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Abstract 

Textile composites are made from textile fabric and resin. Depending on the weaving pattern, 

composite reinforcements can be characterized into two groups: uniform fabric and near-net 

shape fabric. Uniform fabric can be treated as an assembly of its smallest repeating pattern also 

called a unit cell; the latter is a single component with complex structure. Due to advantages of 

cost savings and inherent toughness, near-net shape fabric has gained great success in composite 

industries, for application such as turbine blades. 

Mechanical properties of textile composites are mainly determined by the geometry of the 

composite reinforcements. The study of a composite needs a computational tool to link fabric 

micro- and macro-geometry with the textile weaving process and composite manufacturing 

process. 

A textile fabric consists of a number of yarns or tows, and each yarn is a bundle of fibers. In 

this research, a fiber-level approach known as the digital element approach (DEA) is adopted to 

model the micro- and macro-geometry of fabric and fabric reinforced composites. This approach 

determines fabric geometry based on textile weaving mechanics. A solver with a dynamic 

explicit algorithm is employed in the DEA.  

In modeling a uniform fabric, the topology of the fabric unit cell is first established based on 

the weaving pattern, followed by yarn discretization. An explicit algorithm with a periodic 

boundary condition is then employed during the simulation. After its detailed geometry is 

obtained, the unit cell is then assembled to yield a fabric micro-geometry. Fabric micro-geometry 

can be expressed at both fiber- and yarn-levels.  



In modeling a near-net shape fabric component, all theories used in simulating the uniform 

fabric are kept except the periodic boundary condition. Since simulating the entire component at 

the fiber-level requires a large amount of time and memory, parallel program is used during the 

simulation. 

In modeling a net-shape composite, a dynamic molding process is simulated. The near-net 

shape fabric is modeled using the DEA. Mold surfaces are modeled by standard meshes. Long 

vertical elements that only take compressive forces are proposed. Finally, micro- and macro-

geometry of a fabric reinforced net-shape composite component is obtained. 
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Abstract 

Textile composites are made from textile fabric and resin. Depending on the weaving pattern, 

composite reinforcements can be characterized into two groups: uniform fabric and near-net 

shape fabric. Uniform fabric can be treated as an assembly of its smallest repeating pattern also 

called a unit cell; the latter is a single component with complex structure. Due to advantages of 

cost savings and inherent toughness, near-net shape fabric has gained great success in composite 

industries, for application such as turbine blades. 

Mechanical properties of textile composites are mainly determined by the geometry of the 

composite reinforcements. The study of a composite needs a computational tool to link fabric 

micro- and macro-geometry with the textile weaving process and composite manufacturing 

process. 

A textile fabric consists of a number of yarns or tows, and each yarn is a bundle of fibers. In 

this research, a fiber-level approach known as the digital element approach (DEA) is adopted to 

model the micro- and macro-geometry of fabric and fabric reinforced composites. This approach 

determines fabric geometry based on textile weaving mechanics. A solver with a dynamic 

explicit algorithm is employed in the DEA.  

In modeling a uniform fabric, the topology of the fabric unit cell is first established based on 

the weaving pattern, followed by yarn discretization. An explicit algorithm with a periodic 

boundary condition is then employed during the simulation. After its detailed geometry is 

obtained, the unit cell is then assembled to yield a fabric micro-geometry. Fabric micro-geometry 

can be expressed at both fiber- and yarn-levels.  



In modeling a near-net shape fabric component, all theories used in simulating the uniform 

fabric are kept except the periodic boundary condition. Since simulating the entire component at 

the fiber-level requires a large amount of time and memory, parallel program is used during the 

simulation. 

In modeling a net-shape composite, a dynamic molding process is simulated. The near-net 

shape fabric is modeled using the DEA. Mold surfaces are modeled by standard meshes. Long 

vertical elements that only take compressive forces are proposed. Finally, micro- and macro-

geometry of a fabric reinforced net-shape composite component is obtained. 
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Chapter 1 - Introduction 

Textile fabrics and composites have demonstrated outstanding success in both military and 

civilian fields. In Boeing 787 Dreamliner, nearly half of its materials are made by advanced 

composites. The light-weight construction of using composite also saves 20 percent in fuel 

compared to other equivalents. In the past, 2-D laminated composites were commonly used in 

aerospace industry, such as manufacturing of airplane fuselages and wings. However, production 

of 2-D laminated composite requires laborious laminating work and has poor impact resistance 

and delamination strength. In order to overcome these deficiencies, 3-D fabric manufacturing 

technologies, especially near-net shape fabric manufacturing, have been developed. Various 

complex 3-D composite products have accordingly arisen, including airplane engine blades, 

airplane door frames, rib structures, biomedical devices and ballistic panels. In addition, 3-D 

fabrics have gained attention for creating next-generation body armor.  

Characterization of the mechanical behavior of textile fabrics and composites is a growing 

need because of their expanding applications. Composite mechanical properties rely on the 

structure of the fabric which is also called composite reinforcement, which, in turn, is determined 

by the textile weaving process. Composite design and analysis requires a computer tool not only 

to link composite properties to fabric micro- and macro-geometry, but also to link fabric micro-

geometry to the weaving pattern. Consequently, in this dissertation, micro- and macro- 

geometries of fabrics created by the textile weaving process and fabric reinforced composites 

formed by the composite manufacturing process are studied. 

At the outset of composite design and analysis, the hierarchy of a composite part is addressed, 

as shown in Figure 1-1. A composite part is made by commingling textile fabric and matrix (e.g. 



2 

 

resin) through a specific manufacturing process, such as resin transfer molding (RTM). A fabric 

is typically created on a weaving machine. To weave a fabric, repeated patterns are usually 

adopted and hence the smallest structural repeat of fabric, also called unit cell, can be found. A 

unit cell consists of a number of yarns or tows. A yarn or a tow is an assembly of thousands of 

fibers. 

 

 

Figure 1-1  Hierarchy of Composite Part 

 

Micro-geometry of fabric or its unit cell can be analyzed at the yarn level or the fiber level. 

For yarn-level analysis, the yarn micro-geometry is defined by its axial path and cross-section 

shape. For fiber-level analysis, the yarn path is defined by the axial path of each fiber; the yarn 
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cross-section shape is determined by the arrangement of circular cross-sectional fibers on the 

yarn cross-section. 

Yarn-level analyses have predominately been performed to estimate fabric micro-geometry 

with the assumption of a regular yarn cross-section shape, such as semi-circular ended rectangle, 

ellipse, or lenticil. The assumptions are relatively effective for modeling simple structures, such 

as 2-D woven structures, but not for structures with complex yarn shapes. Also, the numerical 

assumption of yarn shape based on experimental observation is time consuming. As well, it is 

necessary to develop a robust method able to represent complex yarn geometries and stand alone 

from experimental investigations. 

Since a fabric or its unit cell consists of many yarns and each yarn is a bundle of fibers, fabric 

micro-geometry can be better reflected by a fiber-level analysis. As such, a fiber-level based 

approach, known as the digital element approach (DEA), has arisen. 

 

   

(a) Digital yarn  (b) Digital fiber (c) Contact element 

Figure 1-2  Key Concepts of Digital Element Approach [1] 

 

The DEA was developed by Wang and her colleagues at Kansas State University to simulate 

textile weaving and braiding processes and to determine fabric micro-geometry [2]-[4]. It is 

based on three key concepts: digital yarn, digital fiber, and contact element, as demonstrated in 

Figure 1-2. A digital yarn consists of a number of digital fibers. Each digital fiber is an assembly 

of circular cross-sectional rod elements connected by frictionless pins. A fiber is fully 
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represented when the rod element length approaches zero. A contact element is inserted when 

interference occurs between two fibers. The fabric deforms when external forces are applied. 

Because the DEA follows textile processing mechanics, it has become a very promising method 

for determining fabric micro-and macro -geometries. 

The solver used in the DEA has undergone several phases, including quasi-static, static, and 

current dynamic algorithms [1]-[10]. The quasi-static algorithm generates fabric micro-geometry 

by simulating the textile weaving or braiding process step by step, which consumes a large 

amount of computer resources. The static algorithm, solving the global matrix of a fabric using 

an implicit algorithm, is more efficient than the quasi-static algorithm. The dynamic algorithm, 

using an explicit algorithm instead of solving the global matrix, is more efficient than the static 

algorithm. In this research, dynamic relaxation with periodic boundary conditions will be used to 

determine the fabric unit cell micro-geometry. Unit cells are then assembled to form a fabric. 

As stated, advanced technologies have been developed in order to manufacture complex 

composite parts. Near-net shape technology has shown potential in manufacturing composite 

reinforcements by saving costs in surface processing and also guaranteeing mechanical 

properties of the net-shape composite. A near-net shape fabric often has a complex shape and has 

caused researchers many difficulties in modeling the weaving pattern and detailed yarn shapes. 

The DEA is a method based on weaving mechanics and is able to handle complex fabrics. It 

models fabric micro-geometry at the fiber level and needs a large amount of computer resources 

to model large-scale fabrics. Hence, in this research, parallel computation will be conducted to 

accomplish the full-field fabric simulation. 

A near-net shape fabric is then typically formed into a net-shape composite component 

through a composite manufacturing process, such as resin transfer molding. Although 
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manufacturing details vary, common modeling issues are consistent among the processes: fabric 

representation, mold surface representation, and mold-to-fabric contact. Because of fabric model 

simplifications, few research works were able to predict a precise fabric deformation process. In 

this research, the DEA will demonstrate its power to simulate the molding process and model the 

relative fabric reinforced composite. 

 

Research work in this dissertation includes 

 3-D Woven Fabric Unit Cell Micro-geometry 

A dynamic DEA with periodic boundary conditions is developed to model the fabric unit cell 

micro-geometry. Numerical simulations are validated with experimental results. 

 3-D Woven Near-Net Shape Fabric Component 

A 3-D woven near-net shape fabric is modeled using dynamic DEA. Parallel processing is 

employed for full-field fabric simulation. Numerical simulations are compared with experimental 

results. 

 3-D Woven Net-shape Composite and Molding Process 

In addition to fabric representation using the DEA, mold surface and mold-to-fabric contact 

are also modeled. A fabric reinforced composite is modeled and the dynamic molding procedure 

is also explained.  
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Chapter 2 - Literature Review 

Textile composite properties are determined by textile fabric micro-geometry and textile 

fabric micro-geometry is determined by the textile weaving process. A weaving process with 

repeated pattern yields a uniform fabric with unit cell features. An increasing number of 

advanced technologies, including the near-net shape fabric manufacturing, have been developed 

to manufacture composite reinforcement. After its creation, a fabric is generally processed into a 

composite part. Fabric deforms accordingly. Numerical simulations of geometries of fabric and 

fabric reinforced composite play an essential part in composite design and analysis. In this 

chapter, a review of relevant research is discussed in three sections: 1) Fabric geometry analysis, 

2) Near-net shape fabric manufacturing, and 3) Fabric reinforced composites and fabric 

deformation process. 

 

2.1 Fabric Geometry Analysis 

Fabric geometry can be modeled at the macro-scale or the micro-scale. At the macro-scale, 

fabric is normally treated as a continuum, modeled by finite shell or membrane elements. This 

type of fabric representation is commonly used in fabric thermal conductivity, rapid prototyping, 

and impact analysis. At the macro-scale, the fabric unit cell can be identified if it is present. In 

this case, it is necessary to only model the micro-geometry of the fabric unit cell and construct 

spatially translated copies of it. The fabric unit cell micro-geometry can be expressed at either 

yarn-level or fiber-level. In this section, fabric geometry is studied at the micro-scale and both 

yarn-level and fiber-level models are addressed. 
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This section contains three parts: 1) Fabric structures, 2) Fabric structure modeling methods, 

and 3) Fabric micro-geometry modeling software. 

2.1.1 Fabric Structures 

Understanding composite/fabric structure is essential for composite design and analysis. 

Various textile manufacturing processes create different fabric structures, such as woven, braided, 

stitched, and knitted. Among the structures, the woven structure is most common and is 

highlighted in this research. Woven fabric can be classified into 2-D woven and 3-D woven 

structures. 

2.1.1.1 2-D Woven Structure 

In a 2-D woven fabric, weft and warp interlace in one layer, typically at an angle of 90
0
, as 

seen in Figure 2-1. Three types of 2-D woven fabric structures are shown in Figure 2-2: plain 

weave, twill weave, and satin weave. In the plain weave structure, each weft passes over and 

under each warp alternatively, as demonstrated in Figure 2-2a. In the twill weave structure, one 

or more wefts pass over and under one or more warps alternatively. Figure 2-2b illustrates the 

case when every two wefts pass over and under every two warps alternatively. This structure is 

called a 2×2 plain weave. In the satin weave, four or more wefts pass over a single warp, or vice 

versa. The number of wefts passing over a single warp is called the Harness number. Figure 2-2c 

shows a 4-Harness satin weave structure. Black dashed lines in the pictures mark the unit cell 

domain. These three structures contain 16, 4, and 4 unit cells, respectively. 
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Figure 2-1  2-D Woven Fabric 

 

   

(a) Plain weave (b) Twill weave (2×2) (c) Satin weave (4-Harness) 

Figure 2-2  Typical 2-D Woven Structures (Top View) 

 

2.1.1.2 3-D Woven Structure 

A 3-D woven fabric generally consists of multiple layers of weft yarns and a number of warp 

yarns intertwining weft yarns. Three types of 3-D woven fabrics are shown in Figure 2-3, layer-

to-layer, orthogonal, and angle interlock. The top pictures are top views and the bottom pictures 

are front views. The layer-to-layer fabric consists of multiple layers of fabrics. Each layer has 

individual sets of wefts and warps and is connected with neighboring layers by interlacing yarns. 

The orthogonal fabric consists of three types of yarns, weft, warp stuffer, and warp weaver. 
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Warp stuffer is typically straight yarn and warp weaver is curvy yarn in order to bind the wefts. 

In angle interlock weaves, warps travel through the fabric and bind wefts together. The warp 

traveling plane is angled, instead of perpendicular, to weft plane.  

 

 
  

Top view 

 

Top view 

 

Top view 

 

 

 
 

Front view Front view 

  
Front view 

(a) Layer-to-layer (b) Orthogonal (c) Angle interlock 

Figure 2-3  Typical 3-D Woven Structures 

 

2.1.2 Fabric Structure Modeling Methods 

Modeling methods conducted on fabric micro-structure can be categorized into the tow- or 

yarn-level analysis and fiber-level analysis. For the tow- or yarn- level analysis, yarn geometry is 

defined by yarn axial path and yarn cross-section shape. For the fiber-level analysis, yarn 

geometry is defined by fiber path and fiber arrangement on the yarn cross-section.  

weft 

warp 

stuffer weaver 
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2.1.2.1 Yarn-Level Analysis 

Yarn axial path is determined by the weaving pattern. Yarn cross-section shape varies 

according to the weaving kinetics. Based on the yarn cross-section shape, yarn-level analyses can 

be elaborated into two groups: constant yarn cross-section and variable yarn cross-section.  

2.1.2.1.1 Constant yarn cross-section model 

Constant yarn cross-section shapes are commonly assumed as circle, semi-circular ended 

rectangle, ellipse, and lenticil, as seen in Figure 2-4. Applications of the assumptions are heavily 

dependent on weaving realities.  

 

 

 

(a) Circle 

 

(b) Semi-circular ended rectangle 

 

  

(c) Ellipse (d) Lenticil 

Figure 2-4  Common Assumptions of Yarn Cross-section Shapes 

 

Characterization of textile fabric geometry originated in 1930s when Peirce [11] developed a 

geometric model to describe a plain weave fabric. In his model, yarns were treated as perfectly 

flexible and inextensible cylinders. Yarn path was expressed by a combination of linear and 

circular segments. Refer to Figure 2-5. Mathematical relations of geometric parameters were 
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studied. This model was applicable in only a limited number of structures, such as the fabric with 

loose density.  

 

 

Figure 2-5  Unit Cell with Circular Cross-sectional Yarn [11][12] 

 

In regard to yarn flattening, in the 1950s Kemp [13] proposed a race track model based on 

Peirce’s model. As demonstrated in Figure 2-6, yarn cross-section was assumed as a rectangle 

enclosed by two semi-circular ends. Length and width of weft cross-section was denoted by a2 

and b2, respectively. Other modifications were then correspondingly applied. Yarn flattening was 

implemented by changing the pick spacing p2, crimp height h1, and yarn diameter b2.  

 

 

Figure 2-6  Racetrack Model [12][13]  

Weft 

Warp 
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In the 1970s, Hearle and Shanahan [14] concluded that Kemp’s model was satisfactory in 

purely geometric models but not mechanical models. They stated that Kemp’s model increased 

bending energy because of high curvatures at the semi-circular ends. They proposed a model 

with lenticular cross-section, as seen in Figure 2-7, and believed the continuous length of lower 

curvature would not create a rapid increase of bending energy in the contact region. The cross-

section shape was formed by two arcs with equal radius on either side. Other assumptions 

followed what Peirce had used. 

 

 

Figure 2-7  Unit Cell with Lenticular Cross-sectional Yarn [12][14]  

 

In the 1990s, Ito and Chou [15] used single sinusoidal function to define yarn geometry in 

the plain weave structure, as seen in Figure 2-8. Axial path of the longitudinal yarn (z0) is 

defined using a sine function curve and yarn thickness (hy) is assumed constant. Thus, the upper 

and lower bonds (zl and z2) of the longitudinal yarn and the cross-sections of transverse yarns are 

sine function curves. Similar assumptions were also adopted by Naik et al. [16] and McBride and 

Chen [17]. 
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Figure 2-8  Yarn Shape Defined by Sinusoidal Function [15] 

 

As long as a regular or constant yarn cross-section shape is assumed, interference could exist 

between yarns, especially in complex fabric structures. The interference will cause difficulties in 

further finite element analysis.  

2.1.2.1.2 Variable yarn cross-section model 

In most cases, yarn cross-section shape is not constant because of yarn-to-yarn interactions. 

Microscopic images have also demonstrated that yarn cross-section varies from section to section 

[18]. 

In the 1990s, Kuhn and Charalambides [19] described the fabric unit cell as three regions and 

assigned relatively different cross-section shapes within those regions. As shown in Figure 2-9a, 

these three regions are the interlace region, gap region, and bridge region, denoted by cghd, hmnj, 

dhje, respectively. As illustrated in Figure 2-9b, yarn cross-section is formed by a combination of 

top and bottom sinusoidal curves with different amplitudes. In the interlace region, the portion 

contacting the adjacent yarns has a lower amplitude than the opposing portion. The cross-section 
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shapes in the interlace region remain constant and those in the bridge region are interpolated 

from adjacent interlace regions. 

 

  

(a) Unit cell divided into three regions (b) Cross-section variations along a yarn 

Figure 2-9  Yarn with Variable Cross-sections [19] 

 

Similarly, in the 2000s, Hivet and Boisse [18][20][21] characterized yarn using three 

different zones and defined yarn geometry accordingly. As demonstrated in Figure 2-10a, curves 

s1s2, s3s4, and s2s3 as well as s4s1 denote yarn cross-section shapes in contact free zone, contact 

zone, and lateral zone, respectively. Yarn axial path is formed by a combination of a straight 

segment in the contact free zone and a conic curve in the contact zone, as seen in Figure 2-10b. 

A parametric description of yarn geometry of a twill weave structure is shown in Figure 2-10c. 
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(a) Cross-section 

 

(b) Yarn axial path 

 

 
(c) Parameterization of the unit cell transverse cut 

Figure 2-10  Yarn Shape Defined by Parameterized Function [18] 

 

Assumption of variable yarn cross-section has the potential to generate more accurate yarn 

shape, but it is highly dependent on experimental or empirical results and is hardly applicable to 

complex fabric structures. 

2.1.2.2 Fiber-Level Analysis 

Textile composites, especially those with complex weaving patterns, contain various yarn 

cross-section shapes. Microscopic pictures of two 3-D woven composite structures are provided 
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in Figure 2-11. In the first sample, weavers show variable cross-section shapes along yarn paths. 

In the second sample, all yarns present irregular cross-section shapes. Consequently, assumption 

of constant or simple variable yarn cross-section is no longer applicable.  

 

 

 
(a) Sample 1 [22]  (b) Sample 2 [23] 

Figure 2-11  Experimental Observations 

 

Fabric is commonly comprised of yarns, and yarn is an assembly of fibers. Yarn shape is 

affected by the relative motion of fibers inside the yarn. Consequently, fabric micro-geometry 

can be accurately reflected at the fiber level. For the fiber-level analysis, fiber cross-section 

shape is assumed to be circular and the local yarn cross-section shape is determined by fiber 

arrangement in that yarn. One method of fiber-level analysis is called “digital element approach”.  

2.1.2.2.1 Digital element approach 

The digital element approach (DEA) is a micro-mechanics based sub-yarn level approach 

developed by Wang and her colleage [1]-[10]. Initially, the method was used to determine the 

unit cell topology of 3-D braided fabrics [2][3]. In her model, each yarn was modeled as a digital 

rod element chain with frictionless pin connections, as seen in Figure 2-12a. Yarn-to-yarn 

Weaver 
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contact was modeled by a contact element inserted between two contact nodes, as seen in Figure 

2-12b. A quasi-static numerical procedure was employed to simulate the 3-D braiding process 

step-by-step.  

 

 

 

(a) Yarn discretization (b) 3-D contact element 

Figure 2-12  Single Digital Chain Model [3] 

 

 
 

(a) 2-D weaving (b) 3-D braiding 

Figure 2-13  Multi-Digital Chain Model [4] 

 

The DEA was later refined at the sub-yarn level to simulate the 2-D weaving process and the 

3-D braiding process [4]. A yarn was modeled as a bundle of digital fibers, as seen in Figure 
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2-13. Yarn cross-section deformed due to the relative motion of fibers inside the yarn during the 

textile processing. Therefore, both yarn paths and yarn cross-section shapes can be derived. 

The major obstacle of the quasi-static method is the great computer resource required by the 

step-by-step simulation. In order to resolve this issue, a static relaxation procedure was 

developed [5]. In this procedure, fabric topology was established based upon the textile process 

kinematics, as seen in Figure 2-14a. Then, a tension was applied to each yarn. Non-equilibrium 

nodal forces were calculated. Next, a global stiffness matrix was assembled and nodal 

displacements were calculated. Final geometry is shown in Figure 2-14b. The static relaxation 

procedure required less than 5% of computer resources used by the step-by-step simulation. 

 

 

 

(a) Fabric topology (b) Fabric detailed geometry 

Figure 2-14  3-D Woven Model with Multi-Fibers Per Yarn [5] 

 

The unit cell in DEA is a non-continuum domain. During simulation, boundary changes and 

interior area nodes may move to the boundary. A static algorithm for a non-continuum domain 

with a periodic boundary condition would be complex. Hence, an explicit dynamic relaxation 

algorithm with a periodic boundary condition is proposed. The explicit dynamic approach is 

elaborated in Chapter 3. 
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2.1.2.2.2 Other approaches 

Based on the DEA, Madhadik and Hallett [24][25] modeled fabric micro-geometry using 

commercial software LS-DYNA, as shown in Figure 2-15. Each yarn was treated as an assembly 

of 19 fibers and each fiber was modeled using finite beam elements. A linear thermal loading 

decrease was adopted in order to model tensile forces applied on yarns, thus causing a decrease 

in fabric thickness. 

 

 

Figure 2-15  3-D Woven Structure with Multi-Fibers Per Yarn [25] 

 

Durville [26]-[28] modeled the micro-geometry of 2-D woven fabrics. A yarn was defined as 

a bundle of fibers and each fiber was modeled using 3-D finite strain beam elements. All yarns 
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were initially laid on the same plane with a superimposing order, as seen in Figure 2-16a. Yarns 

and relevant fibers were gradually separated and moved toward target positions set by normal 

contact directions according to the weaving pattern. An implicit solver was employed during the 

simulation. Running time of the entire process was two to three days. 

 

 
 

(a) Initial geometry (b) Final geometry 

Figure 2-16  2-D Woven Structure with Multi-Fibers Per Yarn [28] 

 

2.1.3 Fabric Micro-geometry Modeling Software 

Since the 1990s, an increasing number of advanced textile composites have arisen in modern 

industry. Computer tools are desired in order to model those structures. In this section, three 

composite/fabric structure modeling software packages are introduced: WiseTex, TexGen, and 

DFMA.  

2.1.3.1 WiseTex 

WiseTex, developed at the Katholieke Universiteit Leuven, Belgium [29]-[33], is a 

commercial software package used to model textile fabric and textile composite. This package is 

able to model fabric micro-geometry (WiseTex, LamTex, WeftKnit, FETex), composite micro-
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geometry (TexComp), permeability of textile composites (FlowTex), and textile virtual reality 

(VRTex).  

In order to model fabric micro-geometry, WiseTex defines fabric architecture with assigned 

fiber and yarn properties. Unit cell topology is defined through matrix coding according to the 

textile weaving pattern. Input yarn properties include linear density, yarn dimension, yarn 

compression, yarn bending rigidity, and yarn transverse compressive stiffness. Yarn path is 

expressed as a parameterized polynomial function, and yarn cross-section is assumed to be 

elliptical or lenticular. Polynomial coefficients and major and minor axes lengths of the yarn 

cross-section are derived by minimizing the bending energy. Fabric micro-geometry is 

consequently generated. A 3-D woven fabric structure created by WiseTex is shown in Figure 

2-17. 

 

 

Figure 2-17  3-D Woven Fabric Created by WiseTex [31] 

2.1.3.2 TexGen 

TexGen was developed at the University of Nottingham, UK [34]-[40] as an open source 

code. This software has experienced increased usage in recent years. 

In TexGen, yarn axial path is described by using a set of control points. Spline interpolations 

are implemented between those control points in order to obtain a smooth yarn path. The yarn 

cross-section shape is assigned based on experimental or empirical results, and common yarn 
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cross-section shapes used are ellipse, lenticil, or polygon. Detailed yarn shape is then created by 

sweeping the assumed cross-sections along the yarn path. A 3-D woven fabric unit cell created 

by TexGen is shown in Figure 2-18. 

 

 

Figure 2-18  3-D Woven Unit Cell Created by TexGen [37] 

 

The primary difference between WiseTex and TexGen in regard to creating fabric micro-

geometry is that WiseTex is a mechanical based computer tool, and TexGen is a geometrical 

based computer tool. Both software programs highly depend on empirical or experimental results 

to define yarn cross-section. Constant cross-section shapes assigned to yarns are inaccurate and 

may also create yarn-to-yarn interference which causes difficulties for finite element analysis. 

2.1.3.3 DFMA 

Digital Fabric Mechanics Analyzer, DFMA, is developed at Kansas State University. 

Mechanical theory in this software uses DEA developed by Wang et al. [1]-[10]. The DEA is 

able to model the textile weaving process, textile fabric micro-geometry, and fabric deformation 

process. 
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(a) Fiber level 

 

 

(b) Yarn level 

Figure 2-19  3-D Woven Unit Cell Created by DFMA [1] 

 

DFMA generates fabric micro-geometry by following textile weaving mechanics. Fabric 

topology is defined based on the textile weaving pattern. Input data of yarn properties include: 
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yarn cross-section area, fiber longitudinal and transverse moduli, and fiber density. Yarn is 

represented by a bundle of digital fibers and each digital fiber is a digital element chain. An 

explicit dynamic relaxation approach is employed. Fabric micro-geometry can be expressed at 

both fiber and yarn levels. A 3-D woven fabric unit cell created by DFMA for both yarn-level 

and fiber-level is shown in Figure 2-19. The simulation procedure and corresponding theories are 

detailed in Chapter 3. 

 

2.2 Near-net Shape Fabric Manufacturing 

Near-net shape technology produces a product that resembles the shape of the net/final 

product as closely as possible. Therefore, the final product can then be made with minimum 

cutting or surface finishing based on the near-net shape product.  

In the composite industry, many textile fabrics can be manufactured through near-net shape 

technology. Various textile processes, such as weaving, braiding, and knitting, have adopted this 

technology. Those processes can yield a near-net shape fabric that guarantees toughness within 

the product without additional reinforcement treatment. In this section, processes of weaving, 

braiding, and knitting, and the relative near-net shape products, are introduced. 

 

2.2.1 Weaving  

In a typical weaving process, three primary actions occur: weft insertion, beating up, and 

warp weaving [8], as demonstrated in Figure 2-20. In a weft insertion action, the shuttle takes a 

weft yarn and moves across the weaving loom. In a beating up action, the reed beats the inserted 

weft against the newly formed fabric. In the ensuing weaving action, warps move either upward 

or downward to create fabric with a specific pattern. A fabric is thus created.  
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Figure 2-20  Schematics of Dynamic Weaving [8] 

 

Figure 2-21 shows a 3-D woven near-net shape fabric and net shape composite, produced by 

Albany Engineered Composites, a leading organization in composite design and manufacturing 

[41]-[44]. The near-net shape fabric is a single component woven by the Jacquard weaving, and 

then processed into the final product by resin transfer molding. The figure indicates two shapes 

are so similar that surface tailoring or polishing is rarely needed.  

 

 

Figure 2-21  Near-net Shape Fabric (Left) and Net Shape Composite (Right) [42] 
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2.2.2 Braiding 

 

 
Figure 2-22  Schematics of 3-D Rectangular Braiding [45] 

 

Braiding is defined as the intertwining of three or more yarns diagonally so that each yarn 

passes over and under other yarns alternatively. Figure 2-22 shows an illustration of 3-D 

rectangular braiding [45]. Yarn carriers take the yarns and travel in x and y directions alternately 

on the machine bed by following a specific pattern. After several cycles of a certain step (e.g., 4-

step) movement, yarns interwine with each other and the specimen is created, as demonstrated in 

the top portion of the figure.  

Figure 2-23 shows two 3-D fabrics braided at Kansas State University Composites Lab. The 

left picture and the right picture are L shape and ⊔ shape, respectively.  
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Top view Section view 

(a) L shape 

 

 

 

Top view Section veiw 

(b) ⊔ shape 

Figure 2-23  3-D Braided Fabrics 

 

Recently, Ko et al. [46]-[48] has developed the 3D-hexagonal braiding technology capable of 

manufacturing complex three-dimensional braided structures. The relative computer tool has also 

been developed. A selection of hexagonal braiding patterns is shown in Figure 2-24. These 

patterns range from straight line to triangle, diamond, and star shapes. Voids inside the patterns 

are hexagonal shapes. This novel technology is applicable in the biomedical industry. 
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Figure 2-24  Hexagonal Braiding Patterns [46] 

 

2.2.3 Knitting 

Knitting is defined as the inter-looping of one yarn system into horizontal rows and vertical 

columns of loops. The corresponding loops are called courses and wales, respectively. Two 

primary types of knitting include weft knitting and warp knitting. In weft knitting, yarns (weft 

threads) meander along the course direction by adding stitches to each wale in sequence, as 

shown in Figure 2-25a. The entire fabric can be manufactured using one or multiple yarns. In 

warp knitting, yarns (warp threads) meander along the wale direction, by simultaneously adding 

stitches to each wale through the warp guides, as shown in Figure 2-25b. In this case, the entire 

fabric should be manufactured using a number of yarns.  
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(a) Weft knitting (b) Warp knitting 

Figure 2-25  Schematics of Knitting [49] 

 

Figure 2-26 shows two fabrics produced by biaxial weft knitting [50]. The left picture is a 

nearly spherical shape, and the right picture is a spirally circular disk.  

Near-net shape fabric manufacturing technology has potential for the composite industry. 

However, numerical simulations of near-net shape fabric are rarely seen, possibly because fabric 

patterns are too complex to numerically formulate by simply identifying and assembling unit 

cells. For near-net shape fabric without unit cell feature, a full field modeling is necessary. 

Details of modeling near-net shape fabric are discussed in Chapter 4. 
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(a) Spherical shape (b) Spirally circular disk 

Figure 2-26  Biaxial Weft Knitted Fabrics [50] 

 

2.3 Fabric Reinforced Composites and Fabric Deformation Process 

After a fabric is created, it is processed into a targeted product, such as fabric reinforced 

composite. Fabric deforms accordingly. Figure 2-27 shows three typical fabric deformation 

processes: draping, stamping (or deep drawing), and molding. In the draping process, a typically 

soft fabric naturally falls onto a specific body (e.g., a sphere) due to gravity, as seen in Figure 

2-27a. In the stamping process, a fabric, generally a fabric prepreg, is laid on the die and then 

pushed into the die by a punch, as seen in Figure 2-27b. Typically, the punch is an elastic body, 

such as silicon rubber. The holder reduces boundary irregularities during the stamping process. 

In the molding process, a fabric is placed on the bottom mold, and then the top mold moves 

downwards slowly, as illustrated in Figure 2-27c. The fabric conforms to the cavity shape 

created by both molds. Meanwhile, resin is injected from the top mold to consolidate the fabric 

into a composite part. Although details differ, common simulation issues exist among the 

processes, such as how to represent the fabric and the rigid or elastic body, and how to model the 
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contacts between fabric and body. Correct modeling of these behaviors leads to an accurate 

prediction of the fabric deformability and micro- and macro- geometry of fabric reinforced 

composite. 

 

 
  

(a) Draping (b) Stamping (c) Molding 

Figure 2-27  Common Fabric Deformation Processes 

 

Research focusing on the simulation of the fabric deformation process can be categorized 

into two primary groups [51]: geometric and mechanical models. Both models are discussed in 

this section. 

 

2.3.1 Geometric Model 

The geometric model, also called the fishnet model, describes the fabric by straight segments 

connected with pin joints, as seen in Figure 2-28. The rigid body is discretized into three- or 

four-node elements. Nodes of fabric are geometrically mapped to nodes of the rigid body 

accordingly. 
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Figure 2-28  Fabric Geometric Model 

 

Basic mapping steps can be summarized as follows [52][53]: 

1) Discretize the fabric into pin-connected straight segments and discretize the body 

surface into three- or four-node elements; 

2) Choose initial points on both fabric and body surface; 

3) Choose two perpendicular constrained lines passing the initial point on the fabric and 

map them onto the body surface; 

4) Map all other points on fabric to the body surface according to geometric relations 

with constrained lines. 

A deformed fabric after the mapping process is illustrated in Figure 2-29.  

 

 

Figure 2-29  Fabric Geometrically Mapped to a Sphere 
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The geometric model was introduced by Mack and Taylor [54] in the 1960s. In their model, 

woven cloth was assumed to be an assembly of inextensible yarns, and the yarn crossing was 

simulated as a pivoting joint where no slippage occurs. Yarn segment between the joints was a 

straight line. The square unit cell was deformed into a rhombus under the shear force, as seen in 

Figure 2-30.  

This geometric model was later tested and adopted by Potter [55] in the late 1970s, and was 

also employed by Robertson et al. [56] in the 1980s. 

 

 

Figure 2-30  Rhombus Model of Deformed Unit Cell [54] 

 

In the 1990s, VanWest et al. [52] used the geometric model to predict fabric wrinkling and 

bridging, as seen in Figure 2-31. Two perpendicular constrained yarns served as mapping 

references. Wrinkling was defined as an excess of fabric to cover the body surface. Bridging was 

defined as a situation in which fabric cannot deform sufficiently to the surface concavity. Both 

phenomena occurred when shear deformation was higher than the locking limit.  
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Figure 2-31  Draping Model with Bridging and Wrinkle [52] 

 

The geometric model predicts fabric deformability in a fast and fairly efficient way and has 

been adopted by some commercial software codes, such as PAM-QuickForm [57] and FiberSIM 

[58]. However, this model is purely geometric and cannot reflect the mechanical behaviors 

during the forming process. 

 

2.3.2 Mechanical Model 

The mechanical model defines the fabric using finite elements and solves the fabric 

deformation process using implicit/explicit finite element methods. Based on fabric 

representation, mechanical model can be classified into three major models: continuous, bi-

component, and discrete models, as seen in Figure 2-32. The continuous model considers the 

entire fabric as a homogenized material, usually expressed by finite shell or membrane elements. 

The bi-component model describes the fabric using two types of elements: shell/membrane and 

truss/beam. The discrete model considers the fabric to be heterogenized and models each yarn 

individually using finite spring, truss, shell, or solid element. 
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Figure 2-32  Fabric Mechanical Models: Continuous, Bi-component, and Discrete 

2.3.2.1 Fabric in Continuous Model 

The continuous approach describes the fabric as a continuum using finite shell or membrane 

elements. 

 

 

Figure 2-33  Finite-element Mesh of an Annulus Fabric [59] 

 

In the early 1990s, Collier et al. [59] used the four-node shell element with orthotropic 

properties to model fabric in the draping process. Figure 2-33 shows an annulus shape fabric in 

the x-y plane. All nodes on the inner ring are fixed and all other nodes are free to move. External 

force was provided by gravity of the fabric. Effects of tensile modulus, shear modulus and 

x 

y 
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Poisson’s ratio were investigated. A non-linear finite element method, coupled with orthotropic 

properties, was employed to predict fabric draping behavior.  

In the mid-1990s, Eischen et al. [60] developed a computer tool to simulate different modes 

of fabric deformation. Fabric was modeled by the finite shell element by addressing both linear 

and nonlinear elastic isotropic material properties. Contact between fabric and rigid surface was 

modeled by the spring element. As demonstrated in Figure 2-34, numerical simulations of 

various fabric deformation behaviors were conducted: draping over a block, hanging over a rod 

diagonally, and folding diagonally.  

 

 
 

 

(a) Draping over a block (b) Hanging over a rod diagonally (c) Folding diagonally 

Figure 2-34  Simulation of Different Fabric Deformation Behaviors [60] 

 

In 2000, Lekakou et al. [61] modeled fabric using a four-node shell element with linear 

elastic anisotropic properties in the stamping process. The numerical model shown in Figure 

2-35 includes a rigid punch, a holder, a fabric, and a die. The punch, holder, and die were 

modeled using 3-D rigid surface elements. A parameter study was conducted to evaluate effects 

of friction confident, punch speed, mesh size, time step, tensile and shear moduli, and holding 

force. Updated material behavior law with consideration of fiber direction evolution was also 

studied [62]. 
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Figure 2-35  Finite Element Model for Stamping Simulation [61] 

2.3.2.2 Fabric in Bi-component Model 

In a bi-component model, two types of finite elements are typically adopted: shell/membrane 

and truss/beam elements.  

In 2001, Cherouat et al. [63] developed a bi-component model to simulate the deformation of 

fabric prepreg. The membrane element represents the resin with assigned isotropic viscoelastic 

property and the truss element represents the yarns with assigned isotropic elastic nonlinear 

property. Weft and warp yarns were coupled kinematically with resin and hence no sliding 

occurred at the connecting points, as shown in Figure 2-36. Three types of fabric deformations 

were simulated: layering-up shaping, draping, and deep drawing shaping processes. Forming 

parameters examined included initial shape of fabric, fiber orientation, and resin viscosity. An 

adaptive remeshing technique with local refinement and coarsening was also employed in order 

to incorporate large deformation of fibers [64].  

 

Punch 

Holder 

Fabric 

Die 
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Figure 2-36  Schematics of Fabric Prepreg [64] 

 

In 2001, Averill et al. [65] developed a bi-component model that incorporated inter-yarn 

sliding and inter-yarn jamming. The truss element modeled yarns, and the shell element 

represented a fictional transition medium. The checkboard model of a ± 45
0
 plain weave fabric 

was studied. As seen in Figure 2-37a, the unit cell was comprised of four four-node shell 

elements and four two-node truss elements. “I” and “II” denote two types of sub-regions of the 

checkboard. The four truss elements were independent of each other and did not share any nodes. 

Connectivity was formed only by the shell elements and hence yarn sliding was accounted. Two 

types of yarn-to-shell element connectivity were thus formed for the entire fabric, as seen in 

Figure 2-37b. 
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Figure 2-37  Checkboard Model: (a) Unit Cell; (b) Element Connectivities [65] 

 

Other research works on fabric deformation using the bi-component model can be found in 

literatures [66]-[68]. 

 

 

Figure 2-38  Unit Cell Bi-component Model [69] 

 

Other research works using one kind of finite element but with two different properties 

assigned can be found in literatures [69]-[71]. One example is shown in Figure 2-38. In this unit 

cell, the four outer elements represented tows/yarns and the diagonal elements modeled shear 

effect. EL denotes yarn longitudinal modulus, and 𝜎s defines shear stress which is a function of 

Shell element Truss element 

for yarn 

(a) 

(b) 
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shear strain s. Both tow and shear elements were implemented with the truss element but with 

different assigned stiffness. 

2.3.2.3 Fabric in Discrete Model 

Primary disadvantages of continuous and bi-component models include their inability to 

model yarn-to-yarn interaction, which is significant in the fabric deformation process. In the 

discrete model, each individual yarn is identified and modeled by finite element representation. 

External forces are applied to each yarn and yarn-to-yarn interactions can be modeled. 

Boisse et al. [51][75] developed a discrete model based on their previous semi-discrete model 

[72]-[74]. Figure 2-39a shows the unit cell model of an undeformed plain weave fabric. Each 

yarn was modeled by a set of finite shell elements, and tensile force can be directly applied to 

each yarn. Yarn-to-yarn contact and yarn-to-yarn sliding were also taken into account. In this 

case, in-plane shear behavior was naturally reflected. Figure 2-39b shows the simulation result of 

a quarter of the deformed fabric under the stamping process.  

 

 

 
 

(a) Undeformed unit cell (b) A quarter of the deformed fabric 

Figure 2-39  Discrete Model (Shell Element) for Stamping [51] 
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(a) unit cell and yarn models 

 

 

(b) Initial settings of stamping process 

Figure 2-40  Finite Element Model for Stamping [76] 

 

Most recently, Tavana et al. [76] described fabric and yarn models based on experimental 

investigations in order to simulate the damping process. Figure 2-40a shows microscopic images 

and numerical models of unit cell and yarn. Yarn was expressed by linear eight-node brick 

elements and linear six-node triangular prism elements with assigned transversely isotropic 

elastic properties. Figure 2-40b demonstrates the initial finite element model for the stamping 
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process. Only a quarter of the fabric was modeled. All forming tools, including the punch, die 

and blank holder, were described as rigid surfaces.  

Wang et al. [1]-[10] developed a sub-yarn approach to model fabric micro-geometry, as 

introduced in Section 2.1.2.2.1. Figure 2-41 shows a plain weave fabric, in which a yarn is 

represented by 19 digital fibers. It is feasible to simulate the deformation process of fiber-level 

fabric with modern computer power. Details are explained in Chapter 5. 

 

 

Figure 2-41  Fiber-level Fabric 

 

2.4 Remarks 

This chapter provides an overview of simulating micro- and macro-geometry of fabric and 

fabric reinforced composite, including fabric micro-geometry, near-net shape fabric 

manufacturing, and fabric deformation process.  

In simulation of fabric micro-geometry, woven structures are highlighted. Fabric structure 

modeling methods are then stated by both yarn-level and fiber-level analyses. At the yarn-level 

analysis, yarn cross-section definition is highly dependent on empirical research or experimental 
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observation. A constant yarn cross-section assumption may create yarn-to-yarn interference and 

a variable yarn cross-section shape would be hardly retrieved from actual structures. At the fiber-

level analysis, yarn shape is defined by fiber paths and fiber arrangements on the yarn cross-

section. The fiber-level DEA has successfully demonstrated its capability for estimating fabric 

micro-geometry. It models a yarn as an assembly of digital fibers and each fiber as a frictionless 

pin-jointed digital chain. Related theories are further discussed in Chapter 3. 

3-D near-net shape manufacturing has become an attractive technology in making complex 

composite parts. This technology saves labor costs for surfacing trimming and also guarantees 

mechanical properties of the composite product. However, numerical simulations of near-net 

shape manufacturing and relevant fabric micro-geometry rarely occur. The ability of DEA in 

simulating near-net shape fabric is discussed in Chapter 4. 

Existing research in regard to estimating fabric reinforced composite and the corresponding 

fabric deformation process can be classified into two groups: geometric model and mechanical 

model. The geometric model describes fabric using the pin-jointed fishnet model and 

geometrically maps the fabric to an elastic/rigid body surface. This model is efficient but ignores 

mechanical behaviors. The mechanical model describes fabric using finite elements and 

mechanically simulates the fabric deformation process. The mechanical continuous model uses 

finite shell or membrane element to represent fabric. The mechanical bi-component model uses a 

combination of finite shell/membrane element and truss/beam element to model fabric. The 

mechanical discrete model incorporates the textile weaving pattern and describes each yarn or 

fiber individually. In the discrete model, yarn-to-yarn interactions and even fiber-to-fiber 

interactions can be gracefully reflected. Modeling fabric deformability at the fiber-level produces 
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the most accurate results. The DEA are adopted and the relative theories are detailed in Chapter 

5.  
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Chapter 3 - 3-D Woven Fabric Unit Cell Micro-geometry 

Fabric micro-geometry is determined by textile weaving mechanics. A dynamic DEA with 

periodic boundary conditions is developed to determine 3-D woven fabric unit cell micro-

geometry. 

Previously, two numerical procedures using DEA simulation were developed to determine 

textile fabric geometry. In one procedure, the textile process is simulated step-by-step as a quasi-

static process, thus consuming a great amount of computer resources. In the other procedure, 

fabric micro-geometry is derived through a static relaxation process. In static simulation, the 

global stiffness matrix must be solved in each simulation step. Fibers and yarns are so flexible 

that the global stiffness matrix is either singular or ill-conditioned. Special treatment must be 

added to improve the matrix condition, thus slowing convergent rates. During simulation, new 

contact elements are created and some old contact elements are removed. Thus, connectivity 

must be re-established between nodes during the simulation. Building a periodic boundary zone 

into quasi-static simulation would be a tedious procedure. It would be, at best, difficult to use a 

desktop PC to generate a complex 3-D unit-cell with a fine mesh. 

The dynamic relaxation process does not require the establishment of a global stiffness 

matrix, thus saving a vast amount of computer memory space and avoiding the problem of ill-

conditioned stiffness matrix. Introduction of the periodic boundary condition reduces the 

necessary material domain to a single unit cell plus a surrounding boundary zone. This approach 

generates high quality fiber- and yarn-level micro-geometries. 
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This chapter contains four sections: 1) Unit cell and yarn topologies, 2) Dynamic relaxation 

with periodic boundary conditions, 3) Yarn-level micro-geometry, and 4) Numerical results 

validation. Corresponding research work has been published in references [1][6][9]. 

 

3.1 Unit Cell and Yarn Topologies 

3.1.1 Unit Cell Topology 

Fabric micro-geometry is determined by textile process kinematics and kinetics. Kinematics 

defines fabric topology, and kinetics produces fabric detailed micro-geometry. Fabric topology 

relates to an essential weaving pattern in a fabric. Detailed micro-geometry concerns yarn paths 

and yarn cross-section shapes, as well as fiber arrangements within yarns. 

In a uniform fabric, the unit cell can be defined. A 3-D layer-to-layer fabric is shown in 

Figure 3-1a, including three repeated unit cells, each with two columns of wefts. Warps are 

located on two planes called warp sections. Two weaving diagrams, shown in Figure 3-1b, 

represent warp patterns on these two warp sections, respectively. The unit cell topology of this 3-

D woven fabric is characterized by the weft pattern matrix, denoted by We, and the warp pattern 

matrices, denoted by Wa.  

The dimension of We is determined by the total number of weft layers and the total number 

of weft columns. As shown in Figure 3-1a, weft yarns are arranged in 10 layers and 2 columns. 

As such, there are 10 rows and 2 columns in weft pattern matrix We. Each numeral in We 

represents the yarn type ID of a weft yarn in the corresponding locations. If no weft yarn is 

present in a location, “0” is filled into the corresponding location of the matrix. In the presented 

example, all wefts are made of the same type of yarn with the type ID of “1”. Therefore, all 

components in the matrix are defined as “1”. The weft pattern matrix defines the weft yarn 
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location and the weft yarn type ID. Yarn properties are defined in each yarn type: yarn cross-

section area, fiber longitudinal and transverse moduli, and fiber density. 

 

 
 

(a) 3-D layer-to-layer woven fabric (b) Weaving diagrams 

Figure 3-1  Weaving Pattern of a 3-D Woven Fabric 

 

 

(a) Weft pattern matrix 
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(b) Warp pattern matrices 

Figure 3-2  Weft Pattern Matrix and Warp Pattern Matrices 

 

Definition of the warp pattern matrix Wa is shown in Figure 3-2b. The picture on the left 

shows warp patterns. Warps in Section 1 are represented by solid black lines, and warps in 

Section 2 are represented by red dashed lines. In each section, each warp yarn is assigned a local 

warp ID. Warp ID numbers of Section 1 are in black and warp ID numbers of Section 2 are in 

red. The two tables on the right are the warp pattern matrices and yarn type ID vectors for 

Section 1 and Section 2, respectively. The dimension of the warp pattern matrix Wa is 

determined by the total number of warps in that section and the total number of weft columns in 

the unit cell. Nine warps are present for each warp-section and two weft columns are present in 

the unit cell. As such, both warp pattern matrices have nine rows and two columns. Each 

numeral in the matrix represents the interlacing location of the corresponding warp in the 

corresponding column. Because the warp pattern matrix does not include the yarn type ID 
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number, an additional yarn type ID vector is used to store the yarn type ID of each warp in the 

section.  

Interlacing locations of warps are defined by integers. Refer to the picture on the left of 

Figure 3-2b. In warp Section 1, warp #1 is above the 8
th

 weft layer and below the 9
th

 weft layer 

in the first weft column. The corresponding interlacing location is thus defined by integer “8”. In 

the second weft column, warp #1 is above the 10
th

 weft layer, therefore the interlacing location is 

defined as “10”. Interlacing locations of warp #1 are filled in the first row of warp pattern matrix 

Wa. As such, Wa (1, 1) = 8 and Wa (1, 2) = 10, as shown in the first table of Figure 3-2. Similarly, 

interlacing locations of warps #2, #3,…, #9 are defined and filled in the 2
nd

, 3
rd
,…, 9

th
 rows of 

Wa. The warp pattern matrix for Section 1 is thus generated. Likewise the warp section matrix 

for Section 2 is defined. Key points of warp yarns can be derived based upon the warp pattern 

matrix.  

 

 

Figure 3-3  Unit Cell Topology Generated by DFMA 
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Unit cell topology can then be generated by DFMA based upon information provided by the 

weft pattern matrix and warp pattern matrices. The unit cell topology of this example fabric is 

shown in Figure 3-3. 

3.1.2 Yarn/tow Structure and Digital Element Mesh 

The digital element mesh is created through two processes: yarn discretization and fiber 

discretization. In yarn discretization, each yarn is split into multiple digital fibers. In fiber 

discretization, each digital fiber is divided into many rod elements. 

Two types of yarn micro-structures include plain and twisted. A tow consists of either a 

single yarn or multiple yarns. A multi-yarn tow is typically formed through a twisting process. 

Yarn/tow structure is created through the digital element meshing process in which each tow is 

split into yarn(s) and each yarn is split into multiple digital fibers. 

3.1.2.1 Yarn discretization  

If a plain yarn is discretized into multiple digital fibers, all fibers within the yarn are parallel 

to each other and parallel to the original yarn centroid path. If a twisted yarn is discretized, all 

fibers rotate along the original yarn path with a defined twist rate.  

One procedure used to determine fiber paths within a yarn is shown in Figure 3-4 and Figure 

3-5.  

In the first step of the procedure, the yarn path is divided into iso-length segments connected 

by nodes as shown in Figure 3-4. For simplicity, only four segments are shown in the picture. 

The yarn path is represented by an approximate broken line  1 2 3  
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅.   1,  2,  3, and     are 

yarn cross-sections perpendicular to the yarn path. These cross-sections are assumed to be 

circular initially and will deform during the relaxation process. t1, t2, t3, and t4 are unit tangential 

vectors of the yarn path at nodes C1, C2, C3, and C4.  
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The second step of the procedure is to define coordinates on each cross-section. First, an 

arbitrary point, denoted as N1, is located at the circumference of cross-section S1. Then, a line is 

drawn parallel to  1 2
̅̅ ̅̅ ̅̅ ̅ from point N1. The line intersects S2 at a point denoted as N2.  1 2

̅̅ ̅̅ ̅̅ ̅ is 

parallel to      
̅̅ ̅̅ ̅̅ . Similarly,  2 3

̅̅ ̅̅ ̅̅ ̅ and  3  
̅̅ ̅̅ ̅̅ ̅ can be drawn, which are parallel to  2 3

̅̅ ̅̅ ̅̅ ̅ and  3  
̅̅ ̅̅ ̅̅ ̅, 

respectively. Thus, a broken line  1 2 3  
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , which is parallel to  1 2 3  

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅, is generated. The 

distance between  1 2 3  
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  to the yarn path   1 2 3  

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅  is equal to yarn radius R. Let 

coordinate vectors be ui and vi on each cross-section. The first coordinate vector ui is defined by 

a vector that starts from Ci and ends at Ni as shown in Figure 3-4. The second coordinate vector 

vi should be perpendicular to both the first coordinate vector ui and the yarn path tangential 

vector ti. vi is defined by the cross product of ti and ui, i.e., vi = ti × ui.  

 

 

Figure 3-4  Determine Coordinate Directions on Yarn Cross-sections 

 

The third step is to determine the fiber arrangement on each yarn cross-section. 

If a tow consists of only a single plain yarn, fiber arrangements on all cross-sections of the 

yarn are identical in their respective coordinate systems. An example is presented in Figure 3-5a. 

For simplicity, only three cross-sections, S1, S2, and S3, are shown and the yarn is discretized into 

only three fibers. Fiber cross-section areas are represented by red, green, and blue circles. As 
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demonstrated, the fiber arrangement on cross-sections S1, S2, and S3 are identical in shape and 

orientation. The center of each circle is identified as the intersection point of the corresponding 

fiber axial path and the yarn cross-section. Intersection points of a fiber with cross-sections S1, S2, 

S3 … are used as keypoints to generate the fiber path. As such, axial paths of all three fibers 

within the plain yarn are parallel to each other and parallel to the original yarn path  

 1 2 3……̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  .  

If the tow consists of only a twist yarn, fiber arrangement rotates around the original 

yarn/tow path with a specified twist rate. An example is shown in Figure 3-5b. The fiber 

arrangement rotates △𝛳 around the cross-section center from cross-section S1 to cross-section S2, 

and rotates an additional △𝛳 from cross-section S2 to cross-section S3. △𝛳 is derived by the 

product of the twist rate and the yarn segment length, i.e., △𝛳 = T × L, where T denotes the 

twist rate and L denotes the distance between two cross-sections.  

If the tow consists of multiple yarns formed through a twist process, the tow is split into 

yarns first. Yarn arrangement within a tow can be ascertained with the same method employed to 

establish fiber arrangement within a twisted yarn, as described in the previous paragraph. Each 

yarn is then discretized into digital fibers. 

Two principles are adopted during yarn/tow discretization: 1) the total cross-section area of 

fibers of a yarn/tow equals the original yarn cross-section area; and 2) all fibers are arranged 

inside the circumference of the original circular yarn/tow cross-section. As such, interference 

between fibers is inevitable immediately after discretization. These interferences are eliminated 

through numerical relaxation, discussed in the following section. 
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(a) Plain yarn 

 

(b) Twisted yarn 

Figure 3-5  Fiber Arrangement at Yarn Cross-sections 

 

Figure 3-6 displays typical patterns of initial yarn discretization used in DEA. The yarn 

discretization process is replicable, which means one yarn can be split into a specific number of 

fibers which can be further split. Whatever the splitting process, the sum of cross-section areas of 

all fibers within one yarn equals the cross-section area of that yarn. 

Figure 3-7 shows three different yarn structures: plain yarn, twisted yarn, and twisted tow 

composed of two plain yarns. 
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Figure 3-6  Different Yarn Discretization Patterns 

 

   

(a) A plain yarn (b) A twisted yarn (c) A twisted tow 

Figure 3-7  Different Yarn Structures 

 

3.1.2.2 Fiber discretization 

In order to avoid fiber-to-fiber interaction, each fiber must be discretized into a digital 

element chain after a yarn is discretized into multiple digital fibers. The element length is always 

shorter than the original fiber segments. As shown in Figure 3-8, the green dashed line is the 

fiber path prior to discretization, with the segment length of lo’. The blue solid line is the fiber 

path subsequent to discretization, with the element length of lo. The suggested element length 

ranges from 0.3 to 0.7 times the fiber diameter. The new fiber path is obtained by a linear 

interpolation along the original fiber path, so 
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           (3.1) 

where l1 and l2 are two segment lengths along the original fiber path. Element lengths along the 

new fiber path are slightly different from each other after element discretization, but they will be 

quickly unified in the simulation process. Element length adjustment is discussed in Section 

3.2.5. 

 

 

Figure 3-8  Element Discretization 

 

Figure 3-9 displays a fiber shape before and after a new element discretization. In the left 

picture, the ratio of element length (l) to fiber diameter (D) is 1. In the right picture, the ratio is 

0.5. 

 

  

(a) A fiber with l/D = 1 (b) A fiber with l/D = 0.5 

Figure 3-9  Fiber Before and After Element Discretization 
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3.2 Dynamic Relaxation with Periodic Boundary Conditions 

As discussed in Section 2.1.2.2.1, the solver of the DEA has employed quasi-static and static 

procedures. Major obstacles of these procedures include computer resources and computation 

speed. In this section, the dynamic relaxation process with periodic boundary conditions is 

explained. 

3.2.1 Nodal Force Calculation 

Four types of force are applied to each node: tension induced force, fiber-to-fiber contact 

induced force, damping force, and bending induced force. The first two forces have been 

introduced in previous literatures [3]-[5] and are reprised in this section for an integral view of 

DEA. The damping force is added to the dynamic relaxation in order to remove fabric kinetic 

energy during the simulation process. Because yarn bending stiffness is much smaller than either 

axial stiffness or contact stiffness, the bending induced nodal force is much smaller than the 

tension induced nodal force or inter-fiber contact induced nodal force. For this reason, bending 

induced force does not affect the final results of numerical simulation. In most numerical 

simulations, the bending induced nodal force is neglected. However, the bending moment 

induced nodal force needs to be calculated if stiffer metal wires are embedded in the fabric.  

3.2.1.1 Tension induced nodal force  

 

 

Figure 3-10  Tension Induced Nodal Force 
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Referring to Figure 3-10, node i is adjacent to two rod elements: element m and element n. 

The tensions of these two elements are 

   ⃗⃗ ⃗⃗  ⃗     
  ⃗⃗⃗⃗    ⃗⃗⃗  

  
 

  ⃗⃗  ⃗     
  ⃗⃗  ⃗    ⃗⃗⃗  

  
 

(3.2) 

where    is the digital fiber longitudinal modulus, A is the fiber cross-section area,    and    are 

lengths of element m and element n at the simulation step. The tension induced force applied to 

node i is 

  ⃗⃗       ⃗⃗ ⃗⃗  ⃗     ⃗⃗  ⃗ (3.3) 

3.2.1.2 Fiber contact induced nodal force 

 

  

(a) Contact force (b) Contact area 

Figure 3-11  Fiber Contact Induced Nodal Force 

 

Contact force calculation is described in Figure 3-11. Hertz contact theory [77] is adopted 

and an elastic contact is assumed. Contact force at each time step is defined as  
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   ⃗⃗⃗       ⃗  (3.4) 

where δ is the penetration displacement and kc is the contact stiffness, which is defined as 

   
    

  
 

      
  

  (3.5) 

where ET is the digital fiber transverse modulus, and Ac is the contact area and is defined in 

Figure 3-11b, in which 2a and lo denote width and length of the contact area, respectively.  

Contact width 2a is calculated from  

  √            √        √   (3.6) 

where r denotes fiber radius. This equation is derived with the consideration that δ is much 

smaller than r. 

Using Equation (3.6), Equation (3.5) is then rewritten as  

   
   √    

  
  (3.7) 

Integrating both sides of Equation (3.4) with Equation (3.7) substituted, the contact force is 

then expressed by  

  ⃗⃗⃗   ∫   

 

 

    ∫
   √    

  

 

 

    
   √   

   
    ⁄  (3.8) 

The nominal contact force is then described as  

  
 

⃗⃗⃗  
 

   √     
    

   ⁄  
 √      

   
(
 

 

⃗⃗ 
)

  ⁄

 (3.9) 

 

3.2.1.3 Damping induced nodal forces 

The damping force applied to each node can be expressed as 
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   ⃗⃗  ⃗   𝑐𝑣 ⃗⃗⃗   (3.10) 

where c is the damping coefficient and vi is the nodal velocity. The critical damping coefficient 

of the rod element [78] is 

𝑐    √     √
    

   
  (3.11) 

where m is the nodal mass. A non-dimensional damping ratio  is used as the input parameter. It 

is defined as 

   
𝑐

𝑐  
 (3.12) 

The recommended damping ratio range is 0.2 ≤  ≤ 1. 

The initial fabric geometry could be quite different from the minimum potential energy state 

fabric geometry. A damping ratio near 1 is required to remove kinetic energy quickly and 

prevent nodal vibrations at the start of the relaxation process. The damping ratio should 

subsequently be reduced gradually as the stability condition improves. The stability condition is 

controlled by nodal forces, nodal velocities, and total potential energy, all of which should 

approach minimums during the simulation. The damping ratio is automatically adjusted in the 

DFMA code throughout the relaxation process. The adjustment procedure is as follows 

1) Calculate L
2
-norm of nodal velocities as  

‖𝑣 ‖  √𝑣  
  𝑣  

  𝑣  
  (3.13) 

2) Find the maximum L
2
-norm of nodal velocities, denoted by ‖𝑣‖       

3) If  ‖𝑣‖      is larger than base velocity which is defined as 0.2-0.5, decrease the 

damping by 10%; otherwise, increase the damping by 10%.  
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3.2.1.4 Bending induced force 

 

 
 

Figure 3-12  Transverse Nodal Force and Nodal Moment Relations 

 

Refer to Figure 3-12. In order to incorporate the bending moment in the numerical simulation, 

node i is modeled as a torsional spring instead of a frictionless pin. Curvature of the fiber at node 

i can be calculated as 

    
  

  
 (3.14) 

Assume that Mi is the moment applied to the two adjacent elements. The relation of the 

moment Mi and angle i is determined by the bending rigidity of the digital fiber. The bending 

rigidity of a yarn is related to the moment of inertia of the digital fiber, which can be calculated 

as 

  
   

 

  

  
 (3.15) 

where r is the radius of digital fiber, Nd is the number of digital fibers per yarn, and Na is the 

number of actual fibers per yarn. Typically, Na is much larger than Nd. An actual yarn often 

consists of tens of thousands fibers. In numerical simulation, a yarn is typically split into less 

than 100 digital fibers.  

The Mi -i relation can then be derived as  
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 (3.16) 

Nodal forces at node i can be derived as  

   
   

  
 

     

  
  (3.17) 

 

3.2.2 Explicit Algorithm 

A central-difference explicit numerical algorithm [79] is utilized to calculate nodal 

accelerations, nodal velocities, and nodal displacements in the numerical simulation. It is 

described as 

      
     
  

 

 𝑣         𝑣             ∆𝑡 

 𝑢       𝑢     𝑣       ∆𝑡 

(3.18) 

where i denotes the nodal number, n the step number, and t the time step. Fi, mi, ai, vi, ui denote 

the nodal force, the nodal mass, the nodal acceleration, the nodal velocity, and the nodal 

displacement, respectively. In the explicit simulation, the time step t must be smaller than the 

critical time step tcr. 

Frequencies of contact elements are always lower than those of digital elements. As such, the 

critical time step for the digital element is used to calculate the critical time step for the 

numerical process, which can be expressed as 

  ∆𝑡   
  
𝑠

 
  

√  𝜌⁄
 (3.19) 

where s is the propagation speed along a digital element, and  is the fiber density.  
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The magnitude of critical time step tcr is related to the fiber axial modulus EL. The greater 

the fiber axial modulus EL, the smaller the critical time step tcr, and the smaller the tcr, the 

slower the numerical simulation. In general, the fiber axial modulus has an insignificant effect on 

the equilibrated fabric unit cell micro-geometry. Therefore, it is recommended that a modulus, 

which is much smaller than the actual fiber modulus, is used in the relaxation process. Fiber 

modulus used in simulation ranges 1% - 1‰ of that of actual fiber. 

3.2.3 Periodic Boundary Conditions 

A periodic boundary condition is employed in the DEA dynamic relaxation. The fabric unit 

cell is a non-continuum domain. During numerical relaxation, interior nodes within the unit cell 

may move to the boundary and boundary nodes may move to the interior. Furthermore, the 

boundary of the unit cell may change shape, as shown in Figure 3-13a. The two pictures on the 

left side represent the initial micro-geometry of an orthogonal woven fabric unit cell and the two 

pictures on the right side represent the micro-geometry after relaxation. The top two pictures are 

isometric views and the bottom two pictures are side views. Dashed rectangles in the side views 

represent the initial unit cell boundary. Side views show that subsequent to relaxation some 

fibers move outside the left boundary. These views also show empty spaces inside the right side 

of the boundary, which should be filled by fibers from neighboring cells. In order to calculate 

nodal force in the vicinity of the boundary, nodal locations from the neighboring unit cells must 

be known. As such, an external boundary zone must be added based upon the periodic principle, 

as shown in Figure 3-13b. The top picture is the side view of the unit cell only and the bottom 

picture is the side view of the unit cell with the periodic boundary zone. Two internal boundary 

regions are defined in the top picture, L, on the left and, R, on the right. Two external boundary 

regions are added to the unit cell in the bottom picture, L’ and R’. These are images of regions L 
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and R, respectively. Region L’ fits into region R and region R’ fits into region L. Region L’ 

belongs to the neighboring unit cell on the right side and region R’ belongs to the neighboring 

unit cell on the left side.  

 

 
(a) Geometry change under dynamic relaxation 
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(b) Side view (c) Top view 

Figure 3-13  Periodic Boundary Condition 

 

The top view of the mapping process is shown in Figure 3-13c. The green region is the unit 

cell and the brown region is the added periodic boundary. The boundary of the unit cell is 

divided into eight blocks: A, B, C, D, E, F, G, and H.  During the relaxation process, the renewed 

nodal locations inside the unit cell are calculated. Then a mapping process is adopted to 

determine the renewed nodal locations in the surrounding periodic boundary zone, i.e., the nodal 

positions in the brown area.   The surrounding boundary zone is divided into 16 blocks: 3 A’ 

blocks, 3 B’ blocks, 3  ’ blocks, 3 D’ blocks, and E’, F’, G’, and H’ blocks. Fiber micro-

geometry in blocks A’, B’,  ’, D’, E’, F’, G’, and H’ is identical to blocks A, B,  , D, E, F, G 

and H, respectively. 

The mapping process is conducted on the x-y plane by following  
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  𝑥  𝑥  𝐿 

  𝑦  𝑦  𝑊 

(3.20) 

where x’ and y’ denote nodal coordinates in external boundary zone, x and y denote nodal 

coordinates in internal boundary zone, and L and W denote unit cell length and width, 

respectively. The mapping length and mapping width, denoted by W and L in Figure 3-13c, 

respectively, are defined as approximately the distance between weft columns and the distance 

between warp sections, respectively. 

3.2.4 Contact Search 

In DEA simulation, 80-90% of computing time is used to search contacts between nodes. In 

order to reduce computing time, it is critical to establish an efficient algorithm for contact search. 

The search includes two processes. In the first process, the material domain is divided into 

many cubes as shown in Figure 3-14a. The size of these cubes, denoted as “a” in the picture, 

ranges from 1.2 to 1.5 times the fiber diameter. As such, it is only possible for each node to 

contact nodes in the same cube and nodes in the adjacent 26 cubes as shown in Figure 3-14b. If 

the distance between two nodes is smaller than the cubic size “a”, they are considered as a 

contact pair, expressed as (n1, n2). “n1” is called “contacting-node” and “n2” is called “contacted-

node”. Each contact would be searched twice, as (n1, n2) and (n2, n1), if the search for contacted-

nodes were conducted in all 27 cubes. To avoid double counting, a forward search algorithm is 

applied. For contacting node i in cube A, the paired “contacted-nodes” must be either inside the 

13 cubes marked “×” or inside cube A as shown in Figure 3-14b. Therefore, the search is first 

conducted in the 13 cubes marked “×”. Then, the search continues inside cube A for which a 

forward search algorithm is also designed. Assume that both node i and node j belong to cube A 
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and j > i. The contact pair (i, j) is accepted and the contact pair (j, i) is rejected. In addition, the 

contacting node and the contacted-node must belong to two different fibers.  

 

 
 

(a) Domain division 

 

(b) Related cubes 

 

 
 

(c) Contact pair search (d) Contact zone 

Figure 3-14  Contact Search 

 

The contact search is a time consuming process. In order to further improve code efficiency, 

the search for contacts is typically conducted every 50-100 simulation steps. Nodes in a contact 

pair are not necessarily in contact at the step that the search is conducted, but they might be in 
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contact in the next 50-100 simulation steps. Refer to Figure 3-14c. The green curve represents a 

fiber. For node i, all paired contacted-nodes are located inside the solid circle with node i as the 

center. The radius of the solid circle R’ is equal to the cubic size a, i.e., R’ = a. A dashed circle is 

located inside the solid circle and the radius of the dashed circle R is equal to the digital fiber 

diameter. Nodes inside the dashed circle are in contact with node i at the step that the search is 

conducted. Therefore, the area surrounded by the dashed circle is defined as the contact zone of 

node i. Nodes between the dashed circle and the solid circle are not in contact by node i at the 

step the search is conducted, but would be in contact in the ensuing simulation steps. As such, 

the area between the dashed circle and the solid circle is defined as the potential contact zone. 

Each node has a contact zone and a potential contact zone. In general, 2 to 10 contacted-nodes 

are located inside the contact or potential contact zones for a specific node, as shown in Figure 

3-14d.  

The second process of the search is conducted in every simulation step. This process checks 

the distance from every node to any other node located within its contact and potential contact 

zones. If the distance is smaller than the fiber diameter, contact occurs. The contact force is 

calculated as described in Section 3.2.1.2. 

3.2.5 Element Length Adjustment 

An initial tension is applied on each yarn to deform the fabric. Yarn tensions gradually 

decrease or even vanish during the relaxation. Simulation becomes less efficient or even stop. 

Therefore, a proper yarn tension must be maintained. During the simulation, the assumed 

original element length within a yarn must be adjusted to maintain the assumed yarn tension, 

which is thus named “targeted yarn tension” in DEA simulation. The adjustment procedure can 

be divided into the following sub-steps: 
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1) Determine the average stress of each yarn. The average yarn stress is calculated as  

  𝜎  
∑    

∆  
  

  
 
   

  
 

(3.21) 

where Ne is the total number of elements within the yarn.  

2) Yarn tension can then be calculated as  

       𝜎 (3.22) 

where Ay is the yarn cross-section area. 

3) If yarn tension Fy differs from the targeted yarn tension Ft , the original element length will 

be modified. The adjusted element strain is 

  ∆  
     

    
 (3.23) 

The original element length should be modified as 

         ∆   (3.24) 

The adjusted original element length will be used in the ensuing simulation step. By 

adjusting the original element length, the yarn tension approximates the target tension in the 

entire relaxation process. 

3.2.6 Numerical Procedure 

The numerical procedure of the dynamic relaxation is shown in Figure 3-15. Input data 

includes yarn properties, unit cell dimension, weft pattern matrix, and warp pattern matrices. The 

unit cell topology is determined based upon the input data. Digital element mesh is then 

generated by two processes: yarn discretization and fiber discretization. The following step is to 

define targeted yarn tensions, size of the periodic boundary zone, and simulation parameters, 

such as time step, damping coefficient, and so on. Numerical simulation then starts. Each 

simulation step includes four actions: 1) search contacts between fibers; 2) calculate nodal forces; 
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3) calculate nodal accelerations, velocities, and displacements within the unit cell; and 4) renew 

nodal displacements inside the external boundary zone through a mapping process based upon a 

periodic principle. Numerical simulation continues until nodal forces vanish, i.e., potential 

energy approaches a minimum state.  

 

 

Figure 3-15  Flowchart of the Numerical Procedure 
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3.2.7 Multi-level Dynamic Relaxation 

 

 
 

Figure 3-16  Multi-step Simulation 

 

Accuracy of the unit cell micro-geometry is related to the digital element mesh used in the 

numerical simulation. The finer the mesh, the more accurate the result. A multi-step, multi-level 

digital element mesh relaxation process is used. An example of multi-step, multi-level simulation 

is shown in Figure 3-16. The first picture is the unit cell topology. The first step of relaxation is 

performed with each yarn consisting of one digital fiber. The simulation result is shown in the 

second picture. Subsequently, each yarn is split into two finer fibers. The second step of 

relaxation is then conducted and the result is shown in the third picture. The process continues 
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and each yarn is split into more and more digital fibers with the total fiber area unchanged. The 

derived micro-geometry becomes increasingly accurate. In the final step of discretization, each 

yarn consists of 64 digital fibers. A high quality micro-geometry is obtained. Significant 

computing time is saved by using multi-level relaxation compared to single-level relaxation with 

a fine element mesh.  

 

3.3 Yarn-level Micro-geometry 

DEA simulations generate digital fiber-level micro-geometries, which can be used for fabric 

mechanics analysis. However, most textile composite FEM analyses are based upon yarn-level 

micro-geometry. For this reason, it is necessary to transfer fiber-level geometry into yarn-level 

geometry.  

The first step to derive a yarn-level micro-geometry is to determine the yarn axis and the yarn 

cross-section planes with coordinate vectors. The yarn axis is determined by the geometric center 

of all fiber axes of the yarn. Yarn cross-section planes are then defined and these planes are 

perpendicular to the yarn axis. Using an approach similar to one described in Section 3.1.2.1, the 

coordinate system of each cross-section can be defined. The next step is to generate a yarn cross-

section profile with a smooth perimeter. 

One example of fiber distribution on a yarn cross-section is shown in Figure 3-17. Small blue 

circles represent fibers. The yarn cross-section profile perimeter is determined through two sub-

steps. During the first sub-step, a “roughness roller” rolls counterclockwise on the yarn cross-

section, as shown in Figure 3-17a. The locus of the center of the roughness roller is the closed 

green curve. During the second sub-step, the roughness roller rolls on the inner side of the green 

curve, as shown in Figure 3-17b. The locus of the center of the roughness roller center is the red 
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curve, which is defined as the yarn cross-section profile perimeter. In general, the radius of the 

roller should be 5 to 20 times larger than the fiber radius. The size of the roller affects the 

smoothness of the generated profile perimeter. As such, it is named as “roughness roller”. The 

larger the roughness roller, the smoother the yarn cross-section profile perimeter. 

 

                     

(a) Sub-step 1 

 

(b) Sub-step 2 

Figure 3-17  Generate Yarn Cross-section Profile Perimeter 

 

The yarn’s cross-section profile is the outer envelope of its fibers. In order to create yarn 

surface, corresponding points on the perimeters of two neighboring yarn cross-sections are 

connected. Refer to Figure 3-18. ui-vi and ui+1-vi+1 denote two neighboring yarn cross-section 

planes. Oi and Oi+1 are centers of the two neighboring cross-sections, respectively. Pi, j and Pi, j+1 

are two adjacent points on plane ui-vi, and Pi+1, j+1 and Pi+1, j are two adjacent points on plane 

ui+1-vi+1. By connecting these points, a four-node element, Pi, j-Pi, j+1-Pi+1, j+1-Pi+1, j or two three-



73 

 

node elements, Pi, j-Pi, j+1- Pi+1, j and Pi, j+1-Pi+1, j+1-Pi+1, j can be created. In most cases, two 

neighboring yarn cross-sections are not parallel to each other, so nodes of a four-node element 

are not on the same plane, which will cause problems in creation of the solid yarn model. Hence, 

three-node elements of yarn surface are recommended. In addition, because the fiber area 

fraction within a yarn cross-section could vary along the yarn’s path, the yarn cross-section area 

may vary slightly. 

 

 

Figure 3-18  Yarn Surface Description 

 

In the fiber-level micro-geometry generated by DEA simulation, no interference occurs 

between fibers. Elements of yarn surface are numerically created based on fiber arrangements 

within that yarn only. Intersection could occur between these elements from two interlacing 

yarns. In order to eliminate interferences between these yarns, the fiber-to-fiber contact element 

length is increased by a factor, defined as the gap factor, if the two fibers in contact belong to 

different yarns. As a consequence, a gap is produced between two neighboring yarns in the fiber-
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level micro-geometry as shown in Figure 3-19a. The suggested gap factor ranges from 0.2 to 0.5. 

As such, interferences between yarns are eliminated, as shown in Figure 3-19b.  

 

  

(a) Fiber-level view (b) Yarn-level view  

Figure 3-19  Gap Between Two Contacting Yarns 

 

Figure 3-20 shows a yarn-level micro-geometry of a 3-D orthogonal woven fabric unit cell. 

The yarn-level geometry created by DFMA can be read by commercial FEM codes, such as 

ANSYS, SolidWorks and MSC Marc [23]. 

 

Figure 3-20  Yarn-level Geometry of Fabric Unit Cell 

 

3.4 Numerical Results Validation 

Numerical results are compared with experimental results in regard to: fabric thickness, fiber 

volume fraction, and fabric micro-geometry. 
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Thickness is measured using digital clipers or gauges on dry fabrics. Several locations are 

normally chosen and an average fabric thickness is reached. 

Fiber volume fraction is defined as  

𝑣  
  

  
 

𝑊  𝜌

𝐿𝑊 
 (3.25) 

where VF defines the total volume of fibers and VC the volume of composite. Total volume of 

fibers is defined by the division of the total weight of fibers WF to fiber density . The shape of a 

composite unit cell is assumed as a cuboid and the volume is defined by the multiplications of 

length L, width W, and height H of the unit cell.  

In oder to investigate the fabric micro-structure, the surface of the dry fabric or the composite 

is first observed using a microscope. Then, the composite specimen is sliced and interior micro-

structures are observed.  

3.4.1 Two Samples of Fabrics 

Two samples are selected for numerical and experimental results comparisons: 3-D woven 

angle interlock fabric and 3-D woven orthogonal fabric with twisted yarns. Both samples are 

provided by Materials Research & Design, Inc. (MR&D) [22].  

The first sample is woven from Nicalon CG yarns. The corresponding yarn denier number is 

1800 g/9000m. The fiber density is 2550 kg/m
3
. The second sample is woven from S-glass yarns. 

Wefts and warp stuffers are made of 250 S-glass yarns and warp weavers are made of 1250 S-

glass yarns. The yarn denier numbers of both glass yarns are 17874 g/9000m and 3575 g/9000m, 

respectively. The fiber density is 2460 kg/m
3
. However, it was found that the actual yarn denier 

number was greater than that defined in the datasheet. The reason for this discrepancy probably 

relates to the sizing process. The yarn’s denier number affects the calculation of the yarn’s cross-

section area, which, in turn, affects fabric thickness in numerical simulation. Therefore, the first 
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step of the experimental research was to measure the actual denier number using an analytical 

balance. The measured yarn denier numbers for Nicalon CG yarn, 250 S-glass yarn, and 1250 S-

glass yarn are 1988, 18926, and 3697 g/9000m respectively. The measured denier numbers are 

used to calculate the yarn cross-section area in numerical simulation. 

Figure 3-21a shows the weaving pattern of a 3-D angle-interlocking fabric. The solid ellipses 

and broken lines represent wefts and weavers, respectively. The unit cell has 68 weft yarns (17 

columns and 4 layers) and 9 weaver yarns. Fabric micro-geometry after simulation is displayed 

in Figure 3-21b, where each weft yarn and warp yarn respectively consists of 24 and 12 digital 

fibers. The black dashed lines on the fabric surface mark the unit cell domain. 

 

 

(a) Weaving pattern 

 

  

(b) Detailed geometry 

Figure 3-21  Sample 1: 3-D Woven Angle Interlock Fabric 

 

Weft Warp 
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Figure 3-22a depicts the weaving pattern of a 3-D woven orthogonal fabric. Solid ellipses, 

straight lines, and broken lines describe the wefts, warp stuffers, and warp weavers, respectively. 

The picture on the left depicts the weaving pattern at warp sections 1 and 2, and the picture on 

the right depicts the weaving pattern at warp sections 3 and 4. Warp stuffers and warp stuffers 

are in different sections. Warp stuffers are in sections 2 and 4, and warp weavers are in warp 

sections 1 and 3. Each unit cell contains 14 wefts (2 columns and 7 layers), 12 warp stuffers, and 

6 warp weavers. In DEA simulation, a twist yarn is represented by 19 digital fibers. 

Corresponding fabric micro-geometry is shown in Figure 3-22b. Black dashed lines on the fabric 

surface mark the unit cell domain.  

 

  

Warp sections 1 and 2 Warp sections 3 and 4 

(a) Weaving pattern 

 

Weft 

Warp stuffer 

Warp weaver 
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(b) Detailed geometry 

Figure 3-22  Sample 2: 3-D Woven Orthognal Fabric with Twisted Yarns 

 

3.4.2 Comparison with Experimental Results 

Microscopic pictures of the first sample are provided by MR&D and the experiments of the 

second sample are conducted at Kansas State University Composites Lab. 

Comparisons of fabric thicknesses are listed in Table 3-1. For the first sample, thickness 

obtained from the numerical simulation is nearly 10% smaller than thickness from the 

experimental measurement. This is because the actual fabric micro-geometry is affected by many 

effects, such as the weaving speed, beat-up speed, and yarn tension. Hence, the micro-geometry 

of the actual fabric may not be the one that reaches the minimum potential energy state. For the 

second sample, fabric thickness derived from numerical simulation is only slightly (1.71%) 

thinner than that of the actual fabric. This is because twist rate plays a more important role than 

weaving kinetics to determine fabric thickness. Thus, the cross-section deformation of twisted 

yarn is more restrictive than that of plain yarn. 
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Table 3-1  Comparison of Fabric Thicknesses 

 

Experimental results 

(m) 

Numerical results 

(m) 
Discrepancy 

Sample 1 0.00310 0.00274 -11.61% 

Sample 2 0.00879 0.00864 -1.71% 

 

Comparisons of fiber volume fractions are listed in Table 3-2. It shows that the simulation 

result is 5~10% larger than the experimental measurement. This may be because thickness from 

the numerical simulation is smaller than that of the experimental measurement, while other 

parameters are correspondingly equal. Refer to the calculation of fiber volume fraction in 

Equation (3.25). 

 

Table 3-2  Comparison of Fiber Volume Fractions 

 

Experimental results 

(%) 

Numerical results 

(%) 
Discrepancy 

Sample 1 39.12 42.15 7.75% 

Sample 2 48.04 51.9 8.03% 

 

Micro-structures of numerical results are also compared with microscopic images, as 

displayed in Figure 3-23 and Figure 3-24.  
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(a) Fabric surface pattern comparison 

 

  

(b) Warp section comparison (c) Weft section comparison 

Figure 3-23  Fabric Micro-structure Comparison of Sample 1 
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For the first sample, micro-structure comparisons are shown in Figure 3-23. The surface 

appearance comparison is shown in Figure 3-23a. The first picture is the microscopic image of 

the fabric, the middle picture is a fiber-level surface pattern derived by numerical simulation, and 

the third picture is a yarn-level microstructure. Microscopic images of the fabric’s interior cross-

sections are then compared to numerical results in Figure 3-23b and Figure 3-23c. Figure 3-23b 

shows warp-direction cross-sections and Figure 3-23c shows weft direction cross-sections. The 

two pictures in the upper positions are microscopic images, and the two pictures in the lower 

positions are derived from numerical simulations. Desirable visual agreement is reached between 

exprimental and numerical results.  

 

 

Figure 3-24  Fabric Micro-structure Comparison of Sample 2 
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For the second sample, micro-structure comparisons are shown in Figure 3-24. The top 

pictures are experimental investigations, and the bottom pictures are numerical simulations. 

Micro-structures are compared in three different views: fabric surface, warp section, and weft 

section. Good visual agreements between experimental results and numerical results are also 

achieved. 

 

3.5 Remarks 

A dynamic DEA with periodic boundary conditions is presented to determine 3-D woven 

textile micro-geometries. DEA generates fabric micro-geometry from the unit cell topology to 

unit cell detailed geometry. Both fiber- and yarn-level micro-geometries of various 3-D woven 

fabrics with complex patterns can be derived using a PC.  

Unit cell topology is established based on weft pattern matrix and warp pattern matrices with 

yarn properties assigned. Different yarn discretization patterns are provided, from 2 fibers per 

yarn to 91 fibers per yarn. Different yarn/tow structures are generated, including plain yarn, 

twisted yarn, and twisted tow.  

An explicit algorithm with a periodic boundary condition is introduced. Nodal forces existing 

in DEA simulation are tensile force, fiber-to-fiber contact force, damping force, and bending 

force. A central difference algorithm is adopted to calculate nodal forces, accelerations, 

velocities, and displacements within the unit cell. Renewed nodal displacements within the unit 

cell are then mapped to the external boundary zone based on the periodic principle. An efficient 

contact search algorithm is proposed to reduce the calculation time. A multi-level dynamic 

relaxation procedure is also implemented in order to save even more computer resources. A 
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yarn-level unit cell micro-geometry is created, which is also able to be read by commercial 

software for further analysis.  

Two samples are provided to compare numerical simulations and actual fabrics: 3-D woven 

angle interlock fabric and 3-D woven orthogonal fabric with twisted yarns. Comparisons are 

made on three aspects: fabric thickness, fiber volume fraction, and fabric micro-structure. Good 

agreements are reached between numerical and experimental results. 
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Chapter 4 - 3-D Woven Near-Net Shape Fabric Component 

Near-net shape manufacturing technology can yield a component whose shape is near to the 

net-shape product. It has become an appealing technology in the composite industry and has 

been employed in making various complex 3-D composite products. The major advantage of this 

technology is that it guarantees product inherent toughness with minimum debulking treatment 

on the composite reinforcement. For example, in making a turbine blade, the traditional way is 

laminating a number of layers of 2-D composites with different shapes. This will take laborious 

work to make the laminates, and even worse, it will cause the product with high possibility of 

delamination failure. If a conventional 3-D weaving technology is adopted to create a uniform 

composite preform with unit cell feature, then a significant amount of work will be required to 

remove extra portions, and even worse, the inherent toughness of the structure will be 

undermined. As such, the near-net shape fabric weaving technology will be an excellent choice.  

Near-net shape technology creates a single fabric component with complex structure. At the 

macro-scale, the fabric shows a shape near to the final composite component. At the micro-scale, 

complex yarn-to-yarn interactions are presented and yarn shape is described by fiber 

arrangements in each yarn. In order to accurately reflect the fabric geometry, a full field 

relaxation is required in simulation of the near-net shape fabric. A powerful data and memory 

management, parallel processing, is conducted to handle the relatively great amount of memory. 

This chapter contains two sections: 1) Full-field fabric relaxation, and 2) Comparison with 

experimental results. Corresponding research work has been published in reference [10]. 
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4.1 Full-field Fabric Relaxation 

Figure 4-1 shows a numerical model of a net-shape composite component. The composite 

component has a complex structure and its preform is made by 3-D woven near-net shape 

manufacturing. The 3-D near-net shape fabric is woven as a single component and needs a full-

field simulation.  

 

 

Figure 4-1  3-D Woven Net Shape Composite Component 

 

In the DEA, to model a uniform fabric with unit cell feature, one only needs to simulate its 

unit cell with periodic boundary conditions and make structural copies of unit cell. To model a 

near-net shape fabric, a full-field simulation is required and other theories used in simulation of 

fabric unit cell are used except the periodic boundary condition.  
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A full-field relaxation models the entire fabric at the fiber level and uses much more memory 

than the availability of a general personal computer. As such, a powerful simulation management, 

the parallel processing, is adopted.  

 

4.1.1 Boundary Conditions 

A fabric is often woven as a single component from a dynamic weaving process [6]. Three 

actions are present in a typical weaving process: weft insertion, beating up, and warp weaving. 

Refer to Figure 4-2. In weft insertion, the shuttle takes a weft yarn and moves across the weaving 

loom back and forth. In beating up action, the reed beats the inserted weft against the newly 

formed fabric. In the ensuing weaving action, warps move either upward or downward to create 

a fabric with a specific pattern. A schematic of the resulting fabric is shown in the left portion of 

Figure 4-2. 

 

 

Figure 4-2  3-D Weaving Loom [6] 
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In simulation of the 3-D woven near-net shape fabric, boundary conditions that respect the 

actual weaving physics need to be applied. In reality, weft yarns are connected to be a global 

single yarn. Hence, all fibers in the global yarn are also internally connected. In numerical 

simulation, digital weft yarns are connected but only a portion of digital fibers of each weft yarn 

are connected in order to eliminate irregularities at connecting ends. A view of A-A from the 

fabric described in Figure 4-2 is displayed in Figure 4-3a. Only fibers marked with dashed 

centerlines in weft yarns are connected. The arrows indicate directions of weft insertion in the 

weaving action. During the relaxation process, fibers move toward the direction where the 

minimum potential energy can be reached. Consequently, weft connections are also able to keep 

warps running out of the fabric domain. A view of B-B from the fabric described in Figure 4-2 is 

described in Figure 4-3b. Similarly, warps ends are open and wefts tend to move laterally. Since 

fiber-to-fiber frictions are not considered, those wefts may also move out of the fabric domain. 

Thus, virtual boundary walls are set at both ends of warps to block the weft lateral movements. 

 

 

(a) Side view (A-A) 
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(b) Front view (B-B) 

Figure 4-3  Boundary Conditions 

4.1.2 Parallel Processing 

Parallel processing conducts numerical simulation by simultaneously using multiple cores or 

processors. Each core is responsible for a portion of the entire simulation and communicates with 

neighboring cores at the end of calculation at each simulation step. In genearal, calculation speed 

increases as the number of processors increases. However, a linear speed up may not be present. 

Hence, optimal numbers of processors are also studied for parallel calculation. 

4.1.2.1 Data Management Principle 

In the DEA, data of a fabric include nodal force, nodal acceleration, nodal displacement, etc. 

Parallel processing starts with distributing the fabric data into a number of sections. The number 

of sections equals the number of processors used for calculation. The width of each section 

depends on the size of data it contains. Data distribution ensures each section contains 

approximate data size so that corresponding calculation time is approximately equal. Data 

distribution is a one dimensional split, either in x direction or y direction. For fabric with a fairly 

uniform shape, an equal width for each section is assigned.  
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(a) Data distribution 

 

 

(b) Data exchange 

Figure 4-4  Data Management 

 

Refer to Figure 4-4a. Data of fabric are split into n sections in x direction with each section’s 

width of l. Each section does not share any data with its adjacent sections. A medium of 

communication must be established among those sections.  

Fabric is a non-continuum domain during simulation. An element could cross over the 

section. For example, the element ○e  is constructed by node p and node q, while the former node 

is in section i and the latter is in section i+1. In order to calculate the information of node p, e.g., 

tensile force, node q at the other end of element ○e  should be able to be accessed. As such, two 

strips are split out at both ends of each section to provide additional information for neighboring 
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sections to reach. Strip width, noted by , ranges 1~3 times of element length. Each section and 

two strips from neighboring sections then construct one rank. For sections at both ends of the 

fabric domain, section 1 and section n, their corresponding ranks are one section and only one 

strip. During the simulation, nodes always move and may move in and out of the same rank. For 

example, node k moves from rank i to rank i+1 after a period of simulation steps. Node i’s 

information will be lost if it is still treated as in rank i. Consequently, data redistribution is 

required. Since redistribution takes considerable time, it is conducted at every 50~100 steps, 

depending on the speeds of nodal movements. 

Data of each rank is under the management of each processor. Refer to Figure 4-4b. Each 

rank consists of five blocks. Blocks 1, 2, and 3 contain the same data with corresponding section 

and blocks 0 and 4 contain the same data with two corresponding strips beyond that section. At 

each simulation step, blocks 1, 2, and 3 conduct calculations of nodal force, nodal acceleration, 

nodal displacement, etc., and then send the results in blocks 1 and 3 at current rank into blocks 4 

and 0 at neighboring ranks, respectively. Thus, data at the boundaries of each section can be 

calculated.  

4.1.2.2 Computation Evaluation  

Numerical simulation of the full-field fabric is performed on an IBM parallel cluster. The 

cluster has 1 head node and 12 compute nodes. The head node is IBM System ×3650 M3 with 

2TB disk usable and Intel Xeon Processor ×5650. The compute node is IBM System ×3755 M3 

with 48 cores, 128 GB RAM, and AMD Opteron Processor Model 6172. The cluster has a total 

of 576 compute cores with 1.5TB RAM.  

Different numbers of fibers per yarn are studied in modeling the fabric: 1, 7, and 14. The 

numbers of nodes for these three representations of fabric are 1 million, 12 million, and 34 
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million. Meanwhile, different numbers of processors are used in order to find the most efficient 

calculation. Calculation time of 100 simulation steps is studied. Refer to Table 4-1. For each type 

of fabric representation, when the number of processors increases, calculation time decreases 

accordingly. When the number of processors is more than 96, the decreasing speed of time is 

considerably slow. For fabric with 14 fibers per yarn, calculation time is absent by using two and 

four processors because the memory needed is too large to handle by using a small number of 

processors. 

Table 4-1  Computation Time on Parallel Cluster 

Processors 
Time (min, 100 steps) 

1 fiber/yarn 

(1 million nodes) 

7 fibers/yarn 

(12 million nodes) 

14 fibers/yarn 

(34 million nodes) 

2 1.21 28.81 N/A 

4 0.60 14.52 N/A 

8 0.31 7.49 40.03 

16 0.17 3.78 17.88 

32 0.10 2.11 10.49 

64 0.07 1.28 5.21 

96 0.055 0.9 3.5 

104 0.052 0.86 3.51 

128 0.05 0.83 3.51 

 

Relation of time and processor and relation of time and fibers/yarn are also drawn in Figure 

4-5 and Figure 4-6. In Figure 4-5, the horizontal axis describes the number of running processors, 
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and the vertical axis describes the corresponding time taken for every 100 simulation steps, 

expressed as a logarithmic function. Linear or nearly linear speed up can be found when the 

number of processors is less than 96 processors. Beyond that, the speed up distinctly decreases. 

Hence, the number of processors around 96 can be selected for simulation of all these types of 

fabrics. In Figure 4-6, the horizontal axis describes the number of fibers per yarn, and the vertical 

axis describes the corresponding time taken for every 100 simulation steps, expressed as a 

logarithmic function. As the number of fibers per yarn increases, simulation time also increases 

and increasing slopes for all processors are approximate. 

 

 

 

Figure 4-5  Computation Time Speed Up: Time vs. Processors 
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Figure 4-6  Computation Time Speed up: Time vs. Fibers/Yarn 

4.1.2.3 Post-processor 

After the simulation completes on parallel cluster, a post-processor is developed to transfer 

the data from the cluster to PC. The post-processor collects simulation results and performs a 

further partition process. The number of processors used in post-processor is much less than the 

number of processors used in simulation, and it also determines the number of fabric sections to 

display on PC.  

Two ways of partitioning fabric data by post-processor exist, depending on whether or not a 

further digital element mesh is necessary. Referring to Figure 4-7, the first one illustrates 

partition by section and the second illustrates partition by rank. If no further digital element mesh 

is required, then the first partition is adopted, which will break the integrity of a weft yarn and 

divide one fiber into many segments, with some segments in the current section and others in the 

neighboring section. If the digital element mesh is further needed, then the second partition is 
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adopted. In order to keep every warp yarn monolithic, additional data will be provided beyond 

that section. Those data are in located in a strip with the width of , which is approximately the 

width of the weft column. As such, warp yarns will be cut by sections and weft yarns by ranks.  

After the partition is complete, fabric can be displayed on PC either as a whole piece or 

section by section. 

 

 

  

 (a) Partition by section (b) Partition by rank  

Figure 4-7  Partition of Fabric by Post-processor 
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4.2 Comparison with Experimental Results 

Full-field numerical simulation of the near-net shape fabric is shown in Figure 4-8. 

Numerical results will be compared with experimental results in two aspects: fabric thickness 

and micro-structures. In modeling the fabric, 14 fibers per yarn are adopted. Experiments are 

conducted by Albany Engineered Composites, Inc. 

 

 

Figure 4-8  3-D Woven Near-net Shape Fabric 

 

Several typical locations are picked for thickness verification, as seen by A, B, C, D, and E in 

the picture. In the experimental measurement, a standard thickness gauge is used and two 

different pressures are applied, 10 oz/in
2
 and 32 oz/in

2
. Results of comparisons are listed in 

Figure 4-9. The green, red, and blue bars describe numerical results free of pressure, 

experimental results with the pressure of 10 oz/in
2
, and experimental results with the pressure of 

32 oz/in
2
, respectively. Thicknesses under the pressure of 32 oz/in

2
 are 10~15% smaller than 

those under the pressure of 10 oz/in
2
. The latter are also 5~10% smaller than numerical 

thicknesses, which are obtained without any pressure applied. 

 



96 

 

 

Figure 4-9  Fabric Thickness Comparison 

 

In order to investigate micro-structures, the preform specimen is consolidated by resin and 

then cut into several pieces, as seen in Figure 4-10a. Micro-structures of cross-sections H-M and 

H-R of piece H are studied. Satisfactory visual agreements are reached between numerical 

simulation and experimental observation, as seen in Figure 4-10b and Figure 4-10c, respectively. 

 

 

(a) The entire sliced specimen 
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(b) Cross-section H-R 

 

 

 

(c) Cross-section H-M 

Figure 4-10  Micro-structure Comparison 

 

4.3 Remarks 

A 3-D woven near-net shape fabric is modeled using dynamic DEA by a full-field relaxation. 

All theories used in modeling the fabric unit cell discussed in Chapter 3 are adopted except the 

periodic boundary condition.  
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In setting up the boundary condition, weft yarns are connected and boundary walls are added 

at both ends of warp yarns. These settings can keep fibers running out the fabric domain during 

the simulation process. 

For the full-field relaxation, a parallel processing is performed to handle the large amount of 

memory. In studying the speed up of parallel computing, different numbers of computing 

processors are used and three different numbers of fibers per yarn, 1, 7, and 14, are adopted for 

fabric representation. Optimal number of processors is found for parallel processing. 

Numerical results are compared with experimental results on two aspects: fabric thickness 

and fabric micro-structures. Satisfactory agreements are reached. 
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Chapter 5 - 3-D Woven Net-shape Composite and Molding Process 

A net-shape composite is a final composite product, such as a rib composite structure and a 

turbine blade. It directly serves as a net part in the whole system. To make a composite part, 

many composite manufacturing processes have been adopted and the resin transfer molding 

(RTM) process is a common one. In a typical RTM process, fabric is first placed between two 

molds; then the top mold moves towards the bottom mold and deforms the fabric accordingly; 

the fabric fully conforms to the cavity shaped by both molds. Meanwhile, resin is injected to 

consolidate the fabric into a composite part.  

In modeling the fabric reinforced composite and corresponding molding process, common 

simulation issues are: fabric representation, mold surface representation, and mold-to-fabric 

contact modeling. In fabric representation, two models are commonly adopted: continuum model 

and discrete model. The former uses finite shell or membrane element and only focuses on the 

macro-level deformation. The latter models each yarn and needs empirical or experimental 

results for yarn shape determination. Researchers at Kansas State University have developed a 

sub-yarn model DEA, which can correctly reflect the fabric micro- and macro-geometry. In mold 

surface representation, three-node or four-node elements generated by commercial software are 

generally used. This may involve inconveniences of searching for contact between mold and 

fabric. The author has suggested a standard mesh to overcome this issue. Mold-to-fabric contact 

is modeled by a spring-like element with one-way movement. 

Fabric representation has been discussed in Chapter 4. Other issues are covered in this 

chapter in four sections: 1) Mesh of mold surface; 2) Nodal force calculation; 3) Dynamic 
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molding procedure; and 4) Numerical results. Corresponding research work has been published 

in reference [10]. 

 

5.1 Mesh of Mold Surface 

A mold surface, created by SolidWorks, is shown in Figure 5-1a. The mold needs to be 

meshed in order to build contacts with fabric. 3-D triangluar elments are first adopted for the 

mesh, as seen in Figure 5-1b.  

 

 

 

Figure 5-1  Mold Surface and Its Triangular Mesh 

 

Because the mold mesh is irregular, difficulties arise in identifying contact points on the 

mold mesh. This is because all triangluar elements have to be searched to locate the contact point 

on mold mesh for a node on fabric, which is time consuming. Hence, a standard mesh is 

proposed to facilitate contact establishment. Referring to Figure 5-2, procedures of mesh 

conversion are as follows: 

1) On the x-y plane, build a mesh whose elements are all quads with the size of a.  
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2) Locate the projection of an element of mold mesh on the x-y plane. For the element 

1-2-3, its projection on the x-y plane is 1’-2’-3’.  

3) Determine which nodes of quad element mesh on the x-y plane are inside the 

projection element. For example,  j’ is inside 1’-2’-3’. 

4) Finds the intersection node between a vertical line starting from the node identified in 

step 3 and the element of the mold mesh. For example, a vertical ine starting from 

node j intersects the element 1-2-3 at node j. Node j’ can be thus treated as a 

projection of node j on the x-y plane. 

5) Calculate cooridnates of the intersection node identified in step 4. For node j, its x 

and y coordinates are identical to those of node j’, and its z-coordinate is calculated 

by  

332211 zNzNzNz j   (5.1) 

where z1, z2, and z3 are the vertical distances between the nodes of element 1-2-3 and 

nodes of element 1’-2’-3’, respectively; N1, N2, and N3 are the shape functions that 

can be calculated on the x-y plane respectively by 
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where A, A1, A2, and A3 denote the areas of elements 1’-2’-3’, 2’-j’-3’, 1’-j’-3’, and 

1’-j’-2’, respectively, as seen in the right picture of Figure 5-2. 

The same procedure is applied to other triangular elements of the mold surface. Thus, new 

mesh of the mold surface is formed, as seen in Figure 5-3. The red curve marks the original mold 

surface and black dots describe the nodal positions of new mesh. In this standard mesh, the mold 

surface is discretized into four-node elements, with each element having a square projection on 

the x-y plane and having an exact size, as seen in Figure 5-3b. In addition, fabric domain is also 
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marked using the green box in the second picture. It is seen that new mesh of the mold surface 

has been extended. This is to completely cover the fabric so that the boundary irregularities are 

eliminated during the molding process simuation. The standard mesh also allows an easy mesh 

partition for parallel processing. 

 

 

 

Figure 5-2  Mold Mesh Conversion 

 

 

 

(a) 3-D view 
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(b) Top view 

Figure 5-3  Standard Mold Mesh 

 

5.2 Nodal Force Calculation 

In simulation of the molding process, nodal forces that exist in modeling the fabric unit cell 

or fabric are still maintained: fiber tensile force, fiber-to-fiber contact force, and damping force. 

Details have been presented in Section 3.2.1. During the molding process, mold movement 

creates mold-to-fabric contact force that leads to fabric deformation. Fabric will eventually 

conform to the cavity shape formed by both molds. In addition, mold-to-fabric force may cause 

irregularities of fiber arrangements especially at fabric boundaries. Consequently, fiber-to-fiber 

friction is added to generate sufficient fiber-to-fiber sticking force during the molding process. 

As such, two forces will be discussed in this section: 1) Fiber-to-fiber friction force, and 2) 

Mold-to-fabric contact force. 

 

5.2.1 Fiber-to-Fiber Friction Force 

Fiber-to-fiber friction force is generated by nodal movements and the relevant contact 

evolution. Refer to Figure 5-4a. There are two fibers, the solid curve on the left denotes fiber 1, 
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and the dashed curve and the solid curve on the right respectively denote fiber 2 before and after 

one step movement. Node i at position 0, denoted by i(0), is on fiber 1, and node j at position 1, 

denoted by j(1), is on fiber 2 before movement. Assume j(1) is in contact range of i(0). Then j(1) 

and i(0) can be called a contact pair. After one simulation step, j(1) moves to position 2, denoted 

by j(2), while assuming node i stays at position 0 and j(2) is still in the contact range of node i. 

Then j(2) and i(0) are the new contact pair. A friction force is thus created by nodal movement. 

Let vectors u1, u2, and u12 describe the direction of contact element at previous step, the direction 

of contact element at current step, and contact element deformation, respectively. The contact 

element deformation can then be decomposed along current contact direction and its orthogonal 

direction. Figure 5-4b shows a decomposition of vector u12 at j(2), where orthogonal vectors un 

and us describe nodal movements in current contact direction and the sliding direction, 

respectively. Fiber-to-fiber contact force calculation has been introduced in Section 3.2.1.2. For 

fiber-to-fiber friction force, it is expressed along the sliding direction by 

Fs  = -kcls (5.3) 

where  is the friction coefficient, ranging between 0.1~0.7, kc is the fiber-to-fiber contact 

element stiffness and its calculation is presented in Section 3.2.1.2, and ls is the length of vector 

us. 

A Coulomb friction model [80] is used to account for the sliding of two fiber surfaces. If |Fs| > 

Fn, sliding will occur and then let |Fs| = Fn, where Fn denotes the contact force. 
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(a) Contact evolution (b) Decomposition of vector u12 

Figure 5-4  Friction Force Calculation 

 

5.2.2 Mold-to-Fabric Contact Force 

Mold-to-fabric contact force plays a major role in deforming the fabric. Contact elements are 

inserted between mold and fabric. In general, mold-to-fabric contact element length is set 

approximately to the digital element length which is half the fiber diameter. A shorter contact 

element length should be accompanied with larger contact element stiffness to create a 

reasonable contact force. But this setting has two disadvantages: establishing an exact contact 

element from each node on fabric to mold surface is inefficient; larger contact element stiffness 

may incur simulation instability. Thus, fairly long contact element length with relatively small 

contact element stiffness is adopted. Contact element length can be set at the magnitude of fabric 

dimension, allowing quicker mold movement with the simulation stability assured. Figure 5-5 

shows a 2-D view illustration of mold-to-fabric contact element approximation. For node i on the 

fabric, ideally, the contact element should be element i-k with the length of l’ and the element is 

perpendicular to the mold surface. Since mold surface has a low curvature and the distance of mold-
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to-fabric is fairly long, element i-k can be represented by the vertical element i-j with the length of 

l.  

 

 

Figure 5-5  Mold-to-fabric Contact Element Approximation (2-D View) 

 

 

Calculation of mold-to-fabric contact element is described in Figure 5-6. As seen in Figure 

5-6a, node i is on fabric, element 1-2-3-4 is an element of standard mold mesh, the quad element 

1’-2’-3’- ’ is the projection of element 1-2-3-4 on the x-y plane, point j is the contact point 

between the vertical element passing node i and the element 1-2-3-4. Point j’ is the projection of 

point j on x-y plane. The contact element length between node i and point j is determined by 

44332211 zNzNzNzNl   (5.4) 

where z1, z2, z3, and z4 are vertical distances between node i and four nodes of the mold element 

1-2-3-4, respectively. N1, N2, N3, and N4 are the shape functions that can be calculated on the x-y 

plane, as seen in Figure 5-6b:  
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where a is the element length of 1’-2’-3’- ’, and x and y are the distances between the point j’ 

and the center of this square element, denoted by point o, on the x-y plane. 

Mold-to-fabric contact force is then calculated as 

Fm = kml (5.6) 

where km is the mold-to-fabric contact element stiffness, and l is the contact element shortening 

at each simulation step. 

 

 

(a) 3-D view 
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(b) Shape function calculation on x-y plane 

Figure 5-6  Mold-to-fabric Contact Element Calculation 

 

5.3 Dynamic Molding Procedure 

The dynamic molding process is described in Figure 5-7.  

Figure 5-7a describes the initial settings. Fabric is placed between two molds, while the top 

mold is fixed and the bottom one is free to move. Contact elements are set up according to the 

shortest distance between fabric and each mold. The shortest distance is also the defined contact 

distance l0. If the vertical distance from a node on the fabric to the mold surface is smaller than 

defined contact distance, a contact element is then inserted. 

After initial settings are established, the bottom mold moves upwards to deform the fabric. 

During each step of the movement, the distance from the node on fabric to each mold surface is 

checked to determine whether a mold-to-fabric contact element needs to be established. Contact 

forces are then applied and fabric deforms accordingly. The bottom mold continues to move 

upwards and more and more contact elements are added. A deceleration is assigned to the mold 

movement so that adequate relaxation time is provided for fiber movements when the fabric 
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receives more external contact forces. Bottom mold stops until lengths of all contact elements are 

equal, as seen in Figure 5-7b. At this balanced position, fabric fully conforms to mold shapes. 

Figure 5-7c shows a finished product, which is formed after removing both molds and the 

corresponding contact elements at the balanced position. Mold-to-fabric friction and resin effect 

are both neglected in the simulation of this molding process. 

 

 

(a) Initial settings 

 

 

(b) Final balanced positions 
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(c) Finished product 

Figure 5-7  Dynamic Molding Process 

 

5.4 Numerical Results 

Numerical simulations of fabric reinforced composite obtained from the molding process are 

shown in Figure 5-8. 

Fabric macro-geometry after the molding process is shown in Figure 5-8a, where the red 

curve marks the original mold surface profile. Fabric has gracefully conformed to the extended 

mold shapes. It is then trimmed to be a net-shape fabric reinforced composite component that 

follows original mold shapes, as seen in Figure 5-8b. The net-shape component is then sliced for 

micro-geometry observation. Section A-A, displayed in Figure 5-8c, presents various thicknesses 

at different locations. This shape reaches the targeted shape without surface debulking. A local 

view of sliced section A-A, section A’-A’, is shown in Figure 5-8d. Every digital yarn is 

represented by 14 digital fibers and various yarn shapes are also presented. 
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(a) Molded fabric 

 

 

(b) Net shape composite component 

 

 

(c) Section view (A - A) 
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(d)  ection view (A’ - A’) 

Figure 5-8  Macro- and Micro-geometries of Net Shape Composite 

 

5.5 Remarks 

A fabric reinforced composite and the corresponding molding process are simulated. Fabric 

is modeled using dynamic DEA. Mold surface is represented by a standard mesh. In this standard 

mesh, projections of elements of the mold mesh on the x-y plane are all quad elements. Contact 

between mold and fabric is modeled using long vertical element. Standard mold mesh and the 

long vertical element are able to facilitate the mold-to-fabric establishment and contact force 

calculation. The long vertical element with soft contact element stiffness also allows quicker 

mold movement with the stability of fabric deformation guaranteed. 

Besides nodal forces introduced in Chapter 3, two other nodal forces are discussed: mold-to-

fabric contact force and fiber-to-fiber friction force. The former is to deform the fabric and the 

latter is to reduce irregularities of fiber arrangements especially at fabric boundaries. The 

dynamic molding procedure is explained: fabric is placed between two molds while the top one 

is fixed and the bottom one is free to move; more elements are added while the bottom mold 

moves upward and fabric deforms accordingly until a balanced position is reached; a finished 

product is obtained by removing both molds and corresponding mold-to-fabric contact elements. 
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Macro- and micro-geometry of the fabric reinforced composite are obtained. Resin effects are 

neglected during the simulation. 
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Chapter 6 - Conclusions and Future Works 

Composite design and analysis require a good understanding of macro- and micro-geometry 

of fabric and fabric reinforced composite. Micro-geometry of fabric is determined by the 

weaving process. Macro- and micro-geometry of fabric reinforced composite is determined by 

fabric geometry and the molding process. 

 

6.1 Conclusions 

A fabric consists of a number of yarns or tows, and a yarn is a bundle of fibers. Fabric micro-

geometry can be analyzed either at the yarn level or at the fiber level. For the yarn-level analysis, 

yarn shape is described by yarn path and yarn cross-section shape. For the fiber-level analysis, 

yarn shape is described by fiber paths and fiber arrangements on yarn cross-section, and each 

fiber is assumed to have a circular cross-section shape.  

The objective of this research is to model macro- and micro- geometry of fabric and fabric 

reinforced composite using a fiber-level approach DEA. A dynamic explicit algorithm is 

employed in this approach. The following conclusions can be reached from this dissertation: 

1. Fabric micro-geometry determination should follow the textile weaving mechanics. 

First, fabric topology is established based on the textile weaving pattern, followed by 

yarn discretization, then a dynamic explicit solver is employed to obtain the detailed 

fabric geometry. 

2. An explicit algorithm with a periodic boundary condition is employed to model 

micro-geometry of the fabric with unit cell property. Nodal forces, nodal 
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accelerations, nodal velocities, and nodal displacements within the unit cell are 

calculated. The renewed nodal displacements are then mapped to the external 

boundary zone of unit cell in order to calculate nodal forces in the ensuing simulation 

step. An efficient contact search algorithm and a multi-level mesh and relaxation 

procedure are proposed. Those improvements save a great amount of computer 

resources compared to the previous algorithm developed in this group. A yarn-level 

fabric micro-geometry is also created and data can be read by commercial software 

packages for further composite/fabric analysis.  

3. An explicit algorithm with a boundary that follows the weaving physics is employed 

to simulate the near-net shape fabric component. A parallel processing is conducted 

to handle the large amount of memory required by full-field simulation. 

4. A dynamic molding process is simulated. Fabric is modeled by using dynamic DEA. 

Mold surface is represented by a standard mesh to quickly establish contact between 

mold and fabric. Mold-to-fabric contacts are modeled by long vertical elements that 

only take compressive force, which allows quicker mold movements with simulation 

stability ensured during the molding process. A net-shape composite component is 

obtained. 

 

6.2 Future Works 

From the major conclusions presented in the preceding section, additional works could be 

made in the future, as follows: 
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1. Typical composite/fabric structures include woven, braided, stitched, and knitted 

structures. Only 3-D woven structures have been studied in this research. Other types 

of structures also need to be studied to enrich applications of DEA. 

2. In parallel processing, one dimensional data partition and memory allocation has been 

used. This is applicable for uniform or near-uniform fabric other than hybrid fabric. 

For a hybrid fabric used in ballistic-proof, it has a higher density in the impact zone 

than other zones. In this case, a two dimensional data partition needs to be applied in 

parallel processing to ensure data in all sections are approximate. 

3. The structure of composite has been studied without considering resin effect. In many 

cases, resin is not a slighting role in determining composite structure and should be 

considered in the future. 

4. Composite structures determine composite mechanical properties. Only composite 

structures have been studied in this research. Their roles in determining composite 

mechanical properties should be investigated.  
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