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INTRODUCTION

The first published analysis concerned with buckling of the elastica
was made by Leonhard Euler in the 1700's (9). 1In this paper, Euler
recognized the existence of a critical buckling load and states: "Therefore,
unless the load P to be borne be greater than cn2/4£2, there will be
absolutely no fear of bending; on the other hand, if the weight P be greater,
the column will be unable to resist bending." Since theﬁ, the shape of this
uniform column under the load P has been determined using %}iptic integrals
(2,10) or by direct integration of an infinite series (4).

Although this information has been knowm for many years, the literature
has a notable lack of information concerning large elastic deflections of
either nonuniform columns or nonuniform beam columns. The emphasis in
recent years has generally been on uniform beams and beam columns (7), and
often then primarily concerned with tﬁe critical loadings (1). This is
understandéble as structural members are usually designed to eliminate both
failure and large deflections. This, and the limited elastic range of many
structural materials precludes concern with large deflection analysis of
most structural members.

However, there is a demand for knowledge of large deflection buckling
due to the use of the elastica as a spring. A spring of this type has the
advantage of limiting deflections to a specific loading range, while
common springs not only deflect over this range but also deflect from
" gero load up to the desired range. A specific example of this use is the
pole vaulting pole. The pole is to be nearly straight with just the weight
of the vaulter, yet undergo large deflections due to an impact loading
at the beginning of the vault. Any model of this beam column must accurately

predict deflections for a prescribed loading in the large deflection range.



Recently, Walker and Kirmser (11) determined numerically the post
buckling behavior of a pin ended slender column of arbitrary Qtiffness
distribution using the shooting method. This technique proved to be
convenient, inexpensive, and easy to use for the problem considered.

This thesis uses the technique presented by Walker and Kirmser
to determine the load deflection relationships fof a pin ended slender
beam column of arbitrary stiffness distribution. The stiffness must be
continuous along the elastica and is assumed to obey Hooke's law.

Loading is restricted to a point load, a uﬁiformly distributed load,
and a buckling load. Also presented is a physical model of the elastica.
Experimental data were collected and comparisons made between the physical

-

" and numerical solutionms.
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DERIVATION OF EQUATIONS

The pin ended elastica was modeled as the slender beam colﬁmn of
afbitrary stiffness distribution shown in Figure 1. The stiffness
distribution is continuous and the elastic properties were assumed to

obey Hooke's law. Consequently, the nonlinearity is purely geometrical.

Figure 1

The loadings are shown in Figure 2 and may consist of a buckling
force P, a distributed load w which is perpendicular to the longitudinal axis
of the unbent pole, and a point load F of arbitrary location, direction,

and magnitude.

P+Fcosd -




The differential equations and the boundary conditions describing this

nonlinear pin ended elastica are:

o Y

ds @)

I‘-d-lﬂ .
ds . 8ind

Q§_= cosi
ds

y(0) = y(L) = M(0) = M(L) = O

Consider the section of the beam shown in Figure 3 where 0 < s < Sp

M P .
1 R2 - WS
P .Y
r‘R
2
Figure 3

Using the rules of statics, the internal forces at the section were

determined, and since

: s
}:Ms=0 =0=Py+ M- (R2 - ws)x - Jo wxds
. @ s - -
or M = -Py + (R2 - ws)x + I wxds
' 0
therefore (1) becomes T &
de & e
—= [Py + (R, ~ ws)x + wxdgleI]
ds 2 0

(L)

(2)

3)
4)

Simularily, for the section of the beam showm in Figure 4 where sp < 8 <L
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Figure 4

M =0 = (P + Fcos¢)y + M - (R2 - ws + Fsin¢)}x - I wxds

s=0

- Fcos¢yF + Fsin¢xF

M= —(P + Fcos¢)y + (R2 - ws - Fsin¢g)x + J

therefore (1) becomes

o _
ds

s

s

0

0

wxds + Fcos¢yF - Fsin¢xF

[—(P + Fcos¢)y + (R2 -~ ws + Fsind)x + J wsds + Fcos¢yF - Fsin¢xF]/E1 .

0

(6)



METHOD OF SOLUTION

The four simultaneous first order differential equations were solved
by numerical integration and the shooting method (3,11). The problem
was posed as an initial value problem for the given forces P,F, and w by

assuming values for the reaction force R, and the initial slope of the

2
beam column 6(0).

In order to determine the'magnitude of the moment in the section
beyond the side load it was necessary to locate the x and y coordinates
of the side load. A technique called Lagrangian interpolation (5) was
used to extrapolate these coordinates from the four grid points preceeding
the side load. This procedure essentially predicts Xp and‘yF from third
degree polynomials in the indépendent variable s.

As it was desirable to supply the elastic constants at discrete, evenly
distributed points along the length of the elastica, a single step explicit
numerical integration technique was an excellent choice. The fourth
order Runge-Kutta-Gill technique (6) with constant step size was selected.
Since this technique evaluates the derivatives at the half step points, it
was modified to use an average of adjacent stiffness wvalues for those
calculations.

Integrating from s=0 to s=L as indicated above provides a solution
that satisfies the differential equations and boundary conditions at the

8=0 end. By adjusting the assumed values for R, and 8(0) one can generate

2
a solution that satisfies the boundary conditions at both ends. This
adjustment was made by considering y(L) and M(L) as functions of 8(0) and
Rz. Using the Taylor series expansion of these functions of two variables,
a technique was derived to select the next iterates and is showm in



Appendix A (3). For the case of no side loads, y(L) was considered to be
a function of 6(0) only. This simplification reduces the number of
evaluations necessary for selecting the next iterate. This technique
is also shown in Appendix A, Note that these techniques are equivalent
to modified Newton's methods.

In order to incorporate these procedures into a computer program
it was necessary to cast the problem into vector notation. The vector
representation is shown in Appendix B. For clarity, the symbols
currently used will be retained in this text.

The general approach of the computer program was to select initial

values for 6(0) and R Integrating along the length of the elastica

9"
using the Runge-Kutta-Gill technique and Lagrangian extraﬁolation vields
values of y(L) and M(L). By perturbing separateiy'&(ﬁ) and RZ’ three
sets of values for y(L) and M(L) were generated. Using these values

and the modified Newton's method the values of 6(0) and.R2 for the next
iterate were determined. Repeated applicatioﬁ of this process until y(L)}

and M(L) are zero or within specified accuracies yields the desired solution.

A list of the computer program is shown in Appendix C.



EXPERIMENTAL DETERMINATION OF THE STIFFNESS FUNCTION

The fundamental physical properties that describe the elastica are
length and stiffness. The stiffpess is the product of Young's modulus E
and the moment of inertia of the cross-section I.

A commercial fiberglas pole vaulting pole was selected to simulate
the elastica. The cross-section of this pole is annular in shape, with
a varying diameter and thickness. The stiffness was dependent upon which
cross sectional axis the bending occurred about. Due to these irregu-
larities it was necessary to determine the stiffness experimentally about

the weakest axis.

Figure 5.

The procedure used in determining the stiffness function of the polek
was based on the linear bending of a simply supported beam and the
principle of superposition. The pole was placed over the supports which
‘were separated by a distance % as shown in Figure 5. A load N was applied
centrally between the supports and the change in deflection 4 at the
loading point due to this 1oaé was recordgd. The average stiffness for

that section of the pole was calculated from the relation

3.
N&
R TR



Ideally, & would be selected very small and the average stiffness
calculated would represent the stiffness at the point of interest. There
are two problems which are encountered with this approach. First, the
magnitude of A is restricted by the accuracy of the measuring instruments.
Measuring A with a dial pauge required the magnitude to be several hundredths
of an inch. Consequently, as can be seen from equation (7), decreasing
& requires a cubic increase in N. The second problem is encountered with
large values of N. When the load was applied the annular shape of the pole
cross section flattened. This flattening caused misleading values of A
and the pole appeared to be softer than actually is the case. Due to the
importance of these problems it was necessary to use a large %, and the
values determined for the stiffness are an average over a Eour foot length.
The stiffness was calculated every foot between two feet and thirteen feet
from the pole box end. This data is shown in Table 1 and a plot of the
data with a smooth curve drawn through the experimentai points is shown
in Figure 6.

The extrapolated parts of Figure 6 are shown to level off instead of
continuing to decrease. This characteristic is predicted from the method
of construction of this pole. The pole was constructed by rolling sheets
of fiberglas of varying widths. The number, shape, and location of these
sheets determine the stiffness characteristics. It is believed that the

stiffness of the ends are reasonably uniform.



Table 1

Standard Pole III

Dura-fiber L = 15" 7"
Cata-Pole 550+ N = 15.88 1bs
model 1580+ Flex no 6.125 % = 4"
S (ft) A (in.) EI (psi) S (ft) A (in.)  EI (1b-in®)
2 .0745 492,000 8 .0545 671,000
3 .0635 576,000 9 .0570 642,000
4 .0554 660,000 10 - . 0605 605,000
5 0545 571,000 11 .0695 526,000
6 .0550 665,000 12 .0845 433,000

7 .0545 671,000 13 .1020 359,000
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EXPERIMENTAL LARGE DEFLECTION BUCKLING

For the purpose of comparison, experimental configurations of the
elastica were determined. The apparatus used to obtain these experimental
data is shown in Figures 7 and 8. End A has a fixed support on which a
statham 200 1b capacity load cell was mounted. The load cell was con-
nected to a 6 volt D.C. battery and a digital voltmeter. The opposite end
has a movable support on which a hydraulic cylinder was mounted. These
supports were mounted on a channel iron beam which served as a base and
reference of orientation. The movable support could be drawn toward end
A by the use of a block and tackle and clamped in place after positioning.
A single ball bearing at each end provided the hinged end conditions.

The bearings were placed between the supports and end caps which were
fitted on the pole. Although the problem of friction was not eliminated
the lever arm through which the frictional force acted was small. This
should provide an adequate approximation of the pinned end conditions.

The pole was placed between the supports with the pole box end at
end A. Therefore the force indicated by the load cell was the buckling
force P as defined previously.

The pole was buckled, clamped in place, and rotated to determine the
weak axis, which represents the axis about which the stiffness was
measured. The distributed load was due to the weight of the pole and
considered present if the pole was buckled in a horizontal plane and absent
if the pole was buckled in a vertical plane. Point loads were applied by
either hanging weights (Figure 9) or by the use of spring scales (Figure 10).
Once the loading was completed the configuration of the pole was measured
or recorded by photograph. P was determined from the voltage output of the

transducer by the relation
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Experimental Apparatus

Figure 7.
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Figure 8. Experimental buckling load test apparatus
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Figure 9. Experimental side load application by weights
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Figure 10. Experimental side load application by spring scales



P = 3290(V - Vtare)

where V is the voltage at the specified loading and Vtare is the voltage
before the pole was introduced into the apparatus. Equation 8 was

obtained by calibrating the load cell using a 50 1b standard weight.

17

(8)
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PRESENTATION OF RESULTS

The output of the computer program was a iisting, showing the
configuration of the neutral axis of the pole for a specified loading
(Table 2). |

A comparison of experimental and numerical results is shown in
Figure 11. The profile of the pole is shown in which the maximum y
deflections § for both numerical and experimental results are the same.
As will be the practice in this thesis, the experimental results are
shown surrounded by symbols, while a curve is plotted through the
computer generated results.

The next comparison is a plot cbtained by relating 6;to.the buckling
force.

Figure 12 shows the results for pure buckling, the experimental
results are surrounded by squares and the numerical results are adjacent
to the experimental results. Also shown in Figure 12, either surrounded
or adjacent to the circles, are the results for a_5 1b distributed load
and a 5 1b point load (¢ = 270°). Simularly, the results are shown in

" Figure 13 for a 5 1lb distributed load and a 10 1b point load (¢ = 2257Ys

For comparison the numerical results for pure buckling are repeated in
Figure 13.

These results show a comparison over the limited range of the
experimental apparatus. The numerical technique was used to generate
results over a broader range of loadings and deflections. Figure 14 shows
a plot of maximum y deflection for various buckling loads. Curve A is
for the elastica with no side loads. Curves B and C are the results for

a concentrated side load F of -30 lbs and +30 1lbs, respectively at an



Table 2. Numerical beam column configuration.

STANCARD PCLE 111
El FRCM GRAPH
LENGTH=15 FEET 7 INCH

WEIGHT= 5.00 LBS.
EPSI= ¢.0100
DELT= 0.000t
F= ~10.00 L85,
PHI= 45,000 DEGREES
SF= 157.00 IN,
XF= 11,90 FEET
YF= 20413 IN.
P= 185,00 LBS5.
STIFFMESS OISTRIBUTION
45C000.00 450000,00 457CJC.00 47C00C.00 500000.00 545£30,00 585390.00 630000.00
665000.09 673000.00 6T0000.00 6£5000.00 £E5CC0,00 669CI0.00 669000.00 658000.00
6500CC.00 A45C02.00 632000,00 €13000,0) 577000,09 535000.00 488000.C0 442000.00
397000.90 359000.00 340000.00 330000,00 325CC0.00 320000.00 32J200.0C 323003.00
S ¥ THETA X Y(4)
0.,000C0 0.00000 0.67999 0.00000 0.00000
6,.,23332 3.91152 0.67511 0.4044% 0. 40417
12.,46666 T.71579 0.66067 0.81202 1.61985
18,£9598 11.546418 €.63730 1.22563 3.65627
24.93325 15.18026 0.60641 1.64765 £.52799
31.1€660 13.64C93 0.57013 2.07964 10.25354%
3T.39990 21.930044 0.52589¢C 2.52237 L4.85372
43,63321 24.93498 D.4868%9 2.57005 20.35%030
49,E6652 27.72490 044113 3.44051 26.T76505
56,9982 20.25014 0.39259 3.91535 34,11917
62,33313 32.48509 0.34028 4440019 42.433056
68,56644 24.40146 0.28422 4,8944) 51.72614%
T4. 79974 35.97263 0.22505 5.367C0 62.01620
£1.03305 37.17751 C.16380 5.90656 73.31871
87.260636 3g.00l16 C. 10109 6442136 85.64587
93.49966 38.43166 0.03689 6.93947 $5.00630
§9, 732497 28.45801 -0.02854 T.45881 113.40450
105.56620 38.,07553 -0,09422 T.517718 128.84080
112, 19950 37.28639 -0.15967 8,49235 145.311490
118.,42280 36.09526 -0.2248% 9.00213 162.80650
124,66610 34.50775 -0.29036 G.50435 181.31440
133.89950 32.52692 -0.35667 9.99676 200.81730
127.13280 30.15657 -0.42378 10.471708 221.29230
143.36610 27.640376 -0.49119 10.94301 242.71600
149,55940 25.20221 -3.55778 11.39252 265.05410
155.8327¢0 20.814564 -De 62158 11.82406 288,27310
162.066C0 17.037585 -C.567899 12.23721 312.33690
168,29930 13.00497 -0.72656 12.£3322 337.20540
174.53260 B.ITTTT -0.76187 13.31492 352.85910
180, 76590 4.42122 -(C.78359 13.38642 389.26120
186,99920 0.00002 -0.79093 13,7152518 41¢.40010

19
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buckling load (P) (1bs)

buckling load (P) (lbs)
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Figures 12 and 13.

o
o
o Figure 12
“-
o
@-F=51bs, ¢ = 270°, R =5 1bs,
S, = 157 in.
& F
o @ - pure buckling
8 \.- computer generated
-
(=)
o
o
~
L o ]
o (U]
o
o -
Tp]
T T T T 1
b.00 10.00 20.00 30.00 4g. 00 50.00
Maximum y deflections (§) (in.)
o
o
o
— s
& Figure 13
&~ F =10 1bs, ¢ = 225°, R = 5 1lbs,
S, = 157 in.

(=)
o & ¥
CS \,- computer generated
i A
vy

i

A A A

o :
o
o
FH
-4
=]
o g
B | - i 1 1 1
"b.00 10.00 20.00 30.00 40.00 50.00

Maximum y deflection (8) (in.)

Experimental and numerical force deflection
relationships.
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angle ¢ of 45 degrees. These curves-bound curve A as expected. Curve D
represents the same loading as curve B but the deflection was negative

(If the deflection were positive, the loading would have been: F = 30 1lbs,
$ = 135°), Note that curve D crosses curve A, This is due to the direc-
tion of the side load. When the x component of the side load is in the

same direction as the load at s=L, this load must'be less than P. Therefore
there is in effect a shortening of the length that the buckling force

acts over, which results in a stiffer system.

Next observe Figure 15. The side load is perpendicular to the unbent
axis and consequently curves C and D are symmetric with respect to the
ordinate.

Note the portion of curves B which are left of the relative minimum
values. Although experimental data was acquired in this region, these
are considered to be unstable equilibrium points. In the 1limit, as the
side load approaches zero, this part of a curve B becomes the vertical
axis which is a known unstable equilibrium position for a pure buckling
problem. An envelope through the critical buckling point, points 3, and
6, bound the unstable region for this type of loading.

Consider two examples of predicted behavior near this envelope.

1. The loading is such that point 1 is indicated., The side load is
decreased and reversed while the buckling force is held constant. One
will observe a smooth transition from point 1 across curves C, through
curve A, and across to the instability‘envelope. At that point snap
through should occur and a junp from point 3 to point 4 should occur.
The transition should then continue smoothly from point 4 to point 5.

This phenomenon is also shown on Figure 16 which is a plot of maximum y



-dTYsuoTIBVISa UOTIVDBTFP °92103 TedTIauwny g7 =2indrg

‘(s9youyr) (9) UOTIOSTISP £ wWnWIXew

&  00°08  00°08  00°0h  00°02 00°0  00°02- 00°0f- . 00°09-  00°08-

: o

(o ]

wn

"ur 46T = 7S ‘0 =¥ .06 = ¢ “SqT 0f = 4 - %9 5=

‘ur s¢1 = 95 0 = u ‘006 = ¢ “sqT 0T = g - Iy <]
ur 46T = %5 ‘0 =u ‘.06 = ¢ “sqT 0g- = g - %a*Cq
ot z¢1 = %5 ‘0 =¥ ‘.06 = ¢ ‘sqT 0T- = g - la‘lg

BurTyonqg sand IW

o

fon ]

~tn

=

o

Q

N

O

(oo ]

[om ]

o

00°0s2

(sq1) (4) peol SuyTyong



25

00°0h  00°0E  00°02 00701 00°0  09°0%- 00°02- . 00°0g-  00°0F

+dTYSUOTIBTSI UOTIVSTIOP =010F TEOTIawnyN -9T =InfI

(sayoux) (9) ucpiInaTFep £ wnurxew

00°8-

00°e-

‘Ut [GT =

d

—— — e A ———— SIS .1 D Lo B rmaERr (et

S 0=V ‘40 = ¢ “SQT CLT = &

Y

00°'¢

00°8

00°01

00°01-"

(sq1) (J) peel opTS



26

deflection for various magnitudes of side load. Points 2, 3, and 4

represent the same loadings and deflections as described above.

2. The loading is such that point 6 is indicated. If the side load is
held constant and the buckling load is increased, the preferred direction is
that of larger deflection, and not into the unstable region.

Figure 17 shows the relationship between the maximum y deflection
and x(L). The plot shown is for no side load but for all practical

purposes the relation is the same for all reasonable loading conditions.



12.00 14.00 16.00

10.00

-t

maximum x deflection (xL) (ft.)
8.00

2,00

F=0, ¢ = 90°, R=0, sF=' 157 in.

P00

Figure 17.

.00 20.00 40, 00 60.00 80.00
maximum y deflection (§) (in.)

Numerical comparison of x and y deflections for
various buckling loads.
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DISCUSSION AND CONCLUSIONS

The numerical shooting method consisting of the fourth ordér Runge~
Kutta-Gill numerical integrating technique, Lagrangian extrapolatioms,
and a modified Newton's method appears to be an efficient and accurate
method for solving this problem. The agreement between experimental and
numerical data appears to be very good. The percent difference between
any two comparable points is small.

One should remember that the numerical data was also based on
experimental measurements. This is a place in this scheme where error
may easily be introduced into the solution. A method which would determine
this stiffness function easily and accurately would add to the desirability
of this scheme. Possibly the coupling of a finite difference technique
with linear bending of a beam would solve the problems encountered in the
technique that was used.

The rate of convergence of the numerical scheme is extremely dependent
on fhe initial guess of_ﬁ(O). Obviousiy, when closer to the true value
of 9(0), fewer iterations are necessary. Also, in the range where two
solutions exist, the solution acquired depends on the value of 6(0). If
for a particular loading, 6(0) is assumed small, the solution will be the
one with least y deflection. Guessing 6(0) greater than about 0.7 radians
‘usually assures convergence to the solution with greatest y deflection,
which is the stable solution. If one is seeking a solution for a buckling
load that lies below the relative minimum of the curves B, Figures 14 and
15, the solution lies on a cu;ve D and the y deflections énd 8(0) are

negative. If a positive 6(0) is assumed, convergence may or may not occur.

28
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Every attempt has been made to reduce the effect of the users guess
on obtaining the desired solution.

Yet, a certain level of understanding of the physical response of the
system to different loads is necessary to ensure that the solution écquired
1s the desired sclution, and, to ensure that convergence to any sclution

will occur.
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APPENDIX A

DERIVATION QF MODIFIED NEWTONS METHOD

Expressing as an initial value problem

r 0 r 0
} S| |T2(0)
yO =3 0 t=1 5
0 0
C J \ J

Also the value of the reaction at the s=0 end (RZ) is unknown.
The conditions that must be satisfied at the s=L end are
y(@L) = 0
M(L) = 0 N
Therefore one may consider a mapping of y(L) on the YZ(O) & R2 planes and
a mapping of M(L) on the y2(0) & R2 planes

M= M (y,(0),R,)
By use of the Taylor series of two independent variables one can

generate a scheme to select the next iterates.

For simplicity, let

M= M(G’Rz)

and let 61, 62, Rl, R2 be assumed values of 9 and R2 then
Yl = y(01,R1) M1l = M(O1l,R1)
Y2 = y(62,R1) M2 = M(62,R1)

Y3 = y(61,R2) M3 = M(61,R2)



By Taylor series

oYl aY1l
y Y1+6633+6R2_3'I-{Z

M1 oMl
M =M + 66 20 + 6R2 BRz

one can approximate the partial derivatives by

vl _ Y2 - Y1 oMl _ M2 - M1
36 82 - 61 Y] 82 - o1
Yyl Y3 - Y1 M1 M3 -M1
aR2 R2 - R1 axz T R2 - Rl

the desired values are y=0, M=0

Y2 - Y1 Y3 - Y1, _
Y1+ 60 gy -] + 0%y [pg =gyl = O

M2 - M1 M3 - M1,
M1l + £6 [62—61]+'5R2[R2—R1]“0

_ ¥3 - v1i. Y2 - Y1
86 = {"5R2 Rz &1 Yl} ! loa = o1

Y3 - v1 62 - 01 M2 - M1 M3 - M1
0 =Ml + {“GRz Ra =1l - Yl} o =yillea =e1! * %y [Ro— 1]

M2 - M1
Ml - Yl{-—-——-——Yz = Yl]

(3 - YL M2 - M1~ M3 - MI
Y2-YV1''RZ - Rl' TRZ - R1

SR =

R2 = R1 + 61{2

M2 - M1 ¥3 - Y1
R2 = Rl + {Ml - Yl[m]} [R2 - R1] / {[ﬁ][l\{z - Ml] - [M3 - Ml]}
R, = Rl + {[Ml(YZ - Y1) - Yi(M2 - M)l (rR2 - Rl)} / (¥3 - Y1)(M2 - M1) -

- (M3 - MI)(Y2 - n)}



Similarly

6 =6l + {[Yl(M3 - M) - ML[¥3 - Y1)](2 - 61]} / {(MZ - ML) (Y3 - Y1)

- (Y2 - Y1)(M3 - Ml)}

When the sideloads are zero this may be reduced to

y = y(6)
Y1l = y(81)
Y2 = y{(62)
By Taylor series
aYl
y=Yl+59%“"
oY
1 ¥2 - Yl N
Approximate o by o5 61
_ ¥2 - Y1
y = Y1 + 66 Ggf—:—gi)
for y =0

¥2 - v1, _
Y1+ 88 (o= =0

62 - ol
66 = N1 G —31)
6 = 81 + &6
02 - 81
=61 -Y1 (§E—:—§I)
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APPENDIX B
Vector Formulation of the Differential Equations

For use in the computer program it 1s necessary to cast the problem

in vector notation.

The independent variables were selected to be Y.

vy ) )
Yl (y
Y 6
? = JYZ Po= J 4
3 X
Y
4] W)
X=38
) 3 3
(Yl [sin ¥, sin
Yé M/EI M/EL
?' = JY' ,.=-l Y r = 5 »
3 cOoSs 2 cos
X! wY WX
(4) U 3 ) )
for 0 <X <X

M= —PYl + (R2 - WX)Y3 + Y4

for X, X <L

M=-=(P + Fcos¢)Yl + (R2 - wX + Fsin¢)Y3 + Y, + Fchos¢ - Fszin¢

4

and since the last two terms remain constant

= - - +
M ® + Fcos¢)Y1 + (R2 wX + Fsin¢)Y3 + Y4 MF



APPENDIX C

Listing of Computer Program
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ABSTRACT

Large deflections of a pin ended slender beam column of arbitrary
stiffness distribution are investigated. The loadings considered are
a buckling load, a uniformly distributed load, and a point load of
arbitrary location, direction, and magnitude. The stiffness of the
beam column is assumed to be nonuniform but continuous and to obey
Hooke's law. Differential equations of a mathematical model are
presented and a numerical scheme for solution of these equations is
proposed. The scheme consists of the "shooting" method using numerical
integration by the Runge-Kutta-Gill technique, extrapolation of the
bcoordinates of the side load by Lagrangian interpolation, and a modified
Newton's method for determining the proper initial conditions. A physical
model is also presented as a commercial pole vaulting pole. Experimental
configurations of the pole are compared with the mathematical model and
the results appear to be very good. The mathematical model is further
studied and predictions are made as to the large deflection behavior of
this beam column. The '"shooting" technique as presented appears to be

an efficient technique to model the behavior of this nonlinear phenomina.



