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Abstract 

1,4-Dioxane is a potentially carcinogenic solvent. It is a problematic groundwater contaminant 

because of its unique physical-chemical properties. It is found in a wide range of consumer 

products as a by-product contaminant. This research aimed to investigate contaminant properties 

and behavior of dioxane in the environment and also in the human body. The dioxane ability to 

decontamination by adsorption processes was evaluated with four adsorbents. The adsorption 

efficiencies of activated carbon (AC), metal oxide nanomaterials (TiO2 and MgO), and 

diatomaceous earth (DE) were assessed in aqueous and vapor phases using infrared 

spectroscopy. AC showed the highest adsorptive capacity for dioxane at equilibrium in both 

phases. The rate and extent of dermal absorption are important in the analysis of risk from 

dermal exposure to dioxane. For this purpose, a new flow through diffusion system (FTDS) was 

developed by modifying a Bronaugh flow through diffusion cell with flow capacity in both the 

donor and receptor compartments and using attenuated total reflection Fourier transform infrared 

spectroscopy (ATR-FTIR) as the analytical technique. FTDS can provide ‘real time’ quantitative 

high-density permeation data over time and is characterized by the simplicity of its use and the 

low cost of test samples. The  in vitro dermal absorption study of dioxane across human skin 

showed that the absorption parameters of dioxane were 1.16 ± 0.22 hr, 5.7 X 10-4 ± (0.62) cm/hr, 

0.286 ± 0.035 mg/cm2/hr, 4.8 X 10-5 (± 0.32) cm2/hr, and 1.99 ± 0.086 mg for lag time, 

permeability, steady-state flux, diffusivity, and total amount absorbed over 8 hr, respectively. 

The study of the effect of the surfactant sodium lauryl sulphate and solvent systems water, 

ethanol, propylene glycol, and ethyl acetate on permeation profiles revealed that these solvents 

and surfactants increased the permeation of dioxane significantly. The FT-IR spectra of stratum 

corneum treated with solvents showed that there was broadening of the CH2 asymmetric 



  

stretching vibration of the CH2 peak near 2920 cm-1 only in samples treated with ethanol. The 

lipid extract precipitates were detected and were mostly composed of the stratum corneum lipid 

part. 

 

 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

STUDIES OF THE PHYSICAL AND CHEMICAL PROPERTIES OF 1,4 DIOXANE AND 

THEIR RELEVANCE TO ADSORPTION AND TRANSDERMAL ABSORPTION 

 
 

by 
 
 

ALI JAFAR MAHDI 
 

 
B.V. M. & S., University of Baghdad, 1982  

M.Sc., University of Baghdad, 1988  
B.A., University of Baghdad, 1999  

M.S., Kansas State University, 2010 
 
 

A DISSERTATION 
 

Submitted in partial fulfillment of the requirements for the degree 
 
 
 

DOCTOR OF PHILOSOPHY 
 
 

Department of Diagnostic Medicine and Pathobiology 
College of Veterinary Medicine 

 
 
 

KANSAS STATE UNIVERSITY 
Manhattan, Kansas 

 
 

2014 
 
 
 
 

Approved by:  
 

Major Professor 
Deon van der Merwe 



  

 

Copyright 

ALI JAFAR MAHDI 

2014 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

Abstract 
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spectroscopy (ATR-FTIR) as the analytical technique. FTDS can provide ‘real time’ quantitative 

high-density permeation data over time and is characterized by the simplicity of its use and the 

low cost of test samples. The  in vitro dermal absorption study of dioxane across human skin 

showed that the absorption parameters of dioxane were 1.16 ± 0.22 hr, 5.7 X 10-4 ± (0.62) cm/hr, 

0.286 ± 0.035 mg/cm2/hr, 4.8 X 10-5 (± 0.32) cm2/hr, and 1.99 ± 0.086 mg for lag time, 

permeability, steady-state flux, diffusivity, and total amount absorbed over 8 hr, respectively. 

The study of the effect of the surfactant sodium lauryl sulphate and solvent systems water, 

ethanol, propylene glycol, and ethyl acetate on permeation profiles revealed that these solvents 

and surfactants increased the permeation of dioxane significantly. The FT-IR spectra of stratum 

corneum treated with solvents showed that there was broadening of the CH2 asymmetric 



  

stretching vibration of the CH2 peak near 2920 cm-1 only in samples treated with ethanol. The 

lipid extract precipitates were detected and were mostly composed of the stratum corneum lipid 

part. 
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Chapter 1 - Introduction and Literature Review  

 Introduction 

        In recent years, concerns about environmental contamination by 1,4-dioxane (dioxane) has 

steadily increased due to its probable carcinogenicity. The present usage and historic disposal 

practices have increased its contribution as a major contributor to groundwater contamination 

throughout the United States and elsewhere. Dioxane imposes greater challenges for its 

characterization and treatment because of its unique physical-chemical properties and behavior 

in the environment. The presence of dioxane as a by-product contaminant in cosmetics, 

detergents, and shampoos that contain ethoxylated ingredients is also partly increasing this 

concern. Approximately, 22% of all the cosmetics and cleaning products may be contaminated 

with dioxane as reported by Environmental Working Group researchers (EWG, 2007). Studying 

behavior or properties of dioxane is of great interest to risk assessors. Developing procedures or 

methods to contain and mitigate contamination and remediate or decontaminate indoor and 

outdoor environments is so crucial to the success of dioxane risk management. Furthermore 

providing accurate data about the routes by which individuals are exposed and the parameters to 

quantitatively evaluate possible exposures are necessary for successful risk assessment.  

Our studies are an attempt to highlight some aspects of dioxane properties and behavior in the 

environment and in a human body. This dissertation was performed: 

- to investigate the potential ability of dioxane for decontamination by adsorption 

processes  from water and air.   

- to understand the principles of dioxane transdermal absorption from water and 

chemical mixtures. 
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To accomplish these objectives, a group of porous and non-porous adsorbents were used in 

aqueous and gas conditions at equilibrium. The equilibrium adsorption data were analyzed by the 

Freundlich model of adsorption. A new flow through system was developed to provide high 

density data sets for dermal absorption measurement.  The transdermal absorption of dioxane 

was assessed in human skin from water, solvents, and surfactant solutions. Generally, data on the 

absorption of dioxane in humans following dermal exposure are limited and arte insufficient to 

create a comprehensive understanding about its transport behavior across the skin.  It is hoped 

that the findings of the current investigations will offer suitable and reliable data to allow the 

accurate assessment of risk following dermal exposure to dioxane.  

 

 

 

 

 

 

 

 

 

 

 

 



4 

 

 Literature Review 

 

 Dioxane Adsorption 

 

 Dioxane Background 

 Dioxane Properties 

       Dioxane (1,4-diethylene dioxide) is a volatile, colorless liquid with a mild, ethereal odor. It 

is heterocyclic ether chemical, C4H8O
2 (figure 1.1). The compound is also known by many 

synonyms such as p-dioxane, diethylene oxide, 1,4-diethylene oxide, and 1,4-dioxacyclohexane. 

Dioxane has two oxygen atoms as a part of its ring structure. The oxygen atoms occur directly 

opposite each other to form symmetrical ether linkage and resulti in two functional groups in one 

molecule. The structure of dioxane makes it very stable and fairly resistant to reaction with acids, 

oxides, and oxidizing agents. This stability, under a wide variety of conditions, makes dioxane 

very suitable for use as an organic solvent.  

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1: 1,4-Dioxane Structure 
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        The ring of dioxane is resistant for breakdown except in the existence of highly 

concentrated acids and strong oxidizers and under conditions of high temperature and pressure 

(Reid & Hoffman, 1942). Dioxane has good solubility in water, and this is related to the polarity 

it attains when a pair of dioxane rings create a dimer with two intermolecular hydrogen bounds. 

The two remaining oxygen atoms are available for interaction with water molecules. Dioxane is 

completely miscible with water and most organic solvents, and water is totally soluble in 

dioxane. The oxygen molecules of dioxane have electrons available for sharing. Therefore, the 

two oxygen atoms make dioxane hydrophilic and extremely soluble in water (Mazurkiewicza & 

Tomasik, 2006). Although the ether functional groups are not capable of hydrogen bonding to 

each other, the electronegative oxygen atoms have a partial negative charge capable of 

interacting with the O-H dipoles of water molecules (Vallombroso, 2001). Compared to other 

solvents and according to the classical rankings of solvecy, pure dioxane has intermediate degree 

of solvency. However, its unusually high dipole moment in aqueous solution  allows it  to act  as 

an efficient water-structure breaker, which provides dioxane a higher solvency than predicted 

(Mohr et al., 2010). Table 1.1 provides a list of some physicochemical properties of dioxane. 
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Table 1.1: Properties of 1,4-dioxane 
 

Property Value 

Molecular weight 88.106  Da 

Density 1.028 gm/cm3 

Vapor pressure 5.08 kPa at 25 ºC, 15.8 kPa at 50 ºC, 42.2 kPa at 75 ºC 

Boiling point 102.2 ºC  

Heat of vaporization 98.6 cal/g 

Freezing point 11.85 ºC 

Flash point  12 ºC 

Polarity 16.4 

Solubility Miscible 

Acid dissociation constant  pKa = -2.92 

Ultraviolate light absorption 180 nm 

Henry’s Law Constant ( KH dimensionless) 1.96 × 10-4 

Octanol-Water Partition Coefficient log(Kow) -0.27 

Organic Carbon Partition Coefficient log(Koc)  1.23 

Sources: (Mohr et al., 2010, Zenker et al., 2004, Howard, 1990) 

 

 

 Dioxane Uses 

             Physical-chemical properties of dioxane make it very versatile and useful in a variety of 

applications. Until 1995, dioxane was  used as a stabilizer for the solvent 1,1,1-trichloro-ethane 

(TCE), whose usage was stopped because of  its ozone depletion potency (ECB, 2002). It is used 

extensively as a processing solvent in the manufacturing and chemical processing of detergents, 

cleaning agents, adhesives, cosmetics, varnishes, pharmaceuticals, fumigants, emulsions, 

deodorants, polishing compounds, fats, lacquers, resins, oils, waxes, paints, dyes, plastics, 

rubber, cellulose acetate, and pesticides. Soaps and cosmetics containing ethoxylated surfactants 

may also contain dioxane (Mohr et al., 2010). It is also used as an extraction medium for animal 
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and vegetable oils and as a laboratory chemical (eluent in chromatography) and in plastic, 

rubber, pharmaceuticals/insecticides and herbicides (BUA, 1991). Moreover, dioxane is formed 

as an undesired by-product in many industrial processes, particularly through the synthesis of 

polyester, and it is also  found as a by-product of the ethoxylation process in cosmetics, 

detergents, and shampoos (ASTDR, 2012).  

       In food, residues of dioxane may be found in manufactured food additives such as 

polysorbate 60 and polysorbate 80 and in some emulsifiers used in frozen dairy products and 

other frozen desserts (Marzulli et al., 1981, Guo & Brodowasky, 2000). It is also found as a 

natural component in numerous foods like tomatoes, shrimp, and coffee (Stickney et al., 2003).  

 Dioxane Occurrence  

       The amounts of dioxane in the ambient environment have been studied extensively. Many 

investigations have reported the existence of dioxane in monitoring samples of ambient air. 

Measurements of  dioxaine in ambient air samples performed at 45 locations in 12 cities were 

collected by the U.S. EPA between 1979 and 1984 and showed  concentrations ranging between 

below detection and 30 µg/m3 (mean 0.44 µg/m3) (USEPA, 1993). In a study conducted in New 

Jersey in 1981, the geometric mean of dioxane concentration in air samples collected from 

industrial areas  ranged from 0.04 to 0.07 µg/m3 and dioxane was detected in 51% of the samples 

(Harkov et al., 1981). The same locations of New Jersey were resampled in 1982, and the results 

pointed to a decline of dioxane concentrations, where the geometric means of these samples 

ranged from 0 to 0.01 µg/m3; 20% of samples were positive with a maximum value of 5.31 

µg/m3 (Harkov et al., 1984). No information on the ambient levels of dioxane in air is available 

for the recent years. Since the use of dioxane has dropped in recent years, current levels of 
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dioxane in ambient air are likely to be less than levels reported in the 1980s or in earlier periods 

(ASTDR, 2012).  

       Occurrence of dioxane in water has been reported in many countries. In Japan,  the outcome 

of nationwide surveys  showed that the dioxane concentration in surface water are ranging 

between below detection and 35 µg/L in 1990, between below detection and 19 µg/L in 1994, 

and between below detection and 42 µg/L in 1997 (WHO, 2005). In another surveys on ground 

and surface water, dioxane  was found in 87% of samples at levels up to 95 µg/L (Abe, 1999). In 

the United States, municipal water supplies were reported to contain 1 µg/L of dioxane in the 

1970s (Kraybill, 1978). Results from other nationwide surveys on dioxane in water have 

revealed varied ranges of concentrations. The New Hampshire Department of Environmental 

Services found 67 locations at which dioxane was detected in groundwater at an average of 243 

µg/L (Mohr et al., 2010). In California, dioxane was determined to have concentration of 1.1–

109 µg/L in groundwater, whereas drinking water samples from homes in Connecticut had 

maximum dioxane concentrations of 26 µg/L in untreated water in one residential well and 12 

µg/L in treated water from another residential well (ASTDR, 2012). In a drinking water well in 

Massachusetts, a concentration of 2,100 µg/L was reported (Burmaster, 1982). In Canada, 

dioxane was detected in groundwater near landfills at concentrations <1 µg/L between 1983  and 

1986. however, the concentrations were much higher in groundwater beneath a landfill, where it 

was 500 µg/L (ECB, 2002). 
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 Dioxane Environmental Contamination 

 Releases to The Environment 

        Dioxane may enter the environment during its production, processing, handling, 

transporting, and formulation. Additionally, dioxane may remain as an impurity in many end-

products (ECB, 2002). Historically, dioxane has been released into environment because of its 

use as a TCE stabilizer. Currently, this source of release is anticipated to be very low because the 

use of TCE has been stopped (ASTDR, 2012). 

       The amount of dioxane released to the environment in the United State can be evaluated by 

keeping track of the quantities reported in the Toxics Release Inventory (TRI) of U.S. EPA since 

1988. However, these datasets are sometimes inaccurate because only certain types of facilities 

are required to report. Nevertheless, TRI data are still useful for providing approximate annual 

amounts, sites and the final disposition of dioxane releases. For example, in 2007, TRI data 

estimated that a total of 182,338 pounds (82,693 kg) of dioxane were released to the environment 

from 44 reporting facilities in 21 states, where 125,341pounds (56,854 kg) were released into the 

air, 56,996 pounds (25,853 kg) into water, 596 pounds (270 kg) onto land, and 2,200 pounds 

(998 kg) were released in other ways. In addition, an estimated 2,794 pounds (1,267 kg) were 

transferred off-site (TRI, 2013).  

       In general, TRI data showed that a total of 18,786,142 pounds (8,161,797 kg) of dioxane 

have been released into the environment in the United States between 1988 and 2012. Total on-

site disposal or other releases were 11,717,373 pounds (5,108,123kg) and 7,068,768 pounds 

(3,053,673kg) for total off-site disposal or other releases. Total releases of dioxane to air and 

water were 6,522,259 pounds and 4,273,124 pounds, respectively (TRI, 2013). Releases of 
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dioxane to air and water have decreased significantly in last the decade. Releases to air reported 

in the TRI database have decreased from a high of 841,790 pounds in 1989 to 87,910 pounds in 

2012. Discharge to water reported to TRI database increased from 203,320 pounds in 1988 to 

652, 296 pounds in 1993, and then declined to 18,826 in 2012 (TRI, 2013, Mohr et al., 2010). 

TRI data for estimated annual releases and disposal of dioxane are represented in figure 1.2. The 

releases of dioxane as a by-product can by assessed from production of plastic, manufacturing of 

alkyl ether sulphates, ethoxylated surfactants and textiles (Mohr et al., 2010).  

 

 

Figure 1.2: Estimated releases and disposal of dioxane in USA from 1988 through 2012. 

Source: TRI – USEPA site (http://www.epa.gov/triexplorer) 
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 Sources of Contamination  

       The sources of contamination in the environment caused by dioxane can be classified into 

two types of sources, point and nonpoint sources of contamination.  

- Point sources of contamination: Point sources of contamination include spills and 

previous land disposal practices. Dioxane is often detected in landfill leachate, 

groundwater beneath municipal and industrial landfills, and in landfill gas and landfill 

gas condensate. But, not all landfills are implicated in releases of dioxane. Landfills are 

most likely to involve as point sources of dioxane contamination.  Usually, landfills 

implicated in  groundwater contamination by dioxane those that are receiving solvent 

wastes, household products associated with methyl chloroform, paint filters, laboratories 

chemical wastes, industrial sludge from ink and textile manufacturing, adhesive products 

used in celluloid film processing, vapor degreasing still bottom, and resin production 

(Mohr et al., 2010).  

       The mean concentrations of dioxane in leachate of landfill sites are widely variable. 

U.S. EPA surveys reported that the concentration of dioxane in leachate from municipal 

landfills was ranged between 11 and 323 ppb, and the average concentration at hazardous 

waste landfills was  between 466 and 7611 ppb (USEPA, 2000). The concentration of 

dioxane was also reported to be 0.62 µg/m3 and  0.33 g/m3 in landfill gas in many sites 

throughout the United States (ECB, 2002). 

- Nonpoint sources of contamination: Nonpoint sources of dioxane’s contamination, 

usually, come from wastewater effluent discharged to waterways. A by-product 

(impurity) daioxane in end use of some products like in domestic detergents, shampoo, 

and personal care products, which mostly come from household discharges to be released 
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to sewers along with surfactants (Abe, 1999). Dioxane, as an impurity is formed during 

the manufacture of alkyl ether sulphates and some ethoxylated compounds. About 80% 

of this can be removed by a stripping process. Therefore, dioxane (as an impurity) may 

be released as stripper condensate and discharged to the drainage system, where it is 

diluted by other waste streams and arrive at the sewer as trade waste (NICNAS, 1998).  

       Dioxane has been detected in raw wastewater in the United States and Japan. In the 

United State, dioxane  was found at 1 ppb in effluents from the North Side and Calumet 

sewage treatment plants on the Lake Michigan Basin, in discharges into Lake Michigan 

near Chicago (Konasewich et al., 1978), and in North Carolina in the Haw River 

(Dietrich et al., 1988). It was also detected in samples from raw wastewater (3 ppb) and 

treated wastewater effluent (2 ppb) in Ann Arbor, Michigan (Skadsen et al., 2004). In 

Japan, dioxane was found at 0.2 to 0.56 ppm in tested effluent from a wastewater-

treatment plant in Kanagawa Prefecture. The source of dioxane was assumed to be come 

from households discharging shampoo, liquid dish washing and laundry soap (Abe, 

1999).  

 Dioxane Behavior in Environment  

        Discharging industrial wastes into the environment are generally associated with 

degradation of water quality and hazard to human and ecological health. Numerous compounds 

in industrial effluents decay with time because of biodegradation, physical removal, or chemical 

reaction to less harmful by-products. The tendency of chemicals to volatilize, hydrolyze, photo-

oxidize, adsorb, and biodegrade plays an important role in their behavior in the environment, 

such as their  diffusion or migration through soil, water, and air, and in which phase the chemical 

is present (liquid, gas, or solid) (Mohr et al., 2010).   
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       Dioxane is resistant to hydrolysis because it does not have functional groups that are 

susceptible to hydrolysis. Hydrolysis of dioxane is not expected to occur in the environment, as 

ethers are generally classified as resistant to hydrolysis (Aus, 1999, Wolfe & Jeffers, 2000).  

       Photooxidation of dioxane in the atmosphere is the primary loss mechanism and mostly 

occurs with OH radicals, whereas the photolysis reaction occurs with ozone molecules 

(Grosjean, 1990). Dioxane also is resistant to photolysis  and not expected to undergo direct 

photolysis in aqueous media because it does not adsorb light in the environmental spectrum (i.e., 

>290 nm), but it  may undergo indirect photolysis by aqueous hydroxyl radicals near the water 

surface (Anbar & Neta, 1967). However, some studies have found that direct photolysis of liquid 

dioxane at 185 nm produces formaldehyde, glycol monovinyl ether and ethylene, and at 147 nm 

(in the gas-phase) gives formaldehyde and ethyleneas the principal products (BUA, 1991).  

          The vapor pressure of dioxane at 25 ºC (37 mm Hg) presumes volatilization is 

conceivable. However, the low Henry's law constant for dioxane of 4.8x10-6
 
atm3 m/mole 

indicates that the transfer of this contaminant from water to air is insignificant (Thomas, 1990). 

Based on this Henry's law constant, the volatilization half-life is estimated as 7 days. 

Volatilization from dry and moist soil surfaces may occur under vapor pressure of 38.1 mm Hg 

(Daubert & Danner, 1985). Even though volatilization of dioxane could exist, hazards to human 

health from inhalation exposures are anticipated to be low under normal environmental 

circumstances (ASTDR, 2012). 

       Dioxane is relatively resistant to biodegradation. Laboratory studies have shown that 

indigenous microorganisms in soil and waste water are typically unable to degrade this 

compound (Zenker et al., 2004). However, biodegradation has been reported in many studies in 
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both pure and mixed cultures. For example, partial degradation of dioxane in a pure culture of 

Mycobacterium vaccae was shown but not to grow on the compound (Burback & Perry, 1993). 

Similarly, biodegradation of dioxane was reported as the sole carbon and energy source by a 

Rhodococcus strain (Bernhardt & Diekmann, 1991). A study on wastewater treatment plant 

effluent showed no degradation of dioxane in cultures of sewage microorganisms exposed for 1 

year at concentrations ranging from 100 to 900 ppm (Klecka & Gonsior, 1986). In another 

investigation, microorganisms existing in sludge of municipal or industrial effluent were unable 

to degrade dioxane during 48 hours of exposure to concentrations ranging between 10 and 100 

ppm (DCC, 1989). 

       The high solubility (4.31 × 105 mg L-1), low log octanol-water partition coefficient (Kow = -

0.27), and a low organic carbon partition coefficient (Koc = 1.23) of dioxane hints at a very high 

mobility in soil. Therefore without a substantial degradation process, dioxane is susceptible to 

leaching from soil into aquifers. Dioxane is not adsorbed to suspended sediments or soil as a 

result of any particular interaction with the surface of soil minerals; however, it can get trapped 

in the interfacial region of clay soil because of its strong hydrophilicity. This may show a lower 

mobility for dioxane in clay soil than predicted (Zhang et al., 1990). In most chlorinated solvents 

which have been contaminated aquifers, dioxane has migrated significantly beyond the 

associated solvent plumes. The plumes of dioxane can persist after the source has been removed 

or controlled, and they have been documented to measure twice the length of the associated 

solvent plumes and to affect an area up to six times greater (Walsom & Tunnicliffe, 2002).  

       No data are available about bioaccumulation or bioconcentration of dioxane. Dioxane 

bioaccumulation is expected to be very low because of its low log Kow and high hydrophilicity, 
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and it is assumed that dioxane will not bioconcentrate in plants, aquatic organisms or animals. 

Additionally, dioxane is not biomagnified to any extent in prey organisms (VCCEP, 2007a).  

The Toxicology of Dioxane 

          Data of dioxane health effect are very limited in human. Wherefore, toxicity of dioxane 

has been estimated by considering studies in animal models and available limited data from 

human exposures. Investigations of toxicity in human are mostly based on these contain of case 

reports of accidental or occupational intoxication, limited epidemiological studies of 

occupational workers, and volunteer studies of acute inhalation exposure. Data from human and 

laboratory animal studies, taking together identify potential adverse health effects that may be 

created from exposure to dioxane. Inhalation and ingestion routes have been reported as the 

primary exposure routes of dioxane intoxication. Inhalation exposures to dioxane are mostly 

associated with occupational settings. Although, there are no data regarding the health effects of 

human exposure via the oral route, usually, oral exposures in humans may come from 

consumption of  contaminated drinking water (Mohr et al., 2010). 

        The liver and kidneys are the target organs for dioxane toxicity, and the data in laboratory 

animals suggest that it takes place regardless of the route of exposure. Many studies in animals 

have provided detailed descriptions of hepatic and renal pathology in many species with different 

dioxane concentrations and different routes of exposure. Generally, various degrees of 

hepatocellular and renal degeneration and necrosis have been the main changes seen (ASTDR, 

2012).  
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 Toxicokinetics 

         Dioxane metabolism and kinetics involve the understanding of how dioxane is absorbed, 

distributed, metabolized, and excreted within the body following exposure by oral, dermal or 

inhalation routes. The toxicokinetics of dioxane are described by using data of human and animal 

studies in addition to computer modeling and in vitro testing. The data of dioxane toxicokinetics 

in humans are very limited, but they are well explained in laboratory animals exposed through 

oral, skin, inhalation, and intravenous routes. In animals, radiolabelled dioxane has been used to 

study the distribution of the chemical throughout the body. In both humans and animals, dioxane 

is metabolized to β-hydroxyethoxy acetic acid (HEAA) by mixed-function oxidase enzymes; 

under acidic conditions HEAA can be converted to 1,4-dioxane-2-one.  Both of these metabolites 

are quickly and predominantly excreted via kidney to the urine (ASTDR, 2012). 

 Absorption  

Dioxane is well absorbed following oral and inhalation exposure. Rapid absorption of 

dioxane after inhalation exposure has been demonstrated in workers and human 

volunteers, by measuring concentration of dioxane and HEAA in blood and urine 

(Young et al., 1976, Young et al., 1977). Similar results were found in laboratory 

animals’ studies for inhalation exposure (Young et al., 1978a, Young et al., 1978b).  

 Absorption associated with oral exposures was evaluated in animals. Gastrointestinal 

absorption was almost complete in male rats orally administrated with 10–1,000 mg/kg 

of radiolabeled dioxane, given as a single dose or as 17 consecutive daily doses (Young 

et al., 1978a, Young et al., 1978b). No human data are available to assess absorption of 

dioxane via oral exposure. 
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Dermal absorption information of dioxane are limited in humans and animals. However, 

an in vitro study has been conducted on human skin in which dioxane penetrated 

excised skin 10 times more under occluded conditions than unoccluded. Radiolabeled 

dioxane was used with lotion which was applied to the excised skin in occluded and 

unoccluded diffusion cells. The study also reported detecting rapid evaporation, which 

further decreased the small amount available for skin absorption in occluded and 

unoccluded diffusion cells (Bronaugh, 1982a). Another study in monkeys, dermal 

absorption was reported to be low from a menthol or skin lotion vehicle. The ability of 

the chemical to penetrate the skin was evaluated by examination of radiolabel in urine 

(Marzulli et al., 1981). 

 Distribution 

No data are available for the distribution of dioxane in human and animals after oral, 

inhalation, or dermal exposures. The only related data regarding distribution of dioxane 

is that described in investigations involving intraperitoneal exposure of animals. 

Intraperitoneal injection of labeled dioxane in male rats showed that the tissue 

distribution was mostly even through renal, hepatic, skeletal muscles, colon, and lung 

tissues, with blood concentrations higher than tissues  (Woo et al., 1977b).  Another 

study in rats found that after intraperitoneal injection, the time to reach maximum 

accumulation of radiolabel was shorter for liver and kidney than for blood or the other 

tissues. Tissue to blood ratios for kidney, liver and brain were less than one, while the 

testes had a ratio greater than one (Mikheev et al., 1990). The principles of 

physiologically based pharmacokinetic (PBPK) modeling study reported that dioxane 

could be transferred to milk in lactating mothers (Fisher et al., 1997). 
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 Metabolism  

The exact metabolic pathways of dioxane are not known. However, many studies have 

reported that HEAA is the main product of dioxane metabolism. Only one study 

identified 1,4-dioxane-2-one as a major metabolite (Woo et al., 1977b). But, there is 

some question about this compound as an ultimate metabolite, and its presence in the 

sample was believed to result from the acidic conditions (pH of 4.0 - 4.5) of the 

analytical assays. HEAA can be converted to 1,4-dioxane-2-one, and under alkaline 

conditions, the reverse reaction takes place (Braun & Young, 1977). Generally, HEAA 

may be generated from oxidation of dioxane via:-  (a) diethylene glycol. (b) directly to 

1,4-dioxane-2-one . (c) 1,4-dioxane-2-ol. A proposed metabolic scheme for dioxane in 

rats is presented in figure 1.3 (Woo et al., 1977a).  

1,4-Dioxane oxidation was shown  to be mediated by the cytochrome P450 (CYP450 

enzyme in the liver). CYP450 induction with phenobarbital or Aroclor and suppression 

with 2,4-dichloro-6-phenylphenoxy ethylamine or cobaltous chloride were effective in 

significantly increasing and decreasing, respectively, the presence of HEAA in the urine 

of male rats (Woo et al., 1977a, Woo et al., 1978). Oxidation to diethylene glycol and 

HEAA pathway seems to be the most probable, because diethylene glycol was found as 

a minor metabolite in rat urine following a single 1,000 mg/kg gavage dose of dioxane 

(Braun & Young, 1977). Furthermore, intraperitoneal injection of 100–400 mg/kg 

diethylene glycol in rats resulted in urinary elimination of HEAA (Woo et al., 1977a). 

Metabolism of dioxane in humans to the ultimate metabolite (HEAA) is extensive 

following inhalation exposure. In a study on adult male volunteers exposed to 50 ppm 

reported that over 99% of the dioxane was excreted after 6 hours as HEAA instead of 

the parent compound (Young et al., 1977). In a another study, the ratio of HEAA to 
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dioxane in the urine of humans following a exposure for 7.5 hour to 1.6 ppm dioxane 

was 118:1, hinting  nearly complete metabolism at this exposure concentration (Young 

et al., 1976). 
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Figure 1.3: Suggested metabolic pathways of dioxane in the rat. I = dioxane; II = diethylene 
glycol; III = β-hydroxyethoxy acetic acid (HEAA); IV = 1,4-dioxane-2-one; V = 1,4-
dioxane-2-ol; VI = β-hydroxyethoxy acetaldehyde. Note: Metabolite [V] is a likely 
intermediate in pathway b as well as pathway c. The proposed pathways are based on 
the metabolites identified; the enzymes responsible for each reaction have not been 
determined. The proposed pathways do not account for metabolite degradation to the 
labeled carbon dioxide (CO2) identified in expired air after labeled 1,4-dioxane 
exposure. 

 
Source: (Woo et al., 1977a) 
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 Excretion  

Dioxane is mainly execrated as HEAA in urine. However, the expiration of dioxane in 

breath increases at higher doses due to metabolic saturation. In workers exposed to a 

time-weighted average of 1.6 ppm for 7.5 hours, 99% of dioxane excreted in urine was 

in the form HEAA metabolite (Young et al., 1976). In adult male volunteers exposed 

via inhalation to 50 ppm dioxane for 6 hours, the excretion half-life was 59 minutes 

(Young et al., 1977). There is no information about excretion of dioxane in humans 

following oral exposures. Excretion of dioxane in rats has been mainly through urine. 

As in humans, half-life of excretion in rats exposed to 50 ppm dioxane for 6 hours was 

1.01 hours. Urinary excretion was 76% to 99% depending on the administrated dose 

following oral exposure, where the urinary excretion decreased as a dose increased. 

Excretion of dioxane through respiration increased with increasing dose (Young et al., 

1978a, Young et al., 1978b).   

After a single intravenous dose of 10 mg/kg of dioxane in rats, 4% of the dioxane was 

excreted in the urine as dioxane, 92% as HEAA, and 1% was excreted in the exhalation 

air (Young et al., 1978a). 

 

 Health Effects of Dioxane 

          Many reports have described dioxane as having adverse effects due to acute and chronic 

exposure. The human data mostly consist of case reports of occupational intoxication, volunteer 

studies, and epidemiological studies of workers occupationally exposed to dioxane. The source 
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of health effects data in animals mostly comes from short or long-term toxicity studies in 

laboratory due to many exposure routes.     

 Acute Exposure 

Earlier case reports of acute occupational poisoning with dioxane pointed out that 

exposure to high concentrations caused toxicity in the liver, kidney, and central nervous 

system (Barber, 1934, Johnstone, 1959b). The first record of adverse health effects 

resulted from acute exposure to dioxane date from 1933, when factory workers were 

exposed to high (unspecified) concentrations of dioxane through inhalation. Some of 

patients who displayed signs of liver changes, increased urinary protein and increased 

white blood cell counts. Five deaths occurred within a period of 2 weeks of the onset of 

illness. Postmortem findings suggested that hemorrhagic nephritis and centrilobular 

necrosis of the liver may have been responsible for lethality (Barber, 1934). Another 

case was documented in which a worker who died following exposure by inhalation and 

direct dermal contact to high levels of dioxane (between 208 to 650 ppm). The post-

mortem examination showed lesions in the liver, kidneys, brain, and pulmonary system. 

However, the effects could not be easily separated from the effects due to high 

consumption of alcohol (Johnstone, 1959b). Human volunteer studies showed that acute 

inhalation exposure to >200ppm of dioxane for several minutes caused irritation of 

nose, eyes, and throat (Silverman et al., 1946). Following six hours exposure to 50ppm 

dioxane eye irritation was also seen (Young et al., 1977). In a study of six individuals 

exposed to 2,000 ppm dioxane vapors for three minutes, there were no clinical 

symptoms or nasal discomfort, but one out of four individuals exposed to 1,000 ppm for 

five minutes complained of constriction of the throat (Fairley et al., 1934). The 

exposure of 12 volunteers to 20 ppm dioxane for two hours yielded no significant 
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respiratory effects during exposure or up to three hours after exposure (Ernstgard et al., 

2006). The available epidemiological studies in occupational workers exposed to 

dioxane have not provided evidence of effects in humans (Buffler et al., 1978, Thiess et 

al., 1976 ). 

The acute and short-term toxicity investigations of dioxane in laboratory animals have 

been conducted with different routes of exposure including oral, dermal, inhalation, and 

intravenous or intraperitoneal injection. Generally, early studies have provided 

information on lethality of high concentrations of dioxane in many species (rabbits, rats, 

guinea pigs, mice, cats, and dogs). These studies also have indicated that the target 

organs are liver, kidney, and lungs in some cases. Exposure to 5,000 ppm of dioxane 

was lethal to rabbits, rats, and mice, while 10,000 ppm was lethal to guinea pigs (Fairley 

et al., 1934).  Clinical symptoms of central nervous system depression also were shown, 

including paralysis, coma, narcosis, and death (Nelson, 1951, Laug et al., 1939, Schrenk 

& Yant, 1936, de Navasquez, 1935). The established LD50 for acute exposure in rats via 

the oral route is 5,200 ppm. The LC50 for rats through the inhalation route is 46 gm/m3
 

(USEPA, 1996). 

 Chronic Exposure 

The chronic exposure database for dioxane in humans is limited. In an occupational 

study to assess health effects in 74 German workers exposed to dioxane concentrations 

ranging between 0.006 and 14.3 ppm for an average of 25 (12 to 41) years in a factory 

for dioxane production. The clinical evaluation of the workers showed evidence of 

abnormal liver functions where serum glutamate-oxalacetic transaminase (SOGT), 

serum glutamate pyruvate transaminase (SGPT), alkaline phosphatase, and gamma 
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glutamyltransferase were increased. No liver enlargement or icterus was noticed. Renal 

function tests and urinalysis were normal in exposed workers. No signs of hepatic or 

renal disease were found and no cancer was detected (Thiess et al., 1976 ). Other studies 

in humans suggested that chronic exposure to dioxane may play a role in renal failure 

and death (Yaqoob & Bell, 1994, Buffler et al., 1978).  

Subchronic and chronic toxicity studies have been conducted in laboratory animals to 

identify potential health effects associated with long-term exposure. The majority of 

these studies have been with oral drinking water exposure. Long-term inhalation studies 

were limited and insufficient to describe the inhalation risks of dioxane. Subchronic 

toxicity studies have generally considered histopathological changes to be evidences of 

organ-system toxicity.  The most reported histopathological changes of subchronic 

toxicity in rats and mice were renal cortical degenerations and necrosis, hemorrhage, 

hepatocellular degeneration, hepatocyte swelling, and nuclear enlargement of nasal and 

bronchial epithelium (JBRC, 1998, Stott et al., 1981, Fairley et al., 1934). Whereas, 

chronic studies have reported that the pathological changes were hepatocyte with 

enlarged with hyperchromic nuclei, hepatomegaly, glomerulonephritis, gastric ulcers, 

pneumonia, arthritis, atrophy of nasal olfactory epithelium, nasal inflammation, delayed 

ossification of the sternebrae and reduced fetal body weights (JBRC, 1998, Giavini et 

al., 1985, NCI, 1978, Kociba et al., 1974b, Argus et al., 1973, Argus et al., 1965). 

 Carcinogenicity Effects  

Limited data are available regarding cancer and exposure to dioxane in humans. Survey 

on 74 workers exposed to concentrations of dioxane ranged between 0.006 and 14.3 

ppm for an average duration of exposure of nearly 25 years. Two of twelve deaths were 
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attributed to cancer which had been reported (Thiess et al., 1976 ). In an occupational 

investigation of 165 workers exposed irregularly to low level (0.1 - 17 ppm) of dioxane 

in a manufacturing and processing facility at least one month during a 21-year period 

showed no apparent excess of total cancer deaths (Buffler et al., 1978). Limited 

retrospective studies on 80 workers who inhaled dioxane with potential exposure of 

0.18 to 184 mg/m3 for several years showed no evidence of occupational disease or an 

increased cancer occurrence comparing  to the general population (NIOSH, 1977). In 

three epidemiologic studies on workers exposed to dioxane, the observed number of 

overall death rate and the cancer death rate did not differ significantly from the expected 

deaths (ASTDR, 2012).  

 Long-term exposure studies in laboratory animals have reported that dioxane can cause 

liver and kidney damage and induces hepatocellular and nasal tumors. Moreover, in rats 

nasal adenomas and carcinomas were also reported, accompanied by non-neoplastic 

lesions in the nasal cavity. These lesions were also observed in mice, but in mice 

dioxane did not induce an increased incidence of nasal tumors (Kano et al., 2009, NCI, 

1978, Kociba et al., 1974a, Argus et al., 1973, Argus et al., 1965). 

 Based on evidence in humans and experimental animals, and due to the inadequate 

evidence for the carcinogenicity of dioxane in humans and sufficient evidence for the 

carcinogenicity of dioxane in experimental animals the International Agency for 

Research on Cancer (IARC) has assessed dioxane as being a Group 2B carcinogen 

(possibly carcinogenic to humans) (IARC, 1999). Under the Guidelines for Carcinogen 

Risk Assessment, dioxane is “likely to be carcinogenic to humans” based on evidence of 

liver carcinogenicity in several 2-year bioassays conducted in many laboratory animal 



25 

 

species  (USEPA, 2005). Lifetime cancer risk of 1 in 100,000 has been assessed by the 

U.S. EPA for people drinking-water contaminated with 30 µg/L dioxane (USEPA, 

2013a).  Based on both non-threshold and threshold approaches, the World Health 

Organization (WHO) has issued a guideline value for drinking-water quality of 50 µg/L 

dioxane (WHO, 2008). 

 The genotoxic effects of dioxane has been tested using in vitro assay systems with non-

mammalian eukaryotic organisms, prokaryotic organisms, and mammalian cells, and 

also examined in vivo assay systems using many strains of rats and mice. In most of in 

vitro and in vivo systems studies, dioxane was nongenotoxic or weakly genotoxic 

(USEPA, 2013b). 

 

 Remediation of Dioxane 

        Technologies that are effective for treating chlorinated solvents are often not appropriate for 

treating dioxane because the properties of dioxane vary from those of chlorinated solvents. The 

physical and chemical properties of dioxane pose challenges for removing dioxane from water. 

Because of its high miscibility and low degree of partitioning to organic matter in soil, dioxane is 

well suited to removal by groundwater extraction. However, the low Henry’s Law constant of 

dioxane poses other challenges for clean-up technologies like air stripping. The low adsorptive 

capacity of dioxane also limits the efficiency of treatment by granular activated carbon (USEPA, 

2006).   
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       Many techniques are used for clean-up of dioxane contaminated sites. The technologies 

range from simple in-situ development of natural microorganisms to costly advanced oxidation 

processes. Some remediation technologies have consensus on their potential for success, but 

other technologies do not have universal acceptance, like air stripping and activated carbon 

adsorption. 

The most common techniques are advanced oxidation processes, specialized sorbents, and 

bioremediation (Mohr et al., 2010).  

- Advanced oxidation processes use hydroxyl radicals, which are powerful oxidizers, to 

successively oxidize organic contaminants to carbon dioxide, water, and residual 

chloride. Two common processes include photo-induced oxidation using UV light with 

hydrogen peroxide and hydrogen peroxide with ozone. Hydroxyl radicals are released 

from hydrogen peroxide added to contaminated water because of UV light. Hydroxyl 

radicals are also generated when ozone is added to hydrogen peroxide with or without 

UV light (USEPA, 2006).  

- Specialized sorbents: many types of sorptive media have been tested to assess their 

capacity to remove dioxane from water: surfactant-modified zeolite, surfactant-modified 

zeolite with zero-valent iron, macroporous polymers, granulated activated carbon (GAC), 

organoclays, and palladium-111, GACs made from agricultural by-products are common 

sorbents used for dioxane removal from water (Mohr et al., 2010). 

- Bioremediation: this method involves placing contaminants in  extracted water in contact 

with microorganisms in attached or suspended growth biological reactors (USEPA, 

2006). Bioremediation has historically been avoided because dioxane shows insignificant 

biological oxygen demand and is considered to be relatively nonbiodegradable. However, 
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recent studies have revealed that specific species of plants and microorganisms (like 

some strains of Actinomycete and Pseudonocardia) can successfully remediate dioxane 

(Zenker et al., 2000). 

 

 Adsorption 

     Adsorption is the phenomenon marked by a natural tendency of components in a liquid or a 

gas phase (adsorbate) to attach as a monolayer or a multilayer at the surface of a solid material 

(adsorbent), and it may result from either physical or chemical interaction with the surface 

(Ruthven, 1984). The phenomenon of adsorption was discovered over two hundred years ago. 

Gases uptake by charcoal was first investigated by C. W. Scheele in 1773 and by Abb F. Fontana 

in 1777. In 1785, T. Lowitz found that charcoal can decolorize solutions by a surface adsorption 

mechanism (Ruthven, 1984). The site of adsorption is the place where the adsorbate and 

adsorbent come in contact with each other. The molecules or atoms of the adsorbent are held 

together by various forces which include electrostatic interactions, van der Waals interactions, 

hydrogen bound, charge transfer, ligand exchange, direct and indirect dipole-dipole interactions, 

hydrophobic bound, and chemisorption (Suthersan, 2002).  

       Atoms and molecules can attach themselves onto surfaces in two ways: physical interactions 

(physical adsorption) and chemical interaction (chemical adsorption).  

Physical Adsorption: this adsorption takes place as a consequence of energy differences and/or 

electrical attractive forces  by which the adsorbate molecules become physically 

attached to the adsorbent molecules (Everett, 1971). The atoms located inside the solid 

(adsorbent) are exposed to equal forces in all directions, while atoms on the surface are 
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exposed to unbalanced forces. The adsorbate adheres to the surface of the adsorbent 

only through van der Waals interactions. Van der Waals interaction is the sum of the 

attractive or repulsive forces between molecules or parts of same molecules, and it is the 

main forces governing the physical adsorption. Van der Waals forces on a solid surface 

arise due to London dispersion forces. The London dispersion force (LDF) is a force 

between two instantaneously induced dipoles. The LDF is a force resulting from two 

electrons in adjacent atoms occupying positions that make the atoms create temporary 

dipoles. An atom or molecule can form a temporary dipole when its electrons are 

distributed irregularly about the nucleus (Marsh & Rodriguez-Reinoso, 2006). In 

physical adsorption the attraction to the surface is weak but long range and the energy 

released upon accommodation to the surface is of the same order of magnitude as an 

enthalpy of condensation, and it is always exothermic. The physically adsorbed 

molecule keeps its identity and on desorption returns to its original form. Physical 

adsorption systems usually reach equilibrium rapidly; however, equilibrium may be 

slow if the transport process is rate-determining (Rouquerol et al., 1999).  

Chemical Adsorption: in this adsorption process, the adsorbate bonds to the adsorbent by the 

formation of a chemical bond with the surface. Chemical forces at the interface are 

more complicated than these in physical adsorption. The main chemical bonds involved 

in chemical adsorption are ionic bond, covalent bond, and co-ionic bond. The 

chemically adsorbed molecules are linked to reactive parts of the surface, and the 

adsorption is certainly restricted to a monolayer. This interaction is much stronger than 

physical adsorption. Generally, chemical adsorption has more strict requirements for the 

compatibility of adsorbate and surface site than physical adsorption. In chemical 
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adsorption, if the adsorbed molecule undergoes reaction or dissociation, its identity will 

be lost and cannot return to its original form by desorption. The energy of this 

adsorption is the same order of magnitude as the energy change in comparable chemical 

reaction. At low temperatures the chemical adsorption system cannot reach 

thermodynamic equilibrium because of  insufficient thermal energy (Rouquerol et al., 

1999, Emmett & Brunauer, 1937).  

Many factors affect adsorption and influence its capacity. The size of the adsorbate 

molecule impacts its potential to be adsorbed to the adsorbent surface. Large molecules 

have more locations where van der Waal’s forces contribute to attraction of the 

adsorbate molecule to charged particles in adsorbent.  This attraction usually occurs 

through temporary dipole generating from time-varying electron distribution or polarity 

induced by charges on particles. The electrons are attracted to the positive site in the 

temporary dipole in the adjacent adsorbent surface, leading to a net attraction of the 

adsorbate to the adsorbent surface (Mohr et al., 2010). The smaller particle size of 

adsorbent gives higher adsorption rates. They reduce internal diffusion and mass 

transfer limitation to penetrate of the adsorbate inside the adsorbent (i.e., equilibrium is 

more easily achieved and nearly full adsorption capability can be reached) (Al-Anber, 

2011, Ali, 2011). Surface area and porosity of the solid also influence adsorption 

processes. Higher surface area and porosity increase adsorption capacity. Polarity, 

ionization, contact time, hydrogen bonds, and water solubility are other factors which 

affect adsorption. Non-polar compounds are more prone to be adsorbed; more highly 

ionized molecules of adsorbate are adsorbed to a smaller degree than neutral molecules; 
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and highly soluble and miscible compounds (hydrophilic) are less prone to adsorption 

(Dragun, 1988).  

 Adsorption Isotherm 

       Upon contacting an amount of sold (adsorbent) with a compound (adsorbate) long enough, 

adsorption will occur and continue until equilibrium will be established between the compound 

in solution or gas and the same compound in the adsorbed state. At equilibrium a relationship 

occurs between the concentration (if liquid) and pressure (if gas) of the compound in solution or 

gas and the concentration or the pressure of the same compound in the adsorbed state (amount of 

compound adsorbed / unit mass of adsorbent). Adsorption equilibrium is commonly described by 

adsorption isotherms (the mathematical models to describe adsorption) whose parameters 

express the surface properties and affinity of the adsorbent, at a fixed temperature, and pH 

(Snoeyink, 1999). Usually, the mathematical correlation, which establishes an essential role 

towards the modeling analysis, operational design and applicable practice of the adsorption 

systems, is commonly depicted by graphically expressing the adsorbent-phase against its residual 

concentration or pressure  (Ncibi, 2008). In general, the essential purpose of studying adsorption 

isotherms is to identify circumstances for which high adsorption capacities are attained and to 

estimate the shape of the curve relating the equilibrium concentration of an adsorbate on the 

surface of an adsorbent.  

 Isotherm Models 

      A wide variety of models for predicting the equilibrium distribution have been formulated 

over the years, such as Langmuir, Freundlich, Brunauer–Emmett–Teller, Redlich– Peterson, 

Dubinin–Radushkevich, Temkin, Toth, Koble–Corrigan, Sips, Khan, Hill, Flory–Huggins and 

Radke–Prausnitz isotherm. Most of those isotherms have built in terms of three fundamental 
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approaches (Kinetic consideration, thermodynamics, and potential theory) (De Boer, 1968, 

Myers & Prausnitz, 1965).  

       A variety of mathematical models have been suggested to describe adsorption phenomena. 

Some of them were developed with a theoretical basis to describe adsorption mechanisms, while 

others are just empirical or a simplification of more elaborate models. In some ranges of activity, 

adsorption isotherms can be come close to linear equations (Andrade et al., 2011). The equations 

most commonly used to describe the curvilinear adsorption behavior of compounds are the 

linear, Langmuir, Freundlich, and Brunauer-Emmett-Teller isotherm, due to their relative 

simplicity. 

 Linear Isotherms 

Linear isotherms is the simplest model to describe the relationship between mass of 

compound adsorbed/ mass (q) and equilibrium concentration of adsorbable compound 

in solution (ceq). 

q = a + b(ceq ) 

In this example, linear regression could be used to extrapolate the slope (b) and the 

intercept (a). Several adsorbates show linear isotherms at low concentrations or 

pressures (Hinrich et al., 2002). 

 Langmuir Isotherms 

The Langmuir model was primarily developed to describe gas solid-phase adsorption 

onto activated carbon. The model was based on three assumptions: (1) the adsorbed 

layer is made up of unimolecular layers; (2) All adsorption sites are identical and 
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independent; (3) the adsorption and desorption rate is independent of the population of 

neighboring sites (no interaction between adsorbate molecules) (Langmuir, 1916). 

Graphically, it is characterized by a plateau, an equilibrium saturation point where once 

a molecule occupies a location, no more adsorption can occur. Furthermore, Langmuir 

theory has related rapid decrease of the intermolecular attractive forces to the increase 

of distance. The equation of this isotherms model is:- 

 

 

Where x/m is the weight of adsorbate divided by the weight of adsorbent, a and b 

(determined graphically) are constants, C the aqueous concentration or pressure of the 

adsorbate. 

The Langmuir isotherm is usually linearized by inversion and so used to test whether it 

is obeyed by experimental data.  

 

 

Langmiur isotherm model has many limitations. It postulates that adsorption is 

unimolecular layer. But, formation of unimolecular layer occurs only under low 

pressure environments, and under high pressure environments the postulate breaks 

down. Therefore, the Langmuir isotherms model is valid under low pressure only. It 

presumes all the locations on the adsorbent surface are homogeneous and have identical 

affinity for adsorbate molecules, but in real conditions adsorbent surfaces are 
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heterogeneous. The model also disregards interactions between adsorbate/adsorbate 

molecules. This is impossible as weak force of attraction occurs even between 

molecules of same adsorbat (Rouquerol et al., 1999). 

 

 Freundlich Isotherm 

Freundlich isotherm model  was developed for the adsorption of animal charcoal 

(Freundlich, 1906). It is the earliest model describing the non-ideal and reversible 

adsorption relationship, and is not limited to the formation of unimolecular layer. This 

empirical model can be applied to multimolecular layer adsorption, with non-uniform 

distribution of adsorption heat and affinities over the heterogeneous surface of  

adsorbent (Adamson & Gast, 1997).  

Presently, Freundlich isotherm is usually applied in heterogeneous systems especially 

for organic substances or highly interactive species on activated carbon and molecular 

filters. The slope ranges between 0 and 1 is a measure of adsorption capacity or surface 

heterogeneity, becoming more heterogeneous as its value becomes closer to zero. A 

value below unity implies chemisorptions process where 1/n above one is an indicative 

of cooperative adsorption  (Foo & Hameed, 2010). The Freundlich Isotherm is 

described by the following equation: 

                                                              x/m = kC1/n  

Where x/m is the weight of adsorbate divided by the weight of sorbent (usually in µg/g 

or mg/g), K is a constant, C the aqueous concentration (usually in mg/ml), and n a 

constant. 
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To linearize the isotherm by taking the logarithm of expression to see if the 

experimental adsorption behavior of a substance obeys the Freundlich isotherm or Kd 

model,                                           

 

log x/m = log k + 1/n log C 

 

       Freundlich equation has many limitations. It is completely empirical and has no 

theoretical basis; it fails at higher pressure or concentration to describe adsorption; and 

the constants ‘k’ and ‘n’ are temperature dependents, they differ with temperature 

(Adamson & Gast, 1997). 

 

 Brunauer–Emmett–Teller (BET) Isotherm  

BET isotherm (Bruanuer et al., 1938) is a theoretical model which represents a 

fundamental milestone in interpretation of multi-layer adsorption isotherms, particularly 

the types II and III. It most extensively applied in the gas–solid equilibrium systems 

(Adamson & Gast, 1997). This model assumes that the adsorbed molecules stay put, 

same enthalpy for any layer, equal energy of adsorption for each layer except for the 

first layer, and a new layer can form while another is still not finished (Rouquerol et al., 

1999). 

BET equation and has the form: 

 

 
For linear form of equation:  
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Where, B= a term for the energy of interaction with surface; b = monolayer capacity; Cs 

= concentration of solute at saturation; Ceq = concentration of solute at equilibrium. 

 

 

 Adsorbents 

 Activated Carbon  

       Activated carbon is a member of a family of carbons extending from carbon blacks to 

nuclear graphite. All types come from organic origin sources but with various carbonization and 

manufacturing processes. Activated carbon is solid, porous adsorbent, black carbonaceous 

substance distinguished by the absence of both impurities and an oxidized surface from 

elemental carbon (Marsh & Rodriguez-Reinoso, 2006).  

       Historically, activated carbon had been used by Egyptians about 1500 BC as an adsorbent 

for medical purposes and also as a purifying material. In ancient India, Hindus had used charcoal 

to purify their drinking water. In Japan, at old Kashiwara Jingu, Nara temple, a well for 

underground water constructed in the 13th century AD was found equipped with a charcoal filter 

at the bottom. In the 18th century, during the Napoleonic era in France, wood char and later bone 

char were used for first time in refining beet sugar (Suzuki, 1990). The first industrial production 

of activated carbon started in 1900 and it was used in sugar industries (Bansal & Goya, 2005).    

       Activated carbon can be prepared from a large number of natural and synthetic precursors 

such as coconut, wood, peat, coal, tar, and sawdust (Rouquerol et al., 1999).  It has a large 
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surface area and pore volume, making it appropriate for a wide variety of applications. It is used 

extensively for elimination of unwanted odor, color, tests, and impurities from waste water. It is  

also employed for air purification in inhabited locations and gas-phase application (Bansal & 

Goya, 2005). 

       Carbon is the main constituent (80 to 95%) of activated carbon, in addition to other elements 

such as nitrogen, hydrogen, oxygen, and sulfur. The typical composition of activated carbon is 

found to be 88% carbon, 6-7% oxygen, 1% nitrogen, 1% sulfur, 0.5% hydrogen with the balance 

representing inorganic ash constituents.  

       The porosity is the most important and essential property of activated carbon: the property 

that determines its usage. This porosity donates the surface area that provides the capacity to 

adsorb gases and vapors from compound gases and dissolved or dispersed materials from liquids. 

The total number of pores, their shape, and size determine the adsorption capacity and even the 

dynamic adsorption rate of the activated carbon. Porous structures are classified relative to their 

pore diameter or pore width. Pore sizes are commonly categorized into three groups; macro, 

meso, and micro. A macropore has diameter >1000 angstroms, a mesopore diameter is 100-1000 

angstroms, and a micropore diameter is less than 100 angstroms (Roy, 1994).  Several 

measurements are conducted after activated carbon production to describe the range of surface 

area, and pore distribution.  Surface area is measured by the amount of liquid nitrogen adsorption 

volume at liquid nitrogen temperature. Pore volume distribution is measured by calculating the 

ratio of optical densities of standard molasses solution as decolorized by a sample of carbon and 

a reference of standardized decolorizing carbon. This value is called a molasses number, the 

higher numbers reflecting a larger percentage of macropores.  The iodine number is the value of 

micropores percentage measuring, this value determines adsorption of iodine (in milligram) per 
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gram of carbon from 0.02 N iodine solution  (Roy, 1994).  The most commonly used activated 

carbon adsorbents have a specific surface area of 800-1500 m2/g and a pore volume of 0.20-0.60 

cm3/g. The surface area in activated carbon is mostly contained in pores which have effective 

diameters less than 2 nm. The adsorption capacity of activated carbon is determined by its 

physical or porous structure but it is also strongly influenced by the chemical structure  (Bansal 

& Goya, 2005).  

 

  Metal Oxide Nanoparticles    

       Nanomaterials are materials that exist at a scale of 10-9 meters (one nanometer is equaled to 

one-billionth of a meter). The extremely small size and some unique physical and chemical 

properties of nanomaterials have led to using them extensively in industrial, chemical, 

biomedical, and electronic applications. Nanomaterials can be available in different chemical 

forms such as metals, metal oxides, polymeric materials, ceramics, and more (Fryxell & Cao, 

2012).  

       Different nanomaterials are being used as adsorbents to remove toxic pollutants from the 

environment. This is due their high surface area with large surface to bulk ratios, unusual shapes, 

high surface concentrations of reactive edge and corner, high percentage of their constituent atoms 

at a surface, and a wide range of Lewis acid-base properties and oxidation/reduction potentials 

(Volodin et al., 2006). The surface area of nanoparticles ranges from 400 to 1000 m2/g with 

about 1019 interfaces/cm3. The surface area increases as the particle size decreases and the 

reactivity is considerably improved. The size of small crystallite in nanocrystals is quite 

remarkable. For instance, magnesium oxide prepared by the aerogel procedure has crystallite size 

~ 4 nm, calcium oxide ~ 7 nm, titanium oxide ~ 10 nm, and zinc oxide ~ 8 nm. Whereas, the 
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surface area of magnesium oxide, calcium oxide, titanium oxide, and zinc oxide crystallite are 

~500 m2/g, ~150 m2/g, ~100 m2/g, and ~1 m2/g, respectively (Ranjit et al., 2005). 

       Nanoparticals of some metal oxides like oxides of magnesium, calcium, zinc, titanium, 

aluminum, and iron, have been exhibited to be highly efficient and active adsorbents for 

numerous toxic substances. In most cases, destructive adsorption occurs on the surface of the 

nanoparticals, so that the adsorbate is chemically broken up and thereby made nontoxic. The 

term “destructive adsorbent” is defined as the ability to efficiently adsorb and chemically destroy 

incoming adsorbate (Volodin et al., 2006). Very high surface areas and higher reactivity 

compared to their bulk counterparts provide nanoparticals of metals oxides high adsorption 

capacity per mass adsorbent. This allows for the adsorption of relatively high amounts of some 

chemicals. Therefore, nanopartical adsorbents can have advantages over traditional adsorbents in 

areas that influence adsorption capacity: surface area and chemistry, and pore size distribution. 

One distinctive characteristic of nanometerscale structures is that, unlike macroscopic materials, 

they usually possess a high proportion of their component atoms at a surface. The bulk of an 

object decreases more rapidly than its surface area as the size reduces. This scaling tendency 

leads, in the most extreme case, to structures where almost every atom in the structure is 

interfacial (Ali, 2011). 

 

 Diatomaceous Earth 

          Diatomaceous earth or Diatomite is a loose, earthy or loosely cemented porous, pale-

colored, soft, lightweight rock of sedimentary origin, mainly formed by fragments of skeletons of 

diatom algae (diatomea and radiolarian), with size ranges from 0.75 to 1500 µm. Typically, it is 

composed of 87–91% silicon dioxide (SiO2) with substantial quantities of alumina (Al2O3) and 
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ferric oxide (Fe2O3). Diatomite has its origin from a siliceous, sedimentary rock consisting 

mainly of the fossilized skeletal remains of diatom, a unicellular aquatic plant related to the algae 

(Paschen, 1986). Diatomite consists of a wide variety of shape and sized diatoms, typically from 

10–200 µm, in a structure contains up to 80–90% voids (Lemonas, 1997). It is a highly porous 

structure, with good adsorption ability, chemical inertness, low density, and high surface area. 

The unique combination of physical and chemical properties of diatomite, make it applicable for 

a number of industrial uses as filtration media for various beverages and inorganic and organic 

chemicals, and for the removal of inorganic and organic pollutants (Michell & Atkinson, 1991, 

Al-Ghouti et al., 2004).  

       Diatomite is widely used in filtering processes. It is used as a filter medium for swimming 

pools and fish tanks, in chemistry as a filtration aid to filter very tiny particles that pass through 

or block classical filter paper. In addition to this, it is used to filter drinking water, sugar, honey, 

and syrups without altering of their natural properties (Morsy & Bakr, 2010). 

       Results of many studies have shown that natural diatomite holds great potential to adsorb 

wide range of chemicals, such as the basic dye in solutions (Khraisheh et al., 2004), BTEX 

(benzene, toluene, ethyl-benzene and xylenes), MTBE (methyl tertiary butyl ether) from aqueous 

solution (Aivalioti et al., 2010), and heavy metals like lead, copper, and cadmium from 

wastewater (Morsy & Bakr, 2010). Diatomite possesses high liquid absorptive capacity. It can 

absorb 1.5 to more than 3 times its weight of water. Therefore, it is used widely as an absorbent 

for industrial spills and pet liter, as a mild abrasive in polishes, and as an insulation material 

(Antonides, 1997). 
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 Fourier Transform Infrared Spectroscopy (FT-IR) 

         Fourier Transform Infrared Spectroscopy (FT-IR) is a powerful technique for recognizing 

types of chemical bonds in a molecule by creating an infrared absorption spectrum that is like a 

molecular "fingerprint". It can be utilized to provide useful information on molecular identity 

and structure. FT-IR is used to determine qualitative and quantitative features of IR-active 

molecules in organic or inorganic solid, liquid or gas samples (Rees, 2010).  

       FT-IR Spectrometer acquires broadband near infrared (NIR) to far infrared (FIR) spectra. 

Absorption takes place during transferring of the energy of the beam of light to the molecule. 

The molecule becomes excited and transfers to a higher energy state. The energy transfer occurs 

in the form of electron ring shifts, vibrations of molecular bond, rotations, and translations. 

Infrared is commonly concerned with stretching and vibrations (Smith, 2011).  Energy of 

infrared photons are enough to effect groups of atoms to vibrate with respect to the bonds that 

link them. Similar to electronic transitions, these vibrational transitions relate to distinct energies, 

and infrared radiation can be absorbed by molecules only at certain wavelengths and frequencies. 

Chemical bonds vibrate when exposed to infrared radiation at specific frequencies, and they 

absorb the radiation at frequencies that match their vibration modes. Some bonds absorb infrared 

radiation strongly than others, and some bonds do not absorb at all.  In order for a vibrational 

mode to absorb infrared radiation, periodic change in dipole moments must be involved. Energy 

absorption from a spectrum infrared radiation transferring through or reflecting off a chemical 

produce a pattern of energy absorption that is associated with the functional groups and the 

structural arrangement of molecules in the chemical. Measuring the amplitudes and frequency of 

radiation absorption generates a spectrum that can be utilized to identify functional groups and 

compounds (Griffiths & De Haseth, 2007).  
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       FT-IR spectroscopy has many basic advantages and disadvantage over a classical dispersive 

infrared instrument.  

These advantages are:  

- Multiplex advantage (Fellgett advantage): A complete spectrum can be collected rapidly 

and many scans can be averaged in a shorter time than one scan on most dispersive 

instruments.  

- Throughput advantage (Jacquinot advantage): the ability to complete the same 

signal/noise ratio as a dispersive instrument in a much shorter time 

- Precision advantage (Connes advantage): the frequency scale of laser spectrum is known 

very accurately (high resolution) and is very stable (Sun, 2009).    

The disadvantages are: 

- FT-IR instruments do not measure spectra, they measure interferograms. Interferograms 

are not easy to interpret without first performing a Fourier transform to generate a 

spectrum. 

- Because of multiplex advantage (source noise limited) applies, all regions of spectrum 

are observed simultaneously. Hence, the noise will be speared throughout the spectrum 

in an FT-IR system, if it take places in on part of the infrared radiation from the source 

(Smith, 2011).   
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 Dermal Absorption 

 
 Human Skin 

        Skin is the largest organ of human body, making up to 16% of body weight, with a total 

area of 1.9 m2 to form a physical barrier to the external environment (REF).  Skin performs many 

vital functions, including protection against external physical and chemical assailants like micro-

organisms, solar radiation, and toxic agents. Also, skin plays an important role in 

thermoregulation, control of excess water loss from the body, neural sensation, mechanical 

support, immunological surveillance, and others stressors  (Kanitakis, 2002).  

       Skin is composed of three layers: the epidermis, dermis, and hypodermis (subcutaneous 

tissue). The epidermis is the external layer primarily consists of layers of keratinocytes in 

addition to melanocytes, Langerhans cells, and Merkel cells. The dermis layer is a supportive 

connective tissue between the epidermis and underlying subcutaneous tissue. It is basically made 

up of the fibrillar structural protein known as collagen and contains hair roots, sweet glands, 

blood and lymph vessels, nervous cells, and fibers. The hypodermis is a layer of loose connective 

tissue that lies beneath the dermis (Kanitakis, 2002, Riviere, 2005). 

 Epidermis 

       The epidermis is the outer layer of skin which forms both the physical and chemical barrier 

between the interior body and exterior environment. Anatomically, the epidermis is made up of 

stratified squamous epithelium. The main cells of the epidermis are the keratinocytes which are 

derived from ectoderm, forming the outermost layer of the skin.  It is composed mainly of two 

types of cells: keratinocytes and dendritic cells. The keratinocytes vary from the dendritic cells 
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by owning intercellular bridges and ample amounts of stainable cytoplasm (Murphy, 1997). The 

thickness of the epidermis ranges from 0.05 mm on the eyelids to 2 mm on the soles of the feet 

and palms of the hand. The epidermis normally is separated into four layers according to 

keratinocyte morphology and position as they differentiate into horny cells. The four divided 

layers of the epidermis are created by the differing stages of keratin maturation. The 

classification of epidermal layers (from the external surface to the lower layer) is as follows: 

• Stratum corneum (horny layer). 

• Stratum granulosum (granular cell layer) 

• Stratum spinosum (spinous or prickle cell layer) 

• Stratum basale (basal or germinativum cell layer) 

       The three lower layers that formed the living, nucleated cells of the epidermis are sometimes 

referred to as the stratum malpighii and rete malpighii. These three layers are also known as a 

“viable epidermis” (Murphy, 1997, Riviere, 2005, James et al., 2006). The epidermis is a 

permanently renewing layer and provides rise to derivative structures. The basal cells of the 

epidermis undergo proliferation cycles that furnish for the renewal of the external epidermis. The 

epidermis is a dynamic tissue in which cells are continually engaged in unsynchronized 

movement (Chu, 2008).  

       The epidermis layer is composed of at least 80% of cells which are ectodermally derived 

keratinocytes. The cells are differentiated through their migration from the basal layer to the 

surface of the skin, resulting in keratinization. During the process of keratinization, the kerati-

nocyte first passes through a synthetic phase followed by a  degradative phase (Chu, 2008). In 

the synthetic phase, the cell builds up a cytoplasmic supply of keratin. In degradative phase of 
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keratinization,  the cells lose their organelles and the contents are consolidated into a mixture of 

filaments and amorphous cell envelopes, and the cell finally is known as a corneocyte (James et 

al., 2006). In addition to the keratinocytes, other types of cells exists, which are usually 

identified as nonkeratinocytes and contains the melanocytes, Merkel cells, and Langerhans cells 

that exist in the epidermis but do not contribute to the process of keratinization (Riviere, 2005). 

 Stratum Corneum 

The stratum corneum is the outermost layer of the epidermis. It is composed of several 

layers of hexagonal-shaped, tightly packed, anucleate, without cytoplasmic organelles, 

flattened, non-viable cornified cells, and known as corneocytes. The corneocytes are 

dead cells that are constantly self-renewing through desquamation from surface, and 

balanced by cell divisions in the lower epidermis (Holbrook & Odland, 1975). The 

stratum corneum cell layer can differ in its density depending on how the filaments are 

packed. The stratum corneum cell layers may vary in thickness from one body site to 

another. In general, it consists of 10-30 layers of stacked corneocytes in most areas of 

skin, but with the area of the palms and the soles having the most. Each corneocytes is 

about 40 µm in diameter and 0.5µm thick, and shows the end stage of keratinocyte 

differentiation(Gawkrodger & Ardern-Jones, 2012). Each corneocyte is enclosed by an 

envelope protein and is filled with tight bundles of intracellular keratin proteins. It is 

water insoluble, thermodynamically stable, and can retain water. In the corneocyte, the 

shape and alignment of the keratin proteins, which stabilized by disulphide cross-linked 

macrofibres, add strength to the stratum corneum (Lynley & Dale, 1983).  

        Corneocytes are surrounded by a dense cross-linked protein layer, referred to as the 

cell envelope. They are embedded in a monolayer of lipids matrix which is chemically 
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linked to this densely packed cell envelope (Harding et al., 2000). The corneocytes are 

arranged in the lipid matrix in what is known as the “brick and mortar” structure 

(Michaels et al., 1975). This lipid matrix plays an important role in the stratum corneum 

as it serves as an interface between the hydrophilic structures of corneocytes and the 

lipophilic extracellular lipid matrix. Additionally, corneodesmosomes interconnect the 

corneocytes and provide cohesion to the stratum corneum (Bouwstra & Gooris, 2010). 

The proportion of lipid content in stratum corneum ranges between 1 to 11 percent in 

human skin (Raykar et al., 1988). The major lipid classes in human stratum corneum (% 

weight of solvent extracted lipids) are ceramides (40-50%), cholesterol (20 - 33%), 

saturated long chain free fatty acids (7 -13%), cholesterol sulfate (0-7%)  and 

cholesteryl esters (0–20 %) (Wertz et al., 1987, Norlen et al., 1998). Stratum corneum 

lipids are synthesized in stratum granulosum, where they are packaged into lamellar 

bodies pre-apical secretion into the intercellular spaces to compose the intercorneocyte 

lipid. In contrast to other lipid structures (like cell membranes), the stratum corneum 

does not have phospholipids. The lipophilic environment of intercellular (lipid matrix) 

domains with hydrophilic domains of corneocytes impart a degree of “amphiphobicity” 

upon the stratum corneum, donating partial protection against both lipophilic and 

hydrophilic penetrants (Chilcott & Price, 2008).  

        Ceramides are a class of polar lipids. A typical ceramide consists of polar head-

group (sphingosine, phytosphingosine or 6–hydroxysphingosine moiety) containing 

several functional groups that can form lateral hydrogen bonds with adjacent ceramide 

molecules. The polar heads link covalently to acyl chains of varying length, the large 

proportion consisting of 24–26 carbons (relatively longer than the phospholipids of 
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plasma membranes), with a small fraction containing 16–18 carbons.  (Motta et al., 

1993, Bouwstra et al., 2002b, Bouwstra et al., 2003).  

         Stratum corneum lipids are congregated into lamellae (bilayers, with periodicity of 

approximately 13 nm) organized parallel to the surface of the corneocytes  (Bouwstra & 

Ponec, 2006). The ceramides are linked to lipid layer through connections between 

sphingosine chains and fatty acid chains in ceramides. Spaces between the layers are 

filled with free lipids and relatively short acyle chains mainly consisting of fatty acids 

and cholestrol. The cermides head groups are organized into dence hydrogen- bonded 

lattices to compose orthorhombic crystalline bilayers. Acyl chains are mutually attracted 

through Van der Waalas force (Bouwstra & Gooris, 2010).  

         In epidermis, corneocytes are interconnected to each other by protein structures 

called desmosomes. Desmosomes are the main adhesion compound in epidermis, 

attaching keratin intermediate filaments to the cell membrane and bridging neighboring 

corneocytes, and allowing cells to resist mechanical stress (McGrath & Uitto, 2010). A 

desmosome is around or oval structure with diameter of 0.2 to 1 µm and 15 to 20 nm in 

thickness. It consist of two opposing symmetrically halves with a central intercellular 

space of 30 nm containing a dense line, each one belonging to one of to adjacent cells 

and containing of an intercellular , transmembranal, and extracellular part. Plaques of 

electrondense material run along the cytoplasm parallel to the conncation region.  Three 

bands can be recognized in plaques an electrondense band next to the plasma 

membrane, a less dense band, then a fibrillar area (Holbrook, 1994, Cozzani et al., 

2000, Loden & Maibach, 1999).  
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 Stratum Granulosum 

 
The stratum granulosum is composed of many layers of flattened cells lying parallel to 

the epidermal–dermal junction. These cells comprise irregularly shaped, nonmembrane-

bound, electron-dense keratohyalin granules, and are responsible for additional 

synthesis and modification of proteins involved in keratinization (Riviere, 2005, Chu, 

2008). The keratohyaline granules are necessary in the genesis of the interfibrillary 

matrix which keeps keratin filaments conjugated and the inner lining of the horny cells 

(Matoltsy, 1976). The enzymatic action of keratohyaline granules enhances production 

of soft keratin in the epidermis by providing periodic cutting of keratin filaments. On 

the contrary, keratohyaline granules do not exist in hair and nails. Therefore, the keratin 

in those structures is hard (Matoltsy, 1976, Schwarz, 1979). 

 

 Stratum Spinosum 

The stratum spinosum is multi-layered containing several (5-10) layers of irregular 

polyhedral cells fitted closely together that sits beneath the stratum granulosum 

(McGrath & Uitto, 2010). The surface of the cells displays minute spiny projections. As 

basal cells proliferate and mature, they proceed towards the outer stratum of epidermis, 

at first creating the stratum spinosum. The desmosomes, which look microscopically as 

prickles, connect the cells to neighboring stratum spinosum cells and to the stratum 

basale cells. This layer is distinguished by having numerous tonofilaments which 

discriminate it morphologically from the other layers (Riviere, 2005).   
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 Stratum Basale 

Stratum basale is the innermost layer of the epidermis which lies with their long axis 

perpendicular to the dermis. It consists of a single layer of columnar or cuboidal 

dividing and non-dividing keratinocytes. The cells are attached to the basement 

membrane by hemidesmosomes and attached laterally to each other and to the stratum 

spinosum cells by desmosomes (Wolff & Wolff-Schreiner, 1976). Stratum basale is the 

primary site of mitotically active cells in the epidermis that provide growth to cells of 

the outer epidermal layers. Nevertheless, not all cells in this layer have the potential to 

proliferate (Jones, 1996) 

 Dermoepidermal Junction / Basement Membrane 

 
       The basement membrane is a thin extracellular matrix rich in laminin and collagen that 

separates the epidermis from the dermis. The membrane contains four component layers;  the 

lamina lucida, the lamina densa, the subbasal lamina, and basal epithelial cell that comprises the 

hemidesmosomes, in addtion to a variety of fibrous structures (Briggaman & Wheeler, 1975). 

The basment membrane has important functions; it preserves dermoepidermal junction, acts as a 

selective barrier between the dermis and epidermis to some materials, plays an important role in 

wound healing and cell behavior, and acts as a target for immunologic and nonimmunologic 

injury (Monteiro-Riviere & Inman, 1995) 

 

 Dermis 

      The dermis lies under the basement membrane and comprises of dense irregular connective 

tissue with a matrix of collagen, elastic, and reticular fibers embedded in an amorphous ground 
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substance of mucopolysaccharides (Riviere, 2005). It is interspersed with blood vessels, nerves, 

lymphatics, sweat glands, sebaceous glands, hair follicles, and arrector pili muscles. The dermis 

can be divied into a thin papillary layer and a thicker reticular layer. The thin papillary layer 

comprises of loose connective tissue, which is in contact with the epidermis.Whereas, the 

reticular layer consists  of irregular dense connective tissue with fewer cells and more fibers 

(Chu, 2008). The dermis provides protection to the body from mechanical stress, binds water, 

thermoregulatory functions, sensory functions, and supports and nourishs the epidermis 

(Monteiro-Riviere, 1991, Chu, 2008).  

 Hypodermis (Subcutis) 

       The hypodermis is the innermost and thickest layer of the skin. It is made up of loose 

connective tissue and fat that lies under the dermis. It supports to anchor the dermis to the 

underlying muscle or bone. The hypodermis is primarily composed of a kind of cells, called as 

adipocytes which are specialized in accumulating and storing fats. These cells are congregated in 

lobules divided by connective tissues. It serves as an energy reserve. Addtionally, the loose 

consistency of collagen and elastic fibers provides the skin flexibility and free movement over 

the underlying structures (Riviere, 2005, James et al., 2006).  

 Dermal Absorption 

       Dermal (skin, percutaneous) absorption is a term that describs the transport of a substance 

from outer surface of the skin into the skin and systemic circulation (Scheuplein, 1967). The 

transport of substances through the skin is a complex process and depends on the architecture of 

outer layers of skin.  

       There are three main mechanisms by which dermal absorption occurs:  
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i. Intercellular absorption: The penetrant is transferred around the corneocytes in the 

intercellular lipid matrix. Where, therew is chemical transport through a long and 

tortuous route between neighboring corneocytes. 

ii.  Transcellular absorption: The penetrant is transferred equally through the keratin-

packed corneocytes and intercellular lipid matrix by partitioning. 

iii.  Transfollicular absorption: The penetrant bypasses the corneocytes, diffusing down 

hair follicles and into sebaceous glands or through sweat ducts. 

The intercellular and transcellular absorption are also known as bulk pathways and transfollicular  

absorption is known as shunt pathways. Shunt pathways are not thought to play crucial role  in 

dermal absorption because of limited areas of these shunt, it is only 0.1-1.0% of the total area 

(Scheuplein, 1967, Michaels et al., 1975, Chilcott & Price, 2008). 

       In literature, much has been written about the implications of stratum corneum for penetrant 

transport because of the complexity of this barrier and incomplete understanding. It is known 

that the stratum corneum offers the skin’s primary diffusion barrier (Scheuplein & Blank, 1971). 

Associations of skin permeability coefficients and the physicochemical properties of a wide 

variety of penetrants have shown that skin can be well modeled as a simple lipid barrier to 

substances possessing at least moderate water and oil solubility (Michaels et al., 1975, Johnson et 

al., 1997). Many models have been suggested that try to present the intrinsic nature of the stratum 

corneum in relatively simple term. However, each model was designed with some assumptions for 

particular purposes. Many models for the lipid organization in stratum corneum have been 

proposed: the stacked monolayer model (Swartzendruber et al., 1989), the domain mosaic model 

(Forslind, 1994), the single gel phase model (Norlen, 2001), the laminglass model (Norlen, 2003), 

and the sandwich model (Bouwstra et al., 2000, Bouwstra et al., 2002a). 
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       The stacked monolayer model which proposed in 1989 describes the molecular arrangement in 

the intercellular lipid matrix for the first time. In this model, the ceramides are arranged in a planar 

arrangement and the linoleic moiety of ceramides is randomly distributed in the two broad layers 

neighboring the narrow central layer. Cholestrol is distributed nonrandomly between layers 

(Swartzendruber et al., 1989).  

       The domain mosaic model postulated the presence of a continuous liquid phase from the 

superficial layers of the stratum corneum down to the viable epidermis. It was the first model to 

include the existence of a liquid phase in the stratum corneum. In this model the intercellular lipids 

matrix of stratum corneum are segregated into a single crystalline/gel domains bordered by "grain 

borders" where lipids are in the fluid crystalline state. The crystalline areas are effectively 

impermeable and the fluid areas provide channels through which particles can diffuse leading 

to tortuous diffusion pathways through the intercellular lipids. Such organization offers for an 

effective "water-tight" barrier that allows a minute and controlled loss of water to keep the 

corneocytes moistened. As well as the model provided an explanation for the necessary mechanical 

properties permitting bending and stress imposed on the skin surface (Forslind, 1994). 

      The single gel-phase model proposed that the intercellular lipids within the 

stratum corneum, exists as a single and coherent lamellar gel phase without domain 

boundaries. In this gel phase the hydrocarbon chains are packed in a hexagonal and an 

orthorhombic pattern. The cholesterol concentration is uneven throughout the gel and 

lipids in areas with low cholesterol concentration are strongly packed, producing a gel 

that is crystal-like in nature, whereas the gel in areas with high cholesterol 

concentration is more liquid in nature (Norlen, 2001). 



52 

 

     In 2003, Norlen proposed the laminglass model. This model postulated that the 

ceramides form a separate crystalline monolayer with the sphingosine and the fatty 

acid part forming two tightly packed hydrocarbon chain matrices. The consecutive 

crystalline and liquid crystalline layers compose an arrangement like a laminglass, 

similar to the stacked monolayer model. This model provides high permeability and 

resistance to mechanical stress imposed on the skin surface (Norlen, 2003) 

       The sandwich model proposed that the lipids are organized in a tri-layer structure: two broad 

layers with a crystalline (orthorhombic) structure are separated by a narrow central lipid layer with 

fluid domains. This model provides an explanation for structural data found by X-ray diffraction, 

FT-IR and transmission electron microscopy  (Bouwstra et al., 2000, Bouwstra et al., 2002b). 

 

 Mechanism of Skin Transport 

 
       Dermal absorption contains permeation through the epidermis and absorption by the capillary 

network at the dermal-epidermal junction.  Dermal absorption takes place primarily through the 

stratum corneum intracellularly or intercellularly.  Many factors influence the dermal absorption 

including skin, environmental, and solute factors (Kielhorn et al., 2006, USEPA, 1992) 

       Permeation of a solute across the stratum corneum is fundamentally a process of diffusion in 

which active transport and facilitated transport do not play an essential role. The polar substances 

tend to diffuse through protein portions of the stratum corneum, whereas the nonpolar compounds 

tend to diffuse through the intercellular lipid matrix (Albery & Hadgraft, 1979). After the solute 

partitions into epidermis it transports to cutaneous blood and lymphatic system. If the blood flow is 
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not enough, solute may sequester in the viable epidermis, in the dermis, and in hypodermis 

(Kielhorn et al., 2006). 

       Diffusion of a compound into a specific layer of skin like the stratum corneum is called 

permeation. Diffusion can be defined as the ‘process by which matter is transported from one part 

of a system to another as a result of random molecular movement’ (Crank, 1975). Diffusion of 

compound through a membrane can be described by Fick’s first law.   

J = -D (∆C/∆x) 

 Where J flux of a compound (J, mass/cm2 per second) at a given time and position is proportional 

to the differential concentration change ∆C over a differential distance ∆x, D is the diffusivity.  

       With some modifications, Fick’s first law can be applied to describe the diffusion process of 

compound across skin layers.  This equation can help in identifying the ideal parameters involved 

in the dermal absorption (Scheuplein & Blank, 1971, Dugard, 1977). Basically, dermal absorption 

includes three stage processes. First stage includes partitioning of the compound into the stratum 

corneum. The second stage involves diffusion of the compound across the stratum corneum. In 

the final stage, the compound partitions from the stratum corneum into the underneath tissue. 

Therefore, the process of partitioning must be examined and linked to Fick’s First Law of 

diffusion. Adapted to skin absorption, Fick’s First Law comes with the form of: 

J = P*D*C/ H 

Where J is the flux (rate of transfer per unit area), P is partitioning coefficient between the skin 

and the vehicle, D is the diffusion coefficient of the compound, C is the concentration gradient 

through the skin, H is the diffusional path length or  skin thickness. 
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       Fick’s first law equation for dermal absorption relies on the assumptions that the compound 

does not bind, the compound diffusion coefficient and diffusion are constant with position or 

composition (Crank, 1975). These assumptions would result in a steady portion of any dose 

absorbed per unit time regardless of the dose concentration. However, results of many studies 

have disagreed with the extrapolations of Fick’s law because the portion of compound absorbed 

was not steady across range of compound’s concentrations in donor solution (Blank, 1964, 

Billich  et al., 2005).  

       Diffusion through the stratum corneum is driven by a thermodynamic gradient, not a 

concentration gradient. Movements of the compound molecules are dependent on the energy 

gradients in their immediate location. In constant temperature, the molecule movement across the 

stratum corneum is achieved through the energy flow from higher energy areas to areas of lower 

energy.  Thermodynamic gradients are formed from the lucid force of all the inter-molecular 

repulsive and attractive forces (Atkins, 1994). The movement of molecule within a certain 

condition can be quantified in terms of its thermodynamic activity which is considered the 

driving force for diffusion. In some environments, the thermodynamic gradient could be in the 

reverse direction to a concentration gradient and hence, diffusion will take place against the 

gradient of concentration (Chilcott & Price, 2008). 

 

Modeling of Skin Absorption 

 
        Modeling of dermal absorption offers applicable alternatives to laboratory 

experimentation. Models are used to comprehend associated features and processes of dermal 

absorption, in addition to predict its kinetics so that protective measures can be designed and 

implemented that minimize the risk of dermal absorption of toxic chemicals. Modeling of 
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compound transport across skin plays an important role in two major areas; assessments of 

dermal exposure to hazardous materials and in transdermal drug delivery (USEPA, 1992, Poet 

et al., 2000, McDougal & Boeniger, 2002). Models can be categorize into two common 

categories: (i) quantitative structure-activity relationship (QSAR) models, (ii) mathematical 

models (Fitzpatrick et al., 2004). 

       QSAR models are statistically derived linear and non-linear relationships between different 

physicochemical or structural properties of compound and the steady-state flux. In other words, 

QSAR basically includes three parts: (i) Modeling the activity or property (ii) descriptors of the 

physicochemical properties or molecules structural features, and (iii) a statistical procedure to 

create the relationship between activity and structure. Efficacy and safety concerns also 

distinguish QSAR models in irritation, skin sensitization, metabolism, chemical effects, and 

clearance. Therefore, these models are involved at a number of levels in chemical safety (Potts & 

Guy, 1995, Sartorelli et al., 1998, Fitzpatrick et al., 2004). In 1992, Potts and Guy proposed 

QSAR model based on Flynn (proposed a number of algorithms to predict Kp) dataset by using a 

combination of the octanol-water partition coefficient, Kow, and the molecular weight or 

molecular volume as physicochemical descriptors as being both mechanistically relevant and 

competent of offering an appropriate explanation of these data (Flynn, 1990, Potts & Guy, 1995). 

QSAR models for skin permeability have many limitations which mostly relate to the modeling 

processes. These models are hindered by the insufficient high quality data comparable to 

absorption data (Fitzpatrick et al., 2004). A steady-state permeability coefficient of QSAR does 

not predict absorption over time frames outside the steady-state part of the absorption/time curve. 

QSAR models are available only for permeability coefficients from aqueous vehicles, and the 
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predictions from aqueous vehicles cannot be extrapolated to predict the impacts of other solvents 

or formulations (Moss et al., 2002, Cronin, 2005).  

            A number of mathematical models have been developed to simulate the effects of 

compounds partitioning into skin and the transport across the skin over time. Generally, most 

of these models have used either diffusion based or compartmental equations. Mathematical 

models have been established for measuring the skin absorption for a variety of exposure 

conditions. Mathematical models are varied in their degree of ability to describe or represent 

the processes associated with skin absorption perfectly. However, some of models are 

frequently experienced as being more complex than practically useful. In the simplest models, 

skin is considered as a single pseudo-homogeneous membrane. In more complex models, 

further layers of skin are included like the viable epidermis and dermis (Roberts & 

Anissimov, 2005).  

         Some of models have been developed that simulate the pathways of compounds through 

stratum corneum. Michaels and coworkers (Michaels et al., 1975) modeled the steady-state 

behavior of the stratum corneum as “brick and mortar” where the brick represented the 

aqueous protein phase in the keratinocytes and the mortar  represented the intercellular lipid 

phase. This model presumed that the transport was the sum of steady permeation, via the lipid 

matrix and protein phase and across the intercellular lipid matrix via a tortuous pathway. 

Flynn (Flynn, 1990) stated that diffusion of compound through the protein in the corneocytes 

of the stratum corneum is a  thermodynamically and kinetically impossible passageway 

because the density and compactness of the keratin. Whereas, Scheuplein (Scheuplein, 1967) 

developed dermal absorption models based on transport through appendages. Scheuplein 

compared diffusion through appendages with diffusion through stratum corneum. It was found 
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that the appendages allowed greater diffusion at early times and the stratum corneum allowed 

greater diffusion at longer times. 

          Other models have been developed which are defined as physiologically-based 

pharmacokinetic (PBPK) models. These models do not consider the certain routes of dermal 

diffusion, but are developed to explain the rate of compound’s diffusion via the skin and/or 

into the circulatory system using experimental observations and lumped-capacitance models 

(Clifford, 2004). PBPK models are based on mathematical descriptions of body 

compartments, tissues and partitioning processes, chemical transport and metabolism which 

effect the skin distribution, absorption and elimination of chemicals (Krishnan & Andersen, 

1994). Potts and Guy (Potts & Guy, 1995) developed a PBPK model which can offer an 

algorithm to predict permeability from the chemical’s physical properties. Multiple regression 

analyses were conducted using former data of the permeability coefficient for varied 

compounds, and the molecular volume and the hydrogen bond activity parameters were 

determined to be significant. Nevertheless, this model is only effective for polar compounds. 

Another PBPK model was adopted by Poet and coworkers (Poet et al., 2000) to evaluate 

dermal permeability values and to predict exhaled concentrations of the chemical 

trichloroethylene. Good agreement was found between predicted and observed concentrations 

of trichloroethylene, however, the significance of the many features and processes were not 

clarified.  

 

 



58 

 

 Measurements of Skin Absorption 

 
       Dermal absorption investigations are performed to determine the amount at which a 

compound is capable of penetrating the skin barrier. Information about a compound’s dermal 

absorption rate is mostly of interest to regulatory agencies for risk assessment, therapeutics 

evaluations, and development of topically applied preparations. Estimation of chemical 

dermal absorption value is generally derived from experimental data in vivo or in vitro, or 

both. Such data provide direct or indirect evaluation of dermal absorption of a test substance 

across skin (Chilcott & Price, 2008).  

 In vivo Methods  

The in vivo methods provide data about the extent of dermal uptake in addtion to the  

systemic absorption of the test chemical. The principle purpose in conducting in vivo 

methods in place of in vitro methods are that the in vivo methods employ a 

physiologically and metabolically intact system. In vivo absorption models can be used 

to measure dermal absorption directly or indirectly and commonly provide data 

relatively similar to those under which exposure is expected in a real environment 

(Bunge & McDougal, 1999). In the direct methods a compound is measured in the 

blood, tissue or body excretion by using strips of tape from stratum corneum, or 

evaluated through biological or pharmacological responses (USEPA, 2007). These 

methods are generally complicated and time consuming (Zendzian, 2000). While, in 

indirect models skin absorption is concluded from the diminishing of the compound 

on the dermal surface (Bunge & McDougal, 1999, Chilcott & Price, 2008).  

 For dermal absorption prediction in humans, different animal species models have been 

used with variable degrees of association (Wester & Maibach, 1992). The most common 
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animal species used for predicting human dermal absorption are laboratory rodents, 

however,  other animal models such as swine, rabbits, guinea pigs, dogs, and rhesus 

monkeys(Bartek et al., 1972, Bronaugh et al., 1985, Hikima et al., 2002) have also been 

used. Althogh, the in vivo methods for dermal absorption studies show reliable and 

promising results, they are always challenged by ethical considerations and country 

specific legislations (Chilcott & Price, 2008). 

 
 In vitro Methods  

In vitro methods are developed to estimate the penetration of compound into and 

subsequent permeation through the skin into receptor fluid and can use non-viable skin 

to estimate penetration and permeation only or fresh, metabolically active skin to 

concurrently measure permeation and dermal metabolism (Kielhorn et al., 2006). In 

vitro absorption methods provide a valid alternative of skin absorption assessment for 

many important aspects of dermal exposure. The in vitro technique is less expensive 

than in vivo technique, can be utilized with skin from different animal species in 

addition to the human skin, and can be employed to assess highly toxic or corrosive 

compounds without concern for ethical or legitimate considerations (USEPA, 2007, 

Chilcott & Price, 2008). The infinite dose and finite dose, two different type of in 

vitro techniques have been used to assess skin absorption, and the infinite dose 

technique is the most frequently used (Franz, 1975, Sartorelli et al., 2000). In vitro 

models include different techniques (i) diffusion cells, (ii) isolated perfused tubed-skin 

preparation, and (iii) stratum corneum binding (USEPA, 1992).  
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 Diffusion Cells 

       Diffusion cells are of two types; upright (vertical) or side-by-side (horizontal) type. The 

receptor chamber volumes are about 0.5–10 cm3 with surface areas of exposed membranes of 

about 0.2–2 cm2. Vertical diffusion cells are suitable for evaluating dermal absorption from 

semisolid preparations applied on the skin membrane surface and are best for simulating in vivo 

exposure scenarios (Brain et al., 1998). Whereas, horizontal diffusion cells are suitable for 

evaluating mechanisms of diffusion across skin (Bronaugh, 2004). Diffusion cells can be 

classified into two types based on acceptor fluid status:  whether it is confined to the receptor 

chamber (Static diffusion cell) or passes through (flow-through diffusion cell) the receptor 

chamber (Franz, 1975, Bronaugh, 1995). Either the vertical or the horizontal diffusion cells can 

be used in static or flow-through mode. 

 

 Static Diffusion Cells 

Static diffusion cells are also known Franz-type diffusion cells. These cell systems are 

relatively simple in design and any type or any amount of vehicle containing the test 

compound can be spread on skin. The receptor fluid below the skin is manually 

collected by removing aliquots periodically for analysis and substituted with equal 

volumes of fresh receptor fluid (Franz, 1975). Because this process requires the 

immersion of both surfaces of the skin, it may result in much hydration and skin 

damage, thereby altering the permeability of the skin (Gummer & Maibach, 1991). 

To simulate in vivo skin condition, it is important to create a known skin temperature in 

each diffusion cell. Therefore, the static diffusion cells can be designed in jacketed and 

non-jacketed models. In the jacketed model, heated water is circulated across the jacket 

to control the temperature of the diffusion cell. Whereas, the non-jacketed model may 
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be placed in a water bath or into dry heated blocks (Chilcott & Price, 2008). Receptor 

chamber fluid is important to be sufficiently stirred, because insufficient stirring may 

limit the rate of partitioning of compound through the skin into the receptor chamber, 

which resulting in skin absorption underestimation (Franz, 1975). Another important 

factor to be considered, is the solubility of the test chemical in the receptor fluid, which 

may impact the sink capacity and then the sampling frequency or receptor chamber 

dimensions  (Brain et al., 1998)  

 Flow-Through Diffusion Cells 

Flow-through diffusion cells are distinguished by a changing receptor fluid 

continuously, which mimics, more or less, in vivo condition. The movement of receptor 

fluid is usually driven by a peristaltic pump, enabling an accurate and steady flow rate 

across each cell. However, some of the low-cost diffusion cells can use gravity to flow 

the receptor fluid by siphoning, but the flow rate induced by siphoning is more unsteady 

and needs an internal calibration (Chilcott & Price, 2008). A flow-through diffusion cell 

system was developed by Bronaugh and Stewar (Bronaugh & Stewart, 1985) in 1985. 

The cells were constructed using Teflon and contained a glass window in the bottom for 

viewing the receptor contents and at least 5 mL/hr which is a flow rate suggested of 

getting accurate results. 

       Different types of receptor fluid are used in diffusion cells. With nonviable skin, a 

buffered saline solution can be used. However, to maintain the viability of skin in the 

diffusion cells, physiological solution such as HEPES-buffered Hanks’ balanced salt 

solution is required (Collier et al., 1989). Saline solution, as a receptor, may be 

appropriate for studying hydrophilic chemicals dermal absorption. But, lipophilic 
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chemicals need a receptor fluid that more closely resembles the lipophilic properties of 

blood (USEPA, 1992), therefore, modifications of the receptor fluid are sometimes 

required to enhance the partitioning of lipophilic chemicals through skin into the 

receptor fluid to mimic the in vivo conditions. Earlier studies have suggested some 

substances to be added to the receptor fluid such as 3-5% of bovine serum (Bronaugh et 

al., 1986), surfactants (Bronaugh & Stewart, 1984), and organic solvents (Scott & 

Ramsey, 1987). Selected receptor fluid and the flow rates are varied with the test 

compound, they are based on the solubility considerations and the volume of the 

receptor chamber (Skelly et al., 1987). 
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Chapter 2 - Adsorption of 1,4-Dioxane on Nanoparticles of Metal 

Oxide, Activated Carbon and Diatomaceous Earth in Vapor and 

Aqueous Phases  

 Abstract 

 
Dioxane is a potentially carcinogenic solvent. When spilled or discarded under poorly controlled 

conditions, it contaminates ground water, rendering the water unusable.  It readily evaporates at 

room temperature and contaminates indoor air. The adsorption process provides an option for 

removing dioxane from contaminated water and air. In this study, the adsorption efficiencies of 

activated carbon (AC), metal oxide nanomaterials (TiO2 and MgO), and diatomaceous earth (DE) 

were assessed in aqueous and vapor phases using infrared spectroscopy as a quantification tool. 

In the aqueous phase, the effects of contact time, pH, and type of water on dioxane adsorption 

were investigated. The contact time for reaching equilibrium and maximum adsorption rate was 

observed to be < 40 min in both phases. The highest adsorptive capacity of AC, MgO, TiO2, and 

DE were seen at the pH values of 7–8, 6–7, 7–8, and 6–8, respectively. Water type had no effect 

(P > 0.05) on the adsorption of dioxane. The adsorption values for 50 mg/L dioxane in water at 

pH 7 and room temperature were 80.87±3.2 µg/g onto AC, 11.41 ± 2.7 µg/g onto DE, 3.84 ± 1.2 

µg/g onto TiO2, and 3.79 ± 0.84 µg/g onto MgO. The equilibrium adsorption data were analyzed 

by the Freundlich model of adsorption. The results showed that the equilibrium data for dioxane 

sorbent systems fitted well for AC and only a relative fit was observed for other adsorbents. In 

the vapor phase, the adsorption of 40 mg dioxane in 400 ml air at room temperature and 760 

mmHg (torr) pressure converted into 66.9± 1.7 µg/g for AC, 19.3 ± 1.4 µg/g for TiO2, at 8.6 ± 

0.91 µg/g for MgO, and 4.7 ± 0.94 µg/g for DE. 
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 Introduction 

       Several synthetic organic compounds produced by industries are released into the 

environment. The existence of those chemicals in the environment has the potential to cause 

adverse effects, which include toxicity, carcinogenicity, mutagenicity, and teratogenicity in 

animals and humans, toxicity to aquatic life and fishes, and retrogression of the quality of water 

for human consumption. Therefore, there is a pressing need to regulate the release of hazardous 

toxic compounds into the environment by developing suitable control technologies that are 

capable of eliminating hazardous material from water and ambient air so that such materials are 

stopped from further distribution in the environment.  

       Dioxane is a synthetic organic compound, which is manufactured and used widely 

since the 1950s. It is listed as a high production volume chemical with a volume of more than 

500 metric tons produced domestically or imported. Nearly 90% of the total volume of dioxane 

is utilized to stabilize 1,1,1- trichloroethane in vapor degassing of metals (Mohr et al., 2010). 

Dioxane has attracted increasing attention for its possible presence at thousands sites of 

chlorinated solvent release, landfills, and in factory effluents. It was estimated that 600,000 to 

1,300,000 pounds of dioxane was released into the environment annually between 1988 and 

2002 (TRI, 2013). The disposal of chemical solvents containing dioxane and disposal of dioxane 

itself results in the presence of dioxane in the environment. In many countries such as the United 

States, Canada, and Japan, dioxane has been detected as a contaminant in the natural 

environment. Drinking water supplies, superfund sites, and public groundwater were found to 

contain dioxane in more than permissible quantity (Mohr et al., 2010).  
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       Public concern and growing awareness about dioxane as an environmental contaminant has 

steadily increased due to its probable carcinogenicity and its implication as a major contributor to 

groundwater contamination. Thus, the increasing public demand for stricter control of 

environmental contamination by dioxane has stimulated great interest in developing guidelines 

for treating dioxane in water, soil, and ambient air. In February 2008, the U.S. Environmental 

Protection Agency (U.S.EPA) included dioxane in its list of 104 candidate chemicals of concern 

for national drinking water regulation in the future and classified it as a proposed contaminant 

for third Unregulated Contaminant Monitoring Rule program (UCMR 3). Nonetheless, a federal 

water standard has not been established for this chemical yet (USEPA, 2011). Several U.S. EPA 

regions and states have developed guidelines for treating dioxane; for example, Colorado became 

the first state to establish an enforceable cleanup standard for dioxane in groundwater and 

surface water in September 2004. The standard was phased in, stipulating facilities to meet 

dioxane limits of 6.1 and 3.2µg/L by March 2005 and March 2012 , respectively (USEPA, 2011).  

         The unique properties of dioxane render it very mobile and persistent in the aquatic 

environment for a long time. At solvent release sites, it is found to be the fastest moving 

contaminant and the first to arrive at municipal or domestic supply wells. It is ranked first in 

terms of mobility of more than 100 organic chemicals (Roy & Griffin, 1985). The hydrophilic 

nature of dioxane makes it relatively resistant to conventional treatment technologies commonly 

used for chlorinated solvents. Because of dioxane’s low Henry’s Law constant, high miscibility 

in water, and low octanol–water partition coefficient (Kow), volatilization and adsorption methods 

are not expected to be significant removal processes for eliminating a significant amount of 

dioxane in aqueous environments (USEPA, 2006). Its heterocyclic structure with two ether 
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linkages makes dioxane very immune to both abiotic and biologically mediated degradation 

(Zenker et al., 2003).  

      Technologies that are effective for removing chlorinated solvents usually do not yield 

favorable results while treating dioxane because of its unique properities. The conventional water 

and wastewater treatment processes such as air stripping, adsorption, and precipitation-

coagulation are not efficient for removing it from aqueous environment (Zenker et al., 2003). 

Advanced oxidation treatment processes using ozone, hydrogen peroxide, and ultraviolet light 

were reasonably successful in removing dioxane considerably, but their operational costs are 

significantly high (Mohr et al., 2010).  It was found that air stripping treatment process can 

remove 30% of dioxane from contaminated groundwater, and granular activated carbon 

adsorption column can remove about 67% (Mcguire et al., 1978), whereas advanced oxidation 

treatment processes (hydrogen peroxide with ozone) can reduce more than 96% dioxane from 

water (Bowman et al., 2003, GRAC, 2003). 

       During the past few decades, adsorption acquired prominence as an effective water 

purification technology employed in the treatment of wastewater (Lazaridis et al., 2003). 

Adsorption systems are rapidly becoming important treatment processes for producing good 

quality water with low concentration of dissolved organic and inorganic contaminants (Walker & 

Weatherley, 1999). Adsorption is defined as an integral to a broad spectrum of physical, 

chemical, and biological processes and operations in the environmental field. It is extensively 

employed for purification of water and air by removing contaminants. It has played a major role 

in air pollution control by its capacity to remove dissolved impurities from solution. Currently, 

adsorption is viewed as a crucial method for wastewater treatment and water reclamation 

(Weber, 1972a). 
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       A wide variety of adsorbents are used to assess the effectiveness of dioxane removal from 

groundwater. The adsorbents include activated tri-base pelletized carbon (contains three types of 

carbon in a single pellet), surfactant-modified zeolites, zero-valent iron with zeolites, and a 

proprietary macroporous polymer manufactured by Akzo Nobel (Earth Tech Inc, 2004). The 

treatability testing revealed that only the activated tri-base carbon showed effective dioxane 

adsorption, whereas the other adsorbents were ineffective in removing dioxane from water 

(DiGuiseppi & Whitesides, 2007).  

         Dioxane could be released into air during its production, its use, and the processing of other 

chemicals like pesticides and pharmaceuticals. The current levels of dioxane in ambient air are 

not available in the United States, but they are expected to be less than the levels reported in the 

1980s or in earlier periods due to decline in the use of dioxane in recent years (ASTDR, 2012). 

Historical data (1980s or earlier) suggest that ambient mean concentration of outdoor and indoor 

levels of dioxane were 0.1–0.4 µg/m3 and 3.704 µg/m3, respectively. In the United States, 

dioxane in outdoor and indoor air was measured routinely as part of the volatile organic 

compound National Ambient Database in the early to mid-1980s (Shah & Singh, 1988).  

        Usually, dioxane enters ambient air as a vapor, and is degraded in the atmosphere through a 

photochemical reaction with hydroxyl radicals to yield alkyl radicals (Surprenant, 2002). This 

reaction starts with the hydrogen atom abstraction followed by the oxygen addition to form a 

radical of cyclic alkylperoxy (Maurer et al., 1999). This product is further degraded by reaction 

with nitrate radicals (Grosjean, 1990) and may not undergo direct photolysis (Wolfe & Jeffers, 

2000). Dioxane is short-lived in the atmosphere and its half-life is estimated to be 6.69 to 9.6 hr 

(HSDB, 2007).  
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       Dioxane, like other volatile organic compounds, can be removed from ambient air of 

industrial facilities and through a host of technologies such as adsorption (Yang et al., 2011), 

absorption (Ohta et al., 2011), and combustion (Hosseini et al., 2011) to protect the 

environmental systems. Among these technologies, adsorption technique has been widely used in 

practical applications because of its easy operation, low operating cost, high capacity, high 

selectivity, and effective recovery at low partial pressures (Shim et al., 2006).  Therefore, 

adsorption is always selected as the purifying technology for dealing  with dioxane in ambient 

air, because of its high rate of diffusion at low concentration (Kirk-Othmer, 1999). Different 

types of adsorbents have been used in purifying technology, such as zeolite, alumina, silica, 

titanium oxide, and activated carbon (Wang et al., 2011). Generally, the activated carbon 

material is extensively employed as the adsorbent due to its pore structure, advantages of huge 

surface area, chemical stability, low cost, and easy recycling (Wang et al., 2011). 

This study aimed to: (i) investigate the adsorption of dioxane onto four different adsorbents 

(activated carbon, diatomaceous earth, nanocrystalline titanium dioxide, and nanocrystalline 

magnesium oxide) in aqueous and vapor phases. (ii) Investigate the effect of pH, contact time, 

and type of water on dioxane adsorption in the aqueous phase. (iii) Estimate the maximum 

adsorption capacity of the four adsorbents in aqueous phase, where the adsorption equilibrium 

data were fitted to adsorption isotherms of Freundlich model. 
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 Materials and Methods 

 Materials 

         1,4-Dioxane (99.8%) was purchased from ACROS Organics® (New Jersey, USA). 

Nanocrystalline magnesium oxide (MgO) and titanium dioxide (TiO2) were obtained from 

NanoScale Corporation (Manhattan, KS, USA). Diatomaceous earth (DE) (co-batch #058k0012) 

and activated carbon (AC) were obtained from Sigma Aldrich (St. Louis, MO, USA). 

The properties of adsorbent materials are as described by the manufacturer and as shown 

in transmission electron microscopy (TEM) images (figure 2.1) 

• The properties of nanocrystalline metal oxides are listed in Table 2.1.  

        

Table 2.1: Properties of nanocrystalline metal oxides 

Properties MgO TiO2 

Specific Surface Area (BET) ≥ 230 m2/g ≥ 500 m2/g 

Crystallite Size ≤ 8 nm amorphous 

Average Pore Diameter 50Å 32Å 

Total Pore Volume ≥ 0.2 cc/g ≥ 0.4 cc/g 

Bulk Density 0.6 cc/g 0.6 cc/g 

True Density 3.2 g/cc 3.7 g/cc 

Mean Aggregate size, d0.5 3.3 µm 5 µm 

Moisture Content ≤ 1% ≤ 4% 

Metal Content (Based on Metal) ≥ 95% ≥ 99.999% 

 

• Diatomaceous earth (DE) is described as a powder form and free of organic matter 

impurities. 

• Activated carbon (AC) 

Vapor pressure : <0.1 mmHg (20°C)  
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Form: untreated powder 

Autoignition temp. : 842°F 

Resistivity: 1375 µΩ-cm (20°C, graphite)  

Particle size: 100–400 mesh 

Mp: 3550 °C (lit.) 

  

 

 

Figure 2.1: TEM image of,( A) nanocrystalline titanium dioxide  (B) nanocrystalline magnesium 

oxide (C) diatomaceous earth 

A B

C 
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 Water sample collection 

       Surface and ground water samples were collected from Riley County, Kansas. Surface water 

samples were collected from Big Blue River (N39.2474404, W96.593098). The ground water 

samples were collected from monitoring network (monitoring well No 20, N39.25887, 

W96.591446, depth 22 feet) at the Old Chemical West Landfill site at Kansas State University, 

Manhattan, Kansas. The water was taken from the wells for sampling using disposable bailers, so 

as to minimize any disturbance of the water column to prevent outgassing or degassing during 

collection. The collected surface and ground water samples were containerized for transport to 

the laboratory in 250 ml amber glass bottles. All the bottles were filled, leaving no head space in 

the bottle. The samples were stored in sealed sample bottles at 4°C. 

        All surface and ground water samples were tested for water quality properties (Table 2.2). 

Samples also were checked if they were free of 1,4-dioxane contamination using  U.S. EPA 

Method 522 (EPA/600/R-08/101). In this method, in brief, a water sample was fortified with the 

isotopically labeled surrogate analyte (SUR), 1,4-dioxane-d8. Then, the sample was extracted by 

solid phase extraction (SEP), where a 500 mL sample was passed through an SPE cartridge 

containing 2 g of coconut charcoal to extract the method analyte and SUR. Thereafter, the 

compounds are eluted from the solid phase with a small amount (approximately 1.5 mL) of 

dichloromethane. The extract volume was adjusted and the internal standard and tetrahydrofuran-

d8 were added. Finally, the extract was dried with anhydrous sodium sulfate. Analysis of the 

extract was performed by GC/MS. The analyte, SUR, and internal standard are separated and 

identified by comparing the acquired mass spectra and retention times to reference spectra, and 

retention times for calibration standards acquired under identical GC/MS conditions. The 
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concentration of the analyte is determined by comparison to its response in calibration standards 

relative to the internal standard (Munch & Grimmett, 2008).  

 

 

Table 2.2: Water quality properties 

Prosperity Surface water Ground water 

Sp. conductivity  (µs/cm) 9.17 12.43 

Total Dissolved Solids (TDS) g/l 4.58 6.21 

pH 8.11 7.59 

Salinity (ppt) 5.12 7.11 

 

 

 Sample Preparation  

       Sample Preparation for Aqueous Phase 

        Aqueous solution of dioxane (50 mg/L) was prepared for using it in adsorption 

measurements. One mL aliquot of the aqueous dioxane solution and various quantities of 

adsorbents (AC, MgO, TiO2, and DE) were placed in a microfuge tube and sealed. The tubes 

were shaken for 1 minute on a vortex mixer at 296 K and then left for 90 min to achieve 

adsorption equilibrium. The tubes were centrifuged at 13,000 rpm for 10 min in the 

microcentrifuge to separate the aqueous dioxane from the adsorbent. The volume of adsorbent 

was varied over a range of 0.02–0.35 g/ml. After shaking and settling, 50 µl of the aqueous 

dioxane were used for quantifying the equilibrium concentration of dioxane on FT-IR.  

For each tube, the amount of dioxane adsorbed was calculated according to the following 

equation: 
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x/m = v (C0 – Ce)/w 

where x/m is the weight of the adsorbate divided by the weight of the adsorbent (µg/g), w is the 

dose of adsorbent (mg), v is the volume of solution (ml), C0 and Ce are pre- and post-

adsorption concentration of dioxane, respectively. 

       To determine the necessary time for adsorption, the IR adsorption spectra of dioxane at time 

intervals were obtained, and 50 ml of the aqueous dioxane solution was taken in a 50 ml tube 

(SC475, Environmental Express). A known amount of the adsorbent was added to the tubes. The 

tubes were placed on a magnetic stirrer and the aqueous dioxane solution adsorbent mixtures 

were stirred at a constant speed. Peristaltic pump (PermeGear Inc, Hellertown, PA USA- 

#10090-16) was used to draw aqueous dioxane solution through a filter from the tube and send it 

(continuous flow) to a cell placed on the crystal aperture of the FT-IR spectroscopy, with the 

solution flowing over the crystal and returning back to the tube (Figure 2.2). The flow rate of the 

peristaltic pump was 5 ml per minute. 

            The infrared (IR) spectrum of each sample was measured using attenuated total reflection 

Fourier transform infrared spectroscopy (ATR-FTIR)  Thermo-Nicolet FT-IR spectrometer, 

model 6700, and GladiATR vision unit (PIKE Technologies, Inc. WI, USA). OMNIC FT-IR 

software program is used in the FT-IR system. Absorbance spectra were measured over the 

wavenumber range of 4000–400 cm–1 with a spectral resolution of 4 cm–1. The IR absorption 

spectra for dioxane in solution were obtained at various times. These spectra were analyzed 

using the C–O vibration band.  The selected peak region for obtaining the integrated absorbance 

was 1105.2–1160.2 cm–1. Figure 2.3 shows the typical IR spectra of dioxane in solution. 

The crystal aperture surface was cleaned with alcohol and dried, and an uncovered crystal 
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background was run prior to scanning of the sample sets. With continuous flow measuring 

method, a macro was created by using OMNIC Macros application to measure absorbance 

spectra every 2 minutes and the data were saved on computer. Macro is defined as a series of 

software operation, or tasks which are joined together, and when the macro has been created, the 

series of tasks can be executed automatically and can be repeated in loop for any number of 

times. 

To determine the effect of pH on dioxane adsorption, equilibrium experiments were 

conducted on AC, MgO, TiO2, and DE at different pH levels. Aqueous dioxane solutions 

(concentration 50 mg/L) were prepared at different pH values ranging from 2 to 10. 

Hydrochloric acid (HCl) and sodium hydroxide (NaOH) were used for adjusting the pH.  
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 Flow-rate 5mL/min 

Filter 

Figure 2.2: Schematic diagram of the necessary time for adsorption 
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Figure 2.3: Typical IR spectra of dioxane in aqueous solution 

   
 

 

     Sample Preparation for Vapor Phase 

            Gas cell (400 ml) for the analysis of gas and vapor phase components using infrared 

optical spectroscopy was designed out of a glass container, with two zinc selenide (ZnSe) crystal 

windows to allow light in the mid-infrared range to pass through (Figure 2.5A).  

Adsorption of dioxane in vapor phase onto AC, MgO, TiO2, and DE were measured at 

296 K and at a pressure of 760 mmHg (torr). Each adsorbent, measuring 0.2 g, was equally 

spread on a 24 cm2 glass slide and placed at the bottom of the cell. The cell was sealed using 

rubber septum and plastic cover with inner glass faces (Figure 2.5B) and placed on FT-IR 

C-O vibration 
Peak 
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(Figure 2.5C) spectrometer. Fourty mg dioxane were injected using micro-pipette through a 

small hole on the gas cell’s top cover, and the hole was sealed by adhesive tape. Dioxane 

concentration was 100 µg/ml after it completely evaporated inside the cell. A macro was created 

by OMNIC Macros application to measure absorbance spectra every 1 minute for 100 minutes 

using transmission FT-IR mode. The data were saved for analysis. 

       The IR absorption spectra for dioxane vapors were obtained at various times. These spectra 

were analyzed using the C–H bending band.  The selected peak region for obtaining the 

integrated absorbance was 1500.2–1420.2 cm–1 (Figure 2.4).   
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Figure 2.4: Typical IR spectra of dioxane vapor 
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The amount of dioxane adsorbed was calculated according to the following equation: 

x/m = v(C0 – Ce)/w 

where x/m is the weight of the adsorbate divided by the weight of the adsorbent (µg/g), w is the 

dose of adsorbent (mg), v is the volume gas cell (ml), C0 and Ce  (µg/ml) are pre- and post-

adsorption concentrations of dioxane (µg/ml),  respectively. 

Figure 2.5: Dioxane adsorption measurement on FT-IR in vapor phase. 
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 Adsorption Isotherms  

       The adsorption isotherms of aqueous dioxane solution adsorbed onto AC, MgO, TiO2, and 

DE at a temperature of 296 K and a pH value of 7.0 (±0.2) were obtained using batch-type 

adsorption measurements. Experiments were carried out at equilibrium (at minute 90 of contact) 

by using a different amount of adsorbent ranging from 20 to 500 mg at a fixed concentration (10 

mL; 50 mg/L) of aqueous dioxane. The equilibrium data were analyzed by Freundlich isotherm 

model equations. The data were used to obtain best-fit estimates of parameters, and the related 

parameters obtained by calculation from the values of slopes and intercepts of the respective 

linear plots: 

log (x/m) = log Kf + (1/n) log Ce 

where x/m is the weight of the adsorbate divided by weight of the adsorbent (µg/g), Kf and 1/n 

are Freundlich adsorption constants, and Ce is concentration post-adsorption. 

 Transmission Electron Microscopy (TEM) Analyses 

           TEM analysis was performed on a Philips CM 100 Transmission Electron Microscope at 

the Biology Department, Kansas State University, using a 200 mesh Formvar/carbon-coated 

copper grids for absorbing samples (Ted Pella Inc., CA, USA Lot #:131011-01881, Lacey F/C). 

 Data Analysis 

        Data were analyzed statistically using Minitab (version 16.1.1, Minitab Inc., PA, USA, 

2010). Analyses of variance (ANOVAs) were used to assess the significance of differences in 

means between groups. The Tukey’s Multiple Comparison Method was used to compare the 
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means. Data are presented as mean (± standard error) and all statements of significance were 

based on a 95% confidence (P < 0.05). 

 

 Results and Discussion 

 

 Adsorption in Aqueous Phase 

  Adsorption Capacity and Effect of Contact Time 

         The rate of the dioxane adsorption from water was very fast with all the adsorbents. The 

adsorption of dioxane increases with time and gradually reaches equilibrium. The required 

contact time for attaining equilibrium and maximum adsorption rate was at the 36th, 26th, 38th, 

and 34th minute for AC (Figure 2.6), TiO2 (Figure 2.7), MgO (Figure 2.8), and DE (Figure 2.9), 

respectively. 

       The exposure time between the adsorbate and the adsorbent for completing adsorption is one 

of the most important parameters that has an influence on the performance of adsorption 

processes. This parameter offers information on the minimum time required for considerable 

adsorption to take place and the possible diffusion control mechanism between the adsorbates 

(Al-Anber, 2010).  The higher rate of adsorption at the beginning was due to large available 

surface area of the adsorbent during the initial stage, and with the passage of time, the capacity 

of the adsorbent gets exhausted (at equilibrium). The  remaining  unfilled  surface  sites  are  

difficult  to  be occupied  due  to  repulsive  forces between  molecules of the solute on the solid 

phase and in the bulk liquid phase. The rate of uptake is controlled by the rate at which the 
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adsorbate is transported from the exterior to the interior sites of the adsorbent particles (Gulipalli 

et al., 2011, Verma et al., 2006). 

       The average values of adsorbed dioxane in aqueous solution after reaching equilibrium and 

at minute 600 were 80.43 ± 0.99, 10.54, 3.41 ± 0.37, and 2.98 ± 0.27 µg/g onto AC, DE, TiO2, 

and MgO, respectively. It was observed that the removal curves of all adsorbents were relatively 

smooth and continuous, and the standard error of adsorption rates on timeline at equilibrium was 

relatively low. This suggests the possibility of formation of monolayer coverage of dioxane at 

the interface of the adsorbent. 

 Effect of pH 

       We found variation of adsorption capacity of all adsobents at different pH values in our 

experiments. The adsorption of dioxane on all adsorbents was influenced by the pH of the 

aqueous solution. The adsorption of dioxane onto AC and DE increased from 71.44 to 85.9 µg/g 

and 4.08 to 12.91 µg/g, respectively, when the pH of the solution was increased from 5 to 8.  The 

adsorption of dioxane onto MgO and TiO2 increased from 1.440 to 5.440 µg/g and 1.652 to 6.70 

µg/g, respectively, when the  pH of the solution was increased from 5 to 7 (Figure 2.11a,b).  

       Solution pH is additional significant parameter that influences both adsorbate chemistry in 

solution and surface binding sites of the adsorbent. As seen from the graph, the equilibrium 

adsorption capacity increases with an increase in pH, reaches a maximum at neutral and slightly 

basic pH, and then decreases. The lower adsorptive capacity of all adsorbents was observed at 

low pH (3 to 5). A possible explanation for low adsorption at low pH is the presence of higher 

concentration and higher mobility of H+ ions that bond to water molecules to form hydronium 

ions (H3O
 +), so that the adsorption sites on the surface of the adsorbent are surrounded by H3O

 +, 
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thereby preventing dioxane from reaching the binding sites of the adsorbents (Onundi et al., 

2010). As well as the lower adsorptive capacity of DE, MgO, and TiO2 onto dioxane at low pH 

values may be also related to their slight dissolution.  

        A strong decrease in the dioxane removal efficiency was observed in high pH environments 

(above pH 9.0). This might be related to the formation of hydroxyl radicals (OH–), which 

subsequently compete with the molecules of dioxane for adsorption sites, leading to dioxane’s 

decreased adsorptive capacity (Moussavi & Mahmoudi, 2009) 

 Effect of Water Type  

         No significant difference was observed in the adsorption of dioxane (n =5 and P > 0.05) 

between water types and within adsorbent groups. The highest adsorption capacity was found in 

AC group followed by the DE group. The average x/m of AC group was 79.87 (µg/g), 80.52 

(µg/g), and 80.87(µg/g) for ground water, surface water, and DD water, respectively (figure 

2.12). 

        Surface and groundwater contain numerous materials such as particles of soil, suspended 

sediments, humic material, organic particles, and dissolved matter. This, combined with other 

factors like pH and residence time, might affect the adsorption of pollutants in water onto 

adsorbents.  

Despite differences in the properties of the three types of water and their quality, the 

results showed no significant difference in the adsorption of dioxane between them. This 

observation can be explained by the fact that dioxane has low organic carbon partition coefficient 

(Koc) and low distribution coefficient (Kd). Koc refers to affinity of the chemical to be adsorbed 
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onto organic components of the soil or sediment particles. Kd describes the equilibrium 

concentration ratio of chemicals between soil or suspended sediment particles and water 

(Suthersan, 2002). Therefore, the existence of suspended organic and inorganic particles in water 

samples would not affect the adsorption of dioxane onto adsorbents significantly. 

        The pH of DD water, ground water, and surface water were 7.00, 7.59, and 8.11, 

respectively. The variation in pH also did not affect the adsorption of dioxane, and the slight 

basic condition of surface and ground water was not sufficient enough to generate a higher 

concentration of OH– radicals that could compete with dioxane molecules for adsorption sites on 

surfaces.  

 Adsorption Isotherms  

        All adsorption isotherms showed a good fit w i t h  Freundlich equation. The study found 

that that AC adsorbed a large amount (x/m = 80.88 µg/g) of dioxane compared to the other 

adsorbents, with their x/m ranging from 3.79 and 11.41 µg/g.  

The Freundlich isotherms derived from the data are shown in figure 2.13, and the extrapolated 

parameters are summarized in table 2.3. 

      Adsorption is frequently described through an isotherm. The adsorption isotherm shows how 

the adsorbed molecules are distributed between the solution and the solid phase as soon as the 

adsorption attains equilibrium (Nwabanne & Igbokwe, 2008). The adsorption isotherm is useful 

for representing the capacity of an adsorbent for adsorbing compounds from water and in 

offering a description of the functional dependence of capacity on the concentration of 

compounds (Weber, 1972b). Therefore, the adsorptive capacity and also the performance of an 
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adsorbent are usually predicted from an equilibrium adsorption isotherm (Kumar et al., 2008, 

Ochonogor & Ejikeme, 2005) . 

       Activated carbon is extensively employed for the removal of hydrophobic organic chemicals 

in water. The process of AC adsorption is relatively easy, its performance is reliable, the cost of  

operation is low, and it can be applied to various scales in a treatment plant (Fukuhara et al., 

2011).  The amount of dioxane adsorbed onto AC in this study was lower than other hydrophobic 

organic compounds which have been in other studies (Dobbs & Cohen, 1980). The hydrophilic 

nature of dioxane may account for its low adsorpability onto AC. The hydrophobicity of a 

compound increases as the number of carbon atoms increases, and as its solubility in water 

decreases. The negative charge of oxygen atom forms hydrophilic functional groups such as 

hydroxyl or ether groups. Therefore, water solubility is increased as the number of these 

hydrophilic groups increase in the molecule and consequently adsorpability is decreased (Abe et 

al., 1983). Taking this viewpoint into consideration, dioxane possesses four carbon atoms and 

two oxygen atoms. Thus, it is substantially influenced by hydrophilicity and weakly influenced 

by hydrophobicity. Dioxane molecules remain stable in water for the most part. Hence, the 

affinity between the water and dioxane is relatively strong, which prevents the release of dioxane 

from water for its adsorption onto the surface of the adsorbent. Generally, the adsorptive capacity 

of AC is mainly due to London dispersion force, which is part of the van der Waals’ force and 

also dependent on pore size distributions, surface area, and pore diameter (Noll et al., 1992), and 

therefore adsorption force increases with decreasing pore size (Li et al., 2002). 

        The results of dioxane adsorption onto AC in this study were consistent with some results of 

a previous study conducted in 2011. That study was carried out to study dioxane adsorption onto 

eight different ACs. The ACs were prepared from various sources (coconut, phenol resin, coal, 
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and sawdust) in different forms (granular, fibrous, and powdered) by direct activation in a rotary 

kiln, without a carbonization process. The surface area varied from 983 to 1810 m2/g 

(Fukuhara et al., 2011). Our results were similar to the result of dioxane adsorbed onto AC 

prepared from phenol resin with a surface area of 1628 m2/g. 

        Because of its high porosity, high surface area properties (80 m2/ g) (Datsko et al., 2011), 

good hydrophilicity, high chemical inertness, relatively low cost, and environmental friendly 

nature, DE is extensively employed as a filtering matrix, an adsorbent, and a catalyst carrier to 

remove many contaminants from water (Wu et al., 2011). Due to its high surface area, DE 

possesses a high absorptive capacity and can absorb up to 2.5 times its weight of water (Al-

Rashdan, 2001). Hence, It has been used for the adsorption of many heavy metals, textile dyes, 

and other substances from water and wastewaters, either in its natural form or a chemically 

modified form (Ridha et al., 1998, Khraisheh et al., 2004). It is consists mainly of amorphous 

silica. It is considered as a mineral of organic origin (fossilized diatom skeleton). Active 

adsorption sites on DE surface having active hydroxyl groups, which are responsible for 

adsorption, are thought to be as follows: (i) insulated free silanol groups (–SiOH), (ii) free dual 

silanol group [–Si(OH)2], and (iii) siloxane  group –Si–O–Si bridges with oxygen atoms on the 

surface (Zhuravlev, 2000). The hydroxyl groups act as the core of molecular adsorption through 

their specific interaction with adsorbates, which have the capability of creating a hydrogen bond 

with the hydroxyl groups, or more commonly, of undergoing an interaction as a donor–acceptor. 

The main forces governing the adsorption of DE are van der Waals force and hydrogen bond.  

Hydrogen-bonding sites play an important role in DE adsorptive capacity. Two different types of 

hydrogen bonding sites are related to silanol groups, which act as a proton donor, and to the 

siloxane group, where the group acts as a proton acceptor. The silanol groups spread over the 
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surface of the silica are active and have a tendency to react with many polar organic compounds 

and various functional groups (Zhuravlev, 2000, Caliskan et al., 2011, Grob & Barry, 2004). At a 

sufficient concentration of silanol groups, the surface becomes hydrophilic. By contrast, the 

removal of the hydroxyl radicals from these groups result in a decrease in the adsorption and the 

surface tends to be more hydrophobic in nature (Zhuravlev, 2000).  

       Although DE has a high porosity and high surface area, it showed low adsorptive capacity 

toward dioxane in water compared to AC. The relative low adsorption of dioxane onto DE could 

be explained as follows:  Water is a broadly hydrogen bonded system and has ability to form a 

cage around the solute without sacrificing much of the hydrogen bonding. Therefore, the host 

water molecules are able to organize themselves into a cage-like structure around the dioxane 

guest molecules and then can utilize all the four potential hydrogen bonds per dioxane to form a 

clathrate-like compound (Powell et al., 1995) . The only physical attraction between DE surface 

and dioxane is van der Waal attractions, which is relatively a weak force on DE surfaces. 

       Nanocrystalline metal oxides have a high adsorptive capacity toward a wide range of 

environmental pollutants ranging from acids, chlorinated hydrocarbons, organophosphorus and 

organosulfur compounds to chemical warfare agents. These compounds also have the capability 

to destroy various chemical hazards by altering them to much safer by-products in a wide range 

of temperatures (Koper et al., 2007). The adsorption efficiency of nanocrystalline metal oxides  

results not only from their high surface area but also due to the high concentration of low 

arranged sites and structural defects on their surface (Mishakov et al., 2002). A number of 

different nanoparticles of metal oxides have been shown to be effective toward common water 

contaminants including halogenated organic compounds and heavy metals. For example, iron 

nanoparticles were found to be very effective for the transformation and detoxification of a wide 
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variety of common environmental pollutants, such as chlorinated organic solvents, 

organochlorine pesticides, chlorinated aliphatics, perchlorate, methyl-t-butyl ether and 

polychlorinated biphenyls, and these materials have also shown some capacity for removing 

inorganic metal pollutants like chrome, arsenic, and lead (Kent, 2012).  

          The nanocrystalline MgO has showed a high adsorptive capacity toward some organic 

compounds in wastewater like textile dyes (i.e., Ponceau S dye, reactive brilliant red X-3B and 

Congo red)  (Hu et al., 2010, Venkatesha et al., 2013, Moussavi & Mahmoudi, 2009), pesticide-

like paraoxon and organophosphorus compounds such as dimethyl methyl phosphonate (Koper 

et al., 2007). Nanoparticle TiO2 has been effectively used for the remediation of a wide range of 

organic chemicals like hydrocarbons, chlorinated hydrocarbons such as carbon tetrachloride, 

chloroform,  trichloroethylene, phenols, chlorinated phenols, surfactants, dyes, reductive 

deposition of heavy metals such as platinum, lead, gold, rhodium, chrome, and others from 

aqueous solutions to surfaces in addition to destruction of microorganisms like bacteria, viruses, 

and molds in water (Mills & Hoffmann, 1993). Some nanocrystalline metal oxides such as MgO 

and TiO2 have been found to have a high adsorption capacity toward polar organic compounds 

compared to nonpolar organics (Khaleel et al., 1999). Data on dioxane adsorption in aqueous 

phase onto nanocrystalline metal oxides, like MgO and TiO2, are not available. 

          In this study, the nanoparticle metal oxides of MgO and TiO2 showed low adsorption 

capacity toward dioxane in aqueous phase and this may be attributed to their nonpolarity in 

addition to their hydrophilicity. 
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Adsorption in Vapor Phase  

        The adsorption of dioxane by AC, TiO2, MgO, and DE is examined at different time 

intervals and the results are shown in figure 2.14. As can be seen from the figure, during the first 

40 min of the experiment, the concentration of dioxane adsorbed onto all adsorbents increases 

with time. The average contact time required for maximum adsorption of dioxane in vapor phase 

was at 22, 8, 8, and 7 min for AC, TiO2, MgO, and DE, respectively, whereas the average time 

required for reaching equilibrium rate of dioxane adsorption in vapor phase was 39, 28, 40, and 

18  min for AC, TiO2, MgO, and DE, respectively. Then there was no significant change of 

dioxane concentration observed till 100 min. 

       As shown in figure 2.15, the required contact time for maximum adsorption rate of dioxane 

onto AC was longer than in other adsorbents, and the results showed no significant difference (P 

> 0.5, n=5) between TiO2, MgO, and DE. The shorter time was associated with lower adsorptive 

capacity of the adsorbents. This can be explained through the limitation of interaction sites on the 

surface of the adsorbent that are occupied and attain saturation state faster than the adsorbent 

possessing higher adsorptive capacity. The contact time for reaching equilibrium varied between 

the adsorbents. The longer time was observed for adsorption onto AC and MgO, and it was 

shorter for TiO2 and DE. The maximum adsorption time was higher for adsorption on AC 

compared to that shown on MgO, TiO2, and DE. The equilibrium is the result of a competition 

between two contrary mechanisms, represented by the activation energy of adsorption and 

desorption (Limousin et al., 2007). The time between point of maximum adsorption and first 

point of equilibrium represents the desorption process. The shorter desorption time was observed 

in DE and longer in MgO. The duration of desorption may explain the strength of attachment 

between the dioxane molecule and the adsorbent surface, implying that a stronger attachment 
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needs a longer time to detach. The short contact time for reaching equilibrium may indicate that 

the physical adsorption dominates the interaction between dioxane and the adsorbents, because 

the physical adsorption systems usually reach equilibrium rapidly (Rouquerol et al., 1999). 

       The results of dioxane adsorption in vapor phase (figure 2.16) showed significant differences 

between the adsorption means of all adsorbents (P < 0.001, n=5), where AC generated the 

highest rate of adsorption at 66.9 µg/g, followed by TiO2 at 19.3 µg/g, MgO at 8.6 µg/g, and DE 

at 4.7 µg/g.  

       Dioxane, like other volatile organic compounds, easily evaporates at room temperature. Its 

vapor pressure (40 mmHg at 25°C) under normal conditions allows it to significantly evaporate 

and enter the atmosphere (Lewis, 2000). Dioxane may be emitted to the indoor or outdoor 

atmosphere through air effluents at the sites where it is produced, processed, after use, and via 

unintentional formation (ECB, 2002). As reported to the Toxics Release Inventory by specific 

types of U.S. industries, U.S. EPA has estimated that 6,522,259 pounds of dioxane were emitted 

into the atmosphere of the total 19 million pounds released into the environment in the United 

State between 1988 to 2012 (TRI, 2013). In Japan, a pollutant release and transfer register survey 

indicates that the total annual release of dioxane into air is greater than that into the aquatic 

environment. For example, the total annual emission  of dioxane into the atmosphere was 160, 

184, and 169 tons in 2001, 2002, and 2003, respectively  (PRTR, 2003).  

       Many techniques are used to control the emission of volatile organic compounds. These 

techniques are basically classified into two different groups: the destruction and the recovery 

techniques. The destruction techniques include oxidation and bio-filtration, whereas the recovery 

techniques include absorption, adsorption, condensation, and membrane separation. Adsorption 
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is the most common process using for removing volatile organic compounds from air (Khan & 

Ghoshal, 2000).  

      The phenomenon of adsorption has been employed widely in air pollution control. During 

adsorption, the molecules of the pollutant in gas phase passing through a bed of solid particles 

are selectively held there by physical forces, which are weaker and less specific than those of 

chemical bonds. Adsorption takes place more readily at conditions of lower temperatures and 

humidity. The adsorptive capacity of the solid (the adsorbent) for the gas molecules tends to 

increase with the gas phase concentration, molecular weight, diffusivity, polarity, low humidity, 

and boiling point (Vatavuk, 1999). A wide variety of materials are used as adsorbents to remove 

the organic pollutants from air like activated carbon, zeolites, activated alumina, synthetic 

polymers, silica gel, and porous clay minerals. However, all adsorbents have limited capacities 

and thus require frequent maintenance (Khan & Ghoshal, 2000). 

       Activated carbon has been used extensively to remove gaseous contaminants from air. It has 

the potential to remove most hydrocarbons, many aldehydes, and organic acids. The adsorption 

capacity of AC increased linearly with an increase the molecular weight, dynamic diameter, 

boiling point, and density of the adsorbate. However, adsorption capacity of AC decreased with 

an increase in the polarity index and vapor pressure of the adsorbate (Li et al., 2012).  Most of 

the organic compound vapors are adsorbed onto AC through physical adsorption, which is based 

on the van der Waals force between the adsorbate and AC. In this study, the adsorptive capacity 

of AC toward dioxane vapor was moderate, and it was lower than that found in other organic 

volatile compounds such as xylene and toluene (Das et al., 2004). The moderate adsorption of 

dioxane vapor by AC may be explained through its physical and chemical properties. The 

polarity index (intensity of adsorbate polarity) of dioxane is 4.8, which indicates that dioxane is 
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relatively nonpolar. The molecule of AC is nonpolar and therefore the affinity between AC and 

dioxane is not strong enough.  

      Li and coworkers reported that the physical adsorption of organic vapor onto AC was similar 

to gas liquefaction and condensation, which were both closely associated with boiling point. At 

higher boiling points, liquefaction and condensation take place more easily, which increases the 

adsorption capacity (Li et al., 2012). Vapor pressure of the adsorbate is the other physical 

property that can influence the adsorptive capacity of AC. Thus, the adsorptive capacity of AC is 

affected negatively with  increasing vapor pressure (Li, 2010). Boiling point and vapor pressure 

of dioxane are 101°C and 40 mmHg at 25°C, respectively. They are relatively not high in 

comparison with the boiling point of other organic compounds, which may also explain the 

moderate adsorptive capacity of AC toward dioxane vapor.  

         Many studies have been conducted to investigate the adsorptive capacity of DE or modified 

DE toward organic compounds in vapor phase. The results have shown a varied range of 

adsorptive capacities, ranging between very low and high. For example, toluene vapor adsorption 

onto DE mixed with fly ash was high (Lim et al., 2001). But, xylene vapor adsorption onto DE 

was moderate  (Zaitan & Chafik, 2005). The hydrogen bond with silanol groups on the surface of 

DE is the most important factor that determines the adsorption of an adsorbate onto DE 

(Da�browski & Tertykh, 1996). In this study, dioxane vapor adsorption onto DE was low and 

this may be related to weak hydrogen bonds between the dioxane molecule and the surface of 

DE. However, data on dioxane adsorption onto DE are not available, and such data can throw 

light on the adsorption pathway.  



107 

 

       Nanocrystalline metal oxides exhibit a wide range of unique properties. One of the unusual 

properties is their enhanced surface chemical reactivity toward incoming adsorbates (Klabunde 

et al., 1996).  Many studies have reported that nanocrystalline metal oxides such as MgO, CaO, 

ZnO, TiO2, Al2O3, and Fe2O3 have been shown to be highly efficient and active adsorbents 

toward numerous toxic substances including common air pollutants, chemical warfare agents 

(i.e., nerve agent, VX, and sulfur mustards), and acid gases (Khaleel et al., 1999, Wagner et al., 

2000). In most cases, destructive adsorption occurs on the surface sites of the nanocrystals, so 

that the adsorbate is chemically broken up and thereby made nontoxic (Volodin et al., 2006). 

      The reactivity of nanocrystalline MgO and TiO2 with organic chemicals in gas phase has 

been examined by many studies.  For example, Khaleel et al. have investigated nanocrystals of 

MgO, calcium oxide, and aluminum oxide as adsorbents of typical volatile organic compounds, 

which are representative of air pollutants. The volatile organic compounds used in that study 

were acetone, propionaldehyde, benzaldehyde, trimethylacetaldehyde, ammonia, dimethylamine, 

N-nitrosodiethylamine, and methanol. Nanocrystals of MgO have shown remarkably high 

capacity to chemically adsorb such organic compounds. Additionally, nanocrystalline MgO was 

found to adsorb acetaldehyde in large quantities in the absence of air. At room temperature and 

over a short period of time, one mole of MgO adsorbed up to one mole acetaldehyde. The 

adsorption was very fast and vigorous. The high adsorptive capacity of MgO toward 

acetaldehyde was attributed to a special reactivity that resulted in a multilayer dissociative 

adsorption of large amounts of the chemical, and due to the interaction of the carbonyl group 

with surface sites followed by the aldehydic hydrogen dissociation (Khaleel et al., 1999). 

Another study was conducted to investigate the potential of nanocrystalline TiO2 for the 

destructive adsorption of carbon tetrachloride (CCl4). It was found that nanocrystalline TiO2 had 
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a very high capacity to remove chlorinated hydrocarbons from air. The study suggested that the 

possible pathway for the destructive adsorption of CCl4 over nanocrystalline TiO2 was physical 

adsorption, where the relatively positive carbon atom interacts with a site of negative oxygen and 

the relatively negative chlorine atoms interact with positive sites on metal ion to form an 

intermediate (Liu et al., 2004).  

       Dioxane is a relatively nonpolar heterocyclic ether molecule, it does not have a permanent 

dipole moment, and is not usually considered to be polar (Oh et al., 1998). Ether adsorption on 

metal oxides was believed to be controlled by an interaction through the oxygen lone-pair 

orbital, and the relative bond strengths were described mainly in terms of inductive depletion of 

electron density at the oxygen lone-pair (Luth et al., 1977, Walczak & Thiel, 1990). Our study 

showed that the adsorptive capacity of nanocrystalline TiO2 and MgO toward dioxane in vapor 

phase was low (19.3 and 8.6 µg/g, respectively). The strengths of interaction between dioxane 

and the surface of metal oxide can be explained primarily in terms of physical adsorption and via 

an interaction controlled by the oxygen lone-pair orbital. Apparently, this interaction is more 

comparable to a weak dipole–dipole interaction. These results are consistent with a previous 

study that suggested that nanocrystalline MgO and TiO2 adsorb nonpolar organic compounds in 

gas phase in low capacities (Khaleel et al., 1999). 
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 Conclusion 

      The principal objectives of this study were to (1) study the adsorption of dioxane onto four 

different adsorbents (activated carbon, diatomaceous earth, and nanocrystalline titanium dioxide 

and magnesium oxide) in aqueous and vapor phases, (2) determine  the effect of pH, contact 

time, and type of water on dioxane adsorption in aqueous phase, and (3) estimate the maximum 

adsorption capacity of the four adsorbents in aqueous phase by fitting the adsorption equilibrium 

data to adsorption isotherms of the Freundlich model. The results of the study could be summed 

up as follows: 

• Generally, the adsorbability of dioxane is qualitatively low in aqueous and vapor phases.  

• The highest adsorptive capacity of dioxane in the aqueous phase was found onto AC, 

followed by DE.  

• The nanocrystalline metal oxides showed very low adsorptive capacity toward dioxane in 

the aqueous phase. 

• The study showed that adsorption of dioxane onto all adsorbents reaches maximum at 

neutral and slightly basic pH solutions. 

• The water type was found to have no effect on dioxane adsorption onto AC, TiO2, MgO, 

and DE. 

• All adsorption isotherms obtained were found to relatively fit a Freundlich equation.  

• In vapor phase, the highest adsorptive capacity of dioxane in was found onto AC. 

• The nanocrystalline metal oxides showed higher adsorptive capacity in the vapor phase 

than in the aqueous phase, and TiO2 exhibited more favorable adsorptive properties than 

MgO.  
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• The contact time for reaching equilibrium and maximum adsorption rate was fast (< 40 

min) in both phases, indicating that the physical adsorption controls the interaction 

between dioxane and the adsorbents. 

 

 

 

Table 2.3: Freundlich adsorption constants on dioxane onto different adsorbents in aqueous 

solution 

Adsorbent 
Freundlich Constants (a) Correlation coefficient 

R2 
x/m (µg/g) (b) ±SE 

n=5 K f 1/n 

MgO  -18.659 0.071322 0.547 3.794 ± 0.83 

AC 1.225 1.158749 0.981 80.878 ± 3.28 

DE -10.595 0.117578 0.674 11.416 ± 2.92 

TiO2 -26.114 0.051169 0.444 3.842 ± 1.21 

(a) Freundlich Constants were determined at dimensions = Ce (mg/L), x/m (µg/g) 
(b)  x/m amount adsorbed at the equilibrium concentration of 50mg/L 
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Figure 2.6: Effect of contact time on the dioxane adsorption onto activated carbon in aqueous 

solution 

 
 
 
 

 
 

Figure 2.7: Effect of contact time on dioxane adsorption onto titanium dioxide in aqueous 

solution 
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Figure 2.8: Effect of contact time on dioxane adsorption onto magnesium oxide in aqueous 

solution 

 
 
 
 
 

 
Figure 2.9: Effect of contact time on dioxane adsorption onto diatomaceous earth in aqueous 

solution 
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Figure 2.10: Effect of pH on adsorption of dioxane in aqueous solution onto (a) titanium 

dioxide, magnesium oxide and diatomaceous earth (b) activated carbon (n =5) 

AC 
 

MgO, DE, TiO2 

 
a 

b 
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    Figure 2.11: Effect of water’s types on adsorption of dioxane onto different adsorbents in 

aqueous solution (n =5) 

                             *With different letters are statistically significant P < 0.05. Bars show standard errors. 

*a*a*a*a    

*b*b*b*b    

*c*c*c*c    *c*c*c*c    
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Figure 2.12: Adsorption isotherms of dioxane onto different adsorbents in aqueous solution 
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Figure 2.13: Effect of contact time on the dioxane adsorption onto different adsorbents in vapor 

phase 
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Figure 2.14: Required contact time for reaching equilibrium and maximum 

adsorption of dioxane (n =5) 
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Figure 2.15: Adsorption of dioxane onto different adsorbents in vapor phase (n =5) 
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Chapter 3 - Developing a New FT-IR-based Real-Time Detection 

Method for Flow-Through Diffusion Cell studies for Assessing in 

vitro Transdermal Permeation 

 
 

 Abstract 

The skin serves as an important portal for entry of chemicals into the body. Skin absorption data 

are required for toxicological risk assessment and pharmaceutical availability of topical 

medicaments. In vitro techniques are usually used to evaluate skin absorption. A new flow-

through diffusion method was developed by modifying the Bronaugh flow-through diffusion cell 

with flow capacity in both the donor and receptor compartment and using ATR–FT-IR as an 

analytical technique. The current method performance for in vitro transdermal permeation was 

evaluated by (1) comparing permeation flux in a flow-through donor chamber and a static donor 

chamber, (2) evaluating the effect of the receptor fluid flow rate on dermal permeation flux, (3) 

evaluating the effect of the donor fluid flow rate on dermal permeation flux, and (4) comparing 

permeation flux data obtained by flow-through cell with automated sampling system (ASS) with 

data from modified flow-through system (MFTS). The experiment was performed using dioxane 

permeating through human stratum corneum at room temperature. The results showed that the 

highest dioxane flux obtained at a slower receptor fluid flow rate, and the lowest flux obtained at 

the highest rate (R2 =0.935). The variability of the flux at steady state was increased as the 

receptor fluid flow rate increased (R² = 0.977), where the coefficient of variation was 1.13 ± 0.23 

% at 1 mL/hr and 6.01 ± 0.57 % at 40 mL/hr. No significant difference (P = 0.73) was found 

between dioxane flux obtained by ASS and by MFTS. But the results showed a significant 
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difference (P < 0.001) in variability of dioxane flux over time between the two systems, with 

MFTS showing a lesser coefficient of variation (1.12 ± 0.19 %). The cumulative amount of 

dioxane in MFTS and ASS was linear with time, and the lag time was significantly different (P 

<0.02) between MFTS and ASS with values of 2.19 ± 0.25 and 2.58 ± 0.33hr, respectively. The 

donor fluid flow rate showed no effect (P > 0.05) on the dioxane steady state flux. This model 

may present an alternative in vitro model for evaluating dermal absorption with the added 

advantages of providing ‘real time’ quantitative high density permeation data, control of steady 

donor concentrations over time, simplicity of use, and the low cost of test samples.  
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 Introduction 

 In toxicological risk assessment, skin absorption data are required for a wide range of 

chemical compounds to evaluate the internal doses following a dermal exposure to these 

compounds and to provide exposure assessors with an understanding of safety limits. Moreover, 

there has been a growing interest in dermal administration of drugs for both local (topical 

application) and systemic (transdermal delivery) therapy. Skin absorption can be measured by in 

vivo or in vitro methods with humans and animals.  In vivo studies frequently present many 

challenges, such as cost, country-specific legislation, ethical considerations, and others. In vitro 

methods can provide a valid alternative to the in vivo methods for many significant aspects of 

skin exposure. In vitro methods also offer an economical and practical alternative for low-cost 

testing of a large number of formulations, saving time and effort, and overcoming legal and 

ethical considerations. However, in vitro dermal absorption studies should be carried out under 

conditions mimicking those in the real world if reliable and accurate data is to be obtained 

(USEPA, 2007). 

 In vitro dermal absorption studies often use the principle of diffusion, where a penetrant 

solution is applied to one side of the skin and its diffusion flow measured on the other side. 

Usually, the method for evaluating penetrant permeability in vitro uses a rate limiting membrane 

(commonly, skin) that separates two chambers. The outer surface of the skin faces the donor 

chamber and the inner surface faces the receptor (or acceptor) chamber. The receptor chamber 

is filled with a proper physiological receptor fluid, the penetrant is added into the donor 

chamber on the outer surface of the skin, and its rate of accumulation in the receptor chamber 

receptor fluid is used to measure the dermal absorption kinetic. The penetrant remains on the 

skin for a given time under specific environments (such as temperature, pH, and osmolarity). 
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Receptor chamber samples are taken at periodic intervals to measure the amount of penetrant 

permeating over time (Kielhorn et al., 2006, Chilcott & Price, 2008, Permegear, 2014, 

Hanson, 2014).    

 There are two basic approaches to assess skin permeation in vitro: the static (non-

flowing) cell and the flow-through cell. The most extensively used static design for 

investigating in vitro dermal absorption is the Franz diffusion cell. This cell has a static 

receptor fluid reservoir with a side-arm sampling port (Franz, 1975). The use of the Franz-

type diffusion cell to conduct dermal experiments has rapidly become widespread despite 

some of its inconveniences and limitations. The flow-through diffusion cell is a modification 

of the previous static design for mimicking in vivo conditions. It is characterized by 

continuously changed receptor fluid to maintain sink conditions during the course of the 

experiment. The flow is driven by a pump and the cell has a much smaller receptor chamber to 

allow easy removal of contents with moderate flow of receptor fluid (Bronaugh & Stewart, 

1984).  Flow-through type diffusion cells have been used to assess chemical flux through skin 

and other membranes of interest. These cells have the advantage that the experimental apparatus 

can be automated, permitting quick collection of dermal absorption data (Sclafani et al., 1993).  

 Sampling from a diffusion cell to measure permeates in dermal absorption experiments is 

an important factor in terms of time intervals between samples, frequency, and volume for 

determining accurate dermal absorption data. However, manual sampling is often tedious, time 

consuming, and sometimes requires complicated sampling schedules that pose challenges for the 

investigator (Cordoba-Diaz et al., 2000).  In a static cell system, the volume of receptor fluid is 

the same for all the diffusion cells; thus, the quantity of permeate that is found in the receptor 

fluid can simply be measured for that specific volume. The samples must be obtained rapidly and 
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consecutively from all receptor chambers (at consistent time intervals). Automated sampling, 

usually used with a flow-through diffusion cell, facilitates more consistent time-interval 

sampling from all the cells. However, there may be trivial differences in the volume of receptor 

fluid driven through each diffusion cell into the collection vials because of tubing component 

diameters or clamping pressures in the pump. Shortening of collection time intervals from a 

small receptor chamber with an automated sampling system results in a small sample volume, 

which is insufficient for analysis (Sclafani et al., 1993, Talreja et al., 2001). 

 Permeating substances from the dermal absorption are measured using radiolabeled or 

non-radiolabeled material (Kielhorn et al., 2006).  Liquid scintillation counting is the most 

common method for quantifying the concentration of permeates in receptor fluid. In this method, 

the target molecules (the permeate) are radiolabelled with beta-emitting radioactive isotopes (H3, 

C14, S35, and P32) and beta radiation is measured by the scintillation counters. C14 and H3 are the 

two most commonly used isotopes, but C14 is preferred for organic compound molecules. The 

advantages of using a radiolabelled substance are that it is easy to monitor the distribution of the 

substance in the experimental system, simple to quantify (by liquid scintillation counting) mass 

balance measurements, and usable in combination with micro-autoradiography to more 

determine the distribution of the test substance within the dermal layers. However, there are 

many disadvantages associated with radiolabelled substances. They are expensive to synthesize, 

only available in small amounts, difficult to distinguish parent molecule and metabolite, in 

addition to safety considerations (Chilcott & Price, 2008). Non-radiolabeled materials can also be 

used in dermal absorption studies and detected with techniques such as HPLC, ELISA, LC-MS, GC-MS, 

and fluorescence. These techniques can be adapted to many permeates, and can be used to perform 

multiple analyses. Their disadvantage is that very small amounts of permeate can remain undetected or 
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under-detected due to the large volume of receptor fluid in static cells or the large volume collected from 

flow-through diffusion cells (Cordoba-Diaz et al., 2000).  

 Over the years there have been many proposed diffusion cell modifications since the earliest 

design by Hans Ussing in 1949, which he developed to measure ion transport through frog skin 

held between two half-static chambers (Ussing, 1949). Most modifications have been designed to 

evaluate the in vitro permeability of a diversity tissues, and have contained mammalian skin 

(Treherne, 1956), buccal mucosa (Bergman et al., 1969, Squier et al., 1997), mucosal corneal 

membrane (Schoenwald & Huang, 1983), and gastrointestinal mucosal membrane (Grass & 

Sweetana, 1988).   

 One of the disadvantages of the side-by-side diffusion cell arrangement was the need to 

immerse both sides of the membrane in an aqueous condition, resulting in hydration of the 

normally dry skin external surface.  For this reason, Franz proposed a vertical diffusion cell 

design (Franz, 1975).  The Franz diffusion cell permits the external skin surface to remain dry 

and also facilitates direct application.  

 Another disadvantage of the static diffusion cell is accumulation of the permeating 

substance in the receptor compartment between samplings, which results in decreased flux across 

the membrane. This limitation led to the continuous-flow system. The first use of a continuous-

flow system was describe by Ainsworth (Ainsworth, 1960). The continuous-flow system allows 

constant removal of permeating compound from the receptor chamber, thus maintaining a 

concentration gradient through the membrane that mimics in vivo conditions. Bronaugh and 

coworkers (Bronaugh & Stewart, 1985) introduced further refinements to the flow-through 
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system that permitted system automation if used with a fraction collector or similar sampling 

device.  

 Many other specially modified versions of diffusion cells have been proposed and 

validated against the classical apparatus. For example, the enhancer cell, which was a modified 

version of the USP type II dissolution apparatus, has served as a diffusion cell and has been used 

to compare the permeation characteristics of hydrocortisone (Kumar et al., 1993), and also the 

modified automatic sampling system (Akazawa et al., 1989, Martin et al., 1989). 

 The purpose of the present study was to evaluate the performance of a new modified 

flow-through diffusion cell method for in vitro transdermal permeation, which has flow-through 

capacity in both the donor and receptor chambers with real time quantifying of the 

concentration of permeating compound in receptor fluid. The method performance was 

evaluated by comparing permeation flux in flow through the donor chamber with a static donor 

chamber, evaluating the effect of the receptor fluid flow rate on dermal permeation flux, 

evaluating the effect of donor fluid flow rate on dermal permeation flux, and comparing 

permeation flux data obtaining by a flow-through cell with automated sampling system (ASS) 

with data from the modified flow-through system (MFTS). The experiment was performed 

using the 1,4 dioxane permeating through human stratum corneum at room temperature. 
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 Material and Methods 

 Chemicals 

       The 1,4 dioxane 99.8% was purchased from ACROS Organics (New Jersey, USA).  The 

receptor fluid chemicals were: sodium chloride (NaCl) Lot No. 045779, potassium chloride 

(KCl) Lot No. 076729, sodium bicarbonate (NaHCO3) Lot No. 073814, magnesium sulfate 

(MgSO4.7H2O) Lot No. 060337, potassium phosphate (KH2PO4) Lot No. 056327, dextrose Lot 

No. 054971, and bovine serum albumin (fraction V; cold alcohol precipitated) Lot No. 095503.  

They were obtained from Fisher Scientific (Pittsburgh, PA, USA). Calcium chloride (CaCl) Lot 

No. A0214153001 was obtained from Acrose Organic (New Jersey, USA). Levofloxacin Lot No. 

0001425507 was obtained from Sigma Aldrich Chemical Co (St. Louis MO, USA). Heparin Lot 

No. 045058 was purchased from Baxter (Illinois, USA). 

 

 Receptor Fluid Preparation 

       The receptor fluid was designed to mimic a blood plasma environment, and consisted of 

13.78 g NaCl, 0.71 g KCl, 0.56 g CaCl2, 0.32 g KH2PO4, 0.58 g MgSO4.7H2O, 5.50 g NaHCO3, 

2.40 g dextrose, 90.0 g bovine serum albumin, 4 mg levofloxacin, and 10 mL heparin, to which 

distilled water was added to attain a total volume of 2 L of fluid. The fluid was left on magnetic 

stirrer for several hours until all components had dissolved. The fluid was decanted into 1L 

bottles, was labeled, and placed in a freezer until it was used.  
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 Skin Preparation 

       Human skin was donated under conditions of informed consent as set forth in the “Federal 

Policy for the Protection of Human Subjects,” 45 CFR 46.116-117, and with approval by the 

Institutional Review Board for Kansas State University (proposal number 4206). 

 Human skin from the abdominal region was obtained from white-skinned females who 

had undergone tummy tuck surgery (Manhattan Surgical Hospital, Manhattan, KS).  The skin 

was dermatomed (Padgett Model S Dermatome, Integra LifeSciences Corp., Plainsboro, NJ, 

USA) to 0.5 mm thickness and stored at −20°C until use during the next two months. Thereafter, 

dermatomed skins were thawed at room temperature for 30 min and cut into disks. Skin disks 

were mounted in the flow-through diffusion cell system with exposed skin surface areas of 1 cm². 

 Flow-Through Diffusion System Modification 

 The flow-through diffusion cell system (PermeGear Inc., Hellertown, PA, USA) was 

used as modified. This cell is made from plastic Kel-F (a 3M product) or Neoflon. It has a 

clamping system to securely clamp tissue or membranes. Clamping is achieved with a stainless 

steel spring that applies pressure preset by the user to the upper surface of the donor 

compartment for leak proof clamping. The diffusion cell has a contact area of 1 cm2 and consists 

of two compartments a static donor compartment and a flow-through receptor compartment. This 

flow-through diffusion cell was modified to provide flow-through capacity in both the donor and 

receptor compartments, and was connected to the test cell, which was mounted on the FT-IR 

spectroscope where the effluent from the receptor compartment flowed over the crystal aperture. 

The test cell is made from Plexiglas and has a chamber (diameter = 5.2 mm, depth = 4.71 mm, 
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volume = 100 µL) to be placed directly on the crystal aperture. A schematic representation of the 

modified flow-through diffusion system is shown in figure 3.1. 

       The human skin disk was mounted on the diffusion cell. Thereafter, tubing was attached to 

the inlet port of the receptor compartment which was perfused with receptor solution, and to the 

donor compartment inlet port, which was supplied with donor solution using high-

precision multi-channel pumps for analytical applications (ISMATEC, IPC-N 16, ISM 938, 

Switzerland). Both the donor and receptor solutions were perfused at a 2 ml/hour flow rate. The 

donor compartment was filled with 3 ml of the donor solution for permeability studies. This 

ensured that the skin was exposed to donor solution at the beginning of the permeability study. 

The concentration of the dioxane in the donor solution was 50 mg/ml. The skin was exposed to 

the test formulations over a period of 10 hours at room temperature. 

       To determine the proper flow rate for flow-through cell experiments, dioxane water was 

applied to the surface of the skin in a water vehicle and the steady-state dermal absorption rate of 

the dioxane was measured at different receptor fluid flow rates (1, 5, 10, 20, 40 ml/hour). To 

compare permeation flux data obtaining by MFTS and the automated sampler system (ASS), the 

PermeGear Model (Hellertown, PA, USA) was used. From 5 diffusion cells, perfusate was 

collected in receptor vials after the application of the formulations to the skin at 20-minute 

intervals for the first hour and at one-hour intervals thereafter for a 10-hour period. Hence, each 

perfusate sample represents the collective flow-through over the preceding hour. The permeating 

dioxane concentration in the collected samples was measured by FT-IR.   
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 Analytical Procedure 

 To determine the dioxane permeating through the skin, IR adsorption spectra at time 

intervals were obtained. The attenuated total reflectance IR spectrum of effluent from the 

receptor compartment was measured using attenuated total reflection Fourier transform infrared 

spectroscopy (ATR-FTIR) with a Thermo-Nicolet FT-IR spectrometer, model 6700, and a 

GladiATR vision unit (PIKE Technologies, Inc. WI, USA). The OMNIC FT-IR software 

program was used in the FT-IR system. Absorbance spectra were measured over the wave 

number range of 4000–400 cm–1 with a spectral resolution of 4 cm–1. The IR absorption spectra 

for dioxane in solution were obtained at various times. These spectra were analyzed using the C–

O vibration band.  The selected peak region for obtaining the integrated absorbance was 1105.2–

1160.2 cm-1. The crystal aperture surface was cleaned with alcohol and dried, and an uncovered 

crystal background was run prior to scanning of the sample sets. With the continuous flow 

measuring method, a macro was created by using the OMNIC Macros application to measure 

absorbance spectra every 3 minutes, with the data saved on the computer.  

 

 Data analysis 

 Data were analyzed by calculating both flux (mg/cm2/hr) and cumulative penetration 

(mg/cm2). The steady state flux (Jss) was calculated according to the following equation: 

Jss = ∆Q/A* ∆t  

where (∆Q) is the amount of compound permeating the skin during time (∆t) and (A) is the 

diffusional area (1 cm2). The amount of dioxane passing through the test cell chamber over each 

time interval was calculated by multiplying the measured concentration by the volume of 
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receptor solution inside test cell chamber (100 µL) over the time interval. The lag time for 

dioxane was estimated by extrapolating the linear part of the permeability curve and assigning its 

intercept on the time axis. This was assigned to confirm that the duration of the permeability 

experiment was long enough to offer an accurate evaluation of the steady state flux, as the length 

of the experiment must typically be three times the duration of the lag time (Shah, 1993).  

Minitab (version 16.1.1, Minitab Inc., PA, USA - 2010) Analyses of variance (ANOVA) was 

used to assess the significance of differences in means between groups. Tukey’s Multiple 

Comparison Method was used to compare the means. Pearson's correlation was used to measure 

the strength of a linear association between the coefficient of variation and flux with the flow 

rate of receptor fluid. All data obtained are presented as mean (± SD), unless otherwise stated. 

All statements of significant differences were based on a 95% confidence level (P < 0.05). A 

statistical measure of the dispersion of data points series of flux over time interval was evaluated 

by the coefficient of variation (%), as follows:  

Coefficient of variation (%) = (standard deviation / mean) *100 

Lag time of dioxane in MFTS and ASS was calculated from linear extrapolation of the steady-

state portion of the penetration profile back to the x-axis. 
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 Results and Discussion 

 Effect of Receptor Fluid Flow Rate on Permeability through Skin 

       Primarily, the experiments were conducted to ascertain the suitable receptor fluid flow rates 

for flow-through cell study. The receptor fluid flow rates of 1, 5, 10, 20, and 40 mL/hr were 

used, and the experiment was repeated 5 times. The results showed a significant difference (P < 

0.001) in the permeated amount of dioxane through the skin at steady state absorption between 

the flow rates.  The higher permeated amount was determined at a slower flow rate (1mL/hr), 

and as flow rate increased, the permeating dioxane decreased (Table 3.1). The result showed a 

strong correlation (R2 =0.935) between the flow rate of receptor fluid and the flux of the dioxane 

through the skin (Figure 3.2). 

        To evaluate the effects of flow rate on the variability of flux at steady state absorption 

through human skin, the results showed that the variability of flux increased as the flow rate 

increased. The variability at the slower rate (1 mL/hr) was 1.13 ± 0.23% coefficient of variation 

and 6.01 ± 0.57% at the faster rate (Table 3.1). The absorption profiles (Figure 3. 3) show that 

almost identical variability was found at the 1 and 5 mL/hr rates, whereas the results presented a 

significant difference (P < 0.001) between the variability at the 5, 10, 20, and 40 mL/hr rates.  

Linear regression analysis showed a strong correlation (R² = 0.977) between the variability and 

flow rate (Figure 3.4). The 2 mL/hr flow rate was used in subsequent experiments.  

       The flow rate of receptor fluid in flow-through diffusion cells is important to ensure that 

removal of perfusate is sufficiently rapid as to avoid stasis and alterations in the diffusion 

gradient through the skin. The required optimum flow rate for good mixing and for removing 

permeated compound is influenced by different factors like the solubility in receptor fluid, the 
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volume of the receptor chamber, and the contact area of the skin (Bronaugh, 2004). A number of 

studies have shown that the flow rate can affect in vitro dermal absorption.  For example, 

Crutcher and Maibach reported that the permeating amount of testosterone and testosterone 

propionate across guinea pig skin varied with the flow rates used in their system. Where flow 

rates of 0.5, 1, 2, and 4 mL/hr and 4.52 cm2 contact area of skin were used for 24 hrs,  the 

experimental results showed increasing perfusate in receptor fluid as flow rate increased 

(Crutcher & Maibach, 1969).  This variability may be attributed to the relative contact area of 

exposed skin or the low water solubility of the permeating compound. In another study, three 

flow rates (1, 5, and 40 mL/hr) were used to determine the suitable flow rate for flow-through 

cell in vitro experiments using tritiated water permeating across rat skin. This study showed 

almost identical permeation at the 5 and 40 mL/hr rates, and the absorption at the lower rate (1 

mL/ hr) was not significantly different, but the variability was much greater (Bronaugh & 

Stewart, 1985). The findings of the current study were not consistent with previous studies 

regarding the impact of flow rate on the compound permeation across the skin in steady state 

absorption, as our study found a strong negative correlation between them.  This difference could 

be related to the high density data sets (many data points per unit of time at steady state 

absorption), which reduce the standard errors of the means of permeated amounts over time 

points, or may be related to the solubility of the permeated compound in receptor fluid.  

 The rate at which receptor fluid flows through a receptor chamber can significantly 

impact dermal absorption. Ideally, the flow rate used must be appropriately rapid so that it does 

not affect dermal absorption rates and must be regularly calibrated (Chilcott & Price, 2008). In 

most studies, receptor fluid flow rates mostly range from 1 to 6 mL/ hr (Crutcher & Maibach, 

1969, Bronaugh & Stewart, 1984, Bronaugh & Stewart, 1985, Sclafani et al., 1993, Squier et al., 
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1997).  Our findings showed that the range from1 to 5 mL/hr was the appropriate flow rate to be 

used in a flow-through diffusion system because this range exhibited the maximum flux and low 

variability at steady state dermal absorption. Thus, our results are compatible with those of 

earlier studies.   

 Flux Evaluation by MFTS and ASS 

 To compare the permeation flux data obtained by ASS and data from MFTS, permeation 

flux of dioxane at steady state was evaluated in both systems. The results showed no significant 

difference (P = 0.73) between dioxane permeation flux obtaining by ASS and MFTS. But the 

results presented a significant difference (P < 0.001) in variability of dioxane flux over time 

between the two systems, where MFTS showed a lesser coefficient of variation (Table 3.2, 

Figure 3.5). 

 Transdermal permeation experiments are tiresome because they require around-the-clock 

monitoring of the dermal absorption profile. In the absence of an automated system, manual 

sampling of the receptor solution is used to generate flux data. In this case, regular samples are 

obtained over the first 8 to 12 hours during the day, and then mostly at final time points taken the 

following day, which generates inconsistent data (Chilcott & Price, 2008). Considering this fact, 

it is obvious that the use of automation system in this type of experiment is highly advised to 

facilitate obtaining accurate and consistent data, in addition to save labor and costs (Cordoba-

Diaz et al., 2000). To achieve this goal, many modified automatic sampling systems have been 

developed over the years (Akazawa et al., 1989, Martin et al., 1989, Hanson, 2014, Permegear, 

2014). The frequent monitoring in short intervals of a permeate transport across skin in a 

diffusion cell offers an accurate measurement of the dermal absorption process, which can mimic 

the physiological situation, especially with respect to the dynamics associated with blood flow, 
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and avoids the change of perfusate concentrations in receptor fluid over time due to the 

evaporation or decomposition (Martin et al., 1989). Therefore, shortening the interval time for 

measuring perfusate concentration would provide high density data that can minimize variation 

in results and offer more accuracy of interpretation. The outcomes obtained from MFTS 

demonstrate an obvious outperforming to collect high density, consistent permeability data from 

a membrane over relatively long periods of time compared to ASS data collection. The result of 

current study showed that the lag time of permeating dioxane was less in present system than that 

in ASS. Additionally, the coefficient of variation of steady state flux means was smaller in 

MFTS, and that was due to the obtained high density data in comparison to the obtained ASS 

data. 

 The cumulative amount of dioxane in MFTS and ASS was linear with time, following an 

appropriate lag phase (Figure 3.6). The lag time of dioxane was significantly different (P <0.02) 

between MFTS and ASS with values of 2.19 ± 0.25 and 2.58 ± 0.33hr, respectively. The lesser 

lag time obtained with the present method may not be detectable earlier using ASS because of its 

lesser capability to sample frequently compared to the present method, suggesting an advantage 

of MFTS over ASS. The aim of evaluating the lag time in both systems was to confirm that the 

duration of the experiment was sufficient for accurate assessment of steady state flux. Typically, 

to achieve a constant steady state flux through the membrane, the duration of the permeability 

experiment must be at least three times the duration of the permeate lag time (Shah, 1993, 

Cordoba-Diaz et al., 2000). In both systems the duration of the permeability experiment 

exceeded three times the duration of the lag time of the dioxane, indicating that the flux values 

obtained were accurate. The lag time was 2.19 and 2.58 hr in MFTS and ASS, respectively, 
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which suggested that the experimental duration should have been at least 7.75 hr for accurate 

assessment of steady state flux.   

 

 Effect of Donor Fluid Flow Rate on Permeability through Skin 

 The donor fluid flow rate of 0 (static donor chamber), 2, 5, 10, 20, and 40 mL/hour were 

used for the experiment (n = 5). The results exhibited no significant effect (P > 0.05) of the 

donor fluid flow rates on the amount of permeated dioxane through the skin at steady state 

absorption. The steady state flux of dioxane ranged between 12.157 ± 0.907 and 12.805 ± 1.125 

µg/cm2/hr (Figure 3.7). No linear relationship (R2 = 0.332) was found between donor fluid flow 

rate and permeating of dioxane through human skin (Figure 3.8).The cumulative amount of 

dioxane in all donor fluid flow was linear with time, following a suitable lag phase (Figure 3.9). 

The flux between the flow rates was not significantly different (P > 0.05). 

 Use of a flow-through diffusion cell provided an alternative approach to using a static 

diffusion cell for assessing in vitro dermal absorption. Where the receptor solution flows 

underneath the membrane at a certain rate to provide suitable sink conditions and mimic in vivo 

blood circulation. This model provides significant advantages by allowing for replenishment of 

the receptor fluid to maintain sink conditions and the possibility of automatic sampling 

(Bronaugh & Stewart, 1984, Bosman et al., 1996). However, in the flow through systems, the 

donor compartment remained static. One of the main restrictions of this model is that the 

concentration of compound in the donor compartment can considerably decline over time of the 

dermal absorption experiment, consequently decreasing the thermodynamic activity of the 

perfusate, leading to flux that is not at a steady state (Lestari et al., 2009). To overcome this 

restriction of static donor compartments, some studies have suggested using a flow-through 
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diffusion cell with flow-through capacity in both receptor and donor compartments that can 

preserve steady concentrations in the donor compartment and sink conditions in the receptor 

compartment to attain accurate evaluation of steady state perfusate flux (Squier et al., 1997, 

Lestari et al., 2009). 

 Studies of the effect of donor flow on the permeability of compounds through a 

membrane are limited. However, Lestaria and a coworker developed a flow-through diffusion 

cell with a flow-through donor chamber for assessing the permeability of compounds across the 

buccal mucosa (Lestari et al., 2009). This flow-through diffusion cell was compared to a 

modified model of Ussing’s chambers (Nicolazzo et al., 2003), which has a static donor 

compartment, however, this study found no significant difference between the two models in the 

flux of compounds through the mucosal membrane. The findings of the current study were 

consistent with Lestari’s findings, in that our results showed no significant difference in dioxane 

flux through skin between the static donor chamber and the flow-through donor chamber even at 

different flow rates. Although the current results showed no effect of the donor flow chamber on 

the compound permeability through the skin, further studies with different compounds, vehicles 

and experimental durations may show different outcomes.  

 
 Advantages and Disadvantages 

       The objective in designing the current method was to develop an automated alternative for 

static diffusion cells and conventional automated flow-through methods. Therefore, experiments 

could be run for a long time without requiring the investigator to be present. MFTS allows 

replenishment of fluid in the donor and receptor compartments, which maintains sink conditions 

in the receptor compartment and secures constant concentration of the compound in the donor 
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fluid during the experiment. The main advantage of the current method is that it can provide in 

‘real time’ quantitative high density data over time about permeation, which means a more 

accurate fitting of the permeation profile. Using FT-IR, which is fast and easy, requiring little or 

no sample preparation as an analytical technique in MFTS substantially reduces the total cost of 

test samples when compared to the cost of conventional techniques like liquid scintillation 

counting, HPLC, and GCMS.   

 
 Although MFTS has many advantages, there also are limitations that may detract from its 

usefulness. MFTS does not allow running multiple samples at the same time with one FT-IR 

instrument.  This limitation poses a challenge in long duration studies involving a large number 

of samples. Difficulties in obtaining a representative FT-IR background and perfusate 

containing a mixture of substances can affect the detection of the target compound. The 

temperature of an in vitro system should be controlled to maintain the target temperature and 

reduce variation in experimental environments (Tojo, 1987). With Franz diffusion cells, 

temperature control of receptor solution is maintained with a water jacket (Franz, 1975), 

whereas in Bronaugh diffusion cells, heated water from a water bath is pumped through the 

block of cells to maintain a physiological temperature (Bronaugh & Stewart, 1985). Current 

experiments with MTFS were conducted to focus on design and were not temperature 

controlled. In future studies, diffusion cells and the donor and receptor fluid sink will be placed 

in a temperature-controlled cabinet to ensure adequate temperature control. 
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 Conclusion 

       A new flow through diffusion method was developed by modifying the Bronaugh flow-

through diffusion cell with flow capacity in both the donor and receptor compartments and using 

ATR – FT-IR as the analytical technique. The current method performance for in vitro 

transdermal permeation was evaluated by comparing permeation flux in the flow-through donor 

chamber with a static donor chamber, evaluating the effect of the receptor fluid flow rate on 

dermal permeation flux, evaluating the effect of the donor fluid flow rate on dermal permeation 

flux, and comparing permeation flux data obtained by ASS with that obtained by MFTS.  It was 

concluded that: 

• The suitable receptor fluid flow rate was ranged from 1 to 5 mL/hr, which rate can offer 

the highest flux and lowest variability at steady state. 

• The results presented no effect of the donor flow chamber on skin permeability; however, 

further studies with different compounds, vehicles, and experiment durations may show 

different findings. 

• The current method can provide ‘real time’ quantitative high density permeation data 

over time, which provides a more accurate fitting of the permeation profile. 

• This method is easy to use, requires no sample preparation, and is low cost for 

conducting transdermal absorption in vitro studies. 
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• This in vitro model is an alternative for evaluating dermal absorption, and has the added 

advantages of better maintenance of sink conditions, and control of steady donor 

concentrations over time.  

• In spite of some limitations, the present flow-through diffusion method provides 

significant advantages over conventional automated methods, especially in terms of time, 

effort, and acquisition of permeating data.  
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Table 3.1: Effect of receptor fluid flow rate on permeating amount of dioxane through human 

skin and steady state flux variation (n =5) 

Flow rate (mL/hr) Flux ( µg/cm2/hr) Coefficient of variation (%)  

1 12.674 ± 0.286 1.13 ± 0.23 

5 12.172 ± 0.271 1.11 ±0.19 

10 11.107 ± 0.545 2.45 ± 0.31 

20 8.740 ± 0.648 3.73 ± 0.39 

40 7.3495 ± 0.883 6.01 ± 0.57 

 

 

 

 

Table 3.2: Effect of system type on permeating amount of dioxane through human skin and 

steady state flux variation (n =5) 

System Flux ( µg/cm2/hr) Coefficient of variation (%) 

MFTS 12.295  ± 0.274 1.12 ± 0.19 

ASS 12.150  ± 0.879 3.82 ± 0.75 
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Figure 3.1: Schematic diagram of the modified flow through diffusion system 



148 

 

 

Figure 3.2: Dioxane steady state flux through human skin against receptor fluid flow rate. The 

linear regression line, regression equation and R2 value is displayed (n =5) 
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Figure 3.3: Effect of receptor fluid flow rate on permeability of dioxane through human skin 

(n =5) 
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Figure 3.4: Variability in dioxane steady state flux through human skin against receptor fluid 
flow rate. The linear regression line, regression equation and R2 value is displayed (n =5) 

 
 
 

 

  

 

 

 

 

 

 

 

 

 
Figure 3.5: Effect of system type on the absorption of dioxane across human (n =5) 



150 

 

 

 

 

Figure 3.6: Accumulation of dioxane across human skin evaluated in the modified flow-through 

system and flow-through cell with automated sampling system  (n =5) 

 

 

Figure 3.7: Effect of donor fluid flow rate on permeating of dioxane through human skin (n =5) 
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Figure 3.8: Dioxane steady state flux through human skin against Donor fluid flow rate.  The 

linear regression line, regression equation and R2 value is displayed (n =5) 

 

 

Figure 3.9: Effect of donor fluid flow rate on cumulative amount of dioxane permeated through 

human skin  
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Chapter 4 - In vitro  Evaluation of Transdermal Absorption of 1,4 

Dioxane in Human Skin and The Effects on Absorption of Sodium 

Lauryl Sulphate , Ethanol, Propylene glycol, and Ethyl acetate 

 

 

 Abstract 

Skin contact with dioxane is a potential hazard encountered in environmental, accidental spill, 

and occupational contamination scenarios. An in vitro dermal absorption study was carried out to 

investigate the absorption of dioxane across human skin. The effect of the surfactant sodium 

lauryl sulphate (SLS) and solvent system water, ethanol (EtOH), propylene glycol (PG), and 

ethyl acetate (EA) on the permeation profile of dioxane was also studied. Fourier transform-

infrared (FT-IR) spectroscopic studies were done to investigate the effect of solvents on the 

biophysical properties of the stratum corneum (SC) to understand the mechanism of permeation 

alteration of dioxane by the solvent systems used. The absorption parameters of dioxane were 

1.16 ± 0.22 hr, 5.7 X 10-4 ± (0.62) cm/hr, 0.286 ± 0.035 mg/cm2/hr, 4.8 X 10-5 (± 0.32) cm2/hr, 

and 1.99 ± 0.086 mg for lag time, permeability(Kp), steady-state flux, diffusivity, and total 

amount absorbed over 8 hr, respectively. The flux and Kp of dioxane were found to increase as 

the concentration increased up to 50% PG in water, and there was no significant increase in flux 

at 70% PG (P < 0.05).  With further increases of PG concentration to 100% dioxane flux, Kp 

showed no significant decrease. EtOH was found to increase flux and Kp with an increasing of 

concentration, which was greatest with 70% (P < 0.05). At 100% of EtOH, flux declined. There 

was no significant difference between dioxane flux at 30%, 50%, or 100% of EtOH (P > 0.05). 

EA and SLS were found to increase the permeation of dioxane across the skin. The FT-IR spectra 
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of SC treated with EA and PG showed no significant effect on symmetrical or asymmetrical 

vibration of the CH2 peak shift nor on the broadening near 2850 and 2920 cm-1. FT-IR spectra of 

SC pre-treated with EtOH revealed that there was boarding of peaks near 2920cm-1 with 

increasing EtOH concentrations. Lipid extract precipitates were detected only from SC treated 

with solvent EtOH. The FT-IR spectra of the extract precipitates revealed that they were mostly 

composed of part SC lipid. 
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 Introduction 

 Chemical transport through human skin can play a significant role in human exposure to 

potentially toxic substances confronted in environmental contamination, occupational, and 

unintentional spill scenarios. Dermal absorption can be an important factor for systemic 

toxicity, and determination of absorbed effective amount is integral to human risk assessments. 

The rate of dermal absorption ranges widely between different compounds, and its evaluation 

depends on sufficient description and understanding of the processes that affect the barrier 

properties of the membrane. The stratum corneum (SC) is a formidable barrier to exogenous 

substance absorption and water loss via skin in mammalians. It is found between 15 and 20 

tightly packed, flattened, and keratin-enriched cell (corneocyte) layers embedded in an 

intercellular lipid matrix. The SC is composed of a heterogeneous structure containing 20-40% 

water, 20% lipids, and 40% keratinized protein (Poet & McDougal, 2002). Partitioning into SC is 

dependent on the lipophilicity of the chemicals. More lipophilic chemicals tend to partition into 

the lipid matrix, whereas more hydrophilic chemicals tend to partition into the corneocytes. 

Generally, the dermal absorption of the more lipophilic chemicals occurs more readily, whereas 

hydrophilic chemicals are absorbed only very slowly (USEPA, 1992, Wester & Maibach, 2000, 

Modamio et al., 2000).  

 1,4-dioxane (dioxane) is a synthetic organic compound that is extensively used as an 

industrial solvent or solvent stabilizer or is produced as a by-product of the ethoxylation process 

(Zenker et al., 2003). This compound is considered to be carcinogen in test animals, is classified 

as a Group B2 (probable human carcinogen) by the U.S.EPA, and as a group 2B (possible human 

carcinogen) by the International Agency for Research on Cancer. Other harmful effects of 
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dioxane in animal studies include liver and kidney damage in animals chronically exposed to it 

by inhalation, ingestion, or dermal contact (Mohr et al., 2010). 

         The main routes of human exposure to dioxane are ingestion, inhalation, and dermal 

contact. Exposure by ingestion mostly occurs through contaminated drinking water, whereas 

exposure by inhalation or dermal contact to dioxane can occur from direct contact with the 

compound in a workplace, or with products containing its residues (a common source of 

exposure by the general population).  The National Occupational Exposure surveys have 

indicated that 86,489 workers involved in handling, transporting, and processing dioxane, 

including 30,542 women, potentially were exposed directly to dioxane compound between 1981 

and 1983 (NIOSH, 1984). According to the Consumer Product Safety Commission, consumers 

may be exposed to residual levels of dioxane produced during the manufacture of cosmetic 

detergents, shampoos, surfactants, and many pharmaceuticals that contain ethoxylated 

ingredients (CPSC, 2014). Polyethoxylated surfactants are usually used in the formulation of 

cosmetics, products for dish washing, and detergents. During the production of polyethoxylated 

detergents by the reaction of ethylene oxide with fatty alcohols, some of ethylene oxide is 

polymerized to form dioxane that can contaminate these products (Rastogi, 1990). The 

Environmental Working Group analyzed the ingredients of 15,000 personal care and cosmetic 

products reporting that 22% of these products may be contaminated with dioxane (EWG, 2007). 

 There is strong evidence that dermal exposure to dioxane may cause significant skin 

absorption, which may result in adverse health effects. Dermal exposure may occur from using 

contaminated water during showering or bathing or from using  consumer cosmetics, detergents, 

or shampoos containing ethoxylated surfactants (ASTDR, 2012), in addition to occupational 

exposure during their production or use as a solvent (IARC, 1999). Data on toxic effects in 
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humans following dermal exposure to dioxane are very limited. Historically, Wirth and Klimmer 

reported that the application of 0.05 ml dioxane to human skin three times within one day caused 

dryness but no signs of inflammation(Wirth & Klimmer, 1937). In a lethal occupational case, 

Johnstone described the probability that dioxane dermal exposure had contributed to the liver 

and kidney toxicity that the researchers observed (Johnstone, 1959a). Generally, prolonged and 

repeated contact with dioxane can cause skin irritation and eczema in humans (Sonneck, 1964, 

Gingell et al., 1994).  In laboratory animals, dermal exposure to dioxane can cause skin irritation, 

liver and kidney damage, and neoplastic lesions (Fairley et al., 1934, Kano et al., 2009, ASTDR, 

2012).  

 In environmental or occuptional dermal exposure, skin may be exposed to dioxane as a 

single compound or in complex mixtures. Mostly, the mechanism of dermal absorpion for a 

single compound has been investigated and risk assessment profiles focus on the behavior of 

single compounds (Bronaugh & Maibach, 1999). The dermal absorption profile of a compound 

in a mixture may be altered due to chemical interactions. The interactions can occur through 

different mechanisms such as altering physical–chemical properties, chemical–chemical binding 

on the surface of the skin, altering permeability through the lipid pathway, or altered partitioning 

into the SC (Raykar et al., 1988, KAI et al., 1990, Rosado et al., 2003). Hence, there is a need to 

understand how dioxane is absorbed through human skin not only as a single chemical but also 

in the presence of other environmental chemicals, like solvents and surfactants, that are known to 

impact chemical permeability in human skin.  

 In addition to the role of ethoxylated surfactants as a source of dioxane impurity in many 

personal products and detergents, they have effects on the permeability characteristics of many 

biological membranes containing skin. They can modify the intercellular lipids or change their 
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organization in SC above the level of the critical micelle concentration (CMC) (Florence et al., 

1994, Lopez et al., 2000, Shokri et al., 2001). Surfactants can also bind extensively to SC 

intracellular keratin and alter dermal absorption by inducing inflammation and swelling of the 

epidermis (Faucher  & Goddard, 1978, Black, 1993). Surfactants can also enhance the dermal 

penetration of some compounds which present in their formulation. Hence, they have been used 

to improve the permeation rates of many pharmaceticals (Chowhan & Pritchard, 1978, Aungst et 

al., 1986). However, they can also decrease the quantity of the compound available for 

permeation fluid (Baynes et al., 2002, van der Merwe & Riviere, 2005b) through the formation 

of micelles in the donor fluid that can affect the thermodynamic activity of the diffusing 

chemicals (Shokri et al., 2001).  

 Solvents and dioxane may combine under different conditions and in different 

environments.  Propylene glycol (PG), ethanol (EtOH), and ethyl acetate (EA) are solvents 

widely used by industries and may present with dioxane in contaminated environments such as 

chemical waste landfills and industrial wastewater effluent. Effects of these solvents on dermal 

absorption across a variety of chemicals have been described in many studies (Friend et al., 

1991, Friend, 1991, Megrab et al., 1995, Panchagnula et al., 2001, Baynes et al., 2002). EtOH is 

a common short chain alcohol employed in transdermal products and topical preparations as a 

co-solvent and penetration enhancer. The suggested ways in which ethanol alters the barrier 

function of the skin have been reported to include changes in SC hydration, lipid fluidization, 

altered keratinized protein, lipid extraction, and its effects on lipid ordering (Berner et al., 1989b, 

Liu et al., 1991, Bommannan et al., 1991, Watkinson et al., 2009). PG has been used since 1932 

either as a co-solvent for poorly soluble substances or to enhance chemical dermal absorption in 

topical preparations. However, its mechanism of action in enhancing chemical transdermal 
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permeation is not clearly understood (Barrett et al., 1965, Ostrenga et al., 1971, Hoelgaard & 

Møllgaard, 1985, Bouwstra et al., 1989, Nicolazzo et al., 2005). EA is an alkyl ester solvent used 

in glues, nail polish removers, decaffeinating tea and coffee, and cigarettes. Friends and co-

workers have found that EA has the ability to increase transdermal penetration of some 

compounds. The mechanism of action of EA for altering skin permeability is not well understood 

(Friend, 1991, Friend et al., 1991).  

 Studying dermal absorption of dioxane as a single chemical or from solvents and 

surfactant mixtures offers an opportunity to understand its risk assessment profile in possible 

scenarios. This study therefore investigated the dermal absorption profile of dioxane as a single 

chemical in human skin and examined the effects of different concentrations of sodium lauryl 

sulphate (SLS), EtOH, PG, and EA on permeability in dermatomed human skin. 
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 Material and Methods 

 Chemicals 

 1,4 dioxane 99.8% was purchased from ACROS Organics (New Jersey, USA).  Ethyl 

acetate and sodium lauryl sulfate were obtained from Fisher Scientific (Fair Lawn, New Jersey, 

USA).  Propylene glycol and ethanol were purchased from Sigma Aldrich (St. Louis, MO, USA). 

The receptor fluid chemicals were: sodium chloride (NaCl) Lot No. 045779, potassium chloride 

(KCl) Lot No. 076729, sodium bicarbonate (NaHCO3) Lot No. 073814, magnesium sulfate 

(MgSO4.7H2O) Lot No. 060337, potassium phosphate (KH2PO4) Lot No. 056327, dextrose Lot 

No. 054971, and bovine serum albumin (fraction V; cold alcohol precipitated) Lot No. 095503 

and were obtained from Fisher Scientific (Pittsburgh, PA, USA). Calcium chloride (CaCl) Lot 

No. A0214153001 was obtained from Acrose Organic (New Jersey, USA). Levofloxacin Lot No. 

0001425507 was obtained from Sigma Aldrich Chemical Co. (St. Louis, MO, USA). Heparin 

Lot No. 045058 was purchased from Baxter (Illinois, USA).    

 Receptor Fluid Preparation 

 The receptor fluid was designed to mimic a blood plasma environment. It consisted of 

13.78 g NaCl, 0.71 g KCl, 0.56 g CaCl2, 0.32 g KH2PO4, 0.58 g MgSO4.7H2O, 5.50 g NaHCO3, 

2.40 g dextrose, 90.0 g bovine serum albumin, 4 mg levofloxacin, and 10 mL heparin, to which 

distilled water was added to attain a total volume of 2 L of fluid. The fluid was left on a magnetic 

for several hours until all components were dissolved and then decanted into 1L bottles, labeled, 

and placed in a freezer until used.  
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 Skin Preparation 

 Human skin was donated under conditions of informed consent as set forth in the Federal 

Policy for the Protection of Human Subjects, 45 CFR 46.116-117, and with approval of the 

Institutional Review Board for Kansas State University (proposal number 4206). 

 Human skin of the abdominal region was obtained from white-skinned females who had 

undergone tummy tuck surgery (Manhattan Surgical Hospital, Manhattan, KS).  The skin was 

dermatomed (Padgett Model S dermatome, Integra LifeSciences Corp., Plainsboro, NJ, USA) to 

0.5 mm thickness and stored at −20°C until used (within no more 2 months). Thereafter, 

dermatomed skins were thawed at room temperature for 30 min and cut into disks. Skin disks 

were mounted in a flow-through diffusion cell system with exposed skin surface areas of 1 cm². 

 Permeability 

 The modified flow-through diffusion cell system, which is described in chapter 3, was 

used to determine the permeability of dioxane through the skin. A human skin disk was mounted 

on the diffusion cell with an exposed surface of 1cm2.  50 mg/ml of dioxane in solution was 

applied to the SC side in an occluded donor chamber. The solutions used were:  

- Pure water 

- Aqueous solution of 10%, 30%, 50%, 70%, and 100% EtOH, PG, and EA (v/v)  

- Aqueous SLS of 1%, 2%, 5%, 7%. and 10% (w/w)  

The receptor solutions were perfused at a 2 ml/hour flow rate with infinite sink conditions and a 

concentration gradient across the skin maintained. The skin was exposed to the test formulations 

over periods of 8 and 15 hours at room temperature.  



164 

 

 To determine the amount of dioxane permeating through the skin, the IR adsorption 

spectra at time intervals were obtained. The attenuated total reflectance IR spectrum of effluent 

from the receptor compartment was measured using attenuated total reflection Fourier transform 

infrared spectroscopy (ATR-FTIR) with a Thermo-Nicolet FT-IR spectrometer, model 6700, and 

GladiATR vision unit (PIKE Technologies, Inc. WI, USA). The OMNIC FT-IR software 

program is used in the FT-IR system. Absorbance spectra were measured over the wave number 

range of 4000–400 cm–1 with a spectral resolution of 4 cm–1. The IR absorption spectra for 

dioxane in solution were obtained at various times. These spectra were analyzed using the C–O 

vibration band.  The selected peak region for obtaining the integrated absorbance was 1105.2–

1160.2 cm-1. The crystal aperture surface was cleaned with alcohol and dried, and an uncovered 

crystal background was run prior to scanning of the sample sets. Using the continuous flow 

measuring method, a macro was created with the OMNIC Macros application to measure 

absorbance every 6 minutes. 

 

 FT-IR Analysis of SC  

 Human SC sheets were dried at room temperature for 24 hours and thereafter in a 

desiccator for 24 hours. The dried SC sheets were used for lipid order evaluation.  FT-IR analysis 

of SC was based on the procedures used in previous studies described by (Panchagnula et al., 

2001) and (Levang et al., 1999). Circular SC samples (24 mm diameter) were scissored from the 

dried sheets for each experiment (n = 5). The samples were immersed for 12 hours in 5 ml of 

solvent with and without 50mg/ml dioxane in capped 20 ml vials. The solvents used were: (i) 

pure water; (ii) aqueous SLS (2 mg / ml); and (iii) an aqueous solution of 0% (control), 10%, 

30%, 50%, 70%, and 100% of EtOH, PG, and EA. The treated samples were washed with water 
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and gently blotted on KimwipeTM. They were then mounted in a demountable FT-IR liquid cell 

and scanned with FT-IR (Thermo-Nicolet FT-IR spectrometer, model 6700) to obtain 

transmission spectra in the range of 3000 – 1000 cm-1. Thereafter, the samples were dried in a 

desiccator for 24 hours at room temperature and scanned again with FT-IR. The transmission 

spectra were compared with the respective scans before treatment. 

 Dried SC was prepared as mentioned above for lipid extraction. SC samples (n = 5) 

weighting 60-80 mg were placed for 24 hours in capped vials with 5 ml of water, 50% (v/v) of 

aqueous EtOH, aqueous PG, aqueous EA, and 100% of EtOH, PG, and EA. Then, each SC 

sample was removed from the vials, blotted on KimwipeTM, placed in a desiccator for 48 hours 

for drying, and weighed once more. The solvents were evaporated by nitrogen gas using a Temp-

Block module heater (Lab-Line Instruments Inc, Melrose Park, IL, USA) at 50°C and the 

precipitated lipid was re-dissolved in 0.5 ml carbon tetrachloride. A drop of the re-dissolved 

precipitate solution was spread on a KBr crystal (KBr RCT POL., International crystal labs, 

Garfield, NJ, USA). The spread drop was left to evaporate at room temperature. Then, the FT-IR 

transmission spectra were recorded in the range of 3000 – 1000 cm-1 (van der Merwe & Riviere, 

2005a). 

 FT-IR peaks near 2850 and 2920 cm-1 were used to indicate symmetric and asymmetric 

absorbance, respectively, associated with methylene group (H-C-H) stretching. Peaks around 

2960 cm-1 indicated absorbance due to asymmetric vibration associated with the CH3 group 

(Potts & Francoeur, 1993) 
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 Data Analysis 

       Data were analyzed by calculating both flux (mg/cm2/h) and cumulative penetration 

(mg/cm2). The steady state flux (Jss) was calculated using the following equation: 

Jss = ∆Q / A* ∆t  

Where (∆Q) is the amount of compound permeating the skin during time (∆t) and (A) is the 

diffusional area (1 cm2). The amount of dioxane passing through the test cell chamber over each 

time interval was calculated multiplying the measured concentration by the volume of receptor 

solution inside test cell chamber (100 µL) over the time interval. The lag time for dioxane was 

estimated by extrapolating the linear part of the permeability curve and assigning its intercept on 

the time axis. This was assigned to confirm that the duration of the permeability experiment was 

long enough to offer an accurate evaluation of the steady state flux, as the length of the 

experiment must typically be three times the duration of the lag time (Shah, 1993). Absorption 

was defined as the total quantity (mg) of dioxane detected in the perfusate (receptor fluid) for the 

entire 8 hr perfusion period. 

 Permeability coefficient values (cm/hr) were calculated using the following equation: 

Kp = Jss / Cd 

Where (Kp) is the permeability coefficient, Jss is steady state flux (mg/cm2/h), and Cd (mg /ml) is 

the concentration in the donor chamber. Diffusivity (cm2/h) was calculated using the following 

equation:  

D = X2 / 6τ 
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Where D is the diffusion coefficient, X is skin thickness (500 µm), and τ is the lag time. 

 Statistical analysis of permeability constant, steady state flux (Jss), diffusion coefficient 

(Kp), and absorption data were performed using analyses of variance (ANOVAs) to assess the 

significance of differences in means between groups. The Tukey’s Multiple Comparison Method 

was used to compare the means. All data obtained are presented as mean (± SEM), unless 

otherwise stated. All statements of significance difference were based on a 95% confidence (P < 

0.05) level. All analyses were carried out using Minitab for Windows software (version 16.1.1, 

Minitab Inc., PA, USA - 2010) 
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 Results and Discussion 

 Dioxane Dermal Permeation Profile  

 The dermal absorption of dioxane in human skin was determined after application of an 

aqueous solution of dioxane (50 mg/ml). The transdermal flux of dioxane is plotted versus time 

in figure 1.  The maximum dioxane flux was attained after 4 hours of permeation and continued 

at a steady level for the duration of the experiment (15 hr). 

Plots of the cumulative penetration of dioxane (Figure 2) showed that the lag time was 1.16 ± 

0.22 hr. The mean Kp value (± SEM) at room temperature for skin to dioxane was 5.7 X 10-4 ± 

(0.62) cm/hr. The steady state flux (Jss) of dioxane through human SC was 0.286 ± 0.035 

mg/cm2/hr. Diffusivity of dioxane in human SC was 4.8 X 10-5 (± 0.32) cm2/hr. The cumulative 

amount of dioxane absorbed through human SC over 8 hr was 1.99 ± 0.086 mg. 

 Although dermal absorption of dioxane has been considered as a possible exposure route 

in several cases of human fatalities following short-term exposure, data on the absorption of 

dioxane in humans following dermal exposure are limited and insufficient to create a 

comprehensive understanding about its behavior in skin. In an in vitro a study with excised 

human skin to investigate the ability of radiolabeled dioxane (14C-1,4-dioxane) to permeate, it 

was found that there were significant differences in dioxane ability to penetrate the skin under 

occluded and non-occluded conditions. Where the dioxane penetration was ten times greater 

under occluded conditions (3.2%) than under unoccluded conditions (0.30%) for 3.5 hr, these 

differences were attributed to the evaporation of dioxane after application to the skin surface 

(Bronaugh, 1982b). Therefore, conducting an in vitro dermal absorption of dioxane experiment 
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in occluded conditions controlling the alteration of the compound dose in the donor chamber 

would offer consistent permeation data.   

 The results of dermal absorption parameters for dioxane obtained from empirical studies 

or derived from previous formulae have been varied and inconsistent. The Bronaugh study 

(Bronaugh, 1982b) showed that the transdermal fluxes of dioxane from water in human skin 

were very low (0.36 ± 0.03 µg /cm2/hr). In another study also done with excised human skin, the 

results showed that the flux was very high (1263.8 ± 448 µg /cm2/hr) in a 4-hr experiment. In this 

study the total penetrated amount of dioxane was also very high ranging from 3.629- 4.481 

mg/cm2/4 hr (Dennerlein et al., 2013), whereas the National Industrial Chemicals Notification 

and Assessment Scheme (NICNAS) used the Potts and Guy formula (Potts & Guy, 1992) to 

calculate the dioxane flux value to be approximately 0.3 mg/cm2/hr (NICNAS, 1998). The flux 

value (0.286 ± 0.035 mg/cm2/hr) in our study was similar to that calculated by NICNAS.  Kp is 

an empirically measured parameter describing the total barrier property of a membrane. It can be 

calculated under in vitro empirical conditions or estimated from in vivo data by fitting suitable 

variables into pharmacokinetic models. Where data are insufficient, Kp can be evaluated from 

suitable physical property-permeability relationships (USEPA, 1992). Dioxane Kp of 4.3 x 10-4 

cm/hr was measured in water for the occluded test system, and this value was classified as 

intermediate, below the average speed of penetration (Bronaugh, 1982b). This value is close to 

that estimated for dioxane using the formula of Flynn (Flynn, 1990) or Potts and Guy (Potts & 

Guy, 1992). The estimated Kp value was 3.4 x 10-4 cm/hr according to Flynn’s formula (VCCEP, 

2007b), while it was 3.0 x 10-4 cm/hr according to the equation of Potts and Guy (NICNAS, 

1998). The Kp value of the current study (5.7 X 10-4 ± 0.62 cm/hr) was within the range of 
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intermediate (below average) speed penetration, which result was consistent with both previously 

measured and estimated values. 

 Lag time is the time taken to attain steady-state conditions under infinite dose conditions. 

Lag time of dioxane dermal absorption has been reported in only a few studies. Dennerlein and 

coworkers reported that on excised fresh and frozen stored human skin, the lag time of dioxane 

ranged between 0.74 and 0.85 hr (Dennerlein et al., 2013),  whereas the value of 0.3 hr was 

predicted by U.S. EPA based on the Potts and Guy formula (USEPA, 1992). The lag time of 

dioxane dermal absorption in the current study was a little different from that in the Dennerlein 

et al. study. Since the lag time is derived from a curve of the cumulative absorbed amount and 

time, it is the intercept of the tangent of the linear part of the absorption profile with the x-axis 

(USEPA, 1992). The linear part of the cumulative absorbed dose in the Dennerlein et al. graph 

was created from 4 points, while the linear part in our graph was created from 64 points. This 

may explain the tendency of the line to slope and its intercept with x-axis.  

  

Effect of Solvents on Dioxane Dermal Absorption 

 The effect of solvent systems on the in vitro dermal absorption of dioxane across human 

SC is shown in table 4.1.  The flux of dioxane in PG combinations was found to increase up to 

50% PG in water. There was no significant increase in flux at 70% PG (P < 0.05), and further 

increases of PG concentration to 100% dioxane flux showed no significant decrease. The flux of 

dioxane in 10% and 100% PG was not significantly different (P > 0.05) from 0% PG (control). 

Dioxane absorption over the entire 8-hr perfusion in PG combinations showed a significant 

increase (P < 0.05) in 30% and up to 100% PG from the control. The lag time of dioxane in PG 
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concentrations was found to be not significantly different (P > 0.05) from that of the control in 

10%, 30%, and 50%, and with further increases of PG to 100%, there was a significant increase 

(P < 0.05) from that of the control in lag time of dioxane (Table 4.1, Group A).  

 The flux of dioxane in EtOH concentrations presented a significant increase from that of 

the control and was greatest with 70% (P < 0.05). At 100% of EtOH, flux declined, and there 

was no significant difference between dioxane flux at 30%, 50%, or 100% of EtOH (P > 0.05). 

Dioxane absorption over the entire 8-hr perfusion in EtOH combinations was found to increase 

significantly (P < 0.05) with the EtOH concentration increasing up to 70% and declining at 

100% of EtOH. No significant difference was found between EtOH combinations in dioxane lag 

time (Table 4.1, Group B). 

 The flux of dioxane in the EA group showed a significant difference (P < 0.05) with the 

control and with flux of EA concentrations at > 30%. Dioxane absorption over the entire 8-hr 

perfusion in the EA group showed a significant increase at 30% EA concentration and above; 

there was no significant difference between dioxane flux at 50%, 70%, and 100% of EA (P > 

0.05). The dioxane lag time of the EA group was found to be different (P < 0.05) from the 

control at 30% EA concentration and higher (Table 4.1, Group C). 

 Although studies of skin absorption of compounds from water are usually used to assess 

risk from dermal exposure, chemical mixtures studies of dermal exposure are also important to 

predict risk in many exposure scenarios, and investigations of the effects of solvents on 

processes that influence skin absorption can provide appropriate data for risk assessment 

profiles. Data on the effects of solvents on dioxane dermal absorption are not available. Most 

organic solvents have been reported in the literature to be a skin penetration enhancer for wide 
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range of chemicals. In the current study, the results showed that the PG solvent enhanced 

dioxane permeation across the human SC at a >30% concentration. The mechanism of action of 

PG in promoting chemical penetration through skin is not clearly understood.  Its action has  

been described in most of the literature as based on PG co-solvency action, where 

thermodynamic activity is considered as the primary driving force (Barry, 1983), and also on its 

possible carrier effect (as a carrier-solvent), where PG partitions into the skin and thereafter 

induce the mobility of the chemical into and through the skin (Hoelgaard & Møllgaard, 1985). 

Ostrenga and coworkers observed in a study of steroid permeability in human skin that treating 

skin with 100% PG resulted in losing the elasticity of the skin and attributed this influence to 

dehydration (Ostrenga et al., 1971). Others studied the effects of PG on dermal permeation using 

differential thermal analysis. In their findings, they showed that PG treatment decreased the 

hydration of skin (Bouwstra et al., 1989). The increase in dioxane permeation with an increasing 

concentration of PG in water may be related to variations in the dehydration of SC at various 

concentrations of PG. However, the influence of change in the thermodynamic activity as a result 

of change in the co-solvent concentration cannot be disregarded. The decrease of SC weight after 

treatment with different concentrations of PG in water up to 15% may support this speculation. 

Maximum lag time was observed with PG at 70% concentration. This may be related to an 

increase in the tortuosity of skin by dehydration of SC, which results in increased diffusional 

path length  (Ostrenga et al., 1971). 

 The effect of EtOH on dermal absorption has been investigated extensively and various 

mechanisms have been suggested to describe its action on skin. In a human in vivo study, 

Bommannan and coworkers found that EtOH promotes skin permeability by removing 

measurable quantities of the lipid barrier material from the SC. This lipid extraction may 
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decrease the skin barrier function resulting in increased membrane permeability, which may 

explain the influence of EtOH as a dermal penetration enhancer (Bommannan et al., 1991). In 

another study, the researchers remarked that the permeation enhancement may result not only 

from lipid extraction but also from skin proteins in the presence of aqueous EtOH (Goates & 

Knutson, 1994). Accordingly, the mechanism of EtOH as a dermal permeation enhancer was 

described as a so-called “pull” or “drag” effect in which permeation of chemical molecules is 

increased due to a reduction in the membrane barrier property of SC by EtOH. Kadir and 

workers attributed the enhancing effect of EtOH on skin penetration to the increase in 

thermodynamic activity due to evaporation, which is known as the “push effect” (Kadir et al., 

1987). Other studies attribute the effect of EtOH on skin permeation to its ability as a pure 

solvent or aqueous solution to modify the barrier function of the skin by a number of 

mechanisms such as lipid extraction and the effects of lipid ordering (Kurihara-Bergstrom et al., 

1990, Bommannan et al., 1991, Goates & Knutson, 1994), and also its effect on keratin (Berner 

et al., 1989a, Kurihara-Bergstrom et al., 1990). The EtOH concentration dependent effect has 

been reported in many studies, and it has been postulated that, at low concentration of EtOH (less 

than 33%), it effects only the lipoidal pathway due to increased lipid fluidity especially near the 

polar interface, whereas higher concentrations effect the lipoidal and polar pathways (Berner et 

al., 1989a, Ghanem et al., 1992). Results from the current study showed that dioxane flux, Kp, 

and absorption amount were increased at a concentration >30% EtOH (P < 0.05). Dioxane has 

amphiphilic properties, allowing complete miscibility in both water and organic solvents. Its flux 

with 100% EtOH was found to be less than that of 70% EtOH (P < 0.05).  This may be attributed 

to stabilization of the gel phase of the lipid bilayer at 100% of EtOH  resulting in rigidization of 

the lipid bilayer (Rowe, 1983). 
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 Very limited studies have investigated the effect of EA on skin penetration. Its 

mechanism of action is not clearly understood. In a study of rabbit skin to evaluate the dermal 

permeation of levonorgestrel with EA and EtOH as transdermal enhancers, the findings showed 

that the use of the molecule in transdermal patches was associated with irritation and erythema 

(Friend et al., 1991). Catz and Friend investigated the effect of various co-solvents on EA 

enhanced percutaneous absorption of levonorgestrel using excised hairless mouse skin finding 

that the pure EA or a mixture of EA with EtOH increased the dermal steady-state flux and the 

diffusivity of levonorgestrel relative to the water (Catz & Friend, 1990). The findings of our 

study showed a significant increase of dioxane dermal permeation with EA in water at a 

concentration over 30%. The FT-IR spectra of the treated SC with EA showed no change in peak 

symmetrical or asymmetrical vibration of CH2. Therefore, explaining the mechanism of EA 

effect on dioxane dermal permeation is difficult. The lag time was found to increase with an 

increasing PG concentration, which may be due to skin dehydration that will also increase the 

tortuosity of skin and thereafter the results for the increased diffusional path length (Ostrenga et 

al., 1971) 

 In the FT-IR studies on SC, it was found that there was no significant effect of EA and 

PG on the symmetrical or asymmetrical vibration of the CH2 peak shift or broadening near 2850 

and 2920 cm-1 at the concentrations studied and also of the CH3 peak around 2960 cm-1 (Figures 

3 and 4). The FT-IR spectra of SC in the EtOH group revealed that there was boarding of peaks 

near 2920cm-1 with increasing EtOH concentrations (Figure 5). The treatment of SC with water 

and solvents for 24 hr showed that there was no significant change in mass after treatment with 

water, but there was an increasing loss of SC mass after treatment with 50% and 100% of solvent 

(Figure 6). Lipid extract precipitates were detected only from SC treated with solvent EtOH. The 
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FT-IR spectra of the extract precipitates revealed that they were mostly composed of the SC lipid 

part (Figure 7).  

 The biophysical changes in the lipid bilayer of SC after treatment with solvents can be 

investigated with FT-IR spectroscopy. The SC has low water content and its lipids are ordered 

into bilayers. The lipid bilayers exist either in a gel state (ordered) or a fluidized state. FT-IR 

spectra of lipid bilayers demonstrate typical IR absorbance patterns in the 3000–2800 cm-1 

region that are associated with H–C–H vibrational modes (Parker, 1983). Alteration of the lipid 

bilayer structures results in changes of the absorption spectra of IR that are passed through or 

reflected off the SC (Moore et al., 1997). Of particular interest in this context are the IR 

absorbance regions around 2850 and 2920 cm-1 relevant to symmetric and asymmetric methylene 

groups H-C-H stretching successively (Potts & Francoeur, 1993). CH2 symmetric and 

asymmetric stretching bands are sensitive to lipid alkyl chain conformation in addition to 

torsional and librational mobility reflecting the changes in the trans to gauche ratio in acyl chains 

(Mautone et al., 1987). Shifts to a higher wave number of peaks around 2854 cm-1 and 2925 cm-1 

point out a reduced order in a lipid membrane due to deviations in the mobility of lipid acyl 

chains (Vaddi et al., 2002). On the other hand, increased broadening of peaks at 2850 and 2920 

Cm-1 is an indication of increased translational movement or mobility of lipid acyl chains (Naik 

& Guy, 1997). Wide variability between SC samples was observed in the current study, and this 

is due to inconsistency in SC thickness and variability in lipid combination. But the pattern of 

solvent-caused changes was symmetric when single samples were matched before and after 

treatment. In the FT-IR spectra of SC treated with EtOH, it was found that there was broadening 

of peaks at 2920 cm-1 region with increasing concentration of EtOH. This indicates that EtOH 

reduces the lipid order due to increasing rotational freedom of lipid acyl chains leading to an 
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increase in the fluidity of the lipid bilayer. And this may be explained by lipid extraction with 

EtOH treatment, where lipid extraction results in altered IR absorbance due to C–H2 groups in 

the 3000–2800 cm-1 region. Lipid extraction could also change the lipid composition and 

solvation properties of the SC lipids. 

 Effect of SLS on Dioxane Dermal Absorption 

 The permeation parameters of various SLS concentrations on the in vitro skin absorption 

of dioxane in human SC are shown in Table 4.2.  The flux of dioxane was found to increase with 

the concentration increasing up to 5% SLS in water.  There was no significant increase in flux at 

7% SLS (P < 0.05), and with further increases of SLS concentration to 10% dioxane, the flux 

showed no significant decrease. In SLS combinations, dioxane absorption over the entire 8-hr 

perfusion, Kp and diffusivity showed a significant increase (P < 0.05) in 1% and up to 10% SLS 

from the control. The lag time of dioxane in SLS concentrations was found to be not 

significantly different (P > 0.05) from control. Figure 4.8 shows the permeation profiles of 

dioxane in the presence of various concentrations of SLS through human SC. 

      Dioxane is produced as a by-product during the sulfonation reaction with alcohol 

ethoxylates, a process used to produce surfactants in a wide range of soaps and detergents. 

Therefore, dioxane may be formed as a by-product of reactions based on condensing ethylene 

oxide or ethylene glycol during the production of ethoxylated SLS from SLS to reduce its 

abrasiveness and enhance its foaming properties. Ethoxylated SLS is a component of anionic 

surfactant in detergents, shampoos, toothpastes, bath gels, bubble baths, and industrial 

degreasants (Mohr et al., 2010). It is likely that there is human skin exposure to dioxane with 

surfactants such as ethoxylated SLS whenever consumers use products like shampoo, detergents, 
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soaps, dishwashing liquids, and other cosmetic products. Therefore, mixture-studies of dioxane 

with surfactants are of interest in the field of risk assessment because they provide reliable data 

relating to common dermal exposure scenarios. 

 It is well known that anionic surfactants such as SLS or ethoxylated SLS have effects on 

the permeability characteristics of many biological membranes, including skin (Florence et al., 

1994, Lopez et al., 2000). It has been reported that SLS can penetrate the skin and interact 

strongly resulting in large changes in its barrier properties (Walters, 1989, Lee et al., 1994) 

including both the keratin and lipid components (Reiger & Rhein, 1997). SLS interaction with 

keratin occurs between the anionic head groups and the cationic sites of the proteins, which 

induces strong hydrophobic interactions between SLS molecules and the protein that may result 

in protein denaturation (Somasundaran & Hubbard, 2006). Out of skin, SLS can promote the 

dissolution of the proteins leading to release of sulfhydryl groups from the sclera proteins and 

then react upon various enzymes of skin and eventually denature the skin (Gloxhuber & 

Kunstler, 1992). SLS has also an ability to cause variations in the structural organization of lipid 

bilayers when it is used above the critical micellar concentration (Ribaud et al., 1994). It has 

been found that SLS increases penetration into the skin by increasing the fluidity of epidermal 

lipids (Somasundaran & Hubbard, 2006). The effect of SLS on the dermal permeation has been 

found to depend on the lipophilicity of the compound. Nielsen studied the effect of SLS on in 

vitro dermal permeation of a number of pesticides varying in lipophilicity across skin that was 

treated with two concentrations of SLS (0.1% and 0.3%) for three hr. The findings of this study 

indicated that the dermal permeation of more hydrophilic penetrants was effected more. The 

lipophilic compounds with log Ko/w  > 3 exhibited a slight increase in their permeation through 

the SLS pretreated skin, while for less lipophilic compounds (log Ko/w of 0.7 and 1.7), the 
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permeation increased twofold (Nielsen, 2005). This study’s findings were in agreement with a 

previous study conducted by Borras-Blasco and coworkers in 1997. It is noteworthy that the 

Borras-Blasco et al. study investigated the effect of SLS on in vitro dermal absorption across rat 

skin of a number of compounds with lipophilicity values ranging from log Ko/w = -0.95 to 4.42. 

They reported that the SLS surfactant was able to enhance the permeation rates of compounds 

that possess lipophilicity values less than the optimum lipophilicity value (log Ko/w < 3), but do 

not affect compounds with log Ko/w  > 3 (Borrás-Blasco et al., 1997). Dioxane has a log Ko/w 

value of about -0.27, and the effect of SLS observed in the current study was similar to that 

reported for other hydrophilic compounds in other studies (Borrás-Blasco et al., 1997, 

Nokhodchi et al., 2003, Nielsen, 2005, Jakasa et al., 2006). This may be explained by fact that 

for compounds with a lipophilicity value less than log Ko/w  = 3 like dioxane, the compound may 

be controlled by diffusion through the lipid bilayers, which is rate controlling. When SLS 

disorders the lipid bilayers, the diffusion coefficient increases, and consequently the flux 

increases, as was observed in our study. The enhancing effect of SLS on dioxane dermal 

permeation may also be attributed to other mechanisms, where SLS could involve the 

hydrophobic interaction of the SLS alkyl chain with the skin structure that leaves the end 

sulphate group of SLS exposed, forming more sites in the skin, which permits an increase in 

dermal hydration (Gibson & Teall, 1983, Rhein et al., 1986). 
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 Conclusion 

 This study investigated the dermal absorption profile of dioxane in human skin and 

demonstrated the effect of solvents and surfactants on processes that control the rate of skin 

permeation. The investigation of dermal absorption post exposure to dioxane as a single 

penetrant or in chemical mixtures provides appropriate data for risk assessment profiles and 

helps to predict risk in many exposure scenarios. These dermal absorption studies demonstrated 

that: 

• The dermal absorption of aqueous mixtures of dioxane in vitro in human skin is 

significantly greater than previously reported (Bronaugh, 1982b), and that its transport 

can be affected by the composition of the mixture components. 

• The presence of a surfactant like SLS in chemical mixtures enhances the dermal 

absorption of dioxane.  

• The presence of solvents in chemical mixtures can increase the dermal absorption of 

dioxane at a concentration > 30% in water. EtOH was found to have the greatest ability 

to increase the dermal permeation of dioxane in comparison to that of PG and EA. 

• EtOH can extract lipids from SC and alter its properties, which may influence rates of 

penetration through the skin.   
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Table 4.1: Dioxane skin permeation parameters in presence of various solvents concentrations in 

water (% v/v) 

Solvent 
conc. in 
water 

Lag time 
 (hr) 

Flux 
(mg/cm2/hr) 

Absorption  
(mg) 

Permeability  
(cm/hr) 

Diffusivity  
(Cm2/hr ) 

Group A      

EtOH 0% 1.16 ± 0.22 a 0.286 ± 0.035a 1.99 ± 0.086 a 5.7 X 10-4 ± (0.62) 4.3 X 10-5 ± (0.71) 

EtOH 10% 1.15 ± 0.25 a 0.374 ± 0.048b 2.45 ± 0.192 b 7.5 X 10-4 ± (0.83) 4.8 X 10-5 ± (0.83) 

EtOH 30% 1.05 ± 0.28 a 0.533± 0.069c 2.72 ± 0.218 c 10.6 X 10-4 ± (0.89) 4.4 X 10-5 ± (0.66) 

EtOH 50% 0.92 ± 0.21 a 0.756 ± 0.112c 3.78 ± 0.256 d 15.1 X 10-4 ± (1.22) 3.8 X 10-5 ± (0.65) 

EtOH 70% 0.79 ± 0.19 a  0.992 ± 0.101d 4.52 ± 0.133e 19.8 X 10-4 ± (1.69) 3.3 X 10-5 ± (0.48) 

EtOH 100% 1.18 ± 0.33 a 0.781 ± 0.181c 4.06 ± 0.111 d 15.6 X 10-4 ± (1.56) 4.9 X 10-5 ± (0.91) 

Group B 
     

PG 0% 1.16 ± 0.22 a 0.286 ± 0.035 a 1.99 ± 0.086 a 5.7 X 10-4 ± (0.62) 4.3 X 10-5 ± (0.71) 

PG 10% 1.22 ± 0.38 a 0.211 ± 0.076 a 2.16 ± 0.161 a 4.2 X 10-4 ± (0.71) 5.1 X 10-5 ± (1.13) 

PG 30% 1.35 ± 0.44 ab 0.385 ± 0.042b 2.59 ± 0.203 b 7.7 X 10-4 ± (0.44) 5.6 X 10-5 ± (0.95) 

PG 50% 1.71 ± 0.38 ab 0.478 ± 0.059 c 2.92 ± 0.289 b 9.6 X 10-4 ± (0.92) 7.1 X 10-5 ± (0.88) 

PG 70% 2.06 ± 0.47b 0.493± 0.039c 3.31 ± 0.153 c 9.8 X 10-4 ± (1.13) 8.6 X 10-5 ± (1.52) 

PG 100% 1.93 ± 0.51b 0.396± 0.042b 2.85 ± 0.181 b 7.9 X 10-4 ± (0.36) 8.0 X 10-5 ± (1.18) 

Group C 
     

EA 0% 1.16 ± 0.22 a 0.286 ± 0.035 a 1.99 ± 0.086a 5.7 X 10-4 ± (0.62) 4.3 X 10-5 ± (0.71) 

EA 10% 1.52 ± 0.36 ab 0.312 ± 0.039 a 1.88 ± 0.093a 6.2 X 10-4 ± (0.49) 6.3 X 10-5 ± (1.32) 

EA 30% 1.69 ± 0.18b 0.393± 0.061 b 2.26 ± 0.131b 7.9X 10-4 ± (0.73) 7.0 X 10-5 ± (0.56) 

EA 50% 2.62 ± 0.43c 0.431 ± 0.076 b 2.67 ± 0.109c 8.6 X 10-4 ± (1.51) 10.9 X 10-5 ± (0.87) 

EA 70% 2.56 ± 0.52c 0.422 ± 0.089 b 2.79 ± 0.239c 8.4 X 10-4 ± (1.38) 10.7 X 10-5 ± (0.32) 

EA 100% 2.18 ± 0.61c 0.416 ± 0.095 b 2.65 ± 0.211c 8.3 X 10-4 ± (1.21) 9.1 X 10-5 ± (1.18) 

Within column different superscript letters are statistically significant P < 0.05. (n =5) 
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Table 4.2: Dioxane skin permeation parameters in presence of various sodium lauryl sulphate 

concentrations in water (% w/w) 

SLS conc.  Lag time 
 (hr) Flux (mg/cm2/hr) Absorption 

(mg) 
Permeability  

(cm/hr) 
Diffusivity  
(Cm2/hr ) 

0% 1.16 ± 0.22a 0.286 ± 0.035a 1.99 ± 0.086a 5.7 X 10-4 ± (0.62) 4.3 X 10-5 ± (0.71) 

1% 1.37 ± 0.33a 0.393 ± 0.048b 2.85 ± 0.182b 7.8 X 10-4 ± (0.75) 5.7 X 10-5 ± (0.82) 

2% 1.55 ± 0.38a 0.426 ± 0.029b 3.34 ± 0.121c 8.5 X 10-4 ± (0.49) 6.4 X 10-5 ± (0.94) 

5% 1.34 ± 0.25a 0.619 ± 0.041c 3.95 ± 0.132d 12.4 X 10-4 ± (0.81) 5.5 X 10-5 ± (0.93) 

7% 1.51 ± 0.41a 0.551 ± 0.065c 3.82 ± 0.119d 11.0 X 10-4 ± (0.74) 6.2 X 10-5 ± (1.28) 

10% 1.42 ± 0.53a 0.533 ± 0.052c 3.12 ± 0.108c 10.7 X 10-4 ± (0.59) 5.9 X 10-5 ± (0.89) 

Within column different superscript letters are statistically significant P < 0.05. (n =5) 

 

 

 

 

 

Figure 4.1: Flux of dioxane across human stratum corneum (n =5) 
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Figure 4.2: Cumulative absorption versus time plot for dioxane following topical application to 

human stratum cornem in in vitro flow-through diffusion cells. The best- fitted 

straight line was used to calculate the steady state flux (n =5) 
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Figure 4.3: FT-IR absorbance spectra of human stratum corneum before (a) and after 

12 hr exposure to water (b) 10% Propylene glycol (c) 30% Propylene glycol 

(d) 50% Propylene glycol (e) 70% Propylene glycol (f) 100% Propylene 

glycol (g) 
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Figure 4.5: FT-IR absorbance spectra of human stratum corneum before (a) and after 12 hr 

exposure to water (b) 10% ethanol (c) 30% ethanol (d) 50% ethanol (e) 70% 

ethanol(f) 100% ethanol (g) 
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Figure 4.4: FT-IR absorbance spectra of human stratum corneum before (a) and after 

12 hr exposure to water (b) 10% ethyl acetate (c) 30% ethyl acetate (d) 

50% ethyl acetate (e) 70% ethyl acetate (f) 100% ethyl acetate (g) 
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Figure 4.6: Percentage stratum corneum weight loss after 24 hr extraction using water, 50%, and 

100 % solvents (n =5) 

 

 

 

Figure 4.7: FT-IR absorbance spectra of typical stratum corneum and the precipitate from 

ethanol extract of stratum corneum. The peaks between 2800 cm-1 and 3000 cm-1 are 

due to IR absorbance at H-C-H bonds 
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Figure 4.8: The effect of sodium lauryl sulphate concentrations on the in vitro cumulative 

permeation of dioxane through human stratum corneum (n =5) 
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