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INTRODUCTION

The St, Prance is Mountains in Boutheai be 11 Mi8souri arc

exposure of Precambrian plutonlc and volcanic rocl:c cf granitic

composition which have chemical properties and isotopic ages

similar to other Precambrian exposures extending from Wisconsin,

through Missouri and Oklahoma to Texas (Fig* 1). Precambrian

basement rocks to the northwest of these exposures are older than

1600 ralllf.on years, whereas basement rocks to the south and east

are younger, 1000-1200 million years (Bickford and Mose, 1975).

A detailed study of these exposures should result in a better

understanding of the formation of the continental crust during

Precambrian time.

Accordingly, this study focuses on major and trace element

contents of rocks from the St. Francois Mountains in order to

help understand the petrogenesis of the complex. One unit in

particular, the Munger Granite, was selected for field mapping,

sample collecting, and major and trace element analyses. This

granitic unit was selected for study because of its location in

the western part of the complex in an area surrounded dominat-

ely by volcanic rocks. The exact composition of the granite, its

field relationships to the volcanic rocks, and to other granitic

units in other parts of the complex was not definitely known.

The information obtained from this study for the Munger

Granite is used to construct a theoretical model for the petro-

genesis of this unit, and in addition, major and trace element

data were obtained from other representative units of the complex

in order to compare the petrogenesis of the Munger Granite to the

rest of the complex. The samples for other rock units, excluding
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Figure 1 . Map of North America showing the St. Francois
Mountains in southeastern Missouri. The map also indicates the
general ages of the Precambrian basement of North America, from
Bickford and Mose (1975).
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the Mungei Granitej were obtained from ::. !. Blckford -,...': Lst-

t , Ronald Sicon and Robert NusbauiDi from the Univeri ' of

Kansas, and they provided maps, mnjor clement, and lsotopic

from wr.:iy unita in the eastern part of the complo .

Petrogenetic models are constructed from the trace element

data by assuming a reasonable mineral03y and trace element con-

tent for a source rock of regional metamorphic facies, and then

by predicting the trace element content of the melts as the source

undergoes progressive fusion. Th3 trace element contents of these

primary melts may also be modified by fractional crystallization

and the probability of this is also discussed. The predicted

distributions can then be compared with the actual distributions

in the samples to test the models.



GEOLOGY

General Geology

The St. Francois Mountains arc an exhumed Precambrlrm ter-

rain which have recently been exposed at the surface of the

earth. In the immediate area, only the topographic highs are

Precambrian rocks, and the valleys are underlain by Cambrian sand-

stone and dolomite. Throughout southeastern Missouri, the Pre-

cambrian rocks are undulating and irregular in the subsurface,

reflecting the ancient eroslonal surface (Heyl, et al, 1965).

The Paleozoic sedimentary rocks are locally horizontal and sit-

uated in the lower areas surrounding the Precambrian knobs. The

sedimentary rocks range from only a few meters thick at the Pre-

cambrian contacts to much thicker in the valleys, and in every

direction away from the Precambrian exposures. This illustrates

the island-like character of the Precambrian surface during the

Early Cambrian when seas advanced and eventually covered the

hills, depositing as much as 1500 meters of sediment on top of

the Precambrian. Today the St. Francois Mountains are considered

to be the structural apex of the Ozark uplift (Heyl, et al, 1955).

Tolman and Robertson (1969) mapped the relationships between

plutonic and volcanic rocks in the St. Francois Mountains (Fig. 2).

Intrusive, bathollthic rocks compose about one-third of the

northeastern part of the complex, whereas volcanic rocks compose

most of the southwestern two-thirds of the exposed rocks. The

areal distribution of volcanic relative to intrusive rocks, along

with the idea that the granites intruded their own ejecta (Hamil-

ton and Meyers, 1 967 ) » make it appear that the whole batholith

and associated volcanic rockj have been tilted to the southwest
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(Bickf ord , 1976, personal corj:iunlcatlon ) . This Id

a r< letic interpr< tatlon by Allii (1 j) that the

volcanlc-plutonlc contacts dip to the southwest, and ,;ith pctro-

chemical data of Kisvarsanyi (1972) that "...may Indicate that

progressively deeper levels of the batholith are exposed eastward."

Toliaan and Robertson (1969) divided the intrusive rocks into

two different episodes based on laboratory and field evidence.

The granites of the first episode (Pig. 2) were called the Musco

Group, and this group included the Slabtown, Stono, Buford,

Munger, and Carver Creek granites, which they regarded as being

genetically related to each other. The granites of the second

episode were called the Bevos Group, and this group included the

Graniteville, Breadtray, Butler Hill, Silvermine, and Knoblick

granites, and the Brown Mountain Rhyollte Porphyry. Tolman and

Robertson (1969» p. 33-34) stated that the Bevos Group of granites

".•.Immediately underlie (s) granites of the Musco
Group on Stono Mountain and along Stouts Creek about
6 miles east of Ironton. The Bevos Group appears to
have differentiated in place to form the strongly
deuterlcally altered and commonly granophyric Bread-
tray Granite at the top, grading to Butler Hill,
Knoblick, and Silvermine types at depth. The Granite-
ville Granite is similar in composition to the Bread-
tray Granite.... Upon differentiation, magma of Silver-
mine composition was squeezed into contact positions.
Thus at some localities, granites grade in composition
from Breadtray through Butler Hill to Silvermine
granite and elsewhere Silvermine type granite is
intrusive into older rocks."

Kisvarsanyi (1976, p. 73) reported that

"Recent studies indicate that the simple two-stage
model proposed for the emplacement of the batholithlc
rocks of the St. Francois Mountains by Tolman and
Robertson (1969) should be modified. 6. Kisvarsanyi
(1973* 1975) concluded that Musco Group granites (Slab-
town and Stono Granites), previously interpreted as
belonging to an earlier stage of granite emplacement,
are marginal chilled facies and in-situ differentiates,
and are transitional to Bevos Group granites with depth."
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• BUlt of this, Figures 2 and 3 have been revised to comply

with the new data. It also appears that the new drta p^ecluic

any relative age determinations for the Musco and Eevos groups

derived by Tolman and Robertson ( 1 9C3)

.

M. E. Bicicford and his assistants Ronald Sides and Robert

Nusbaum from the University of Kansas mapped most of the intrusive

rocks in the eastern part of the St. Francois Mountains. Figure

3 is the result of their mapping and shows locations of samples

which they provided for analyses. A significant difference between

Figure 3 and the map by Tolman and Robertson (Fig. 2) is that

the contact between the granophyric Breadtray Granite and the

hypidiomorphic-granular Butler Hill Granite (dotted line, Fig. 3)

was revised to more accurately represent the textural change.

Also, the mapping of the volcanic stratigraphy and structure

done by Bickford, et al, is much more detailed than the map of

Tolman and Robertson, however, much of the structure has been

ommitted from the map shown here (Fig. 3).

Basalt dikes transect parts of the St. Francois Mountains

(Tolman and Robertson, 1969) » but they are not considered to be

related to the St. Francois Mountains igneous activity (Kisvar-

sanyi, 1972; Wenner and Taylor, 1976).

Geology of the Hunger Granite and Surrounding
Intrusive and Volcanic Rocks

The Munger Granite occurs aj three outcrops in the western

part of the St. Francois Mountains (Figs. 2, 4); High Top, Gog-

gins, and Proffit mountains, and have up to 200 meters of relief.

The smallest exposure is at Gogglns Mountain where the granite is

only at the top of an isolated hill surrounded entirely by vol-
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canic rocks, and the granite at this exposure is granophyric

(/ppendix II). The 01 two exposures, at High Top and Prof-

fit mountains, arc at the southwestern end of northeast-sou thi jst

trending volcanic ridges and are ftypidiomorphic -granular except

for one sample (6-28- iO) iron, the very top of High Top Mountain

which is granophyric like the granite at Goggins Mountain,

Anderson (1970) mapped many of the volcanic rocks in the

area surrounding the Munger Granite and found at least ten map-

able volcanic units ranging from 20 to 600 meters thick each, ard

a possible total thickness of three kilometers. Three of Ander-

son's major units are in Figure 4. The Stouts Creek Rhyolite

(600 meters) is reported to be the oldest and lowest stratigraphic

unit. This unit is in contact with the Munger Granite on High

Top Mountain. The Taum Sauk Tuff (800 meters) overlies the Stouts

Creek Rhyolite and it is exposed at Proffit and Lee mountains,

dipping about 20 degrees to the northeast. Structures in the

Taum Sauk Tuff indicate that the lava flowed to the southwest

(Anderson, 1970). The Johnson Shut-ins Tuff conformably overlies

the Taum Sauk Tuff so they have similar dips. The Johnson Shut-

ins Tuff is in contact with the Munger Granite on the west side

of Proffit Mountain along the Black River at Johnson Shut-ins.

Anderson, et al, (1969) believed that the volcanic rocks

in this area are part of a collapsed caldera, the Taum Sauk

Caldera (Pig. 2). The center of the caldera was presumed to be

near Ironton, Missouri. The volcanic rocks appear to dip to the

center of the collapsed structure with the oldest units out-

cropping on the periphery. The faults mapped in this area re-

semble fault patterns of other collapse calderas (3erry, 1970).
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PREVIOUS GEOOH] RY

Major El on on ts

Hayes (1959) ^yzed major elements of rocks from the St.

Francois Mountains, and later, Klsvarssnyi (1972) summarized

the major element petrochemistry In the area. Using reek class-

ifications based on chemical analyses, Kisvarsc^iyi related differ-

ent granitic unite to each other genetically, and generally con-

cluded that the Musco Group of granites were less acidic, less

salic, less alkalic, and more calcium-rich than granites from

the Bevos Group. However, Kisvarsanyl found that the Kncblick

and Sllverinine granites, previously assigned to the Bevos Group,

had closer chemical affinities to the Musco Group than to the

Bevos Group.

Sides (1977) analyzed the Breadtray and Butler Hill granites

for major elements and some of his data are reported in Appendix

V. He used variations in the major elements of these plutons to

define bathollthic tilt planes based on the theory that when the

magma intruded differentiation of the major elements occured In

horizontal layers due to mineral fractionation. Subsequent tilt-

ing and erosion of the batholith could then expose different por-

tions of the batholith. His data "...indicate that if the pluton

was orlgionally more mafic downward, the azimuth of tilt lies be-

tween S84°W and S58°V."

Some major element chemical data from Kisvarsanyl (1972) for

granites :rcm trie St. Francois Mountains are summarized in Fig-

ures 5 and 7* A summary of the modal analyses for the Bevos Grou]

(Klsvars L, 1972) and of the Munger Granite (Appendix II) is
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Table 1. Summary cf the modal mineralogy for St c Francois
Mountains Intrusive roc , volume percent.

(q.ftcr- Kisvargr'nyl , 1972) _ __
Perth. Pla r

3- Horn- Bio-
Intrusi on Quartz Fold, ioclaae blende tlte

Musco Group

Munger
Granite*

27-39
(32)

2-15
(11)

41-49
(44)
An 10-20

0-3
(2)

6-15
(8)

os Group

Granlteville
Granite

36 33 29
An4

Brcadtray
Granite

36-40
(38)

49-61
(57)

1-8

(5)
An 5

0-3
(D

Butler Hill
Granite

27-37
(32)

45-60
(50)

0-22
(14)
An 8

1 1-4
(2)

Slab town
Granite

22-34
(28)

8-51
(32)

15-68
(36)
An 8

" —

Silvermine
Granite

29 27 36
An 1?

3

Knoblick
Granite

23 41 27
An24

2 7

() Indicates average modal mineralogy.
* From Appendix II, this report.
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included 1.: Le i ' ire 6. The ohemlcal data from Kisvar-

Banyi (Pig. 5) will later be shown to agree with data obtain

in this report, and the mineralogio data (Table i) will be us<

in con junction with the ohemlcal data to explain the pet. Is

or the St. Francois Mountains.

Isotopic Studies

Muehlberger, et al, (1966), Anderson, et al, (1969), Bick-

ford and Mose (1975), and Bickford (1976) reported isotopic

analyses of rocks from the St. Francois Mountains. Muehlbergar,

et al, (1966) obtained Rb-Sr ages for the Precambrian basement

rocks of Missouri ranging from 1200 to 1350 million years. Ander-

son, et ali (1969) found two different Rb-3r ages representing

two episodes of igneous activity. The first activity occurx

at about 1415 million years (the Butler Kill and Silvermine

granites), while a second activity gave younger ages of about

1320 million years (the Hunger and Granlteville granites).

Bickford and Mose (1975) and Bickford (1976) obtained U-Pb

as well as Rb-3r ages for samples from many of the units in the

complex (Table 2). The U-Pb dates for the Butler Hill, Broad-

tray, and Silvermine granites (Bevos Group) are about 1 500 million

years, while the Rb-Sr ages for the same units ranged from 1273

to 1403 million years with initial Sr87/3r86 ratios of 0.7036 to

0,7254, The Munger Granite (Musco Group) gave U-Pb dates of 1408

million years and Rb-Sr dates of 1230 million years with an initial

Sr8V3r86 ratio of 0.7040.

Bickford and Mose (1975) and Bickford (1976) concluded that

the Rb-Sr dates were about ten percent less than the U-Pb dates,
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Table 2. Summary of Geochronology of the^St. Francois Mountains
(r?p-c:s In yop.^G x 10° )

Units Rb-Sr age (_Sre7/Sr26 ) U-Pb age

Prom Anderson, et al, (1959)

Younger Intrusions
Hunger Granite 1318112 0.700
Granlteville

Granite 1319126 0.704

Older Intrusions
Silvermlne and
Butler Hill
Granites 1 4 1 5—3 1 0.702

Prom Bickford and Mose (1975) and Bickford (1976)

Musco Group
Munger Granite 1280150 0.7040 1408112

Bevos Group
GranltGvllle

Granite 1273192 0.7254
Bread tray
Granite 1289169 0.7070 1500120

Butler Hill
Granite 1408172 0.7036 1500120

Slab town
Granite 1321193 0.7045

Silvermlne
Granite 1501140
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• to radiogenic strontium loss, indi- -, pn*

that a li i of t.l>. ve

about 1300 million years j':q. Blckfoi bo

;er Granite (Musco 3 p) may have be< i

p OJ 1 la igneous activity. Wenn.. ad Taylor (1976) C>

'

oxygen isotope studies on the St. Francois Mounl and concluded

tl t a later metasomatio event did occur, supporting Blckford's

conclusion.



PROCEDURE

Sample Collection and Preparation

Samples of the Munger and Carver Creek granites were collect-

ed in the field and prepared for analyses oy the author. The

freshest parts of samples for geocheniical analyses were ground

to pass through a 200 mesh sieve and stored as fine powders in

airtight vials. A detailed description of the sample preparation

is in Appendix I. Thin sections of some samples were prepared

commercially. Thin section descriptions of samples of the Munger

Granite are In Appendix II and are summarized in Table 1. Cther

rock samples analyzed in this project were previously prepared in

a similar manner by M. E. Bickford from the University of Kansas,

and the rock units were described petrographically by Tolman and

Robertson (1969).

Atomic Absorption Spectrophotometry

Seven major element and three trace element concentrations

were determined using atomic absorption spectrophotometry (AA).

The method was adapted. from 3uckley and Cranston (1971), and is

in Appendix III. The results of analyses of U.S.G.S. standard

rocks G-2, AGV-1, and GSP-1 determined In this study and by Bick-

ford ( 1 977 » personal communication) are compared with published

values for these rocks in Table 3. The agreement among analyses

is generally good although silica analyses are not reported for

the standard rocks analyzed in this study because they were

inaccurate. This probably was due either to the inherent matr? :•:

differences between the synthesized standard solutions and the

dissolved rock solutions, or to the completing of silica in the



21

*
>-,'"
4* 1

•H P>
to . 3
P ^
o
>
1H
fl

,..

t> 1

fK
CG CO
cj e>
BO

co P
M d
o S4
o
h CM

o ;

TJ P O
p <M
OS

«
p
OJp
co

i

• >
CO o

• + <3
C5- +J

• DO p
OT O o

• tJ P<—
£>t- o> 1

:; P Oh
<n CO
o CO O
p *H

CO a ,P
O) 4->

CO c
>>^
iH 1 OJ
cd P 1

p O
CJ +

.P
<H f'

o *
o.

P 5
O X -7
CO ON>
«H VO O
P G\<
ctJ

»—

P« >_'

o Po 05 r-

d fM
• p JOm 3 (3

a fct

«-»

£> a
d o
E-« P CM

<H »

o

8

OJ KN ON Oa m »—

c- K\ in Ox •-^ On m
#, <$ -1 -Jl

CT\ t- VO <i" «— OJ -=t ft ft ftm •"

-3" _ h- m in
••t Csl V — O On -3- CO

«* -4 *«
C— in <f OJ o m 00 •

"

525 ^
VO """

** VO m in CO 4
o <r in ON t- <f *~

«*} <
ON in 0J •— o «t *f 5^5 & ft
VO »—

*

ON v- ON t- VO CO o t- o
i OJ O c- <f CO OJ t*- C-- vo
i • • • • • • <^ t-
i t- t>- St »— OJ <r OJ
i **

<t oo lf\ OJ <t m o
i in <*• o ON in CO o o O
i • • • • • • ON r- VO
i m St OJ o UN OJ *— m OJ
i v*

m OJ VO -* m OJ o
i -^ ON ON t— in •— in ^1- o
i • • • • • • in o in
i in OJ «—• o <t -3- OJ OJ in
I

o om

o
in
ow —

^

ON «— o CO ON o K> OJ •- w— *~*
J £>

ON o CO ON <fr ON KN i -^r 1 ON O U'N

• • • • • • • o — COCO mvo
CO t*- VO ^ «— OJ -3- in—' ^O— m—

'

in o

o o
o
ON--^

o
CO
o
3

CO CVI m m VO ON 00 O vo vo m -5j- b~ H
OJ T— m o ON -3" CO oj m i <*- 1 <f co co a

• • • • • • • i «~ o m C OJ CO o t>
f— in <*• OJ o m OJ m—' o—

-

ITN—

"

CO CO

VO m
co

o o

CM

O -^

r-J rH C>

a a -^

ON in o ON CO v^ VO o m *--«t CO ^ o at oj
«-» m t— ON c- m ^~ O ON inK> VO VO n

• • • • • • • r'N »- ! CVJ 1 -st :0)8
ON m OJ T— o <t •<r 1 — co*^ in—- 2 > O
vo

o
OJ

O
o
in

O
OJ

n

O T-i O O

rH -O
«H «H rtOOQH

CJ -H
O (DP FJ
' ' r; >
cc « o cl

f-l P mH
0) ;, — p

m CO & Pi u. > >
OJ o a o Pi Pi Pi «sj -nj h-. ao CM O o o cvj v » —

•

v_^

TH H <!> c\5 bO OJ d nJ ^Q f-« -.<
CO <$ &; O X « ^ P4 ti C3 -?- •* '— ft



22

rock solutions.

Silica analyses were obtained for the granites by dissolving

the three U.S.G.S. standard rocks along with five granites in

each run. The absorption values determined by AA plotted against

Si02 content of the standards were linear and used as a calibra-

tion to determine unknown S102 contents. In this way, the U.S.G.S.

standard rocks and the granite solutions had similar matrix

compositions and were dissolved at the same time, so if any

complexing of silica occurrd, equal amounts of complexing occurred

in both standards and samples. This method proved itself In

repeated analyses, and avoided the problems involved with using

synthesized standard solutions for silica analyses.

Also, barium results are slightly higher than values recom-

mended for standard rocks by the U.S.G.S. There is vide varia-

bility in barium values among different analysts as reported by-

Flanagan ( 1 969 » Tabic 3) and successive trials by the author for

barium analysis were consistent.

Neutron Activation Analyses

The concentrations of the R3E and some other elements were

determined by radiochemical neutron activation analyses (KETAA)

and instrumental neutron activation analyses (INAA) methods. The

samples were irradiated at full power (1 x 1
1 3 n/cm2 sec.) in

the central thimble of the Kansas State University Triga Mark II

reactor for about four hours. For the RNAA, the samples were

processed chemically (after Denechaud, et al, 1970) about 24 hours

after Irradiation, and the:: radioassayed 1, 3, 1C, and 40 days

after irradiation, and later reirradiated and assayed for deter-
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initiation of chemical yiold. The INAA involved radioassayi]

the whole rock Bamples 4 g 10, and 40 days after irradiation with-

out reirradiation. The RNAA is slightly more precise than INAA

for analyses of the REE (Cullers, et al, 1974), but INAA is useful

for analyses of iron, sodium, manganese, barium, and rubidium, as

well as for most of the REE.

Detailed descriptions of ENAA procedures was given by Yen,

(1973), Arnold (1977), and Roden (1977); the INAA procedure is

in Appendix IV. Tables 4a and 4b show results of analyses do.ie

by other workers and by the author for U.S.G.S. standard roclcs

BCR-1 and G-2, and good agreement was obtained for all the elements

reported.
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ANALYTICAL RESULTS

Introiuction

The results of the analyses using the AA and NAA techniques

on the Hunger i Carver Creel:, and Euford granites, and the data

from the University of Kansas on other plutons are reported in

Appendix V, The results are shown to be comparable with other

published data on this complex, as well as with another similar

granitic complex.

Chemical Characteristics of Plutons
of the St. Francois Mountains

Quartz, albite, orthoclase, and anorthite modal compositions

were recalculated to 100 percent and plotted on a quartz-alkali

feldspar-plagioclase (Q-A-P) ternary diagram (Fig. 6) after

Streckeisen (1967). The granites of the St. Francois Mountains

show variation ranging from the alkali granite field for the

Graniteville and Breadtray granites, to the granite field for the

other Bevos Group, and to the granodioritic field for the Hunger

Granite.

The alkali-lime differentiation index may be determined by

plotting (Na2 + K2 0) versus SiC
2 , and CaO versus 3i02 on the

same graph (Fig. 7). The intersection of the lines joining the

two plots defines a Si02 content which is used to categorize ig-

neous complexes. The data plotted in Figure 7 are from this

report and from Kisvarsanyi (1972). The data from both sources

agree, but the lines joining the data points do not Intersect in

this range of -;10
2 contents, indicating that these rocks are at

lea^t alkali-calcic, and probably alicalic. Also sho'.rn on the
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ALK
GRAtfl"

Figure 6. Q-A-P ternary diagram for the St. Prancois Mountains.

Q represents the auartz mode, A represents the sum of the alkali

folds-oar and albite (An _c), and P represents the plagioclase

(Anr
*

l0o) mode, after Strecfceisen (1967). Symbols indicate the

Munger Granite (•), Graniteville Granite (A), Breadtray Granite

(O)i Butler Hill Granite (V), Slabtown Granite (2), Sllveraine

Granite (O), and Kncbllck Granite (O).
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;\ ure is the .differentiation Index derived by Anderson (1975)

for the Wolf River Bathollth of similar age in Wisconsin. He

also concluded that the batholith was at least alkali-calcic and

probably alkalic. Of special interest is the lack: of intermediate

rocks in the plutons of the St. Francois Mountains. Unlike the

Wolf River Batholithic rocks, which contain anothosltes and mon-

zonites with lower 3i02 values, the St. Francois Mountain plutonic

rocks do not contain values below about 68 percent 3i02 .

The F-e203,/(Fe2C>3 + KgO) and CaO/(CaO Na2 0) ratios are

plotted versus AI2O3 in Figure 8. Some data for the granites of

the Bevos Group were provided by 3ickford (1977, personal com-

munication) and are not tabulated in Appendix V. The chemical

trends in Figure 8 are similar to the older analyses in Figure

5 (Kisvarsanyi, 1972), and demonstrate the similarity of the

chemical data among independent analysts.

A summary of the trace element contents of the granites

from the St. Francois Mountains is in Table 5> and Ea and Rb

values are plotted versus Sr, and Eu/Sm is plotted versus Ba in

Figure 9. Also, the chondrite normalized REE plots of granites

from the St. Francois Mountains are in Figure 10. The REE values

of the chondrites, after Haskin, et al (1968), are considered to

be equal to the average terrestrial REE distributions. The

Eu/Sm and Eu/Eu* ratios (Table 5) are indications of the degree

of Bu depletion relative to other REE next to Eu. Eu* is deter-

mined by extrapolation of Sm and Tb (or Gd) on the chondrite-

normalized curve to estimate the Eu present assuming no Eu was

fractionated. Negative Eu anomalies may be arbitrarily defined

as a Eu/Eu* ratio Less than 0.3.
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Fe 2 3

Fe 2 3
+MgO

cao
CaO+Ncuo

13 14 15 16

A! 2 3 (%)

Figure 3. Major element variation diagrams, Kusco Group:

Mm, Kunger Granite (•); Carver Creek Granite (x); 3uford Srar.iti

(+). Bevos Group: Bg, Graniteville Granite (A); 3b, Breadtray
Granite (0) J Bh, Butler Kill Granite (V); Stg, Slabtown Granite
(D); Sms, Silvermlne Granite (O); Klg, Knoblick Granite (O).
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Fi^re 9. Trace element variation diagrams (ppm). Musco
Group: Mm, Hunger Granite (•); >!c, Carver Creek. Granite (x);

Mb, Buford Granite ()» Bevos Group: . Granlteville Granite
(A); Bb. Breadtray Granite (Q) ; Bh, Butler Hill Granite (V);

Smg, Silvermlne Granite (O ) ; Stg, Slabtown Granite (a).
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Figures IC .1 - to diagrams obtained by Ander-

son and Culi jr. 3 (1978) Tor differentiated and undifferentiated

of the Wolf River Batnolith in Wisconsin. The general

chemical characteristics of the two groups of granites from this

complex are stated below,

Bevos Group

The Bevos Group contains the widest variation in chemical

trends in the St. Francois Mountains. The Graniteville and

Breadtray granites contain relatively low Ca/Na, Al, Ba, 3r,

La/ltUf Su/Sm, and. Eu/Eu*i and relatively high Pe/Mg, Rb, and

2REE compared to the other Bevos Group units (.Fig. 8, 9, Table 5).

In contrast, the Kncblick Granite, and parts of the Silvermino

and Slabtown granites contain higher Al, Ca/ltfa, Ba, Sr, La/Lu

,

Eu/Sm, and Eu/Bu* f and relatively lower Pe/Kg, Hb, and RBB c<

pared to the other units of the Bevos Group,

The Butler Hill Granite is generally intermediate in chemi-

cal composition between the Graniteville and Breadtray granites

on one end of the chemical trends, and the Slabtown, Silvern/inc-,

and Knoblick granites on the other end. The chemical variations

in the Bevos Group will later be used to determine which mineral.:

could have caused the magma differentiation.

Musco Group

Kisvarz- (1972) emphasized that the Kusco Group is less

salio than the ievos Group. The granites in this group, the

Mungera Carver Creekj and Buford granites, have major element

chemistry similar to one another* and thus, plot in t.ie same fielur.

in Figures 9 and 9» although L ! <.-ra? variation exists In Ba and
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]2u/Sm values among those granitc3 (^ig. 9c). The Ca/lia, kl, Sr,

and La/Lu values are similar to intermediate values obtained for

the BevOfl Group (like the Butler Hill Granite), but Pe/Mg, £1,

Ba, Eu/Sin, and Bu/Bu* values are generally higher in the Kusco

Group than in the Bevos Group. These chemical characteristics

will later be used to explain the formation of the Kusco Group

in relation to the Bevos Group.
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DISOUSSIOH

Bevcs Group Differentiation

Tolman and Robertson (1969) and later Kisvarsanyi (1972)

referred to tha Bevos Group as a composite body of differentiated

magma* Sides (1977) discussed irajor element variations in the

Breadtray and Butler Hill granites and tried to relate the trends

to dip planes of the batholith based en magma differentiation.

One may go one step further with the available major and trace

element data in relation to the mineralcglc data (Table 1) and

geographic location of the units (Pigs. 2, 3) to maice qualitative

predictions about the mineral differentiation which could have

caused the variations observed in the Bevos Group.

The model proposed here is that magma similar in composirior.

to the Butler Hill Granite and parts of the Slabtown and Silver-

mine granites could have fractionally crystallized plagioclase,

K-feldspar, and biotite and/or hornblende to form the other

granites of the Bevos Group. The Knoblicic and parts of the Slab-

town and Silveraine granites could have formed by accumulation of

the above minerals mixed with some of the original magma, and

the Graniteville and Breadtray granites could have formed from

residual liquids. The following discussion will summarize evi-

dence for the proposed fractionation model.

Major Elements

The relatively high Fe/Mg ratios and low Al contents of the

Graniteville Granite (Fig. 3), combined with the apparent lack of

ferromagnesium minerals and low K-feldspar content (Table 1),

compared to the Butler Hill Granite, suggest that it could have



formed from a residual ui a left from the fraotional crystalllz

tion of Kg-rich biotJ ;e ui/or hornblende and possibly some K-

f eldspai . The Ca/Na ratios and plagioclase contents of this unit

are sj r to the Jutler Hill Granite and do not BUggest cnat

plagloolase was Involved In the differentiation which led to tne

formation of this unit.

The low CsA.'a ratios and relatively high Pe/Mg ratios of

the Breadtray Granite (Fig. 3), along with high K-feldspar and

lower plagioclaro and anorthite contents, compared to the Butler

Kill Granite (Table 1), suggest that it could have resulted from

a residual magma a.Cter the crystallization of Mg-rich biotite and/

or hornblende along with Lia-rich plagioclase (Anc^jo)* Tile r̂ - :

K-feldspar contents ia the Breadtray Granite could have rr.sv-.li

from the accumulation of K-feldspar grains during the simultaneous

formation of the Graniteville Granite (see above).

The Butler Hill Granite has highly variable .Fe/Mg and Ca/Na

ratios as well as variable amounts of K-feldspar and plagiocla

(Fig. 8, Table 1)-. Qualitatively, this variation could *- be

caused by fractional crystallization of Na-rich plagiociose

(Aiic.^5), Mg-rlch biotite and/or hornblende, and K-feldspar,

Sides (1977) fcund the variations in major element chemistry zo

be consistent from southwest to northeast, and data from this

report (I?ig3. 2, 3> 8; Table 1) show this unit to be intermediate

between the Grr-ni teville and Breadtray granites on the west, and

the Slabtown, Silvermine, and Knoblick granites on the east in

mineralogy and major element chemistry, Kisvarsanyi (I973i 1975)

reported the Butler Hill Granite to be in contact with and tran-

sitional to the Breadtray, Slabtown, and Silvermine granites,
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and this Is also indicated by overlap in the major element chem-

istry in Figure 8.

The Slabtown and Sllvermine granites have somewhat similar

major element chemistry and mineralogy. These granites tend to

have higher A3., Ca, Kg, and therefore higher Ca/lTa, but lower

Fe/Kg ratios than most of the Butler Hill Granite. They also

contain higher amounts of plagioclase and anorthite, and slightly

less K-feldspar than the Butler Hill Granite (Table 1), and

could have been formed by accumulation of plagioclase (An jq-2o)

and perhaps Mg-rich biotlte and/or hornblende along with some of

the original magma. The Sllvermine Granite has considerable var-

iation in Al» Ca/Na, and Pe/Mg ratios (Fig. 8) and probably also

has wider variation in mineralogy than eh own by the one modal

analysis in Table 1

.

The Knoblicl-c Granite contains high Ca/Na and Al content and

low Fe/Mg ratios compared to the other Bevos Group, parts of which

overlap with the Sllvermine Granite (Fig. 8). The modal analysis

available for the Knobllclc Granite indicates that it contains

relatively higher amounts of plagioclase, K-feldspar, biotlte, and

hornblende than the other Bevos Group units and probably formed

by accumulation of Mg-rich biotite and/cr hornblende, plagioclase

(An
j 5.25)' anc* K-feldspar.

Analyses of the major elements reported in this paper agree

with analyses by other authors (e.g. Kisvarsanyi, 1972) and indi-

cate that the Bevos Group apparently differentiated in place to

form parts of the Slabtown and Sllvermine granites, and the Knob-

lici: Granite as cumulates, and the Granitevllle and Breadtray

Granites from residual magmas. The Butler Hill Granite, and



perhaps to some extent, parts of the Slab town, Silvennine, and

Breadtray granites are intermediate to the Bevos Croup In mineral-

ogy i chemistry, and geographical location, and probably represent

the parent magma.

Trace Elements

Trace elements may be used to modify and elaborate on trie

relationships predicted using the major elements concerning the

differentiation of the Bevos Group. Trace element behavior in

silicate magmas has been experimentally related to distribution

coefficients (D) for the trace element partitioning between the

solid and liquid phases (Gast, 1968; Bwart and Taylor, 1969;

Phllpotts and Schnetzler, 1970; and Drake and Weill, 1975). A

distribution coefficient is defined as the concentration of the

trace element in the solid phase divided by the concentration of

the trace element in the melt (D - c s/c 1
) . Minerals with a D

greater than one for an element will tend to be enriched in that

element, and minerals with a D less than one will tend to enrich

the melt in that element, during crystallization from a magma.

Distribution coefficients, for rhyolitic rocks, from Arth and

Hanson (1975), are used for both qualitative and quantitative

purposes in this paper, and are summarized in Appendix VI.

The minerals which tend to incorporate Ba, Sr, and Eu, and

reject Rb and all other REE relative to the melt, as observed in

the Bevos Group cumulates (Fig. 9), are the feldspar minerals.

Qualitatively, fractional crystallization of pla~iociase and K-

fsldspar from a parent magma tends to concentrate Ba (X-feidspar )

,

Sr (K-feluspar and piagioclase) , and Eu (K-feldspar and plagio-

clase) in the cumulate minerals, while Rb and all other REE
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are rejected from the feldspar and are enriched In the residual

magma. This mineral fractionation, as previously mentioned con-

cerning major elements, is compatible with the model in generating

the trace element variations observed in the Bovos Group (Figs.

9, 10), assuming that the parent magma was similar in composition

to the Butler Hill Granite. This assumption is believed to be

valid, as discussed previously, because the Butler Hill Granite

is intermediate to the other Bevos Group units in field relation-

ships, mineralogy, major and trace element composition, and is a

relatively large pluton as would be expected of a parent magma

(Pigs. 3, 8, 9; Tables 1, 5).

The Bevos Group cumulates, the Knoblick, and parts of the

Silvermine and Slabtown granites, contain some biotite arid horn-

blende (Table l) which tend to concentrate Rb and RES respectively*

The amount of hornblende present is compatible with the proposed

fractionation model, but biotite alone would generate increasing,

rather than the observed decreasing, Rb contents in the cumulates

(Pig. 9). Qualitatively, these minerals could cause the lower

Pe/Mg ratios in the cumulates (Pig. 8), but they probably are not

present in large enough quantities, compared zo the feldspars, to

appreciably affect the Rb contents of the cumulate portions.

One trace element trend not yet explained by the proposed

fractionation model for the Bevos Group is the La/Lu ratio varia-

tion, and the anomolously low La obtained for some of the Bread-

tray Granite samples (Table 5, Pig. 10). Although distribution

coefficients for La are not available, extrapolation of the known

REE distribution coefficients can be of assistance (Appendix 71).

The feldspar minerals h:-3ve distribution coefficients about ten
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• for the light REE relative to the heavy R .id

probably create the variation in the La/Lu ratios, in iment

with the |
ractlonatlon model. Biotite shows little

preference for any Of the REE, and hornblende has higher affini-

ties for tne heavy REE relative to the light REE, but, again,

these minerals are probably not in sufficient abundance to create

a trend In the trace element contents. Of special interest is

the V9ry high affinity allanite has for the light REE relative

to the heavy REE (Appendix VI). Qualitatively, if small amounts

of allanite fractionated from the magma which later formed the

Breadtray Granite, tne observed REE distributions could to gener-

ated in the residual magma. Complete petrographic and mlneralo

data on the 3readtray and Butler Hill granites concerning the

presence of allanite are unavailable at this time. However,

allanite has been observed in granites of similar age and comp-

osition from Wisconsin (Anderson, 1975).

The Musco Group contains higher Al, plagioclase, ferro la ;-

nesium minerals, Pe/Mg, Ba, Eu/3m, lower K-feldspar, and

Rb, Sr. and Ca/Na as the Butler Hill Granite. The high 3a, Eu

and pia^ioclase is similar to tha cumulate portions of the ?evcu

Group, but Rb y Sr, Pe/Mgi and Ca/Na ratios are not liKe the cum-

ulate portions of the Bevcs Group. For this reason, different

mod?'Ls lor the formation of the granites of the Musco Group must

be considered, and further analyses of the data are necessary to

approximate the origin of these granites, and this will be dis-

cussed later.
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Approximation of Source Material

The origin of granites and their relationships with rueta-

morphic and other more basic igneous rocks has been controversial

for years (Gilluly, 1953; Read, 1957; Raguin, 1955). Recent

studies in experimental petrology in granitic systems at high

temperature and pressure have helped solve these controversies.

For example, large volumes of granitic melts cannot be formed by

fractionation from basaltic magmas (Oarmlchael, et al, 1974),

although Kushiro (1972) and Bailey and Schairer (1966) believed

that calc-alkaline and alkaline silicic rocks can form by fraction-

ation from basic melts. Bailey and Schairer (1966) found that

gran? tic melts formed by fractionation tend to plot away from the

low temperature eutectlcs on Qz-Ab-Or plots, unlike the 3t.

Francois Mountain granites which cluster near the appropriate

cotectic lines (Figs. 15, 16). Recently, it has been reported

that large volumes of granitic melts can be produced by melting

of sedimentary rocks metamorphosed in the amphibolite to granullte

facies of regional metamorphism (e. g. Winkler, 1976). For these

reasons, it may be assumed that the large volumes of granite of

the St. Francois Mountains probably formed by partial melting of

crustal rocks, and therefore, this type of rock will be used to

approximate the source.

The Sr87/Sr86 initial ratios (Table 2) of the St. Francois

Mountains generally range from 0.702 to 0.707. The Graniteviile

Granite has a higher Sr3Vsr86 initial ratio of 0,7254. The

higher Sraniteville Granite value is caused by high Rb87/sr36 ratios,

as much as 2.5 (Bickford <*nd Mose, 1975), which lends to a great

uncertainty in. the value of the intercept in a Rb-3r isochron*
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Discounting the 1 - r the (Iraniteville Granite i the

initial Sr"?/ for the granites oi thin complex may be

as U . I genei Low. The initial Sr°'/Sr ratios are

low enough to preclude saiic oruBtal rocks from being the source

mate ri.il, although a source intermediate, in composition would have

appropri Rb/Sr ratios (0.10-0.30) to generate 1500 million

year old rooks with the observed Sr^/Sr®6 ratios of 0.7043 (Van

Scnmus, et al, 1 975 ) » and Anderson and Cullers (1976) concluded

that a tonalitio crustal source could have been the parent mat-

erial which formed that batholith.

The source rock mineralogy (Table 6) was approximated from

data on Precambrian sedimentary rocks, mostly shales and gray-

vackes, analyzed by Oondie (1967). and Ccndie, et al (197C), and

from postulated sources by Anderson and Cullers (1973). Possible

trace el I contents of the source for the St. Francois Mcunt-

ains were filiated from data on Precambrian sedimentary :s

by tfili 1 and Condie (1973), Wildemau and Ha skin (1973)* and

McCarthy (1976) and are in Figure 11 and Appendix VI. Figure 11

shows the rai ' the chondrite-normallzed REE data of *he

possible si :: and the average Precambrian shale and formation

distributions which are later used in the theoretical modeling

for the fc . Ion of the St. Francois Mountain plutons. The

proposed REE values of the source are assumed to be consistent

with source rooks of intermediate composition.

Table 6 also 3hov*:s the ranges of source rocks used by Ander-

son and Cullers lor modeling Precambrian granite formation.

Their modeling required the source to contain quartz, pli . .^e,

blotite, hornblende] zircon, and apatite, and possibly K-feldspar,



44

Table 6. Possible source material compositions
(volume percent)

Minerals

Preca:„bri
Sedimenta
Roclcs a

an
Tonalitic
Source^

Approximated
Source for
St. Francois
Mountains

Quartz 0-33 10-25 10-35

Plagioclase
(An30 )

0-15 35-65 10-35

K-feldspar 0-25 0-5 0-20

Blotite 3-53 10-25 10-50

Muscovite 0-5

Hornblende 3-15 0-5

Orthopyrorene 0-15 0-5

Clinopyroxene 0-5 0-5

Olivine 0-10

Zircon 0.1-0.3 Trace?

Apatite 0.1-0.3 Trace?

Garnet 0-1 0-1

a. From Ccndie (1967), and Condie, et al (1970).

b. Frcju Anderson and Cullers (1978).
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Figure 11. Chondrite normalized REE plots of Precaubrian
sedimentary rocks, after Vfildenian and Haskin (I973)i and
Wildeman and Condie (1973). The plot shovs the upper and
lower ranges of Precambrlan sedimentary rocks (•), the average
Precambrian shale (o), and the average Precambrian formation (z)«
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pyroxene, olivine, and garnet. The source approximated Tor the

St. Francois Mountains (Table 6) is intermediate in composition,

consistent with the 3r isotopic data, and consistent vrith observed

Precamorian crustal mineralogy and trace element contents.

The metamorphic rock fades corresponding to this type of

mineralogy is in Figure 12, after Winkler (1965). This figure

shows two subfacies of the cordierite-amphibollte regional met-

amorphic facies, and the stability regions vithin the subfacies.

Figure 12a contains rnuscovite, which, with increasing temperature

reacts with quartz and biotite to form orthoclase, cordierite,

and silliroanite, and produces the subfacies shown in Figure 12b.

Figure 12b represents the highest grade of regional metamorphism

at moderate pressures, which may contain pegmatites, according to

Winkler (1965)» and probably represents the metamorphic rocks

which exist prior to crustal fusion.

Also in Figure 12 are the regions where graywackes plot

within the subfacies, suggesting possible source mineralogy which

could form a granitic melt upon fusion. The minerals which are

apparently stable in these regions are sillimanite, orthoclase,

biotite, hornblende, garnet, cordierite, and anorthlte, in simi-

lar ratios shown in Table 6. As will be discussed later, the

presence and approximate amount of each mineral in the source

can be better estimated from analyses of the REE data.
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Mcr

Di Tr Cmg

A. Sillimanlte-Cordierlte-Muscovlte-Almadine Subfacies

B. Sillimanite-Cordierite-Orthoclase-Almadlne Subfacies

Figure 12. Regional Cordierite-Amphibolite metasorpaic
subfacies, after Winkler ( 1 965 ) • Am=almadine , An=anorthite

,

Ant=anthophyllite, 3t=biotite, Cc^calcite (wolastonite)

,

Cffigscummingtonitei Di^diopside, Gr=grossularite, Mcr=mlcrocllne s

Ms=muscovite, Gr-ortnoclase, Sill=sillimanite, Tr=tremolite

,

— =field of graywackes.
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• Estimation of Intensive Parameters

The quartz, albite, orthoclase, and anorthite norms were

recalculate:.1 to 100 percent for plotting on the Qz-Ab-Or and

An-Ab-Cr ternary diagrams. The Qz-Ab-0r-An-H2 system approximates

the Si0
2
»^aAlS.i303-CaAl23i20Q-H

2 system which has been studied

extensively in the past twenty years by Tuttle and Bowen (1958),

Wlnkier, et al, (i960, 1961, 1972, 1973, 1975), Shaw (1963), von

Platen (1965), von Platen and Holler (1966), Luth, et al (1964),

Luth and Tuttle (1969), Luth (1969), James and Hamilton (1969),

Piwlnsky and tfyllie (1970), Brown and Pyfe (1970), Presnall and

Bateman (1973), Yttnkler (1976), and others.

As a result of these experimental studies, this system may

be used to estimate intensive parameters associated with the

formation of granitic rock3. Most experimental systems were con-

ducted under water-saturated conditions, so estimates of temper-

atures during fusion assume that the natural systems are at or

near water saturation. The melting relationships of granitic

systems under different water saturation conditions is in fig-

ure 13. Curve number one is the solidus of a water-saturated

granite and, as a result of the water saturation, has the lowest

melting temperatures. Curve two is of a dry biotite granite, ar.d

curve three is of a granite with four percent water available.

Biotite is an important contributor to lowering melting temper-

atures of granitic systems due to the presence of OH in the struc-

ture. Metamorphic terrains usually do not exceed temperatures of

about 800 degrees Centigrade (Winkler, 1976), so there must be

at least four percent H2 Q available, or biotite present in order

for granites to be formed by melting (Fig. 13).



Figure 13. Temperature versus pressure d ! n Bhowin

various solidus and llquldua relations in granitic rocks, fi

Winkler (1974). (1) = BOlidus in LystoTj Qz-Ab-Or If water

present; (?) - solldus of dry blo+ite granite; (3) - liquidus

if h% H2 available; (4) = liquidus if 2% H^O available;

(5) = colidus of dry Qz-Ab-Or system, no OH minerals available.

Figure 14. Isobaric tetrahedral Qz-Ab-Or-An-KgO system

at 5 kb K
2

pressure, perspective view, from Winkler, et al

(1975). The shaded areas represent cotectic surfaces separat-

ing fields within the tetrahedron: (A) = liquid + plagloclase +

quartz + vapor; (3) = liquid + plagioclase + alkali feldspar +

vapor; (C) = liquid + alkali feldspar + quartz + vapor. P

represents the intersection of the ternary eutectlcs with

the cotectic surfaces, and the line P-Ec is where all five

phases are in equilibrium at any given temperature.
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The Qz-Ab~0r-An-H2 tetrahedron is in ?lgure 14, This

diagram was drawn from data from the four ternary systems at

saturated-water pressure of 5 kilobars (kb). Experiments have

shown that in the Qz~Ab-0r system, the base of the tetrahedron,

the first melt will form at the composition of point P. If

higher pressures are experienced, the point P in the three comp-

onent system, and the P-E5 line in the four component system,

move3 toward the Ab end of the diagram, and vice versa. A water-

saturated Qz-Ab-Or system at 5 kb will form a melt first at about

650°C at a composition close to point P (Figs. 13, 14). A rise

in temperature will cause increased melting in the four compon-

ent system, and the melt composition will move along the cotectlc

line P-2- until one of the phases in the source disappears. At

that time, the melt composition will leave the P-Ec line and enter

one of the three cotectic surfaces and proceed in a direction

away from the component which is not present in the source.

The norms for the Musco Group, and the Butler Hill Granite,

which is assumed to represent the Bevos Group parent magma, are

plotted in Pigure 15. This diagram is superimposed with data

on total pressure and Ab-An ratios of the source, as summarized

by Anderson and Cullers (1978) from data taken from James and

Hamilton (1959), von Platen (1965), Kinkier and von Platen (1955,

1960, 1961), von Platen and Holler (1966), and Brown and Fyfe

(1970). This simplified plot illustrates two principles derived

from the experimental work, One, as the anorthite component

of the source increases, the minimum melt composition moves

away from the albite end of the diagram; and two, zz the pres-

sure of the melting increases , the composition of the minimum melt
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Figure 15. Qz-Ab-Or ternary diagram showing comparison or"

the St. Francois Mountain granites with experimental work in
the granite system. The source rock albite/ar orthite ratio
data and the total pressure data are from Anderson (1975). The
Butler Hill Granite ($^)) represents the 3evos Group; and the
Munger Granite (^)» Carver Creei Granite (X), and 3uford Grani
(+) represent the Musco Group.
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moves toward the albite and orthoclaso end of the diagram. The

data frora the St. Francois Mountain granites suggest that the

Bevos Group vis formed iron a source containing an Ab/An ratio

of about 4 to 5, and between 4 to 7 kb total pressure. The Musco

Croup clusters in the region shown experimentally to form at 7 to

10 kb total pressure, and from a source with an Ab/An ratio of

about 2. This means that the Musco Group apparently formed at

slightly higher pressure, and from a slightly more mafic source

than did the Bevos Group.

Furthermore, the norms for the Butler Hill Granite and the

Musco Group were plotted on Qz-Ab-Or and An-Ab-Or ternary diagrams

(Fig. 16). These diagrams were taken from Winkler (1976, p. 299)

and are two-dimensional projections of the Qz-Ab-Or-An tetrahedron

(Fig. 14) onto a given face. The perspective for Figure loa is

looking downward onto the tetrahedron and shows the projection

of the experimentally determined isotherms on the cotectic planes

which separate the fields within the tetrahedron as dashed lines.

The numbers between the dashed lines represent the anortnite

value at that point on the three-dimensional planes within t*he

tetrahedron.

The perspective for Figure 1 6b is from the front of the

tetrahedron and shows projections of the cotectic surface iso-

therms onto the front surface. The numbers between the dashed

lines represent the quartz value at that point on the three-dim-

ensional surface within the tetrahedron, as before with the

anothlte values. Using the two diagrams, one can represent and

Visualize any point within the tetrahedron.

The isotherms drawn on these cotectic surfaces are the result



Figure 16A. Projection of cotectic line P-3^ and of the

two cotectic surfaces plagioclase + alkali feldspar + liquid +

vapor, and quartz + plagioclase + liquid + vapor from the An

apex onto the side Qz-Ab-Or. The numbers on the projected

isotherms indicate anorthits content of a specific melt.

The diagram, from Winkler, et al (1975» p. 25^) is for water-

saturated systems at 7 kb. The Butler Hill Granite (^)

represents the Bevos Group; and the Hunger Granite (@)»

Carver Creek Granite (X), and Buford Granite (+) represent

the Musco Group.

Figure 163. Projection of cotectic line P-E5 and of the

two cotectic surfaces alkali feldspar + quartz + liquid +

vapor, and plagioclase + quartz + liquid + vapor from the

Qz apex onto the side An-Ab-Or. The numbers indicate quartz

content of a melt composition. The diagram, from Winkler, et

al (1975» p. 255) -is for water saturated systems at 7 kb.

The symbols are the same as in Figure *5A.
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of many years .of research dealing with melting of experimental

systems of different compositions and under different pressures.

The diagrams are for water-saturated systems at 7 kb pressure,

which most closely approximates the St. Francois Mountain system,

as derived from Figure 15. The P-£c line is the path that melt

compositions follow during progressive melting when in equilibrium

with all components. For example, a system containing quartz,

plagioclase, and feldspar, but no anorthite, will first melt at

635°C with the composition of point P (Fig. 16), unlike the same

system at 5 &b pressure previously mentioned which melts first at

about 650°C. A system with 10 percent anorthite will melt first

at 655°0 and have a composition on the line between P and E c .

Similarly, a heterogenous system may melt first at 635°C and have

a first melt composition at P, but with progressive melting of

the more refractory minerals (anorthite), the melt composition

will move along the P-E5 line toward Ec.

Similarly, melts can be analyzed and their normative comp-

osition calculated and plotted on these experimental diagrams to

determine conditions of melting (Winkler and Lindemann, 1972;

Winkler, et al, 1975). This has been done successfully with

granitic systems (Anderson, 1975) to determine possible temp-

eratures of magma formation, assuming at least near water-satu-

ration. The St. Francois Mountain normative minerals for the dif-

erent groups are plotted in Figure 16. The Bevos Group, represent-

ed by the Butler Hill Granite, melted from about 640 to 66C°C;

whereas the granites of the Musco Group melted from about 650 to

670°C. If the natural system which formed the St. Francois Mount-

ains granite vras not at complete water saturation, one may infer



I >'(

slightly higher araturea of formation, probably 20 to 50°C

higheri But stllli the Intensive parameters Suggest that the

Ecvos Group formed at lover temperatures and pressures, and from

a mora femlc Bource than the Musco Group.

Formation of the Parent Magma of the Bevos Group

The possible source rock mineralogy and the temperatures and

pressures which prevailed during the formation of the primary

magmas have been estimated based on the Sr isotopic data and

evaluation of the major element onemistry (normative minerals).

In conjunction with these estimates, further evaluation of the

Ba and REE data can be used to qualitatively derive fusion models

for the .formation of the granitic magmas. The model obtained

here suggests that the parent magma of the Bevos Group could have

formed by 10 to 20 percent melting in the lower crust of a source

containing quartz, plagioclase, K-feldspar, biotite, and hombl

Melting models derived by Gast (1958) and refined by Gnaw

(1970) were used for modeling. Shaw's aggregate melt model which

assumes that each new portion of liquid formed is constantly

mixed with preceeding liquids was used for the modeling. The

basic aggregate model equation is in (1).

Ii - 1 - (1 - f
^/Pq

( 1

)

c F

where c1 = concentration of the trace element in the melt
c = concentration of the trace element in the Bource
F = fraction (percent) melted
D = bulk distribution coefficient

= 2j>X, where
D = percentage of each mineral 1n the source
1 = distribution coefficient (Appendix VI)

Ihia basic aggregate equation assumes modal meltic ;
>f the

source, that is, that the minerals la the Bource melt in propor-



58

tions equal to their modal abundances. Because experimental work

has shown that this Is not always true, a variation of the aggre-

gate model, that of non-modal melting was used (2).

2i - 1 - d - P-?/Do) 1/F
(2)

c F

where c-^-, c , D , ?, and D are the same as in (1)
P =r bulk distribution coefficient based in the

percentages of the minerals melting
= ED'Xit wnere

Xj = the percentages of each mineral melting.

The major difference in the non-modal melting model relative

to the modal model is, for example, in the melting of biotite.

Bictlte may constitute 40 percent of the source rock, but only

about 5 percent of the minerals melting at a given temperature

may be biotite, so this is taken into account with the non-modal

melting model.

The Butler Hill Granite was assumed to represent the parent

magma type of the Bevos Group. The source mineralogy and trace

element contents used in the modeling were consistent with the

Sr isotopes and the data in Table 6, ?igure 11, and Appendix VI.

The distribution coefficients (Appendix VI) indicate that quartz

rejects all REE and Ba, plagioclase concentrates Eu, K-feldspar

concentrates Bu and Ba, biotite concentrates only Ba, and horn-

blende concentrates the intermediate and heavy REE. By adjusting

the source material mineral percentages and the melting percen-

tages in the models, with the trial and error method, theoretical

melting models were obtained which were compared to the observed

REE and Ba values in the rocks.

The rcodel which best fits the trace element distributions

of the Butler Hill Granite was obtained by using a source con-



talning about ?- Qt quartz, 34 percent plagloolasei 20 per-

cent it-feldspar, 25 ! tit blc'i.'tte, and 1 percent hornblende.

The percent'-::, o3 of mineral melting were approximated from the

Qz-Ab-Or ternary plot lor the Butler Hill Granite (Fig. 16),

baaed on tr.e estimated intensive parameters, and were about 30

percent quartz, 35 percent plagioclase, yO percent K-feldspar,

and ^ percent blotite. Varying the melting ratios of the source

had a lesser effect on the trace element compositions of the liquid

than J id varying the mineral ratios of the source.

The theoretical melt models that produced trace element

compositions which closely matched those of the Butler Hill

Granite are in Figure 17. These models assume 10, 15» and 20 per-

cent melting of the proposed source material with a RBE composi-

tion similar to the average Precambrian sedimentary formation

(Pigs. 11, I7» Appendix VI). The chondrlte normalised REE comp-

ositions of the different theoretical melts are in Figure 17 and

are compared to the range of values obtained for the Butler Hill

Granite (dashed lines). Ba was also modeled based on source

rock compositions ranging from 800 to 1200 ppm, after McCarthy

(19 75).

The 10, 15i and 20 percent melt models closely approximate

the trace element composition of tne Butler Hill Granite, but do

net preclude slight variations in the modeling. Por example, if

the aver. REE compositions of Precambrian shales (Pig. 11,

Appendix 71) are used in conjunction with olightly more hornblende

(about 2 percent) in the source rock, and similar melting r>zr-

centages, a fairly good fit with the trace element compositions

of the Butler Hill Granite is obtalne llso, up to about 10
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Theoretical Ba and REE distributions compared
anges in the Butler Hill Granite. The plotted
-tenth of actual values. Dashed lines repre-
d lower limits of the Ba and REE values of the
te, from Figure 10 and Appendix V. Solid
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sion of a source with REE values of the aver-
ormation (dotted line), from Figure 11 and
models assumed source mineralogy of 20 per-
ercent plagiociase, 20 percent K-feldspar, 25
and 1 percent hornblende; and the mineral melting
rc2.it quartz, 35 percent plagiociase, 30 per-
and 5 percent biotlte. See text for discussion.
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percent pyroxene could be present in the source Klthout appreci-

ably changing the model results. It must be assumed that these

variations Burely occur in nature and only approximations for the

formation of the granitic melts can be postulated based on the

available data.

The trial and error method showed that garnet could not

have been present in the source, as it lowered the heavy HE£

contents in the theoretical melts too much. This is important

when estimating the composition of the source rock (Fig. 12).

Evidently, the source rocic cannot plot in the stability field of

garnet, although the source is still compatible with the other

metamorphic fields. Distribution coefficients for cordierite

are not available, so that mineral could not be considered in the

quantitative modeling, although it could theoretically still be

present in the metamorphic source rock.

The major element characteristics of the parent magma of the

Bevos Group cannot be fully analyzed in respect to the proposed

fusion model at this time. Experimental petrology has shown,

though, that granites similar in composition to those observed

can be produced by melting of metamorphic rocks, as discussed

previously. Further analyses of major element behavior during

fusicn will be discussed in the next section.

In summary, the model concerning the formation of the parent

magma of the Bevos Group suggests that the magma apparently formed

about 1500 rcilliou years ago and at about 640 to 660°C, and from

4 to 7 kb pressure. These pressures and temy eratures correspond

to depths of 15 to 25 Km within the earth, which would be in the

lower crust (tfyllie, 1971). The source rock was intermediate
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In . ::lt'.o. and prob • in the Billimanlte-cordierite-ortho-

clase-biotlte i cles (excluding garnet) of the regionally

. . phic cordleri phibollte faeies. The trace element

ased on theoretical noli models, suggest that the magma

could have been formed by 10 to 20 percent melting of a hetero-

genous source.

foruin.r.iorj of the Parent Ila^ioas of the Musco Group

The chemical data su
:̂
e:;t that the Musco Group cannot be

associated with the differentiation of the Bevos Group. The

data show that the Musco Group is higher in plagicciase and the

ferroi Lum minerals f Al, Ba, Ej./s^, and Pe/Mgj lover in K-

tel id similar in Ca/Na, Rb, and Sr contents than tin

•;• Hill Granite. Also* estimates of intensive y

the Musco Group formed from a source of lower Ac/A;

ios, anJ higher temperatures <j.ni p: -res than di'< the

Group „ The U-Pb age dates indicate that the Musco Group form«

about 1400 million yoars ago, about 100 million year;: later

the Sevoa Group, Not only do these data suc^est tnat cat- ;vs^o

Group doesn't fit into the Bovos Group differentiation series,

but that the Kusco Group apparently formed after the 3evcs Group

and at different depths in the crust and from a slightly differ:

eourc e a o rep

o

2 i t X on

,

Two possibilities exist for the formation of the Musco Srou

in relation to the Bevos Group 3 One, that the Musco Group .'.'or*:-od

as a product of progressive fusion of the source that formed I

Bevos Group; or two, that the Musco Group forced independe blj

frorr the Bevos Group and from a slmilari ru diffi . *e.
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These possibilities can be analyzed furtner In the light of ex-

perimental data in respect to progressive fusion presented by

Gast (1968), Anderson (I975)i and McCarthy (1976). Theoretically,

progressive fusion of a plagioclase-biotite bearing ampnlbolite

(the proposed source of the Bevos Group) causes progressively

increasing concentration in the melt of Al, Ca, Mg, Ba, Rb, 3r,

end Eu because the bulk distribution coefficients for these el-

ements in this source is greater than one (Anderson, 1975). Of

these elements, only Ba and Eu, and to a certain extent, Al are

higher in the Musco Group than in the Bevos Group (Pigs. 8, 10),

whereas the other elements mentioned show no significant differ-

ences between the groups. The observed trends tend to refute

the progressive fusion possibility, and, along with the age and

intensive parameter estimates, suggest that a separate fusion

event is the most likely possibility.

This possibility was tested using the melt model equation:

(2) on the 3a and REE data similar to the method previously des-

cribed. The mineralogy of the source selected was slightly more

malic (i.e. more biotite, less quartz and X-feldspar) tnan the

mineralogy used in the Eevos Group modeling, in order to be con-

sistent with the estimates of the Ab/An ratios (Pig. 15). A major

problem arose when trying to produce Ba and Eu contents in the

theoretical melts similar to these observed in the Musco Group.

Different mineralogy and melting ratios of the source wore tested

in equation (2), but by staying within the limits of the source

composition set by the Sr isotopes (Table 6), the high 3a and Eu

contents observed in the Musco Group were initially impossible to

derive in the theoretical melts.



64

Further Investigation showed that K-feldspar Is the only

mineral in the source which concentrates both 3a and Eu (Appendix

VI). Theoretically, if during fusion, the source melted to such

an extent that all K-feldspar melted, then both Ba and Eu, which

had previously been retained in the K-feldspar would be released

into the melt; or there was no K-feldspar in the source to begin

wi th

.

In order to best include these possibilities in the theoret-

ical modeling, new equations derived by Hertogen and Gijbels (1976)

were implemented. They refined Shaw's (1970) aggregate melt

model by taking into account the disappearance of one or more cf

the components from the source due to complete melting. Equation

(3) is the formula derived by Hertogen and Gijbels for this type

of melting.

1/PIIgl
1 - MA(f^* )

,/ri1
(3)

Co
, F

where c 1 , c , F, and D are the same as in Equation (1)
F^ = the degree melted at the time of the

disappearance of the first component due
to the melting

Pjj = the bulk distribution coefficient based on
the melting percentages during the second stage
of melting

= £1>Xjj, where Xjj is the percentages of the
minerals melting during the second stage of
melting

MA = 1 - (5Vc )'?a (from Equation 2).

Equation (2) is also used in this calculation for determin-

ation of the variable M^ (3) because the trace element concentra-

tions of the melt are assumed to be the same for both models un-

til the degree of melting (?A ) is reached when one of the compo-

nents in the source is gone. Infinite melting model variations

are possible with this modeling as the source mineralogy must be
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selected, as well as the ratios of minerals melting during 1

first Btage of fusion, and also the melting ratios during the

second s: of fusion (i.e. after the component has all melted).

K-feldspar was selected ;*s the mineral to melt completely

because of the nigh Ba and Eu distributions in the Musco Group,

and also because of the low K-feldspar content in the group

(Table i). This is also consistent with experimental melting

of various sedimentary rocks reported by tfinkler (1976) which

indicated that K-feldspar was usually the first mineral to dls-

appcai from the source due to melting. The point when K-feldspar

disappeared from the source (^) was arbitrarily selected to be

15 percent of melting, and the first stage mineral melting ratios

were assumed to be similar to the position of the Musco Group

samples on the Qz-Ab-Or plot (Fig. 16), which are 26 p nt

quartz, 32 percent plagioclasc, 35 percent K-feldspar, and 5 per-

cent biotlte. Trie modelling for the formation of the ps

of the Masco Group using Equation 3 improved the results obtai

for the 3a and Eu contents in the theoretical melts. Slightly

different models were obtained which fit the different trace ele-

ment compositions of the Musco Group granite, and the model vari

tions arc descrioed below.

The Carver Creelc and Buford granites contain higher £u and

heavy REE contents than the Munger Granite, and the trace element

distributions of these units vere most closely approximated when

using a source containing about 20 percent quartz. 10 percent

plagloclase, 10 percent K-feldspar, and up to 45 percent bio-cite.

Op to 15 percent pyroxene can also fit into the source rccic

mineralogy without changing the trace element distributions of
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the melts appreciably. A source of this type is consistent with

the Sr isotopes, and prior to melting could be in the cordierlte-

biotite-amphlbollte fades of regional metamorphism (Fig. 12).

The melting ratios of the second stage used in the modeling were

arbitrarily selected as 49 percent quartz, 49 percent plagloclase,

and 2 percent biotite. Again, some of the pyroxenes could sub-

stitute for either quartz or biotite as they have similar distri-

bution coefficients (Arth and Hanson, 1975).

Figure 18 shows the comparison of the observed REE values for

the Carver Creek and Buford granites with the theoretical models

produced by 20 and 30 percent fusion. The average R33 distri-

bution of Precambrlan shales was approximated for the source rocic

and was found to produce melts which most nearly fit the actual

REE distributions of the Carver Creek and Euford granites. The

models produced Ba contents ranging from 1200 ppm for 20 percent

fusion to 1 800 ppm for 30 percent fusion based on source rock

values ranging from 800 to 1200 ppm Ba, after McCarthy (1976).

The obtained values are comparable with Ba concentrations con-

tained in the Carver Creek Granite, but are slightly low for the

Buford Granite (Appendix VI).

The Hunger Granite contains lower intermediate and heavy

RSE contents than the Carver Creek and Buford granites which

suggests minerals that concentrate these elements, like hornblende

or garnet in the residual source material. This unit was modeled

similar to the rest of the Musco Group, and required the complete

melting of X-feldspar at the arbitrarily selected point of 15

percent fusion, and the initial mineral melting proportions used

in the modeling were the same.
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The source rock which was used to model the Kunger Granite

was also similar to the source considered for the other Kusco

Group granites, but required 2 to 4 percent hornblende and pos-

sibly up to 1 percent garnet to lower the heavy REE content in

the melts. The melting proportions of the second stage were

changed to Include these minerals and were arbitrarily selected

as 49 percent quartz, 49 percent plagioclase, 1 percent biotlte,

and 1 percent garnet and/or hornblende. Figure 19 compares re-

sults of the two different melting models with the observed

ranges in the Hunger Granite. One model considered 35 percent

percent fusion of a source containing 2 percent hornblende, and

the other model represents 30 and 40 percent fusion of a source

containing 1 percent garnet. These two models are in Figure 19

and illustrate the differences obtained in the melts when differ-

ent mineralogy and melting proportions are used for the modeling.

When these two models are combined, assuming that the source

contains both hornblende and garnet, nearly the same REE distri-

butions as contained in the Munger Granite are produced, when

using the average RES distributions of Precambrlan shales to

approximate the source rock values. Earium values were also

calculated and produced melts containing from 1300 to 1800 ppm

Ba, exactly within the range contained in the Munger Granite.

As before, these models can include variations in melting

proportions and trace element distributions of the source rock

and mineral contents, but still provide a good approximation for

the formation of the granitic melts which formed these granites.

The source material which formed the Hunger Granite is the only

one found so far in the St. Francois Mountains which could include
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K"feldspar, and up to 45 percent biotite, with 2 to 4 percent
hornblende and up to 1 percent garnet. The melting ratios of the
first stage were 26 percent quartz, 32 percent plagioclase, 35
percent K-feldspar, and 5 percent biotite. See text for discus-
sion.
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some garnet, and therefore being in or near the stability region

of garnet in Figure 12. This further helps to place limits on

the possible lositions of the source rock. Garnet is stable

only at higher Jsure s, consistent Kith depth and pressure est-

imates for the Musco Group, previously discussed.

In summarizing the theoretical models derived for the form-

ation of the Musco Group, the Carver Creek and Euford granites

apparently formed by 20 to 30 percent melting of a metamorphic

source containing residual quartz, plagioclase, biotite, and

possibly some pyroxene, but no K-feldspar. The Hunger Granite

suggests 30 to 40 percent fusion of a similar source but includ-

ing some residual hornblende and garnet. Possibly the Musco

Group represents progressive fusion of the same source, with the

greater amount of melting Involving the more refractory a . pals

(hornblende and garnet) and producing the Hunger Granite.

The Musco Group formed at about 650 to 670°C (assuming near

water saturation) and at pressures of 7 to 10 kb. These pressu]

are present at depths of 20 to 30 Kir. , suggesting that melting

oocured in the lower crust (Wyllle, 1971). Also, the Musco Group

apparently formed after the Bevos Group and from a slightly more

mafic source which could have been the cause of the higher nelt-

1n g t e a p e ra tu re s .
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CONCLUSIONS AMD TECTONIC IMPLICATIONS

The chemical, petrographic , and isotopic data obtained in

this and other studies reveal the petrogenetlc history of the

St. Francois Mountains. The data show two groups of granites

with different modes of formation. The Bevos Group was formed

first, about 1500 million years ago, by 10 to 20 percent melting

in the lower crust of a regionally metamorphic source in the

cordierite to amphibolite facies. The magma apparently rose to-

ward the surface and subsequently cooled to produce differentiated

magmas through fractional crystallization of the ferromagnesium

minerals, plagloclase, and K-feldspar to form the different units

of the Bevos Group. The Knoblick and parts of the Slabtown and

Silvermine granites are cumulates, containing higher plagloclase

and ferromagnesium ccntents than other Bevos Group units, whereas

the Graniteville and Breadtray granites formed as residual liquids.

The Butler Hill Granite is intermediate in mineralogy and comp-

osition to the other units of the Bevos Group, and because of this,

its large volume, and location to the other units, is proposed

to most nearly represent the characteristics of the parent magma.

The cooling and extrusion of some magma as volcanic ejecta could

have caused collapse and formed one or more proposed calderas in

the vicinity.

The Musco Group formed at a later time, about 1400 million

years ago, slightly deeper in the lower crust, by 20 to 40 percent

melting of a different and more mafic source in the amphibolite-

granulite facies of regional metamorphism. This group represents

different degrees of melting of the source with the Kunger Granite
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representing the highest degree of melting. These granites appar-

ently injected almost to the surface, and perhaps Intruded the

volcanic rocks as ring fracture dikes, caused by the collapse

of the previous igneous activity.

Granites of similar age and composition occur in Wisconsin,

Oklahoma, and Texas and could represent an arc of related igneous

activity associated with a similar tectonic regime. Anderson

and Cullers (1973) proposed modes of formation for the Wolf

River Batholith in Wisconsin similar to that derived for the St.

Francois Mountains; and the two complexes could be closely related.

Any type of crustal upwarplng would relieve load pressure at

depth and could cause the metamorphic rocks to intersect their

melting curves and produce granitic melts. Anderson and Cullers

(1978) proposed that initial stages of crustal rifting, similar

to the neogsne rifting in Africa, could have been responsible for

the formation of the granitic rocks. The similarities of these

two complexes seems to support this theory, in that some sort

of crustal tectonism may have occurred to produce a very large

arc of granitic rocks. Further investigations into the Precac

brlan basement of the midcontinent will greatly improve the under-

standing of the evolution of the continent during Precambrian time.
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APPENDIX I

Preparation of Rock: Samples

Rock samples collected in the field for chemical analyses

ranged from 5 to 24 pounds, depending on the degree of weather-

ing and how much of the weathered surface could easily be chipped

awr y in the field. The rock samples were chipped and cleaned of

all weathered material by using Ward's large Rock Trimmer fitted

with a chisel point. A few of the freshest fragments were re-

tained for making thin sections and the rest of the fresh fra

ments were crushed for chemical use as described below.

The rock samples were sent to Rudolf von Huene labs, 1555

East Walnut Street, Pasadena, California, where standard uncovered

thin sections vere prepared.

One to two pounds of the freshest part of the rock samples

were crushed with a large Sturtevant Laboratory Roll Jaw Crusher,

model 1C1. This crusher reduced the rock fragments to about peb-

ble sire. The samples were then fed into a BICO circular pulver-

izer, type UA, which reduced the samples to about sand size.

Each sample was crushed and ground separately, and the equipment

was cleaned after each use by brushing with a wire brush and blow-

ing with compressed air. An air exhaust fan was used to keep

dust and contamination to a minimum during the crushing process.

The samples were then split to reduce volume, and the

largest portion was stored in a sealed glass container. The

smaller portion, about 100 grams, was placed in a Spex mixer/mil.,

catalogue number 8000, milled for 20 to 30 minutes, and then

stored in air-tight glass vials. The samples would pass through

a 200 mesh sievi after this milling.
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APPENDIX II

Petrographic Descriptions

The following are petrographic descriptions of thin sections

of samples of the Munger Granite which were analyzed geochemically

for this report. The samples were similar mineralogically and

texturally as all but two samples are hypldiomorphic-granular

granites. The two exceptions (6-18-10 and 6-15-9) were granophyres.

A full length petrographic report was done on one sample repre-

senting each textural variety (6-28-7> granular; 6-28-10, grano-

phyre ) . Because the rest of the samples were similar to the

representative samples analyzed, only brief petrographic and modal

analyses are reported for these additional samples, noting only

the most impo -tant similarities and differences. At the end of

the descriptions is a table which summarizes the petrography for

each sample.

6-28-7

Textures: Holocrystalline, porphyritlc, hypidlomorphic-

granular, myrmekitic. Megaphojocrysts of subhedral anorthorlase( ?

)

perthite to 5mm (10.8 percent), a few rimmed with myrmeklt

quartz; and anhedral rounded quartz to 3.6mm (6.3 percent).

Pine-grained (0.3mm) granular goundmass of anhedral quartz (23.2

percent), subhedral, twinned plagioclase of An^^pQ (43.5 percent),

anhedral biotite (11.3 percent), subhedral anorthoclase( ? ) (2.1

percent), and subhedral magnetite (2.1 percent). The accessory

minerals (1.8 percent) are sphene, fluorite, zircon, and apatite.

Rock Name: Biotite Granite Porphyry

Sequence of Mineral Formation: 1) Perthite, 2) Quartz,
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3) Biotite, 4) Magnetite, 5) Plagioclase, 6) Accessories.

Mineral Descriptions

:

Quartz Low relic', low birefringence (white-steel blue-yellow),

uniaxial ( + )• Granular, anhedral in groundmass averaging 0.3mm

(23.2 percent). Anhedral, rounded as phenocrysts to 3.6ram with

undulating extinction. A few grains occur as tiny (0.02mm)

myrmekitlc intergrowths surrounding feldspar phenocryst3. Also

poikilitically enclosed in feldspar phenocrysts. Contains lclus-

ions of zircon and fluorite.

Perthite Low relief, low birefringence, biaxial (-), 2V approx-

imately 50°, perpendicular cleavage of the (010) and (001) planes.

Subhedral phenocrysts to 5mm (10.8 percent) show a few myrmekitlc

textures on the rim with quartz; carlsbad twinning, patched,

string, and zoned perthitic textures, and occasional shatter

cracks. The phenocrysts contain zonally arranged poikilitic incclu-

sions of quartz, twinned plagioclase (Ahjq-20)» hornblende, fluorite

magnetite, and biotite. Also contained in the groundmass (2.1

percent) as much smaller (0.3mm) subhedral to euhedral perthitic

laths with inclusions of hornblende, magnetite, and biotite.

Moderately to heavily weathered to sericite which is often in

zonally arranged patterns. This mineral could either be anortho-

clase pethite or orthoclase perthite.

Plagioclase Low relief, low birefringence, biaxial (+) and (-),

albite twinning with extinction of the twins about 5 to 8 degrees.

Subhedral in the groundmass from 0.1 to 2mm (43.5 percent) with

Inclusions of biotite, sphene, fluorite, and magnetite. Weathered

to sericite.

Biotite Moderate relief, moderate birefringence, uniaxial (-)
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with 2V about 4 degrees, pleochrolc red, green, and brown. An-

hedral to 0.4mm skattered throughout the rock (11.3 percent).

Contains inclusions of sphene, and associated with zircon.

Magnetite Opaque, subhedral to cubical to 0.6mm. Throughout

the groundmass in quartz, plagioclase and biotite, and In the

rayrmekite surrounding the feldspar phenocrysts (2.1 percent).

Closely associated with blotite and sphene. Contains inclusions

of sphene.

Fluorite Isotropic, negative relief, subhedral to cubical with

(111 ) cleavage, ranges from 0.04 to 0.12mm. Contained in quartz

and associated with blotite. Trace mineral.

Sphene High relief, high birefringence, biaxial (+), prismatic.

Ranges from 0.02 to 0.l6mm and is associated with quartz, mag-

netite, biotite, and plagioclase. Trace mineial.

Zircon High relief, high birefringence, tiny laths about 0.025mm,

in quartz and the groundmass, associated with biotite and mag-

netite. Trace mineral.

Apatite Clear, moderate relief, anisotropic, low birefringence,

hexagonal and tabular 0.02mm in length. Trace mineral.

Serlcite High relief, high birefringence, occurs as weathered

product of feldspars and plagioclase as tiny microlites (0.01mm).

6-28-10

Textures: Holocrystalline, porphyritic, rapakivi, granophyric,

with a few myrmekite. Megaphenocrysts of euhedral to rounded

orthoclase to 3.24mm (1.1 percent), subhedral perthite to 2.9 mm

(1 percent) with myrmekitic quartz and rapakivi plagioclase, and

anhedral quartz to 3.6mm (3.2 percent). Fine granophyric, micro-
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graphic, and rare granular groundmass from 0.005 to 0.2mm of ah-

hedral quartz (about 34 percent), subhedral, twinned plagioclase

of An-,0-20 (41 percent), granular biotite ( 1 4. 5 percent), and

subhedral magnetite (3.3 percent). The accessory minerals (2

percent) are sphene, hornblende, apatite, fluorite, and iron oxides

The feldspars are weathered to sericite.

Rock Name: Rapakivi Biotite Granite Granophyre

Sequence of Mineral Formation: 1) Orthoclase, 2) Perthite,

3) Quartz, (quench) 4) Magnetite, 5) Biotite, 6) Plagioclase,

7) Accessories.

Mineral Descriptions:

Quartz Low relief, low birefringence, uniaxial (+), undulatory

extinction, Anhedral, rounded, shattered phenocrysts from 0.2

to 3.6mm (3.2 percent) with inclusions of biotite, magnetite, and

sphene. Granophyric to granular in the groundmass from 0.005 .to

0.2mm (about 34 percent) showing mi orographic intergrowths with

plagioclase and within quartz grains. Myrmekitlc to 0.01mm sur-

rounding feldspar phenocrysts.

Perthite Low relief, low birefringence, biaxial (-), 2V about

50 degrees, perpendicular cleavage. Subhedral micro-perti. tic

phenocrysts to 2.9mm (1 percent) with myrmekitlc quartz and high-

ly weathered, twinned rapakivi plagioclase 0.2mm thick which sur-

rounds the phenocrysts. A few occurrences of subhedral perthite

to 0.0 imm in the groundmass. Weathered to sericite. This miner-

al is either anorthoclase or orthoclase perthite.

Orthoclase Low relief, low birefringence, biaxial (-), perp-

endicular cleavage, 2V about 70 degrees. Fresh euhedral to

rounded phenocrysts to 3.24mm (1.1 percent).
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Plagioclase(alli te-oligoclase) Low relief, low birefringence,

biaxial ( + )» (-), alblte twinning with extinction of the twins

about 5 to 8 degrees. Subhedral, granophyric, micrographic to

granular laths in the groundmass from 0.005 to 0.2mra (about 41

percent). Weathered to sericite.

Biotlte Moderate relief, moderate birefringence, uniaxial (-),

2V to about 4 degrees, anhedral, granular, pleochrolc green, red,

and brown, skattered throughout the groundmass from 0.01 to 0.43mm

(14.5 percent). Tends to form unconnected elongations to about

1mm. Contains inclusions of magnetite, sphene, apatite, and

fluorite. Rounded miarolitic cavities are contained within bio-

tlte which are filled with iron oxides and perhaps fluorite as

secondary minerals.

Hornblende High relief, moderate birefringence, biaxial (-),

pleochrolc green and brown, pris atic, with about 120 degree

cleavage on the (001), to 0.8mm. Trace mineral.

Magnetite Opaque, anhedral to cubic. Throughout groundmass

to 0.64mm and associated with biotite and containing inclusions

of sphene (3.3 percent).

Sphene High relief, high birefringence, biaxial (+), cubica ]

,

prismatic to 0.06mm in groundmass and as inclusions in quartz,

magnetite, and biotite. Trace mineral.

Apatite Moderate relief, low birefringence, 0.02mm to 0.12mm

tabs associated with biotite and magnetite. Trace mineral.

Fluorite Isotropic, negative relief, anhedral to cubical from

0.02 to 0.07mm, associated with biotite perhaps as miarolitic

cavity filling. Trace mineral.

Iron Oxide Translucent yellow brown, anhedral, rounded, forms
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Oenter of ccveral biotitc miarolitlc cavitieG and Is probably a

secondary mineral. Trace.

Scricite High relief, high birefringence, occurs as tiny

m^crolites about 0.01mm. Weathering product of the feldspars

and plagloclase.

6-28-1

Holocrystalline, porphyritic, myrmekitic, hypidiomorphlc-

granular granite with 7 percent rounded anhedral quartz (2-3mm),

and 12 percent subhedral perthltic K-feldspar (3mm) as pheno •

crysts. The granular matrix (0.2mm average) is composed of 32

percent anhedral quartz, 41 percent twinned subhedral plagioclase

(An.Q_.pQ), 6 percent pleochroic anhedral biotite, and 1 percent

magnetite with accessory (1 percent) fluorite, apatite, and sphene

The feldspars are altered to sericite and the biotite is altered

to iron oxides.

6-28-3

Holocrystalline, porphyritic, myrmekitic, hypldiomorphic-

granular granite with 0.4 percent anhedral quartz (3mm) and 11

percent subhedral perthitic K-feldspar (4mm) as phenocrysts. The

granular matrix (0.4mm average) is made of 27 percent anhedral

quartz, 49 percent twinned subhedral plagloclase (An^o-20)' 8

percent anhedral, pleochroic biotite, 2 percent subhedral pleo-

chroic hornblende, and 2 percent subhedral magnetite. The acces-

sory minerals (1 percent) are fluorite, apatite, zircon, and

sphere. The feldspars are altered to sericite and biotite to

iron oxides.
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6-28-6

Holocrystalline, porphyritic, myrmekitic, slightly grano-

phyric, hypldiomorphic-granular granite with 3 percent anhedral

quartz (3mra) and 13 percent altered, subhedral perthitic K-f eld-

spar as phenocrysts. The granular matrix (0.5mm average) is com-

posed of 28 percent anhedral quartz, 45 percent twinned subhedral

plagioclase (An^Q^c))' 6 percent anhedral pleochroic biotite, 3

percent subhedral pleochroic hornblende, and 2 percent subhedral

magnetite. The accessory minerals (1 percent) include sphene,

zircon, apatite, and fluorite. The feldspar are altered to ser-

lcite and biotite to iron oxides.

6-23-8

Holocrystalline, porphyritic, slightly myrmekitic, hypidio-

morphic-granular granite with 3 percent anhedral quartz (1mm)

and 12 percent euhedral to subhedral altered perthitic K-feldspar

(2. 5. to 4.0mm) as phenocrysts. The granular matrix (0.2mm average)

consists of 30 percent anhedral quartz, 45 percent subhedral

twinned plagioclase (An^.20)* 6 percent anhedral pleochroic

biotite, 1 percent subhedral pleochroic hornblende, and 2 percent

subhedral magnetite. The accessory minerals (1 percent) include

sphene, apatite, and fluorite. The feldspars are altered to ser-

icite.

6-28-14

Holocrystalline, porphyritic, rapakivi, myrmekitic, hypidio-

morphic-granular granite with 6 percent anhedral quartz (2mm)

and 15 percent subhedral to euhedral altered perthitic K-feld-

spar (4mm), which is rimmed with rapakivi plagioclase, as pheno-
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crysts. The granular matrix (0.5 to 0.6mra average) consists of

45 percent subhedral plagloclase (Aiijq_2o)» 2 5 percent anhedral

quartz, 5 percent anhedral pleochrolc biotlte, 3 percent subhedral

magnetite, and 1 percent subhedral pleochrolc hornblende. Acces-

sory minerals include zircon, apatite, fluorite, and sphene.

The feldspars are altered to sericite and biotite to iton oxides.

6-15-9

Holocrystalline, porphyritic, myrmekitic, granophyric granite

with about 5 percent anhedral quartz (2.5mm) and 10 percent sub-

hedral to euhedral altered perthitic K-feldspar (3.5mm) phenocrysts

which are rimmed with quartz and plagloclase myrmeklte. The

granophyric matix (0.4mm average) is made of interlocking sub-

hedral plagloclase (about 45 percent), anhedral quartz (about

25 percent), radiating biotite (about 10 percent), subhedral

magnetite (about 3 percent), and subhedral hornblende (about 2

percent). The accessory minerals include sphene, apatite, and

fluorite. The feldspars are altered to sericite.
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Tab! e 7. Petrop;raph:lc Sumra ary of the Mung er Granite

Sample,
Texture

Pheno-
cryst
Minerals

Per-
cent

Size
(mm)

Matrix
Minerals

Per-
cent

Size
(mm)

6-28-1
hypldo-
morphic-
granular

Quartz
K-feld.

7
12

2-3
3

Quartz
Plagic-lase
Blotite
Magnetite
Accessory

32
41
6
1

1

0.3 avg.
n

n

M

ii

6-28-3
hypidio-
morphic-
granular

Quartz
K-feld.

0.4
11

3
4

Quartz
Plagioclase
Biotite
Hornblende
Magnetite
Accessory

27
49
8
2
2
1

0.5 avg.
ii

ii

H

ti

ii

6-28-6
hypidio-
morphic

-

granular

Quartz
K-feld.

3
13

3
3

Quartz
Plagioclase
Biotite
Hornblende
Magnetite
Accessory

28
45
6

3
2
1

0.5 avg.
n

ir

IT

n

U

6-28-7
hypidlo-
morphic-
granular

Quartz
K-feld.

6
11

3-4
4-5

Quartz
Plagioclase
Biotite
K-feld.
Magnetite
Accessory

23
44
11

2
2
2

0.3 avg.
n

n

ii

n

ii

6-28-8
hypidio-
morphlc-
granular

Quartz
K-feld.

3
12

1

2.5-4
Quartz
Plagioclase
Biotite
Magnetite
Hornblende
Accessory

30
45
6
2
1

1

0.2 avg.
ii

n

ii

n

n

6-28-10
grano-
phyric

Quartz
K-feld.

3
2

3-4
3-4

Quartz
Plagioclase
Biotite
Magnetite
Accessory

34
41

15
3
2

0.005-2
ii

n

ii

ii

6-28-14
hypidio-
morphic-
granular

Quartz
K-feld.

6

15
2
4

Quartz
Plagioclase
Biotite
Magnetite
Hornblende

25
45
5

3
1

0.5-0.6
ii

H

ii

n

6-15-9
grano-
phyric

Quartz
K-feld.

5
10

2-3
3-4

Quartz
Plagioclase
Biotite
Magnetite
Hornblende
Accessory

25
45
10

3
2
1

0.4 avg.
n

n

ii
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APPENDIX III

Spectrophotometry Procedure

Major element analyses were obtained by atomic absorption

and emission spectrophotometry similar to the method described

by Buckley and Cranston ( 1 971 ) . A Perkin-Elmer model 305b

spectrophotometer was used for the analyses.

Five granitic rock samples and three U.S.G.S. standard

rocks were included in each run. The three standard rocks were

used as reference standards for silica analyses, and for measure-

ment of precision and accuracy for the other elements. The rock

samples were prepared for analyses by weighing 0.1000 gram 1.0.0005

gram of the powdered rock samples into a 25 ml teflon lined Parr

Acid Digestion Bomb containing 6 ml of HP acid, and 1 ml of aqua

regia.

The samples were then sealed in the teflon-lined bombs and

heated to 110 degrees Centigrade for 45 minutes in an oven. During

heating, 4.0 grams of boric acid were dissoved in warm, distllled-

deionized water in teflon beakers for each sample, stirring oc-

casionally with teflon stirring rods. After heating, the bombs

were opened, visually inspected for complete dissolution, and

quantitatively transferred to the warm boric acid solutions and

stirred. The solutions were then brought to 200 ml volume with

distilled-deionized water and transferred to polyethelene con-

tainers for storage, and labeled as (I) solutions for dilution

purposes.

A flow diagram of the spectrophotometry procedure is in

Figure 20 to assist the reader in the following the descriptions

which follow.
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Flcrure 20. Spectrophotometry Procedure Flow Diagram

1. 0.1000 10.0005 gram powdered rock sample 1 In bomb
+ 6 ml HF I 1 10°C for
+ 1 ml Aqua Regla 45 mlns.

4.0 grams Boric Acid dissolved in warm distllled-deionlzed
water and dilute to 200 ml.

Result: Solution (I), in the linear concentration range
for analyses of Al, Ca, Mg, Ba, Sr, and Rb.

2. Dilute approximately 20 ml of Solution (I) 1:2 with Blank

Result: Solution (II), in the linear concentration range
for analyses of Fe, Na, and Si.

3. Dilute approximately 2 ml of Solution (I) 1:9 with Blank

Result: Solution (III), in the linear concentration range
for analyses of K.

Allow all solutions to equilibrate at least one day after
mixing.

4. Order of analyses

1. Si, Fe, Na from (II) solutions
2. K from (III) solutions
3. Al from (I) solutions

Add 1000 ppm K to about 40 ml of the remaining (I) solution

4. Ba, Sr, Rb analyses from (I) solutions after the
addition of K.

Add 1000 ppm Sr to the remaining (I) solution

5. Ca, Mg analyses after addition of Sr.
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The (I) solutions were In the linear concentration range,

for these granitic samples, for proper analyses of Al , Ca , Mg,

Ba, 5r, and Rb. But, for analyses of Fe, Na, and Si, a portion

of the (I) solutions (about 20 ml) was diluted with the blank

solution in the ratio of 1 to 2, and the new solutions were called

(II) solutions. The preparation of the blank solutions are

summarized in the next paragraph. For analyses of K, 1 to 5 nl

of the (I) solutions was diluted with blank in the ratio of 1 to

9, and called (III) solutions. These dilutions were made about

one day after preparation of the original (I) solutions to insure

proper equilibration of the original solutions. After allowing

all solutions to equilibrate another day, the rock sample solu-

tions were ready for analyses of Si, Fe, Na, Al, and K.

Blank solutions were prepared in one liter volumes by weigh-

ing 20.0 grams of boric acid into 30 ml of HF acid and 5 ml of

aqua regla, and bringing the volume to about 100 ml over a warm

hot plate until all of the boric acid was dissolved. The volume

was then brought to one liter in a volumetric flask and transfer-

red to a polyethelene container for storage.

For preliminary trial runs, 0.5 percent lanthanum as

LaClz^HgO (5000 ppm La) was added to both blank and sample sol-

utions to suppodedly help eliminate flame Interferences for some

elements. This solution, even in concentrations as low as 100

ppm was cloudy, indicating a precipitate, and hindered analyses,

as a build up of matter collected on the burner head, preventing

good results. Because of this, nothing was added to the respec-

tive solutions for analyses of Si, Fe, Na, K, and Al, as good

results were obtained for the U.S.G.S. standard rocks for these
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elements with no additions. For analyses of Ba, Rb, and Sr, 1000

ppm of reagent grade K was added to all solutions, standards, blank,

and samples, to prevent flame Interferences. For analyses of Ca

and Mg, 1000 ppm of reagent grade Sr was added to all solutions

for the same reason. With this in mind, a certain order of

analyses of the elements was adopted to insure that no contamina-

tion of the samples could occur from the additions. Si, Fe, and

Na were analyzed first from the (II) solutions, then K from the

(III) solutions, followed by Al from the (I) solutions. Then,

K was safely added to a portion of the (I) solutions for analyses

of Ba, Sr, and Rb. Rb was analyzed last in this sequence because

it requires a different flame and burner configuration (Table 9).

Finally, Sr was added to some of the remaining (I) solutions for

analyses of Ca and Mg.

Several standards were prepared from stock standard solutions

in the appropriate amounts to approximate the concentrations of

the granitic rock samples. A high and low standard solutions was

prepared in such a way as to bracket the rock sample concentra-

tions of each element (Table 8). Analytic grade stock standard

solutions of Al, Ba, Rb, and Sr were prepared by dissolving

appropriate amounts of Al wire, BaC^'^O, RbCl, and Sr(N0^) 2
in

distilled delonized water to make 1000 ug/ml (ppm).

Standard solutions of SI were not used for determination of

the SlOp contents of the samples. It was found to be more accur-

ate to use the published values of the three U.S.G.S. standard

rocks plotted against their respective absorption values given

by spectrophotometry in each run to define a straight line plot.

The granite sample absorption values, for each run, plotted on
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Ta ble 8, Standard Solution Concentration:: (ppm)

Element
Reagent
Used

Low
Standard

High
Standard

Al Al wire 40 50

Fe Stock Std. 2 6

Ca Stock Std. 8 18

Mg Stock Std. 2 6

Na Stock Std. 4 10

K Stock Std. 1 2

Ba BaCl2*H2 0.5 1

Rb RbCl 0.1 0.2

Sr Sr(N0
3 ) 2

0.1 0.4
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this gmph gave a graphic answer for the unknown silica concen-

trations. This method proved itself in repeated analyses, and

avoided many problems involved with using synthesized standard

solutions.

Ignition was performed to obtain the volatile content of

the samples. About 0.5 gram of sample was weighed to the near-

est 0.0001 gram, placed into a pre-weighed platinum crucible, and

heated to 1000°C in a muffle furnace for thirty minutes. The

crucibles were allowed to cool to room temperature in a desic-

cator befor reweighing for determination of sample loss, and the

weight percent loss was calculated.
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APPENDIX IV

INAA Procedure

Approximately 0.2 gram of the powdered rock samples was

weighed to the nearest 0.005 gram and placed into clean poly-

ethelene irradiation vials. Iron wire flux monitors (about 50 mg)

were wrapped around the portion of the vial containing the sample.

The vials were then sealed with a warm soldering gun to Insure

that the vials were both air and water tight. Five samples and

one standard (usually BCR-1 ) were irradiated at a time in the

central thimble of the Kansas State Triga Mark II reactor at full

power (about 1 x 10 ^ neutrons per square cm-sec).

After irradiation, the samples were allowed to cool in the

reactor bay until they were safe to be handled (less than one

Roentgen per hour at contact). The samples were then transferred

to plastic bags (about one cm across) and mounted onto cards

(8x8.5 cm) for radioassay. The iron wires were removed from the

vials and mounted on similar cards for radioassay about two weeks

after irradiation. The variation in the iron activity was used

as a monitor for the reactor flux which can vary from sample to

sample.

Two different types of INAA were used for element analyses

in this report. For analyses of Mn and Na which have relatively

short half lives (Table 10) the samples were Irradiated at full

power in the central thimble of the reactor for about ten minutes.

After allowing the samples to cool for about six hours, they were

repackaged, and each sample radioassayed for about fifteen minutes.

For analyses of the RE3, Fe , Na, and Ba, the samples were
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Table 10. Summary of Nuclide Properties used in INAA
(adapted from Gordcn, et al, 1968)

Element Half Best gamma Best time after Interfering
(Nuclide) Life (TjJ energy (keV) irrad. for ctg. Pea/.s

Na

Fe

Mn

24

58

56

Ba*31

La 140

Ce
141

Sm153

Eu^2

Tb l60

Yb^5

Yb

Lu

169

177

15.0 hr. 1369
1732

45 day 191
1098
1291

2.58 hr. 847
1811

12 day 496

40.2 hr. 329
487

33 day 145

47 hr. 103

12 years 122
245

72.1 day 299

4.21 day 396

32 day 177

6.7 day 208

few hours to
7 days

10, 40 days

few hours

10 days

4, 10 days

40 days

4 days

40 days

10, 40 days

10 days

40 days

10 days

Eu 152m

Pe59

Hf131 fPa253

Pa233

Pa233

Ta 182
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irradiated at full power in the central thimble of the reactor

for about four hours. The samples were allowed to cool for about

four days before repackaging and radloassay. Pour days after ir-

radiation the samples were assayed for one hour each, and ten and

forty days after irradiation, the samples were assayed for five

hours each.

Table 10 is a summary of the elements analyzed using INAA,

their half lives (TjJ, their gamma energies, the best time after

irradiation for counting, and the interfering peaks to watch

for during radioanalyses.

APPENDIX V

Analytical Data for the St. Francois Mountains

The major and trace element data and C.I.P.W. norms are in

Table 11. The major and trace element data for the Munger,

Carver Creek, and Buford granites (Musco Group) were obtained

in this study by the author. Major element and Ba, Rb, and Sr

data for all other rock units were obtained from Blckford (1977»

personal communication). For most of the samples, additional

Ba, Rb, Fe, and Na data was obtained with INAA during analyses of

the REE, and when duplicate analyses were available, the values

between analysts were averaged together for use in this report.
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Tablo 11. Analytical Dnt.a for tho 5t. Francois Mountain::
Mu s c o Group

Munger Granlte
Sarapleu 6- 6- 6- 6- 6- 6- 6- 6-

Elements 28- 1

a 28-3a 28-6a 28-7a 28-8a 28-10a 28-l4a iSrf*

Oxides (weig ht percent)
sio2
A1 2 3

71.3 71.5 70.1 72.1 71.1 70.9 72.4 73.0
13.30 13.04 13.01 13.57 13.08 12.81 13.49 13.38

Fe as Fe 203 2.91 3.25 3.20 2.78 3.34 3.58 3.43 3.35
CaO 0.39 0.63 0.69 0.41 0.97 0.74 0.30 0.25
MgO 0.13 0.22 0.12 0.18 0.13 0.15 0.18 0.17
MnO 0.06 0.08 0.08 ...- -.--- 0.09 0.06
K2 5.78 5.8, 6.14 5.52 6.02 5.66 5.92 5.94
Na2 3.27 3.39 3.35 3.23 3.44 3.30 3.45 3.31
Ignition 0.010 0.009 0.009 0.005 0.009 0.002 0.003 0.012
Total 97.15 97.93 96.70 97.80 98.09 97.23 99.17 99.47

Norms (percent)
Q 28.06 26.62 24.90 29.82 25.15 27.39 27.25 28.61
ab 29.50 31.45 31.45 30.00 31.85 30.90 31 .60 30.35
or 35.50 35.55 38.05 33.80 36.75 3^.95 35.75 35.90
an 2.00 3.25 2.38 2.10 2.50 3.53 1.50 1.25
c 1.32 0.00 0.00 1.73 0.00 0.00 0.95 1.16
wo 0.00 0.00 0.49 0.00 0.98 0.13 0.00 0.00
hm 2.10 2.33 2.33 2.00 2.40 2.60 2.44 2.38
en(di) 1.18 0.76 0.46 0.52 0.38 °'3& 0.52 0.58
Total 99.66 99.96 100.06 99.97 100.01 100.08 100.01 100.23

Trace elements (ppm)
Ba 1460 1460 1490 1610 1525 1550 1510
Rb 170 195 300 130 320 146 1 82 261
Sr 50 115 36 58 50 90
La 41.0 43.3 55.4 31.4 48.9 43.7 42.7 40.6
Ce 78.5 75.5 100 51.4 80.7 76.3 77.5 75.3
Sm 7.5 7.5 9.7 5.8 7.9 8.3 8.7 7.4
Eu 1.65 1.37 2.21 1.47 1.81 1.89 1.50 1.56
Tb 1.06 1.28 1.39 1.12 1.15 1.21 1.20 1.10
Yb 4.1 4.58 5.97 3.7 4.2 4.36 4.51 4.6
Lu 0.75 0.76 0.98 0.66 0.75 0.74 0.87 0.84
Eu/3m 0.220 0.183 0.228 0.253 0.229 0.228 0.172 0.211
Eu/Eu* 0.745 0.581 0.769 0.792 0.766 0.764 0.560 0.695
La/Lu 54.7 56.9 56.5 47.5 65.2 59.1 49.1 48.3
XREE* 199.9 203.8 256.3 144.9 212.1 204.1 205.3 195.2

Analysts (a) this report
(b) from Bickford (1977, personal communication)
(c) from Bickford (1977» personal communication), except

for Fe, Na, Ba, Rb, and REE, this report, $AA.
* REE not analyzed were estimated from chondrite normalized

curves, less Y.



9^

Tab] p 11 (continued) , Analytical Data for the St. Francol3 Mountain?
Musco Group Bevos Group

Carver Granltcville Breadtray Granite
Samples Creeka Buforda Granite 12- 12- 12-

Elements Granite Granite BSF-24? C B3F-246 C 5-5a 5-6° 5-7 c

Oxides (weight percent)
SiOo 70.0
A12 3 13.16
Fe as Fe2 3 4.71
CaO 1.09
MgO 0.33
MnO 0.09
K2 4.79
Na2 3.89
Ignition 0.88
Total 98.94

Norms (percent)
Q 25.33
ab 36.05
or 29.30
an 4.40
c 0.00
wo 0.48
hm 3.38
en(dl) __1^Q4

70.9
12.94
3.34
0.68
0.17

5.58
4.15
0.34

98.10

23.77
37.55
34.05
0.58
0.00
1.17
2.39
0.48

72.9
12.20
1.39
0.49
0.03

4.57
3.89
1.63

97.10

30.70
36.40
28.20
2.55
1.06
0.00
1.00
0.04

72.8 77.1
12.38 12.34
0.96 1.91 1.39
0.83 0.24
0.04
0.003 O.O38 0.040
5.30 5.00
4.01 3.56 3.70
1.23 —-- 0.80

97.55 100.61

27.33 33.73
37.50 33.65
32.50 30.00
0.15 1.20
0.00 0.39
1.66 0.00
O.70 0.98
0.12 0.00

99.96 ^^ 99.95

77.3
12.11
1.15
0.10

0.014
5.16
3.01
0.88

99.72

37.90
27.75
31.50
0.50
1.55
0.00
0.82
0.00

Total 99.98 99.99 99.95

Trace elements (ppm)
Ba
Rb
Sr
La
Ce
Sm
Eu
Tb
Yb
Lu
Eu/Sm
Eu/Eu*
La/Lu
2REE*

1140
157
82

54.0
116.0
14.2
1.90
2.30
9.17
1.55
0.134
0.428
34.8

310.5

2050
230
75

60.0
111.0
13.2
2.85
2.04
7.20
1.28
0.216
0.700

46.9
303.3

140
380
17

52.4
114.0
15.1
0.29
2.66
19.15
2.90
0.019
0.059
18.1

327.7

263
320
23

58.3
107.0
11.4
0.20
2.10
14.30
2.70
0.018
0.054

21.6
287.9

430
250

42.5
148.5
7.8
0.45
0.99
7.32
1.29
0.058
0.203
32.9

290.3

85.2
140.0
12.6
0.63
2.07
8.40
1.34
0.050
0.158
6.36

357.7

100.02

390
190

16.8
86.2
3.8
0.41
1.02
8.75
1.38
0.108
0.292
12.2

173.8

Analysts (a) this report
(b) from Bickford (1977> personal communication)
(c) from Bickford (1977» personal communication), except

for Fe, Na, Ba, Rb, and REE, this report, NAA.
* REE not analyzed were estimated from chondrite normalized

curves, less Y.
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Table 11 (<continue d.L Analytical Data for the St. Prance>is Mountains

Samples
Elements

Breadt
12-
5-2a

lievos Group
ray Granite (contd.)

5- 12- N-
«5- 13

a
5 - l7

c 1775k

Butler
12-
5-9°

' Hill
M0-
22 c

Granite
M0-
23°

Oxides (weight percent)
SiOp 77.1 75.4 76.1 72.4 75.1
AlpD-z 12.38 12.90 12.88 12.85 12.70
Fe ai Fe 2 CU 0.94 0,85 2.11 2.47 2.63
CaO 0.09 0.04 0.74 1.02 0.98
MgO 0.05 0.22 0.33
MnO 0.017 0.036 0.094
K2 5.44 5.21 4.66 4.14 4.17
Na?0 3.36 3.27 4.07 3.64 3.85
Ignition 0, 85 1.44 0.88
Total 100.18 99.16 101.40 96.74 99.05

Norms (percent)
Q 34.50 34.83 30.90 32.06 33.32
ab 30.70 30.35 36.70 35.00 33.50
or 32.75 31.85 27.70 25.00 29.65
an 0.50 0.20 3.05 5.00 2.17
c 0.86 1.98 0.00 0.00 0.00
wo 0.00 0.00 0.26 0.00 0.39
hm 0.67 0.14 1 .30 1.85 0.96
en(di) 0.04 0.14 0.06 1.08 0.00
Total 100.02 99.95 99.97 99.99 99.99

Trace elements (ppm)
Ba 56O 730
Rb 190
Sr 14 86
La 66.5 51.3 17.6 8.0 69.9 64.4 57.7
Ce 123.2 105.0 84.3 67.6 135.5 136.0 116.
Sm 10.4 10.9 5.08 3.3 11.0 12.6 11.4
Eu 0.57 0.68 0.30 0.10 0.91 0.80 0.96
Tb 1.43 1.58 1.30 2.79 3.36 1.96 1.72
Yb 8.28 8.07 9.52 9.8 7.82 7.95 6.42
Lu 1.36 1.25 1.48 1.16 1.23 1.47 1.19
Eu/3m 0.055 0.062 0.059 0.030 O.O83 0.063 0.034
Eu/Eu* 0.188 0.211 0.162 0.056 0.261 0.203 0.273
La/Lu 48.9 41.0 11.9 6.9 56.8 43.8 43.5
£REE 301.3 268.7 178.7 159.3 328.6 330.1 238.3

Analysts (a) this report
(b) from Bickford (1977, personal communication)
(c) from Bickford (1977, personal communication), except

for Fe, Na, Ba, Rb, and REE, this report, NAA.
* REE not analyzed were estimated from chondrite normalized

curves, less Y.
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Table 1 1 (continued). Analytical Data for the St. Francois Mountain s

Bevos Group
Butler Hill Granite Slabtown Granite

BSF- BSP- ANS- 5- BSP- BSP-
155 b 42 c 20° 5-17° 259° 258a

Pe

Oxide:
Si02
A1 2 3
Fe as
CaO
MgO
MnO
K2
Nap O
Ignition

(weight percent)

2°3

74.2
13.10
2.28
0.96
0.26
0.039
4.78
3.54
2.17

73.1
12.50
2.03
0.83
0.30
0.062
4.30
3.53
1,89,

76.8
12.19

1 .36
0.62

0.025
4.93
3.67
0.61

77.7
12.48
0.58
0.20

0.006
4.89
3.59
1.08

70.9
13.15
3.63
1.18
0.45

3.47
4.54
0.83

5.44

5.55

9lT. 15

27.05
42.15
21.25
5.40
0.00
0.26
2.61
1.28

Total 101.33 98.54 100.21 100.53

Norms (percent)
Q 29.80
ab 33.00
or 29.50
an 5.00
c 0.30
wo 0.00
hm 1.60
en(di) 0.80
Total

33.10
33.00
26.50
4.50
0.60
0.00
1.50
0.80

33.32
33.50
29.65
2.17
0.00
0.39
0.96
0.00

35.52
32.70
29.35
1.00
1.01
0.00
0.41
0.00

100.00 100.00 99.99 99.92 100.00

Trace elements (ppm)
Ba
Rb
Sr
La
Ce
Sm
Eu
Tb
Yb
Lu
Eu/Sm
Eu/Eu*
La/Lu
2REE*

403
260
71

54.9
117.0
9.4
0.59
1.34
6.22
1.18
0.063
0.210

46.5

460
202
90

54.8
102.0
10.1
0.64
1.42
6.47
1.22
0.063
0.211

44.9
273.0 258.4

65.9
129.0
9.0
0.48
1.56
8.87
1.44
0.053
0.163

45.8
305.3

44.2
87.0
5.7
0.47
0.75
5.92
0.92
0.082
0.276

48.0
201.2

810
104
112

42.2
75.1
9.3
2.11
1.27

0.74
0.227
0.771
57.0

207.6

1600
134

44.9
98.1
11.1
2.50
1.50
6.50
1 . i 5
0.225
0.751

39.0
255.5

Analysts a)
b)
(c)

«

this report
from Bickford ( 1 977 » personal communication)
from Bickford (1977, personal communication), except
for Pe, Na, Ba, Rb, and REE, this report, NAA.

REE not analyzed were estimated from chondrite normalized
curves, less Y.
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Table 11 (continued). Analytical Data for the St. Francois Mountain :;

Samples
Element

3

Bevos Group
Sllvermlne Granite

B3P- BSF- BSF-
?o3° 255° 233°

Oxides (weight percent)
SiOp
Al 2 b 5
Fe as Fe20j$
CaO
MsO
MnO
K2
Na2
Ignition

66.0
14.93
3.38
2.14
0.60
0.086
3.45
4.95
0.48

71.0
13.18
2.16
0.75
0.39
0.040
4.50
3.94
1.51

96.47

27.85
37.05
27.90
3.90
0.52
0.00
1.57
1.20

74.4
12.67
1.57
0.64
0.21
0.023
4.55
3.79
1.62

Total 98.02

Norms (percent)
Q
an
or
an
c

wo
hm
en(dl)

19.90
45.50
20.90
8.50
0.00
0.96
2.41
1.84

99.47

31.81
35.05
27.75
3.25
0.38
0.00
1.11
0.64

Total 100.01 99.99 99.99

Trace elements (ppm)
Ba
Rb
Sr
La
Ce
Sm
Eu
Tb
Yb
Lu
Eu/Sm
Eu/Eu*
La/Lu
REE

950
133
208

27.7
56.0
6.0
1.44
1.26
5.0
0.64
0.240
0.778

43.3
154.5

1165
167
153

36.4
65.0
4.6
0.91
0.62
2.63
0.51
0.198
0.676

71.4
153.8

700
114
95

33.5
65.0
4.63
0.70
1.20
4.14
0.55
0.151
0.411
60.9
160.3

Analysts (a) this report
(b) from Bickford (1977» personal communication)
(c) from Bickford (1977, personal communication), except

for Fe, Na, Ba, Rb, and RES, this report, UAA.
* REE not analyzed were estimated from chondrite normalized

curves, less Y.
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ABSTRACT

Thirty samples of the St. Francois Mountains igneous complex,

southeastern Missouri, representing the major plutons of the Bevos

and Musco groups, have been analyzed for major elements, Ba, Rb,

Sr, and the rare earth elements (REE). Absolute REE contents

are similar to other granitic rocks (IRES = 154-358 ppm), and

negative Eu anomalies and Ba contents are quite variable (Eu/Sm =

0.018-0.24; Ba = 140-2050 ppm). Data obtained here and from

other sources suggest that the two groups of granite apparently

formed by two episodes of melting of a regionally metamorphic

source in the amphibolite to granulite facies containing varied

amounts of quartz, plagioclase, potassium feldspar, biotite, and

possibly hornblende and garnet.

Variation in major and trace element contents (Ba=l40-1600

ppm; Eu/Sm = 0.018-0.227) of the Bevos Group suggest that differ-

entiation, caused by fractional crystallization of the feldspar

and ferromagneslum minerals, could have formed the different

granites of this group. The Knoblick Granite, and parts of the

Slabtown and Silvermine granites apparently formed from cumulate

minerals mixed with some of the parent magma; whereas the Granite-

ville and Breadtray granites probably formed from the residual

liquids.

The Butler Hill Granite, and parts of the Slabtown, Silver-

mine and Breadtray granites are intermediate in composition and

mineralogy to the Bevos Group and most closely represent the par-

ent magma type. Therefore, the major and trace elements of the

Butler Hill Granite were used to derive the petrogenesis of the



Bevou Group. The parent magma apparently formed about 1 500 million

years ago (Bicicford and Kose, 1975) by 10 to 20 percent melting

in the lower crust (640-660°C, and 4 to 7 kb) from a source con-

taining residual quartz, plagloclase, potassium feldspar, and

biotlte.

Tne Munger, Buford, and Carver Creek granites of the Musco

Group contain generally larger quantities of Ba (1140-2050 ppm)

and Eu (Eu/Sm = 0.13-0.25) as well as greater quantities of plag-

loclase and ferromagnesium minerals than the Bevos Group. The

Musco Group formed about 1400 million years ago (Bicicford and Mose,

1975) by 20 to 40 percent melting (650-670°C, and 7 to 10 kb) of

a similar but more mafic source, than the one for the Bevos

Group, but contained no potassium feldspar in the residuum.

Small amounts of hornblende and garnet could also have been pres-

ent in the source which formed this group.




