthor model, we also calculate p(q|d) for document relevance ranking. Since

we assume that each document is a finite mixture of authors in this document, and each

author is associated with a topic distribution, the query likelihood calculation for HDPsent

model can be presented as:

p(q|dj) =
∏
w∈q

[ K∑
k=1

p(w|g)p(g|dj)
]

(4.11)

In this equation, p(g|dj) is the posterior approximation of a topic distribution for doc-
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ument dj, which is represented as a mixture of Dirichlet processes for all its authors with

mixing proportion vector πj that we set in this model, which can be directly inferred from

our learning result.

Thus, for mixing model (3.3), we can get the estimated p(g|d) as:

p(g|d) =

∑
gjt=g

njt

nd + α0

+
α0

nd + α0

·
[∑
a∈aj

πja · p(g|a)
]

p(gnew|d) =
α0

nd + α0

·
[∑
a∈aj

πja · p(gnew|a)
] (4.12)

For mixing model (3.4), since in our experiment we already set ε = α0 to simplify the

probability calculation, we can infer the estimated p(g|d) as:

p(g|d) =

∑
gjt=g

njt

nd + |aj| · α0

+
α0

nd + |aj| · α0

·
[∑
a∈aj

p(g|a)
]

p(gnew|d) =
α0

nd + |aj| · α0

·
[∑
a∈aj

p(gnew|a)
] (4.13)

Here p(g|a) and p(gnew|a) are Dirichlet process-based topic distributions for each author

existing in the corpus. This can be computed approximately from our learning result. We

have:

p(g|a) =

∑
gak=g

mak

ma· + η
+

η

ma· + η
· p(g)

p(gnew|a) =
η

ma· + η
· p(gnew)

(4.14)

Here p(g) and p(gnew) are global topic distributions, that:

p(g) =
lg∑

g lg + γ

p(gnew) =
γ∑

g lg + γ

(4.15)

Finally, p(w|g) is the word distribution for each topic generated, and can be estimated
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using Equation 3.6 and 3.7.

Evaluation of ranked retrieval results

Because a traditional precision-recall curve only depicts performance on a single query,

and generally always appears as a jagged curve, it is difficult to make quantified comparison

between different queries, or to represent performance on a set of queries. Instead, we use

11-point interpolated average precision52 to represent average performance overfor the set

of queries, and to directly compare results from different models.

11-point interpolated precision sets fixed recall values r = {0.0, 0.1, 0.2, ..., 1.0} which

are 11 equidistant points on the scale from 0.0 to 1.0. The interpolated precision value at

each recall level ri is then defined as the highest precision value afterwards, which can be

represented:

p(r) = maxr′≥rPrecision(r′) (4.16)

Finally, we average p = {p(r = 0.0), p(r = 0.1), ..., p(r = 1.0)} for all queries in a

query set, so that we can plot our performance on query set as a single averaged 11-point

interpolated precision-recall curve, and make a direct comparison between performance of

different models.

Perplexity

Perplexity is an evaluation method widely used in topic modeling. This measurement

helps us to quantitatively evaluate how well our model predicts new documents, when our

data set is unlabeled. With author mixture injected in our HDPauthor model, we can

establish perplexity as follows:

perplexity(wd|d,ad) = exp
[
− lnp(wd|d,P d)

Nd

]
p(wd|d,ad) =

Nd∏
x=1

[∑
g

p(w|g)p(g|d)
] (4.17)
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Here p(g|d) and p(w|g) for each possible topic (including new topic) can be calculated

in a similar fashion to our calculation for Equation 4.11.

4.2.3 NIPS Experiment

To better assess learning of cooperation between authors who publish papers in a single

conference, we extracted a subset of papers with denser connections between authors in

the Neural Information Processing Systems (NIPS) conference, which emphasizes neural

and probabilistic models. We finally obtained a data set with 873 papers, written by 850

authors in total.

Here in Table 4.5 we demonstrate an example of 4 selected frequent topics with its 10

most likely words and 10 most likely authors listed in a descending order.

We can observe from Table 4.5 that our model is able to successfully differentiate specific

research areas and directions among papers in the NIPS conference. Topic 1 and Topics

2 are general topics commonly exists in almost all the documents across the whole data

set, and shared by almost all authors. We can easily obtain that Topic 1 is a general topic

for machine learning and computational neuroscience which is the overall subject for NIPS.

Topic 2 is a general topic representing research and experiment methods in computer science

area. Therefore, nearly every paper published in this conference will carry these two topics.

The top authors listed in these two topics are also active authors that that have many

publications in the NIPS conference.

However, our HDPauthor model is able to discover a variety of more specific research

areas in neuroscience, including developments in algorithms, applications of neural netowrks,

etc. We can easily spot specific research subjects as ”speech recognition”, ”visual system”,

”artificial intelligence”, and ”Bayesian learning” are clearly represented by the top words

from these topics. Our HDPauthor model is also good at identifying most contributed authors

from each of these learned topics. And we can observe that some well-known authors, such as

Christopher M. Bishop (Bishop C), Christof Koch (Koch C), and Satinder Singh (Singh S)

66



are ranked high in the subjects related to their research areas.
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Topic 1
Word Prob Author Prob

network 0.107 Sejnowski T 0.056
input 0.045 Mozer M 0.035
neural 0.028 Hinton G 0.022

learning 0.028 Bengio Y 0.022
unit 0.027 Jordan M 0.020

output 0.027 Chen H 0.016
weight 0.023 Moody J 0.016

training 0.019 Stork D 0.016
time 0.014 Munro P 0.014

system 0.013 Sun G 0.013

Topic 2
Word Prob Author Prob

set 0.015 Sejnowski T 0.032
result 0.015 Jordan M 0.025
figure 0.014 Hinton G 0.022

number 0.013 Koch C 0.020
data 0.011 Dayan P 0.019

function 0.010 Moody J 0.015
based 0.008 Mozer M 0.014
model 0.008 Tishby N 0.014

method 0.008 Barto A 0.013
case 0.008 Viola P 0.013

Topic 109
Word Prob Author Prob

gaussian 0.036 Bishop C 0.222
process 0.021 Williams C 0.173
function 0.020 Schottky B 0.146

distribution 0.019 Winther O 0.092
bayesian 0.019 MacKay D 0.085

prior 0.018 Vivarelli F 0.078
posterior 0.017 Marion G 0.073
evidence 0.015 Ferrari-T G 0.048

covariance 0.015 Sollich P 0.033
error 0.011 Beal M 0.026

Topic 98
Word Prob Author Prob
image 0.049 Koch C 0.119
visual 0.028 Horiuchi T 0.106
field 0.023 Ruderman D 0.088

system 0.020 Bialek W 0.068
pixel 0.017 Dimitrov A 0.05
filter 0.015 Bair W 0.038
signal 0.013 Indiveri G 0.035
object 0.013 Viola P 0.030
center 0.012 Zee A 0.030
local 0.011 Miyake S 0.027

Topic 72
Word Prob Author Prob
policy 0.040 Singh S 0.630
state 0.035 Duff M 0.098

algorithm 0.034 Mansour Y 0.069
learning 0.031 Crites R 0.053
method 0.015 Sutton R 0.041

probability 0.014 Munos R 0.031
function 0.012 Gullapalli V 0.022
reward 0.012 Barto A 0.015
optimal 0.011 Thrun S 0.011
problem 0.011 Neuneier R 0.006

Topic 110
Word Prob Author Prob
word 0.053 Tebelskis J 0.107

speech 0.042 Franco H 0.089
recognition 0.037 Bourlard H 0.086

training 0.025 De-Mori R 0.084
frame 0.020 Rahim M 0.069
system 0.017 Waibel A 0.055
error 0.014 Hild H 0.043
hmm 0.013 Chang E 0.038
level 0.012 Singer E 0.036

output 0.012 Bengio Y 0.035

Table 4.5: Example of top topics learned from NIPS experiment
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Table 4.6 presents famous authors whom we selected, and lists the topics for each of

them. Since Topic 1 and Topic 2 are common topics for almost all authors, we omitted

these two topics, and only listed the three most likely topics besides Topic 1 and Topic 2:

Hinton G (Geoffrey Hinton)
Topic 154 Topic 132 Topic 98

model expert image
image task visual
unit mixture field

hidden network system
hinton architecture pixel
code gating filter
digit weight signal

vector nowlan object
energy soft center
space competitive local

Bengio Y (Yoshua Bengio)
Topic 90 Topic 110 Topic 28
model word gate
data speech unit

parameter recognition input
mixture training threshold

distribution frame circuit
likelihood system polynomial
algorithm error output

probability hmm layer
density level parameter

gaussian output machine

LeCun Y (Yann LeCun)
Topic 84 Topic 18 Topic 25
feature tdnn state

recognition delay action
cun speaker learning
digit recognition time

character time reinforcement
output waibel policy
layer architecture function

denker window step
image network control
vector net optimal

Platt J (John Platt)
Topic 94 Topic 83 Topic 115

hand smo chip
image svm neuron

network training circuit
character algorithm neural

recognition kernel analog
template set figure

pixel problem system
system svms vlsi
frame vector output

convolutional linear voltage

Table 4.6: Example of top topics for selected authors learned from NIPS experiment

Our model is able to associate each author with both general topics and a small subset

of specific topics which represent the technical expertise of each author. This representation

also matches our intuition regarding the knowledge of experts. An expert typically masters

foundational knowledge in one general research area, as well as basic techniques for conduct-

ing research, and by definition also has deep and specialized knowledge in a few subareas

of this area. Several authors cooperate and utilize their own knowledge, both general and
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specialized, to finish a scientific article. While LDA-based author-topic model has to as-

sign each predefined topic with certain probability for each author, our HDPauthor model is

able to dynamically discover the specialized research area for each author, and only impute

topics related to these subareas of expertise to authors.

4.2.4 DBLP Experiment

We retrieved publications from all the top conferences listed in Table 4.4. Considering to

the fast evolution of subjects in research areas, we only collected papers published during

the period from the years 2000 through 2010 (newest time in data set). Also, for better

learning of topic distributions and author contributions for each paper in data set, we filtered

out papers whose abstracts were too short. To get a denser and closer connected author-

cooperation data set, we also filtered out borderline papers if authors did not contribute to

many other papers. We then generated a data set for experiment with abstracts from 3,177

papers as documents, and with a total of 2,428 authors involved.

We ran experiments with different parameter settings on both mixing model (3.3) and

model (3.4). Different parameter settings would result in different distribution in global top-

ics, topics for each author, and also local topic and author contribution for each document.

We represent the perplexity evolution calculated from Equation 4.17 of our Gibbs sampling

process in Figure 4.2:

In Figure 4.2 we can observe that the per-word likelihood score estimated from our Gibbs

sampling schema for both mixing model (3.3) and model (3.4) converges quickly after a few

of iterations at the very beginning, and it reaches a stable stage very soon and maintains

this stable perplexity from then on.

We chose one learning result from mixing model (3.3) as an example. This experiment

generated 196 topics in total from this learning process, we manually examined those topics

with highest probability across the whole corpus, and from them we chose four topics highly

related to research areas of { DM, AI, IR, ML }, here we illustrate the table of top words
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Figure 4.2: Perplexity evolution for DBLP experiments

and top authors for these four selected topics as example in Table 4.7.

Our HDPauthor model demonstrates its robustness in successfully generating separate

topics in different research areas from a relatively small data set in an unsupervised way,

even though these areas are highly related. It is able to identify the most frequent words in

different research directions, such as ”data”, ”mining” in DM ; ”agent”, ”strategy” in AI ;

”document”, ”retrieval” in IR; and also ”learn”, ”reinforcement” in ML. It is also able to

discover many well-known authors in these research directions, as Charu C. Aggarwal and

Philip S. Yu in DM ; Nicholas R. Jennings in AI ; ChengXiang Zhai, W. Bruce Croft in IR;

and Andrew Y. Ng in ML.

In Table 4.8 we also illustrate two examples of top topics for two well-known authors,

ChengXiang Zhai and JiaWei Han:

We can clearly observe that Topic 1 in the DBLP data set is a general research topic. This

topic is shared by most authors in this data set. For author ChengXiang Zhai, we can obtain

that our HDPauthor model can sucessfully differentiate topics on ”Information Retrieval”,

”Bayesian algorithm” and ”Supervised learning”. For author JiaWei Han, big name in data

mining, we can get his focus research areas include ”Classification”, ”Clustering” and ”Web
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Topic 3
Word Prob Author Prob
data 0.21 Charu C. Aggarwal 0.070

stream 0.072 Jimeng Sun 0.046
mining 0.037 Philip S. Yu 0.035
change 0.021 Kenji Yamanishi 0.034
time 0.020 Hans-Peter Kriegel 0.031

application 0.012 Wei Wang 0.030
real 0.012 Qiang Yang 0.028

online 0.0094 Yong Shi 0.025
detect 0.008 Xiang Lian 0.019

detection 0.008 Pedro P. Rodrigues 0.018

Topic 11
Word Prob Author Prob
agent 0.147 Nicholas R. Jennings 0.076

mechanism 0.027 Sarit Kraus 0.056
system 0.018 Jeffrey S. Rosenschein 0.045

negotiation 0.017 Kagan Tumer 0.036
strategy 0.016 Kate Larson 0.036

multi 0.014 Michael Wooldridge 0.035
problem 0.014 Moshe Tennenholtz 0.030

show 0.014 Vincent Conitzer 0.029
multiagent 0.013 Sandip Sen 0.028

design 0.011 Victor R. Lesser 0.025

Topic 24
Word Prob Author Prob

document 0.093 ChengXiang Zhai 0.11
retrieval 0.066 Iadh Ounis 0.073

query 0.055 Maarten de Rijke 0.020
term 0.035 W. Bruce Croft 0.020

information 0.027 Laurence A. F. Park 0.020
model 0.026 James P. Callan 0.019

relevance 0.021 Donald Metzler 0.017
feedback 0.020 Guihong Cao 0.017
collection 0.019 C. Lee Giles 0.016
language 0.017 Oren Kurland 0.016

Topic 39
Word Prob Author Prob
learn 0.093 Matthew E. Taylor 0.090

learning 0.084 Shimon Whiteson 0.079
reinforcement 0.034 Andrew Y. Ng 0.059

policy 0.033 Peter Stone 0.054
task 0.032 Bikramjit Banerjee 0.051

algorithm 0.029 Sherief Abdallah 0.040
transfer 0.019 Sridhar Mahadevan 0.039
action 0.019 Michael H. Bowling 0.036

function 0.018 Kagan Tumer 0.033
domain 0.016 David Silver 0.022

Table 4.7: Example of top topics learned from DBLP experiment

mining”.
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ChengXiang Zhai
Topic 24 Topic 1 Topic 150 Topic 140
document base model label
retrieval algorithm distribution learning

query approach topic data
term paper probabilistic learn

information show bayesian supervise
model method modeling semus

relevance propose mixture classification
feedback problem data unlabeled
collection result probability active
language set random training

JiaWei Han
Topic 1 Topic 83 Topic 93 Topic 2

base classification clustering web
algorithm classifier cluster page
approach feature data link

paper training object text
show class algorithm content

method data set document
propose method high information
problem learning dataset category
result selection propose search

set learn type semantic

Table 4.8: Example of top topics of specific authors learned from DBLP experiment

We also use the evaluation criteria we introduced in 4.2.2 to compare our HDPauthor

model to other models as Okapi BM25, HDP modeling, Author-Topic (AT) model, by con-

ducting academic document retrieval tasks for queries constructed from academic documents

outside training data set. We retrieved 100 papers from data set, and used four methods to

construct list of query word tokens from query paper:

1. We use title of each query paper as query tokens for retrieval.

2. We use title of each query paper, associated with author names as query tokens for

retrieval.

3. We use abstract of each query paper as query tokens for retrieval.

4. We use abstract of each query paper, associated with author names as query tokens

for retrieval.

Okapi BM25 is a pure information retrieval technique, and HDP model is only for topic

modeling. Both of them are not able to be incorporated with author information directly. We

then follow the steps from40, add author names to each document in data set as additional

word tokens, and use author names of each query paper as additional query tokens for

retrieval.
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For AT model and HDPauthor model, since we can derive topic distribution for each

author directly from learned result, we add topic similarity score as one more measurement

in retrieval score calculation.

We here rewrite Equation 4.11 in evaluation criteria for p(q|d) calculation for document

relevance ranking as:

p(q,aq|dj,aj) = ω · p(q|dj) + (1− ω) · similarity(aq,aj) (4.18)

Since each author in this model is represented as a vector of topic distribution, we can

use cosine similarity53 to calculate the distance between two vectors represented by topic

distribution from authors. For our evaluation purpose, we here simply average the topic

distribution of all associated authors for both query document and retrieval document,

regardless of the author mixing vector learned from our model. We then calculate cosine

similarity as the similarity score for these two averaged topic distribution for authors from

two sides:

similarity(aq,aj) = cos(
1

|aq|
∑
a∈aq

p(g|a),
1

|aj|
∑
a∈aj

p(g|a))

cos(p(g|a1), p(g|a2)) =

∑
g[p(g|a1)p(g|a2)]√∑

g p(g|a1)2
√∑

g p(g|a2)2

(4.19)

Here in Figure 4.3 e illustrate our performance compared to other models. We set ω = 0.5

for Equation 4.18. We implemented the AT model, and set K = 200 for this experiment.

We used one Python library called Gensim54 for HDP topic learning. The learning result

generated from mixing model (3.3) contains 196 topics in total, and learning result generated

from mixing model (3.4) contains 191 topics.

We can infer from the precision-recall curve comparison that using abstracts as query

tokens would give all models a better retrieval result than only using titles as query tokens.

Both AT model and HDPauthor model perform significantly better than Okapi BM 25 and
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Figure 4.3: Precision-Recall curve for document retrieval for DBLP experiment

HDP model, which suggests that incorporation of author information brings improvement to

topic modeling, even if we do not include author names in queries, or if we do not explicitly

make use of author information in the retrieval task.

Moreover, incorporation of author information into a query improves in retrieval per-

formance across all models. One reason is because the author name represented as a word

token is quite rare and unique in data set, which gives a high IDF score for Okapi BM25.

HDP does not gain much from author names, however, since infrequent words do not affect

topic learning much in traditional HDP model. The author cosine similarity metric also
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helps us to identify the similarity between authors for query and authors for documents

in data set. Even author similarity alone, without word tokens exist in query, gives us an

adequate indication for document retrieval ranking.

Our HDPauthor model performs better than AT model under all four situations, although

the difference is not quite significant. One main reason is that the topic distributions for

authors learned from our HDPauthor model is much more skewed than for the LDA-based

AT model.
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Chapter 5

Conclusion

In this dissertation, we proposed two mixture models that combined HDP nonparametric

Bayesian topic models with sentiment analysis and author identification. These two unsu-

pervised learning models can be directly and indirectly applied to practical applications,

and solve real-world problems in free text analytics such as inference of overall sentiment

and author-centric information retrieval.

5.1 HDPsent Model

We have synthesized a Dirichlet process for aspect-level sentiment with the traditional HDP,

called HDPsent. Unlike other LDA based topic-sentiment hybrid models, this permits the

number of topics to be updated based on shared parameters of the generative topic model,

rather than restrict them to a predefined, fixed set for a text document collection or to a

predefined lexicon for these topics. Furthermore, it allows sentiments associated with these

aspects to be inferred concurrently.

A key novel contribution of this topic model is the ability to automatically generate dif-

ferent topics with different word distributions for different sentiment polarities. We learn to

assign weights from each topic to a set of aspects that we seek to infer using gradient descent
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learning. This permits empirical evaluation by calculating correlation with historical ground

truth (on all reviews and ranked reviews) using the experimental test bed (TripAdvisor) we

developed.

Our model has focused on the design and development of an extended generative model,

rather than on inference techniques for this model, for which we chose to use Gibbs sampling

for ease of implementation (and parallelization). As with Gibbs sampling-based inference for

traditional HDP, the main limitation of our system implementation is its lack of scalability.

Our continuing work includes investigating and developing methods for approximation of

this model by variational inference.

Broader applications of our inferential model thus include the discovery of new aspects

not previously defined for a text corpus such as a collection of reviews. Additionally, the

ability to track the evolution of aspect-level sentiments and topics over time is an important

area of potential future work.

Our model requires some prior knowledge of sentiment words for initialization. However,

this prior knowledge does not need to be very accurate. In the learning process, it can

automatically update word tokens to different sentiment label in each topic, and is also

robust enough to correct mistakes in prior knowledge.

5.2 HDPauthor Model

We also presented a HDP-based hierarchical, nonparametric Bayesian generative model

for author-topic hybrid learning, called HDPauthor. This model represents each author as

a Dirichlet process of global topics, and represents each document as a mixture of these

Dirichlet processes of its authors. This model concurrently learns not only the topic in-

terests of authors and the topic distribution of documents as classical topic models, but

also the author contributions for documents. It also preserves the benefits of the nonpara-

metric Bayesian hierarchical topic model. Our model uses a purely unsupervised learning
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methodology; it requires neither knowledge about documents nor data about authors.

A key novel contribution of our HDPauthor model is our ability to represent each doc-

ument, each author, and global topics as Dirichlet processes, or mixtures of Dirichlet pro-

cesses. Therefore, none of them suffers from restrictions on the number of topic components

that the user should define beforehand for all other LDA-based hybrid models40. Thus, the

emergence of new topic components and fading out of old topic components can be easily

detected and accounted for using our framework.

Our model can be directly applied to document retrieval tasks. Other applications of

our model include searching, or grouping of authors, based on topic distribution vectors

learned for each author in corpus. The contribution of authors can also be inferred from our

model, which can be used for author ranking. Our model can also facilitate to build more

sophisticated models for disambiguity of different authors identities with same names, and

detection of different author names for same author identity.

5.3 Future Work

In future work, there are several directions that I would like to explore:

1. Numerical sentiment strength learning. While our model treats sentiment label as dis-

crete values from {positive, negative, neutral} set, we may consider to add numerical

sentiment score for words as indication of strength of sentiment polarity. For example,

while ”good” might be assigned to 2.0 as a mildly positive word, ”fabulous” might

be assigned to 4.0 as a strongly positive word. This strength can be automatically

learned from the model, which helps us to quantify the strength of sentiment polarity

in text.

2. The development and widespread use of distributed data processing frameworks such

as Hadoop55, Spark56, etc. gives us several options using which we can develop dis-

tributed and parallel Gibbs sampling inference methods for our HDPsent and HDPauthor
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model. There is already some significant work on distributed learning of HDP57 58 59.

This framework would help us to accelerate our learning process on huge data set.

However, this parallel inference method would involve delicate updating of global pa-

rameters, fast global combination of new topics from different local working nodes,

and some other issues introduced by parallel learning.

3. A variational approximate inference15 60 approach for our models. Although we use

Gibbs sampling as inference technique for model learning, we can study and develop

variation inference method for approximate inference also. While the Gibbs sampling

method is more straightforward and easier to translate from a mathematical model

into a procedural implementation, variational approximate inference for HDP model61

is more challenging to perform62, but is more efficient and converges more quickly. By

working out a variational inference method for our model, we can more easily apply

it to large-scale data.

4. Temporal analysis of topic interest shift for authors, while sentiments shift on same

topics. Using timestamps such as the publication dates of papers, we can construct

a temporal learning model based on our static document and author topic mixture

model to learn the shift of topic interests of authors along a timeline. We can also learn

the overall topic shift across the entire research area. With timestamped data such as

the text of news comments, or blog articles, we can also be able to observe sentiment

change or trends in people’s opinions on the same topic along a timeline. This might

also help us to make predictions about voting results in politics. Dynamic topic learn-

ing can be adapted from both Gibbs sampling-based learning algorithms63 and vari-

ational inference-based learning algorithms16 64, and in discrete-time65 or continuous-

time66 formats.

5. Author disambiguation67 41 is also an interesting topic to explore. In our model, we

have no capability to differentiate authors with the same presented name - that is,
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the same rendered or recorded name. We are also not able to identify the same

author using different name presentations. An author disambiguation algorithm can

be developed from our model using the topic similarity matrix learned from our model,

along with co-author information.

6. The combination of the HDPauthor model with a citation network68 50 can help us to

construct a better model for author and document retrieval model. Our HDPauthor

model only learns mixing proportion of authors in each document, which can be

deemed as the ”quantity” of each author’s work, while the citation network can help

us to analyze the ”quality” of authors’ work. If we can build a mixture model learning

both ”quantity” and ”quality” of authors and their works, we then should be able to

get a better retrieval performance for document and author search tasks.
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