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Abstract

Vector-borne diseases not only cause devastating economic losses, they also significantly

impact human health in terms of morbidity and mortality. From an economical and humane

point of view, mitigation and control of vector-borne diseases are essential. Studying dynam-

ics of vector-borne disease transmission is a challenging task because vector-borne diseases

show complex dynamics impacted by a wide range of ecological factors. Understanding

these factors is important for the development of mitigation and control strategies.

Mathematical models have been commonly used to translate assumptions concerning

biological (medical, demographical, behavioral, immunological) aspects into mathematics,

linking biological processes of transmission and dynamics of infection at population level.

Mathematical analysis translates results back into biology. Classical deterministic epidemic

models do not consider spatial variation, assuming space is homogeneous. Spatial spread of

vector-borne diseases observed many times highlights the necessity of incorporating spatial

dynamics into mathematical models. Heterogeneous demography, geography, and ecology

in various regions may result in different epidemiological characteristics. Network approach

is commonly used to study spatial evolution of communicable diseases transmitted among

connected populations.

In this dissertation, the spread of vector-borne diseases in time and space, is studied to

understand factors that contribute to disease evolution. Network-based models have been

developed to capture different features of disease transmission in various environments. Net-

work nodes represent geographical locations, and the weights represent the level of contact

between regional pairings. Two competent vector populations, Aedes mosquitoes and Culex

mosquitoes, and two host populations, cattle and humans were considered. The determin-

istic model was applied to the 2010 Rift Valley fever outbreak in three provinces of South



Africa. Trends and timing of the outbreak in animals and humans were reproduced. The

deterministic model with stochastic parameters was applied to hypothetical Rift Valley fever

outbreak on a large network in Texas, the United States. The role of starting location and

size of initial infection in Rift Valley fever virus spread were studied under various scenarios

on a large-scale network.

The reproduction number, defined as the number of secondary infections produced by

one infected individual in a completely susceptible population, is typically considered an

epidemic threshold of determining whether a disease can persist in a population. Extinction

thresholds for corresponding continuous-time Markov chain model is used to predict whether

a disease can perish in a stochastic setting.

The network level reproduction number for diseases vertically and horizontally trans-

mitted among multiple species on heterogeneous networks was derived to predict whether a

disease can invade the whole system in a deterministic setting. The complexity of comput-

ing the reproduction number is reduced because the expression of the reproduction number

is the spectral radius of a matrix whose size is smaller than the original next generation

matrix. The expression of the reproduction number may have a wide range of applications

to many vector-borne diseases. Reproduction numbers can vary from below one to above

one or from above one to below one by changing movement rates in different scenarios. The

observations provide guidelines on executing movement bans in case of an epidemic.

To compute the extinction threshold, corresponding Markov chain process is approxi-

mated near disease free equilibrium. The extinction threshold for continuous-time Markov

chain model was analytically connected to the reproduction number under some assump-

tions. Numerical simulation results agree with analytical results without assumptions,

proposing a mathematical problem of proving the existence of the relationships in gen-

eral. The distance of the extinction threshold were shown to be closer to one than the

reproduction number. Consistent trends of probability of extinction varying with disease

parameters observed through numerical simulations provide novel insights into disease mit-



igation, control, and elimination.
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Chapter 1

Introduction

Vector-borne diseases greatly impact health of humans and animals and are among the lead-

ing causes of worldwide death every year [54]; approximately half of the world’s population

is infected with at least one type of vector-borne disease and millions of people die of vector-

borne diseases each year [29]. These diseases also cause significant economic losses in regard

to animal trade, agriculture, health care, tourism, as well as the destruction of ecosystems

throughout the world. Therefore, control and prevention of vector-borne diseases are both

economical and humane.

1.1 Background

Rift Valley fever (RVF) is one of the vector-borne diseases with enormous health and eco-

nomic impacts on domestic animals and humans [70], especially in countries where the

disease is endemic and in others where sporadic epidemics and epizootics have occurred.

The disease has been shown to be endemic in semi-arid zones such as northern Senegal

[24, 81, 132], and RVF epidemics often appear at 5-15-year cycles [81].

Aedes and Culex genera of mosquitoes are thought to be primary RVF disease vectors

with respect to vector competence [25]. The virus is maintained between epidemics through

vertical transmission within Aedes mosquitoes [72] and is considered to be propagated and

amplified during epidemics by Aedes and Culex mosquitoes. High RVF transmission is

typically related to persistent, above average rainfall and El Niño/Southern Oscillation
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(ENSO) events in Eastern Africa, which create favorable mosquito habitats [71]. Aedes

mosquitoes lay eggs in dry mud [132] and the eggs can survive for many years [43]. After

flooding, RVF virus-infected eggs can develop into infected adult mosquitoes [43]. Infected

adult Aedes mosquitoes then feed on animals which become infected, and spread the infection

to other Aedes and Culex genera adult mosquitoes feeding on infected animals. The species of

vectors capable of transmitting RVF virus have wide global distribution [55], and therefore,

a possibility exists for the virus to spread out of its current expanding geographic range [31].

Rift Valley fever virus was first isolated from the blood of a newborn lamb in 1931 and

later from the blood of adult sheep and cattle [8, 127]. Rift Valley fever virus is generally

distributed through regions of Eastern and Southern Africa where sheep and cattle are

present [125]. Primary economic losses of RVF outbreak in livestock arise due to abortion

and mortality, which tend to be higher in young animals [31, 125], and bans on livestock

exports during an epidemic [8, 31]. Animal movements, typically motivated by livestock

trading and marketing, may accelerate the transmission of zoonotic diseases among animal

holdings covering a vast area [13]. In 1977, the trade of sheep from East Africa during

Ramadan was considered a likely pathway for the introduction of RVF virus to Egypt

[2, 33, 105]. A boy from Anjouan, an island of Comoros archipelago, was diagnosed with

RVF virus on the French island of Mayotte in 2007 [25]. Rift Valley fever virus was likely

introduced by live ruminants imported from Kenya or Tanzania in the livestock trade during

the 2006-2007 RVF outbreak [25].

Humans can acquire RVF virus from the bites of infected mosquitoes or directly from

contact with bodily fluids of infected animals [1]. Individuals working with animals, such as

farmers and veterinarians, are the most vulnerable to infection during animal outbreaks [87]

due to increased exposure to mosquitoes in an outdoor environment and direct contact with

animals. Rift Valley fever virus infection causes morbidity (ranging from nondescript fever

to meningo-encephalitis and hemorrhagic disease) and mortality (with case fatality rates of

0.2-5%) in humans [70]. In Egypt in 1977, 18, 000 human cases with 698 deaths resulted from

2



the disease [34, 105]. During 1997-1998, Kenya experienced the largest recorded outbreak

with 89, 000 human cases and 478 deaths [44]. More than 200 persons died of RVF in

Mauritania in 1987 [60]. Tanzania and Somalia reported 1, 000 human cases and 300 deaths

from an outbreak associated with above-normal rainfall in the region during 2006-2007 [44].

The first recorded outbreak outside of Africa occurred in the Arabian Peninsula during

2000-2001 and caused 683 human cases and 95 deaths [44].

1.2 Motivation

Communicable diseases are readily transmitted from one region to another [104, 120]. Pop-

ulation travel continues to influence the temporal and spatial spread of infectious diseases

[10, 104]. The introduction of infectious agents resulting in spatial spread of effective in-

fections in various locations at different times [10], revealed great economic losses, many

animal and human cases, and deaths. Noteworthy examples include the fourteenth century

plague in Europe [104, 109] and the sixteenth century smallpox epidemic in the New World

[104]. More recent epidemics, including HIV/AIDS and West Nile virus in North America

[94] and SARS in Asia [128], show infections spreading over vast regions and even crossing

continents [11].

Globalization of trade and travel is one key factor driving the emergence of vector-

borne diseases; heterogeneous structure also plays an important role in infectious disease

dynamics [61]. A pathways analysis [62] has shown RVF virus may be introduced into the

United States in various ways [62, 65] and identified several regions of the United States

that are most susceptible to RVF virus introduction. Therefore, effective models must be

developed to better understand potential dynamics of RVF in heretofore unaffected regions

in case this virus appears in the Western hemisphere [46]. Such preparedness can assist

in the avoidance of rapid spread of the virus throughout North America, as occurred with

West Nile virus since 1999 [24, 46].

Spatially structured models, such as metapopulation models or multiple-patch models
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are commonly used in epidemiological modeling to capture the roles of heterogeneity in

space [100]. Metapopulation models describe systems containing spatially discrete sub-

populations connected by the movement of individuals between a set of patches or nodes

[53, 111]. Modeling the dynamics of large metapopulations is complex, presenting challenges

during analysis [12]. One approach considers the mobility of individuals between discrete

regions [12], creating a directed network where each node represents a subpopulation in a

location. Links are placed between two locations if possibility of transmission exists, such

as movement or proximity [16]. Network models are commonly used in epidemiology to

understand the spread of infectious diseases through connected populations [85, 119]. The

importance of tracking mobility rates and movement patterns is highlighted in the foot-

and-mouth outbreak of 2001 in the United Kingdom [11]. In that case, infected cattle

were widely distributed before the movement ban was announced [64], prompting necessary

development of a transportation network capturing the spatial spread of foot-and-mouth

disease [11].

Epidemiological modeling plays an important role in planning, implementing, and evalu-

ating detection, control, and prevention programs [77]. Mathematical modeling is based on

economic, clear and precise mathematical formulations, such as applications of differential,

integral, or functional differential equations [77]. Mathematical models of infection trans-

mission include interpretation of transmission processes and are often useful in answering

questions that cannot be answered with only empirical data analysis [82], as well as assisting

in the exploration of biological and critical ecological characteristics of disease transmission

[76, 102]. A dynamic model of vector-borne diseases may be used to learn many character-

istics of an outbreak such as the probability, size, and duration time of an epidemic, or the

probability for the epidemic to die out [18] to improve understanding of disease transmis-

sion and persistence. Efficient mitigation strategies deduced from model results may stop

an outbreak at early stages by reducing spreading parameters [18].

Many communicable diseases are propagated by two distinct mechanisms: vertical and
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horizontal transmission [19]. Vertical transmission occurs when infection is passed from

mother to a portion of offspring [19, 41], often transmitted by insect eggs and/or plant

seeds [68]. A variety of diseases are transmitted vertically and horizontally, including the

human diseases: rubella, hepatitis B, Chagas disease, and AIDS [21, 68]. Vertical transmis-

sion is a proven factor in the size and persistence of RVF epidemic [27]. The prevalence of

vertical transmission establishes it as a crucial biological mechanism [21], potentially affect-

ing infectious spreading in elaborate ways [6]. Therefore, vertical transmission maintains

the spread of infection [6, 20]. The logical complement of vertical transmission is horizon-

tal transmission. For animal and human diseases [68], horizontal transmission often occurs

through direct or indirect contact with infectious hosts or infectious vectors, such as biting

insects [68].

Numerical tools are commonly used to obtain quantitative results and analytic tools are

used to understand model behaviors [10]. The reproduction number, defined as the average

number of new infected individuals produced by one infectious individual, in a population

with only susceptibles [38], is arguably the most important quantity in communicable dis-

ease modeling [38]. Theoretically, R0 plays an important role in analyzing dynamics of an

epidemic [38] and is commonly used to estimate the dynamics of emerging infectious dis-

eases at the beginning of an outbreak, thus aiding in the design of control strategies for

established infections [38]. If R0 > 1, one infectious individual generally produces more

than one infection, leading to the spread of an epidemic; whereas, on average, if R0 < 1,

one infectious individual generates less than one infection [30], and the epidemic may die

out [37]. The same trajectory can always be observed with deterministic models given the

same initial conditions [63]. The next generation matrix approach developed by [37], [36,

Chapter 5] and popularized by [118] is one of many methods applied to compute R0 for

compartmental models. This method manages matrix size by including only infected and

asymptomatically infected states [67]. The next generation matrix relates the number of

new cases in various generations and provides the basis of defining and computing R0 [38].
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According to current knowledge, an insightful explicit expression of R0 for complex trans-

mission among multiple species in heterogeneous environments has not yet been presented.

If it is possible for an epidemic to reoccur, a real world epidemic does not allow observa-

tion of the same infection happening to the same person at the same time [63]. Moreover,

deterministic models have the disadvantage that the number of infected individuals may go

to less than one [74], as compared with stochastic models. Markov chain models are more

realistic because they take only integer values instead of continuously varying quantities

[74] and take into account chances by approximating or mimicking random or probabilistic

factors. The last infectious individual may recover before the infection is transmitted to

other susceptible individuals, resulting in disease extinction [74]. Consequently, an infection

introduced to a completely susceptible population may not invade the system even if R0 > 1

[74]. The extinction threshold, E0, and probability of disease extinction are of interest. Bi-

enaymé-Galton-Watson branching processes are commonly used to study disease extinction

involving multi-type infections.

Deriving relationships between R0 and E0 is a complex task for vector-borne diseases

transmitted on heterogeneous networks due to many parameters and large matrices. Ac-

cording to current knowledge, very little research has been conducted in this field.

1.3 State of Art

An RVF risk mapping model [7] developed by Anyamba et al. successfully predicted ar-

eas where outbreaks of RVF in humans and animals were expected using climate data for

the Horn of Africa from December 2006 to May 2007 according to sea surface tempera-

ture (SST) patterns, cloud cover, rainfall, and ecological indicators (primarily vegetation).

Current mathematical RVF virus transmission models are useful in representing infection

transmission process [82] but are limited in determining and testing relevant risk factors.

For the Ferlo area of Senegal, a pond-level metapopulation model, which only considered

vectors, was developed assuming Aedes mosquitoes were the only vector and rainfall was the

6



only driving force [43]. RVF virus was predicted to persist only if livestock moved between

ponds and rainfall did not occur in all ponds simultaneously [43]. Very few mathematical

dynamic transmission models have explored mechanisms of RVF virus circulation [82] on a

larger geographical scale. A theoretical model in a closed system including Aedes and Culex

mosquitoes and livestock population was proposed [46]. The key result was RVF virus can

persist in a closed system for ten years if the contact rate between hosts and vectors is high

[46, 82]. Another theoretical RVF virus transmission mathematical model [84] modified the

model in [46] by adding human hosts, merging all mosquitoes into one class, and removing

mosquito egg compartment and vertical transmission of mosquitoes. Results showed that

the disease prevalence in mosquitoes is sensitive to mosquito death rate, while disease preva-

lence in livestock and humans is sensitive to livestock and human recruitment rates [84].

An ordinary differential equation (ODE) metapopulation involving livestock and human

mobility [89] analyzed the likelihood of pathogen establishment and provided hypothesized

examples to illustrate the methodology [89]. A three-patch model studied the spread of

RVF during the process in which animals enter Egypt from Sudan, are moved up the Nile,

and are then consumed at population centers [47].

The limited work on R0 for metapopulations with vertical transmission discovered during

this research included the modeling of horizontal and vertical transmission dynamics of a

parasite with one ODE for infection due to vertical transmission and one ODE for infection

due to horizontal transmission [73]. In this special case, R0 is the sum of the reproduction

numbers for both types of transmission, and does not hold for a more complicated situa-

tion, such as the model [131] in which the next generation matrices for the two types of

transmission are not both scalars.

Lloyd [74] reviewed theory of branching processes and computed extinction probability

using branching processes for Ross malaria model [101] taking into account stochasticity

and heterogeneity. Pénisson [92] presented several statistical tools to study extinction of

populations consisted of different types of individuals. Allen and Lahodny Jr [4] computed
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reproduction numbers for deterministic models, and extinction thresholds for corresponding

continuous-time Markov chain (CTMC) models using continuous-time branching processes,

and derived relationships between the two thresholds. A CTMC model is a stochastic

counterpart of a deterministic ODE model [4]. Lahodny Jr and Allen [66] estimated prob-

ability of disease extinction for a Susceptible-Infected-Susceptible (SIS) multipatch model

and illustrated differences between thresholds for deterministic models and stochastic mod-

els numerically. Allen and van den Driessche [5] established connections between extinction

thresholds for continuous-time models and discrete-time models and illustrated the relations

through numerical simulations. Although probability of disease extinction is defined as the

probability for the number of infections to become zero when time goes to infinity, various

numerical approximations for many types of models within finite time showed agreement

with predicted extinction probability using branching processes [4, 5, 66].

1.4 Contribution and Organization

In this dissertation, spatial and temporal evolution of vector-borne diseases was studied

using metapopulation models and important epidemic thresholds, R0 and E0, were derived.

A metapopulation is considered as a network with nodes representing subpopulations in

different nodes, links placed between a pair of nodes if possibility of transmission exists, and

weights identifying differences between various pair of links.

1.4.1 Contribution

This dissertation includes theoretical and numerical analysis of vector-borne diseases. The

contribution is as follows:

1. Vertical transmission, a crucial biological mechanism, which is ignored by most mod-

elers, was incorporated into the models, although complexity of solving or analyzing

the models was increased.
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2. The spatial and temporal propagation of RVF were modeled accurately by considering

heterogeneous environments in various locations.

3. The timing and trends of epidemic in three provinces of South Africa were reproduced,

which is beyond the scope of a model for homogeneous populations.

4. Outcomes (human and cattle cases and timing of the epidemic characteristics) of the

discrete-time model with stochastic parameters indicated which biotic factors will play

an important role if RVF virus is introduced to the United States.

5. An explicit, easily applicable expression of the reproduction number considering ver-

tical and horizontal transmission in a general multi-species, metapopulation model

reduced the complexity of computing R0 for diseases with complex transmission.

6. The bounds derived for an RVF metapopulation model facilitated predicting whether

an RVF outbreak will invade a heterogeneous network.

7. Numerical simulation results for trends of R0 varying with livestock movement rates

provided guidelines on properly executing movement bans to control an RVF outbreak.

8. Novel relationships between extinction thresholds and reproduction numbers are an-

alytically and numerically derived for vector-borne diseases transmitted on heteroge-

neous networks.

9. Consistent trends of extinction probability varying with disease parameters observed

through extensive numerical simulations may improve understanding of thresholds for

disease persistence and provide insights into mitigation strategies to increase disease

extinction probability.

10. Key parameters in predicting uncertainty of the extinction threshold were identified

using Latin Hypercube Sampling/Partial Rank Correlation Coefficient (LHS/PRCC)

and their significances were ranked.
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1.4.2 Organization

The metapopulation ODE model [131] presented in Chapter 2 included main vectors, Aedes

and Culex mosquitoes, and main hosts, livestock and humans and movement of the pop-

ulations. The simulation results reproduced spatial and temporal evolution of 2010 RVF

outbreak in three provinces of South Africa.

A discrete-time RVF model [129] with parameters following PERT distributions was

presented in Chapter 3. To investigate the role of starting location, and the size of initial

infection in RVF virus spread, the proposed model was applied to a hypothetical RVF

outbreak in the ranching areas of Texas on a 3621-node large network.

The reproduction number for diseases vertically and horizontally transmitted by multiple

species on heterogeneous networks [130] was presented in Chapter 4. The explicit expression

of the reproduction number was applied to an RVF metapopulation model on heterogeneous

networks to study relationships between R0 and parameters.

Relationships between R0 and E0 of corresponding CTMC models were analytically and

numerically derived for vector-borne diseases in Chapter 5. The significance of parameters

for determining uncertainty of the extinction threshold was ranked by Latin Hypercube

Sampling/Partial Rank Correlation Coefficient. The relationships between the probability

of extinction and parameters were numerically explored.

10



Chapter 2

Modeling Rift Valley Fever Virus
Transmission on Small Networks

Rift Valley fever virus has been expanding geographical distribution with resulting crucial

implications for health of humans and animals. Emergence of RVF in the Middle East and its

continuing presence in many areas of Africa, has negatively impacted medical and veterinary

infrastructures and human morbidity, mortality, and economic endpoints. Furthermore,

worldwide attention should be directed towards broader infection dynamics of RVF virus

because suitable hosts, vectors, and environmental conditions for additional epidemics likely

exist on other continents, including Asia, Europe, and America.

In this chapter, we present a model incorporating Aedes and Culex mosquito vector, and

livestock and human host populations based on weighted contact networks in which nodes

represent geographical regions and weights represent contact level between regional pairs for

each vector or host species. Environmental factors such as rainfall, temperature, wind, and

evaporation are incorporated into the model. For each subpopulation, a system of ODEs

describes dynamics of the population in a specific geographical location and transitions

among different compartments, after contacting RVF virus. The model is tested using the

2010 RVF outbreak in three South African provinces: Free State, Northern Cape, and

Eastern Cape as a case study. An extensive set of simulation results shows potential of the

proposed approach to accurately describe the spatial-temporal evolution of RVF epidemics.
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This chapter is organized as follows: Section 2.1 describes the compartmental mathe-

matical model, Section 2.2 introduces the case study using outbreak data from South Africa,

2010, and Section 2.3 concludes this research.

2.1 Model Formulation

Compartmental models for RVF virus transmission among homogeneous populations and

heterogeneous networks are presented in this chapter. See Table 2.1 for parameters and

values used in numerical simulations.

2.1.1 Homogeneous Population Model

Rift Valley fever virus transmission between different species is depicted in Figure 2.1. Pri-

mary vectors, Aedes and Culex mosquitoes and primary hosts, livestock and humans are con-

sidered in the model. Aedes and Culex mosquitoes discussed here only include competent

vectors of RVF. Transmission dynamics of vector are described by Susceptible-Exposed-

Infected (SEI) model and transmission dynamics of hosts are described by Susceptible-

Exposed-Infected-Removed (SEIR) model. Infectious Aedes mosquitoes not only transmit

RVF virus to susceptible livestock and humans, but also to their own eggs [46, 72]. Culex

mosquitoes acquire RVF virus during blood meals on an infected animal and then amplify

the transmission while feeding on livestock and humans [127]. Direct ruminant-to-human

contact is the primary way for humans to acquire the infection [7, 33]. Accidental RVF

virus infections have been recorded in laboratory staff handling blood and tissue from in-

fected animals [7]. Typically humans are considered dead-end hosts that do not contribute

significantly to propagation of the epidemic [24]. No direct human-to-human transmission

of RVF virus in field conditions has been recorded thus far [62]. Mosquitoes will not sponta-

neously recover once they become infectious [46]. Livestock and humans either perish from

the infection or recover [46]. All four species have a specified incubation period [127]. Aedes

and Culex mosquitoes are distributed among susceptible Sa, exposed Ea, and infected Ia
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compartments. The subscripts a = 1 and a = 3 represent Aedes and Culex mosquitoes,

respectively. The size of each adult mosquito population is N1 = S1 + E1 + I1 for adult

Aedes mosquitoes and N3 = S3 +E3 + I3 for adult Culex mosquitoes. Livestock and human

hosts contain susceptible Sb, exposed Eb, infected Ib, and recovered Rb individuals. The

subscripts b = 2 and b = 4 represent livestock and humans, respectively. The size of host

populations is Nb = Sb + Eb + Ib + Rb. The four populations are modeled with carrying

capacity K1, K2, K3, K4, respectively.

Parameter Description Value Dimension Source
β12 contact rate: Aedes to live-

stock
0.002 1/day [46]

β21 contact rate: livestock to
Aedes

0.0021 1/day [46]

β23 contact rate: livestock to
Culex

0.000003 1/day [46]

β32 contact rate: Culex to live-
stock

0.00001 1/day [46]

β14 contact rate: Aedes to hu-
mans

0.000046 1/day Assume

β24 contact rate: livestock to
humans

0.00017 1/day [84]

β34 contact rate: Culex to hu-
mans

0.0000001 1/day Assume

γ2 recovery rate in livestock 0.14 1/day [46]
γ4 recovery rate in humans 0.14 1/day [106–108]
d1 death rate of Aedes

mosquitoes
0.025 1/day [46]

d2 death rate of livestock 1/3650 1/day [46]
d3 death rate of Culex

mosquitoes
0.025 1/day [46]

d4 death rate of humans 1/18615 1/day [106–108]
b1 number of Aedes eggs laid

per day
0.05 1/day [46]

b2 birth rate of livestock 0.0028 1/day [46]
b3 number of Culex eggs laid

per day
weather dependent 1/day [52]

b4 daily birth rate of humans 1/14600 1/day [106–108]
Continued on next page
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Table 2.1 – continued from previous page
Parameter Description Value Dimension Source
1/ε1 incubation period in Aedes

mosquitoes
6 days [46]

1/ε2 incubation period in live-
stock

4 days [46]

1/ε3 incubation period in Culex
mosquitoes

6 days [46]

1/ε4 incubation period in hu-
mans

4 days [127]

µ2 mortality rate in livestock 0.0312 1/day [46]
µ4 mortality rate in humans 0.0001 1/day [106–108]
q1 transovarial transmission

rate in Aedes
0.05 - [46]

1/θ1 development time of Aedes 15 days [46]
θ3 development rate of Culex weather dependent 1/day [52]
K1 carrying capacity of Aedes

mosquitoes
1000000000 - [88]

K2 carrying capacity of live-
stock

10000000 - Assume

K3 carrying capacity of Culex
mosquitoes

1000000000 - [88]

K4 carrying capacity of hu-
mans

10000000 - Assume

f fraction of people working
with animals

0.82 - [87]

τ return rate 3 times/day [14]
p reduction in ω2ij due to

infection

1
2

- Assume

Table 2.1: Parameters of the compartmental Rift Valley
fever models.
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Figure 2.1: Flow diagram of Rift Valley fever virus transmission with each species,
namely, Aedes mosquitoes, Culex mosquitoes, livestock, and humans homogeneously
mixed (solid lines represent transition between compartments and dashed lines represent
transmission between different species).

Aedes Mosquito Population Model

dP1

dt
= b1 (N1 − q1I1)− θ1P1

dQ1

dt
= b1q1I1 − θ1Q1

dS1

dt
= θ1P1 − β21S1I2/N2 − d1S1N1/K1

dE1

dt
= β21S1I2/N2 − ε1E1 − d1E1N1/K1

(2.1)
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dI1
dt

= θ1Q1 + ε1E1 − d1I1N1/K1

dN1

dt
= θ1(P1 +Q1)− d1N1N1/K1

where:

P1 = the number of uninfected Aedes mosquito eggs,

Q1 = the number of infected Aedes mosquito eggs,

S1 = the number of susceptible Aedes mosquitoes,

E1 = the number of exposed Aedes mosquitoes,

I1 = the number of infected Aedes mosquitoes,

N1 = the total number of Aedes mosquitoes.

The above model is a modified SEI model, including compartments P and Q, which

represent uninfected eggs and infected eggs, respectively. Infected eggs are produced at a

rate b1q1I1 and uninfected eggs are produced at a rate b1N1−b1q1I1. Aedes eggs develop into

susceptible adult mosquitoes at a rate θ1P1 and develop into infected adult mosquitoes at a

rate θ1Q1. Natural death rate for compartment X is d1X1N1/K1, where X represents P , Q,

S, E, and I. The rate at which Aedes mosquitoes are infected by livestock is β21S1I2/N2.

Exposed Aedes mosquitoes transfer to infected compartment at a rate ε1E1.

Culex Mosquito Population Model

dP3

dt
= b3N3 − θ3P3

dS3

dt
= θ3P3 − β23S3I2/N2 − d3S3N3/K3

dE3

dt
= β23S3I2/N2 − ε3E3 − d3E3N3/K3

dI3
dt

= ε3E3 − d3I3N3/K3

dN3

dt
= θ3P3 − d3N3N3/K3

(2.2)

where:
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P3 = the number of uninfected Culex mosquito eggs,

S3 = the number of susceptible Culex mosquitoes,

E3 = the number of exposed Culex mosquitoes,

I3 = the number of infected Culex mosquitoes,

N3 = the total number of Culex mosquitoes.

Besides compartments S, E, and I, compartment P is added to represent uninfected eggs.

Only uninfected eggs are included because female Culex mosquitoes do not transmit RVF

virus vertically. Egg laying rate of Culex mosquitoes is b3N3. Natural death rate of Culex

mosquitoes in compartment X is d3X3N3/K3, where X can be P , S, E, and I. Culex eggs

develop into susceptible adult Culex mosquitoes at a rate θ3P3. Infection rate by livestock

is β23S3I2/N2. Exposed Culex mosquitoes transfer into infected compartment at a rate ε3E3.

Livestock Population Model

dS2

dt
= b2N2 − d2S2N2/K2 − β12S2I1/N1 − β32S2I3/N3

dE2

dt
= β12S2I1/N1 + β32S2I3/N3 − ε2E2 − d2E2N2/K2

dI2
dt

= ε2E2 − γ2I2 − µ2I2 − d2I2N2/K2

dR2

dt
= γ2I2 − d2R2N2/K2

dN2

dt
= b2N2 − d2N2N2/K2 − µ2I2

(2.3)

where:

S2 = the number of susceptible livestock,

E2 = the number of exposed livestock,

I2 = the number of infected livestock,

N2 = the total number of livestock.

The birth rate and natural death rate of livestock are b2N2 and d2X2N2/K2, respectively.

17



Compartment X can be S, E, I, and R. The mortality rate due to RVF virus infection is

µ2I2. The rates at which livestock are infected by Aedes mosquitoes and Culex mosquitoes

are β12S2I1/N1 and β32S2I3/N3, respectively. The incubation rate and recovery rate are

ε2E2 and γ2I2, respectively.

Human Population Model

dS4

dt
= b4N4 − β14S4I1/N1 − fβ24S4I2/N2 − β34S4I3/N3 − d4S4N4/K4

dE4

dt
= β14S4I1/N1 + fβ24S4I2/N2 + β34S4I3/N3 − d4E4N4/K4 − ε4E4

dI4
dt

= ε4E4 − γ4I4 − µ4I4 − d4I4N4/K4

dR4

dt
= γ4I4 − d4R4N4/K4

dN4

dt
= b4N4 − d4N4N4/K4 − µ4I4

(2.4)

where:

S4 = the number of susceptible humans,

E4 = the number of exposed humans,

I4 = the number of infected humans,

N4 = the total number of humans.

The birth rate and natural death rate for humans are b4N4 and d4X4N4/K4, respectively.

Compartment X can be S, E, I, and R. The mortality rate is µ4I4. The rates at which hu-

mans acquire RVF virus infection from Aedes mosquitoes, Culex mosquitoes, and livestock

are β14S4I1/N1, β34S4I3/N3, and fβ24S4I2/N2, respectively. The assumption is made that

only those who work with animals can be infected by animals. The coefficient f (0 < f < 1)

represents the fraction of humans working with animals. The incubation rate and mortality

rate are ε4E4 and γ4I4, respectively.
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Environmental Parameters for Culex

Equation (2.5) is used to model the development rate of Culex mosquitoes [52]. The daily

egg laying rate in Equation (2.6) is a function of moisture [52]. Moisture in Equation (2.7)

is obtained by summing the difference of precipitation [86] and evaporation (mm) [69] over

the proceeding seven days [52]. In Equations (2.5) to (2.8), η, HA, HH, K, TH, Emax,

Evar, Emean, b0 are parameters [52] described in Table 2.2. This model is specific for West

Nile virus model in 2010 in the northern U.S. More appropriate parameters can be applied

as they become available.

θ3(temp, t) = η ∗ (temp(t) +K)

298.15
∗
exp[ HA

1.987
∗ ( 1

298.15
− 1

temp(t)+K
)]

1 + exp[ HH
1.987
∗ ( 1

TH
− 1

temp(t)+K
)]
, (2.5)

b3(temp, prcp, Td, t) = b0 +
Emax

1 + exp[−mois(t)−Emean
Evar

]
, (2.6)

mois(t) =
t∑

D=t−6

prcp(D)− evap(D), (2.7)

evap(t) =
700(temp(t) + 0.006h)/(100− lat)

80− temp(t)
+

15(temp(t)− Td(t))
80− temp(t)

. (2.8)

Here:

temp(t) = air temperature in units of oC [69],

lat = the latitude (degrees) [69],

Td(t) = the mean dew-point in units of oC [69],

h = the elevation (meters) [69],

prcp = daily precipitation [69],

K = Kelvin parameter [69].

2.1.2 Metapopulation Model

A metapopulation model is a model with several subpopulations. The assumption is made

that homogeneity within each subpopulation and heterogeneity among different subpopu-
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Parameter Description Value Source
η parameter of the development rate 0.25 [52]
HA parameter of the development rate 28094 [52]
HH parameter of the development rate 35692 [52]
TH parameter of the development rate 298.6 [52]
b0 minimum constant fecundity rate 3 [52]
Emax maximum daily egg laying rate 3 [52]
Emean value at which moisture index=0.5Emax 0 [52]
Evar the variance of the daily egg laying rate 12 [52]

Table 2.2: Parameters in Equations (2.5) and (2.6).

lations exist. The Aedes and Culex mosquitoes in location i (i = 1, · · · , n), are distributed

among susceptible Sai, exposed Eai, and infected Iai compartments. The subscripts a = 1

and a = 3 represent Aedes and Culex, respectively. The size of each adult mosquito popula-

tion in location i is N1i = S1i+E1i+I1i for adult Aedes mosquitoes and N3i = S3i+E3i+I3i

for adult Culex mosquitoes. The livestock and human hosts contain susceptible Sbi, ex-

posed Ebi, infected Ibi, and recovered Rbi individuals. The subscripts b = 2 and b = 4

represent livestock and humans, respectively. The size of host populations in location i is

N2i = S2i + E2i + I2i + R2i for livestock hosts and N4i = S4i + E4i + I4i + R4i for human

hosts. The four populations are modeled with a specified carrying capacity K1, K2, K3, K4,

respectively.

Movement between Nodes

Weighted networks for each population are depicted in Figure 2.2. The subscripts ωkij on

the left-hand side of Equations (2.9), (2.10), and (2.11) represent the movement from node

i to node j for species k, where k = 1, 2, 3, 4 represent Aedes, livestock, Culex, and humans,

respectively. The difference in line thickness represents difference in weight. Thicker lines

represent larger weight. The weight for each population is between 0 and 1. Rift Valley fever

virus has been documented to be spread by wind [105] and wind dispersal of mosquitoes has

changed geographic distribution and accelerated the spread of RVF virus to new geographic

areas [62]. Some locations can become secondary epidemic sites after the virus has been
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introduced (especially in irrigated areas, e.g., Gazeera in Sudan or rice valleys in the center

of Madagascar) [81]. Livestock trade and transport can also affect geographic distribution of

RVF [24]. One critical objective in developing effective models is to determine major factors

involved in the disease propagation process. Therefore, the weights are parameterized due

to mosquito movement with wind [28, 62], livestock movement due to transportation to

feedlots or trade centers [110], and human mobility due to commuting [14], as shown in

Equations (2.9), (2.10), and (2.11). The movement rate of infected livestock is reduced due

to infection [127]. The wind data for the capital of each province are used as wind data

[121] for the province. The distance vector is calculated with longitude and latitude in the

center of each location. The weight for livestock movement network is a function of the

number of animals sold [106] and the number of livestock in feedlots [90]. Distance, human

population, commuting rate, and return rate [108] are taken into account for the weight of

human movement network. The weight for mosquito movement network is a function of

distance and the projection of wind in the direction of distance vector [28].

ω1ij = ω3ij = c1
~Wi · ~dij
| ~dij|

1

| ~dij|
, (2.9)

ω2ij = c2
FMj

FMi

1

| ~dij|
, (2.10)

ω4ij =
σij
N4i

, (2.11)

σij = c3
Nα

4iN
γ
4j

eβ| ~dij |
, (2.12)

ωi =
n∑

j=1,j 6=i

ω4ij. (2.13)

Here:

~Wi = the wind vector in location i [28],

~dij = the distance vector from location i to location j,

ω1ij(t) = the weight for mosquitoes moving from location i to location j,

ω2ij(t) = the weight for livestock moving from location i to location j,
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σij(t) = the number of commuters between location i and location j,

FMi = the number of animals in markets and feedlots in location i.
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Figure 2.2: Network graphs for node i with three neighbors as an example. The assump-
tion was made that mosquitoes and livestock stay in their destinations at each time step,
but humans may return to source location.
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Aedes Movement between Nodes

dP1i

dt
= b1 (N1i − q1I1i)− θ1P1i

dQ1i

dt
= b1q1I1i − θ1Q1i

dS1i

dt
= θ1P1i − β21S1iI2i/N2i − d1S1iN1i/K1 +

n∑
j=1,j 6=i

ω1jiS1j −
n∑

j=1,j 6=i

ω1ijS1i

dE1i

dt
= β21S1iI2i/N2i − ε1E1i − d1E1iN1i/K1 +

n∑
j=1,j 6=i

ω1jiE1j −
n∑

j=1,j 6=i

ω1ijE1i

dI1i
dt

= θ1Q1i + ε1E1i − d1I1iN1i/K1 +
n∑

j=1,j 6=i

ω1jiI1j −
n∑

j=1,j 6=i

ω1ijI1i

dN1i

dt
= θ1(P1i +Q1i)− d1N1iN1i/K1 +

n∑
j=1,j 6=i

ω1jiN1j −
n∑

j=1,j 6=i

ω1ijN1i

(2.14)

The change in the number of Aedes mosquitoes due to mobility in compartment X is given

as
∑n

j=1,j 6=i ω1jiX1j −
∑n

j=1,j 6=i ω1ijX1i [63].

Culex Movement between Nodes

dP3i

dt
= b3N3i − θ3P3i

dS3i

dt
= θ3P3i − β23S3iI2i/N2i − d3S3iN3i/K3 +

n∑
j=1,j 6=i

ω3jiS3j −
n∑

j=1,j 6=i

ω3ijS3i

dE3i

dt
= β23S3iI2i/N2i − ε3E3i − d3E3iN3i/K3 +

n∑
j=1,j 6=i

ω3jiE3j −
n∑

j=1,j 6=i

ω3ijE3i

dI3i
dt

= ε3E3i − d3I3iN3i/K3 +
n∑

j=1,j 6=i

ω3jiI3j −
n∑

j=1,j 6=i

ω3ijI3i

dN3i

dt
= θ3P3i − d3N3iN3i/K3 +

n∑
j=1,j 6=i

ω3jiN3j −
n∑

j=1,j 6=i

ω3ijN3i

(2.15)

The change in the number of Culex mosquitoes in compartment X due to movement is given

as
∑n

j=1,j 6=i ω3jiX3j −
∑n

j=1,j 6=i ω3ijX3i [63].
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Livestock Movement between Nodes

dS2i

dt
= b2N2i − β12S2iI1i/N1i − β32S2iI3i/N3i − d2S2iN2i/K2 +

n∑
j=1,j 6=i

ω2jiS2j −
n∑

j=1,j 6=i

ω2ijS2i

dE2i

dt
= β12S2iI1i/N1i + β32S2iI3i/N3i − ε2E2i − d2E2iN2i/K2 +

n∑
j=1,j 6=i

ω2jiE2j −
n∑

j=1,j 6=i

ω2ijE2i

dI2i
dt

= ε2E2i − d2I2iN2i/K2 − γ2I2i − µ2I2i + p
n∑

j=1,j 6=i

ω2jiI2j − p
n∑

j=1,j 6=i

ω2ijI2i

dR2i

dt
= γ2I2i − d2R2iN2i/K2 +

n∑
j=1,j 6=i

ω2jiR2j −
n∑

j=1,j 6=i

ω2ijR2i

dN2i

dt
= b2N2i − d2N2iN2i/K2 − µ2I2i +

n∑
j=1,j 6=i

ω2jiN2j −
n∑

j=1,j 6=i

ω2ijN2i

The change in the number of livestock due to movement is
∑n

j=1,j 6=i ω2jiX2j-
∑n

j=1,j 6=i ω2ijX2i

[63]. The assumption is made that the movement rate of the infected livestock is p (0 < p <

1) of livestock in other compartments. This value of the movement rate was selected in the

absence of further information.

Human Movement between Nodes

dS4i

dt
= b4N4i − d4S4iN4i/K4 −

β14S4iI1i/N1i

1 + σi/τ
− β24fS4iI2i/N2i

1 + σi/τ
−

n∑
j=1,j 6=i

β14S4iI1j/N1jσij/τ

1 + σi/τ

− β34S4iI3i/N3i

1 + σi/τ
−

n∑
j=1,j 6=i

β24fS4iI2j/N2jσij/τ

1 + σi/τ
−

n∑
j=1,j 6=i

β34S4iI3j/N3jσij/τ

1 + σi/τ

dE4i

dt
=
β14S4iI1i/N1i

1 + σi/τ
+
β24fS4iI2j/N2i

1 + σi/τ
+
β34S4iI3i/N3i

1 + σi/τ
+

n∑
j=1,j 6=i

β14S4iI1j/N1jσij/τ

1 + σi/τ
− ε4E4i

+
n∑

j=1,j 6=i

β24fS4iI2j/N2jσij/τ

1 + σij/τ
+

n∑
j=1,j 6=i

β34S4iI3j/N3jσij/τ

1 + σi/τ
− d4E4iN4i/K4

dI4i
dt

= ε4E4i − γ4I4i − µ4I4i − d4I4iN4i/K4

dR4i

dt
= γ4I4i − d4R4iN4i/K4

dN4i

dt
= b4N4i − d4N4iN4i/K4 − µ4I4i

Humans from location i can stay in location i or move to location j at time t [14]. Humans

are infected by Aedes mosquitoes, Culex mosquitoes, and livestock at rates β14(S4ii
I1i
N1i

+
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∑n
j=1,j 6=i S4ij

I1j
N1j

) [14], β34(S4ii
I3i
N3i

+
∑n

j=1,j 6=i β34S4ij
I3j
N3j

) [14], and fβ24(S4ii
I2i
N2i

+
∑n

j=1,j 6=i S4ij
I2j
N2j

)

[14], respectively.

Here:

S4ii = the number of humans that are from location i and stay in location i at time t,

S4ij = the number of humans that are from location i and stay in location j at time t ,

ω4ij = commuting rate between subpopulation i and each of its neighbor j,

ωi = daily total rate of commuting for population i.

Change in the number of susceptible humans that are from location i and stay in location

i [14] is:
∂S4ii

∂t
=

n∑
j=1,j 6=i

τS4ij −
n∑

j=1,j 6=i

ω4ijS4ii.

Change in the number of susceptible humans that are from location i and stay in location

j [14] is:
∂S4ij

∂t
= ω4ijS4ii − τS4ij.

Subpopulations S4ii and S4ij are relaxed to equilibrium values [14]:

S4ii =
S4i

1 + ωi/τ
,

S4ij =
S4i

1 + ωi/τ
ω4ij/τ.

2.2 Case Study: South Africa 2010 outbreaks

Incidence data for the South African RVF outbreak in 2010 was applied in this case study.

2.2.1 Incidence Data Analysis

Incidence data for animals are obtained from [39, 126], and incidence data for human sub-

populations are collected from [35, 87]. In regard to animal data, sheep population is consid-

ered. Because granularity of human incidence data is provided at province level, each node

in the network represents a province. Three provinces were selected: Free State (location

1), Northern Cape (location 2), and Eastern Cape (location 3) because they had the highest
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levels of RVF incidence for humans. Curves of the incidence data are shown in Figure 2.3

using green histograms, while red curves represent simulations obtained with this model.

The epidemic first began in Free State Province and later in Northern Cape Province, as

shown in Figure 2.3. Sustained heavy rainfall likely triggered the outbreak, causing infected

eggs to hatch in the Free State Province. Additionally, the numbers of animal and human

cases in Eastern Cape Province are less than the corresponding numbers in the other two

provinces.

2.2.2 Sensitivity Analysis

Three parameters c1, c2, and c3, are estimated using the least square approach based on

minimization of errors between incidence data of humans and percentage of humans calcu-

lated by the mathematical model. The solutions are c1 = 0.009, c2 = 0.05, and c3 = 0.005.

The objective function is:

F =

tf∑
t=t0

n∑
i=1

[(I4i(t)− PR4i(t))
2], (2.16)

where

n = the number of nodes,

t0 = starting time,

tf = end time,

I4i(t) = human prevalence calculated by the model,

PR4i(t) = human prevalence reported.

To conduct a sensitivity analysis for parameters c1, c2, and c3 in Equations (2.9), (2.10),

and (2.12), each parameter was varied within ±10% of the values c1 = 0.009, c2 = 0.05, and

c3 = 0.005, while keeping other parameters constant. This analysis allows an evaluation on

impacts of parameters on model outputs. The proportion of infected humans obtained from

simulation at time t with c1 = 0.009, c2 = 0.05, and c3 = 0.005 is denoted by IOi(t). The

proportion of infected humans obtained from simulation with parameters varying within
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(a) Simulation results and incidence data
for sheep in Free State Province
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(b) Simulation results and incidence data
for humans in Free State Province
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(c) Simulation results and incidence data
for sheep in Northern Cape Province
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(d) Simulation results and incidence data
for humans in Northern Cape Province
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(e) Simulation results and incidence data
for sheep in Eastern Cape Province
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(f) Simulation results and incidence data
for humans in Eastern Cape Province

Figure 2.3: Simulation results and incidence data from January, 2010 in South Africa
(bars represent data and lines represent simulation results).
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±10% of bound is represented by I4i(t). Relative errors between the proportion of infected

humans are calculated for each set of parameters in each location at time t as | I4i(t)−IOi(t)
I4i(t)

|.

Relative errors, lower bound, and upper bound of the parameters are shown in Figure 2.4.
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Figure 2.4: Relative errors of the fraction of infected humans with varying one of the
parameters c1, c2, and c3.

All values of relative errors shown in Figure 2.4 are smaller than 10%, proving the

model is robust with limited uncertainties in the parameter estimation. The rest of the

parameters, such as contact rates β12, β21, β23, β32, death rates d1, d3, and recovery rate

γ2 are key parameters of determining uncertainty of the model output tested by Latin

Hypercube Sampling/Partial Rank Correlation Coefficient [46]. Similarly, β14, β24, β34, and

γ4 are also key parameters for determining uncertainty of the model output.

2.2.3 Analysis of Simulation Results

The role of movement in the spread of RVF spread was numerically analyzed while changing

movement rates. If initial numbers of infected eggs are: Q11 = 10, Q12 = 0, and Q13 = 0

and c1, c2, and c3 are not all equal to zero, then infected animals and humans appear in each

province, as shown in Figure 2.5.

If initial number of infected eggs in each node remained the same and the assumption

was made that movement is not allowed, i.e., c1 = 0, c2 = 0, and c3 = 0, then the numbers
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Figure 2.5: Simulation results with nonzero movement weights (solid lines represent live-
stock with y-axis on the left and dashed lines represent humans with y-axis on the right).

of infected animals and humans remain zero in the other two nodes, as shown in Figure 2.6.

Mitigation strategy, such as a movement ban, can be tested and simulations reproduced

RVF outbreak in three South African provinces by this model, as shown in Figure 2.3. The

model can identify the maximum number of infected individuals among the three provinces

and it reproduces the timing of the outbreak, which is beyond the scope of a model for

homogeneous populations.
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Figure 2.6: Simulation results with c1 = c2 = c3 = 0 (solid lines represent livestock with
y-axis on the left and the dashed lines represent humans with y-axis on the right).

Animal incidence curves produced by the model were an overestimation of the data

since underreporting is very common during outbreaks. The incidence data for Eastern
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Cape Province may be better approximated by a stochastic model according to the law of

large numbers. The model has shown the ability of fitting the incidence data, reproducing

timing and trend of RVF outbreak.

2.3 Discussions

A compartmental ODE model was presented to describe spread of RVF virus in time and

space, with the latter driven as a function of contact networks. Main vectors and hosts of

RVF were included in the model. The model was based on weighted contact networks in

which nodes represent geographical regions and weights represent level of contact between

regional pairings for each set of species. Parameters representing mosquito propagation and

development are not constant but are functions of climate factors. The model was tested,

calibrated, and evaluated using data from the recent 2010 RVF outbreak in South Africa,

mapping the epidemic spread within and among three South African provinces. Not only

was the starting time reproduced, but trends of RVF virus transmission with time in various

locations were also reproduced. The model showed to be very promising notwithstanding

data limitation. An extensive set of simulation results showed the potential of proposed

model for accurately describing the RVF spreading process in additional regions of the

world.
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Chapter 3

Modeling Rift Valley Fever Virus
Transmission on Large Networks

In the event RVF virus is introduced to the U.S. or other non-endemic areas, understanding

potential patterns of spread and risk areas based on disease vectors and hosts will be vital

for developing mitigation strategies.

Due to a lack of empirical data on disease vector species and their vector competence, a

discrete-time epidemic model with stochastic parameters following several PERT distribu-

tions is developed to model dynamic interactions between hosts and likely North American

mosquito vectors in dispersed geographic areas. Spatial effects and climate factors are also

addressed in the model. Simulations of the model are easily implemented, even for net-

works with thousands of nodes, and outputs of the model can easily be compared with

incidence data, if available. The model is applied to a large directed asymmetric network of

3, 621 nodes to examine a hypothetical introduction to various counties of Texas, an impor-

tant ranching area in the U.S. Network nodes represent livestock farms, livestock markets,

and feedlots, and links represent cattle movements and mosquito diffusion between differ-

ent nodes. Cattle and mosquito (Aedes and Culex) populations are treated with different

contact networks to assess virus propagation. Heterogeneous aspects of the spreading are

considered in the model through realistic modeling of the cattle movement among different

types of nodes on the network.

31



The role of starting locations has been shown to be important in the final size of rinder-

pest epidemic [79]. To study the role of initial conditions, spread of RVF virus is assessed

under various initial infection conditions (infected mosquito eggs, adults, or cattle).

This chapter is organized as follows. Section 3.1 presents the discrete-time model with

stochastic parameters. In Section 3.2, the model is applied to study hypothetical outbreak

in Texas, U.S. on a large network. Section 3.3 summarizes and discusses the findings.

3.1 Model Formulation

Aedes mosquitoes, Culex mosquitoes, livestock, and human populations are considered in

the model. Movement of each population is represented by networks in which nodes repre-

sent locations and links represent movement flow between locations. For mosquito diffusion

network, nodes represent farms and links represent mosquito diffusion from one farm to

neighboring farms, with weights ω1ij, and ω3ij representing diffusion rates for Aedes and

Culex, respectively. For livestock movement network, nodes represent farms, livestock mar-

kets, and feedlots and weights represent movement rates from node i to node j, denoted by

ω2ij. Mosquito and livestock networks are depicted in Figures 3.1(a) and 3.1(b), respectively.

The model is based on the RVF virus transmission flow diagram illustrated in [131]. Only

mosquito species known to be competent vectors of RVF virus transmission are considered

and are broadly grouped by Aedes and Culex genera mosquitoes. Adult Aedes and Culex

populations are distributed among susceptible Sai, exposed Eai, and infected Iai compart-

ments, where subscripts a = 1 and a = 3 represent Aedes and Culex mosquitoes, respectively.

Uninfected and infected mosquitoes eggs are represented by Pai and Qai, respectively. Only

uninfected Culex eggs are incorporated in the model, considering Culex mosquitoes do not

display vertical transmission. Livestock and human hosts are likewise classified into com-

partments Sbi, Ebi, Ibi, and Rbi, where subscripts b = 2 and b = 4 represent livestock and

humans, respectively. Ranges of parameters in the models are listed in Table 3.1. The

description of each parameter is the same as the description for corresponding parameter in
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Table 2.1 and omitted in this chapter and following chapters. Transitions to be discussed

below are for location i at day t.

Max distance 

Geo-located farms 

(a) An example of mosquito diffusion network

Livestock markets 

Feedlots  

Cattle farms 

L

L

L
(b) An example of livestock movement network

Figure 3.1: Mosquito diffusion and livestock movement networks.
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3.1.1 Aedes Population Model

P1i(t+ 1)− P1i(t) = b1(N1i(t)− q1I1i(t))− θ1P1i(t))

Q1i(t+ 1)−Q1i(t) = b1q1I1i(t)− θ1Q1i(t)

S1i(t+ 1)− S1i(t) = θ1P1i(t) +
n∑

j=1,j 6=i

ω1jiS1j(t)−
n∑

j=1,j 6=i

ω1ijS1i(t)− d1S1i(t)N1i(t)/K1

− β21S1i(t)I2i(t)/N2i(t)

E1i(t+ 1)− E1i(t) =
n∑

j=1,j 6=i

ω1jiE1j(t)−
n∑

j=1,j 6=i

ω1ijE1i(t)− d1E1i(t)N1i(t)/K1

+ β21S1i(t)I2i(t)/N2i(t)− ε1E1i(t)

I1i(t+ 1)− I1i(t) =
n∑

j=1,j 6=i

ω1jiI1j(t)−
n∑

j=1,j 6=i

ω1ijI1i(t) + θ1Q1i(t)− d1I1i(t)N1i(t)/K1

+ ε1E1i(t)

N1i(t+ 1) = S1i(t+ 1) + E1i(t+ 1) + I1i(t+ 1)

The daily number of Aedes eggs laid is b1N1i(t), including b1q1I1i(t) infected eggs, and

b1N1i(t)− b1q1I1i(t) uninfected eggs. After the development period, θ1P1i(t) uninfected eggs

develop into susceptible adult Aedes mosquitoes and θ1Q1i(t) infected eggs develop into

infected adult Aedes mosquitoes. The number of Aedes mosquitoes infected by livestock is

β21S1i(t)I2i(t)/N2i(t). Following the incubation period, ε1E1i(t) Aedes mosquitoes transfer

from exposed compartment to infected compartment. The number of Aedes mosquitoes

dying naturally in compartment X is d1X1i(t). Change in the number of Aedes mosquitoes

due to mobility in compartment X is
∑n

j=1,j 6=i ω1jiX1j(t)−
∑n

j=1,j 6=i ω1ijX1i(t) [63].
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3.1.2 Culex Population Model

P3i(t+ 1)− P3i(t) = b3(t)N3i(t)− θ3(t)P3i(t)

S3i(t+ 1)− S3i(t) = θ3(t)P3i(t) +
n∑

j=1,j 6=i

ω3jiS3j(t)−
n∑

j=1,j 6=i

ω3ijS3i(t)− d3S3i(t)N3i(t)/K3

− β23S3i(t)I2i(t)/N2i(t)

E3i(t+ 1)− E3i(t) =
n∑

j=1,j 6=i

ω3jiE3j(t)−
n∑

j=1,j 6=i

ω3ijE3i(t)− ε3E3i(t)− d3E3i(t)N3i(t)/K3

+ β23S3i(t)I2i(t)/N2i(t)

I3i(t+ 1)− I3i(t) =
n∑

j=1,j 6=i

ω3jiI3j(t)−
n∑

j=1,j 6=i

ω3ijI3i(t) + ε3E3i(t)− d3I3i(t)N3i(t)/K3

N3i(t+ 1) = S3i(t+ 1) + E3i(t+ 1) + I3i(t+ 1)

The daily number of Culex eggs laid is b3N3i(t). After the development period, θ3P3i(t)

eggs develop into susceptible adult Culex mosquitoes. After the incubation period, ε3E3i(t)

Culex mosquitoes transfer to infected compartment I. The number of Culex mosquitoes

acquiring infection from livestock is denoted by β23S3i(t)I2i(t)/N2i(t) and the number of

Culex mosquitoes removed from compartment X due to natural death is d3X3i(t). The

percentage of Culex mosquitoes moving from location i to location j is ω3ij. Change in the

number of Culex mosquitoes due to movement in compartment X is
∑n

j=1,j 6=i ω3jiX3j(t) −∑n
j=1,j 6=i ω3ijX3i(t) [63].

3.1.3 Livestock Population Model

S2i(t+ 1)− S2i(t) = b2(t)δb(i)N2i(t) +
n∑

j=1,j 6=i

ω2jiS2j(t)−
n∑

j=1,j 6=i

ω2ijS2i(t)

− d2δd(i)S2i(t)N2i(t)/K2 − β12S2i(t)I1i(t)/N1i(t)− β32S2i(t)I3i(t)/N3i(t)

E2i(t+ 1)− E2i(t) =
n∑

j=1,j 6=i

ω2jiE2j(t)−
n∑

j=1,j 6=i

ω2ijE2i(t)− d2δd(i)E2i(t)N2i(t)/K2

− ε2E2i(t) + β12S2i(t)I1i(t)/N1i(t) + β32S2i(t)I3i(t)/N3i(t)

I2i(t+ 1)− I2i(t) = p

n∑
j=1,j 6=i

ω2jiI2j(t)− p
n∑

j=1,j 6=i

ω2ijI2i(t)− d2δd(i)I2i(t)N2i(t)/K2

+ ε2E2i(t)− γ2I2i(t)− µ2I2i(t)
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R2i(t+ 1)−R2i(t) =
n∑

j=1,j 6=i

ω2jiR2j(t)−
n∑

j=1,j 6=i

ω2ijR2i(t) + γ2I2i(t)− d2δd(i)R2i(t)N2i(t)/K2

N2i(t+ 1) = S2i(t+ 1) + E2i(t+ 1) + I2i(t+ 1) +R2i(t+ 1)

The daily number of newborn livestock in location i is b2(t)N2i(t). The variables δb(i) and

δd(i) are used to identify different types of nodes. If location i is a farm, then δb(i) = 1 and

δd(i) = 1. If location i is a market, then δb(i) = 0 and δd(i) = 0. If location i is a feedlot, then

δb(i) = 0 and δd(i) = 1. The numbers of livestock infected by Aedes mosquitoes and Culex

mosquitoes are denoted by β12S2i(t)I1i(t)/N1i(t) and β32S2i(t)I3i(t)/N3i(t), respectively. Af-

ter the incubation period, ε2E2i(t) livestock transfer from exposed state to infected state.

After the infection period, γ2I2i(t) livestock recover from RVF virus infection. The num-

ber of livestock deaths in compartment X is d2X2iN2i(t)/K2 in which K2 is the carrying

capacity of livestock in each node. Change in the number of livestock in compartment X

due to mobility is
∑n

j=1,j 6=i ω2jiX2j(t)−
∑n

j=1,j 6=i ω2ijX2i(t) for livestock in compartments S,

E, and R, and p
∑n

j=1,j 6=i ω2jiX
[m]
2j (t)-p

∑n
j=1,j 6=i ω2ijX

[m]
2i (t) [63], (0 < p < 1) for livestock in

compartment I.

3.1.4 Human Population Model

S4i(t+ 1)− S4i(t) = −β14S4i(t)I1i(t)/N1i(t)− β24S4i(t)I2i(t)/N2i(t)− β34S4i(t)I3i(t)/N3i(t)

E4i(t+ 1)− E4i(t) = β14S4i(t)I1i(t)/N1i(t) + β24S4i(t)I2i(t)/N2i(t) + β34S4i(t)I3i(t)/N3i(t)

− ε4E4i(t)

I4i(t+ 1)− I4i(t) = ε4E4i(t)− γ4I4i(t)

R4i(t+ 1)−R4i(t) = γ4I4i(t)

The number of humans in each node is constant because birth, death, mortality, and mo-

bility of humans are not considered. The numbers of humans infected by Aedes mosquitoes,

Culex mosquitoes, and livestock are β14S4i(t)I1i(t)/N1i(t), β24S4i(t)I2i(t)/N2i(t), and

β34S4i(t)I3i(t)/N3i(t), respectively. After the incubation period, ε4E4i(t) humans transfer
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to infected compartment, and γ4I4i(t) humans recover from RVF virus infection after the

infection period.

3.2 Case Study: Texas, the United States from 2005 to

2010

3.2.1 Networks in the Study Area

As a case study, various RVF virus introduction scenarios were tested using the model pre-

sented in Section 3.1 to determine hypothetical model outcomes (number of livestock cases

and timing of the epidemic). Although the model accounts for exact locations when simulat-

ing RVF virus spread, that information is not reported or even discussed for ranches in areas

smaller than county level. Exact farms and counties are well masked from the results. Texas

cattle ranches were selected because of large cattle concentrations and available aggregate

survey data for cattle movements in these areas [40].

A network with 3, 526 cattle farms, three livestock markets, and 92 cattle feedlots was

constructed [117]. The cattle farms and livestock markets were located in one region and

feedlots are located in another region. Each node was uniformly distributed in each county

according to the total number of farms within that county [117]. The exact location of each

farm was obscured because those data are not publicly available [99] due to confidentiality.

The initial number of cattle in each farm is categorized as 0− 9, 10− 19, 20− 49, 50− 99,

100 − 199, 200 − 499, and more than 500 [117]. The initial number of susceptible cattle

in each farm or feedlot for numerical simulation was assumed according to the number

and histogram of cattle in each county in 2007 [117]. For cattle movement, if cattle were

sold from one node to another, then a link was present between the nodes. Movement

rate of cattle, ω2ij shown in Table 3.2 was estimated based on aggregate movement rates

from survey [40] and inversely proportional to the distance between source-destination pairs.

Cattle movement rate refers to the average movement rate for all cattle at different ages,

and movement rate of cattle in compartment I was assumed to be half the movement rate
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Parameter Range Assumed most
possible value

Dimension Source

β12 (0.0021, 0.2762) 0.1392 1/day [22, 56, 59,
78, 96, 114,
115]

β21 (0.0021, 0.2429) 0.1225 1/day [22, 56, 59,
78, 96, 113]

β23 (0.0000, 0.3200) 0.16 1/day [56, 59, 78,
96, 113,
123]

β32 (0.0000, 0.096) 0.04 1/day [56, 59, 78,
96, 123]

β14 (0.001, 0.002) 0.0015 1/day Assume
β24 (0.00004, 0.00008) 0.00006 1/day Assume
β34 (0.0005, 0.001) 0.000525 1/day Assume
1/γ2 (2, 5) 3.5 1/day [42]
1/γ4 (4, 7) 5.5 1/day [84]
1/d1 (3, 60) 31.5 days [15, 83, 96]
1/d2 (360, 3600) 1980 days [97]
1/d3 (3, 60) 31.5 days [15, 83, 96]
b1 1/day [15, 83, 96]
b2 d2 1/day [97]
b3 weather dependent 1/day [15, 83, 96]
1/ε1 (4, 8) 6 days [114]
1/ε2 (2, 6) 4 days [93]
1/ε3 (4, 8) 6 days [114]
1/ε4 (2, 6) 4 days [84]
µ2 (0.025, 0.1) 0.0375 1/day [42, 93]
q1 (0, 0.1) 0.05 1/day [45]
1/θ1 weather dependent days [96]
1/θ3 weather dependent days [52]
K1 100000000 Assume
K2 1000000 Assume
K3 100000000 Assume
p 1

2
Assume

Table 3.1: Parameter ranges for numerical simulations.
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for cattle in compartments S, E, and R, namely, p = 1
2
.

Node i Node j Range Source
farm market 60.7% /(nm(i)× dij) [40]

market farm 60.7% /(nf (i)× dij) [40]
farm feedlot 10.9% /(nffe(i)× dij) [40]

market feedlot 10.9% /(nmfe(i)× dij) [40]
feedlot farm 0 [40]
feedlot market 0 [40]

Table 3.2: Cattle movement rate ω2ij, where nm(i)=the number of markets connected to
farm i, nf (i)=the number of farms connected to market i, nffe(i)=the number of feedlots
connected to farm i, nmfe(i)=the number of feedlots connected to market i.

For mosquito diffusion, if the distance between two farms was smaller than an assumed

radius, two kilometers, then a link was present between the nodes in the network. The

diffusion rates of Aedes and Culex mosquitoes are shown below [91].

ω1ij = ω3ij =

{
0, if the nodes are disjoint,
diff/d2ij, if two nodes share a border,

where dij is the distance between the centers of node i and node j [91] and diff is a

diffusion-like parameter within the range (830, 8300)m2/day [91].

3.2.2 Parameters for Numerical Simulations

Vector competence varies within and between mosquito species [116]. Stochastic parame-

ters were used to account for broad range of vector competence between Aedes and Culex

species and individual variation within each species. PERT distribution has few constraints

(minimum, maximum, and most likely value), similarly to triangular distribution applied in

[124] to simulate West Nile virus epidemic. In the following simulations, PERT distributions

were selected to generate stochastic parameters with ranges and the most likely values listed

in Table 3.1. Any appropriate parameter distribution can be adapted into the model.

Egg laying rates of Aedes and Culex mosquitoes changing with moisture conditions as

indicated in Equation (3.1) [52] are shown in Figure 3.2(a). Egg development rate of Aedes

mosquitoes varying with temperature in Equation (3.2) [103] and that of Culex mosquitoes
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in Equation (2.5) are in Figure 3.2(e) and Figure 3.2(b), respectively. Parameters for egg

laying rates of Aedes mosquitoes and Culex mosquitoes, and parameters for egg development

rate of Culex mosquitoes were derived from data concerning West Nile virus in 2010 in the

Northern U.S. [52], and the parameters for egg development rate of Aedes mosquitoes are

derived using the model for Aedes aegypti [103]. More precise parameters may be adopted

as they become available. Egg laying rate of Aedes and Culex mosquitoes, egg development

rate of Culex mosquitoes, and egg development rate of Aedes mosquitoes computed with

climate data for the region where cattle farm and markets located in the study area of Texas

from January 2005 to October 2010 are shown in Figure 3.2(c), Figure 3.2(d), and Figure

3.2(f), respectively. If temperature is too low, mosquito eggs will not develop into larvae and

then adult mosquitoes. If temperature is too high, lifespan of the mosquitoes is shortened

and the development rate decreases.

Moisture index is the difference between precipitation and evaporation, as shown in

Equation (2.7). A lower moisture index corresponds to fewer adult mosquitoes because

low moisture index represents a combination of low precipitation and high evaporation.

Throughout the study time period, missing precipitation data from January 2005 to De-

cember 2010 [86] were assumed to be zero. Evaporation data were calculated using Equation

(2.8) [69]. Parameters in Equations (2.5), (2.6), (3.1), and (3.2) are listed in Table 3.3, other

parameters take the same values and meanings as corresponding parameters in Table 2.2 and

the variables in Equations (3.1) and (3.2) share the same descriptions as those in Equations

(2.5) and (2.6).

b1(temp, prcp, Td, t) = b3(temp, prcp, Td, t) = b0 +
Emax

1 + exp[−Moisture(t)−Emean
Evar

]
, (3.1)

θ1(temp, t) = A1 ∗
(temp(t) +K)

298.15
∗

exp[HA1

1.987
∗ ( 1

298.15
− 1

temp(t)+K
)]

1 + exp[HH1

1.987
∗ ( 1

TH1
− 1

temp(t)+K
)]
. (3.2)

Although humans moved between nodes, they did not transmit virus between nodes,

and the number of humans in each node (i.e., farm) was assumed to be fewer than 15.
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Parameter Description Value Source
A1 parameter in Equation (3.2) 0.1546 [103]
HA1 parameter in Equation (3.2) 33, 255.57 [103]
HH1 parameter in Equation (3.2) 50, 543.49 [103]
TH1 parameter in Equation (3.2) 301.67 [103]
b0 minimum constant fecundity

rate
0 [52]

Emax maximum daily egg laying rate 20 [52]

Table 3.3: Parameters in Equations (2.5), (2.6), (3.1), and (3.2).

3.3 Results and Discussions

A discrete-time compartmental mathematical model based on a network approach is pre-

sented. Rift Valley fever is transmitted by several species of mosquito vectors that have

varying levels of vector competence. Therefore, modeling each genus and species combi-

nation requires information on vector competence, movement, and life stage development

patterns, which are too complicated, whereas, considering only a single species or genus is

inaccurate. Consequently, the species were loosely grouped as their genera and parameters

were allowed to vary following PERT distributions. The distribution captured uncertainties

in regards to inherent variability between species, as well as variability among individual

mosquitoes. The mosquito parameters are modeled as functions of climate factors in order

to reflect the impacts of weather and seasonality on mosquito population dynamics. Only

Aedes and Culex genera mosquitoes that are competent vectors of RVF virus transmission

were considered in the model.

Various networks were developed for mosquito diffusion and livestock movement, con-

sidering heterogeneity in both. In cattle movement network, different types of nodes are

distinguished between sources, sinks, and transitions.

The easily solvable discrete-time model can be used to simulate networks with up to

thousands of nodes. To use the model in any location, the initial populations, movement

rates, parameter ranges, and climate factors in each location are needed to obtain epidemic

curves.
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Sixteen initial conditions shown in Table 3.4 in two regions of Texas from January 2005

to October 2010 were tested with the model to determine their impacts on the simulated

and hypothetical spread of RVF virus. A farm with fewer than 10 cattle was identified as a

small farm, while a farm with more than 500 cattle was identified as a large farm. Average

results of 100 realizations for each scenario, starting in a small or large farm are presented

qualitatively in Table 3.5, and quantitative numerical simulation results are shown in Table

3.6. If at least one cattle in a farm is infected, then the farm was defined to be infected.

The outcome characteristics are classified as follows:

very small (0 < A < 300 or 0 < B < 320× 103 or 0 < C < 3000),

small (300 6 A < 350 or 320× 103 6 B < 350× 103 or 3000 6 C < 4000),

average (350 6 A < 400 or 350× 103 6 B < 380× 103 or 4000 6 C < 4500),

large (400 6 A < 600 or 380× 103 6 B < 400× 103 or 4500 6 C < 6000),

very large (A > 600 or B > 400× 103 or C > 6000),

very short or really large (0 < D < 700 or 0 < E < 250),

short (700 6 D < 1000 or 250 6 E < 300),

medium (1000 6 D < 1200 or 300 6 E < 450),

long (1200 6 D < 1300 or 450 6 E < 500),

very long (D > 1300 or E > 500).

Here A represents the number of infected farms, B represents the cumulative number of

infected cattle throughout simulation, C stands for the total number of infected cattle when

the number of infected cattle farms is maximum, D stands for the time to peak number of

infected farms, that is, the time it takes from the first day to the day on which the largest

number of infected farms appears as shown in Figure 3.3, E represents epidemic duration,

defined as the number of days with more than 60 infected cattle farms, F represents the peak

number of farms with more than one infected human, and G represents the peak number of

infected humans in a single farm in one day.

By choosing various initially infected nodes in extensive numerical simulations, the value
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of each variable was different from the value for corresponding variable in Table 3.6 but

similar trends were observed. At the time of the study, no specific mitigation strategies

were applied; during an outbreak RVF virus control methods post detection are expected

to modify simulation results.

Farm
size

Quantity Infected

Aedes eggs Aedes
mosquitoes

Culex
mosquitoes

Cattle

small few Aedes-egg-f-s Aedes-f-s Culex-f-s Cattle-f-s
many Aedes-egg-m-s Aedes-m-s Culex-m-s Cattle-m-s

large few Aedes-egg-f-l Aedes-f-l Culex-f-l Cattle-f-l
many Aedes-egg-m-l Aedes-m-l Culex-m-l Cattle-m-l

Table 3.4: Sixteen different initial conditions.

The suffix, l or s, (representing large or small farms) were removed from initial condition

labels when comparing results with different initial infections in the same scale of initial

location. Impacts of the RVF epidemic in terms of infected cattle depend on the number of

the initial infections.

When initial condition of the outbreak was assumed to be Aedes-eggs-f (few Aedes eggs),

simulations resulted in a larger cumulative number of infected cattle than the number of

infected cattle obtained in the case of Aedes-eggs-m (many Aedes eggs). When initial condi-

tion of the outbreak was assumed to be Aedes-f (few adult Aedes mosquitoes), simulations

resulted in a larger cumulative number of infected cattle than the number of infected cattle

obtained in the case of Aedes-m (many adult Aedes mosquitoes). Similarly, fewer initial in-

fected Culex mosquitoes (Culex-f) lead to larger cumulative number of infected cattle than

the number of infected cattle obtained in the case of Culex-m throughout the simulation

period. When initial condition of the outbreak was assumed to be Cattle-f (few cattle),

simulations resulted in a larger cumulative number of infected cattle than the number of

infected cattle obtained in the case of Cattle-m (many cattle).

The total number of infected humans and total number of farms with at least one infected
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Farm
size

Initial in-
fection
size

Outcome
character-
istics

Initial
Aedes eggs
infection

Initial
adult Aedes
infection

Initial
Culex adult
infection

Initial
cattle
infection

small few (1) A average small very small very
small

B very large very large large average
C very large very large average very

small
D very long very long long medium
E medium long very long short

many (�
1)

A very small large very large average

B average small very small small
C very small small average very

small
D short short short short
E short very short very short very

short
large few (1) A very small very small very small small

B very large large average very
large

C very small small very small average
D long long short very

long
E very long medium short long

many (�
1)

A very large very large very large very
small

B very small small small large
C average large average small
D short very short very short long
E very short short short medium

Table 3.5: Qualitative numerical simulation results of different scenarios with respect
to infected cattle. The average number of infected farms in each day is in the range of
[350, 400), the average cumulative number of infected cattle during simulation is within
the range [350× 103, 380× 103), and the average time to peak is within [1000, 1200).

human remained fewer than one regardless of initial infection conditions, possibly because

human population of each farm was assumed to be fewer than 15. Therefore, human infection

was unlikely in this case, but the number of human infections should not be inferred or

generalized to be similar in a more heavily populated region or where many more persons
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Farm
size

Initial
infection
size

Outcome
charac-
teristics

Initial
Aedes eggs
infection

Initial adult
Aedes infec-
tion

Initial
Culex adult
infection

Initial cat-
tle infec-
tion

small few A 359 319 267 183
B 410× 103 411× 103 397× 103 374× 103

C 16288 6369 4230 2557
D 1596 1382 1205 1012
E 444 471 592 291
F 0 0 0 0
G 0 0 0 0

many A 224 437 610 388
B 364× 103 335× 103 313× 103 343× 103

C 1772 3125 4433 2773
D 701 701 700 701
E 278 181 217 227
F 0 0 0 0
G 0 0 0 0

large few A 293 197 296 342
B 407× 103 382× 103 354× 103 413× 103

C 2907 3878 2459 4411
D 1205 1204 711 1382
E 557 443 278 467
F 0 0 0 0
G 0 0 0 0

many A 631 732 745 208
B 315× 103 321× 103 332× 103 385× 103

C 4251 4689 4428 3778
D 700 655 608 1204
E 226 260 276 449
F 0 0 0 0
G 0 0 0 0

Table 3.6: Quantitative simulation results of different scenarios. The total number of
farms is 3526 and the total number of cattle in all farms is 303240.

are in direct contact with animals (e.g., slaughter plants). Temporal characteristics of RVF

cases followed the general trend that fewer infected individuals in the initial introduction

resulted in a delayed epidemic peak. When initial condition of the outbreak was assumed

to be Aedes-eggs-f-s, simulations resulted in a peak 895 days later than the peak with initial

starting condition of Aedes-eggs-m-s. When initial condition of the outbreak was assumed
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to be Aedes-eggs-f-l, simulations resulted in a later peak than the peak under Aedes-eggs-

m-l condition. When another pair of initial conditions were compared, the epidemic peak

happened not earlier when few initially infected Aedes eggs were considered than when

few initially infected Aedes adult mosquitoes were assumed. Similarly, the epidemic peak

occurred not earlier when many initially infected Aedes eggs are considered than the one

when many initially infected Aedes adult mosquitoes were assumed. When initial condition

of the outbreak was assumed to be Aedes-f, simulations resulted in a later peak than the

peak under Aedes-l condition. When initial condition of the outbreak was assumed to be

Culex-f, simulations resulted in a later peak than the peak under Culex-l condition. Few

initially infected cattle produced a later peak than the peak when many cattle are initially

infected.

The original metapopulation model for RVF virus transmission presented in Section 3.1

was applied to a case study in two areas of Texas. The simulation results are helpful in

understanding mechanisms of RVF virus transmission. Modeling each mosquito species

individually required specific species information to parameterize the model, such as vector

competence, which typically is not available or is based on assumptions from other species.

Therefore, the model grouped competent mosquito vectors into two primary genera of RVF

competent mosquitoes, Aedes and Culex. The PERT distribution allows for mosquito species

of the same genera to be considered together and for individual variation within a single

mosquito species by having a distribution with a most likely value and a range of possible

values for each parameter. The distribution also allows the model to be easily applied to

new environments where vector competence of mosquitoes remains uncharacterized. The

model can accommodate various mosquito species of the same genus by adjusting the most

likely values and the range of values to account for variation in vector competence between

species. Moreover, the model is not limited to known mosquito vector species, and newly

discovered competent vectors of RVF can be readily included in the model.

The model can be used to study not only local transmission between hosts and vectors,
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but also trans-location transmission of RVF virus using the network approach. The roles of

mosquitoes and livestock in RVF virus transmission can be studied independently because

separate networks were built for mosquitoes and livestock. One infected farm node can

spread the infection to other connected nodes; therefore, additional nodes can be infected

over time. Temporal and spatial evolution of RVF virus and their driving forces can also

be analyzed. The spread of RVF virus was estimated within farms, as well as among farms,

markets, and feedlots. The goal of simulation analysis was to provide insights into possible

pathways for rapid spread of RVF virus among farms and counties. Using cattle networks,

the impact of cattle movement from trade can be investigated as newborn calves mature to

weaning and on to harvest. Cattle farms are source nodes where cattle are born and raised

for several months before being sold through markets, directly to feedlots, or directly to other

farms as stockers or replacement females. Cattle on an infected farm may become infected

and then carry the virus to livestock markets or other transition nodes before being sold to

another farm, consequently introducing the virus to a new farm. On the other hand, infected

cattle movement to feedlots (sink nodes) does not propagate the transmission because no

further transfer of cattle from the nodes occurs except onto slaughter. Different mitigation

strategies can be applied according to each node type (source, sink, and transition) within

livestock movement network.

Discrete-time modeling is appealing because it describes the epidemic process, which is

conceptualized as evolving through a set of discrete-time epochs instead of through a set

of continuous-time epochs [75]. Typically infections or illnesses are reported at discrete-

time (daily or weekly) [17, 75]. Outputs of discrete-time models can be easily compared

with incidence data [17]. Moreover, numerical exploration of discrete-time models is more

straightforward [17], thus can be easily implemented by non-mathematicians, which is an

advantage in the public health world [17]. The presented discrete-time model allows for

simulations of RVF outbreaks on small networks with few nodes and large-scale networks

with thousands of nodes. The model was developed not only to be applied to the study area
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of Texas, but also to any geographic region or habitat type of concerns without changing

the model. To apply the model to a new study area, the modelers only need to adapt

corresponding data into the model. Frequently changing a model to apply it to a new

environment is time consuming and increases the probability of making mistakes.

In regard to simulation results, Aedes are the bridge between Culex and livestock begin-

ning with Aedes egg infection. Infected Aedes eggs may hatch infected Aedes mosquitoes.

Susceptible livestock become infected after being bitten by infected Aedes mosquitoes. Culex

mosquitoes are amplifiers of RVF virus transmission and they acquire the infection after

blood meals on infected livestock. In return, infected Culex feed on livestock and RVF virus

infection is amplified. If more initially infected adult mosquitoes are present, whether Aedes

or Culex mosquitoes, the rate of infection is faster, herd immunity is reached earlier, and

the cumulative number of infected cattle is smaller because most recover before they diffuse

to other farms to spread RVF virus, as shown in Figure 3.3. If most livestock infected by

mosquitoes in a node recover before moving to other nodes, then the numbers of infected

livestock and mosquitoes that transmit RVF virus to other nodes are reduced. Mosquito eggs

do not hatch until their habitats, such as dambos (in Africa) or playas/ ponds/ sloughs (in

Texas), are created by rainfall. Moreover, Aedes eggs require time to become adult Aedes

mosquitoes, thus increasing the time necessary to reach the epidemic peak with initially

infected Aedes eggs as compared to initially infected Aedes mosquitoes.

Cattle can be spreaders of virus because they are frequently bought and sold [11]. In-

fected cattle may infect a large number of mosquitoes via mosquito bites in a new location.

In turn, infected mosquitoes can bite a large number of susceptible cattle and transmit the

virus. Movement bans during an RVF outbreak may restrict further spatial spread of RVF.

By interacting with mosquito vectors, very few infected cattle are able to indirectly infect a

large number of susceptible cattle. The cumulative number of infected cattle produced by

few initially infected cattle is greater than the cumulative number of infected cattle produced

by a large number of initially infected cattle. Hence, regional authorities should be warned
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and response planning should be initiated even if only few infected cattle are detected.

No human cases (integers) were present in the simulation results regardless of initial

starting conditions because of small constant human population in each node of the study

region. In high population areas, a large number of human cases may exist. Typically

humans are exposed to fewer mosquitoes than cattle, especially in urban areas, resulting in

lower probability of being infected by mosquitoes. The probability that humans are infected

by cattle is also small in low population areas because the model does not account for contact

with the virus via animal slaughter. Hence, the number of infected humans in each farm

produced by simulations is fewer than one. Based on the deterministic mathematical model

presented by [131], an introduction of RVF in the study area of Texas is primarily a concern

for livestock farms but not as a human outbreak as recently occurred in South Africa.

During previous outbreaks, many reported human cases were proceeded by livestock cases.

In the U.S., humans still have the potential of being infected by mosquitoes and livestock,

especially when many livestock cases are reported, thus the dynamics of human infection

during an outbreak and factors affecting RVF virus transmission will also be studied in

future models.

In conclusion, the general epidemiological trends of a smaller initial infection observed

through various simulations with various initial starting locations are: (1) a larger total

number of infected cattle, (2) a longer delay after introduction until the epidemic peak, and

(3) a prolonged epidemic. If the infection remains small (and possibly undetected) for a

longer duration, it expands geographically before the epidemic involves many cattle simul-

taneously. Therefore, an established and endemic condition can generate larger epidemic

disease incidence after a long period of apparent hibernation.
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Figure 3.2: Relationships between egg laying rates, egg development rates of mosquitoes,
and climate factors. 50
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Figure 3.3: Disease epidemic characteristics based on model outputs with different initial
numbers of infected Culex mosquitoes on a small farm. Time to peak infection is the time
until the maximal number of cases is observed, and epidemic duration is the amount of
time an epidemic persists.
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Chapter 4

The Reproduction Number

A wide range of infectious diseases are both vertically and horizontally transmitted. Such

diseases are spatially transmitted via multiple species in heterogeneous environments, typ-

ically described by complex metapopulation models. The reproduction number, defined as

the average number of secondary cases produced by one infectious individual in a naive

population is a critical metric in predicting whether the disease can invade the metapop-

ulation system. This chapter presents R0 for a generic disease vertically and horizontally

transmitted among multiple species on heterogeneous networks in which nodes are locations,

and links reflect outgoing or incoming movement flows. The expression of R0 is the spectral

radius of a matrix reduced in size with respect to the original next generation matrix and is

easily adaptable to specific infectious diseases, affording insights into disease intervention.

The metapopulation model for vertically and horizontally transmitted diseases was grad-

ually formulated from two species, two-node network models. Metapopulations consisting

of discrete, well-mixed subpopulations were considered and the assumption was made that

individuals move between different nodes and the disease can be transmitted within a node.

All sojourn times were assumed to be exponentially distributed, and vertical transmission

was restricted to the egg stage with exponential duration. The reproduction number is

shown to be a function of vertical and horizontal transmission parameters, and the lower

bound is the R0 for horizontal transmission. As an application, R0 and its bounds for RVF

zoonosis in which livestock, mosquitoes, and humans are involved, are derived. By com-
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puting R0 for various scenarios through numerical simulations, results showed that R0 is

affected by livestock movement rates only when parameters are heterogeneous across nodes.

This chapter is organized as follows. Section 4.1 reviews the next generation matrix ap-

proach used to derive an explicit expression of R0, and presents the general metapopulation

model beginning with two species, two-node network models, as well as computation of R0.

In Section 4.2, the R0 formula is applied to the RVF metapopulation model, computing R0

and its bounds. The impacts of livestock movement, heterogeneities of parameters, and size

of a network on R0 are also studied through simulations. Section 4.3 provides a summary

and discussion on analytical and numerical results.

4.1 The Reproduction Number for Diseases with Ver-

tical and Horizontal Transmission

One frequently used method computes R0 as the spectral radius of the next generation

matrix [36, Chapter 5], [118]. For ease of computation, only compartments corresponding

to infected and asymptomatically infected compartments are considered [38]. First, the

original nonlinear system of ODEs is decomposed into two column vectors F = (Fi) and

V = (Vi), where Fi is the ith row of F representing the rate at which new infections

appear in compartment i, and Vi is the ith row of V . Moreover, Vi = V −i − V +
i , where

V −i represents the rate at which individuals transfer out of compartment i, and V +
i is the

rate at which individuals transfer into compartment i [118] with the assumption that the

number of infected and asymptomatically infected compartments is m. Jacobian matrices

F denoting transmission, and V denoting transition [38] are defined as:

F = [
∂Fi(x

0)

∂xj
], V = [

∂Vi(x0)

∂xj
], (4.1)

where x0 represents the disease free equilibrium (DFE), and xj is the number or proportion

of infected individuals in compartment j, where j = 1, · · · ,m.

The spectral radius of a matrix A is denoted by ρ(A). The reproduction number is

defined as ρ(FV −1) [37]. To understand entries of FV −1, called the next generation matrix,
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consider the consequence of an infected individual introduced into compartment k in a

population at DFE [118]. The (i, j) entry of F represents the rate at which new infected

individuals in compartment i are produced by infected individuals in compartment j [118].

The (j, k) entry of V −1 represents the average time that an infected individual remains in

compartment j [118]. Hence, the (i, k) entry of FV −1 represents the expected number of

new infections in compartment i, resulting from the infected individual originally introduced

into compartment k [118], where i, k = 1, · · · ,m. Note that matrix F is nonnegative and V

is proven to be a nonsingular M-matrix [118]. An n× n matrix A is an M-matrix if it can

be expressed in the form A = sI − B, such that matrix B is non-negative, and s > ρ(B)

[95].

Next, computational procedures for finding R0 using the next generation matrix method

for SEIR compartmental models were illustrated assuming a disease is transmittable within

a species and between different species, and movement rates for all species are independent

of disease status. Daily time steps were used in all models.

4.1.1 Models for Two Species in Two Nodes

Presented here are two applications of a simplified system for a disease involving two species

in a two-node network with movement between the two nodes. In the first example, R0 was

computed while assuming only horizontal transmission is occurring. In the second example,

the first model was extended by introducing vertical transmission into one species. The

reproduction number was then computed.

R0 for Two Species with Only Horizontal Transmission

Below, a compartmental model for an infectious disease incorporating four compartments

(J = S,E, I, R), two species (k = 1, 2), two nodes (i = 1, 2), and only horizontal transmis-
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sion is presented. Differential equations representing the dynamic behavior are:

dSki
dt

= rki − β1kiSkiI1i/N1i − β2kiSkiI2i/N2i − dkiSki

+
2∑

j=1,j 6=i

ωkjiSkj −
2∑

j=1,j 6=i

ωkijSki

dEki
dt

= β1kiSkiI1i/N1i + β2kiSkiI2i/N2i − εkiEki − dkiEki

+
2∑

j=1,j 6=i

ωkjiEkj −
2∑

j=1,j 6=i

ωkijEki

dIki
dt

= εkiEki − γkiIki − dkiIki +
2∑

j=1,j 6=i

ωkjiIkj −
2∑

j=1,j 6=i

ωkijIki

dRki

dt
= γkiIki − dkiRki +

2∑
j=1,j 6=i

ωkjiRkj −
2∑

j=1,j 6=i

ωkijRki.

(4.2)

The number of newborn individuals of species k in node i per day is denoted by rki.

The number of species k individuals in node i of compartment J is denoted by Jki, and

the total number of species k individuals in node i is Nki = Ski + Eki + Iki + Rki. Total

individuals of species k infected daily in node i by species 1 and species 2 are β1kiSkiI1i/N1i

and β2kiSkiI2i/N2i, respectively. The number of deaths from each compartment J per day

is dkiJki. After the incubation period, εkiEki individuals transfer to infected compartment

daily. Following the infection period, γkiIki individuals recover from the infection each

day. Movement rates for species k individuals in compartment J in and out of node i are∑2
j=1,j 6=i ωkjiJkj and

∑2
j=1,j 6=i ωkijJki, respectively.

Species k quantity in compartment J and the total number in node i at DFE are denoted

by J0
ki and N0

ki, respectively. At DFE, S0
1i = N0

1i, and S0
2i = N0

2i, as E0
1i = I01i = R0

1i = E0
2i =

I02i = R0
2i = 0. The proof for existence and uniqueness of DFE is a special case of the model

for Theorem 1, which determines the existence of a unique solution [N0
1i N0

2i]
T .

Equations related to exposed and infected compartments are ordered:

d

dt

[
E11 E12 E21 E22 I11 I12 I21 I22

]T
= FH − VH , where
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FH =



β211S11I21/N21 + β111S11I11/N11

β212S12I22/N22 + β112S12I12/N12

β121S21I11/N11 + β221S21I21/N21

β122S22I12/N12 + β222S22I22/N22

0
0
0
0


,

VH =



d11E11 + ε11E11 + ω112E11 − ω121E12

d12E12 + ε12E12 + ω121E12 − ω112E11

d21E21 + ε21E21 + ω212E21 − ω221E22

d22E22 + ε22E22 + ω221E22 − ω212E21

−ε11E11 + d11I11 + γ11I11 + ω112I11 − ω121I12
−ε12E12 + d12I12 + γ12I12 + ω121I12 − ω112I11
−ε21E21 + d21I21 + γ21I21 + ω212I21 − ω221I22
−ε22E22 + d22I22 + γ22I22 + ω221I22 − ω212I21


.

By (4.1), Jacobian matrices for this model are:

FH =

[
04×4 Z

0 04×4

]
, VH =

[
⊕2
k=1Yk 0

−⊕2
k=1 (⊕2

i=1εki) ⊕2
k=1Xk

]
, (4.3)

where the symbol
⊕

represents the direct sum of matrices, i.e., A
⊕

B =

[
A 0
0 B

]
for

matrices A and B. The subscript of the zero blocks, 4 × 4, indicates the size of the block.

Matrices Z, Yk, and Xk are:

Z =


β111

S0
11

N0
11

0 β211
S0
11

N0
21

0

0 β112
S0
12

N0
12

0 β212
S0
12

N0
22

β121
S0
21

N0
11

0 β221
S0
21

N0
21

0

0 β122
S0
22

N0
12

0 β222
S0
22

N0
22

 ,

Y1 =

[
d11 + ε11 + ω112 −ω121

−ω112 d12 + ε12 + ω121

]
, (4.4)

Y2 =

[
d21 + ε21 + ω212 −ω221

−ω212 d22 + ε22 + ω221

]
, (4.5)

X1 =

[
d11 + γ11 + ω112 −ω121

−ω112 d12 + γ12 + ω121

]
, (4.6)
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X2 =

[
d21 + γ21 + ω212 −ω221

−ω212 d22 + γ22 + ω221

]
. (4.7)

Because matrices Y1, Y2, X1, and X2 are all invertible, by direct calculation:

V −1H =

[
⊕2
k=1Y

−1
k 0

⊕2
k=1Lk ⊕2

k=1X
−1
k

]
,

where Lk = X−1k (⊕2
i=1εki)Y

−1
k . The spectral radius of the next generation matrix FHV

−1
H is:

ρ(FHV
−1
H ) = ρ(

[
04×4 Z

0 04×4

] [
⊕2
k=1Y

−1
k 0

⊕2
k=1Lk ⊕2

k=1X
−1
k

]
) = ρ(Z(⊕2

k=1Lk)).

Therefore,

RH
0 := ρ(FHV

−1
H ) = ρ(Z(⊕2

k=1Lk)), (4.8)

where RH
0 is R0 for horizontal transmission.

R0 for Two Species with Vertical Transmission in One Species

The model for species 2 (Equation (4.2) with k = 2) remains while extending the model for

species 1 by incorporating vertical transmission. The model for species 1 is:

dP1i

dt
= r1i − b1q1iI1i − θ1iP1i

dQ1i

dt
= b1iq1iI1i − θ1iQ1i

dS1i

dt
= θ1iP1i − β11iS1iI1i/N1i − β21iS1iI2i/N2i − d1iS1i

+
2∑

j=1,j 6=i

ω1jiS1j −
2∑

j=1,j 6=i

ω1ijS1i

dE1i

dt
= β11iS1iI1i/N1i + β21iS1iI2i/N2i − ε1iE1i − d1iE1i

+
2∑

j=1,j 6=i

ω1jiE1j −
2∑

j=1,j 6=i

ω1ijE1i

dI1i
dt

= θ1iQ1i + ε1iE1i − γ1iI1i − d1iI1i +
2∑

j=1,j 6=i

ω1jiI1j −
2∑

j=1,j 6=i

ω1ijI1i

dR1i

dt
= γ1iI1i − d1iR1i +

2∑
j=1,j 6=i

ω1jiR1j −
2∑

j=1,j 6=i

ω1ijR1i

(4.9)
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The number of eggs laid by species 1 per day is denoted by r1i, including b1iq1iI1i infected

eggs, and r1i − b1iq1iI1i uninfected eggs. After the development period, θ1iP1i eggs develop

into susceptible adults, and θ1iQ1i eggs develop into infected adults daily. Interpretations

of other terms are the same as corresponding terms described in Section 4.1.1.

At DFE, Q0
1i = E0

1i = I01i = R0
1i = E0

2i = I02i = R0
2i = 0, S0

1i = N0
1i, and S0

2i = N0
2i. Since

this model is also a special case of the model for Theorem 1, a unique solution [N0
1i N0

2i]
T

exists. In the second model, equations related to exposed and infected compartments are

ordered:

d

dt

[
Q11 Q12 E11 E12 E21 E22 I11 I12 I21 I22

]T
= F − V ,

where

F =



b11q11I11
b12q12I12

β211S11I21/N21 + β111S11I11/N11

β212S12I22/N22 + β112S12I12/N12

β121S21I11/N11 + β221S21I21/N21

β122S22I12/N12 + β222S22I22/N22

0
0
0
0


,

and

V =



θ11Q11

θ12Q12

d11E11 + ε11E11 + ω112E11 − ω121E12

d12E12 + ε12E12 + ω121E12 − ω112E11

d21E21 + ε21E21 + ω212E21 − ω221E22

d22E22 + ε22E22 + ω221E22 − ω212E21

−θ11Q11 − ε11E11 + d11I11 + γ11I11 + ω112I11 − ω121I12
−θ12Q12 − ε12E12 + d12I12 + γ12I12 + ω121I12 − ω112I11
−ε21E21 + d21I21 + γ21I21 + ω212I21 − ω221I22
−ε22E22 + d22I22 + γ22I22 + ω221I22 − ω212I21


.

By (4.1), Jacobian matrices for this model are:

F =

[
02×2 U2×8
08×2 FH

]
, V =

[
⊕2
i=1θ1i 02×8
W8×2 VH

]
.
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Here FH and VH are the matrices in (4.3) and

U =
[

02×4
⊕2

i=1 b1iq1i 02×2
]
, W =

 04×2
−
⊕2

i=1 θ1i
02×2

 .
Matrix V −1 and the next generation matrix FV −1 are:

V −1 =

[ ⊕2
i=1 θ

−1
1i 0

−V −1H W (
⊕2

i=1 θ
−1
1i ) V −1H

]
, FV −1 =

[
−UV −1H W (

⊕2
i=1 θ

−1
1i ) UV −1H

−FHV −1H W (
⊕2

i=1 θ
−1
1i ) FHV

−1
H

]
.

Since M−1(FV −1)M =

[
0 UV −1H

0 FHV
−1
H −W (

⊕2
i=1 θ

−1
1i )UV −1H

]
,

where M =

[
I2×2 0

W (
⊕2

i=1 θ
−1
1i ) I8×8

]
,

R0 = ρ(FV −1) = ρ(FHV
−1
H −W (

2⊕
i=1

θ−11i )UV −1H ). (4.10)

R0 is a function of vertical and horizontal transmission parameters. Since FHV
−1
H and

−W (
⊕2

i=1 θ
−1
1i )UV −1H are both nonnegative matrices, by Theorem 7,

R0 > ρ(FHV
−1
H ). (4.11)

4.1.2 R0 for Multiple Species in a General Network Model

The models presented in Section 4.1.1 are generalized to describe dynamics of diseases

transmitted among h species in node i (i = 1, · · · , n). Suppose a disease is transmitted

by species k (k = 1, · · · , h) vertically and horizontally if 1 6 k 6 g and only horizontally
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otherwise. Dynamical behavior is given by the system with 4hn+2gn differential equations:

dPki
dt

= [rki − bkiqkiIki − θkiPki]δ(k)

dQki

dt
= [bkiqkiIki − θkiQki]δ(k)

dSki
dt

= θkiPkiδ(k) + rki(1− δ(k))−
h∑

m=1

βmkiSkiImi/Nmi − dkiSki +
n∑

j=1,j 6=i

ωkjiSkj

−
n∑

j=1,j 6=i

ωkijSki

dEki
dt

=
h∑

m=1

βmkiSkiImi/Nmi − εkiEki − dkiEki +
n∑

j=1,j 6=i

ωkjiEkj −
n∑

j=1,j 6=i

ωkijEki

dIki
dt

= θkiQkiδ(k) + εkiEki − γkiIki − dkiIki +
n∑

j=1,j 6=i

ωkjiIkj −
n∑

j=1,j 6=i

ωkijIki

dRki

dt
= γkiIki − dkiRki +

n∑
j=1,j 6=i

ωkjiRkj −
n∑

j=1,j 6=i

ωkijRki.

(4.12)

Daily number of species k individuals infected by species m is βmkiSkiImi/Nmi. Daily

numbers of species k individuals in compartment J moving in and out of node i are∑n
j=1,j 6=i ωkjiJkj and

∑n
j=1,j 6=i ωkijJki, respectively. Other terms in the above equations have

the same meanings as corresponding terms in Equations (4.2) and (4.9) except δ(k) defined

below, which is used to differentiate the horizontally-transmitting species and the species

exhibiting both types of transmission.

δ(k) =

{
1 for 1 ≤ k ≤ g,
0 for g + 1 ≤ k ≤ h.

To compute R0 using the next generation matrix approach, matrices F and V must be

found, omitted here due to large size. In determining Jacobian matrices F and V , infected

variables are ordered by compartment, species, and node index, i.e.,

Q11, · · · , Q1n, · · · , Qg1, · · · , Qgn, E11, · · · , E1n, · · · , Eh1, · · · , Ehn, I11, · · · , I1n, · · · , Ih1, · · · , Ihn.

At DFE, Qki = Eki = Iki = Rki = 0, and Ski = Nki.

60



Theorem 1. For the model presented in system of equations (4.12),a unique nonnegative

solution for total number of species k individuals in node i at DFE exists.

Proof. To solve the total number of species k individuals in each node at DFE, the following

system of equations must be solved.

W
[
N∗k1 · · · N∗kn

]T
=
[
rk1 · · · rkn

]T
, (4.13)

where

W =


dk1 +

∑n
j=2 ωk1j −ωk21 · · · −ωkn1

−ωk12 dk2 +
∑n

j=1,j 6=2 ωk2j · · · −ωkn2
· · · · · · · · · · · ·
−ωk1n −ωk2n · · · dkn +

∑n−1
j=1 ωknj

 .
The variable vector

[
N∗k1 · · ·N∗kn

]T
is to be solved. Matrix W is a diagonal dominant

matrix of its column entries [23], i.e., Wii >
∑n

i=1,i 6=jWij, for all i, where Wij is the (i, j)

entry of W . By Theorem 1 in page 654 of [23], W is invertible. Moreover, by Theorem 9,

W−1 is nonnegative. Thus, a unique nonnegative solution for the system of equations (4.13)

exists: [
N∗k1 · · · N∗kn

]T
=
[
N0
k1 · · · N0

kn

]T
=W−1

[
rk1 · · · rkn

]T
.

Since incorporating multiple species in multiple nodes leads to matrices F and V growing

very large, the computation of R0 is simplified by decomposing the matrices into blocks,

deriving block upper or lower triangular matrices as follows:

F =

[
0gn×gn Ugn×2hn
02hn×gn FH

]
, V =

[ ⊕g
k=1(

⊕n
i=1 θki) 0gn×2hn

W2hn×gn VH

]
,

where

FH =

[
0hn×hn Zhn×hn
0hn×hn 0hn×hn

]
, VH =

[ ⊕h
k=1 Yk 0hn×hn

−
⊕h

k=1(
⊕n

i=1 εki)
⊕h

k=1Xk

]
,

U =
[

0gn×hn
⊕g

k=1(
⊕n

i=1 bkiqki) 0gn×(h−g)n
]
, W =

 0hn×gn
−
⊕g

k=1(
⊕n

i=1 θki)
0(h−g)n×gn

 .
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The block matrix Z in FH is written into an h × h block matrix Z = (Zkm) and its (k,m)

entry is an n× n diagonal matrix Zkm =
⊕n

i=1(βmki
S0
ki

N0
mi

). Matrices Yk and Xk are:

Yk =


ζk1 −ωk21 · · · −ωkn1
−ωk12 ζk2 · · · −ωkn2
· · · · · · · · · · · ·
−ωk1n · · · · · · ζkn

 , and Xk = Yk +
n⊕
i=1

(γki − εki), (4.14)

where ζki = dki + εki +
∑n

j=1,j 6=i ωkij. Since matrices Yk and Xk are invertible, according to

Theorem 9, VH and V are invertible. By direct calculation:

V −1H =

[
⊕hk=1Y

−1
k 0

⊕hk=1Lk ⊕hk=1X
−1
k

]
, V −1 =

[ ⊕g
k=1(

⊕n
i=1 θ

−1
ki ) 0gn×2hn

−V −1H W (
⊕g

k=1(
⊕n

i=1 θ
−1
ki )) V −1H

]
,

(4.15)

where Lk = X−1k (⊕ni=1εki)Y
−1
k . Similar to the derivation in Section 4.1.1, R0 is:

R0 = ρ(FV −1) = ρ(FHV
−1
H −W (

g⊕
k=1

(
n⊕
i=1

θ−1ki ))UV −1H ). (4.16)

Moreover, (4.11) still holds. If the lower bound ρ(FHV
−1
H ) > 1, the conclusion can be made

that a network may be invaded without computing the upper bound or the exact value of

R0.

The term FHV
−1
H is related to horizontal transmission, and −W (

⊕g
k=1(

⊕n
i=1 θ

−1
ki ))UV −1H

is related to vertical transmission, making R0 a function of vertical and horizontal transmis-

sion parameters. Generally, R0 depends on demographic, disease, and movement factors,

proving too complicated to compute or analyze [11]. The complexity of computing R0 using

Equation (4.16) depends on a specific model for a certain disease. For the general model,

only the formula of R0 in Equation (4.16) and its lower bound in Inequality (4.11) can be

provided.

In the following section, Equation (4.16) is applied to an RVF virus transmission metapop-

ulation model. Then, based on assumptions for the RVF model, R0 is computed using

Equation (4.16) and lower and upper bounds are derived, providing insights into the role of

model parameters on R0.
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4.2 Applying R0 Formula to an Rift Valley Fever Metapop-

ulation Model

The explicit expression of R0 in Equation (4.16) was applied to an RVF metapopulation

model to study the roles of parameters and networks on R0.

4.2.1 The Network-based Rift Valley Fever Metapopulation Model

In this section, the general model in system of equations (4.12) in Section 4.1.2 was applied

to study the dynamics of RVF virus transmission with h = 4, g = 1. Aedes and Culex

mosquito vectors, as well as livestock and human hosts were considered. The RVF model is

less complex than the general model presented in Equations (4.12). Here, the assumption is

made that only livestock can move in and out of nodes, and all mosquitoes do not recover.

Disease-induced mortality for livestock and humans and carrying capacity for mosquitoes

and humans were considered. Due to lack of transmission by humans or direct intra-species

transmission, this RVF model contains fewer infection terms than those in the general model.

The full model is described by Equations (2.14), (2.15), (4.17), and (4.18) and relative

parameters are in Table 4.1. The descriptions of parameters are the same as corresponding

parameters in Table 2.1 and are omitted here. Parameter w2ij is livestock movement rate

from node i to node j, and r2i is the number of livestock born daily in node i (i = 1, · · · , n).

This model is slightly different from the model in Chapter 2. The number of species k

individuals (k = 1, 2, 3, 4) from node i in compartment J is represented by Jki, where k = 1

(resp. 2, 3, 4) represents Aedes mosquitoes (resp. livestock, Culex mosquitoes, and humans).

Daily numbers of newborn Aedes mosquitoes, Culex mosquitoes, and humans are bkiNki. A

node index is added at the end of the subscript of a parameter only when referring to a

parameter for a specific node. For example, β12i represents the contact rate from Aedes

mosquitoes (k = 1) to livestock (k = 2) in node i.
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Livestock Population Model

dS2i

dt
= r2i − β12iS2iI1i/N1i − β32iS2iI3i/N3i − d2iS2i +

n∑
j=1,j 6=i

ω2jiS2j

−
n∑

j=1,j 6=i

ω2ijS2i

dE2i

dt
= β12iS2iI1i/N1i + β32iS2iI3i/N3i − ε2iE2i − d2iE2i

+
n∑

j=1,j 6=i

ω2jiE2j −
n∑

j=1,j 6=i

ω2ijE2i

dI2i
dt

= ε2iE2i − γ2iI2i − µ2iI2i − d2iI2i +
n∑

j=1,j 6=i

ω2jiI2j −
n∑

j=1,j 6=i

ω2ijI2i

dR2i

dt
= γ2iI2i − d2iR2i +

n∑
j=1,j 6=i

ω2jiR2j −
n∑

j=1,j 6=i

ω2ijR2i

dN2i

dt
= r2i − µ2iI2i − d2iN2i +

n∑
j=1,j 6=i

ω2jiN2j −
n∑

j=1,j 6=i

ω2ijN2i

(4.17)

Human Population Model

dS4i

dt
= b4iN4i − β14iS4iI1i/N1i − β24iS4iI2i/N2i − β34iS4iI3i/N3i − d4iS4iN4i/K4

dE4i

dt
= β14iS4iI1i/N1i + β24iS4iI2i/N2i + β34iS4iI3i/N3i − ε4iE4i − d4iE4iN4i/K4

dI4i
dt

= ε4iE4i − γ4iI4i − µ4iI4i − d4iI4iN4i/K4

dR4i

dt
= γ4iI4i − d4iR4iN4i/K4

dN4i

dt
= b4iN4i − µ4iI4i − d4iN4iN4i/K4

(4.18)

4.2.2 The Calculation of R0 for an Rift Valley Fever Model

The explicit expression of R0 in Equation (4.16) is applied to the RVF metapopulation

model, lower and upper bounds of R0 are derived based on the above assumptions in Section

4.2.1.
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Parameter Range or Value Dimension Source
β12 (0.0021, 0.2762) 1/day [22, 56, 59, 78, 96, 114, 115]
β21 (0.0021, 0.2429) 1/day [22, 56, 59, 78, 96, 113]
β23 (0.0000, 0.3200) 1/day [56, 59, 78, 96, 113, 123]
β32 (0.0000, 0.096) 1/day [56, 59, 78, 96, 123]
β14 1/day
β24 1/day
β34 1/day

1/γ2 (2, 5) days [42]
1/γ4 (4, 7) days [84]
1/d1 (3, 60) days [15, 83, 96]
1/d2 (360, 3600) days [97]
1/d3 (3, 60) days [15, 83, 96]
1/d4 days
b1 1/day [15, 83, 96]
b3 1/day [15, 83, 96]
b4 1/day

1/ε1 (4, 8) days [114]
1/ε2 (2, 6) days [93]
1/ε3 (4, 8) days [114]
1/ε4 (2, 6) days [84]
µ2 (0.025, 0.1) 1/day [42, 93]
q1 (0, 0.1) 1/day [45]

1/θ1 (5, 15) days [96]
1/θ3 (5, 15) days [96]
K1 10000
K3 10000
K4 100000
r2i 1 1/day [84]
ω2ij (0, 1

n
) 1/day

Table 4.1: Parameters in the model omitting the node index.
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Explicit Expression of R0 for an Rift Valley Fever Model

First, a check must be made to verify whether a unique solution N0
ki exists. At DFE,

E0
ki = I0ki = R0

ki = 0. By computation, S0
ki = N0

ki = bkiKk

dki
for k = 1, 3, 4, where Kk is the

carrying capacity of species k. This model is a special case of the model for Theorem 1,

which generates a unique nonnegative solution for the total number of livestock in node i

at DFE denoted by:
[
N0

21 · · · N0
2n

]T
.

By (4.1), Jacobian matrices for the RVF model are:

F =

[
0n×n Un×8n
08n×n FH

]
, V =

[
⊕ni=1θ1i 0n×8n
W8n×n VH

]
.

Each component of the R0 formula is computed as follows:

FH =

[
04n×4n Z4n×4n
04n×4n 04n×4n

]
, VH =

[ ⊕4
k=1 Yk 04n×4n

−(⊕4
k=1(⊕ni=1εki))4n×4n

⊕4
k=1Xk

]
. (4.19)

U =
[

0n×4n ⊕ni=1(b1iq1i) 0n×3n
]
, W =

 04n×n
−(⊕ni=1θ1i)

03n×n

 . (4.20)

Z =


0 Z12 0 0
Z21 0 Z23 0
0 Z32 0 0
Z41 Z42 Z43 0

 , (4.21)

Z12 = ⊕ni=1β21i
S0
1i

N0
2i

, Z21 = ⊕ni=1β12i
S0
2i

N0
1i

, Z23 = ⊕ni=1β32i
S0
2i

N0
3i

, Z32 = ⊕ni=1β23i
S0
3i

N0
2i

,

Z41 = ⊕ni=1β14i
S0
4i

N0
1i

, Z42 = ⊕ni=1β24i
S0
4i

N0
2i

, Z43 = ⊕ni=1β34i
S0
4i

N0
3i

.

The matrices V −1H and V −1 are in Equation (4.15) with g=1 and h=4, respectively.

Below, matrices Yk and Xk relate to Aedes mosquitoes, livestock, Culex mosquitoes, and

humans with k = 1, 2, 3, 4, respectively.

Y1 = ⊕ni=1(
d1iN

0
1i

K1
+ ε1i), X1 = Y1 −⊕ni=1ε1i,

Y3 = ⊕ni=1(
d3iN

0
3i

K3
+ ε3i), X3 = Y3 −⊕ni=1ε3i,

Y4 = ⊕ni=1(
d4iN

0
4i

K4
+ ε4i), X4 = Y4 −⊕ni=1ε4i,
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Y2 =


ζ21 −ω221 · · · −ω2n1

−ω212 ζ22 · · · −ω2n2

· · · · · · · · · · · ·
−ω21n −ω22n · · · ζ2n

 , X2 = Y2 +⊕ni=1(γ2i + µ2i − ε2i).

The reproduction number can be computed by plugging the above terms into Equation

(4.16). Typically, R0 for a metapopulation model is complicated [9], deriving some bounds

on the value of R0 can be helpful [9]. In the following section, lower and upper bounds for

R0 are derived.

Deriving Lower and Upper Bounds for R0

Bounds of R0 are derived in many articles, including the following examples. Gao and Ruan

presented bounds of R0 for an SIS patch model [48] investigating effects of media coverage

and human movement on the spread of infectious diseases, as well as a malaria model

[49]. Hsieh, Driessche, and Wang [58] derived bounds of R0, describing the relationship

between the reproduction numbers for the isolated ith patch and for the system. Salmani

and van den Driessche [104] derived bounds for an SEIRS patch model. Arino [9] presented

bounds of R0 for patch models considering multiple species. The reproduction number for

an averaging process of mixed individuals or groups is estimated to be smaller than or equal

to the reproduction number before mixing [3]. Bounds of R0 were derived for an RVF

metapopulation model in this section.

Theorem 2. Consider the model in Equations (2.14), (2.15), (4.17), and (4.18), then

ρ(FHV
−1
H ) 6 R0 6 ρ(FHV

−1
H ) + max

i
(q1i). (4.22)

Proof. The left inequality is the same as (4.11). The right inequality is to be proven to hold.

By (4.15) and (4.20),

−W (⊕ni=1θ
−1
1i )UV −1H =

[
04n×4n 04n×4n
Y Z

]
, where

Y =

[
X−11 (⊕ni=1(b1iq1iε1i))Y

−1
1 0n×3n

03n×n 03n×3n

]
, Z =

[
(⊕ni=1(b1iq1i))X

−1
1 0n×3n

03n×n 03n×3n

]
.
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MatricesX1 andX−11 are diagonal matrices and the nonzero eigenvalues of−W (⊕ni=1θ
−1
1i )UV −1H

are diagonal entries of (⊕ni=1(b1iq1i))X
−1
1 . Hence, −W (⊕ni=1θ

−1
1i )UV −1H = PDP−1 for some

P . Here

D =

[
04n×4n 04n×4n
04n×4n Q

]
, Q =

[
03n×3n 03n×n
0n×3n (⊕ni=1(b1iq1i))X

−1
1

]
.

From linear algebra, each column of P can be chosen as an eigenvector of−W (⊕ni=1θ
−1
1i )UV −1H .

By direct calculation,

P =

[
H4n×4n 0
J4n×4n L4n×4n

]
, where H =

[
(⊕ni=1(b1iq1i))X

−1
1 0n×3n

03n×n I3n×3n

]
,

L =

[
0n×3n In×n
I3n×3n 03n×n

]
, J =

[
−(⊕ni=1(b1iq1iε1i))X

−1
1 Y −11 0n×3n

03n×n 03n×3n

]
.

Since FHV
−1
H −W (⊕ni=1θ

−1
1i )UV −1H = P(P−1FHV −1H P +D)P−1,

ρ(FV −1) = ρ(FHV
−1
H −W (⊕ni=1θ

−1
1i )UV −1H ) = ρ(P−1FHV −1H P +D). (4.23)

Matrix P−1FHV −1H P is to be proven to be a nonnegative matrix. By calculation,

P−1 =

[
H−1 0

−L−1JH−1 L−1
]
, H−1 =

[
(⊕ni=1

1
b1iq1i

)X1 0n×3n
03n×n I3n×3n

]
, L−1 =

[
03n×n I3n×3n
In×n 0n×3n

]
.

By direct checking, H−1, L−1, and −L−1JH−1 are all nonnegative matrices. Hence, P−1 is

a nonnegative matrix. Next, matrix FHV
−1
H P is to be proven to be a nonnegative matrix.

FHV
−1
H P =

[
Z(⊕4

k=1Lk)H + Z(⊕4
k=1X

−1
k )J Z(⊕4

k=1X
−1
k )L

0 0

]
,

where Z(⊕4
k=1X

−1
k )L is a nonnegative matrix and Lk = X−1k (⊕ni=1εki)Y

−1
k . Furthermore,

the only possible negative entries of Z(⊕4
k=1Lk)H+Z(⊕4

k=1X
−1
k )J are in its (2, 1) and (4, 1)

blocks. But the block in (2, 1)-entry is

Z21X
−1
1 (⊕ni=1ε1i)Y

−1
1 (⊕ni=1(b1iq1i))X

−1
1 + Z21X

−1
1 (−⊕ni=1 (b1iq1iε1i))X

−1
1 Y −11 = 0.

By assumption, X1 and Y1 are both diagonal matrices. The last equality follows X−11 Y −11 =

Y −11 X−11 . Similarly, the block in (4, 1)-entry is

Z41X
−1
1 (⊕ni=1ε1i)Y

−1
1 (⊕ni=1(b1iq1i))X

−1
1 + Z41X

−1
1 (−⊕ni=1 (b1iq1iε1i))X

−1
1 Y −11 = 0.
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Hence, FHV
−1
H P is a nonnegative matrix. This proves the claim. By Theorem 2 in [32],

ρ(FV −1) ≤ ρ(P−1FHV −1H P) + ρ(D) = ρ(FHV
−1
H ) + ρ(D). (4.24)

Since X1 = ⊕ni=1
d1iN

0
1i

K1
and N0

1i = b1iK1

d1i
,

ρ(D) = ρ(−W (⊕ni=1θ
−1
1i )UV −1H ) = ρ((⊕ni=1(b1iq1i))X

−1
1 ) = ρ(⊕ni=1q1i) 6 max

i
(q1i).

Therefore,

ρ(FHV
−1
H ) ≤ R0 = ρ(FV −1) ≤ ρ(FHV

−1
H ) + max

i
(q1i).

The difference between the lower and upper bounds is maxi(q1i) with lower bound,

ρ(FHV
−1
H ), computed by Equation (4.28).

Theorem 3. For the model in Equations (2.14), (2.15), (4.17), and (4.18), assume ε2i = ε2

for all i, then√
min
i

(χi)ρ(X−12 Y −12 ) 6 R0 6
√

max
i

(χi)ρ(X−12 Y −12 ) + max
i

(q1i), (4.25)

where

χi =
ε1iε2β12iβ21i
b1i(b1i + ε1i)

+
ε2ε3iβ32iβ23i
b3i(b3i + ε3i)

. (4.26)

Proof. By Equations (4.15) and (4.19),

FHV
−1
H =

[
Z(⊕4

k=1Lk) Z(⊕4
k=1X

−1
k )

0 0

]
.

Then

RH
0 = ρ(FHV

−1
H ) = ρ(Z(⊕4

k=1Lk)). (4.27)

By Equation (4.21),

Z(⊕4
k=1Lk) =


0 Z12L2 0 0

Z21L1 0 Z23L3 0
0 Z32L2 0 0

Z41L1 Z42L2 Z43L3 0

 =:


0 T1 0 0
T2 0 T3 0
0 T4 0 0
T5 T6 T7 0

 .
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To compute the eigenvalues of Z(⊕4
k=1Lk), first the characteristic polynomial of Z(⊕4

k=1Lk)

is calculated:

|λI4n − Z(⊕4
k=1Lk)| =

∣∣∣∣∣∣∣∣
λIn −T1 0 0
−T2 λIn −T3 0

0 −T4 λIn 0
−T5 −T6 −T7 λIn

∣∣∣∣∣∣∣∣ = λn

∣∣∣∣∣∣
λIn −T1 0
−T2 λIn −T3

0 −T4 λIn

∣∣∣∣∣∣
= λn

∣∣∣
 In λT −12 0

0 In 0
0 0 In

 λIn −T1 0
−T2 λIn −T3

0 −T4 λIn

 ∣∣∣ = λn
∣∣∣
 0 −T1 + λ2T −12 −λT −12 T3
−T2 λIn −T3

0 −T4 λIn

 ∣∣∣
= λn|T2|

∣∣∣∣ −T1 + λ2T −12 −λT −12 T3
−T4 λIn

∣∣∣∣ = λn|T2|
∣∣∣∣[ −T1 + λ2T −12 −λT −12 T3

−T4 λIn

] [
In λT −14

0 In

] ∣∣∣
= λn|T2|

∣∣∣∣ −T1 + λ2T −12 −λ(T1T −14 − λ2T −12 T −14 + T −12 T3)
−T4 0

∣∣∣∣
= λn|T2|

∣∣∣∣ −λ(T1T −14 − λ2T −12 T4 + T −12 T3) T1 − λ2T −12

0 T4

∣∣∣∣
= λn|T2||T4|

∣∣ −λ(T1T −14 − λ2T −12 T −14 + T −12 T3)
∣∣

= λ2n|T2||T4|
∣∣ λ2T −12 T −14 − (T1T −14 + T −12 T3)

∣∣
= λ2n|T2||T4||T −12 ||T −14 |

∣∣ λ2In − (T4T2T1T −14 + T4T3)
∣∣

= λ2n
∣∣ λ2In − (T4T2T1T −14 + T4T3)

∣∣ .
Matrix Z(⊕4

k=1Lk) has 2n zero eigenvalues. The spectral radius of Z(⊕4
k=1Lk) is the

square root of the spectral radius of T4T2T1T −14 + T4T3. By Equation (4.27),

ρ(FHV
−1
H ) =

√
ρ(T4T2T1T −14 + T4T3) =

√
ρ(T4(T2T1 + T3T4)T −14 ) =

√
ρ(T2T1 + T3T4).

(4.28)

Recall that Z21, Z12, X1, Y1, Z23, Z32, Y3, X3 are all diagonal matrices. By the assumption

that ε2i = ε2, for all i,

T2T1 = (⊕ni=1ε1iε2)Z21X
−1
1 Y −11 Z12X

−1
2 Y −12 = (⊕ni=1

ε2ε1iβ12iβ21i
b1i(b1i + ε1i)

)X−12 Y −12 ,

T3T4 = (⊕ni=1ε2ε3i)Z23X
−1
3 Y −13 Z32X

−1
2 Y −12 = (⊕ni=1

ε2ε3iβ32iβ23i
b3i(b3i + ε3i)

)X−12 Y −12 .

By the definition of χi in (4.26),

min
i

(χi)ρ(X−12 Y −12 ) 6 ρ(T2T1 + T3T4) 6 max
i

(χi)ρ(X−12 Y −12 ).
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Therefore, √
min
i

(χi)ρ(X−12 Y −12 ) 6 ρ(FHV
−1
H ) 6

√
max
i

(χi)ρ(X−12 Y −12 ).

According to Theorem 2,√
min
i

(χi)ρ(X−12 Y −12 ) 6 R0 6
√

max
i

(χi)ρ(X−12 Y −12 ) + max
i

(q1i).

The difference between the lower bound and the upper bound in a network with hetero-

geneous corresponding parameters across nodes is larger than that in Inequality (4.22).

Corollary 1. Suppose for all i, birth and incubation rates in mosquitoes and livestock,

contact rates between livestock and mosquitoes are homogeneous for different nodes, i.e.,

b1i = b1, b3i = b3, ε1i = ε1, ε2i = ε2, ε3i = ε3, β12i = β12, β21i = β21, β23i = β23, β32i = β32.

(4.29)

Then √
χρ(X−12 Y −12 ) 6 R0 6

√
χρ(X−12 Y −12 ) + max

i
(q1i). (4.30)

where

χ =
ε1ε2β12β21
b1(b1 + ε1)

+
ε2ε3β32β23
b3(b3 + ε3)

. (4.31)

Proof. By the conditions in (4.29) and (4.34),

mini (χi)

maxi (d2i + ε2i) maxi(d2i + γ2i + µ2i)
=

χ

(d2 + ε2)(d2 + γ2 + µ2)

=
maxi (χi)

mini(d2i + ε2i) min( d2i + γ2i + µ2i)
.

Corollary follows Theorem 4.

Theorem 4. Under the condition of Theorem 3, R0 can be estimated by the following

inequality: √
mini (χi)

maxi (d2i + ε2) maxi(d2i + γ2i + µ2i)
6 R0

71



6

√
maxi (χi)

mini (d2i + ε2) mini(d2i + γ2i + µ2i)
+ max

i
(q1i). (4.32)

Proof. According to Theorem 8,

1

maxi (d2i + ε2i) maxi(d2i + γ2i + µ2i)
6 ρ(X−12 Y −12 ) 6

1

mini (d2i + ε2i) mini(d2i + γ2i + µ2i)
.

(4.33)

By Theorem 3, √
mini (χi)

maxi (d2i + ε2i) maxi(d2i + γ2i + µ2i)
6 R0

6

√
maxi (χi)

mini(d2i + ε2i) min( d2i + γ2i + µ2i)
+ max

i
(q1i).

If the differences between mini (χi) and maxi (χi), mini (d2i + ε2) and maxi (d2i + ε2),

mini(d2i+γ2i+µ2i) and maxi(d2i+γ2i+µ2i) are large, then the difference between the lower

bound and the upper bound may be large. However, the scalar lower and upper bounds are

more easily computed. Moreover, if the lower bound is greater than one, the conclusion can

be drawn that the network may be invaded without computing R0 or its upper bound.

Corollary 2. Based on the condition for Corollary 1, the assumption is further made that

for all i, the death rate, mortality rate, and recovery rate in livestock, and transovarial

transmission rate in Aedes mosquitoes are homogeneous for all nodes, i.e.,

d2i = d2, µ2i = µ2, γ2i = γ2, q1i = q1. (4.34)

Consequently,√
χ

(d2 + ε2)(d2 + γ2 + µ2)
6 R0 6

√
χ

(d2 + ε2)(d2 + γ2 + µ2)
+ q1. (4.35)

Proof. By the assumptions in (4.29), mini(χi) = maxi(χi) = χ. Corollary follows Theorem

3.
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In this case, the lower and upper bounds of R0 correspond to the bounds for homogeneous

populations presented in [131] and are tight. Clearly, R0 for horizontal transmission,

RH
0 =

√
ε2

(d2 + ε2)(d2 + γ2 + µ2)

[ ε1β12β21
b1(b1 + ε1)

+
ε3β32β23
b3(b3 + ε3)

]
, (4.36)

does not depend on livestock movement rates. Only bounds for R0 can theoretically be

obtained. Based on numerical simulation results, the conjecture is made that given the

conditions for Corollary 2, R0 does not depend on livestock movement rates.

The bounds for R0 in inequalities (4.35) can be interpreted biologically as follows. The

lower bound, RH
0 , is R0 for horizontal transmission because RH

0 = ρ (FHV
−1
H ), where

ρ(FHV
−1
H ) represents the spectral radius of the next generation matrix for horizontal trans-

mission FHV
−1
H . The upper bound is given by the sum of RH

0 and a second term that is only

related to vertical transmission, i.e., from mothers to their offspring in the Aedes mosquito

population.

RH
0 includes Aedes-livestock interaction and Culex-livestock interaction. RH

0 for interac-

tion between Aedes and livestock is represented by:

R
H(A−L)
0 =

√
ε2

(d2 + ε2)(d2 + γ2 + µ2)

ε1β12β21
b1(b1 + ε1)

,

and R
H(A−L)
0 can be rewritten as:

R
H(A−L)
0 =

√[ β12
d1

N0
1

K1

ε1

(d1
N0

1

K1
+ ε1)

][ β21
(d2 + γ2 + µ2)

ε2
(d2 + ε2)

]
, (4.37)

which is a product of four terms. Each infected Aedes mosquito can infect β12

d1
N0
1

K1

suscepti-

ble livestock throughout its lifetime. Similarly, each infected livestock can infect β21
d2+γ2+µ2

susceptible Aedes mosquitoes during its lifetime. The probability of Aedes mosquitoes and

livestock surviving through incubation period to the point where they become infectious

is ε1

d1
N0
1

K1
+ε1

and ε2
d2+ε2

, respectively. Therefore, R
H(A−L)
0 is geometric mean of the average

number of secondary livestock infections produced by one Aedes mosquito vector in the first

square bracket in (4.37), and average number of secondary Aedes mosquito vector infections

produced by one livestock host in the second square bracket in (4.37).
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Similarly, RH
0 due to interaction between Culex and livestock is represented by:

R
H(C−L)
0 =

√
ε2

(d2 + ε2)(d2 + γ2 + µ2)

ε3β32β23
b3(b3 + ε3)

,

and it can be rewritten as R
H(C−L)
0 as:

R
H(C−L)
0 =

√[ β32
d3

N0
3

K3

ε3

(d3
N0

3

K3
+ ε3)

][ β23
(d2 + γ2 + µ2)

ε2
(d2 + ε2)

]
, (4.38)

which is also a product of four terms. Each infected Culex mosquito can infect β32

d3
N0
3

K3

suscep-

tible livestock throughout its lifetime. Similarly, each infected livestock can infect β23
d2+γ2+µ2

susceptible Culex mosquitoes. The probability of Culex mosquitoes surviving through the

incubation period to the point where they become infectious is ε3

d3
N0
3

K3
+ε3

. Similarly, the prob-

ability of livestock surviving through the incubation period to the point where they become

infectious is ε2
d2+ε2

. Therefore, R
H(C−L)
0 is the geometric mean of average number of secondary

livestock infections produced by one Culex mosquito vector in the first square bracket in

(4.38), and average number of secondary Culex mosquito vector infections produced by one

livestock in the second square bracket in (4.38).

The expression (4.36) for RH
0 can be rewritten as RH

0 =

√
(R

H(A−L)
0 )2 + (R

H(C−L)
0 )2,

which increases with the increase of each of the four terms in R
H(A−L)
0 and R

H(C−L)
0 . The

square root is due to the vector-host-vector viral transmission path [46, 57, 98]. The depen-

dence of RH
0 on R

H(A−L)
0 and R

H(C−L)
0 is shown in Figure 4.1.

Tightness of Bounds for R0

A 100-node network with heterogeneous corresponding parameters among nodes was built

to study the tightness of bounds. Disease parameters were uniformly distributed for each

node during 100 runs within their respective ranges, given in Table 4.1. Then, R0 was

numerically computed according to Equation (4.16). Lower and upper bounds of R0 were

computed according to Inequality (4.22) in Theorem 2. The reproduction number for hor-

izontal transmission was computed according to Equation (4.28). The lower bound of R0
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Figure 4.1: The interpretation of RH
0 .

(denoted by RL
0 ) versus R0 in each run was shown in Figure 4.2(a), and the upper bound

of R0 (denoted by RU
0 ) versus R0 in each run was shown in Figure 4.2(b). In each run,

the upper bound was slightly greater and the lower bound was slightly smaller than R0.

With the same network and the same set of parameters, the lower and upper bounds of

R0 were computed using Inequality (4.25). The lower bound versus exact R0 was shown

in Figure 4.3(a), and the upper bound versus exact R0 was shown in Figure 4.3(b). The

bounds obtained by Inequality (4.25) in Theorem 3 are less tight than those obtained by

Inequality (4.22) in Theorem 2, as ρ(FHV
−1
H ) is estimated by computing the spectral radius

of a smaller size matrix. The bounds obtained by Inequality (4.32) in Theorem 4 can be

even looser because ρ(X−12 Y −12 ) is estimated by scalars.

The above bounds are for heterogeneous networks. The bounds in Corollary 2 (see

Inequality (4.35)) apply to homogeneous networks in which the difference between the lower

bound and the upper bound is the largest transovarial transmission rate of Aedes mosquitoes

across nodes.

4.2.3 Assessing Roles of Parameters on R0

As an example, a two-node network demonstrates how bounds of R0 alter with livestock

movement rates, if parameters d2i, γ2i, and µ2i are heterogeneous, i.e., at least one of the

inequalities d2i 6= d2j, γ2i 6= γ2j, µ2i 6= µ2j holds for different i and j. In this example, Y2
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Figure 4.2: The reproduction number and its lower and upper bounds computed using
Theorem 2 for 100 simulation runs on 100-node heterogeneous networks.

0 1 2 3 4 5
0

1

2

3

4

5

R
0L

R
0

 

 
lower bound
y=x

(a) The reproduction number and its
lower bound with heterogeneous pa-
rameters

0 1 2 3 4 5
0

1

2

3

4

5

R
0

R
0U

 

 upper bound
y=x

(b) The reproduction number and its
upper bound with heterogeneous pa-
rameters

Figure 4.3: The reproduction number and its lower and upper bounds computed using
Theorem 3 for 100 simulation runs on 100-node heterogeneous networks.

corresponds to the matrix in Equation (4.4) and X2 = Y2 +⊕2
i=1(γ2i + µ2i − ε2i). Since X2,

Y2 are both diagonal dominant matrices, by Theorem 9, Y −12 and X−12 are both nonnegative

matrices.
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According to Proposition 4.3 in [49], ρ(X−12 Y −12 ) is decreasing in ω212 if

ω212(a2 − a1) > (a1c1 − a2c2)− (a2 − a1)ω221

and increasing otherwise, where a1 = d21 + ε21, a2 = d22 + ε22, c1 = d21 + γ21 + µ21 and

c2 = d22 +γ22 +µ22. In the case that a1 = a2, ρ(X−12 Y −12 ) is decreasing in ω212 if c2 > c1 and

increasing otherwise. If a1 6= a2, ω
∗
212 := a1c1−a2c2

a2−a1 − ω221 is a critical point of ρ(X−12 Y −12 ).

Moreover, ρ(X−12 Y −12 ) reaches the maximum value at ω∗212 if a2 > a1 and the minimum value

at ω∗212 otherwise.

To evaluate the impact of networks with corresponding homogeneous parameters across

all nodes on the value of R0 computed using Equation (4.16), three networks with three,

four, and 100 nodes were constructed, respectively. Simulation runs with varying livestock

movement rates and parameters in assumptions (4.29) and (4.34) held constant and homo-

geneous across nodes showed that R0 is not affected by livestock movement rates during

100 runs per network. Moreover, values and bounds of R0 obtained through numerical

simulations were identical for networks with three, four, and 100 nodes. Extensive numeri-

cal simulation results showed that R0 does not depend on livestock movement rates or the

number of nodes in a network when (4.29) and (4.34) hold.

Scenarios (see Table 4.2) were run 100 times for each four-node network to study the im-

pact of livestock movement rates on R0. During 100 realizations for each scenario, livestock

movement rates were increased while keeping remaining parameters constant and homoge-

neous across all nodes. In Scenario 1, contact rates β12, β21, β23, and β32 for node i were

set larger than respective parameters for node j (i > j, i, j = 1, 2, 3, 4). During each run,

R0 increased while increasing livestock movement rates from node j to node i, ω2ji, and de-

creased while increasing livestock movement rates from node i to node j, ω2ij, as shown in

Figures 4.4(a) and 4.4(b), respectively. In Scenario 2, under setting d2i > d2j, R0 decreased

when ω2ji increased, and increased when ω2ij increased, as demonstrated in Figures 4.5(a)

and 4.5(b), respectively. With livestock recovery rates γ2i > γ2j in Scenario 3, R0 decreased

when ω2ji increased, and increased when ω2ij increased, as shown in Figures 4.6(a) and
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No. parameter livestock move-
ment rates

R0

1 β12i > β12j, β21i > β21j, β23i > β23j,
β32i > β32j

ω2ji increases increases

ω2ij increases decreases
2 d2i > d2j ω2

ji increases decreases
ω2ij increases increases

3 γ2i > γ2j ω2ji increases decreases
ω2ij increases increases

4 µ2i > µ2j ω2ji increases decreases
ω2ij increases increases

Table 4.2: Different scenarios for numerical simulations on four-node networks. Other
parameters are kept the same and homogeneous across all nodes during all realizations.
The superscripts i, j = 1, 2, 3, 4 and i > j.

4.6(b), respectively. Similarly, with livestock mortality rates µ2i > µ2j in Scenario 4, R0

decreased when ω2ji increased, and increased with larger ω2ij, as illustrated in Figures 4.7(a)

and 4.7(b), respectively. Tuning the parameters in above scenarios yielded R0 from below

one to above one. As a consequence, livestock movement rates are important in leading to

epidemic outbreak or epidemic burnout.
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(a) As the livestock movement rate
from node j to node i (ω2ji) increases
when β12i > β12j , β21i > β21j , β23i >
β23j , and β23i > β23j , R0 increases.
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β23j , and β23i > β23j , R0 decreases.

Figure 4.4: The reproduction number for four-node networks with different contact rates
during 100 runs.
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Figure 4.5: The reproduction number for four-node networks with different livestock
death rates during 100 runs.
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Figure 4.6: The reproduction number for four-node networks with different livestock re-
covery rates during 100 runs.

4.3 Results and Discussions

Proposed here is an explicit expression of R0, which is formulated as a function of vertical

and horizontal transmission parameters shown in Equation (4.16). This formula facilitates

computing R0 for many diseases that involve both vertical and horizontal transmission by

replacing the spectral radius of the original next generation matrix with that of a smaller size
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Figure 4.7: The reproduction number for four-node networks with different livestock mor-
tality rates during 100 runs.

matrix. The lower bound of R0 equals R0 for horizontal transmission. Equation (4.16) was

applied to the RVF model, deriving R0 and its lower and upper bounds. Tightness of various

bounds was compared, and the role of livestock movement rates and disease parameters on

R0 was analyzed through numerical simulations.

The reproduction number for an RVF metapopulation model relates to R0 for horizon-

tal transmission involving Aedes-livestock interaction, and Culex-livestock interaction, and

vertical transmission parameters. Different bounds of R0 for heterogeneous networks were

provided by Theorems 2, 3, and 4, with decreasing tightness and increasing ease. For homo-

geneous networks, R0 for horizontal transmission in Equation (4.36) and bounds of R0 given

by Corollary 2 are proven to be independent of livestock movement rates and equal to corre-

sponding terms for homogeneous populations presented in [131]. The lower bound is R0 for

horizontal transmission and the upper bound is the sum of R0 for horizontal transmission

and the largest transovarial transmission rate of Aedes mosquitoes among nodes.

Typically, networks in the real world are heterogeneous. Rates of livestock death, incu-

bation, mortality, recovery, and contact with mosquitoes may vary in different nodes due

to climate, public health facilities, environment, and/or type of nodes (e.g., death rates of
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livestock in feedlots are higher than those in livestock premises). Variations in weather may

affect values of some mosquito parameters, e.g., rainfall affects mosquito birth rates, and

temperature affect mosquito incubation rates. Even if weather conditions are homogeneous

across all nodes, various genera and/or species of mosquitoes may exhibit different rates of

incubation, contact, birth, and/or death. Numerical simulations showed livestock movement

rates between different nodes only affect R0 when the network is spatially heterogeneous

regarding parameters. Changing livestock movement rates on heterogeneous networks re-

sulted in R0 varying between values below and above the critical value one. When other

parameters remained homogeneous and constant, increasing livestock movement rates from

nodes with smaller contact rates to those with larger contact rates increased R0. If livestock

movement rates were increased from nodes with smaller livestock death rates (or recovery

rates, or mortality rates) to nodes with larger livestock death rates (or recovery rates, or

mortality rates), R0 decreased. This observation helps us better envision effective mitigation

strategies in executing movement bans between some nodes and in some directions.

Whatever heterogeneity exists between nodes, the same mathematical model in Equa-

tions (4.12), and the explicit expression of R0 in (4.16), are applicable. The formula for R0

presented in this chapter can be applied to numerous diseases aside from RVF.

This work on RVF computes R0 accurately by taking into account vertical transmission,

which is important but ignored by modelers. This research simplified the derivation of R0

by computing the spectral radius of a smaller size matrix than the original next generation

matrix. Bounds of R0 facilitate the estimation of R0 for an RVF metapopulation model.

Simulation results of livestock movement rates and parameters are helpful in developing

efficient mitigation strategies for RVF.
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Chapter 5

The Extinction Threshold

The reproduction number of deterministic models is an essential quantity to predict whether

an epidemic will spread or die out. The extinction threshold for infectious diseases is a term

used to explain the point at which a disease may extinct, contributing crucial knowledge

of mitigation, control, and elimination of infectious diseases. Relationships between basic

reproduction numbers of two network-based vector-host models, and extinction thresholds

of corresponding CTMC models are derived under some assumptions. Numerical simulation

results for malaria and RVF transmission on heterogeneous networks are in agreement with

analytical results without any assumptions, reinforcing the relationships may always exist

and proposing a mathematical problem of proving existence of the relationships in general.

Moreover, numerical simulations show that R0 does not monotonically increase or decrease

with the extinction threshold. Key parameters in predicting uncertainty of extinction thresh-

olds are identified using Latin Hypercube Sampling/Partial Rank Correlation Coefficient.

Consistent trends of extinction probability observed through numerical simulations provide

novel insights into mitigation strategies to increase the disease extinction probability. Re-

search findings may improve understandings of thresholds for disease persistence in order to

control vector-borne diseases.

This chapter is organized as follows. Section 5.1 reviews the branching process for deriv-

ing E0. Section 5.2 calculates R0 for a deterministic vector-host model in which transmission

dynamics of vectors are described by an SI model and transmission dynamics of hosts are
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described by an SIS model. Relationships between E0 of corresponding CTMC model and

R0 are analyzed. In Section 5.3, an analogue of results in Section 5.2 is obtained for a model

in which transmission dynamics of vectors are described by an SEI model and transmission

dynamics of hosts are described by an SEIR model. Local transmission and trans-location

transmission due to proximity for vector-borne diseases are both considered in Sections 5.2

and 5.3. In Section 5.4, the relationships derived in Sections 5.2 and 5.3 are numerically

shown to hold without any assumptions for simplified malaria and RVF metapopulation

models. The sensitivity test determines key parameters in predicting uncertainty of ex-

tinction probability. Relationships between varying parameters and extinction probabilities

are explored through extensive simulations for homogeneous populations and a two-node

network. Section 5.5 provides a summary and discussion of mathematical derivations and

simulation results.

5.1 Computing E0 using Branching Process

In this section we review the multitype branching process approximation used to derive E0

for corresponding CTMC models.

Calculating the probability of disease extinction is one of the most interesting applica-

tions of the branching process which may lead to disease extinction or persistence. We are

interested in conditions under which a disease may become extinct and the probability for

this event to occur. First, we review the approach of using branching process to compute

extinction threshold and extinction probability for multi-type infections.

The rest of this section refers to [4, 92]. Let
−→
X (t) = (X1(t), · · · , Xn(t))T : t ∈ (0,∞)

be a set of discrete-valued vector random variables. The assumptions are made that the

number of infections produced by type i is independent of the number of infections produced

by any other types and individuals of type i have identical probability generating function

(pgf). Let {Xji}nj=1 be offspring random variables for type i, where Xji is the number of

infected individuals of type j produced by individuals of type i. The probability that one
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individual of type i produces xj infected individuals of type j is given as

Pi(x1, · · · , xn) = Prob{X1i = x1, · · · , Xni = xn}.

The offspring pgf array (g1, · · · , gn) : [0, 1]n → [0, 1]n, is defined as

gi(w1, · · · , wn) =
∞∑

xn=0

· · ·
∞∑

x1=0

Pi(x1, · · · , xn)wx11 · · ·wxnn . (5.1)

Note that a trivial fixed point of (g1, · · · , gn) always exists at 1 = (1, · · · , 1).

The nonnegative expectation matrix of offspring distribution is denoted byM = [mij]n×n,

where mji := ∂gi
∂wj
|x=1 <∞ represents the expected number of infected individuals of type j

produced by an individual of type i.

The extinction threshold, E0, is defined as the spectral radius of the expectation matrix,

denoted by ρ(M).

Recall that (B0) and (B1) assumptions in [92] are as follows:

(B0) gi is not simple. Here, a function is called simple if it is linear without constant terms.

(B1) Matrix M is irreducible.

If E0 > 1, under assumptions (B0) and (B1), the pgf has at most one fixed point in (0, 1)n,

denoted by w∗ = (w∗1, · · · , w∗n), if extinction array w∗ in (0, 1)n exists. In the following,

extinction array only refers to w∗ ∈ (0, 1)n. If Ij(0) = ij, then disease extinction probability,

denoted by PE, is

PE = lim
t→∞

Prob{
−→
I (t) = 0} = w∗i11 · · ·w∗inn < 1. (5.2)

If E0 ≤ 1, then

PE = lim
t→∞

Prob{
−→
I (t) = 0} = 1.

5.2 SI Vector Model and SIS Host Metapopulation

Model

In this section, a deterministic vector-host model in which disease transmission dynamics of

vectors are described by an SI model, while transmission dynamics of hosts are described by
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an SIS model. The reproduction number and extinction threshold for corresponding CTMC

model are analytically related.

5.2.1 The Reproduction Number

The model for vectors consists of compartment G representing susceptible vectors, and

compartment J representing infected vectors. Disease dynamics of hosts are modeled by an

SIS model.
dGi

dt
= ηi − βiGiIi/Ni −

n∑
j=1,j 6=i

ωjiGiIj/Nj − µiGi

dJi
dt

= βiGiIi/Ni +
n∑

j=1,j 6=i

ωjiGiIj/Nj − µiJi

dSi
dt

= ψi + γiIi − αiSiJi/Ni −
n∑

j=1,j 6=i

σjiSiJj/Ni − diSi

dIi
dt

= αiSiJi/Ni +
n∑

j=1,j 6=i

σjiSiJj/Ni − γiIi − diIi

(5.3)

The recruitment rate of vectors (resp. hosts) in node i is ηi (resp. ψi) for all i =

1, · · · , n. The rate of new infections in vectors in node i produced by local hosts and hosts

in other nodes are βiGiIi/Ni and
∑n

j=1,j 6=i ωjiGiIj/Nj, respectively. The death rates of

susceptible and infected vectors in node i are µGi and µJi, respectively. The rate of host

infection in node i produced by local vectors and vectors in other nodes are αiSiJi/Ni and∑n
j=1,j 6=i σjiSiJj/Ni, respectively. Death rates of susceptible and infected hosts in node i are

diSi and diIi, respectively. The recovery rate for hosts in node i is γiIi.

The system of ODEs only consisting of compartments Ji and Ii is:

d

dt

[
J1 · · · Jn I1 · · · In

]T
= F − V .

A unique solution at DFE, represented by (G0
i , 0, N

0
i , 0) exists, where G0

i = ηi
µi

and

N0
i = ψi

di
. The Jacobian matrices F and V defined in (4.1) for this model are

F =

[
0 A
B 0

]
, V =

[
Λ1 0
0 Λ2

]
,
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where

A =


β̂1 ω̂21 · · · ω̂n1
ω̂12 β̂2 · · · ω̂n2

· · · · · · . . . · · ·
ω̂1n ω̂2n · · · β̂n

 , B =


α1 σ21 · · · σn1
σ12 α2 · · · σn2

· · · · · · . . . · · ·
σ1n α2 · · · αn

 , (5.4)

Λ1 = diag(µ1, · · · , µn), Λ2 = diag(d1 + γ1, · · · , dn + γn). (5.5)

Here

β̂i =
βiG

0
i

N0
i

and ω̂ij =
ωijG

0
j

N0
i
.

The notation diag(µ1, · · · , µn) represents the diagonal matrix with diagonal entries µ1, · · · , µn.

To calculate R0, the following lemma is proved first.

Lemma 1. Let A1, A2 be square matrices of the same size and A =

[
0 A1

A2 0

]
, then ρ(A) =√

ρ(A2A1).

Proof. For any λ 6= 0,

|λI − A| =
∣∣∣∣ λI −A1

−A2 λI

∣∣∣∣ =

∣∣∣∣ λI −A1

0 λI − A2A1

λ

∣∣∣∣ = |λ2I − A2A1|. (5.6)

Therefore, ρ(A) =
√
ρ(A2A1) if ρ(A2A1) 6= 0.

If ρ(A2A1) = 0, we assume that ρ(A) 6= 0. Then there exists a λ′ 6= 0 such that

|λ′I − A| = 0. By (5.6), |λ′2I − A2A1| = 0 for a nonzero λ′, contradicting the assumption

that ρ(A2A1) = 0. Therefore, ρ(A) =
√
ρ(A2A1).

A direct calculation gives FV −1 =

[
0 AΛ−12

BΛ−11 0

]
. By Lemma 1, we have the following

proposition:

Proposition 1. The reproduction number of the model (5.3) is

R0 =
√
ρ(BΛ−11 AΛ−12 ). (5.7)
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Description State transition Rate
Host birth (S, I,G, J)→ (S + 1, I, G, J) ψ
Death of S (S, I,G, J)→ (S − 1, I, G, J) dS

Host local infection (S, I,G, J)→ (S − 1, I + 1, G, J) αSJ/N
Host infection by Jj (S, I,G, J)→ (S − 1, I + 1, G, J) σjiSiJj/Ni

Host recovery (S, I,G, J)→ (S + 1, I − 1, G, J) γI
Death of I (S, I,G, J)→ (S, I − 1, G, J) dI

Vector birth (S, I,G, J)→ (S, I,G+ 1, J) η
Death of G (S, I,G, J)→ (S, I,G− 1, J) µG

Vector local infection (S, I,G, J)→ (S, I,G− 1, J + 1) βGI/N
Vector infection by Ij (S, I,G, J)→ (S, I,G− 1, J + 1) ωjiGiIj/Nj

Death of J (S, I,G, J)→ (S, I,G, J − 1) µJ

Table 5.1: State transitions and rates for corresponding continuous-time Markov chain
for deterministic model (5.3) omitting node index i.

5.2.2 The Threshold for Extinction Probability

In this section, we compute E0 for corresponding CTMC of model (5.3). See Table 5.1 for

state transitions and rates.

The pgfs are

gi(w1, · · · , wn, u1, · · · , un) =


αiwiui+

∑n
j=1,j 6=i σijwiuj+µi

αi+
∑n

j=1,j 6=i σij+µi
, if 1 ≤ i ≤ n,

β̂kukwk+
∑n

j=1,j 6=k ω̂kjukwj+dk+γk

β̂k+
∑n

j=1,j 6=k ω̂kj+dk+γk
, if n+ 1 ≤ i ≤ 2n,

where j = 1, · · · , n, the index k = i− n for n + 1 ≤ i ≤ 2n, wi represents IVi = 1, IHi
= 0,

and ui represents IHi
= 1, IVi = 0 for i = 1, · · · , n.

The expectation matrix M is:

M =

[
Λ3Λ4 AΛ5

BΛ4 Λ6Λ5

]
, (5.8)

where A,B are the same as those in (5.4), and

Λ3 = diag(α1 +
∑
i 6=1

σ1i, · · · , αn +
∑
i 6=n

σni), Λ4 = diag(
1

C1

, · · · , 1

Cn
),

Λ6 = diag(β̂1 +
∑
i 6=1

ω̂1i, · · · , β̂n +
∑
i 6=n

ω̂ni), Λ5 = diag(
1

D1

, · · · , 1

Dn

),

Ci = αi +
∑
j 6=i

σij + µi, Di = β̂i +
∑
j 6=i

ω̂ij + di + γi, for i = 1, · · · , n.
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Note that if both A and B are positive matrices, then the assumptions (B0) and (B1) in

[92] hold for this model.

Lemma 2. Let A1, A2 be nonnegative square matrices of identical size, such that ρ(A2A1)

is an eigenvalue of A2A1 and Λ,Λ′ be nonnegative diagonal matrices such that 0 ≤ k1I ≤[
Λ 0
0 Λ′

]
≤ k2I for some real numbers k1, k2. Then the spectral radius of B =

[
Λ A1

A2 Λ′

]
satisfies that √

ρ(A2A1) + k1 ≤ ρ(B) ≤
√
ρ(A2A1) + k2.

Proof. Since 0 ≤
[
k1I A1

A2 k1I

]
≤ B ≤

[
k2I A1

A2 k2I

]
, by Theorem 4 in [130],

ρ(

[
k1I A1

A2 k1I

]
) ≤ ρ(B) ≤ ρ(

[
k2I A1

A2 k2I

]
). (5.9)

By hypothesis and (5.6), ρ(

[
0 A1

A2 0

]
) is an eigenvalue of

[
0 A1

A2 0

]
. Following the fact that

|λ′ + k| < λ+ k for any k > 0, if |λ′| < λ, then

ρ(

[
k1I A1

A2 k1I

]
) = ρ(

[
0 A1

A2 0

]
) + k1 =

√
ρ(A2A1) + k1.

Similarly, ρ(

[
k2I A1

A2 k2I

]
) =

√
ρ(A2A1) + k2. Lemma follows (5.9) and Lemma 1.

Remark 1. If both A1 and A2 are positive matrices, then ρ(A2A1) is an eigenvalue of A2A1

by Perron-Frobenius theorem.

By Lemma 2, we have the following proposition:

Proposition 2. The extinction threshold of model (5.3) satisfies that

min
1≤i≤n

(
αi +

∑n
j=1,j 6=i σij

Ci
,
β̂i +

∑n
j=1,j 6=i ω̂ij

Di

) +
√
ρ(BΛ5AΛ4) ≤ E0

≤ max
1≤i≤n

(
αi +

∑n
j=1,j 6=i σij

Ci
,
β̂i +

∑n
j=1,j 6=i ω̂ij

Di

) +
√
ρ(BΛ5AΛ4).
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5.2.3 Relationships between R0 and E0

To obtain a theoretical relationship between R0 in (5.7) and E0, the assumption is made

that
µi
Ci

= k1 and
di + γi
Di

= k2, ∀ i = 1, · · · , n (5.10)

for constant numbers k1, k2 ∈ [0, 1] throughout this section. The assumption can be inter-

preted biologically as: the probability of natural death is identical for vectors from each

node, and the probability of natural death is identical for hosts from each node. The as-

sumption shall be removed for numerical simulations in Section 5.4.1.

Theorem 5. Under the assumption (5.10),

(1) If R0 ≤ 1−k2
1−
√
k1k2
≤ 1 or E0 ≤ 1−k2

1−
√
k1k2
≤ 1, then R0 ≤ E0;

(2) If R0 ≥ 1−k1
1−
√
k1k2
≥ 1 or E0 ≥ 1−k1

1−
√
k1k2
≥ 1, then R0 ≥ E0.

Proof. Under the assumption (5.10), Λ1Λ4 = k1I, Λ3Λ4 = (1 − k1)I, Λ2Λ5 = k2I, and

Λ6Λ5 = (1−k2)I, where I is the identity matrix. Therefore, M in (5.8) can be rewritten as:

M =

[
0 k2AΛ−12

k1BΛ−11 0

]
+

[
(1− k1)I 0

0 (1− k2)I

]
.

Without loss of generality, we assume that k1 < k2. By Lemma 2 and (5.7),

R0

√
k1k2 + 1− k2 ≤ E0 ≤ R0

√
k1k2 + 1− k1. (5.11)

Following (5.11),

R0(1−
√
k1k2)− (1− k1) ≤ R0 − E0 ≤ R0(1−

√
k1k2)− (1− k2),

1√
k1k2

(E0(1−
√
k1k2)− (1− k1)) ≤ R0 − E0 ≤

1√
k1k2

(E0(1−
√
k1k2)− (1− k2)).

Theorem follows the above two inequalities.

Corollary 3. If further assumption is made that k1 = k2 besides assumption (5.10), then

R0 ≤ 1 if and only if E0 ≤ 1. Moreover, |R0 − 1| ≥ |E0 − 1|.
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Proof. By Theorem 5 (1), if R0 ≤ 1, then R0 ≤ E0. Assuming that E0 > 1, by Theorem

5 (2), R0 ≥ E0, which is a contradiction. Conversely, if E0 > 1, then R0 ≤ 1 following a

similar argument. Hence, R0 ≤ 1 if and only if E0 ≤ 1. The proof for |R0 − 1| ≥ |E0 − 1|

directly follows Theorem 5.

5.3 SEI Vector Model and SEIR Host Metapopulation

Model

A deterministic model in which vectors are divided into compartments S,E, and I, and hosts

are classified into compartments S,E, I, and R is presented. The reproduction number for

this model and the extinction threshold for corresponding CTMC model are connected.

5.3.1 The Reproduction Number

The following model extends the model in Section 5.2.1 by adding compartment Z for ex-

posed vectors, and compartment E for exposed hosts. Other terms have identical meanings

as corresponding terms in model (5.3). The rates at which exposed vectors and exposed

hosts in node i transfer to infected compartments are ϕiZi and εiEi, respectively.

dGi

dt
= ηi − βiGiIi/Ni −

n∑
j=1,j 6=i

ωjiGiIj/Nj − µiGi

dZi
dt

= βiGiIi/Ni +
n∑

j=1,j 6=i

ωjiGiIj/Nj − ϕiZi − µiZi

dJi
dt

= ϕiZi − µiJi

dSi
dt

= ψi − αiSiJi/Ni −
n∑

j=1,j 6=i

σjiSiJj/Ni − diSi

dEi
dt

= αiSiJi/Ni +
n∑

j=1,j 6=i

σjiSiJj/Ni − εiEi − diEi

dIi
dt

= εiEi − γiIi − diIi
dRi

dt
= γiIi − diRi

(5.12)
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Compartments related to infected and asymptomatically infected are Zi, Ei, Ji, and Ii,

i = 1, · · · , n. The unique solution at DFE is (G0
i , 0, 0, N

0
i , 0, 0, 0), where G0

i and N0
i are the

same as corresponding terms in Section 5.2.1. The above system of ODEs including these

compartments can be rewritten as:

d

dt

[
Z1 · · · Zn E1 · · · En J1 · · · Jn I1 · · · In

]T
= F − V .

The Jacobian matrices F and V at DFE are

F =


0 0 0 A
0 0 B 0
0 0 0 0
0 0 0 0

 , V =


Λ7 0 0 0
0 Λ8 0 0
−Λ9 0 Λ1 0

0 −Λ10 0 Λ2

 ,
where Λ1 and Λ2 are given in (5.5); matrices A and B are in Equation (5.4); and

Λ7 = diag(ϕ1 + µ1, · · · , ϕn + µn), Λ8 = diag(ε1 + d1, · · · , εn + dn),

Λ9 = diag(ϕ1, · · · , ϕn), Λ10 = diag(ε1, · · · , εn).

By a direct calculation,

FV −1 =


0 AΛ−12 Λ10Λ

−1
8 0 AΛ−12

BΛ−11 Λ9Λ
−1
7 0 BΛ−11 0

0 0 0 0
0 0 0 0

 .
Following Lemma 1, the following proposition is obtained:

Proposition 3. The reproduction number of the model (5.12) is

R0 =
√
ρ(BΛ−11 Λ9Λ

−1
7 AΛ−12 Λ10Λ

−1
8 ). (5.13)

5.3.2 The Threshold for Extinction Probability

State transitions and rates for corresponding CTMC of model (5.12) are listed in Table 5.2.

The pgfs are:

gi(w1, · · · , w2n, u1, · · · , u2n) =



ϕiui+µi
ϕi+µi

, if 1 ≤ i ≤ n,
εkui+dk
εk+dk

, if n+ 1 ≤ i ≤ 2n,
αpupwp+n+

∑n
j=1,6=p σpjupwj+n+µp

αp+
∑n

j=1,6=p σpj+µp
, if 2n+ 1 ≤ i ≤ 3n,

β̂quq+nwq+
∑n

j=1,j 6=q ω̂qjuq+nwj+dq+γq

β̂q+
∑n

j=1,j 6=q ω̂qj+dq+γq
, if 3n+ 1 ≤ i ≤ 4n,
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Description State transition a→ b Rate
P (a, b)

Host birth (S,E, I, R,G, Z, J)→ (S+1, E, I, R,G, Z, J) ψ
Death of S (S,E, I, R,G, Z, J)→ (S−1, E, I, R,G, Z, J) dS
Death of E (S,E, I, R,G, Z, J)→ (S,E−1, I, R,G, Z, J) dE
Death of I (S,E, I, R,G, Z, J)→ (S,E, I−1, R,G, Z, J) dI
Death of R (S,E, I, R,G, Z, J)→ (S,E, I, R−1, G, Z, J) dR
Host local infection (S,E, I, R,G, Z, J) → (S − 1, E +

1, I, R,G, Z, J)
αSJ/N

Host infection by Jj (S,E, I, R,G, Z, J) → (S − 1, E +
1, I, R,G, Z, J)

σjiSJj/N

Host recovery (S,E, I, R,G, Z, J) → (S,E, I − 1, R +
1, G, Z, J)

γI

Host Latent to in-
fectious

(S,E, I, R,G, Z, J) → (S,E − 1, I +
1, R,G, Z, J)

εE

Vector birth (S,E, I, R,G, Z, J)→ (S,E, I, R,G+1, Z, J) η
Death of G (S,E, I, R,G, Z, J)→ (S,E, I, R,G−1, Z, J) µG
Death of Z (S,E, I, R,G, Z, J)→ S,E, I, R,G, Z − 1, J) µZ
Death of J (S,E, I, R,G, Z, J)→ (S,E, I, R,G, Z, J−1) µJ
Vector local infec-
tion

(S,E, I, R,G, Z, J)→ (S,E, I, R,G− 1, Z +
1, J)

βGI/N

Vector infection by
Ij

(S,E, I, R,G, Z, J)→ (S,E, I, R,G− 1, Z +
1, J)

ωjiGIj/Nj

Vector Latent to
infectious

(S,E, I, R,G, Z, J) → (S,E, I, R,G, Z −
1, J + 1)

ϕZ

Table 5.2: State transitions and rates for corresponding continuous-time Markov chain
for deterministic model (5.12) omitting node index i.
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where wi represents only Zi = 1, wi+n represents Ei = 1, ui represents Ji = 1, and ui+n

represents Ii = 1 for i = 1, · · · , n. The indexes k = i − n for 1 ≤ i ≤ n, p = i − 2n for

n+ 1 ≤ i ≤ 2n, and q = i− 3n for 3n+ 1 ≤ i ≤ 4n.

The expectation matrix M is:

M =


0 0 0 AΛ5

0 0 BΛ4 0
Λ9Λ

−1
7 0 I − Λ1Λ4 0

0 Λ10Λ
−1
8 0 I − Λ2Λ5

 .
Similarly, the assumptions (B0) and (B1) in [92] hold for this model if both A and B

are positive matrices. By Lemmas 1 and 2, as well as Remark 1, we have the following

proposition:

Proposition 4. The extinction threshold of the model (5.12) satisfies that

4
√
ρ(Λ10Λ

−1
8 BΛ4Λ9Λ

−1
7 AΛ5) + min1≤i≤n(

αi+
∑

j 6=i σij

Ci
,
β̂i+

∑
j 6=i ω̂ij

Di
) ≤ E0

≤ 4
√
ρ(Λ10Λ

−1
8 BΛ4Λ9Λ

−1
7 AΛ5) + max1≤i≤n(

αi+
∑

j 6=i σij

Ci
,
β̂i+

∑
j 6=i ω̂ij

Di
).

5.3.3 Relationships between R0 and E0

In this section, the assumption (5.10) holds and k1 < k2. Under the assumption (5.10), by

Lemma 2,

4

√
k1k2ρ(Λ10Λ

−1
8 BΛ−11 Λ9Λ

−1
7 AΛ−12 ) + 1− k2 ≤ E0

≤ 4

√
k1k2ρ(Λ10Λ

−1
8 BΛ−11 Λ9Λ

−1
7 AΛ−12 ) + 1− k1.

(5.14)

Recall that, for any square matrices A,B with the same size, ρ(AB) = ρ(BA). By this

property,

ρ(Λ10Λ
−1
8 BΛ4Λ9Λ

−1
7 AΛ−12 ) = ρ(BΛ4Λ9Λ

−1
7 AΛ−12 Λ10Λ

−1
8 ). (5.15)

By (5.13), (5.14) and (5.15),

√
R0

4
√
k1k2 + 1− k2 ≤ E0 ≤

√
R0

4
√
k1k2 + 1− k1.
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Hence, √
R0(1− 4

√
k1k2)− (1− k1) ≤

√
R0 − E0 ≤

√
R0(1− 4

√
k1k2)− (1− k2),

1
4
√
k1k2

(E0(1− 4
√
k1k2)− (1− k1)) ≤

√
R0 − E0 ≤

1
4
√
k1k2

(E0(1− 4
√
k1k2)− (1− k2)).

Similarly, the following theorem is derived.

Theorem 6. Under assumption (5.10),

(1) If
√
R0 ≤ 1−k2

1− 4√k1k2
≤ 1 or E0 ≤ 1−k2

1− 4√k1k2
≤ 1, then

√
R0 ≤ E0;

(2) If
√
R0 ≥ 1−k1

1− 4√k1k2
≥ 1 or E0 ≥ 1−k1

1− 4√k1k2
≥ 1, then

√
R0 ≥ E0.

Corollary 4. If a further assumption is made that k1 = k2 besides assumption (5.10), then
√
R0 ≤ 1 if and only if E0 ≤ 1. Furthermore, |

√
R0 − 1| ≥ |E0 − 1|.

Proof. The proof is similar to that of Corollary 3.

5.4 Numerical Results

General relationships between R0 and E0 for two models on heterogeneous networks were nu-

merically demonstrated. Significant parameters for predicting the uncertainly in E0 were de-

termined by Latin Hypercube Sampling/Partial Rank Correlation Coefficient (LHS/PRCC)

analysis. Finally, trends of parameters varying with extinction arrays were summarized.

5.4.1 Numerical Results on Relations between R0 and E0

Model (5.3) was applied to study thresholds for malaria transmission through numerical

simulations on a four-node network. Five thousand realizations with parameters uniformly

distributed within ranges listed in Table 5.3 on a four-node network gave rise to R0 ranging

from 0.7668 to 63.8111 and E0 from 0.8965 to 1.9140. The ranges of R0 and E0 varied with

the number of nodes on a network and the assumed ranges of vector (host) recruitment

rates, while fixing ranges of other parameters. The values of R0 were sorted from small to

large values in Figures 5.1(a) and 5.1(b), and E0 were ranked from small values to large
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Parameter Description Range Dimension Source
α Contact rate:

mosquitoes to humans
0.010− 0.27 1/day [26]

β Contact rate: humans to
mosquitoes

0.072− 0.64 1/day [26]

µ Per capita death rate for
mosquitoes

0.020− 0.27 1/day [26]

d Per capita death rate for
humans

0.000027 −
0.00014

1/day [26]

γ Per capita recovery rate
for humans

0.0014− 0.0017 1/day [26]

η Mosquito recruitment
rate

1− 5 1/day Assume

ψ Human recruitment rate 1− 60 1/day Assume

Table 5.3: Parameters of the malaria metapopulation model.

values in Figures 5.1(c) and 5.1(d). The largest value of E0 was 0.9980 when all values of

R0 were smaller than one and R0 ≤ E0, as shown in Figure 5.1(a). The smallest value of

E0 was 1.003 when all values of R0 were greater than one and R0 ≥ E0, as shown in Figure

5.1(b). The largest value of R0 was 0.9947 when all values of E0 were smaller than one,

as shown in Figure 5.1(c). The smallest value of R0 was 1.006 when all values of E0 were

greater than one, as shown in Figure 5.1(d). The value of E0 did not monotonically increase

with the increase of R0, as shown in Figures 5.1(a) and 5.1(b). Similarly, R0 fluctuated as

E0 increased, as shown in Figures 5.1(c) and 5.1(d).

Model (5.12) was applied to numerically examine relationships between R0 and E0 for

RVF on a four-node network. See Table 5.4 for descriptions and ranges of parameters. Five

thousand realizations produced R0 ranging between 0.2289 and 54.5086 and E0 from 0.6757

to 1.9763. The values of R0 were ordered from small to large magnitudes in Figures 5.2(a)

and 5.2(b), and the values of E0 were ordered from small to large values in Figures 5.2(c)

and 5.2(d). The largest value of E0 was 1 when all values of R0 were smaller than one, and
√
R0 ≤ E0, as shown in Figure 5.2(a). The smallest value of E0 was 1.005 when all values

of R0 were greater than one, and
√
R0 ≥ E0, as shown in Figure 5.2(b). The largest value
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(b) When R0 ≥ 1, R0 ≥ E0.
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Figure 5.1: Relationships between R0 and E0 for a malaria model.
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Parameter Description Range Dimension Source
α Contact rate: mosquito

to livestock
0.0021− 0.2762 1/day [22, 56, 59,

78, 96, 114,
115]

β Contact rate: livestock
to mosquitoes

0− 0.32 1/day [22, 56, 59,
78, 96, 113]

1/µ Longevity of mosquitoes 3− 60 1/day [15, 83, 96]
1/d Longevity of livestock 360− 3600 1/day [97]
1/γ Recover rate in livestock 2− 5 1/day [42]
1/ϕ Incubation period in

mosquitoes
4− 8 days [114]

1/ε Incubation period in
livestock

2− 6 days [93]

η Mosquito recruitment
rate

1− 500 1/day Assume

ψ Livestock recruitment
rate

1− 10 1/day Assume

Table 5.4: Parameters of the Rift Valley fever metapopulation model.

of R0 was 0.9998 when all values of E0 were smaller than one, and
√
R0 ≥ E0, as shown in

Figure 5.2(c). The smallest value of R0 was 1.008 when all values of E0 were greater than

one, and
√
R0 ≥ E0, as shown in Figure 5.2(d). When R0 increased, E0 did not always

increase, as shown in Figures 5.2(a) and 5.2(b). Similarly, R0 fluctuated as E0 increased, as

shown in Figures 5.2(c) and 5.2(d).

5.4.2 Sensitivity Analysis

Latin Hypercube Sampling/Partial Rank Correlation Coefficient (LHS/PRCC) analysis [80]

was employed to identify key parameters whose uncertainties contribute to predict uncer-

tainty of E0 for Model (5.12) and parameters were ranked by their significances. The pa-

rameters shown to be significant with large PRCC values (> 0.5) or small p-values (< 0.05)

[51] by the sensitivity test with 5000 sets of parameter values, were listed in Table 5.5. The

magnitude of PRCC value quantitatively represents contribution to the prediction for the

imprecision of E0, and a negative sign indicates that the parameter is inversely proportional

to the magnitude of E0. The closer PRCC value is to +1 or −1, the more the parameter
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Figure 5.2: Relationships between R0 and E0 for Rift Valley fever model.

impacts the outcome of E0.

5.4.3 Trends of Extinction Array with Varying Parameters

Consistent trends of w∗ were observed by numerical simulations for homogeneous popula-

tions and a two-node network for Model (5.12). Table 5.6 listed three different values for

each parameter and corresponding extinction array for homogeneous populations as an ex-

ample. Table 5.7 showed trends of extinction array by varying one parameter at a time,

keeping other parameters fixed and E0 > 1 for homogeneous populations and a two-node
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Parameter PRCC p-value
1/µ 0.8061 < 0.001
β 0.6039 < 0.001
η 0.5785 < 0.001
α 0.5649 < 0.001

1/γ 0.5524 < 0.001
ψ −0.5036 < 0.001

1/d −0.4660 < 0.001
1/ϕ −0.0284 < 0.05

Table 5.5: Sensitivity testing results based on Latin Hypercube Sampling/Partial Rank
Correlation Coefficient for Model (5.12) for homogeneous populations. Only significant
parameters are shown.

network. If at least one entry of extinction array increases and others remain constant, then

we define that the array increases. The extinction array w∗ decreased with the increase

of contact rates from local vectors and vectors in other nodes to local hosts, contact rates

from local hosts and hosts in other nodes to local vectors, death rates of hosts, recruitment

rates of vectors, and incubation rates of vectors and hosts, whereas, w∗ increased with the

increase of vector death rates, host recovery rates, and host recruitment rates.

5.5 Discussions

The reproduction number, R0, for deterministic vector-host models and thresholds for ex-

tinction probabilities, E0 for corresponding CTMC models were analytically and numeri-

cally connected. For Model (5.3), mathematical analysis showed that R0 ≤ 1, if and only

if E0 ≤ 1, and |R0 − 1| ≥ |E0 − 1| under certain assumptions. Numerical simulations for

a malaria model on heterogeneous networks with different number of nodes showed that

Corollary 3 holds without any assumptions. For Model (5.12), analytical results show that
√
R0 < 1 if and only if E0 < 1, and |

√
R0− 1| ≥ |E0− 1| by the same assumption in (5.10).

Extensive numerical simulation results for an RVF model on networks with various number

of nodes showed that Corollary 4 holds without any assumptions.

Conjecture 1. Theorems 3, 4 and Corollary 3, 4 hold without assumption (5.10), i.e.,
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Changing parameter (w∗1, w
∗
2, u

∗
1, u
∗
2)

α = 0.0601 (0.9965, 0.9978, 0.9961, 0.9978)
α = 0.0766 (0.8648, 0.9212, 0.8467, 0.9212)
α = 0.0781 (0.8546, 0.9158, 0.8352, 0.9158)
β = 0.0639 (0.9158, 0.9824, 0.9046, 0.9824)
β = 0.1026 (0.6623, 0.8967, 0.6173, 0.8966)
β = 0.1426 (0.5448, 0.8224, 0.4841, 0.8223)
µ = 1/60 (0.1955, 0.4961, 0.1419, 0.4956)
µ = 1/59 (0.1996, 0.5016, 0.1453, 0.5110)
µ = 1/56 (0.2127, 0.5188, 0.1565, 0.5182)
d = 1/3477 (0.4621, 0.7398, 0.3904, 0.7395)
d = 1/3370 (0.4554, 0.7312, 0.3828, 0.7310)
d = 1/3311 (0.4518, 0.7265, 0.3787, 0.7262)
γ = 1/5 (0.4247, 0.6877, 0.3480, 0.6874)
γ = 1/4 (0.4698, 0.7491, 0.3992, 0.7488)
γ = 1/3 (0.5451, 0.8226, 0.4845, 0.8224)
ε = 1/6 (0.4700, 0.7493, 0.3994, 0.7489)
ε = 1/4 (0.4698, 0.7491, 0.3992, 0.7488)
ε = 1/2 (0.4697, 0.7489, 0.3990, 0.7488)
ϕ = 1/8 (0.5494, 0.7784, 0.4293, 0.7782)
ϕ = 1/7 (0.5312, 0.7715, 0.4218, 0.7712)
ϕ = 1/6 (0.5119, 0.7643, 0.4142, 0.7641)
η = 19 (0.5412, 0.8195, 0.4801, 0.8193)
η = 76 (0.5264, 0.8069, 0.4632, 0.8066)
η = 482 (0.2907, 0.3169, 0.1961, 0.3162)
ψ = 1 (0.4698, 0.7491, 0.3992, 0.7488)
ψ = 2 (0.6859, 0.9123, 0.6553, 0.9122)
ψ = 3 (0.9219, 0.9838, 0.9115, 0.9838)

Table 5.6: The extinction array changes with one parameter within the range at a time
for homogeneous populations, while keeping other parameters fixed and E0 > 1 for model
(5.12). Fixed parameters are: α = 0.2, β = 0.19, µ = 1/30, d = 1/3600, γ = 1/4, ε = 1/2,
ϕ = 1/4, η = 100, ψ = 1 in this example. Same trends are obtained with various sets of
fixed parameters.

Increasing parameter (w∗1, · · · , w∗n, u∗1, · · · , u∗n)
αi, βi, di, εi, ϕi, ηi, σij, ωij (i, j = 1, · · · , n, i 6= j) decreases

µi, γi, ψi (i = 1, · · · , n) increases

Table 5.7: Summary of trends for extinction array changing with one parameter at a
time, while keeping other parameters fixed and E0 > 1 for Model (5.12) for homogeneous
populations and a two-node network throughout various simulations.
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R0 ≤ 1 if and only if E0 ≤ 1 for both models (5.3) and (5.12), besides, |R0 − 1| ≥ |E0 − 1|

for Model (5.3), and |
√
R0 − 1| ≥ |E0 − 1| for Model (5.12) without assumption (5.10).

The first part, R0 ≤ 1 if and only if E0 ≤ 1 was proven by Allen and van den Driessche

under the assumption (16) in [5], i.e., (F − V )T = W (M − I), where F and V are Jacobian

matrices defined in (4.1), M is a mean matrix of offspring distribution defined in Section 5.1,

I is the identity matrix, and W is a positive diagonal matrix with each entry wi representing

the rate parameter at which lifespan of group i are exponentially distributed for i = 1, · · ·n

[92]. This assumption does not hold for models in (5.3) and (5.12).

Consistent trends in the extinction array w∗ while changing one parameter through

numerical simulations is helpful in deducing trends of extinction probability and possible

interventions for vector-borne diseases. According to Equation (5.2), the probability of

disease extinction is monotonically increasing (decreasing) with the increase (decrease) of

the extinction array when the initial number of infection is fixed. The following biological

interpretations of disease extinction or persistence are in terms of fixed initial number of

infections. If contact rates from vectors to hosts (α, σ), or contact rates from hosts to vectors

(β, ω) increase, then the probability for the disease to persist is higher. If death rates of

hosts (d) increase, then the number of vectors is relatively dominant. Consequently, the

disease is more likely to persist. Similarly, growing vector recruitment rates (η) increase

probability for disease persistence. Higher incubation rates in vectors (ϕ) or hosts (ε) lead

to faster vector or host infections, such that the disease tends to persist. On the contrary,

increasing death rates of vectors (µ) may reduce rates of host infection, and, ultimately,

may increase the likelihood of disease extinction. Increasing recovery rates of hosts (γ)

may reduce the number of infections, such that probability of disease extinction increases.

Increasing recruitment rate of hosts (ψ) may reduce vector infection rates and increase

probability of disease extinction.

In summary, the resulting mathematical derivations and numerical simulations facilitate

understanding thresholds for the spread of vector-borne diseases, as well as provide novel
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insights into disease prevention, mitigation and control strategies.

102



Chapter 6

Conclusions and Future Work

6.1 Conclusions

Emerging and reemerging diseases continue to be major threats to an individual’s heath

and economy, although many factors such as improved sanitation and living conditions,

development of antibiotics and vaccines, health care, and surveillance systems have con-

tributed greatly to the reduction and effective control of mortality and morbidity from

infectious diseases [50]. Uncertainties as to the underlying mechanisms and interactions

still exist, impeding complete control or eradication of infectious diseases [50]. Most regions

in the world have not reached a level of modernization as that of the industrialized world

[50] and infectious diseases are mostly under control in these regions. Vector-borne dis-

eases pose unique changes to public health because the epidemiology is closely linked with

environmental factors such as climate, population migration, landscape, and complicated

transmission mechanism of vector-transmitted pathogens. Global warning of vector-borne

diseases has occurred due to increasing fear concerning this danger [112]. Many vector-

borne diseases, including RVF, are re-invading many regions in Africa [112], and evidence

has proven vector-borne diseases have emerged in new locations or reemerged as a signifi-

cant problem to health of humans and animals after being under control in many regions

of the world in the 1950s and 1960s [122]. To address the impacts of population migration

and heterogeneity of environments on spatial and temporal evolution of RVF, a network
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approach was applied.

The reproduction number, R0, is an important concept in mathematical biology and

epidemiology to determine whether a disease may invade a system or not. If R0 > 1, then

epidemic will spread, otherwise, the epidemic will die out. The reproduction number is also

commonly used to quantify an epidemic by estimating the average number of secondary

cases in a completely susceptible population.

In literature, most models ignored important vectors, important hosts, or spatial het-

erogeneity. In Chapter 2, a metapopulation model taking into account Aedes mosquito,

Culex mosquito, livestock, and human populations was proposed. The spatial and temporal

of RVF dynamics was studied through movement networks of mosquitoes, livestock, and

humans. The model was applied to 2010 RVF outbreak in three provinces of South Africa.

This model reproduced not only the trend of the occurrence, but also different starting times

in different provinces by taking into account climate conditions in each province, which can

not be realized in a homogeneous setting.

To facilitate comparing outputs of the model [131] with incidence data if available and

implement simulations for thousands of nodes, Chapter 3 presented a discrete-time difference

equation model. Stochastic parameters following PERT distributions can accommodate

various species of mosquitoes. The movement of mosquitoes and livestock were modeled on

different networks. The role of starting location has been shown to be important in the final

size of rinderpest epidemic [79]. To investigate the role of starting location, and the size

of initial infection in RVF virus spread, the roles of initial conditions wad studied through

numerical simulations for hypothetical scenarios for ranching areas in Texas from 2005 to

2010. A surprising trend is that fewer initial infectious organisms result in a longer delay

before a larger and more prolonged outbreak. The delay is likely caused by a lack of herd

immunity while infections expand geographically before becoming an epidemic involving

many dispersed farms and animals nearly simultaneously.

Very little work derived network-level reproduction number taking into account the cru-
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cial biological mechanism, vertical transmission. The expression of R0 is the sum of R0 for

vertical transmission and R0 for horizontal transmission for the special model with only one

ODE for infection due to vertical transmission and one ODE for infection due to horizontal

transmission [73]. The reproduction number for homogeneous populations incorporating

vertical transmission is approximated as the sum of R0 for vertical transmission and R0 for

horizontal transmission [46], which is shown to be the upper bound of R0 by rigorous deriva-

tion [131]. In Chapter 4, a network level reproduction number for diseases both vertically

and horizontally transmitted among multiple species was derived. The complexity of com-

putation was reduced by computing the spectral radius of a matrix reduced in size compared

with the original next generation matrix. The formula was applied to an RVF metapopula-

tion model on heterogeneous networks to derive the reproduction and its bounds. The roles

of disease parameters and movement rates found through extensive numerical simulations

provided insights into development of mitigation strategies.

The very little work on relationships between the reproduction number and extinction

threshold for network-based vector-hosts models included deriving the relationships for an

SIS multi-patch model and for a general model with an assumption on structures of matrices

[5], which does not hold for both models in Chapter 5. Chapter 5 analytically derived

novel relationships between network-level reproduction number and extinction threshold

under certain assumptions. Numerical simulations showed the relationships exist without

assumptions. Consistent trends of extinction arrays observed by varying one parameter at

a time showed that extinction probability of vector-borne diseases may increase by properly

controlling vector and host population size, and promptly detecting and applying treatment

for hosts. Analytical and numerical results shed light on deriving relationships between R0

and E0, as well as connections between parameters and extinction probabilities for many

other vector-borne diseases transmitted on heterogeneous works.
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6.2 Future Work

The research presented in this dissertation raised more interesting questions to be answered.

Several lines arising from this research are worth pursuing.

In this dissertation, the movement of mosquitoes is simplified by considering a fraction of

mosquitoes migrating at each time step. Future work in follow-up mathematical models in-

cludes improvement of mosquito movement model by considering diffusion equations, which

are partial differential equations with both time and space variables. Impacts of climate

changes on the birth rates and development rates of mosquitoes were taken into account.

However, carrying capacity, biting rate, birth rate, death rate, and many other character-

istics of mosquitoes are also linked with weather variables. Hence, carrying capacities of

mosquitoes dependent on climate factors, density dependent biting rates, weather depen-

dent birth rate, death rate, incubation rate, and recovery rate will make the model more

realistic. More climate factors, soil type, elevation, and other factors are to be considered

in the future models.

When computing the reproduction number in Chapter 4, existences of unique DFE were

proved. When R0 < 1 and multiple stable equilibria coexist, backward bifurcation may

occur. The existence, uniqueness, and stability of endemic equilibrium, as well as global

stability of DFE when R0 < 1 for vector-borne diseases involving vertical transmission are

to be explored. Calibrating and validating models presented in this dissertation using real

data will be intriguing. The reproduction number for the discrete-time model presented

in Chapter 3 is to be derived. To determine key parameters and rank the significance of

model parameters in predicting uncertainty of epidemic threshold, Partial Rank Correlation

Coefficients with respect to R0 for an RVF metapopulation model is to be computed in

future work.

Following the deterministic model in Chapter 2 and deterministic model with stochas-

tic parameters in Chapter 3, developing a stochastic model to take into account chances

in disease transmission and deriving its extinction thresholds taking into account vertical
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transmission can then be proposed. Future work may include studying how parameters in

the model affect the probability, size and duration time of an outbreak and the confidence

intervals of these characteristics to better understand dynamics of diseases.

Early detection of infected cattle is essential. After local and regional authorities are

warned and response planning initiated, cattle movement restrictions, culling, insecticide

treatments, quarantines, and other mitigation strategies to limit transmission may be effec-

tive. Impacts of livestock movement ban will be explored in future models.

Parameterizing the model using realistic mosquito field data from 1980 to 2011 in Kansas,

and climate data for a separate mosquito population model may determine parameters on

specific RVF competent vectors more accurately. Mosquito control strategies can then be

tested using the parameters. Applying realistic cattle movement data and climate data

to RVF metapopulation models will help to predict dynamics of Rift Valley fever. Maps

generated by Geographic Information System will improve visualization.

Different age groups may have heterogeneous susceptibility, death rate, incubation rate,

and behaviors in disease transmission. Incorporating age-structure into models in Chapters

2 and 3 may improve accuracy of modeling and provide more insights into disease interven-

tion, control, and eradication. Robustness of different network structures, such as bipartite

network, tripartite network, scale-free network, Erdõs-Rényi and others to RVF invasion is

to be studied. All these are left for the future work.
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Appendix A

Appendix to Chapter 4

Theorem 7. If both A and B are non-negative square matrices, then ρ(A) ≤ ρ(A+B).

Proof. Recall that the Gelfand’s formula is that

ρ(A) = lim
k→∞
‖Ak‖

1
k

for any matrix norm ‖ · ‖. If A,B are both non-negative, then A ≤ A + B. Hence,

0 ≤ Ak ≤ (A+B)k for any k ∈ N. By the property of matrix norm, 0 ≤ ‖Ak‖ ≤ ‖(A+B)k‖.

Thus,

0 ≤ lim
k→∞
‖Ak‖

1
k ≤ lim

k→∞
‖(A+B)k‖

1
k .

The theorem follows the Gelfand’s formula.

Theorem 8. Let Ak (k = 1, · · · ,m) be an n× n diagonal dominant matrix with A−1k ≥ 0.

Denote the (i, j) entry of Ak by akij. Let aLk = minj(
∑

i akij) > 0, aHk = maxj(
∑

i akij),

where j = 1, · · · , n, then
m∏
k=1

1

aHk
6 ρ(

m∏
k=1

A−1k ) 6
m∏
k=1

1

aLk
.

Proof. Clearly, 0 ≤ aLkC 6 CAk 6 aHk C, where C = [1 1 · · · 1]1×n. Since A−1k > 0, we obtain

0 ≤ C
aHk
≤ CA−1k ≤

C
aLk
.

Similarly,

0 ≤ C
aHk a

H
k−1
≤
CA−1k−1
aHk

≤ CA−1k A−1k−1 ≤
CA−1k−1
aLk

≤ C
aLk a

L
k−1

.
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Following the same argument,

m∏
k=1

1

aHk
C 6 C

m∏
k=1

A−1k 6
m∏
k=1

1

aLk
C.

By Corollary 1 in [32], any n× n nonnegative matrix A satisfies:

min
j

(
n∑
i=1

aij) 6 ρ(A) 6 max
j

(
n∑
i=1

aij). (A.1)

Because the entries of C
∏m

k=1A
−1
k is the sum of each column of matrix

∏m
k=1A

−1
k , by In-

equality (A.1),
m∏
k=1

1

aHk
6 ρ(

m∏
k=1

A−1k ) 6
m∏
k=1

1

aLk
.

Theorem 9. Matrices Mk and Xk in (4.14) are invertible, and Mk and Xk are nonnegative.

Moreover, Matrices M−1
k and X−1k are nonnegative matrices.

Proof. Note that Mk is a diagonal dominant matrix of its column entries. By Theorem 1 in

page 654 of [23], Mk and Xk are invertible. Next, matrix M−1
k is proven to be nonnegative.

Matrix Mk can be rewritten as follows.

Mk =


ζk1 −ωk21 · · · −ωkn1
−ωk12 ζk2 · · · −ωkn2
· · · · · · · · · · · ·
−ωk1n −ωk2n · · · ζkn

 = ⊕ni=1ζki −


0 ωk21 · · · ωkn1
ωk12 0 · · · ωkn2
· · · · · · · · · · · ·
ωk1n ωk2n · · · 0

 =: G−H.

Consequently,

G−1 = ⊕ni=1ζ
−1
ki and G−1H =


0 ωk21ζ

−1
k1 · · · ωkn1ζ

−1
k1

ωk12ζ
−1
k2 0 · · · ωkn2ζ

−1
k2

· · · · · · · · · · · ·
ωk1nζ

−1
kn ωk2nζ

−1
kn · · · 0

 .
Moreover, 0 <

∑n
j=1(G

−1H)ij < 1, for all i. Hence, ρ(G−1H) < 1, i.e., G−1H is convergent

(see [95]). Note that G−1 > 0, and G−1H > 0. By Theorem 1 in [95], Mk is an M-matrix

and M−1
k > 0. By the same argument, Xk is an M-matrix and X−1k > 0. This finishes the

proof.
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