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NOTATION AND TERMINOLOGY

Xi.Xo.x-, Rectangular coordinates; X^>X2 ln the P lane

of the beam

* (x.iX.) Airy stress function

o

.

stress tensor

e strain tensor

S general elastic compliance tensor
ijkl

C polynomial coefficients
mn

2a length of beam

2b depth of beam

Plane anisotropic the x 1
~ X 2

pl ane is the only plane of

elastic symmetry.

Orthotropic three mutually perpendicular planes of

elastic symmetry.



INTRODUCTION

In the classical two-dimensional theory of elasticity,

plane stress problems of rectangular sections have been inves-

tigated for many years. The solution to a particular problem

is often found by guess work or by other indirect approaches.

Popular methods of solution are superposition, and the semi-

inverse method. Unfortunately, these methods are directly de- .

pendent upon the skill and experience of the investigator.

3 1
Recently, due to work by Neou and Hashin a direct sys-

tematic method has been developed to solve the stress problem

of a generally plane anisotropic rectangle. Some solutions to

particular problems of this type have been given by Lekhnitskil

D
Silverman has solved several for plane orthotropic beams. How-

ever, the approaches by Lekhnitskil and Silverman lack the sim-

plicity found in the method of Hashin.

In this report Hashin's method, referred to as the poly-

nomial method, is discussed in detail. The method is then ap-

plied to several problems of generally plane anisotropic beams.

In one particular case an interesting comparison is made be-

tween the polynomial solution and the least work solution.

Finally, to fulfill the purpose of this report, anisotropic and

isotropic beams are examined in each of the problems to deter-

mine the anisotropic effects on the stress distributions.

9



THE POLYNOMIAL METHOD OF SOLUTION

In plane stress problems of rectangular sections, the unit

thickness of the plate Is considered to be small In comparison

to the depth (2b) and the length (2a) such that the assumption

°33 " °13
-

"23 " °

is approximately satisfied everywhere. The equilibrium equationa

in this case are

!!n + !lil.o pl + pl.o (i.i)
3X X

3X 2
»X X 3X 2

for no body force.

Equations (1.1) are Identically satisfied by considering the

Airy stress function * (x 1 ,X 2 ) which yields

3
2
* „ 3

2
* - . -3 2

» M 2)
°ii " 5" "?? 2 °12 l*-*J
11

3X 2

2 " 3 Xl
2 aX^X,

The compatablllty conditions for the two-dimensional problem are

reduced to the single equation

2
-

, 3
2
e,, a

2
t..

1-1 ^ 22 _ 2
12

(1 3)

3X 2
' 3X!

2
3 X

1
3 X 2

The compatibility equation (1.3) can be expressed in terms of

stress by introducing the general anisotropic stress-strain re-

lations



e
ij - s ljkl°kl

(1 - 4)

where the S.... are the general elastic compliances. The summa-

tion convention is used on repeated subscripts and the subscripts

range from 1 to 2 for the two-dimensional case.

By substitution of (1.2) into (1.4) one obtains

, - s *
2
t r a

a2 »
_2C —ill. (i.5a)C

ll
S llll * 2

+ S 1122 . 2 "lll2 3 X ,3 X ,

U
. '

"X2 "*\ * 7

2 2 2
ar_«_ J . at ,„ a

X;
E 22 " S 2222 I 2

+ S 2211 ~ 2
~2S!2212

3 x 3 *

-

»Xj^ d X2 x *

(1.5b)

«• . 2s
a2 » + s ^- + 2s &- CI.e

12 " 2S 1212 3 Xl 9x 2

S 1222 ^ 2

+ ZS
1211

Jj
2

Ul

1
2

Inserting equations (1.5) into (1.3) yields the compatability

condition in terms of *( X ]> X 2) !

A A ' A 4

« O- . a
3 * + 2V

3 *
- B

3 *
B" ax/

8" 3 Xl
3
3 X2 ^ 3 Xl

2
3 X2

2
6" 3 Xl 3 X2

3

+ Bll j\.0 d.6)
»X 2

where

B22 * S 2222 B 26 " 4S 2212 Y " B
12

+ B 66 " S1122
+ 2S 1212

B 16 " * S 1112 B ll * S
llll



Equation (1.6) establishes the governing differential equation

for (x-i.Xo) ln a plane anisotropic plate.

The boundary conditions are commonly given in terms of

tractions. However, since the governing equation is expressed

in terms of *, it is more convenient to describe the boundary

conditions in terms of *. For a simply connected domain with

no body force, the boundary conditions can be evaluated by the

4
following method.

Consider the region G, which is circumscribed by the boundary

curve T, Fig. 1.

Fig. 1.

From the plane theory of elasticity, equilibrium of a boundary

element produces the equations

7
pX. " l0

ll
+ m°12

%X,
- X°12 + m°22

(1.7a)

(1.7b)
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where 1 and m are the direction cosines of the outward normal n,

and (o .0 ) are the components of the stress vector on the
PX X PX 2

boundary. Substitution of the direction cosines for n (Fig. 1)

into equations (1.7) yields

dx
2

d Xl

°p
Xl

" °11 ds " °12 ds
(1.8a)

dx
2

d Xl

°PX 2
" °12 ds " °22 ds

(1.8b)

By integrating equations (1.8) counterclockwise from P it is

found that

I l dx
2

RX, / ds - / (a., -r—
1

o px l o " ds
-

0l2
-j-i>ds (1.9a)

I * d X
j

RX2
' VoXl"

8
" V° 12 *" " - "22 IT »

dS (1 - 9b)

where Rx, and Rx, are the resultant boundary forces between o and

in the Xn and x 2
directions, respectively.

Substitution of equations (1.1) into equation (1.9a) produces

r\ 3
2
*

dXz
l

3 '*
R
"i - V 7x7 -• 3Xi * 2

dx
l

IT >
ds

- / r JL.
(
H-, til +f

o l

9x 2
^X 2

ds
3 ,3* v

dX
l , ..

j^ (ij£} di- i ds

o 2

. 1*- 1*

3X 2
'•
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Similarly

Rx
2

3* it

^x 1
'o

It is convenient to ch oose * and its deriva tives to be zero at P,

which Is p ermisslble f or zero body force.

Hence,

RX
X

-
3t

3X 2

(1.10a)

RX
2

-
3»

" 3 Xl
(1.10k)

where the derivatives are evalLuated at s - I.

Integration of th e total differential of * along with the

aid of equations (1. 8) yields

*U)
1

- / d* - ;

I

377
dx

i
'
._ 3* . s

- [-x^x 2
+ X 2

RXl>o - 'o <-Xl%X2
+ *2%Xl

> dS

- -x 1
U)Rx

2
+ x 2

0O R
*l " ;

o
(
- X 1 PX 2

+ X 2°PX
1

)dS

- ^ [ x 2
(t:'-X 2 ]% Xl

dS ;
o (X l

U) -
:< . 1 a ds
'1 PX 2

- M (I)

where the last expression is exactly equal to the counterclock-

wise moment about a point s - 1 due to the tractions on the



boundary between a - o and s • I and is denoted by M (I).

In summary, the three boundary conditions for Fig. 1. are

RXi - |i- - ;* ds (1.11a)

R . _ i*_ . f
l
„ dS

*2 3x, o p Xl
(1.11b)

• <t> - M(l) - ^(x 2
U) - X 2

]c
pXids

" f*UiU) - Xila^^g (1<llc)

and the governing equation is

l..*X-J a.S_. + 2T
aS . . . _A

" ax/
" ° 26

»Xl
3
aX

2
'
"

3 X1
2
3X 2

2 "
" 16

3 X1 3X 2

3

+ 6

-7x7"°
(1.12)

For direct application in this report, consider the rec-

tangular section of unit thickness in Fig. 2.

MH^

Pfc<fc| Y

h

tVr

aeW

.Yfa

^PWi
+ A

\

a- H"<-

Fig. 2.

*—

H

s^x^-b)



As indicated in Fig. 2., it is required that the stresses be

specified on x 2
" ±b • whllc onl? the resultant forces and moments

are prescribed on Xl +*• *•« this reason t,he solution attempted

is subject to Saint Venant's principle in the x x
direction; i.e.,

a>>b. Applying equations (1.11) to Fig. 2. leads to the following

boundary conditions where the starting point, P, for counter

clockwise Integration is shown in Fig. 2.

On x 2
" -b

*( Xl ,-b) - /
Xl

(x 1
-s)o

22
(s,-b) ds (1.13a)

o

. 3t(x
1
.-b) X, ,, ...._—-i - -/ V

9
(s,-b)ds (1.13b)

3x 2 o **

and on Xo " +b

a

( Xl ,b) - r (x 1
-s)o

22
(s,-b)ds

o

a

-2b / o
12

(s,-b)ds + M(a) + V(a)(a-x
1
)

a

+ P(a)b + / (s-x
1
)o

22
(s,b)ds (1.14a)

3 * ( *l'
b)

- -/*„,, (.,-b> ds + P(a) + /" o (s.b) ds (1.14b)
3X 2 „

12 X 1

In (1.14), M(a), V(a), and P(a) are the resultant moment and

forces on the end Xi " a as shown in Fig. 2.



It is assumed that the stresses on the boundaries x 2
" ±b

are expressible as polynomials in x, ',!•&• <

m-o

•XI <*i.-*>" I Vi™ a - 15b)

•m<xi.« " I Vi" a - 15c)

•n<"x.« " f Vi" (1 - 15d)
m-o

From the assumed conditions in (1.15), it follows directly that

the boundary conditions (1.13-1.14) are also polynomials in Xj.

and the solution of (1.12) is chosen to be of the form

<*i,*2> " I ! cmn*iV »•"?
m-o n-o

where the C are arbitrary constants,
mn

Substitution of (1.16) into (1.12) and rearranging terms yields

M N

I I {B 22
(m+2)(m+l)m(m-l) Cm+2n_ 2

m-2 n-2

-B 26
(m+l)m(m-lXn-JCm+ln . 1

+ 2 Ym(m-l)n (n-1) C
mn

-B 16
(m-l)(n+l)n(n-l)Cm_ 1|ii+1

+ 8 lx
(n+2) (n+l)n(n-l)C

m_ 2n+2 )

m-2 n-2 .

"1 *2 " °
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The fact that this equation must hold true for all Xj^ and "2

leads to the result

6 22
(m+2)(m+l)m(m-l)Cm+2n _ 2

- B 26
0rH>»<—l>M><j,+ lB -i

+ 2Ym(m-l)n(n-l)Cmn

-B 16
(m-l)(n+l)n<n+l) C

B_ lB+1

+8
11

(n+2)(n+l)n(n-l)Cm2n+2 - m> 2 , n>2 (1.17)

which is a set of recursion relations for the C
mn . It is con-

venlent to formulate a coefficient matrix, Fig. 3.

o

O 1 2. 3 4- 6 6 7 8

/% /-o/ ¥°y, "fti C.* CoS © Cort Coa

1

~7 S/
~

P^\4& Ca Ciy © Cm, c„ C-ig

2.

Vy
4&\ z*. Qs Q Cu

3 4$ Q
4 Q-tf-o ©>

M=S Cso c*

(o O,o

Fig. 3.
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Equation (1.17) relates five consecutive coefficients on a dia-

gonal. One specific example Is

4e 22
C 42- 36

26
C
33
+8YC 24- 106 16 C 15+606 ll

C
O6 " °

which involves the five circled coefficients in Fig. 3. In

equation (1.16) the largest power of x x
is M - This indicates

that all of the coefficients below the Mth row vanish, and for

a given M the recursion relations show that all of the coeffi-

cients outside of the step domain on the extreme right (heavily

marked in Fig. 3.) must also vanish. It is easily seen that,

for all values of M, the domain of non-vanishing coefficients is

formed by going four columns to the right on the Mth row and

then proceeding up the diagonal steps until m " , and at this

point N - M+3. So equation (1.16) takes the form

•<Xl ,X2 ) " ! T CmnX/V (K18)
m-o n«o

where m+n £ M+3 in accordance with the domain of non-vanishing

coefficients in Fig. 3.

In order to completely determine the form of the stress

function it is necessary that all of the C in equation (1.18)
ran

be known. The number of unknown coefficients in the first four

columns of Fig. 3. is

Z - «(M+1)

and the number of coefficients in the upper diagonal square

matrix is
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W - (1/2)M(M+1)

Hence, the total numbers of unknown coefficients In (1.18) is

given by

Q - Z + W - (l/2)(M+l)(M+8) (1.19)

These coefficients must be determined from the recursion rela-

tions (1.17) and the boundary conditions as expressed in (1.13.-

1.14).

The recursion relations do not involve any of the Cmn
in the

shaded area of Fig. 3. Thus, each of the coefficients in the

upper diagonal square matrix accounts for one recursion formula.

It follows that the total number of recursion relations avail-

able is

W - (1/2)M(M+1) (1.20)

For a complete solution

q _ W - Z - 4(M+1) (1.21)

additional equations must be obtained from the boundary condi-

tions.

After substitution of (1.15) into (1.13-1.14) the boundary

conditions become

(x^-b) - I HmXl
m d-22a)
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3«( Xl ,-b) M

»X. ' * Vl (1.22b)
2 m«o

*()
M

; l'
b) _

I J
m x l" (1.23a)

m-o

3*( x l'
b) &

3X, " ^
L
m x l (1.23b)

^ m—

o

where M is the largest power of x, occurring in any one of the

equations (1.22-1.23). The known coefficients H , I , J , andm m m'

L take
m

on appropriate values to account for those cases when the

largest power of M of Xi does not occur in all four of the equa-

tions

.

Substltution of (1.18) into the left side of (1.22-1.23)

yields

M

I
m-o

M+3 M

I C
mn*i

m
<-°>

n
" I Vl" (*.«*•>

n™o m—

o

M

I
m-o

M+3 , M

I CmnX 1

m
(-")

n - 1
- I I.X/ (1.24b)

n-1 m-o

H

I
m-o

M+3 M

I C
mn x i

m
< b )

n
" I Vl" (1-23-)

n*0 m"0

M

I
m-o

M+3 M

I nCmnX 1

n
(")

n - 1
" I Vl

1
" C1.23b)
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By equating coefficients of equal powers of x,, it Is found that

equations (1.24-1.25) produce 4(M+1) equations for the C . This
mn

is exactly the number of equations required from the boundary

conditions to completely determine the stress function in (1.18),

The general method of solution can be outlined as follows:

The stresses on the boundaries x 2
" iD are expressed as polynomials

in Xi- These stresses are substituted in equations (1.13-1.14)

to form boundary conditions in terms of the polynomial stress

function, (Xj.Xo)- Tne highest order M of Xi in (1.18) is

chosen to be the highest order of Xi occurring in the boundary

conditions. Then by using the equations expressed by the boun-

dary conditions and the recursion relations, the system of Q

equations and Q unknowns is solved directly for the coefficients

C . The polynomial method provides a systematic approach to

solving the plane stress problem of generally anisotropic rec-

tangles. It is obvious that this method cannot satisfy the

exact stress distribution on all of the boundaries, since addi-

tional boundary conditions similar to (1.13-1.14) on the ends

X. - +a would cause the number of equations to exceed the num-

bers of unknowns.
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EXAMPLE SOLUTIONS

To illustrate the application of the polynomial method, con-

sider a beam loaded uniformly on two boundaries, Fig. 4.

i 1 ! ! S J '

« • Q, »--« Q, *"
fe

I )

i
t i «

%

Fig. A.

The boundary conditions in terms of loadings are

'12

'22

(X x
,b) - <* 12 (Xi.-b) -

(Xj^.b) - o 22 (Xj^.-b) - q

V(a) - V(-a) -

M(a) - M(-a) -

P(a) - P(-a) -

Substitution of (2.1) (2.2) into (1.13-1.14) yields

(2.1a)

(2.1b)

(2.2a)

(2.2b)

(2.2c)

I ( Xl ,-b) - /
1
(X 1

-S) qds - q/
1
(X 1

S - f )

2
qx.

3»(x
1
.-b)

»x,

(2.3a)

(2.3b)
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( Xl ,b) - / (Xt-B) <ld<» + t (s-Xi) qda
1 n i v

.

2 2
2 2

qx, qx.

qx

Z 4 HAl HI
iB _ aa_ + ai- - Wl.t-|* r (2.3c)

3* (x x
.b)

(2.3d)

The highest power M of Xl in (2.3) Is 2. Hence, the stress func-

tion (1.18) becomes

2 5

I I•(Xi.xj) - i i c„ *r x 2

n + n < 5

C00
+ C

01 x 2
+ C

02 x 2

2
+ C03 x 2

3 + C
04 x 2

+ C
05 x 2

+ C
10 X 1

+ C
11 X

1
X 2

+ C
12 X 1 X 2

+ C
13 X

1
X
2

+ L
14 x l

2
+ c,,x,x,

3
+ C,t>X,H

+ C
2 2 2 3

!0
X 1

+ C
21 X 1 X 2

+ C
22 x l X

2
+ C

23 X
1

X 2

Inserting (2.4) Into the left sides of (2.3) and equating coef-

ficients of equal powers of x x
produces the following set of

equations:

From (2.3a)

SO " C01
b + C

02
b2 " C

03
b3 + C

04
b4 " C

05
b5

"
°

- cub c
12

b
2

- c
13

b + c
1A

b -
"10

c,„ - C,,b + C,-b' - C,.b- C 23
b " 2

(2.5a)
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From (2.3b)

C01 ' 2C02
b + 3C03

b2 " 4C
04

fe3 + 5C
05

b * " °

C
ll " 2C

12
b + 3C

13
b2 - «Cu b

3
- (2.5b)

C
21 " 2C

22
b + 3C

23
fe2 -

From (2.3c)

C00
+ C

01
b + C

02
b2 + C

03
b3 + C04

b4 + C
05

b5 " °

C
10

+ C
ll

b + C
12

b2 + c
13

b
3
+ c

14
b* - (2.5c)

C
20

+ C
21

b + C
22

b2 + C
23

b3 - f

From (2.3d)

C
01

+ 2C
02

b + 3C
03

b2 + * C04
b3 + 5C

05
b * " °

C
ll

+ 2C
12

b + 3C
13

b2 + 4Cu b
3

- (2.5d)

C
21

+ 2C
22

b + 3C
23

b
2 -

The available recursion relations are

«YC 22
- 3B 16

C
13

+ U»X1
CM -

^ C 23 " B 16
C
14

+ 5f5 ll

*

C
05 " ° (2.6)

" B 16
C
23

+ 26
11

C
14

"

Thus, there are 15 equa tions and IS unknowns.
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The solution is simplified if corresponding pairs of equations

(2.5) are added and subtracted. By solving equations (2.5) and

(2.6) it is found that

C, n - f and C for m i» 2, n +
20 2 mn

The resulting stress function is obviously

* (x^Xj) - | x L

2

from which it is found by (1.2) that

°11 " °

°22 q

°12 " °

For a second example consider the case of pure bending as il-

lustrated in Fig. 5.

i
,

Xi

^ L

/-^ L

' 1 ^*«^
^ 1

* Q. - > "+ CL """>
b

r~ a,

,
b

•

^^ /^\
^S^ ^x

i
^\

Fig. 5.
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The boundary conditions are

°12 ( Xl> b) " a 12 (*l>-
b) " °

°22 ( *l'
b) " °22 ( X 1( -l>) - Ax

x

M(a) - M(-a) -

V(a) - V(-a) -

P(a) - P(-a) -

Substitution of the above values into (1.13-1.14) transforms the

boundary conditions as follows:

1 3
* (Xj^-b) - jAXl

3* (X, ,-b)
. i .
3X 2

1 3
* (Xj^b) - gAx

x

3* (X,.b)
; -
3X 2

Accordingly, M is 3 and the stress function becomes

* hl.Xl) - l S Cmn ^"V m + n < 7

m™o n-o

By expression (1.19) there are twenty-two total unknown coef-

ficients. Expression (1.21) reveals that sixteen equations are

obtained from the boundary conditions and by (1.20) six equations

are available from the recursion formula. This set of equations
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is similar to that obtained in the previous example and is easily

solved to yield

C - i A^30 6
A

C - for m i» 3, n +
HI

The resulting stress function is

* (X
1
,X 2 ) - 6 AXl

and the stresses from (1.2) are

ou - o
12

- o
22 - AXl

From the two previous examples it is seen that as the highest

power, M, of X . increases on the boundaries it becomes necessary

to solve an increasing number of equations. Consequently, if the

polynomial expression of the loading has a very high power of Xl>

the polynomial method becomes very impractical.

The results of the two examples satisfy all of the boundary

conditions exactly; i.e. «u ( ±a,)(
2

) - o
12

(±a,x
z

) - 0, and the

application of St. Venant's principle is not necessary. In ad-

dition none of the anisotropic elastic compliances appear in either

of the solutions. It can be concluded that the stresses in plane

sections due to pure bending and pure compression or tension are

not affected by anisotropy.



21

PARABOLIC TENSION

For further and more meaningful discussion of the polynomial

method, consider the rectangular strip in Fig. 6.

s(t -
x
/<0

Fig. 6.

2, 2,

The prescribed loadings are

°12 ( Xl>-b) " °12 <*l>
b) " °

o
22 ( Xl ,-b) - <J 22 (x x

,b) - S(l-Xl '/a')

M(a) - M(-a) -

V(a) - V(-a) -

P(a) - P(-a) -

Directly, the boundary conditions in terms of * (x 1 »X 2
> «' e

2

( Xl ,-b) -isd-i^) Xl
2
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3* (Xp-b)

»X2
2

Xi 2
* (X]_,b) - y S(l - j 4~)x

i

3* (x, ,b)
± -

Thus, M - 4 and the resulting stress function is

* CXX .X2 ) - 1 I ^HH - + n 5 7

Twenty equations from the boundary conditions and ten recursion

relations are used to solve for the thirty unknown coefficients.

Through a lengthy algebraic detail, the coefficients are found to

be

c . _i thl-, Situ
00 12 *»' 2

11 a

I l

6 22 . Sb
2

C02 " " 6 l
8n J

fl

2

c . _i hi) §_C
04 12 (

6 11
'

fl

2

C
20 " Is

^40 12 2

and all the remaining C are zero.
mn

The final form of the stress function is



23

* , \ . -i this sbl _ i
* (Xi,X 2 ) - 12 <b77> 2 6

11 a

,

6 22. Sb
2

(
B

} "T~ x
B ll a

2

2

•

+ 12 (

Bll
> ,2*2

IS A

"12 2 x l
a .

from which

2
x l

°22 " S (1 " 2>
a

(2,,7a)

"12 " ° (2 ,7b)

S ,
S 22. , 2

°11 "
fl

2
l
6u ' U 2 3 '

(2 .7c)

From the result In (2.7c) it is seen that a
11

is not iden-

tlcally zero on either o f the end b, X t
- +»• In th e actual p rob-

lem (Fig. 6.) the ends are completely stress free. However, in

either case the resultant forces and moments are zero

.

b

M (+a) - / XjO^dj
-b

2
-

b

P (+a) - / 0,-dx,
-b

-

b
V (+a) - / °i? d X 2

-b

-

This indicates that the boundary conditions for *1 « +a are

satisfied approximately , and the application of St , Venant's

principle is necessary. In other words , if the length a is
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onlarge in comparison to the depth b; i.e., a>>b, then the soluti

for the stresses is approximately valid at a sufficient distance

from the ends.

In a plane orthotropic beam where the two planes of symmetry

coincide with the x t
and Xj axes, it is found that

6 22 " S 2222 " 1/E
2

8 11 " S llll " 1/E
1

where E. and E, are the moduli of stiffness in the Xj^ and x 2

directions, respectively. Thus,

S_ ,„ ,„ x ,. 2 u 2
;

2
a

°11 " "I «i'V <x 2 " b /3) (2,9)

The magnitude of o
±

is, from (2.9), directly dependent upon the

dimensions of the beam, and the relative magnitudes of E
1

and Ej.

For practical materials such as woods and composite materials,

the magnitude of E^Ej is generally less than 25. It has been

mentioned that the results in (2.7) are subject to St. Venant's

principle, which implies a>>b for the stresses to be valid at

reasonable distances from the ends. In an attempt to find a

basis for choosing dimensions of the beam which will yield rea-

sonable results, consider the particular beam with an isotropic

medium; i.e., E^ - Ej,

The stresses in (2.7) become

2

"22 " S(1 " T"> (2 ' 10a)

a
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ou - (2.«b)

i

2
_ £_ , 2 _ b. (2.10c)

°11 2 Cx 2 3
'

a

The polynomial solution (2.10) will be compared with Timoshenko's

solution to the same problem by the method of least work.

Timoshenko shows that for an isotropic plate of unit thick-

ness, the strain energy V is given by

li
'" ^ [0 11

2 + °12
2 + 20

12
2] dx

l
dX

2

By using equations (1.2) It is found that

-a -b dx
x

dx
x

1 i

The principle of least work states that of all the stress functions

which satisfy all the boundary conditions only the correct one

will yield (2.11) an absolute minimum.

The stress function in series form is assumed to be

* - » + a^j + «
2 *2

+ + °
n *n

(2 - 12)

where * satisfies all the boundary conditions and o
1
's are arbi-

trary constants. Then by inserting (2.12) into (2.11), V becomes

a function of the constants c^.^' .%• These constants can be

calculated from the extremum conditions

3V_ . 3V_ 3V_ . o, ,
|2- -
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which yield a set of n linear equations, in terms of the n un-

known constants. The principle of least work requires that the

values of the constants make (2.11) a minimum. If the assumption

in (2.12) is near the correct stress function, then a fairly good

approximation to the exact solution is obtained.

For the problem under consideration in Fig. 6. Tiraoshenko

assumes*

2

<x 1( x 2 ) - y s
X]L

2 U - \ -j-)
a

+ (x
2

2
- b

2
)
2

( Xl
2

- a
2

)

2
(«

x
+ a

2 x 2

2
+ a 3Xl

2
) (2.13)

Then by substituting (2.13) into (2.11) and requiring

a set of three linear equations in a^ is obtained. (see Timo-

shenko, p. 170, equations (g)). These equations can be solved

for a,, a,, a- in terms of S, a, and b. The three equations and

tabulated values of a,,a 2> a
3

for various values of a and b are

given in Appendix A.

From equation (2.13) the stresses are

o
3
2
* _ ,.,.. 2 U 2W „ 2 _ 2.2, . „ „ 2 . „ 2

11
3v

2
'1,

- A(X
2

- b
Z
)(x x

Z
- « ) («! + <»

2 x 2 + <» 3Xl )

+ 8 X2
2

( Xl
2

- a
2

)
2

( ai + a
2

)( 2

2
+ c^X^)

9 7 7 2 2 2
+ 16a

2 x 2
(X

2
" b

Z
)( Xl - aV

For the problem of Fig. 6. Timoshenko's a and b must be inter-

changed and y-*Xl ,x+X2
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+ 2a
2 (x 2

2
- b

2
)
2

(Xl
2

- -
2
)
2

< 2 -"»)

"12 " " W^T2 -16^H ( *2 " b
> ( *1 " » ><°1 + °2*2

+ a 3Xl
2

) - 8o
2 XiX 2 <X 2

- b ) (X x " • )

- 8 03Xl X 2 (X 2

2
" b

2
)(x

x

2
- a

2
)
2 (2.13b)

2 X
2

°22 " "T~2 " S(1 " 2
>

3 Xl a

+ A (X 2

2
" b

2
)
2

( Xl
2

- a
2
)( ai + a

2 x 2

2
+ ^X^)

+ 8 Xl
2

(X 2

2
" b

2
)
2

( 0l
+ a

2 x 2

2
+ « 3Xl

2
)

+ 16a 3Xl
2
(x 2

2
" b

2
)( Xl

2
- a

2
)

2 Q3 (x 2

2
- b

2
)
2

( Xl
2

- a
2

)

2 (2.13c)

The stresses in (2.13) satisfy all the boundary conditions exactly.

This means that St. Venant's principle has not been used, and the

results of the least work solution can be applied to any given

dimensions of the beam or plate in Fig. 6. It is obvious that

all of the stresses in (2.13) are directly dependent upon the

values of c^.a^Oj.' By the equations in Appendix A the e^'s

are strongly influenced by the dimensions of the beam. Thus, the

stresses in (2.13) are directly dependent upon the dimensions of

the beam.
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Any similarities between the stresses calculated by least

work and the polynomial solution are not obvious because of the

complex expressions in (2.13). The most radical appearing dif-

ference between (2.10) and (2.13) occurs in th^e shear stress. In

order to present « meaningful eomparison of the two solutions it

is necessary to resort to direct calculations for both the re-

sults of (2.10) and (2.13). Then by graphical representations of

the data it can be attempted to find a set of ratios a/b which

will cause both the polynomial solution and the least work solu-

tion to yield similar results. The following comparison is pre-

sented in a systematic manner by examining the stress distribu-

tions for both methods of solution for progressing ratios a/b.

Case I.

a/b - 1

*2
"

tlon

a ?9 1
In Fig. 7., -§* is plotted against — across the section

for both the polynomial solution and the least work solu-

From Fig. 7., the o,, distribution across the section x 2
" °

by the polynomial solution differs largely from the distribution

found by least work. It can also be verified that large errors

exist between the two solutions for o^. The largest shear

stress by the least work solution is approximately 0.1S (See

Appendix B) and this cannot be completely ignored in comparison

to the zero shear stress found by the polynomial solution. These

errors should be expected since the approximate boundary condi-

tions in the polynomial solution have a large effect when considering
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a square plate; i.e., St. Venant's principle can not be applied

to a square plate. It is concluded that the ratio a/b - 1 must

be discarded for the polynomial solution.

Case II.

a/b - 3

°22 x l
The graph of -f* vs. — for x 2

" ° is shown in Fig. 8. The

°22
—^— distribution for both solutions is very nearly the same at

the section x 7
" " • It can be seen by examining (2.10a) and

(2.13c) that the error between the two solutions for a-
2

is

x 2
maximum at \. - 0. This error decreases as t—- increases until

*2
the same distribution is reached on the boundaries r— +1.

°11
The graph of -g* vs. x 2

/ b is shown in Fig. 9. For the least

°11
work solution, —|* varies with \,l&. For the polynomial solution

°11
the —5— distribution remains constant for all values x,/ a - Fig-

9. shows an remarkable similarity in the general shapes of the

curves as long as X-i/a is reasonably less than 1. When Xj/ a

becomes greater than 0.7 the two solutions for Oj. begin to

differ greatly. For this reason, the region for x,/ a * °- 7

cannot be considered in the polynomial solution. This is

accounted for by the application of St. Venant's principle. For

°11
X,/a < 0.7 the —=* distribution curves for least work oscillate
1 2

11
about the fixed —=— distribution curve found by the polynomial

method. At X n
/ a " 0.3, the two curves nearly coincide. Since

°11 °22-~ is small in comparison to -=— for a/b - 3, the errors be-

tween the two solutions found in Fig. 9. become insignificant when

the total effects of o^ and a., are considered together. Also
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these relatively small errors cannot be weighed heavily because

of the totally different approaches of the two approximate

methods

.

In evaluating the shear stress for a comparison, no values

can be considered for x,/a * °- 7 because in this region the poly-

nomial solution is invalid. The largest shear stress a
12

by

least work (2.13b) found in the valid region is approximately

0.012S (See Appendix B) . By the polynomial solution a
12

is zero

everywhere. The largest error between the two solutions is ob-

viously 0.012S. Reflecting back to Fig. 9. the largest error

between the two solutions for a^ is approximately 0.015S at

X /a - 0.4. Hence, by the same argument presented for the er-

rors in o.. the error in o , between the two solutions also be-

comes relatively insignificant. For very large values of S the

isolated errors between the two solutions for o
12

might appear

significant. However, this difference is negligible when the

total stress pattern is considered.

From the above discussion the similarities between the

least work solution and the polynomial solution for the problem

in Fig. 6. are quite evident.

Case III.

a/b > 3

The o,, distribution found by the polynomial solution is

nearly identical to the o
22

distribution found by least work for

a/b > 3.
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a . .

The graph of — vs. Xj/a for a/b - 10 is shown in Fig. 10.

The only specific difference between Fig. 10. and Fig. 9. appears

S

°11
in the horizontal scale factor. The -=- distribution by both

methods of solution is reduced by approximately one-tenth when

a/b is increased from three to ten.

In addition -g* by least work is reduced when a/b is in-

creased from three to ten, and the error between the two solu-

tions for shear stress is directly reduced.

It can be shown that the similarities between the results

produced by the polynomial and least work solutions become

stronger as a/b increases above three, mainly because the error

between the shear stresses decreases directly as a/b Increases.

(See Appendix B)

After examining cases I, II, and III, it can be concluded

that the polynomial solution and the least work solution strongly

support each other for ratios of a/b > 3. Consequently, ratios

of a/b > 3 should yield reasonable approximate results when used

in the stresses (2.10) derived by the polynomial method.

Since a range of ratios a/b has been determined for the poly-

nomial solution, the orthotropic effects in (2.9) can be dis-

cussed in greater detail. Equation (2.9) is rewritten as

o
xl

- S(b/a)
2
(E

1
/E

2
)((s

2
/b)

2
-l/3) (2.14)

and

1 S (V (% (2.15)
<"ll>max " 3

S (
a> V

which is the maximum (,, found at x 2
" ±'+b.
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For an isotropic beam E. » E. and (2.15) becomes

o
11

1 - S(b/a)
2
[(x

2
/b)

2
- 1/3]

("ll^max " 2/3S(b/a)
2

According to S. G. Lekhnitskii, for pine wood

and

Ej^/Ej - 1/0.042 - 24

and from (2.14) and (2.15)

o
11

° - 24S(b/a)
2
[(x

2
/b)

2
-l/3]

<°ll >max " "S(b/a) 2

The effect of orthotropy is given by

°11 " 24 °11

where a.... and o.. are the isotropic and orthotropic stresses,

respectively

.

When a/b - 10

and

(cr n , ) - 0.00667S
11 max

(«,, ) - 0.16S
11 max

In either case (a,,) is small in comparison to
IX max

(0 22>max " S
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from (2.10). Although the orthotroplc effects are significant

In relation to the relative magnitudes of a.. and o,, , the

effect upon the total stress field Is negligible for a/b - 10.

tr.

When a/b - 4

(a.,
1

) - 0.042S
11 max

and

(0,1°) " s
11 max

Thus, the effects of orthotropy In the pine wood beam are quite

significant for a/b 4.

In the orthotroplc pine wood beam the a... stress Is found

by multiplying the isotropic stress by twenty-four. This effect

is large when the beam is short. However, when E^/E* * s changed

from one to twenty-four the stress variation is also increased

on the ends x- /a + 1. This increase in stress variation at the

end boundaries may have a significant effect upon the stress

distribution at the center section x. - when the ratio a/b is

small and although it has been verified that the polynomial solu-

tion yields reasonable results when a/b = 3 for the isotropic

beam, this may not be completely true for the orthotroplc pine

wood beam.

The fact that the two solutions differ largely in a., when

the beam is short leads to the conclusion that the orthotroplc

effects are significant when the beam is reduced in length. Ob-

viously, the stress in (2.14) is also directly related to the

degree of orthotropy.
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COMBINED TENSION AND BENDING

In the example problems of pure bending and pure tension,

the stress distribution was not affected by anisotropy. For the

previous problems of parabolic tension, the stress distributions

were found to be directly dependent upon the length of the beam

and the degree of orthotropy. These problems seem to indicate

that the effects of anisotropy are related to the manner in which

the beam is loaded.

For further investigation consider the problem illustrated

in Fig. 11. v

.

t_ V

Fig. 11.

The loadings on the beam in Fig. 11. are

a
12 ( *i>±b > " °

a
22 ( x l'±b) " A

*i
2

a
22 ( X 1( -b) " q

V (+a) -

(3.1a)

(3.1b)

(3.1c)



M (+a) -

P (+a) -

Equilibrium of the beam demands that

a a
/ o

22 (Xj^.+b) d Xl - / o
22 (x x

,-b) d Xl - Q

Substitution of (3.1b) and (3.1c) into (3.3) yield*

a - 3aA
2

and (3.1b) becomes

°22 <X 1>+b) -^ Xl
2

39

(3.2)

(3.3)

Directly, the boundary conditions for » are

* (x^-b) - | qXl
2

3* (X 1( "b)

»X,

(Xx.+b) - y ^ Xl + 4 qa

(3.4a)

(3.4b)

(3.4c)

3* (x^+b)

»X,
(3.4d)

From (3.4c) M - 4, and the stress function in terms of the thirty

unknown coefficients is

* <*1'*2> " I l C
mn HWm"0 n"o

m + n < 7
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The solution of this problem yields coefficients which are long

and complex. A listing of these coefficients in given in Appen-
B
26 B16dix C. The terms and appear frequently in the coeffi-

cients C
mn , and for this reason it is necessary to discuss the

effect of these factors on the stress distribution.

A typical coefficient is

C m -L hi a 1
YB 16 q

16 80 hl a
2
b
3 40 ^T

a
2
b
3

+

6 R
2

Jk -11 _J_ , Y 1
B
16 ,

A0 B ll a
2
b
3

(

»ll
" 2 ^7 }

< 3 ' 5 >

The elastic constants S 26
and 8

1(
. are 4S

2212 and #8,,,,, re-

spectively, and they relate normal strain to shear stress.

The elastic constant B^ is S1U1 and it relates normal strain

to normal stress. In common engineering materials 6,^ and &,, are
B 6small in comparison to B.,, and for this reason — and -^1 are
11 ^11

small quantities. Hashin 1
has shown in an extreme case that

the largest value of -fS. or ^°. is about + 0>5>
Bll B

ll B 26 B ,7
In every coefficient where — or •—or appears, an accom-

panying factor
11 p ll

aV j - -1,1,2,3 and L >>y l (3.6)

also appears. Since the polynomial solution is only valid for

long slender beams; i.e., a>>b, (3.6) must be a small quantity.

Thus, the total effect of ± <-i—
)
(hi) or i (__*_.) (f", on

ab ] Bll L
a
i
b 3 6 11

the stress distributions is negligible.
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For any further investigation only the cases of isotropy

and orthotropy need to be considered. In either case both

and B 26
are identically zero. For the case of an orthotropic

beam in Fig. 11. the stresses are found to be

16

L r^l
(
bj

3
ii V'n " I (?77 ) (TT} q

234 ,°22 3 .a', ., 3 .1,+ I 560 <I77> <-f >
" f <*3> +

TO * (

if7>11 a b 11

162 ,_y_» ,b . ,

700 ( 677 ) (~> 1 IX.
11 a

3 22 1 2

2 (bTT 5 (~2 ) qx 2
11 a

+ [2 (-JL) 2 (_l_l _ I (_X»wJU 2 ,
B
22. 1 .

,

+ f_*2 (^ (
1

s. _42 _x_ 2 1 5
56 ° B

ll a
2
b
3 14 ° 8

11 TV qX2

(3.7)

'2 2 " I"
+ tin C^Xt^-)L 20 v 2' V

B
11

3 /^i l

4
( b° ] q *2
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o 11 a b 11 a b

t f t
1
?) qx^ + | HJ-> q X]L

2
X 2

- f (-2^3) q Xl
2
X 2

3
(3.8)

a b a b
-

°i2
_ " 55 (

'si7
)(k

2
) qX l

+ t ( b> qx l11 a

+
To (

ef7
) ("ir 5 q *i x 2

2
" I (4> ix 1 x 2

2

11 a b b
(3.9)

4
< B77)("2r > qX

l X 2 " 4 ("27) qx l11 a b a b

. 3 . 1 , 3 2+
4 (~2~3 ) qx l x 2

a b

The two factors which are consistently found in the stresses are

(j*-) and (-^-)
Bll B ll

In terms of the general elastic compliances

B
ll

S
1122

+ 2S
1212

S
llll

(3.10)

and

6 22 2222
Jn "1111

(3.11)

For an orthotropic beam with the perpendicular planes of sym-

metry coinciding with Xi and x 2
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1X11 E, '2222 E.

- Ill
'1122 E,

2S
1212 2G

12

where

21 '12

K,

Directly

k

B 11
12 2G

12

(3.12a)

and

6 22
E
l

\l E
2

For an isotropic beam

B ll

and

D 22

8 11

(3.12b)

(3.13a)

(3.13b)

For a Boron fiber-reinforced epoxy with the fibers parallel

to x, > Hashin 1 gives the following values of the elastic moduli.

E. - 24.3 x 10 psi

E
2

- 1.16 x 10 psi
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G 12 " 0l44 x X °
6

p8i

v
12

- 0.252

Inserting these values in (3.12) yields

(•r^-) - 27.36 (3.14a)
B ll

g

(-r^-) - 20.95 (3.1Ab)
B
ll

Obviously, the Boron fiber-reinforced epoxy is extremely ortho-

tropic.

Fig. 12. shows the a., stress across the section x, " ° for

°11
J 10. The dashed curve and the solid curve indicate the —

—

b 4

distribution for the orthotropic epoxy and isotropic beams, re-

spectively. The deviation between the orthotropic epoxy and

isotropic beams is evident, but the significance of this devia-

tion is questionable.

It is interesting to note that the curve for the isotropic

a., stress is not exactly linear, but it still follows the

flexure formula from basic mechanics of materials very closely.

For a long thin beam the flexure formula is

Mx,

°n---r (3 - 15)

where I is the moment of inertia of the cross-section, M is the

bending moment, and x- is the distance from the neutral axis.

From (3.4c) the bending moment at x^-O is
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M - 1/4 qa

For the beam of unit thickness in Fig. 11. it is easily verified

that at x. -

'11
+ 2 (V

q 'x.-+b 8
v
b

With a/b - 10

'11
+ 37.5

q 'x--+b

From Fig. 12. by (3.7) for the isotropic beam

'11

x
2
'±b

- + 37.7

Since the solid curve is nearly linear, (3.15) produces good re-

sults when applied to the isotropic beam (a/b»10) in Fig. 11. at

the section x. - 0. At x,/b-1.0 and x,-0 for the fiber-reinforced

beam

'11

q *
2
-b

-42.7

This the maximum difference found between the orthotropic and

isotropic stress when a/b-10, and from Fig. 12. the 0^ stress

deviates moderately from formula (3.15).

Fig. 13., Fig. 14., and Fig. 15. show j,,/q across the sec-

tion x -0 for a/b-5.0, a/b-3.5, and a/b-3.0, respectively. As

the beam becomes shorter a.-./q is reduced for both the isotropic
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and orthotropic beams which is due to a reduction in the center

bending moment. In all cases the curves for the isotropic Oj^/q

are closely approximated by (3.15). This justifies the validity

of the isotropic polynomial solution for the values of a/b given

in the graphs, because for a/b as small as three the approximate

conditions on the end boundaries do not affect the prominence of

the center bending moment.

On the other hand, decreasing the length of the beam causes

large changes in the orthotropic "j^/q distribution at Xj^-0. In

Fig. 15. (a/b-3) for the fiber-reinforced beam

'11

q 'x
2
/b—0.8

0.15

and for the isotropic beam

q >x,/b—0.
- 2.67

This difference is definitely significant. The variation be-

tween the isotropic and orthotropic a^ stress increases gradu-

ally until a large difference is found when a/b-3. There is no

question that the flexure formula is completely useless for the

orthotropic stress shown in Fig. 15.

Table I. shows the isotropic and orthotropic stress dis-

tribution on the end x^a-l for a/b-3. The variation of the

isotropic a., stress is very small in comparison to the varia-

tion of the orthotropic o.. stress. In both cases it can be

shown that the resultant force and moment created by the end
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TABLE I.

°11 X
l-^=* at the end — - 1.0 by the

q a

Polynomial method when r- - 3.0

Orthotropic

ill
a

x
2

b
111
q

•

1.000 1.000 13.723

1.000 0.800 1.722

1.000 0.600 -6.524

1.000 0.400 -8.693

1.000 0.200

0.000

-0.200

-0.400

-0.600

-5.319

1.164

7.367

9.903

6.337

1.000

-0.800

-1.000

Isotropic

-3.864

-18.378

^1
a

x
2

b
111
q

1.000 1.000 0.268

1.000 0.800

0.600

0.400

0.200

-0.019

-0.142

-0.140

-0.059

0.000 0.056

-0.200 0.157

-0.400 0.198

-0.600 0.133

-0.800 -0.083

1.000 -1.000 -0.490
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stresses are zero. For a short beam a large variation of end

stress obviously has a greater effect on the stress at x -0 than

a small variation of end stress. Thus, when a/b-3 the orthotropic

o,.. stress is not as accurate as the isotropic stress.

The difference found between the isotropic and orthotropic

shear stress, «.,, shown in Fig. 16. for a/b»5 is of no real

consequence since the shear stress is small in comparison to Oj.. .

The difference between the isotropic and orthotropic a
22

was found

to be less than that for o,,' and for this reason neither o
12

nor

a.~ have been investigated in detail.

For the problem in Fig. 11. it is concluded that the o^

stress distribution is directly dependent upon the interrelation

of the ratio a/b and the degree of orthotropy. If the beam is

long (a/b>.10) the stress is not affected greatly, even by a

highly orthotropic material. If the beam is short the orthotropic

solution differs largely from the isotropic solution. From Fig.

15. it is seen that the o.. stress distribution would still be

affected by a lesser orthotropic reinforcement. It is difficult

to determine the actual effects of orthotropy when the beam is

short because of the large boundary stress variation. Since the

isotropic solution yields good results when the ratio a/b»3 and

the corresponding orthotropic solution differs largely from the

isotropic solution, there appears to be large orthotropic effects

in a short beam although an accurate measure of the effects can-

not be obtained with the polynomial solution.
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CONCLUSION

The polynomial method provides a direct and systematic ap-

proach to the solution of generally plane anisotropic beam prob-

lems with a>>b.

Problems solved by Hashin along with the last problem of

combined tension and bending solved in this report reveal that
S 16

B 26
the anisotropic factors -z and are not large enough to cause

p ll B ll

any significant deviation from the stresses found when considering
6, , 8-g

an isotropic beam. Since -z and are negligible factors,
S ll

6
11

it is only necessary to compare the stress distributions in ortho-

tropic and isotropic beams. In either type of beam B.g and R^f,

are identically zero.

In the example problems of pure tension and pure bending

the stress distribution is completely independent of the elastic

properties of the beam.

In the problem of parabolic tension the solution for the

o.. stress is directly affected by the degree of orthotropy.

This effect is significant if the beam is relatively short. If

f- is large, the o., stress becomes negligible and any orthotropic
b 11

effects on such a small stress is of little consequence.

In the problem of combined tension and bending It is quite

obvious that the solution is directly related to the length of

the beam and the degree of orthotropy.

For the problems investigated in this report, the effects

of anisotropy are directly dependent upon (1) the degree of or-

thotropy, (2) the dimensions of the beam, and (3) the type of
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loading which the beam undertakes. If the beam is long (^ > 10),

the isotropic solution yields reasonable results irregardless of

the beam material. However, in relatively short beams the or-

thotopic properties may play an important role in the solution.

In general it is concluded that any significant anisotropic

influence upon the stresses must take place in short beams or

square plates. The polynomial method cannot be used to deter-

mine the anisotropic or orthotropic stresses accurately in square

plates or short beams because of the approximation of the end

conditions. Continued investigations should deal with beams

or plates (a/bO) by methods which can adequately fulfill all the

boundary conditions.
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APPENDIX A

The three equations for »,, a 2> o
3

found by Timoshenko's

least work solution of the problem in Fig. 6. are

64 . 256 a' .
64 a\ ,2 .64 64 a_.-+——) + a

2
b ( 77

+
49 4

J(1) a
x
(— + , , ^ 7 . 4

.2 ,64 a
2

64. A . _S
+ a

3
b (^ «j + „

fe6

) ^^

,64 64 a. j .2 .192 ,256 a , 192. a_.
(2) «j_ (ff

+ — -4) + «
2
b (143 + "7? ^ + ^^

b
4

)

.2 ,64 a
2
. 64. A

+ a
3
b ( 77 ^2

+
77

b
6

)

b a

(3)
.64 . 64

l
l

(_
7
+ IT

b
4

4
,64 , 64 a_,
( 77

+
77

fe

4
;

+ cx,b
,192 a

2
. . 256 4* 192 A

(~b 2 " b
4 143

b
3 4 2

The values of o. a, for various ratios of

a

b

1

"l

04040 S/b
6

a
2

01172 S/b
8

°3

01172 S/b
8

00064 S/b
8

51440xl0~
4

2 00120 S/b
6 00007 S/b

8

3 00115xl0"*S/b
6 24273xl0

-5
S/b

8

4

5

16836xl0" 4 S/b
6

43528xl0~ 5 S/b
6

22414xl0
-6

36332xl0
-7

S/b
8

S/b
8

62646xl0~ 5

,11128xl0"
5

8 25905xl0~ 6 S/b 84000xl0
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6 ,13793xl0
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S/b
£
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£

S/b
£
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APPENDIX B

Shear stress in the beam shown in Fig. 6.

by the method of least work.

a/b-1.0 X
l/b

x
2/b °12/S

.0000 .2000 -0.00000

.1000 .2000 -.00899

.2000 .2000 -.01775

.3000 .2000 -.02598

.4000 .2000 -.03324

.5000 .2000 -.03892

.6000 .2000 -.04213,

.7000 .2000 -.04168'

.8000 .2000 -.03595

.9000 .2000 -.02292
1.0000 .2000 -0.00000
.0000 .4000 -0.00000
.1000 .4000 -.01686
.2000 .4000 -.03324
• 30u0 .4000 -.04855
.4000 .4000 -.06198
.5000 .4000 -.07236
.6000 .4000 -.07809
.7000 .4000 -.07698
.8000 .4000 -.06619
.9000 .4000 -.04204

1.0000 .4000 -0.00000
.0000 .6000 -0.00000

-.02141.1000 .6000
.2000 .6000 -.04213
.3000 .6000 -.06138
.4000 .6000 -.07809
.5000 .6000 -.09080
.6000 .6000 -.09754
.7000 .6000 -.09569
.8000 .6000 -.08186
.9000 .6000 -.05174

1.0000 .6000 -0.00000
.0000 .8000 -0.00000
.1000 .8000 -.01830
• 2000 .8000 -.03595
.3000 .8000 -.05223
.4000 .8000 -.06619
.5000 .8000 -.07660
.6000 .8000 -.08186
.7000 .8000 -.07986

-.06793.8000 .8000
.9000 .8000 -.04268

1.0000 .8000 -0.00000
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a/b-3.0 X
l/b

X
2/b °12/S

.0000 .2000 -0.00000

.3000 .2000 .00104

.6000 .2000 .00168

.9000 .2000 .00161
1.2000 .2000 .00062
1.5000 .2000 -.00125
1.8000 .2000 -.00371
2.1000 .2000 -.00612
2.4000 .2000 -.00743
2.7000 .2000 -.00609
3.0000 .2000 -0.00000
.0000 .4000 -0.00000
.3000 .4000 .00181
.6000 .4000 .00293
.9000 .4000 .00279

1.2000 .4000 .00107
1.5000 .4000 -.00221
1.80 0C .4000 -.00652
2.1000 .4000 -.01074
2.4000 .4000 -.01302
2.7000 .4000 -.01066
3.0000 .4000 -O.oOOOO
.0000 .6000 -0.00000
.3000 .6000 .00206
.6000 .6000 .00333
.9000 .6000 .00316

1.2000 .6000 .00118
1.500C .6000 -.00257
1.8000 .6000 -.00750
2. 1000 .6000 -.01232
2.4000 .6000 -.01491
2.7000 .6000 -.01220
3.0000 .6000 -O.OOO'.O
.0000 .8000 -0.00000
.3000 .8000 .00153
.6000 .8000 .00247
.9000 .8000 .00234

1.2000 .8000 .00084
1.5000 .8000 -.00198
1.8000 .8000 -.00567
2.1000 .8000 -.00928
2.4000 .8000 -.01122
2.7000 .8000 -.00917
3.0000 .8000 -0.00000
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a/b-4.0 x
l/b

x
2/b °12/S

.0000 .2000 -0.00000

.4000 .2000 .00062

.8000 .2000 .00103
1.2000 .2000 .00107
1.6000 .2000 .00062
2.0000 .2000 -.00031
2.4000 .2000 -.00157
2.8000 .2000 -.00283
3.2000 .2000 -.00356
3.6000 .2000 -.00297
4.0000 .2000 -0.00000
.0000 .4000 -0.00000
.4000 .4000 .00108
.8000 .4000 .00181

1.2000 .4000 .00186
1.6000 .4000 .00107
2.0000 .4000 -.00055
2.40 00 .4000 -.00275
2.8000 .4000 -.00495
3.2000 .4000 -.00623
3.6000 .4000 ' -.00520
4.0000 .4000 -O.oOOOO
.0000 .6000 -0.00000
.4000 .6000 .00124
.8000 .6000 .00206

1.2000 .6000 .00212
1.6000 .6000 .00122
2.0000 .6000 -.00064
2.4000 .6000 -.00315
2.8000 .6000 -.00567
3.2000. .6000 -.00713
3.6000 .6000 -.00595
4.0000 .6000 -0.00000
.0000 .8000 -0.00000
.4000 .8000 .00092
.8000 .8000 .00154

1.2000 .8000 .00158
1.600C .8000 .00090
2.00 00 .8000 -.00049
2.4000 .8000 -.00237
2.8000 .8000 -.00426
3.2000 .8000 -.00535
3.6000 .8000 -.00447
4.0000 .8000 -0.00000
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a/b-10.0 *l/b
X
2/b °11/S

i.0000 .2000 .00005
2.0000 .2000 .00008
3.0000 .2000 .00008
4.0000 .2000 .00005

-.000015.0000 .2000
6.0000 .2000 -.00010
7.0000 .2000 -.00019
8.00 00 .2000 -.00024
9.0000 .2000 -.00020
10.0000 .2000 -0.00000

.0000 .4000 -0.00000
1.0000 .4000 .00008
2.0000 .4000 .00013
3.0000 .4000 .00014
4.0000 .4000 .00009
5.0000 .4000 -.00002
6.0000 .4000 -.00018
7.0000 .4000 -.00033
8.0000 .4000 -.00042
9.0000 .4000 -.00036
10.0000 .4000 -0.00000

.0000 .6000 -0.00000
1.0000 .6000 .00009
?.oooo .6000 .00015
3.0000 .6000 .00016
4.0000 .6000 .00010
5.0000 .6000 -.00003
6.0000 .6000 -.00020
7.0000 .6000 -.00038
8.0000 .6000 -.00049
9.0000 .6000 -.00041
10.0000 .6000 -0.00000

.0000 .8000 -0.00000
1.0000 .8000 .00007
2.0000 .8000 .00011
3.0000 .8000 .00012
4.0000 .8000 .00007
5.0000 .8000 -.00002
6.0000 .8000 -.00015
7.0000 .8000 -.00029
8.0000 .8000 -.00036
9.0000 .8000 -.00031
10.0000 .8000 -0.00000
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APPENDIX C

Coefficients Cmn
of

4 7

* <xx.x 2
) - I I c

mn Xl
m
x

m n

m-o n=o
m + n < 7

for the problem in Fig. 11.

Cno> C - , C 10 have not been calculated since they do not

affect the stresses.
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A systematic solution to plane stress problems of generally

anisotropic beams is discussed in detail. The method of solution,

which is subject to Saint Venant's principle, is employed to

solve several plane problems. It is found that anisotropy has

very little influence on the stress fields in long thin beams.

The largest anisotropic effects are found when a beam is rela-

tively short and the degree of orthotropy is large. The findings

of this report demand further investigations of the anisotropic

stresses in short beams and square plates by methods which are

not dependent upon Saint Venant's principle.


