## Essays on attribute inattention choice behavior

by

## Donghyun Moon

B.A., Dongguk University, Republic of Korea, 2008
M.A., Sungkyunkwan University, Republic of Korea, 2012

## AN ABSTRACT OF A DISSERTATION

# submitted in partial fulfillment of the requirements for the degree 

## DOCTOR OF PHILOSOPHY

## Department of Agricultural Economics

College of Agriculture

KANSAS STATE UNIVERSITY<br>Manhattan, Kansas


#### Abstract

The main objective of this dissertation is to explore attribute non-attendance choice in food consumption research under the discrete choice framework. The standard choice analysis based on random utility maximization assumes that an agent evaluates every attribute of alternatives and selects his or her most preferred option that maximizes utility in a given choice situation. However, recent empirical evidence reveals that decision makers may ignore a certain attribute presented in a choice set. My dissertation research investigates inattention choice behaviors using stated and revealed preferences data.

The first essay, "Out-of-sample Validity of Random Response Share Approach", applied the Random Response Share (RRS) approach that was proposed by Malone and Lusk (2018) for investigating inattention choice in choice experiments. The aim of the RRS approach is to identify and purge inattention observations in analysis. We applied the RRS and assessed the out-of-sample predictive performance of the RRS using 60 months of choice experiment data from 61,592 U.S households. Our results show that the RRS is not a dominant strategy to the conventional multinomial logit model in terms of out-of-sample forecasting accuracy. However, the RRS could be a way to deal with attribute nonattendance when also considering the socio-economic characteristics of respondents because it is not harmful compared to the predictive accuracy of the traditional multinomial logit model.

In the second essay, "Incorporating Choice Heuristics in Analysis of Decision Making", we investigated consumers' heuristic choices when purchasing hotdog sausage products. This study applied the IRI marketing data set into the latent class structure of the discrete choice models to explore choice heuristics based on different attribute processing at the level of the household. The main contribution of this study is to incorporate attribute inattention into discrete choice model


using actual market data, instead of stated choice data. The estimation results based on multiple models reveal that marginal utilities and willingness to pay estimates for attributes of hotdog products are sensitive to model selection. Our empirical analysis suggests that accounting for heterogeneous decision rules could provide better model fit. Thus, researchers need to consider the heterogeneous decision rules as an alternative to the classic assumption that all attributes are considered in choice situations by decision makers to better understand consumers' choices and provide more accurate policy implications.

To sum up, the traditional assumption of full attribute consideration may be strong and restrictive to reflect consumer decision making rules. Recent studies are attempting to relax this assumption and reflect real choice environments. Considering ANA-based choice behaviors may help improve understanding of consumer preference through better analysis of decision making. I hope that this dissertation on attribute inattention choices will be a steppingstone to additional research in the field of discrete choice analysis.

## Essays on attribute inattention choice behavior

by

Donghyun Moon

B.A., Dongguk University, Republic of Korea, 2008<br>M.A., Sungkyunkwan University, Republic of Korea, 2012

## A DISSERTATION

submitted in partial fulfillment of the requirements for the degree

DOCTOR OF PHILOSOPHY

Department of Agricultural Economics
College of Agriculture

KANSAS STATE UNIVERSITY
Manhattan, Kansas

Approved by:
Major Professor
Glynn T. Tonsor

## Copyright

© Donghyun Moon 2020.


#### Abstract

The main objective of this dissertation is to explore attribute non-attendance choice in food consumption research under the discrete choice framework. The standard choice analysis based on random utility maximization assumes that an agent evaluates every attribute of alternatives and selects his or her most preferred option that maximizes utility in a given choice situation. However, recent empirical evidence reveals that decision makers may ignore a certain attribute presented in a choice set. My dissertation research investigates inattention choice behaviors using stated and revealed preferences data.

The first essay, "Out-of-sample Validity of Random Response Share Approach", applied the Random Response Share (RRS) approach that was proposed by Malone and Lusk (2018) for investigating inattention choice in choice experiments. The aim of the RRS approach is to identify and purge inattention observations in analysis. We applied the RRS and assessed the out-of-sample predictive performance of the RRS using 60 months of choice experiment data from 61,592 U.S households. Our results show that the RRS is not a dominant strategy to the conventional multinomial logit model in terms of out-of-sample forecasting accuracy. However, the RRS could be a way to deal with attribute nonattendance when also considering the socio-economic characteristics of respondents because it is not harmful compared to the predictive accuracy of the traditional multinomial logit model.

In the second essay, "Incorporating Choice Heuristics in Analysis of Decision Making", we investigated consumers' heuristic choices when purchasing hotdog sausage products. This study applied the IRI marketing data set into the latent class structure of the discrete choice models to explore choice heuristics based on different attribute processing at the level of the household. The main contribution of this study is to incorporate attribute inattention into discrete choice model


using actual market data, instead of stated choice data. The estimation results based on multiple models reveal that marginal utilities and willingness to pay estimates for attributes of hotdog products are sensitive to model selection. Our empirical analysis suggests that accounting for heterogeneous decision rules could provide better model fit. Thus, researchers need to consider the heterogeneous decision rules as an alternative to the classic assumption that all attributes are considered in choice situations by decision makers to better understand consumers' choices and provide more accurate policy implications.

To sum up, the traditional assumption of full attribute consideration may be strong and restrictive to reflect consumer decision making rules. Recent studies are attempting to relax this assumption and reflect real choice environments. Considering ANA-based choice behaviors may help improve understanding of consumer preference through better analysis of decision making. I hope that this dissertation on attribute inattention choices will be a steppingstone to additional research in the field of discrete choice analysis.

## Table of Contents

List of Figures ..... X
List of Tables ..... xi
Acknowledgements ..... xii
Dedication ..... xiv
Chapter 1 - Out of Sample Validity of Random Response Share Approach ..... 1
1.1 Introduction ..... 1
1.2 The Food Demand Survey Data ..... 4
1.3 Conceptual Framework ..... 9
1.3.1 Multinomial Logit Model (MNL) ..... 9
1.3.2 Latent Class Structure ..... 10
1.3.3 The RRS approach ..... 11
1.3.4 Willingness to pay estimates ..... 13
1.3.5 Out-of-Sample Assessment ..... 13
1.4 Empirical Application. ..... 15
1.4.1 Model Specifications ..... 16
1.5 Results ..... 21
1.5.1 WTP estimates and Random Response Shares ..... 21
1.5.2 OOS Forecasting Accuracy ..... 25
1.6 Conclusions ..... 28
1.7 References ..... 30
Chapter 2 - Incorporating Choice Heuristics in Analysis of Decision Making ..... 33
2.1 Introduction ..... 33
2.2 The IRI Marketing Data ..... 38
2.3 Conceptual Framework ..... 43
2.3.1 Multinomial Logit Model (MNL) ..... 43
2.3.2 Random Parameters Logit Model (RPL) ..... 44
2.3.3 Latent Class Structure ..... 46
2.4 Empirical Application ..... 49
2.4.1 Attributes and Choice set ..... 49
2.4.2 Decision Making Rules ..... 52
2.4.3 Model Specifications ..... 54
2.4.4 Likelihood Ratio Tests ..... 56
2.5 Results ..... 57
2.5.1 Estimation Results ..... 57
2.5.2 WTP estimates ..... 68
2.5.3 Model Fits and LR Test Results ..... 75
2.6 Conclusions ..... 78
2.7 References ..... 80
Appendix A - Supplement Material for Chapter 1 ..... 85
Appendix B - Supplement Material for Chapter 2 ..... 107

## List of Figures

Figure 1.1 A Sample of the Choice Set........................................................................................... 4
Figure 1.2 OOS Forecasting Accuracy Comparisons by Models ................................................. 27
Figure A. 1 WTP estimates by the MNL 1, RRS 1, and RRS 2 .................................................... 89
Figure A. 2 WTP estimates by the MNL 1, RRS 1, and RRS 2 (Continues) ................................ 90

## List of Tables

Table 1.1 Socio-Economic Characteristics of Individual Respondents ..... 6
Table 1.2 Descriptive Statistics of the FooDS Data Used for Discrete Choice Models ..... 8
Table 1.3 WTP Estimates, RRS, and OOS Prediction Accuracy Rates by models ..... 24
Table 2.1 Socio-Economic Characteristics of Household Panel ..... 40
Table 2.2 Attributes and their levels used ..... 50
Table 2.3 Descriptive Statistics of the IRI Data Used for Discrete Choice Models ..... 51
Table 2.4 Estimation Results by LC-MNL models ..... 59
Table 2.5 Estimation Results by LC-MNL models (Continues). ..... 60
Table 2.6 Estimation Results by LC-RPL models ..... 62
Table 2.7 Estimation Results by LC-RPL models (Continues) ..... 64
Table 2.8 Willingness to pay estimates by LC-MNL models. ..... 69
Table 2.9 Willingness to pay estimates by LC-MNL models (Continues) ..... 70
Table 2.10 Willingness to pay estimates by LC-RPL models ..... 73
Table 2.11 Willingness to pay estimates by LC-RPL models (Continues) ..... 74
Table 2.12 LR Test Results ..... 77

## Acknowledgements

I would like to express my gratitude to a number of individuals who have helped me in my Ph.D. program. First and foremost, I really would like to thank my major advisor and mentor, Dr. Glynn Tonsor. Glynn taught and trained me as an economist. He always encouraged me to think economically and to clarify research questions and objectives in terms of economic aspects, supporting my research projects. Glynn is my role model as a researcher and a person. I enjoyed working with him and was happy to learn a lot from his experience. I am very looking forward to meeting Glynn outside of Kansas State and working with him in future research.

I also want to extend my thanks to Drs. Ted Schroeder, Tian Xia, Yoonjin Lee, and Tandalayo Kidd for serving my dissertation committee. Their comments, suggestions, and deep economic insights made my dissertation being stronger and completed. In addition, their lecture and advice in both classes and meetings educated me as a researcher in various ways. I also would like to thank to all the faculty, staffs, and friends in the Department of Agricultural Economics at K-State. My experience at K-State has broadened my horizons, which will be a great and solid foundation for my future life and research.

I want to convey my appreciation for Drs Changgil Kim, Hakkyun Jeong, Yoonhyung Kim, and Taeyoung Kim in Korea who inspired and guided me on the path as an economist. They had encouraged me to go to the U.S. for the Ph.D. program and have consulted me when I was happy or in trouble.

My family has supported my goal of successful completion of the $\mathrm{Ph} . \mathrm{D}$. program and being an economist. I really appreciate their support and prayers.

Lastly, my infinite gratitude and love go to my wife, Sujung Lee. Sujung is my best friend as well as my lifetime companion. The completion of this dissertation would have never been possible without her love, support, sacrifice, prayers, and patience.

## Dedication

To SUJUNG

# Chapter 1 - Out of Sample Validity of Random Response Share 

## Approach

### 1.1 Introduction

Choice experiments (CEs) have been widely used in the field of agricultural and applied economics for a variety of reasons. For example, analysts design a CE and collect stated preference data in order to improve an understanding of consumer behavior and preferences, to estimate food demand, to gain an insight of producers' decision-making process, to measure the value of nonmarket goods, or to evaluate welfare change by a certain policy change through marginal willingness to pay (MWTP) or marginal willingness to accept (MWTA). CEs are often based on the random utility model (RUM) framework, assuming full attribute assessment that an individual decision maker evaluates every attribute of alternatives and selects his or her most preferred option that maximizes utility in a given choice situation.

However, individual respondents in CEs may ignore a certain attribute of alternatives presented in a choice set, which could lead to an inattention bias (Hensher, Rose and Greene 2005). The problem of attribute inattention is that analysis without accounting for ANA may give rise to biased parameter and willingness to pay (WTP) estimates (Hensher et al. 2005; Scarpa et al. 2009; Hole 2011; Kragt 2013; Weller et al. 2014). Given the popularity of CE methods for policy research in the applied economics area, such as agricultural, food, environmental, transportation, and health economics, the biased choice analysis may provide misinformation to policymakers. This issue can be applied not only to public policy design but also to strategic decision makings in the industrial sectors relying on market research.

Since Hensher, Rose, and Greene (2005), there are growing methodological and empirical research interests of investigating inattention bias in CEs - attribute non-attendance (ANA) in the applied economics field. Many CE studies have attempted to investigate ANA responses based in two different ways, a stated attribute non-attendance and an inferred attribute non-attendance approaches. The former method directly asks the respondents whether they did attribute inattention choice and what attributes they did not focus on after the CE questions. In the stated ANA approach, respondents may be asked to respond to the ignored attributes whenever a CE task terminates or to answer to them after the completion of an entire CE task. Unlike the first method, the latter tries to embody respondents' ANA behaviors in analytical econometric models (Alemu et al. 2013; Hole, Kolstad and Gyrd-Hansen 2013; Scarpa et al. 2013; Kragt 2013; Van Loo et al. 2018). Studies that rely on an inferred ANA mainly use the constrained latent class specification, which was proposed by Scarpa et al. (2009). Albeit there are some reports that inferred ANA provides a little better model fits than stated ANA methods (Scarpa et al. 2013; Kragt 2013), it is not clear which method is better (Weller et al. 2014). ${ }^{1}$ Furthermore, with technical advances, a new method is paid attention by discrete choice practitioners. That is referred to as a revealed ANA or a visual ANA, which adopts on eye-tracking measures. The revealed ANA approach utilizes an eye-tracking tool that monitors CE participants' gaze on each attribute when assessing alternatives (Van Loo et al. 2015). Across all three major methods, the standard econometric approach commonly used in ANA literature is to fix the parameters corresponding to the attributes related to ANA choice behavior to zero.

[^0]The random response share (RRS) approach that is based on the constrained latent class specification as a way to identify inattention choice was proposed by Malone and Lusk (2018). The purpose of the RRS approach is to remove the observations from those who randomly select one without attention among the alternatives in a choice task. We note that the RRS approach differs in purpose not only from the standard latent class models but also from the inferred ANA methods. The standard latent class models without any constraint are for considering heterogeneity in preferences and the Inferred ANA methods attempt to reflect heterogeneity in decision makers' attribute processing protocol. The RRS has a value between 0 and 1 , indicating the estimated probability that survey participant $i$ is in the segment for random choice (Malone and Lusk 2018). A RRS value of 0 indicates that all participants select an option under serious consideration of every attribute. Conversely, a RRS value of 1 implies that all made a choice in random.

The aim of our study is to assess the potential validity of the RRS method in the aspect of the OOS prediction accuracy. The RRS is an alternative method to statistically detect inattention observations in stated CE data. In the RRS approach, all parameters for observations with the lack of attention are enforced to zero values within the restricted class, while only parameters for those who fully evaluate information are freely estimated within the unrestricted class and utilized for analysis. This is, parameter estimates within the unrestricted segment should be more representative of marginal utilities for each attribute for individual respondents. Malone and Lusk (2018) showed the validity of the RRS method through comparison with using a trap question to detect inattention choice. The present study employed the OOS prediction comparison as an alternative way to examine the validity of the RRS approach, following Tonsor (2018). To the best of our knowledge, there is no known literature to evaluate the RRS approach. Therefore, this is the first known empirical application of the RRS approach since it was introduced.

### 1.2 The Food Demand Survey Data

This study employed the Food Demand Survey (FooDS) data to assess the potential validity of the RRS approach. ${ }^{2}$ The FooDS is a monthly on-line survey to track consumer preferences and behavior in food consumption. This data was introduced by Lusk (2017). The FooDS was conducted for 60 months from June 2013 to May 2018, with more than 1,000 households per month. The FooDS data collected from 61,592 survey respondents include choice experiment questions as well as socio-demographic information of respondents. The benefits of rich observations in the FooDS data allows us to evaluate the RRS approach using out-of-sample prediction comparison.


Source: Lusk (2013).
Figure 1.1 A Sample of the Choice Set

Each individual participant of the survey was requested to select the most preferred among nine alternatives in a choice set and complete nine different choice tasks (Lusk 2013). Eight of nine options are made up of the food types that refer to an alternative specific attribute, and its price. The price attribute, in 20 different levels that were between $\$ 0.00$ and $\$ 8.00$, is distributed

[^1]across choice alternatives. The types of foods include hamburger, steak, pork chop, deli ham, chicken breast, chicken wing, beans and rice, and pasta. The other one is something else, meaning an option to not buying food as a status quo. In a choice set, different choice alternatives were presented with the corresponding pictures (Figure 1.1). A total of three choice experiment surveys were designed and distributed to respondents. That is, survey respondents randomly received one of three types of surveys. The difference between the types of the choice experiment is in the order of the alternative (food type) presented in the choice set and prices presented.

Table 1.1 illustrates socio-economic characteristics (SECs) of individual survey respondents for the FooDS of 60 consecutive months. In terms of age composition, the highest proportion of respondents was $21.0 \%$ for 25 to 34 -year-olds, followed by $18.47 \%$ for 35 to 44 -year-olds. The three age groups for over 45-year-olds (45 to 54-year-olds, 55 to 64 -year-olds, and 65 -year-olds or older) were similar at about $16 \%$. The gender composition was about $52.6 \%$ for women, slightly higher than men. For the education level, $46.57 \%$ of the respondents had a bachelor's degree or higher, and $20.7 \%$ had a high school education or the lower level and $32.7 \%$ was for some college.

Table 1.1 Socio-Economic Characteristics of Individual Respondents

| Socio-Economic Characteristics |  | Description | Frequency | Percent <br> (\%) | Cumulative <br> Frequency |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Age | 1 | 18-24 years old | 6,576 | 10.68 | 6,576 |
|  | 2 | 25-34 years old | 12,946 | 21.02 | 19,522 |
|  | 3 | 35-44 years old | 11,377 | 18.47 | 30,899 |
|  | 4 | 45-54 years old | 10,359 | 16.82 | 41,258 |
|  | 5 | 55-64 years old | 9,942 | 16.14 | 51,200 |
|  | 6 | 65 or older | 10,392 | 16.87 | 61,592 |
| Gender | 1 | Male | 29,210 | 47.42 | 29,210 |
|  | 2 | Female | 32,382 | 52.58 | 61,592 |
| Education | 1 | High School or Lower | 12,772 | 20.74 | 12,772 |
|  | 2 | Some college | 20,137 | 32.69 | 32,909 |
|  | 3 | B.S. Degree or Higher | 28,683 | 46.57 | 61,592 |
| Region | 1 | Northeast | 13,379 | 21.72 | 13,379 |
|  | 2 | Midwest | 12,453 | 20.22 | 25,832 |
|  | 3 | South | 21,991 | 35.70 | 47,823 |
|  | 4 | West | 13,769 | 22.36 | 61,592 |
| Household | 1 | One person | 11,408 | 18.52 | 11,408 |
| Size | 2 | Two people | 21,261 | 34.52 | 32,669 |
|  | 3 | Three people | 12,169 | 19.76 | 44,838 |
|  | 4 | Four people | 10,940 | 17.76 | 55,778 |
|  | 5 | Five people or More | 5,814 | 9.44 | 61,592 |
| Household | 1 | Less than \$20,000 | 9,441 | 15.33 | 9,441 |
| Income | 2 | \$20,000 to \$39,999 | 11,293 | 18.34 | 20,734 |
|  | 3 | \$40,000 to \$59,999 | 9,945 | 16.15 | 30,679 |
|  | 4 | \$60,000 to \$79,999 | 9,371 | 15.21 | 40,050 |
|  | 5 | \$80,000 to \$99,999 | 7,548 | 12.25 | 47,598 |
|  | 6 | \$100,000 to \$119,999 | 4,879 | 7.92 | 52,477 |
|  | 7 | \$120,000 to \$139,999 | 2,759 | 4.48 | 55,236 |
|  | 8 | \$140,000 to \$159,999 | 2,693 | 4.37 | 57,929 |
|  | 9 | \$160,000 or Greater | 3,663 | 5.95 | 61,592 |
| Total |  |  | 61,592 | 100.00 | - |

Table 1.2 describes the summary statistics of the data used for our analysis. Most of the variables are categorical variables, except survey completion time (SCTIME). The mean of survey complete time is 982.484 seconds (about 16.37 minutes). We convert SCTIME to dummy variables, 0 and 1 , based on the mean value of SCTIME. 0 means respondents with SCTIME less
than the average value, while 1 indicates responders with SCTIME longer than the mean value. The conversion is carried out by month. Because in addition to the basic questions in the FooDS survey, there were some additional survey questions in a particular month, which led to a different number of questions. It is also possible that certain circumstances about the timing of the survey may have affected the response time of respondents. The SEC variables of respondents correspond to those in Table 1.1, except for household income. The data on household income was divided into nine groups in Table 1.1. For the sake of discrete choice analysis, we used high-income earners of more than $\$ 100,000$ in one category. A weighting variable (wts) was derived through a SAS raking macro (Izrael, Hoaglin and Battaglia 2004) and it was used for sample balancing to the U.S. population. The raking procedure was implemented based on four demographics of household (age, education, gender, and region) and was also applied by month. The WTS variables are reflected in model estimation. The variable 'Choice' is the dependent variable in our models. If the alternative presented in the choice experiment is chosen by the respondent, the choice variable has a value of 1 , otherwise, it has 0 . The variable option is a variable for identifying the attributes corresponding to the food types and none (a status quo). For each choice set, respondents face nine alternatives, so that each alternative has one of the values 1 through 9 . We also have the price attribute in 20 different levels that were between $\$ 0.00$ and $\$ 8.00$ and distributed across choice alternatives. The distribution of the price variable presented in alternatives of choice experiments across three different types was shown in appendix (Table A.2).

A total of $4,988,952$ observations of long-form data were used in our discrete choice analysis, which is the product of the number of respondents multiplied by the product of the number of alternatives and the number of choice tasks that respondents faced $(61,592 \times 9 \times$

9, Table A.1). This rich set of the FooDS data provide enough samples for us deeply to conduct
OOS forecasting.

Table 1.2 Descriptive Statistics of the FooDS Data Used for Discrete Choice Models

| Variable |  | Description | Number of Samples | Mean | Std. Dev. | Minimum | Maximum |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Year |  | Year | 4,988,952 | 2015.420 | 1.495 | 2013.000 | 2018.000 |
| Month |  | Month | 4,988,952 | 6.514 | 3.457 | 1.000 | 12.000 |
| SCTIME |  | Survey Completion Time (seconds) | 4,988,952 | 982.484 | 2442.010 | 0.000 | 126476.000 |
|  | 1 | One person |  |  |  | 1.000 | 5.000 |
| Household Size | 2 | Two people | 4,988,952 | 2.651 | 1.233 |  |  |
|  | 3 | Three people |  |  |  |  |  |
|  | 4 | Four people <br> Five people or More |  |  |  |  |  |
|  | 1 | Less than \$20,000 |  |  |  |  |  |
|  | 2 | \$20,000 to \$39,999 |  |  |  |  |  |
| Household Income | 3 | \$40,000 to \$59,999 | 4,988,952 | 3.589 | 1.771 | 1.000 | 6.000 |
|  | 4 | \$60,000 to \$79,999 |  |  |  |  |  |
|  | 5 | \$80,000 to \$99,999 |  |  |  |  |  |
|  | 6 | \$100,000 or Greater |  |  |  |  |  |
|  | 1 | 18-24 years old |  |  |  |  |  |
|  | 2 | 25-34 years old |  |  |  |  |  |
| Age | 3 | 35-44 years old | 4,988,952 | 3.573 | 1.625 | 1.000 | 6.000 |
|  | 4 | 45-54 years old |  |  |  |  |  |
|  | 5 | 55-64 years old |  |  |  |  |  |
|  | 6 | 65 or older |  |  |  |  |  |
|  | 1 | High School or Lower |  |  |  |  |  |
| Education | 2 | Some college | 4,988,952 | 2.258 | 0.779 | 1.000 | 3.000 |
|  | 3 | B.S. Degree or Higher |  |  |  |  |  |
| Gender | 1 | Male | 4,988,952 | 1.526 | 0.499 | 1.000 | 2.000 |
|  | 2 | Female |  |  |  |  |  |
|  | 1 | Northeast |  |  |  |  |  |
| Region | 2 | Midwest | 4,988,952 | 2.587 | 1.060 | 1.000 | 4.000 |
|  | 3 | South |  |  |  |  |  |
|  | 4 | West |  |  |  |  |  |
| wts |  | Weighting variables | 4,988,952 | 1.000 | 0.680 | 0.160 | 12.090 |
| Choice | 0 | Not chosen alternative | 4,988,952 | 0.111 | 0.314 | 0.000 | 1.000 |
| Option |  | Identifier to alternative | 4,988,952 | 5.000 | 2.582 | 1.000 | 9.000 |
| Burger | 0 | Otherwise | 4,988,952 | 0.111 | 0.314 | 0.000 | 1.000 |
| Steak | 1 | If attribute corresponds to alternative Otherwise |  |  |  |  |  |
|  | 1 | If attribute corresponds to alternative | 4,988,952 | 0.111 | 0.314 | 0.000 | 1.000 |
| Pork chop | 0 | Otherwise | 4,988,952 | 0.111 | 0.314 | 0.000 | 1.000 |
|  | 1 | If attribute corresponds to alternative |  |  |  |  |  |
| Ham | 0 | Otherwise | 4,988,952 | 0.111 | 0.314 | 0.000 | 1.000 |
|  | 1 | If attribute corresponds to alternative |  |  |  |  |  |
| Chicken breast | 0 | Otherwise | 4,988,952 | 0.111 | 0.314 | 0.000 | 1.000 |
| Chicken wing | 0 | If attribute corresponds to alternative Otherwise |  |  | 0.314 | 0.000 |  |
|  | 1 | If attribute corresponds to alternative | 4,988,952 | 0.111 |  |  | 1.000 |
| Bean and Rice | 0 | Otherwise | 4,988,952 | 0.111 | 0.314 | 0.000 | 1.000 |
|  | , | If attribute corresponds to alternative |  |  |  |  |  |
| Pasta | 0 | Otherwise | 4,988,952 | 0.111 | 0.314 | 0.000 | 1.000 |
|  | 1 | If attribute corresponds to alternative |  |  |  |  |  |
| None | 0 | Otherwise | 4,988,952 | 0.111 | 0.314 | 0.000 | 1.000 |
| Price |  | Price presented for each alternative | 4,988,952 | 3.063 | 2.026 | 0.000 | 8.000 |

### 1.3 Conceptual Framework

### 1.3.1 Multinomial Logit Model (MNL)

This study used the traditional Multinomial Logit model (MNL) and the Latent Class Logit model (LCM) with RRS constraint based on the Random Utility Model (RUM) Framework. Let $U_{i t j}$ be utility when decision maker $i$ selects alternative $j$ in choice situation $t$. It consists of two separate components, a systematical component, $V_{i t j}$, and an unobservable component, $\varepsilon_{i t j}$.

$$
\begin{equation*}
U_{i t j}=V_{i t j}+\varepsilon_{i t j} \tag{1}
\end{equation*}
$$

The observed part of the utility involved with alternative $j, V_{i t j}$, is specified as:

$$
\begin{equation*}
V_{i t j}=\beta^{\prime} X_{i t j} \tag{2}
\end{equation*}
$$

Where $X_{i t j}$ is a vector of the $C$ attributes of alternative $j$ in choice tasks $t$ when agent $i$ faced. And a parameter vector, $\beta$, indicate the marginal utility of attribute $c$ of alternative $j$.

A necessary and sufficient condition for the RUM with independent errors to satisfy the independence of irrelevant alternatives (IIA) is that the unobservable error part, $\varepsilon_{i t j}$, be identically and independently distributed (IID) with a type I extreme value distribution. Under these assumptions, the choice probability that decision maker $i$ chooses alternative $j$ in choice situation $t$ usually takes the following multinomial logit expression (McFadden 1974; Train 2009; Hensher, Rose and Greene 2015).

$$
\begin{equation*}
P_{i t j}=P_{\left(y_{i t j} j=j\right)}=\frac{\exp \left(v_{i t j}\right)}{\sum_{k \in J} \exp \left(V_{i t j}\right)} \tag{3}
\end{equation*}
$$

With the above specification for the observed component in the equation (2), the logit probability becomes

$$
\begin{equation*}
P_{i t j}=P_{\left(y_{i t j}=j\right)}=\frac{\exp \left(\beta \prime x_{i t j}\right)}{\sum_{k \in J} \exp \left(\beta \prime X_{i t j}\right)} \tag{4}
\end{equation*}
$$

### 1.3.2 Latent Class Structure

The underlying theory of the Latent Class Model (LCM) postulates that individual behavior depends not only on observable attributes but also on latent heterogeneity that varies with factors that are unobserved by analysts. That is, the LCM assumes that preferences of decision makers are heterogeneous across classes, but they are homogeneous within each class as in the conventional MNL (McKendree, Tonsor and Wolf 2018). The LCM of discrete choice is more flexible than the MNL but somewhat less flexible than the Random Parameter Logit model (RPL), in which the LCM of discrete choice accounts for latent heterogeneity through a model with discrete parameter variation while the MNL assumes homogeneous perspectives of the interest parameters across individuals and the RPL considers heterogeneity using continuous distributions of parameters across individuals (Greene and Hensher, 2003).

The Latent Class Discrete Choice Model (LC-DCM) assumes that individuals are implicitly sorted into a set of Q classes, but which class contains any particular individual, whether known or not to that individual, is unknown to the researcher (Greene and Hensher, 2003). The LC-DCM consists of two MNL formation components. The first part is for the probability of individual choice and the second part is for the prior probability of the class assignment.

The choice behavior within the class of $q$ is estimated by a logit model for discrete choice of alternative $j$ among $J$ alternatives, by individual $i$, observed in choice situation $t$, (Hensher and Greene 2010).

$$
\begin{equation*}
P_{i t \mid q(j)}=\operatorname{Prob}\left(y_{i t}=j \mid \text { class }=q\right)=\frac{\exp \left(\beta^{\prime}{ }_{q} X_{i t j}\right)}{\sum_{k \in J} \exp \left(\beta^{\prime}{ }_{q} X_{i t k}\right)} \tag{5}
\end{equation*}
$$

For the given class assignment (class $=q$ ), the contribution of individual $i$ to the likelihood is the joint probability of the sequence (Hensher and Greene 2010), given in equation (6)

$$
\begin{equation*}
P_{i \mid q(j)}=\prod_{t=1}^{T} P_{i t \mid q(j)} \tag{6}
\end{equation*}
$$

The prior probability for class $q$ for household $i$ also has the MNL form as equation (7).

$$
\begin{equation*}
P_{(c l a s s=q)}=H_{i q}=\frac{\exp \left(\theta^{\prime} z_{i}\right)}{\sum_{q=1}^{Q} \exp \left(\theta^{\prime} z_{i}\right)}, \quad q=1,2, \ldots, Q \text { and } \theta_{Q}=0, \tag{7}
\end{equation*}
$$

Where $Z_{i}$ denotes a set of observable characteristics of individuals that enter the model for class membership. Note that the $\mathrm{Q}^{\text {th }}$ parameter vector, $\theta_{Q}$, is normalized to zero to secure identification of the model (Hensher and Greene 2010).

Finally, the likelihood for respondent $i$ is the expectation (over classes) of the class-specific contributions and is expressed by equation (8) (Hensher and Greene 2010).

$$
\begin{equation*}
P_{i j}=\sum_{q=1}^{Q} H_{i q} P_{i \mid q(j)} \tag{8}
\end{equation*}
$$

### 1.3.3 The RRS approach

The random response share approach uses the LC-DCM framework with a constraint to force all attribute coefficients for inattention observations to zero within the restricted segment and to estimate only parameters within the unrestricted segment for those who fully evaluate respective attributes. After that, the RRS method utilizes only parameter estimates within the unconstrained
segment for analysis. The RRS approach is a way to capture ignoring attributes, assuming only two different classes, the first class for decision makers who fully account for attribute information and the second class for those who select in a random way. We note that this is not for reflecting heterogeneous preferences in the model. The aim of the RRS model is to reduce hypothetical bias by removing the observations from those who did purely random selection in a choice task. On the other hand, the unconstrained LC-DCMs that are generally applied to account for preference heterogeneity. For example, the LC-DCMs may reveal that some consumers prefer ham to chicken wing but others don't. In addition, the constrained LC-DCMs try to improve choice analysis by accounting for heterogeneity in attribute processing. For instance, researchers can distinguish between those who evaluate all information about alternatives and those who only consider price by using the restricted LC-DCMs.

Despite these characteristics, the inferred ANA methods based on the constrained LCDCMs are not capable to distinguish whether the coefficient estimate for a certain attribute has a value of zero actually or if the coefficient estimate is zero because of the restriction that the attribute is ignored (reflection preference indifference). In other words, the inferred ANA approaches are not able to separate the case that the actual coefficient estimate for a certain attribute is a value of 0 from the case that the estimate is 0 because the attribute was ignored within the constrained segment. Note that for the RRS model, the second class is likely to cover both cases. The second class of the RRS method includes a purely random selection that ignores all attributes and a case where all attributes evaluate to zero.

### 1.3.4 Willingness to pay estimates

We estimated consumer willingness to pay (WTP) for food types in each model. The WTP estimates are based on the estimation group that is $2 / 3$ portion of the total observations. The WTP for a food type is the ratio of the coefficient of the food type to the coefficient of price, which allows us to interpret the estimation results using the economic concept of the marginal rate of substitution. For the base models (the MNL 1 and the RRS 1) and the RRS 2, WTP for an alternative $j$ is calibrated as:

$$
\begin{equation*}
W T P_{j}=-\frac{\beta_{j}}{\alpha} \tag{19}
\end{equation*}
$$

Because of the heterogeneous preferences in the utility function, in the case of the MNL 2 and the RRS 3, WTP for an alternative j consider additional shift terms as

$$
\begin{equation*}
W T P_{j}=-\frac{\beta_{j}+\mu_{j} \times H}{\alpha+\gamma \times H} \tag{20}
\end{equation*}
$$

### 1.3.5 Out-of-Sample Assessment

The out-of-sample (OOS) prediction comparisons were conducted to evaluate the forecasting performance of the RRS approach. Under both the MNL and the RRS, we used a delete-a-group process to compare the accuracy of forecasting individual decision makers' choice, following Tonsor (2018).

For OOS, we first randomly divided observations into two groups, an estimation group ( $66.7 \%$ of a given month's data) and a holdout group ( $33.3 \%$ of a month's data), and then estimated the MNL and the RRS models using the estimation group. Next, parameter estimates were used to predict respondents' indirect utilities for each alternative in the holdout group in both the MNL
and the RRS models. For the conventional MNL, predicted utilities were calculated based on all parameter estimates. For the RRS approach, on the other hand, they were derived only using the parameter estimates within the first segment.

Third, we use estimated utility functions to derive individuals' choices within each choice situation that maximize the indirect utility for both the MNL and the RRS and then compared the predicted choices with the actual choice. OOS prediction accuracy, $A_{i t}$, represents the correct prediction of a choice model for individual $i$ in choice situation $t$ which is generated by comparing the predicted choice with the actual choice.

$$
A_{i t}= \begin{cases}1 & \text { if } j=k  \tag{21}\\ 0 & \text { if } j \neq k\end{cases}
$$

Where $j$ is the actual alternatives chosen by the agent and $k$ is the choice alternative predicted by the model.

Lastly, we computed the prediction accuracy ratio of OOS, which is calculated as the ratio of the number of cases where the predicted choice is matched with the actual choice matched $\left(A_{i t}=1\right)$ to the number of total choice tasks, $T$.

### 1.4 Empirical Application

This study used Out-of-sample (OOS) forecasting comparison to evaluate the RRS approach compared to the conventional MNL. We estimated the MNL and LCM with RRS based on FooDS CE data, conducted the OOS forecasting from both models, and made a comparison of predictive accuracy of the respective models. This study also analyzed WTPs derived from each model to see how they differ depending on the approaches. We note that all model estimations and WTPs calculations were based on each month's data. We did not use 60 months of data at once. Because we want to compare our estimation results with the monthly reports of the Oklahoma State University. Also, we thought that certain situations such as food safety or seasonality may affect respondents' choices in CEs. If the paper analyzes the entire 60 months of data at once, the estimates could potentially be affected by those factors.

Our base models are the simplest MNL (called as MNL 1) and LCM with RRS restriction (called as RRS 1), assuming homogeneous preferences. This study estimated both the MNL 1 and the RRS 1, and compared WTP estimates for each food type. We also compared the OOS forecasting accuracy of each model. Next, this study considers heterogeneous preferences in order to examine how the OOS forecasting accuracy, the probability of random response, and WTP estimates for each food type change when accounting for heterogeneity in preferences. First, one of the socio-economic characteristics (SECs) was added to the RRS 1 as a membership variable that enters into the segment probability (called RRS 2) and examined how WTP estimates and OOS forecasting accuracy change as a membership variable enters into each model. Second, we put an interaction term of the price and SEC and an interaction term of the food type and the SEC into the indirect utility function of both base models, the MNL 1 and the RRS 1 (called as MNL 2 and RRS 3).

### 1.4.1 Model Specifications

### 1.4.1.1 MNL 1 (Homogeneous preference)

We begin with the simplest MNL with alternative-specific food type and price effects. We assume the unobservable stochastic part of the RUM framework, $\varepsilon_{i t j}$, is identically and independently distributed (IID) with the type I extreme value (Lusk 2013). For the base model, the indirect utility function (the systematical part) can be specified as (9). ${ }^{3}$

$$
\begin{equation*}
V_{i t j}=P_{t j}^{\prime} \alpha+X^{\prime}{ }_{i t j} \beta_{j} \tag{9}
\end{equation*}
$$

Where $\alpha$ is the marginal (dis)utility of the price, $P_{t j}$, faced by individual $i$ for option $j$ in choice situation $t$, and $\beta_{j}$ is the marginal utility of food product type, $j=1$ (hamburger), 2 (steak), 3 (pork chop), 4 (deli ham), 5 (chicken breast), 6 (chicken wing), 7 (beans and rice), 8 (pasta), 9 (something else). $X_{i t j}$ is an indicator for food product type $j$ and it has a value of 1 or 0 .

Given equation (9) and 9 choice tasks for each respondent, the MNL estimates the probability of individual decision makers choosing food product $j$ in as below:

$$
\begin{equation*}
P_{i j}=\prod_{t=1}^{9} \frac{\exp \left(P^{\prime}{ }_{t j} \alpha+X^{\prime} i_{t j} \beta_{j}\right)}{\sum_{j=1}^{J} \exp \left(P^{\prime} t j \alpha+X^{\prime} i t j \beta_{j}\right)} \tag{10}
\end{equation*}
$$

### 1.4.1.2 RRS 1 (Homogeneous preference within a class)

Within the class, the probability of decision maker $i$ selecting food product $j$ among 9 alternatives is conditional on the latent class $q$ and the behavioral model can be expressed as

[^2]\[

$$
\begin{equation*}
P_{i \mid q(j)}=\operatorname{Prob}\left(y_{i j}=j \mid \text { class }=q\right)=\prod_{t=1}^{9} \frac{\exp \left(P^{\prime}{ }_{t j} \alpha_{q}+X^{\prime}{ }_{i t} \beta_{j q}\right)}{\sum_{j=1}^{9} \exp \left(P^{\prime}{ }_{t j} \alpha_{q}+X^{\prime}{ }_{i t j} \beta_{j q}\right)} \tag{11}
\end{equation*}
$$

\]

This study goes with a latent class specification of two classes based on the RUM framework. However, we differently specified the systematical component of the utility, $V_{i t j}$, across classes. For the first class $(q=1)$, we used the non-restricted model that is exactly the same as the MNL in equation (10), as that $U_{i t j}=P_{t j}^{\prime} \alpha_{1}+X^{\prime}{ }_{i t j} \beta_{j 1}+\varepsilon_{i t j}$. The first class indicates that individual respondents evaluate every attribute and choose product $j$ in choice situation $t$. For the second class $(q=2)$, the restricted model is specified as that $U_{i t j}=\varepsilon_{i t j}$ by enforcing all parameters to zero values (i.e., $\alpha_{2}=\beta_{j 2}=0$ ), meaning that $V_{i t j}=0$ and that individual $i$ randomly selects product $j$ in choice situation $t$. So, the probability of household $i$ selecting food product $j$ among 9 different alternatives can be rewritten as

$$
P_{i \mid q(j)}= \begin{cases}\prod_{t=1}^{9} \frac{\exp \left(P^{\prime}{ }_{t j} \alpha_{1}+X^{\prime}{ }_{i t j} \beta_{j 1}\right)}{\sum_{j=1}^{9} \exp \left(P^{\prime}{ }_{t j} \alpha_{1}+X^{\prime}{ }_{i t j} \beta_{j 1}\right)} & \text { if } q=1  \tag{12}\\ \prod_{t=1}^{9} \frac{\exp (0)}{\sum_{j=1}^{9} \exp (0)}=\prod_{t=1}^{9} \frac{1}{9} & \text { if } q=2\end{cases}
$$

The prior probability that household $i$ belongs to the class $q$ has the MNL form as below.

$$
\begin{equation*}
P_{(c l a s s=q)}=H_{i q}=\frac{\exp \left(Z^{\prime} \theta_{q}\right)}{\sum_{q=1}^{2} \exp \left(Z_{i}^{\prime} \theta_{q}\right)}, \quad q=1,2 \text { and } \theta_{2}=0 \tag{13}
\end{equation*}
$$

Where $Z_{i}$ denotes a set of observable characteristics of individuals that enter the model for class allocation. Note that in the RRS 1 and the RRS 2, we didn't set a membership variable for the prior
probability. The second parameter vector, $\theta_{2}$, is normalized to zero to secure identification of the model (Hensher and Green. 2010).

Given the equation (8) and the fact that each respondent was required to answer to 9 choice tasks, the probability for decision maker $i$ is the expectation of the class-specific contributions as:

$$
P_{i \mid q(j)}=\left\{\begin{array}{ll}
\frac{\exp \left(Z_{i} \theta_{1}\right)}{\sum_{q=1}^{2} \exp \left(Z^{\prime} \theta_{q}\right)} \prod_{t=1}^{9}\left\{\frac{\exp \left(P^{\prime}{ }_{t j} \alpha_{1}+X^{\prime}{ }_{i t j} \beta_{j 1}\right)}{\sum_{j=1}^{9} \exp \left(P^{\prime}{ }_{t j} \alpha_{1}+X^{\prime}{ }_{i t j} \beta_{j 1}\right)}\right\} & \text { if } q=1  \tag{14}\\
\frac{\exp \left(Z^{\prime} \theta_{2}\right)}{\sum_{q=1}^{2} \exp \left(Z^{\prime} \theta_{q}\right)} \prod_{t=1}^{9}\left\{\frac{1}{9}\right\} & \text { if } q=2
\end{array}\right\}
$$

Now, we move to accounting for heterogeneous preferences in two different ways. The first way is to put SECs for interaction terms into both base models. Second, we add SECs as a membership variable to the base model for the RRS.

### 1.4.1.3 RRS 2 (adding membership variables)

Firstly, we consider latent heterogeneity in preferences through membership variables. The RRS 2 adds a SEC as a membership variable to the RRS 1, which provides the probability of choosing alternative j across the class as below:

$$
P_{i \mid q(j)}=\left\{\begin{array}{ll}
\frac{\exp \left(Z_{i} \theta_{1}\right)}{\sum_{q=1}^{2} \exp \left(Z_{i}^{\prime} \theta_{q}\right)} \prod_{t=1}^{9}\left\{\frac{\exp \left(P^{\prime}{ }_{t j} \alpha_{1}+X^{\prime}{ }_{i t j} \beta_{j 1}\right)}{\sum_{j=1}^{9} \exp \left(P^{\prime}{ }_{t j} \alpha_{1}+X^{\prime}{ }_{i t j} \beta_{j 1}\right)}\right\} & \text { if } q=1  \tag{15}\\
\frac{\exp \left(Z_{i}^{\prime} \theta_{2}\right)}{\sum_{q=1}^{2} \exp \left(Z^{\prime} \theta_{q}\right)} \prod_{t=1}^{9}\left\{\frac{1}{9}\right\} & \text { if } q=2
\end{array}\right\}
$$

Where $Z_{i}$ includes age, education, gender, household size, household income, and survey completion time.

The RRS 1 and the RRS 2 seem to have the identical choice probability formula within the class. Unlike in RRS 1, however, the RRS 2 reflects heterogeneity in a way that allows SECs $\left(Z_{i}\right)$ to affect the prior segment probability. In the RRS 1, we do not set $Z_{i}$ variable but the segment is divided by a latent variable.

### 1.4.1.4 MNL 2 and RRS 3 (adding interaction terms with SECs)

Second, we relax the homogeneous preferences assumption of the base models, adding interaction terms with socio-economic characteristics into the indirect utility to account for heterogeneity in preferences as below:

$$
\begin{equation*}
V_{i t j}=P_{t j}^{\prime} \alpha+X_{i t j}^{\prime} \beta_{j}+P H_{j t}^{\prime} \gamma+X H^{\prime}{ }_{i t j} \mu_{j} \tag{16}
\end{equation*}
$$

Where $H$ indicates respondent's socio-economic characteristics (SECs), including age, education, gender, household size, and household income. PH notes interactions term of price and household socio-economic characteristics and XH indicates interaction terms of food types and household socio-economic characteristics. In this specification, $\gamma$ and $\mu_{j}$ allow us to consider heterogeneity for price and product preferences. In this case, SECs of individuals affect the likelihood of choosing alternative $j$ within the class, not the prior probability.

We use the MNL 2 to compare how the WTP estimates driven from the MNL 1 and the RRS 2 and also to compare the OOS prediction of the RRS differ from the OOS predictions of the MNL given the household characteristics. In the MNL 2, the probability of respondent $i$ selecting food product $j$ among 9 different alternatives can be rewritten as:

$$
\begin{equation*}
P_{i j}=\prod_{t=1}^{9} \frac{\exp \left(P_{t j} \alpha+X \prime_{i t j} \beta_{j}+P H^{\prime}{ }_{j t} \gamma+X H^{\prime}{ }_{i t j} \mu_{j}\right)}{\sum_{j=1}^{9} \exp \left(P^{\prime}{ }_{t j} \alpha+X^{\prime}{ }_{i t j} \beta_{j}+P H^{\prime}{ }_{j t} \gamma+X H^{\prime}{ }_{i t j} \mu_{j}\right)} \tag{17}
\end{equation*}
$$

For the RRS 3, the likelihoods for respondent $i$ is the expectation of the class-specific contributions as below.

$$
P_{i \mid q(j)}=\left\{\begin{array}{ll}
\frac{\exp \left(Z_{i}^{\prime} \theta_{1}\right)}{\sum_{q=1}^{2} \exp \left(Z_{i}^{\prime} \theta_{q}\right)} \prod_{t=1}^{9}\left\{\frac{\exp \left(P_{t j}^{\prime} \alpha_{1}+X_{i t j} \beta_{j 1}+P H^{\prime}{ }_{j t} \gamma_{1}+X H^{\prime}{ }_{i t j} \mu_{j 1}\right)}{\sum_{j=1}^{9} \exp \left(P P_{t j} \alpha_{1}+X_{i t j}^{\prime} \beta_{j 1}+P H^{\prime}{ }_{j t} \gamma_{1}+X H^{\prime}{ }_{i t j} \mu_{j 1}\right)}\right\} & \text { if } q=1  \tag{18}\\
\frac{\exp \left(Z_{i}^{\prime} \theta_{2}\right)}{\sum_{q=1}^{2} \exp \left(Z_{i} \theta_{q}\right)} \prod_{t=1}^{9}\left\{\frac{1}{9}\right\} & \text { if } q=2
\end{array}\right\}
$$

The RRS 1 and the RRS 3 have the identical prior probability formula due to the absence of setting for a membership variable in both models. The different thing is in the specification of utility function.

### 1.5 Results

Table 1.3 summarizes the in-sample willingness-to-pay estimates (WTP), random response share estimates (RRS) and the out-of-sample predictive accuracy rates (OOS Pred. Accuracy) that were derived by averaging the estimated values for each month in different models. Those are average prediction accuracy rates over 60 different estimations.

### 1.5.1 WTP estimates and Random Response Shares

The WTP estimates for 8 different food types are shown in Table 1.3. The ranking of preferences for food types based on the WTP estimates was the same for all models except ham and chicken wing, although the WTP values slightly differed by models. Steak has the highest premium value, followed by chicken breast, burger, pork chop, and pasta. The preference for beans and rice was the lowest in all models. The ranking of preferences for ham and chicken wing differed depending on the models. In the MNL 1, the MNL 2 with age, and the RRS3 with age, chicken wing was preferred to ham, but other models showed the opposite preference.

First, we compare the WTPs in the base models (the RRS 1 and the MNL 1). Steak had the highest WTP value, followed by chicken breast, burger, pork chop, and pasta, while beans and rice had the lowest WTPs in both the MNL 1 and the RRS 1 models. The WTP estimates for steak in the MNL 1 is $\$ 6.68$, which is greater than that of $\$ 6.14$ in the RRS 1 . The WTPs for chicken breast are $\$ 5.42$ in the MNL 1 and $\$ 5.18$ in RRS 1. The WTPs for burger are $\$ 4.65$ and $\$ 4.55$, respectively. The WTPs for steak, chicken breast, burger, and beans and rice in the MNL 1 were higher than in the RRS 1, respectively. On the other hand, the WTPs for pork chop, ham, and chicken wing in the RRS 1 were higher average values than in the MNL 1, and Pasta's WTP estimates were similar at the level of $\$ 3.19$ in both models.

Second, this study also considers the WTP estimates for food types based on the RRS 2, which were comparable to those of the RRS1. There are some differences depending on whether membership variables that enter into the prior segment probability is applied. For example, in the RRS 2, the WTP estimates for steak ranged from $\$ 6.11$ to $\$ 6.14$. The WTPs for chicken breast and burger were calculated to be from $\$ 5.14$ to $\$ 5.17$ and from $\$ 4.51$ to $\$ 4.55$, respectively. Despite the addition of SECs or survey completion time (SCTIME) as a membership variable in the RRS 2 model, the WTP estimates for each food type were not considerably different compared to the RRS 1 model. Thus, the preference ranking and WTP comparisons for food type were similar as when comparing the MNL1 with the RRS1.

Next, this study moves to the results of the RRS 3 and the MNL 2 models that reflect the SECs in the models by using interaction terms. ${ }^{4}$ Similarly, in both the MNL 2 and the RRS 3, steak had the highest WTP values, followed by chicken breast, burger, pork chop, pasta, ham, and beans and rice, excepting some cases where the MNL 2 and the RRS 3 with age, the MNL 2 with household size, and the MNL 2 with survey completion time as a membership variable. ${ }^{5}$ The WTP estimates for steak in the RRS 3 are formed in a range between $\$ 6.02$ and $\$ 6.67$, while those are between $\$ 6.50$ and $\$ 7.07$ in the MNL 2. The WTPs for chicken breast had a range from $\$ 5.24$ to $\$ 5.85$ and between $\$ 5.00$ and $\$ 5.74$, respectively, in the MNL 2 and the RRS 3. Those values for burger are between $\$ 4.52$ and $\$ 5.03$ in the MNL 2 and between $\$ 4.42$ and $\$ 5.09$ in the RRS 3 .

[^3]These results indicate that the WTP values for steak, chicken breast, pasta, and beans and rice in MNL 2 are higher than those in RRS 3. But WTPs for pork chop, ham, and chicken wing are larger in the RRS 3 than those in MNL $2 .{ }^{6}$

Overall, WTPs are the lowest when adding survey completion time (SCTIME) into the prior likelihood, while WTPs are the highest when considering age or household size (HINC) as a membership variable.

In addition to WTP estimates, the probability of random response of the different constrained LC DCMs was shown in the second last column of Table 1.3. The RRS ranged from $35.5 \%$ to $38.0 \%$ depending on the RRS model. In the base model (RRS 1), the RRS was estimated to be $36.7 \%$, which is lower than that in RRS 2, excepting the RRS 2 with the membership variable of age, but higher than that in RRS 3. The RRS 2 models putting SECs and SCTIME into the prior class probability result in higher RRS than that in the RRS 3 models that reflect heterogeneous preferences in the indirect utility function.

[^4]Table 1.3 WTP Estimates, RRS, and OOS Prediction Accuracy Rates by models

| Model | Heterogeneity | WTP (\$) |  |  |  |  |  |  |  | RRS <br> (\%) | OOS Pred. <br> Accuracy (\%) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Steak | Chicken Breast | Burger | Pork Chop | Ham | Chicken Wing | Bean and Rice | Pasta |  |  |
| MNL1 | Base Model | $\begin{gathered} 6.68 \\ (0.12) \end{gathered}$ | $\begin{gathered} 5.42 \\ (0.12) \end{gathered}$ | $\begin{gathered} 4.65 \\ (0.12) \end{gathered}$ | $\begin{gathered} 3.77 \\ (0.12) \end{gathered}$ | $\begin{gathered} 2.33 \\ (0.13) \end{gathered}$ | $\begin{gathered} 2.33 \\ (0.12) \end{gathered}$ | $\begin{gathered} 1.98 \\ (0.12) \end{gathered}$ | $\begin{gathered} 3.19 \\ (0.13) \end{gathered}$ | - | $\begin{aligned} & 32.59 \\ & (1.68) \end{aligned}$ |
| RRS1 | Base Model | $\begin{gathered} 6.14 \\ (0.15) \end{gathered}$ | $\begin{gathered} 5.18 \\ (0.13) \end{gathered}$ | $\begin{gathered} 4.55 \\ (0.13) \end{gathered}$ | $\begin{gathered} 3.94 \\ (0.13) \end{gathered}$ | $\begin{gathered} 2.49 \\ (0.13) \end{gathered}$ | $\begin{gathered} 2.41 \\ (0.13) \end{gathered}$ | $\begin{gathered} 1.77 \\ (0.13) \end{gathered}$ | $\begin{gathered} 3.19 \\ (0.14) \end{gathered}$ | $\begin{gathered} 36.7 \\ (0.04) \end{gathered}$ | $\begin{aligned} & 31.64 \\ & (2.13) \end{aligned}$ |
| RRS2 | Gender | $\begin{gathered} 6.13 \\ (0.15) \end{gathered}$ | $\begin{gathered} 5.17 \\ (0.13) \end{gathered}$ | $\begin{gathered} 4.54 \\ (0.13) \end{gathered}$ | $\begin{gathered} 3.93 \\ (0.13) \end{gathered}$ | $\begin{gathered} 2.49 \\ (0.13) \end{gathered}$ | $\begin{gathered} 2.41 \\ (0.13) \end{gathered}$ | $\begin{gathered} 1.76 \\ (0.13) \end{gathered}$ | $\begin{gathered} 3.19 \\ (0.14) \end{gathered}$ | $\begin{gathered} 36.7 \\ (0.04) \end{gathered}$ | $\begin{aligned} & 32.69 \\ & (1.72) \end{aligned}$ |
|  | AGE | $\begin{gathered} 6.11 \\ (0.14) \end{gathered}$ | $\begin{gathered} 5.14 \\ (0.13) \end{gathered}$ | $\begin{gathered} 4.51 \\ (0.13) \end{gathered}$ | $\begin{gathered} 3.92 \\ (0.13) \end{gathered}$ | $\begin{gathered} 2.47 \\ (0.13) \end{gathered}$ | $\begin{gathered} 2.38 \\ (0.13) \end{gathered}$ | $\begin{gathered} 1.74 \\ (0.13) \end{gathered}$ | $\begin{gathered} 3.16 \\ (0.14) \end{gathered}$ | $\begin{gathered} 36.6 \\ (0.04) \end{gathered}$ | $\begin{aligned} & 32.69 \\ & (1.72) \end{aligned}$ |
|  | EDU | $\begin{gathered} 6.14 \\ (0.15) \end{gathered}$ | $\begin{gathered} 5.17 \\ (0.13) \end{gathered}$ | $\begin{gathered} 4.55 \\ (0.13) \end{gathered}$ | $\begin{gathered} 3.94 \\ (0.13) \end{gathered}$ | $\begin{gathered} 2.49 \\ (0.13) \end{gathered}$ | $\begin{gathered} 2.41 \\ (0.13) \end{gathered}$ | $\begin{gathered} 1.76 \\ (0.13) \end{gathered}$ | $\begin{gathered} 3.19 \\ (0.14) \end{gathered}$ | $\begin{gathered} 38.0 \\ (0.04) \end{gathered}$ | $\begin{aligned} & 32.69 \\ & (1.72) \end{aligned}$ |
|  | HSIZE | $\begin{gathered} 6.14 \\ (0.15) \end{gathered}$ | $\begin{gathered} 5.17 \\ (0.13) \end{gathered}$ | $\begin{gathered} 4.54 \\ (0.13) \end{gathered}$ | $\begin{gathered} 3.94 \\ (0.13) \end{gathered}$ | $\begin{gathered} 2.49 \\ (0.13) \end{gathered}$ | $\begin{gathered} 2.41 \\ (0.13) \end{gathered}$ | $\begin{gathered} 1.76 \\ (0.13) \end{gathered}$ | $\begin{gathered} 3.19 \\ (0.14) \end{gathered}$ | $\begin{gathered} 36.8 \\ (0.04) \end{gathered}$ | $\begin{aligned} & 32.69 \\ & (1.72) \end{aligned}$ |
|  | HINC | $\begin{gathered} 6.13 \\ (0.15) \end{gathered}$ | $\begin{gathered} 5.16 \\ (0.13) \end{gathered}$ | $\begin{gathered} 4.54 \\ (0.13) \end{gathered}$ | $\begin{gathered} 3.93 \\ (0.13) \end{gathered}$ | $\begin{gathered} 2.49 \\ (0.13) \end{gathered}$ | $\begin{gathered} 2.40 \\ (0.13) \end{gathered}$ | $\begin{gathered} 1.76 \\ (0.13) \end{gathered}$ | $\begin{gathered} 3.18 \\ (0.14) \end{gathered}$ | $\begin{gathered} 37.2 \\ (0.04) \end{gathered}$ | $\begin{aligned} & 32.69 \\ & (1.72) \end{aligned}$ |
|  | SCTIME | $\begin{gathered} 6.14 \\ (0.15) \end{gathered}$ | $\begin{gathered} 5.17 \\ (0.13) \end{gathered}$ | $\begin{gathered} 4.54 \\ (0.13) \end{gathered}$ | $\begin{gathered} 3.94 \\ (0.13) \end{gathered}$ | $\begin{gathered} 2.49 \\ (0.13) \end{gathered}$ | $\begin{gathered} 2.41 \\ (0.13) \end{gathered}$ | $\begin{gathered} 1.76 \\ (0.13) \end{gathered}$ | $\begin{gathered} 3.19 \\ (0.14) \end{gathered}$ | $\begin{gathered} 36.8 \\ (0.04) \end{gathered}$ | $\begin{aligned} & 32.69 \\ & (1.72) \end{aligned}$ |
| MNL2 | Gender | 6.76 | 5.50 | 4.74 | 3.86 | 2.41 | 2.41 | 2.03 | 3.20 | - | 32.62 |
|  |  | (0.18) | (0.18) | (0.17) | (0.18) | $(0.19)$ | (0.17) | (0.18) | $(0.20)$ |  | (1.73) |
| RRS3 |  | $\begin{gathered} 6.29 \\ (0.23) \end{gathered}$ | $\begin{gathered} 5.29 \\ (0.20) \end{gathered}$ | $\begin{gathered} 4.68 \\ (0.20) \end{gathered}$ | $\begin{gathered} 4.06 \\ (0.20) \end{gathered}$ | $\begin{gathered} 2.60 \\ (0.20) \end{gathered}$ | $\begin{gathered} 2.52 \\ (0.20) \end{gathered}$ | $\begin{gathered} 1.85 \\ (0.21) \end{gathered}$ | $\begin{gathered} 3.21 \\ (0.22) \end{gathered}$ | $\begin{gathered} 35.8 \\ (0.03) \end{gathered}$ | $\begin{aligned} & 32.78 \\ & (1.75) \end{aligned}$ |
| MNL2 | AGE | 7.07 | 5.85 | 5.03 | 3.97 | 2.64 | 2.73 | 2.32 | 3.51 | - | 32.76 |
|  |  | (0.21) | (0.23) | $(0.21)$ | $(0.21)$ | $(0.21)$ | $(0.21)$ | $(0.21)$ | $(0.22)$ |  | (1.75) |
| RRS3 |  | 6.67 | 5.74 | 5.09 | 4.27 | 2.94 | 2.98 | 2.23 | 3.63 | 34.8 | 32.86 |
|  |  |  | (0.26) |  |  |  |  |  | $(0.26)$ |  |  |
| MNL2 | EDU | 6.85 | 5.60 | 4.72 | 3.89 | 2.40 | 2.40 | 2.12 | 3.30 | - | 32.49 |
| RRS3 |  | (0.18) | (0.18) | (0.17) | (0.18) | (0.19) | (0.18) | (0.18) | $(0.20)$ |  | (1.61) |
|  |  | 6.30 | 5.33 | 4.62 | 4.05 | 2.56 | 2.48 | $1.86$ | $3.28$ |  | 32.82 |
|  |  |  |  |  |  |  |  | (0.20) | $(0.21)$ | (0.03) |  |
| MNL2 | HSIZE | 7.06 | 5.81 | 5.01 | 4.08 | 2.64 | 2.71 | 2.26 | 3.50 | - | 32.56 |
| RRS3 |  | $(0.21)$ | (0.22) | $(0.21)$ | $(0.21)$ | $(0.21)$ | $(0.21)$ | $(0.21)$ | $(0.22)$ |  | (1.66) |
|  |  | $6.41$ | 5.44 | $4.81$ | 4.16 | 2.72 | 2.70 | 1.96 | 3.42 | 36.0 | $32.64$ |
|  |  |  |  |  |  |  | $(0.23)$ | $(0.23)$ | $(0.25)$ | $(0.04)$ |  |
| MNL2 | HINC | 6.97 | 5.72 | 4.85 | 4.02 | 2.48 | 2.47 | 2.16 | 3.40 | - | 32.84 |
| RRS3 |  | (0.19) | (0.19) | (0.18) | (0.19) | (0.19) | (0.18) | (0.19) | $(0.20)$ |  | (1.58) |
|  |  | $6.42$ | $5.41$ | $4.71$ | $4.15$ | $2.59$ | $2.50$ | $1.84$ | $3.32$ | $35.5$ | $33.06$ |
|  |  |  |  |  |  |  |  |  | $(0.21)$ | $(0.03)$ |  |
| MNL2 | SCTIME | 6.50 | 5.24 | 4.52 | 3.71 | 2.27 | 2.29 | 1.92 | 3.13 | - | 32.64 |
| RRS3 |  | (0.18) | (0.18) | (0.17) | (0.18) | (0.19) | (0.18) | (0.18) | $(0.20)$ |  | (1.69) |
|  |  | 6.02 | $5.00$ | $4.42$ | $3.85$ | $2.41$ | $2.35$ | $1.73$ | $3.10$ | $36.5$ | 32.76 |
|  |  | (0.22) |  |  |  |  | (0.19) |  |  | $(0.04)$ |  |

Note: RRS, In-sample (IS) willingness-to-pay (WTP) for each food type, Out-of-sample (OOS) prediction accuracy are the averages of values from 60 individual model estimations. Numbers described in parentheses for IS WTP are also the mean values of 60 individual standard errors for willingness to pay for each food type. We use the delta method to get the standard errors in NLOGIT 7.0. Numbers presented in parentheses for RRS and OOS Predictive Accuracy are the standard deviations.

### 1.5.2 OOS Forecasting Accuracy

This paper then moves to the analysis of OOS prediction accuracy. In the case of the base models (MNL 1 and RRS 1), the OOS predictive accuracy rate of the MNL 1 is $32.59 \%$ which is slightly larger than that of the RRS1, $31.64 \%$, indicating that the MNL 1 is likely to perform somewhat better than the RRS 1 in the light of model predictability. The monthly OOS forecasts of the MNL 1 and the RRS 1 reveals that the MNL 1 was superior to the RRS 1 in 43 cases while the RRS 1 was better than the MNL 1 in 14 cases among a total of 60 monthly analyzes. In three cases, the same degree of the correct prediction was shown. This result implies that the RRS is not likely to be a dominant strategy to the standard MNL in terms of the OOS forecasting accuracy, when not accounting for SECs of individual decision makers.

On the other hand, the consideration of the SECs for decision makers may advance the forecasting performance of the RRS approach. We applied two different ways to reflect the SECs of respondents in each model in order to account for the heterogeneity of preferences.

First, we see the RRS 2 which used a membership variable with the MNL 1. In the case of the RRS 2, the accurate prediction rate of $32.69 \%$ is a little better than $32.59 \%$ of the MNL 1 , which was improved by $1.05 \%$ from that of the RRS1. This means that using the RRS approach with SECs for a membership variable may have the potential to yield better OOS predictions that using the MNL 1. For the RRS 2, we have the same OOS prediction results across different SECs as a membership variable. We note that no matter what membership variable we used in the RRS 2, the OOS prediction accuracy was invariant. That is, whether we used gender, age, education level, household size, or household income as a membership variable, the correct prediction
percent results did not change. ${ }^{7}$ This no change in the OOS correct forecasting is due to the fact that a membership variable does directly affect the probability of class allocation but indirectly influences food attribute specific parameters that are evaluated by the systematic part of the random utility.

Second, we compare the RRS 3 with the MNL 2 model reflecting SECs in the models by using interaction terms. Unlike the RRS 2 model, the inclusion of interaction terms in the utility function directly affects the estimation of food-specific parameters, so the food-specific parameter estimates vary greatly depending on which interaction terms enter the model. We can see the difference in the OOS prediction accuracy by SEC in the last column of Table 1.3. The correct predicted rates of the RRS 3 are at least $32.64 \%$, which better performed than $31.64 \%$ of the RRS 1, across SECs for heterogeneity of preferences. According to the OOS prediction of the RRS 3 by the membership variable, the correct prediction rates were from $32.64 \%$ to $33.07 \%$, specifically, $32.76 \%$ for gender, $32.86 \%$ for age, $32.82 \%$ for education, $32.64 \%$ for household size, and $33.07 \%$ for household income. Those accuracy rates are marginally greater than the case of the MNL 2. In the MNL 2, the predictive accuracy rates were $32.62 \%$ for gender, $32.76 \%$ for age, $32.49 \%$ for education, $32.56 \%$ for household size, and $32.87 \%$ for household income. The introduction of the interaction term in both the MNL and the RRS slightly increased the OOS predictive accuracy rates, but that's a small amount. In particular, the increase in predictive power in the RRS was greater than in the MNL. The predictive accuracy improvements in the RRS were from $1.00 \%$ to $2.42 \%$, while those of MNL ranged from $0.00 \%$ to $0.28 \%$. The monthly OOS forecasts of the MNL

[^5]2 and the RRS 3 reveals that the RRS 3 was better than the MNL 2 in over 34 cases among 60 monthly analyzes, which depends on interaction terms for SECs of individuals. Whereas the MNL 2 was better than the RRS 3 in a maximum of 24 cases. This result implies that the RRS approach may perform better than the standard MNL in sense of the OOS forecasting when accounting for SECs of individual respondents, but there is no significant difference.


Note: For the RRS 2, we have the same OOS prediction results across the SECs as a membership variable.
Figure 1.2 OOS Forecasting Accuracy Comparisons by Models

### 1.6 Conclusions

This study applied the random response share (RRS) approach for reducing hypothetical bias due to inattention decisions and assessed the validity of the RRS based on OOS forecasting performance. The aim of the RRS model is to purge the observations from those who did a totally random choice in a choice task. Given that the RRS approach focuses on parameter estimates within the unrestricted segment, examining their representativeness is crucial in evaluation of the validity of the RRS. Our study employed the FooDS data. The FooDS data was collected from 61,592 survey respondents and includes choice experiment questions and socio-demographic information of individual respondents. We took advantage of rich observations of the FooDS to assess Malone and Lusk (2018)'s the RRS model by the out-of-sample prediction comparisons.

Our results revealed that the RRS is not likely to be a dominant strategy to the conventional MNL in terms of OOS forecasting accuracy. This is because the OOS predictive power of the base model (the RRS 1), which does not reflect SECs, remained at $31.64 \%$, lower than $32.59 \%$ for the MNL 1. In addition, adding SECs to the model increased the predictability of the RRS models, despite not much higher than that of the MNL models. The RRS 2 showed the OOS correct forecasting rate of $32.69 \%$. The predictive accuracies for the MNL 2 and the RRS 3 were between $32.56 \%$ and $32.84 \%$ and between $32.64 \%$ and $33.06 \%$, depending on socio-economic characteristics (SECs), respectively.

The RRS model may be improved by also considering the SECs of respondents in the sense of its predictive performance but it is hard to say that a big improvement was found. This study attempted to increase the predictive performance of discrete choice analysis by incorporating the SEC variables into the model in two ways. The first way is to add the SECs to the RRS base model as a membership variable. Another way is to put an interaction term of the attribute and the SECs
into the indirect utility function of the base MNL and RRS models. In particular, the results reported that there is little difference between adding SECs as a membership variable into the segment probability and putting them into the indirect utility function in terms of the OOS prediction accuracy ratio. Practically, the approach to include SECs as a membership variable into the class probability is simpler than the other way to account for heterogeneous preferences. This implies that we could improve the forecasting power of the RRS through a relatively convenient method. Nevertheless, we could not find a significant improvement in terms of the predictive performance. At the same time our results show that RRS is not harmful compared to the conventional MNL. Therefore, it is recommended for analysts to apply the RRS with a setting for appropriate membership variables that enter the prior likelihood in order to address inattention choice, instead of adding interaction terms with SECs to the systematical part of the utility function in the RRS model. Also, analysts also should recognize that willingness-to-pay estimates for each product and the probability of random response vary depending on the model.

The present study considered heterogeneous preferences by putting one of the various SECs, and examined how WTP estimates, RRS, and OOS prediction accuracy changed. Given the various combinations of SECs, the predictive power of the RRS model is expected to be higher. We leave this work for future research. In addition, in spite of the use of more plentiful observations in this study than the validation based on a trap question in Malone and Lusk (2018), the analysis results were basically derived from the same CE data. Therefore, we expect that additional research continues to apply the RRS model to other CE data for further validation.

### 1.7 References

Alemu, M.H., M.R. Mørkbak, S.B. Olsen, and C.L. Jensen. 2013. "Attending to the reasons for attribute non-attendance in choice experiments." Environmental and Resource Economics 54(3): 333-359.

Greene, W.H., and D.A. Hensher. 2003. "A latent class model for discrete choice analysis: Contrasts with mixed logit." Transportation Research Part B 37(8): 681-698.

Hensher, D.A., and W.H. Greene. 2010. "Non-attendance and dual processing of common-metric attributes in choice analysis: A latent class specification." Empirical Economics 39(2): 413426.

Hensher, D.A., J. Rose, and W.H. Greene. 2005. "The implications on willingness to pay of respondents ignoring specific attributes." Transportation 32(3): 203-222.

Hensher, D.A., J.M. Rose, and W.H. Greene. 2015. Applied Choice Analysis, The Second ed. Cambridge University Press, Cambridge.

Hole, A.R. 2011. "A discrete choice model with endogenous attribute attendance." Economics Letters 110(3): 203-205.

Hole, A.R., J.R. Kolstad, and D. Gyrd-Hansen. 2013. "Inferred vs. stated attribute non-attendance in choice experiments: A study of doctors' prescription behaviour." Journal of Economic Behavior and Organization 96: 21-31.

Izrael, D., D.C. Hoaglin, and M.P. Battaglia. 2004. "To rake or not to rake is not the question anymore with the enhanced raking macro." The 29th Annual SAS Users Group International Conference Paper 207-: 1-11.

Kragt, M.E. 2013. "Stated and inferred attribute attendance models: A comparison with environmental choice experiments." Journal of Agricultural Economics 64(3): 719-736.

Van Loo, E.J., V. Caputo, R.M. Nayga, H.S. Seo, B. Zhang, and W. Verbeke. 2015. "Sustainability labels on coffee: Consumer preferences, willingness-to-pay and visual attention to attributes." Ecological Economics 118: 215-225.

Van Loo, E.J., R.M. Nayga, D. Campbell, H.-S. Seo, and W. Verbeke. 2018. "Using eye tracking to account for attribute non-attendance in choice experiments." European Review of Agricultural Economics 45(3): 333-365.

Lusk, J.L. 2017. "Consumer research with big data: Applications from the food demand survey (FooDS)." American Journal of Agricultural Economics 99(2): 303-320.

Lusk, J.L. 2013. "Food demand survey (FooDS) technical information on survey questions and methods."

Malone, T., and J.L. Lusk. 2018. "A simple diagnostic measure of inattention bias in discrete choice models." European Review of Agricultural Economics 45(3): 455-462.

McKendree, M.G.S., G.T. Tonsor, and C.A. Wolf. 2018. "Animal welfare perceptions of the U.S. public and cow-calf producers." Journal of Agricultural and Applied Economics 50(4): 544578.

Scarpa, R., T.J. Gilbride, D. Campbell, and D.A. Hensher. 2009. "Modelling attribute nonattendance in choice experiments for rural landscape valuation." European Review of Agricultural Economics 36(2): 151-174.

Scarpa, R., R. Zanoli, V. Bruschi, and S. Naspetti. 2013. "Inferred and stated attribute nonattendance in food choice experiments." American Journal of Agricultural Economics 95(1): 165-180.

Tonsor, G.T. 2018. "Producer decision making under uncertainty: Role of past experiences and question framing." American Journal of Agricultural Economics 100(4): 1120-1135.

Train, K.E. 2009. Discrete Choice Methods with Simulation, The Second ed. Cambridge University Press, Cambridge.

Weller, P., M. Oehlmann, P. Mariel, and J. Meyerhoff. 2014. "Stated and inferred attribute nonattendance in a design of designs approach." Journal of Choice Modelling 11(1): 43-56.

# Chapter 2 - Incorporating Choice Heuristics in Analysis of Decision 

## Making

### 2.1 Introduction

Given the cognitive burden and the information process cost, it is not easy for an agent to choose his or her best option among several alternatives available, taking into account every attribute of the alternatives and trade-offs across the options. Rather, agents' decision-making often relies on some heuristic process of attribute substitution (Tversky and Kahneman 1974; Kahneman 2003a). To simplify the choice tasks, agents may ignore some attributes of the alternatives and focus on only a subset of them (Tversky 1972; Weller et al. 2014).

Discrete choice literature has attempted to incorporate the decision heuristics in analytical models. Many choice analysis studies have taken the form of considering the heterogeneity of attribute processing in discrete choice models (DCMs), which has been in full swing since Hensher, Rose, and Greene (2005). Hensher, Rose, and Greene (2005) argued that respondents in stated choice experiments may ignore attributes of alternatives presented in a choice task and may choose one. It questioned the traditional assumption of the discrete choice modeling that all attributes are considered and evaluated by agents when they make a choice. ${ }^{8}$ Hensher, Rose, and Greene (2005) stated three potential reasons for attribute inattention: (1) attribute non-attendance (ANA) is to address complex tasks respondents are asked; (2) the benefit of the full attribute assessment (FAA) is lower than the cost of evaluating attribute; (3) an attribute does not affect

[^6]choices respondents make. It had raised a question about the fundamental assumption of classical economics that rational agents make a choice that maximizes their utility.

Recent choice analysis reported better model fit in the case of accommodating ANA decision strategies than in accounting for only the FAA, supporting the position that agents may choose an alternative without full attribute preservation (Campbell, Hutchinson and Scarpa 2008; Hensher and Rose 2009; Scarpa et al. 2009; Hess and Hensher 2010; Scarpa, Thiene and Hensher 2010; Balcombe, Burton and Rigby 2011; Scarpa et al. 2013; Heidenreich et al. 2018; Malone and Lusk 2018; Thiene, Franceschinis and Scarpa 2018; Collins, Rose and Hensher 2013; Hensher, Collins and Greene 2013; Hess et al. 2013; Hole, Kolstad and Gyrd-Hansen 2013; Lagarde 2013). In particular, with the advance of online survey tools and the popularity of choice experiments (CEs), many empirical studies based on stated preference data have investigated heuristic processes through econometric models. DCM is a key econometric framework for a stated choice method that is of analysis on agents' decision-making processes or preferences in the applied economics field. Remarkably, there are a number of works using the stated choice data in the area of agricultural, environmental, food, and health economics. Given the popularity of stated choice analysis for policy evaluation and market research, more refined approaches in CEs are required to avoid misguide policy recommendations and strategical decision makings.

Heuristics are known as a simple and intuitive decision-making strategy. A heuristic strategy is a way to make decisions quickly and simply, rather than making choices based on how to get the optimal results when people make decisions. Tversky and Kahneman defined the heuristics as simple judgmental principles. "People rely on a limited number of heuristic principles which reduce complex tasks of assessing probabilities and predicting values to simpler operations" (Tversky and Kahneman 1974. p. 1124)." Hensher, Rose, and Greene viewed choice
heuristics as simple preference constructions. "Individuals use to simplify preference construction and hence make choices, or to make the representation of what matters relevant, regardless of the degree of complexity as perceived by the decision maker and/or analyst" (Hensher, Rose and Greene 2015. p.937). Heuristic decision rules do not guarantee agents' utility maximization. Heuristics can often introduce systematic errors. Nevertheless, in real life, the reason why people apply heuristic rules is to avoid deliberate and effortful computations (Kahneman 2003b), to minimize time-consuming (Leong and Hensher 2012), or to reduce cognitive efforts (Leong and Hensher 2012; Caputo, Scarpa and Nayga 2017).

Choice heuristics have been defined in various ways by researchers. But the basic idea is in line with Tversky's choice theory that is known as elimination-by-aspects. According to the elimination-by-aspects, individual alternatives consist of a combination of attributes, and alternatives that do not contain an attribute that is a crucial contributor to a decision maker' utility are removed from the choice set. The elimination process continues until one option finally remains in the choice set (Tversky 1972)

The elimination heuristics were recently applied in several ways (Leong and Hensher 2012). The first concept is to classify alternatives based on whether they contain attributes that contribute to agents' utility function, which is related to ANA. This concept assumes that if a specific attribute of alternatives contributes to an agent's utility, the agent evaluates that attribute, otherwise the agent does not pay attention to the attribute. The attributes carefully evaluated by the agent are estimated in econometric models but are restricted to zero for attributes that are not a contributor to the utility. Attendance or inattention for a certain attribute can be determined by directly asking the decision makers or by inferring the agent's implicit decision process using a latent class framework. The latter case is the approach our paper adopts, which is mainly applied
when the decision rule was not observed or could not be monitored (Scarpa et al. 2009; Collins, Rose and Hensher 2013; Hensher, Collins and Greene 2013; Hess et al. 2013; Lagarde 2013; Kragt 2013; Weller et al. 2014; Hole et al. 2013; Sandorf, Campbell and Hanley 2017; Heidenreich et al. 2018; Thiene, Franceschinis and Scarpa 2018; Balbontin, Hensher and Collins 2019).

Second, the elimination-by-aspects were dealt with in the perspective of reference points or value learning (Balbontin, Hensher and Collins 2017; Tonsor 2018; Caputo, Lusk and Nayga 2019; Balbontin, Hensher and Collins 2019). This method is to decide whether to remove an alternative from the choice set based on the agent's a reference point (threshold level). In other words, this approach is based on the cut-off levels for attributes, and the gains or losses caused by choosing an alternative are measured using a reference point (Balbontin, Hensher and Collins 2019). The reference point may be respondent-specific levels (Tonsor 2018) or could be adjusted across the processing rules and choice situations (Leong and Hensher 2012).

Third, Adamowicz (1994) and Adamowicz and Swait (2013) examined habitual and variety-seeking choices. The habitual choice indicates a decision rule that agents choose always the same item, while the variety-seeking choice is a choice strategy that an agent chooses a different product from the last product purchased (Adamowicz 1994; Adamowicz and Swait 2013). These decision principles are also kinds of the elimination-by-aspects.

In addition, some studies have taken a position that inattention behavior is also rational because attaining and evaluating information are also costly. This perspective has arisen since Sims (2003). The literature on rational inattention (RI) approach has addressed the lack of attention of decision makers under imperfect information circumstances in the aspect of rational behavior (Joo 2019; Fosgerau, Melo and Shum 2019; Matějka and Mckay 2015). They introduce information costs into the random utility function based on Luce's choice model (1959).

There were many efforts to establish a heuristic strategy in DCM literature, and many studies employed stated preference data collected from choice experiments. However, choice heuristics also can be applicable to consumers' actual choice environments as they may not always account for all attributes of alternative products in a market. In real life, shoppers may judge alternatives and make a choice one intuitively. The decisions may be simple without deliberate and effortful computations. Because they want to not only maximize their utility but also reduce information processing costs (Louviere, Hensher and Swait, 2000). In other words, the heuristic decision rules may be found in non-hypothetical market data by applying a latent class structure.

The ultimate goal of this study is to explore heuristic choice behavior using actual market data (panel households' frankfurters purchase record), instead of relying on hypothetical data (stated choice data). Previous ANA literature adopted stated choice data to investigate heterogeneity in the decision-making process in the context of the RUM framework. We also utilize the latent class structure of the discrete choice model based on the RUM. Unlike previous studies, however, our study attempts to apply some choice heuristics to scanner data that came from the IRI marketing data set. We focus on consumer behavior at the household level, while many economic studies that use market data for analysis at the store level. The present study applied the same econometric approach that often used in CE, at the household level, which allows comparing with literature relied on CE methods.

This study contributes to better understanding of consumers' choice, applying a latent class framework of discrete choice models. If no significant ANA choice is found in our analysis, it will provide evidence that all attributes of products are fully considered when shoppers buy hotdog products in the real market. Otherwise, attributes may not always be central factors for some consumers in an actual market. And it supports previous ANA discussions based on CE methods.

### 2.2 The IRI Marketing Data

The Information Resources, Inc. (IRI) marketing data was employed to explore choice heuristics in the present paper. The IRI marketing data introduced by Bronnenberg, Kruger, and Mela (2008) is a scanner dataset representing consumers' actual purchases in stores. It includes information about 30 different product categories sold weekly in a particular store across 47 markets from 2001 to 2012. In addition, the IRI data provides its panel households' weekly purchasing records within two different markets (Eau Claire, WI, and Pittsfield, MA), as well as their socio-economic characteristics. The IRI data is a popular source in the field of industrial organization, marketing, and household economics.

To deeply investigates consumer' choice heuristics at the level of the household, this study focuses on hotdog sausage choice behavior at a grocery store in Eau Claire, WI, in 2012. We picked Eau Claire, WI, as the population of Eau Claire, WI, is higher than Pittsfield, MA. The U.S. census 2010 reported that the populations for Eau Claire, WI, and Pittsfield, MA were 65,8823 and 44,737 , respectively. The reason for using only one year's data is to keep product availability to the consumers as consistent as possible. If multiple years of data were used, an analyst should consider the entry of a new product and the exit of an existing product. For simplicity, this study analyzed only the products sold in 2012. Given the nature of the scanner data, we only have information about products bought by consumers, it is not easy to consider the entry of new products and the exit of products. This means that we may not know the characteristics of alternative products if they were not bought by households so that it is hard to construct choice sets. A grocery store with the highest number of hotdog sausage purchases in Eau Clare, WI. was chosen as the target store. We could not identify what local store was selected because the IRI data did not provide specific store information such as store names and addresses. There are seven
grocery stores and three drug stores where panel households visited for hotdog sausage products in Eau Clare, WI. The chosen store is the most popular grocery store for hotdogs for the IRI panel households.

Our study constructs choice sets for discrete choice analysis based on 531 households' hotdog sausage purchase records and information on product attributes to build choice sets for discrete choice analysis. The number of choice situations varies by household. Unlike choice experiments in which researchers often set the same number of choice tasks faced by respondents, it is common for households to have different numbers of choice situations in real life. For example, some households buy hot dogs five times for 52 weeks (one year), while others buy 13 times. As such, the fact that the number of events of hotdog sausage purchases may vary across households produces an unbalanced panel structure (see Table B. 1 in Appendix). Our study analyzes this information using the data aggregated weekly.

Household panel data shows how much of household $i$ 's purchases and expenditure for hotdog product $j$ in a specific week. It also includes households' socio-economic characteristics, for example, household income, family size, household head's age, education achievement, and occupation. For households' annual income level, $22.60 \%$ of 531 households earned less than $\$ 25,000.34 .84 \%$ is for $\$ 25,000$ to $\$ 54,999$, and $31.07 \%$ is for $\$ 55,000$ to $\$ 99,999$, and $11.30 \%$ earned more than $\$ 100,000$. For family size, two people households accounted for more than half ( $50.47 \%$ ). For the age of household head, the highest portion was $39.36 \%$ for those aged 65 or higher, followed by $28.06 \%$ for $55-64$ years old and $18.46 \%$ for $45-54$ years old. For education achievement, some high school and graduated high school were $29.19 \%$ and $25.42 \%$ respectively. According to the occupation information, private household workers were the highest at $29.00 \%$. This information can be identified with a unique panel id in household panel data.

Table 2.1 Socio-Economic Characteristics of Household Panel

|  |  | Socio-Economic Characteristics | Frequency | Percent (\%) | Cumulative Freq. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Household | 1 | Less than \$ 9,999 | 31 | 5.84 | 31 |
| Income per year | 2 | \$10,000 to \$11,999 | 9 | 1.69 | 40 |
| (Pre-Tax) | 3 | \$12,000 to \$14,999 | 14 | 2.64 | 54 |
|  | 4 | \$15,000 to \$19,999 | 30 | 5.65 | 84 |
|  | 5 | \$20,000 to \$24,999 | 36 | 6.78 | 120 |
|  | 6 | \$25,000 to \$34,999 | 70 | 13.18 | 190 |
|  | 7 | \$35,000 to \$44,999 | 79 | 14.88 | 269 |
|  | 8 | \$45,000 to \$54,999 | 36 | 6.78 | 305 |
|  | 9 | \$55,000 to \$64,999 | 55 | 10.36 | 360 |
|  | 10 | \$65,000 to \$74,999 | 24 | 4.52 | 384 |
|  | 11 | \$75,000 to \$99,999 | 86 | 16.20 | 470 |
|  | 12 | \$100,000 and greater | 60 | 11.30 | 530 |
|  |  | No information | 1 | 0.19 | 531 |
| Family | 1 | One person | 89 | 16.76 | 89 |
| Size | 2 | Two people | 268 | 50.47 | 357 |
|  | 3 | Three people | 71 | 13.37 | 428 |
|  | 4 | Four people | 58 | 10.92 | 486 |
|  | 5 | Five people | 33 | 6.21 | 519 |
|  | 6 | Six people | 8 | 1.51 | 527 |
|  | 7 | Seven people or more | 4 | 0.75 | 531 |
| Age of | 1 | 18-24 years old | 0 | 0.00 | 0 |
| Household | 2 | 25-34 years old | 23 | 4.33 | 23 |
| Head | 3 | 35-44 years old | 52 | 9.79 | 75 |
|  | 4 | 45-54 years old | 98 | 18.46 | 173 |
|  | 5 | 55-64 years old | 149 | 28.06 | 322 |
|  | 6 | 65 or higher | 209 | 39.36 | 531 |
| Education | 0 | N/A | 1 | 0.19 | 1 |
| Household | 1 | Some grade school or less | 7 | 1.32 | 8 |
| Head | 2 | Completed grade school | 13 | 2.45 | 21 |
|  | 3 | Some high school | 155 | 29.19 | 176 |
|  | 4 | Graduated high school | 135 | 25.42 | 311 |


|  | 5 | Technical school | 114 | 21.47 | 425 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | 6 | Some college | 53 | 9.98 | 478 |
|  | 7 | Graduated from college | 23 | 4.33 | 501 |
|  | 8 | Post graduate work | 4 | 0.75 | 505 |
|  | 99 | No information | 26 | 4.90 | 531 |
| Occupation of | 1 | Professional or technical | 98 | 18.46 | 98 |
| Household | 2 | Manager or administrator | 45 | 8.47 | 143 |
| Head | 3 | Sales | 49 | 9.23 | 192 |
|  | 4 | Clerical | 37 | 6.97 | 229 |
|  | 5 | Craftsman | 4 | 0.75 | 233 |
|  | 6 | Operative (machine operator) | 19 | 3.58 | 252 |
|  | 7 | Laborer | 4 | 0.75 | 256 |
|  | 8 | Cleaning, food, health service worker | 49 | 9.23 | 305 |
|  | 9 | Private household worker | 154 | 29.00 | 459 |
|  | 10 | Retired | 36 | 6.78 | 495 |
|  | 99 | No information | 36 | 6.78 | 531 |
| Total |  |  | 531 | 100.00 |  |

The IRI data provides a data set of product characteristics with the universal product code (UPC). The UPC helps researchers identify the characteristics of each product. In the case of hotdog sausage products, for example, we can tell what brands are, how they are packaged, what kind of meat they use, what their size is. The UPCs were used to match individual product attribute information with hotdog sausage products purchased by household panels. ${ }^{9}$ The IRI data provides eight different attribute groups for hotdog products, including brands, package sizes (oz), product sizes, meat types, flavors, fat contents, package types, and process. For simplicity, this study utilizes six attribute groups of brands, package sizes (oz), product sizes, meat types, flavors, and fat contents.

[^7]The observed panel households sausage purchases indicate that households in Eau Claire, WI, usually bought hotdog sausage products from a major grocery store in 2012. Limiting household choice behavior at a specific store has both pros and cons. One of the advantages of narrowing the scope of the analysis is that researchers are able to more closely look at and scrutinize household buying behavior from a micro-perspective. That is, it can be observed that the household $i$ selected $j$ product among the $J$ available alternatives of hotdog products at store $s$, evaluating attributes of each alternative product. In addition to the analyzing detailed decisionmaking process, the biggest advantage of focusing on one store in performing the empirical analysis is that it allows us to reduce the number of available alternatives $J$. This means analysts control a smaller choice set. If researchers allow the choice of all the households observed at multiple stores, the model should reflect that the products available to decision-makers depend on stores they visited. The research may be able to construct a nested logit model to deal with this issue, but this may extend the complexity of the analysis rather than focusing on our research questions. Hence, this study focuses on purchasing events that happened at a grocery store in Eau Claire, WI, to test whether households use a heuristic approach that ignores attributes when buying hotdog sausages.

### 2.3 Conceptual Framework

### 2.3.1 Multinomial Logit Model (MNL)

To explore shoppers' heuristic choices in purchasing hotdog sausage products, in terms of the ANA concept, this research utilizes latent class frameworks of the discrete choice models. In particular, we employ latent class multinomial logit models (LC-MNLs) and latent class random parameter logit models (LC-RPLs) based on the RUM framework that is often used in the standard ANA literature.

Suppose that consumer $i$ chooses an alternative hotdog item $j$ in choice situation $t$. Under the RUM, agent $i$ 's random utility $U_{i t j}$ obtained by consuming the product $j$ in choice situation $t$ and can be expressed as:

$$
\begin{equation*}
U_{i t j}=V_{i t j}+\varepsilon_{i t j} \tag{1}
\end{equation*}
$$

Where $V_{i t j}$ is a deterministic part and $\varepsilon_{i t j}$ is an unobservable part. We assume that the stochastic component, $\varepsilon_{i t j}$, be identically and independently distributed (IID) with a type I extreme value distribution. This assumption yields the multinomial logit formulation for the probability of decision maker $i$ 's choosing alternative $j$ in choice circumstance $t$ (McFadden 1974; Train 2009; Hensher, Rose and Greene 2015).

$$
\begin{equation*}
P_{i t j}=\frac{\exp \left(V_{i t j}\right)}{\sum_{j \in J} \exp \left(V_{i t j}\right)} \tag{2}
\end{equation*}
$$

In the standard multinomial logit model (MNL), the observed component of the utility involved with alternative $j, V_{i t j}$, is specified as:

$$
\begin{equation*}
V_{i t j}=\beta^{\prime} X_{i t j} \tag{3}
\end{equation*}
$$

Where $X_{i t j}$ is a vector of the K attributes of alternative $j$ in choice situation $t$ faced by agent $i$. And parameter estimates, $\beta$, indicate the marginal utility of attribute $k$ of alternative $j$.

With the above specification for the modeled component in the equation (3), the choice probability yields equation (4) for a single situation and equation (5) for a panel data, respectively.

$$
\begin{align*}
& P_{i t j}=P_{\left(y_{i t j}=j\right)}=\frac{\exp \left(\beta \prime x_{i t j}\right)}{\sum_{j \in J} \exp \left(\beta \prime X_{i t j}\right)}  \tag{4}\\
& P_{i j}=P_{\left(y_{i j}=j\right)}=\prod_{t=1}^{T} \frac{\exp \left(\beta \prime x_{i t j}\right)}{\sum_{j \in J} \exp \left(\beta \prime x_{i t j}\right)} \tag{5}
\end{align*}
$$

Under this MNL framework, parameter estimates, $\beta$, is an invariant across individuals and assume homogeneous preferences.

### 2.3.2 Random Parameters Logit Model (RPL)

In contrast to the MNL, random parameters logit (RPL) models assume that some of the parameters are random and the random parameter distributions are continuous over the samples. This feature accounts for systematical preference heterogeneity across individual agents by decomposing the mean and standard deviation of random parameters (Hensher, Rose and Greene 2015). The RPL also is free of the independence of irrelevant alternatives (IIA) assumption and allows correlation in unobserved factors over time.

The indirect utility function and the random utility function can be summarized as equation (6) and (7), respectively.

$$
\begin{align*}
& V_{i t j}={\beta^{\prime}}_{i} X_{i t j}  \tag{6}\\
& U_{i t j}=\beta^{\prime}{ }_{i} X_{i t j}+\varepsilon_{i t j} \tag{7}
\end{align*}
$$

Where $X_{i t j}$ is a vector of the K attributes of alternative $j$ in choice situation $t$ faced by agent $i$. And $\beta_{i}$, is a vector of parameters of these variables for individual agent $i$ representing the person's preferences. The parameters vary over agents in the population with density, $f(\beta) . \varepsilon_{i t j}$ is the stochastic error term that is assumed to be IID with the type I extreme value.

Under the systematic portion of the utility function in the equation (6), the choice probability takes the logit probability, and this is the same as the equation (4), except $\beta_{i}$. The probability is conditional on $\beta_{i}$ since $\beta_{i}$ is unobservable by analysts (Train 2009).

$$
\begin{equation*}
L_{i t j}\left(\beta_{i}\right)=\frac{\exp \left(\beta_{i}^{\prime} X_{i t j}\right)}{\sum_{j \in J} \exp \left(\beta^{\prime} X_{i t j}\right)} \tag{8}
\end{equation*}
$$

The unconditional choice probability can be obtained by taking integral of the equation (8) over all possible variables of $\beta_{i}$, which is given as equation (9) for a cross-section and equation (10) for a panel data (Train 2009; Hensher, Rose and Greene 2015).

$$
\begin{align*}
& \pi_{i t j}=\int\left[\frac{\exp \left(\beta_{i} x_{i t j}\right)}{\sum_{j \in J} \exp \left(\beta_{i} x_{i t j} x^{\prime}\right.}\right] f\left(\beta_{i}\right) d \beta_{i}  \tag{9}\\
& \pi_{i j}=\int\left[\prod_{t=1}^{T} \frac{\exp \left(\beta^{\prime}{ }_{i} X_{i t j}\right)}{\sum_{j \in J} \exp \left(\beta^{\prime}{ }_{i} X_{i t j}\right)}\right] f\left(\beta_{i}\right) d \beta_{i} \tag{10}
\end{align*}
$$

### 2.3.3 Latent Class Structure

The underlying theory of the latent class model approach posits that individual behavior depends not only on observable attributes but also on latent heterogeneity that varies with factors that are unobserved by analysts. The latent class modeling assumes that the population is comprised of a finite number of groups, $Q$, and each segment is predefined (Hensher, Collins and Greene 2013). The latent class structure can be applied to both the MNL and the RPL. The latent class multinomial logit model (LC-MNL) assumes that decision makers have heterogeneous preferences across classes, but homogeneous preferences within each class as in the conventional MNL (McKendree, Tonsor and Wolf 2018). The LC-MNL is more flexible than the MNL but somewhat less flexible than the RPL, in which the mixing distribution, $f(\beta)$, is discrete in the LC-MNL whereas the MNL has a uniform distribution and the RPL is based on the continuous distributions of parameters across individuals (Greene and Hensher, 2003; Train 2009). The LC-MNL consists of two MNL formation components. The first portion is for the probability of individual choice and the second part is for the prior probability of the class assignment. The choice behavior within the class of $q$ is estimated by a logit model for discrete choice of alternative $j$ among $J$ alternatives, by individual $i$, observed in choice circumstance $t$, (Hensher and Greene 2010).

$$
\begin{equation*}
P_{i t \mid q(j)}=\operatorname{Prob}\left(y_{i t}=j \mid \text { class }=q\right)=\frac{\exp \left(\beta{ }^{\prime}{ }_{q} X_{i t j}\right)}{\sum_{k \in J} \exp \left(\beta^{\prime}{ }_{q} X_{i t j}\right)} \tag{11}
\end{equation*}
$$

For the given class assignment (class $=q$ ), the contribution of individual $i$ to the likelihood is the joint probability of the sequence (Hensher and Greene 2010), given in (12)

$$
\begin{equation*}
P_{i \mid q(j)}=\prod_{t=1}^{T} P_{i t \mid q(j)} \tag{12}
\end{equation*}
$$

The prior probability for class $q$ for individual $i$ also has the MNL form as equation (13).

$$
\begin{equation*}
P_{(\text {class }=q)}=H_{i q}=\frac{\exp \left(\theta^{\prime} z_{i}\right)}{\sum_{q=1}^{Q} \exp \left(\theta^{\prime} Z_{i} z_{i}\right.}, \quad q=1,2, \ldots, Q \text { and } \theta_{Q}=0, \tag{13}
\end{equation*}
$$

Where $Z_{i}$ denotes a set of observable characteristics of individuals that enter the model for class membership. Note that the $\mathrm{Q}^{\text {th }}$ parameter vector, $\theta_{Q}$, is normalized to zero to secure identification of the model (Hensher and Greene 2010).

Ultimately, the likelihood for consumer $i$ is the expectation (over classes) of the classspecific contributions and is described by equation (14) (Hensher and Greene 2010).

$$
\begin{equation*}
P_{i j}=\sum_{q=1}^{Q} H_{i q} P_{i \mid q(j)} \tag{14}
\end{equation*}
$$

This study also tries to jointly address attribute inattention and preference heterogeneity by employing the latent class random parameter logit model (LC-RPL). By allowing for random variation in the parameter estimates for attributes, we consider heterogeneity in preferences (Sandorf, Campbell and Hanley 2017). Accounting for the fact that preferences vary across agents within a latent segment $q, \beta_{i q}$, helps us explore choice heuristics by seeing different segments and on heterogeneous preferences within a specific segment through the continuous mixing distributions, $f(\beta)$.

Like the LC-MNL, the LC-RPL also has two components, the probability of agents' choice and the prior probability of the class assignment. The segment probability that consumer $i$ belongs to class $q$ is the same as equation (13). The conditional probability of consumer $i$ choosing alternative product $j$ out of $J$ alternatives within class $q$ can be described by:

$$
\begin{equation*}
L_{i t \mid q(j)}\left(\beta_{i q}\right)=\operatorname{Prob}\left(y_{i t}=j \mid \text { class }=q\right)=\frac{\exp \left(\beta^{\prime}{ }_{i q} X_{i t j}\right)}{\sum_{j \in J} \exp \left(\beta^{\prime} X_{i q} X_{i t j}\right)} \tag{15}
\end{equation*}
$$

The unconditional choice probability within a class can be obtained by taking integral of the equation (15) over $\beta_{q}$ given as equation (16) for a cross-section and equation (17) for a panel structure (Thiene et al. 2018; Train 2009; Hensher, Rose and Greene 2015).

$$
\begin{align*}
& \pi_{i t \mid q(j)}=\int\left[\frac{\exp \left(\beta^{\prime} X_{i q} X_{i t j}\right)}{\sum_{j \in J} \exp \left(\beta^{\prime} X_{i q} X_{i t j}\right)}\right] f\left(\beta_{i q}\right) d \beta_{i q}  \tag{16}\\
& \pi_{i \mid q(j)}=\int\left[\prod_{t=1}^{T} \frac{\exp \left(\beta^{\prime}{ }_{i q} X_{i t j}\right)}{\sum_{j \in J} \exp \left(\beta^{\prime}{ }_{i q} X_{i t j}\right)}\right] f\left(\beta_{i q}\right) d \beta_{i q} \tag{17}
\end{align*}
$$

Finally, the likelihood for consumer $i$ is the expectation (over classes) of the class-specific contributions and is expressed as:

$$
\begin{equation*}
\pi_{i j}=\sum_{q=1}^{Q} H_{i q} \pi_{i \mid q(j)} \tag{18}
\end{equation*}
$$

### 2.4 Empirical Application

We begin with a simple MNL for homogeneous attribute processing and move to LC-MNL models to investigate consumers' heuristic decision-making process when buying frankfurter products. A RPL and LC-RPL models are also employed to reflect preference heterogeneity within a class. This study further examines if the LC-RPL models provide a better fit than the LC-MNL models. As a base model for embedding choice heuristics into the discrete choice model, the LC-DCMs (LC-MNL and LC-RPL) start with the two segments for the most extreme type of two attribute processing rules: total attribute preservation and total attribute non-attendance. The LC-DCM then is extended by adopting choice heuristics of attribute non-attendance cases where may occur between the two extreme modes of attribute processing protocols. Using the revealed preference data from the IRI marketing data sets the present study estimates the MNL and the RPL models for the full attribute attendance as the base models, and adopts the LC-MNL and the LC-RPL models for multiple attribute processing rules.

### 2.4.1 Attributes and Choice set

This study examines attribute inattention decision making strategies, focusing on consumer choices of hotdog sausage products at one of the food stores in Eau Clare, WI, in 2012. We do not know exactly what store was selected because the IRI data did not provide specific store information such as store names and addresses. There are seven grocery stores and three drug stores where panel household visited for hotdog sausage products in Eau Clare, WI. A grocery store with the highest number of hotdog sausage purchases in Eau Claire, WI, from 2008 to 2012 was chosen as the target store for this study.

Table 2.2 Attributes and their levels used

| Attribute group | Level | Description |
| :--- | :--- | :--- |
| Price | 28 different prices between $\$ 1.37$ and $\$ 10.49$ | - Average price for each alternative item in 2012 |
| Brand | Oscar Mayer | - Oscar Mayer and Oscar Mayer Selects |
| (vs. Other) | Ball Park | - Ball Park |
|  | Other | - Other brands except Oscar Mayer and Ball Park |
| Package size | Small | - Less than 16 oz |
| (vs. Small) | Medium | - 16 oz $\leq$ Size $<24$ oz |
|  | Large | - 24 oz and larger |
| Product size | Jumbo | - Jumbo size |
| (vs. Other) | Other | - Other product sizes |
| Meat type | Beef (only beef) | - Beef and Angus Beef |
| (vs. Other) | Other | - Pork, Turkey, Chicken, Mixed meats, and so on. |
| Flavor | Regular | - Regular, Classic, Original, and Old Fashioned |
| (vs. Other) | Other | - Smoked, Cheese, Jalapeno, Cheddar, and so on. |
| Fat Contents | Low fat | - Low fat, Extra lean, Fat free |
| (vs. Regular) | Regular | - Original, No information about fat contents |

Revealed preference data do not have information about unpurchased items but only contain records about chosen products. Thus, we are not able to figure out the real choice sets consumers faced. To address this issue, we built a choice set of products bought by panel households more than once in 2012. A total of 166 unique hotdog sausage products were sold in Eau Claire, WI in 2012. For attributes of hotdog sausage products, we consider six attribute groups of product characteristics provided by the IRI scanner data sets. This includes the brands, package sizes (oz), product sizes, meat types, flavors, and fat contents. For simplicity, recategorizing each attribute within attribute groups and regenerating products based on combinations of attributes produces a total of 28 unique hotdog sausage products at the selected grocery (see Table 2.2). ${ }^{10}$

[^8]Table 2.3 Descriptive Statistics of the IRI Data Used for Discrete Choice Models

| Variable | Description | Num of Samples | Mean | Std. Dev. | Minimum | Maximum |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| panel_id | Id of household panel | 37,744 | 3,305,744.00 | 218,073.00 | 3,100,529.00 | 3,842,948.00 |
| t | $t^{\text {th }}$ purchase event | 37,744 | 2.86 | 2.62 | 1.00 | 18.00 |
| nt | Purchase Occasion | 37,744 | 4.73 | 3.91 | 1.00 | 18.00 |
| inchh | Household income | 37,660 | 7.92 | 3.16 | 1.00 | 12.00 |
| fam_size | Family size | 37,744 | 2.54 | 1.22 | 1.00 | 7.00 |
| hh_age | Age of Household head | 37,744 | 4.77 | 1.24 | 2.00 | 6.00 |
| hh_edu | Education level of Household head | 37,744 | 10.96 | 24.41 | 0.00 | 99.00 |
| hh_occ | Occupation of Household head | 37,744 | 13.43 | 26.09 | 1.00 | 99.00 |
| choice | Choice or not | 37,744 | 0.04 | 0.19 | 0.00 | 1.00 |
| hotdog | Alternatives | 37,744 | 14.50 | 8.08 | 1.00 | 28.00 |
| price | Prices | 37,744 | 4.02 | 1.92 | 1.37 | 10.49 |
| brand1 | Oscar Mayer | 37,744 | 0.43 | 0.50 | 0.00 | 1.00 |
| brand2 | Ball Park | 37,744 | 0.18 | 0.38 | 0.00 | 1.00 |
| brand3 | Other | 37,744 | 0.39 | 0.49 | 0.00 | 1.00 |
| oz1 | Small package | 37,744 | 0.36 | 0.48 | 0.00 | 1.00 |
| oz2 | Medium package | 37,744 | 0.50 | 0.50 | 0.00 | 1.00 |
| oz3 | Large package | 37,744 | 0.14 | 0.34 | 0.00 | 1.00 |
| size1 | Other size product | 37,744 | 0.89 | 0.31 | 0.00 | 1.00 |
| size2 | Jumbo size product | 37,744 | 0.11 | 0.31 | 0.00 | 1.00 |
| meat1 | Other | 37,744 | 0.57 | 0.49 | 0.00 | 1.00 |
| meat2 | Beef | 37,744 | 0.43 | 0.49 | 0.00 | 1.00 |
| flavor 1 | Other | 37,744 | 0.14 | 0.35 | 0.00 | 1.00 |
| flavor2 | Regular | 37,744 | 0.86 | 0.35 | 0.00 | 1.00 |
| fat 1 | Regular | 37,744 | 0.71 | 0.45 | 0.00 | 1.00 |
| fat2 | Low fat | 37,744 | 0.29 | 0.45 | 0.00 | 1.00 |

We assume that 28 alternatives are always available for all consumers and that there is no entry of a new product and no exit of an existing product. Thus, the number of alternative products is 28 in our analysis, indicating that individual $i$ choose a hotdog product among 28 alternatives in our econometric models. In addition to product attributes, price is also an important factor influencing consumer choice. The amount paid by consumers depends on hotdog products. Furthermore, even if consumers purchase the same hotdog product, the amount
paid may vary depending on when the purchase was made or whether a coupon is applied. Since the price of respective hotdog sausage product is not constant for one year, we take the average of the prices of each alternative sold in 2012 and set them as the price of each alternative.

### 2.4.2 Decision Making Rules

This study attempts to investigate four representative choice heuristics as decision making processes. The first decision making strategy is full attribute attendance (FAA), which is for total attribute attendance. The decision-making principle of the FAA correspondent to the standard assumption of discrete choice analysis that agents evaluate all attributes of alternative products and choose one. For the FAA, the systematical component of the utility function is specified as:

$$
\begin{equation*}
V_{i t j}=P^{\prime}{ }_{t j} \alpha+\sum_{c \in C} X^{\prime}{ }_{t j c} \beta_{c} \tag{19}
\end{equation*}
$$

The second decision making rule is to only consider the price of products. We call this rule as price attendance (PA) in this study. The PA principle indicates that agents assess only the price of alternative products and ignore other attributes. For the PA, the systematical part of the utility function is specified as:

$$
\begin{equation*}
V_{i t j}=P_{t j}^{\prime} \alpha \tag{20}
\end{equation*}
$$

The third rule we consider here is price attribute non-attendance (PANA), which is the opposite of the second one. The principle of PANA assumes that all attributes of alternative products are evaluated by agents, except the price. For the PA, the indirect utility function is specified as:

$$
\begin{equation*}
V_{i t j}=\sum_{c \in C} X_{t j c}^{\prime} \beta_{c} \tag{21}
\end{equation*}
$$

The last decision-making protocol examined in this study is a purely random (PR) choice, which assumes that decision makers do not account for any attribute of alternatives and randomly select one among alternatives. The PR is known as total attribute non-attendance because it is opposite to the total attendance. The modeled component and the utility function are specified as the following, respectively.

$$
\begin{align*}
& V_{i t j}=0  \tag{22}\\
& U_{i t j}=V_{i t j}+\varepsilon_{i t j} \tag{23}
\end{align*}
$$

In addition to the above four decision rules, there could be a lot of additional possible combinations of attributes for decision rules. For example, when decision making is made based on six attribute groups ( c is 1 to 6 ) along with the price of the product, a decision rule that considers five attribute groups but does not consider one attribute group may be considered. Alternatively, another decision rule may be that the three attribute groups enter the decision criteria, but the other three attribute groups may be ignored. However, this study examines only the four representative rules. Given our number of 531 sample households, if it considers many multiple classes for various heuristics, each class might become too thin and lead to impractical estimation of the models. For instance, we tried to put nine different decision rules in our discrete choice model and the estimation results were not good due to the small sample for some specific choice heuristic
decision rules. ${ }^{11}$ For this reason, four representative decision-making rules that include the FAA and three choice heuristics were examined in this study.

### 2.4.3 Model Specifications

Model 1 is our base model for the choice of agents who take into account all attributes following the traditional assumption. The systematical part of the random utility is specified as the equation (19). To do this we estimate the choice probability of model 1 and leave it to compare with other choice strategies.

Model 2 is a simple extension of the model 1, which allow heterogeneous preferences of agents across segments using discrete distributions of parameters. Similar to the model 1, the systematical component of the model 2 is the same as the equation (19). However, the model 2 is based on the two-segment latent class structure, so that the marginal utility of the consumer for each attribute varies by segment. The indirect utility of decision maker $i$ 's choosing alternative $j$ can be described as:

$$
V_{i t j}= \begin{cases}P_{t j}^{\prime} \alpha_{1}+\sum_{c \in C} X_{t j c}^{\prime} \beta_{c 1} & \text { if } q=1  \tag{24}\\ P_{t j}^{\prime} \alpha_{2}+\sum_{c \epsilon C} X_{t j c}^{\prime} \beta_{c 2} & \text { if } q=2\end{cases}
$$

Model 3, 4, and 5 try to explore, the PR, the PA, and the PANA, respectively, based on the two-segment latent class structure of LC-MNL and LC-RPL. These models compare choice

[^9]heuristic and the FAA strategy. The model 3 investigates the FAA and the PR and the indirect utility function is determined by:
\[

V_{i t j}= $$
\begin{cases}P^{\prime}{ }_{t j} \alpha_{1}+\sum_{c \in C} X^{\prime}{ }_{t j c} \beta_{c 1} & \text { if } q=1  \tag{25}\\ 0 & \text { if } q=2\end{cases}
$$
\]

In the equation (25), the probability that decision maker $i$ buy alternative $j$ at choice situation $t$ is $\frac{1}{J}$ because of all coefficients of zero (i.e., $\alpha_{2}=\beta_{1, k}=0$ ).

The model 4 is for the FAA and the PA and the indirect utility is given as equation (26).

$$
V_{i t j}= \begin{cases}P^{\prime}{ }_{t j} \alpha_{1}+\sum_{c \in C} X^{\prime}{ }_{t j c} \beta_{c 1} & \text { if } q=1  \tag{26}\\ P_{t j}^{\prime} \alpha_{2} & \text { if } q=2\end{cases}
$$

The model 5 investigates the FAA and the PANA and the indirect utility function is specified as equation (27).

$$
V_{i t j}= \begin{cases}P^{\prime}{ }_{t j} \alpha_{1}+\sum_{c \in C} X^{\prime}{ }_{t j c} \beta_{c 1} & \text { if } q=1  \tag{27}\\ \sum_{c \in C} X^{\prime}{ }_{t j c} \beta_{c 2} & \text { if } q=2\end{cases}
$$

Model 6 investigates three different choice strategies, the FAA, the PA, and the PR, by employing three-segments model of LC-MNL and LC-RPL. The indirect utility is specified as:

$$
V_{i t j}= \begin{cases}P^{\prime}{ }_{t j} \alpha_{1}+\sum_{c \in C} X^{\prime}{ }_{t j c} \beta_{c 1} & \text { if } q=1  \tag{28}\\ P^{\prime}{ }_{t j} \alpha_{2} & \text { if } q=2 \\ 0 & \text { if } q=3\end{cases}
$$

Model 7 explores four different decision principles, the FAA, the PANA, the PA, and the PR, through four-segments discrete choice models. The indirect utility can be described as below:

$$
V_{i t j}= \begin{cases}P^{\prime}{ }_{t j} \alpha_{1}+\sum_{c \in C} X^{\prime}{ }_{t j c} \beta_{c 1} & \text { if } q=1  \tag{29}\\ \sum_{c \in C} X^{\prime}{ }_{t j c} \beta_{c 1} & \text { if } q=2 \\ {P^{\prime}}^{t j} \alpha_{3} & \text { if } q=3 \\ 0 & \text { if } q=4\end{cases}
$$

### 2.4.4 Likelihood Ratio Tests

The likelihood ratio tests (LR tests) for each model were carried out to ensure if it is valid to adopt the LC-RPL to reflect heterogeneous preference for each model. Our null hypothesis is that the standard deviation is zero, which implies that preference heterogeneity is not well represented by the LC-RPL as the standard deviations are not significantly different from zero.

$$
H_{0}: S t d . \operatorname{Dev}=0 \quad \text { vs. } \quad H_{1}: S t d . D e v \neq 0
$$

If we reject the null hypothesis, the LC-RPL relaxes the assumption of homogeneous preference within the same attribute processing rule and enables more flexible analysis. On the other hand, if we fail to reject the null hypothesis, the LC-RPL is not significantly different from the LC-MNL. That is, the LC-RPL is not superior to the LC-MNL.

### 2.5 Results

Our estimation results are shown in Table 2.4, 2.5, 2.6, and 2.7. NLOGIT 7.0 version was used for estimations of all models in our paper. Table 2.4 and 2.5 report the results by the MNL and LC-MNL, for homogeneous preference within a certain attribute processing rule. Table 2.6 and 2.7 show the results based on the RPL-based models, which assume heterogeneous preference within a certain attribute processing rule.

### 2.5.1 Estimation Results

For the model 1, the MNL and the RPL outcomes show that a negative marginal utility of the price variable, -0.182 and -0.415 , respectively, which correspond to the basic demand theory as expected. The coefficient estimates for other attributes of hotdog sausage products have the same sign in both the MNL and the RPL, and they are statistically significant. The consumers are likely to get disutility from the brands of Oscar Mayer and Ball Park, Jumbo size, the meat type of only beef, and low-fat contents, compared to the opposite characteristics of hotdog products. On the other hand, medium and large products are likely to have a positive marginal utility, compared to small packages (under 16 oz ). In addition, regular flavor hotdog sausage products showed a relatively positive marginal utility over other flavored products such as cheese, smoked, or jalapeno.

Model 2 is a simple extensive version of the model 1 by introducing the latent class structure. It allows heterogeneous preferences of agents across segments using discrete distributions of parameters. Heterogeneous preferences are differently reflected depending on segments of LC-MNL. On the other hand, in the two-segment model of LC-RPL, they are differently expressed depending on segments as well as have variations within the segment. The

LC-MNL estimation result of the model 2 shows the probabilities of the first and second segments are $71.0 \%$ and $29.0 \%$, respectively. In the model 2 , consumers who are likely to belong to the first class have the same sign as the result of the model 1, except the attributes of Oscar Mayer. The price coefficient estimate is -0.566 . The positive contributors to the utility are Oscar Mayer, medium and large size packages, and regular flavor. But Jumbo size, only beef, and low-fat attributes may reduce consumers' utility. In the second segment, the coefficient estimate of the price is +0.164 , implying that higher price contributes to the consumers' utility. Consumers who are likely to fit the second segment may believe that the hotdogs with higher prices have better quality than lower priced items. They are likely to have a positive marginal utility of large packaged products and a negative marginal utility of regular flavored products.

In the LC-RPL estimation outcome of the model 2 the probabilities of segments 1 and 2 are $52.8 \%$ and $47.2 \%$, respectively. The probability of the class 1 is smaller than the LC-MNL result. In the model 2, consumers who are likely to belong to the first segment have the same sign as the result of the model 1, except the attributes of Oscar Mayer. ${ }^{12}$ The price coefficient estimate is -0.798 . Attributes of Oscar Mayer and regular flavor are likely to positively impact on consumers' utility, whereas Ball Park, jumbo size, only beef, and low-fat attributes may reduce the utility. For the second segment, the coefficient estimate of the price is +0.174 . For consumers who are likely to be in the second segment, medium and large packaged products are likely to increase consumers' utility but brands of Oscar Mayer and Ball Park, jumbo size, regular flavored, and low-fat products may decrease the utility.

[^10]Table 2.4 Estimation Results by LC-MNL models

| Attribute | Model 1 | Model 2 |  | Model 3 |  | Model 4 |  | Model 5 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | - | class 1 | class 2 | class 1 | class 2 | $\text { class } 1$ | class 2 | class 1 | class 2 |
|  | FAA | FAA | FAA | FAA | PR | FAA | PA | FAA | PANA |
|  | $\begin{gathered} \text { Coefficient } \\ \text { (S.E) } \end{gathered}$ | $\begin{aligned} & \text { Coefficient } \\ & \text { (S.E) } \end{aligned}$ | $\begin{aligned} & \text { Coefficient } \\ & \text { (S.E) } \end{aligned}$ | $\begin{aligned} & \text { Coefficient } \\ & \text { (S.E) } \end{aligned}$ | $\begin{gathered} \text { Coefficient } \\ \text { (S.E) } \end{gathered}$ | $\begin{aligned} & \text { Coefficient } \\ & (\text { S.E }) \end{aligned}$ | $\begin{aligned} & \text { Coefficient } \\ & \text { (S.E) } \end{aligned}$ | $\begin{gathered} \text { Coefficient } \\ \text { (S.E) } \\ \hline \end{gathered}$ | $\begin{gathered} \text { Coefficient } \\ \text { (S.E) } \end{gathered}$ |
| Price | -0.182 *** | -0.566 *** | 0.164 * | -0.265 *** | - | -0.050 | -1.305 *** | -0.563 *** | - |
|  | (0.041) | (0.075) | (0.089) | (0.096) | - | (0.045) | (0.092) | (0.077) | - |
| Brand (vs. Other) |  |  |  |  |  |  |  |  |  |
| Oscar Mayer | -0.283 *** | 0.603 *** | -3.621*** | $-0.316^{* *}$ | - | -0.486 *** | - | $0.639^{* * *}$ | $-3.657^{* * *}$ |
|  | (0.068) | (0.094) | (0.372) | (0.137) | - | (0.091) | - | (0.101) | (0.380) |
| Ball Park | -0.920 *** | -0.830 | -0.002 | $-1.156^{* * *}$ | - | -1.091 *** | - | $-1.199^{* * *}$ | 0.343 |
|  | (0.096) | (0.167) | (0.267) | (0.162) | - | (0.139) | - | (0.179) | (0.238) |
| Package size (vs. Small, under 16 oz ) |  |  |  |  |  |  |  |  |  |
| Medium | $0.990^{* * *}$ | $0.507^{* * *}$ | 2.651 | $0.724^{* * *}$ | - | $1.623^{* * *}$ | - | $0.490^{* * *}$ | $2.267^{* * *}$ |
| (B/w 16 and < 24 oz ) | (0.081) | (0.099) | (0.415) | (0.134) | - | (0.149) | - | (0.105) | (0.318) |
| Large | 0.688 *** | 0.687 ** | $2.788^{* * *}$ | 0.903 * | - | 1.053 *** | - | 0.642 * | $2.995^{* * *}$ |
| (Larger than 24 oz ) | (0.204) | (0.341) | (0.483) | (0.546) | - | (0.249) | - | (0.345) | (0.382) |
| Product size (vs. Other) |  |  |  |  |  |  |  |  |  |
| Jumbo | -0.488 *** | -0.534 *** | 0.220 | -0.390 ** | - | $-1.144^{* * *}$ | - | -0.519 *** | -0.078 |
|  | (0.098) | (0.122) | (0.380) | (0.186) | - | (0.192) | - | (0.124) | (0.312) |
| Meat type (vs. Other) |  |  |  |  |  |  |  |  |  |
| Beef | -0.598 *** | -0.168 | 0.004 | $-1.873^{* * *}$ | - | -0.293 *** | - | -0.120 | -0.191 |
| (only beef) | (0.092) | (0.159) | (0.171) | (0.355) | - | (0.100) | - | (0.162) | (0.142) |
| Flavor (vs. Other) |  |  |  |  |  |  |  |  |  |
| Regular | $0.508^{* * *}$ | $1.455^{* * *}$ | -1.516*** | 0.029 | - | 0.262 ** | - | 1.498 *** | -1.610 *** |
| (Regular, Class, Orinial, Old Fashioned) | (0.099) | (0.171) | (0.214) | (0.201) | - | (0.113) | - | (0.175) | (0.235) |
| Fat Contents (vs. Regular) |  |  |  |  |  |  |  |  |  |
| Low fat | $-0.948 * * *$ | $-1.049^{* * *}$ | 0.162 | -1.732 *** | - | -1.221 *** | - | -1.090 *** | 0.310 |
|  | (0.085) | (0.094) | (0.529) | (0.174) | - | (0.144) | - | (0.096) | (0.390) |
| Prob(Class) | - | 0.710 *** | $0.290^{* * *}$ | $0.671^{* * *}$ | 0.329 *** | 0.662 *** | 0.338 *** | 0.678 *** | 0.322 *** |
|  |  | (0.028) | (0.028) | (0.043) | (0.043) | (0.033) | (0.033) | (0.027) | (0.027) |
| Log likelihood function | -4,102.795 |  | -3,771.704 |  | -4,061.829 |  | -3,968.360 |  | -3,771.126 |
| Restricted Log likelihood function |  |  | -4,491.812 |  | -4,491.812 |  | -4,491.812 |  | -4,491.812 |
| Inf.Cr.AIC 8,223.6 |  |  | 7,581.4 |  | 8,143.7 |  | 7,958.7 |  | 7,578.3 |
| AIC/N 6.101 |  |  | 5.624 |  | 6.041 |  | 5.904 |  | 5.622 |
| Number of obs. | 1,348 |  | 1,348 |  | 1,348 |  | 1,348 |  | 1,348 |

Note: FAA, PA, PANA, and PR indicate full attribute attendance, only price attendance, price non-attendance, and pure random choice, respectively. Single, double, and triple asterisks ( $*,{ }^{* *},{ }^{* * *}$ ) denote significance at the $10 \%, 5 \%$, and $1 \%$ level, respectively. The Standard errors are presented in parentheses.
Hyphens (-) indicate 0 , which was restricted by the definition of each choice rule.

Table 2.5 Estimation Results by LC-MNL models (Continues)

| Attribute | Model 6 <br> class 1 <br> FAA <br> Coefficient (S.E) | class 2 <br> PA <br> Coefficient (S.E) | class 3 PR Coefficient (S.E) | Model 7 <br> class 1 <br> FAA <br> Coefficient (S.E) | class 2 <br> PANA <br> Coefficient (S.E) | class 3 <br> PA <br> Coefficient (S.E) | class 4 <br> PR <br> Coefficient (S.E) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Price | $\begin{aligned} & -0.196^{* * *} \\ & (0.061) \end{aligned}$ | $\begin{aligned} & -1.341 \text { *** } \\ & (0.092) \end{aligned}$ |  | $\begin{aligned} & -0.813 \text { *** } \\ & (0.202) \end{aligned}$ |  | $\begin{aligned} & \hline-1.390 \\ & (0.121) \end{aligned}$ |  |
| Brand (vs. Other) <br> Oscar Mayer <br> Ball Park | $\begin{aligned} & -0.657 * * * \\ & (0.117) \\ & -1.706 * * * \\ & (0.256) \end{aligned}$ |  |  | $\begin{gathered} 2.263 \text { *** } \\ (0.292) \\ -0.746 \\ (0.553) \end{gathered}$ | $\begin{aligned} & -2.780 * * * \\ & (0.293) \\ & -0.415 * * \\ & (0.192) \end{aligned}$ |  |  |
| Package size (vs. Small, under 16 oz ) <br> Medium <br> (B/w 16 and $<24 \mathrm{oz}$ ) <br> Large <br> (Larger than 24 oz ) | $\begin{aligned} & 1.984^{* * *} \\ & (0.257) \\ & 2.078^{* * *} \\ & (0.367) \end{aligned}$ |  |  | $\begin{aligned} & 1.698 * * * \\ & (0.254) \\ & 3.083 \text { *** } \\ & (0.871) \end{aligned}$ | $\begin{aligned} & 2.562 * * * \\ & (0.545) \\ & 2.726^{* * *} \\ & (0.581) \end{aligned}$ |  |  |
| Product Size (vs. Other) <br> Jumbo | $\begin{aligned} & -1.799 \text { *** } \\ & (0.345) \end{aligned}$ |  |  | $\begin{aligned} & -1.004 \text { *** } \\ & (0.298) \end{aligned}$ | $\begin{aligned} & -0.680 \text { ** } \\ & (0.270) \end{aligned}$ |  |  |
| Meat type (vs. Other) | $\begin{aligned} & -0.465 \text { *** } \\ & (0.118) \end{aligned}$ |  |  | $\begin{aligned} & 1.113 \text { *** } \\ & (0.401) \end{aligned}$ | $\begin{aligned} & -0.271 \text { ** } \\ & (0.134) \end{aligned}$ |  |  |
| Flavor (vs. Other) <br> Regular (Regular, Class, Orinial, Old Fashioned) | $\begin{array}{r} -0.062 \\ (0.149) \end{array}$ |  |  | $\begin{array}{r} 3.738 \\ (0.913) \end{array}$ | $\begin{aligned} & -1.026^{* * *} \\ & (0.167) \end{aligned}$ |  |  |
| Fat Contents (vs. Regular) <br> Low fat | $\begin{aligned} & -2.714 * * * \\ & (0.482) \\ & \hline \end{aligned}$ |  |  | $\begin{aligned} & -0.908 \text { *** } \\ & (0.159) \\ & \hline \end{aligned}$ | $\begin{aligned} & -0.990 * * \\ & (0.475) \\ & \hline \end{aligned}$ |  |  |
| Prob(Class) | $\begin{aligned} & 0.508^{* * *} \\ & (0.038) \\ & \hline \end{aligned}$ | $\begin{aligned} & 0.334 \text { *** } \\ & (0.032) \\ & \hline \end{aligned}$ | $\begin{aligned} & 0.158 * * * \\ & (0.032) \\ & \hline \end{aligned}$ | $\begin{aligned} & 0.288^{* * *} \\ & (0.029) \\ & \hline \end{aligned}$ | $\begin{aligned} & 0.341 \text { *** } \\ & (0.029) \\ & \hline \end{aligned}$ | $\begin{aligned} & 0.270 \text { *** } \\ & (0.030) \\ & \hline \end{aligned}$ | $\begin{aligned} & 0.101 \text { *** } \\ & (0.029) \\ & \hline \end{aligned}$ |
| Log likelihood function <br> Restricted Log likelihood function <br> Inf.Cr.AIC <br> AIC/N <br> Number of obs. |  |  | $\begin{array}{r} \hline-3,929.742 \\ -4,491.812 \\ 7,883.5 \\ 5.848 \\ 1,348 \\ \hline \end{array}$ |  |  |  | $\begin{array}{r} \hline-3,669.666 \\ -4,491.812 \\ 7,381.3 \\ 5.476 \\ 1,348 \\ \hline \end{array}$ |

Note: FAA, PA, PANA, and PR indicate full attribute attendance, only price attendance, price non-attendance, and pure random choice, respectively. Single, double, and triple asterisks ( ${ }^{*}$, ${ }^{* *},{ }^{* * *}$ ) denote significance at the $10 \%, 5 \%$, and $1 \%$ level, respectively. The Standard errors are presented in parentheses. Hyphens ( - ) indicate 0 , which was restricted by the definition of each choice rule.

In the estimation results from the model 1 and 2 , we examined how consumer preferences change as they reflect preference heterogeneity. This paper does not consider heterogeneity in attribute processing rules in the model 1 and 2 . To explore choice heuristics, we now analyze the estimation results of models that accommodate heterogeneity in decision rules.

Model 3 is for adding the PR as a decision-making rule. The class 1 is for the FAA and the class 2 is for the PR. Given the definition of the PR, all parameters of attributes were restricted to zero within the second segment. The coefficients in the first segment were estimated by the LCMNL and the LC-RPL. The LC-MNL result of the model 3 reports the portions of the first and second classes are $67.1 \%$ and $32.9 \%$, respectively. In the first class for the FAA, all the coefficient estimates of attributes are the same sign as the model 1 . The coefficient of the price is -0.265 . In the LC-RPL estimation outcome of the model 3, the probabilities of the first and second classes are $63.8 \%$ and $36.2 \%$, respectively. Similar to the LC-MNL result, the LC-RPL result of the model 3 shows that the mean value of coefficient estimate of each attribute in the class for the FAA are the same sign in the model 1 excluding large package.

Model 4 is for examining the PA decision rule. The class 1 is for the FAA and the class 2 is for the PA. Following the definition of the PA, the price coefficient within the class 2 was freely estimated while other coefficients were restricted to zero. The LC-MNL result of the model 4 reports the probabilities of the first and second classes are $66.2 \%$ and $33.8 \%$, respectively. In the first class for the FAA, all the coefficient estimates of attributes are the same sign as the model 1. The coefficient of the price is -0.050 , which is insignificant. In the LC-RPL estimation outcome of the model 4 , the portions of the first and second classes are $66.7 \%$ and $33.3 \%$, respectively. The LC-RPL result for the model 3 reports the same sign of attribute coefficients within the class for the FAA as the model 1, similar to the LC-MNL outcome.

Table 2.6 Estimation Results by LC-RPL models

| Attribute | Model 1 <br> FAA Coefficient (S.E) | Model 2 <br> class 1 <br> FAA <br> Coefficient (S.E) | class 2 <br> FAA <br> Coefficient (S.E) | Model 3 class 1 FAA Coefficient (S.E) | $\begin{gathered} \text { class } 2 \\ \text { PR } \\ \text { Coefficient } \\ \text { (S.E) } \\ \hline \end{gathered}$ | Model 4 <br> class 1 <br> FAA <br> Coefficient (S.E) | class 2 <br> PA <br> Coefficient (S.E) | Model 5 <br> class 1 <br> FAA <br> Coefficient (S.E) | class 2 <br> PANA <br> Coefficient (S.E) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Random Parameters <br> Price | $\begin{aligned} & -0.415 \text { *** } \\ & (0.056) \end{aligned}$ | $\begin{aligned} & -0.798 \text { *** } \\ & (0.128) \end{aligned}$ | $\begin{aligned} & 0.174 \text { *** } \\ & (0.056) \end{aligned}$ | $\begin{array}{r} -0.111 \\ (0.111) \end{array}$ |  | $\begin{array}{r} -0.058 \\ (0.045) \end{array}$ | $\begin{aligned} & -1.331 \text { *** } \\ & (0.094) \end{aligned}$ | $\begin{aligned} & -0.684 \text { *** } \\ & (0.123) \end{aligned}$ |  |
| Brand (vs. Other) <br> Oscar Mayer <br> Ball Park | $\begin{aligned} & -0.802 * * * \\ & (0.162) \\ & -1.313 * * * \\ & (0.177) \end{aligned}$ | $\begin{aligned} & 1.044 * * * \\ & (0.113) \\ & -0.548 * * * \\ & (0.150) \end{aligned}$ | $\begin{aligned} & -1.278 * * * \\ & (0.092) \\ & -1.0111^{* * *} \\ & (0.095) \end{aligned}$ | $\begin{aligned} & -0.104 \\ & (0.153) \\ & -1.191 * * * \\ & (0.170) \end{aligned}$ |  | $\begin{aligned} & -0.503 * * * \\ & (0.091) \\ & -1.064 * * * \\ & (0.138) \end{aligned}$ |  | $\begin{aligned} & 1.197 * * * \\ & (0.111) \\ & -0.581 \text { *** } \\ & (0.157) \end{aligned}$ | $\begin{aligned} & -1.644 \text { *** } \\ & (0.140) \\ & -0.948 * * * \\ & (0.100) \end{aligned}$ |
| Package size (vs. Small, under 16 oz ) <br> Medium <br> (B/w 16 and $<24 \mathrm{oz}$ ) <br> Large <br> (Larger than 24 oz ) | $\begin{gathered} 1.391 \text { *** } \\ (0.136) \\ 0.598 \\ (0.379) \end{gathered}$ | $\begin{array}{r} -0.138 \\ (0.122) \\ 0.835 \\ (0.529) \end{array}$ | $\begin{aligned} & 1.865 \text { *** } \\ & (0.156) \\ & 0.719 \text { *** } \\ & (0.254) \end{aligned}$ | $\begin{gathered} 0.587 \text { *** } \\ (0.146) \\ -0.032 \\ (0.666) \end{gathered}$ |  | $\begin{aligned} & 1.657 \text { *** } \\ & (0.152) \\ & 1.151 \text { *** } \\ & (0.248) \end{aligned}$ |  | $\begin{array}{r} -0.066 \\ (0.115) \\ 0.753 \\ (0.514) \end{array}$ | $\begin{aligned} & 1.906 \text { *** } \\ & (0.155) \\ & 1.578 * * * \\ & (0.171) \end{aligned}$ |
| Product Size (vs. Other) <br> Jumbo | $\begin{aligned} & -0.924 \text { *** } \\ & (0.161) \end{aligned}$ | $\begin{aligned} & -0.392 \text { *** } \\ & (0.137) \end{aligned}$ | $\begin{aligned} & -0.785 \text { *** } \\ & (0.242) \end{aligned}$ | $\begin{gathered} -0.188 \\ (0.209) \end{gathered}$ |  | $\begin{aligned} & -1.073 \text { *** } \\ & (0.186) \end{aligned}$ |  | $\begin{aligned} & -0.408 \text { *** } \\ & (0.134) \end{aligned}$ | $\begin{aligned} & -0.823 \text { *** } \\ & (0.216) \end{aligned}$ |
| Meat type (vs. Other) <br> Beef (only beef) | $\begin{aligned} & -1.286^{* * *} \\ & (0.212) \end{aligned}$ | $\begin{aligned} & -0.878 \text { *** } \\ & (0.258) \end{aligned}$ | $\begin{array}{r} -0.048 \\ (0.102) \end{array}$ | $\begin{aligned} & -2.292 \text { *** } \\ & (0.480) \end{aligned}$ |  | $\begin{aligned} & -0.279 \text { *** } \\ & (0.099) \end{aligned}$ |  | $\begin{aligned} & -0.622 \text { *** } \\ & (0.238) \end{aligned}$ | $\begin{array}{r} -0.108 \\ (0.084) \end{array}$ |
| Flavor (vs. Other) <br> Regular (Regular, Class, Orinial, Old Fashioned) | $\begin{aligned} & 1.662 \text { *** } \\ & (0.271) \end{aligned}$ | $\begin{aligned} & 1.532 \text { *** } \\ & (0.393) \end{aligned}$ | $\begin{aligned} & -0.219 * \\ & (0.118) \end{aligned}$ | $\begin{array}{r} 0.317 \\ (0.223) \end{array}$ |  | $\begin{gathered} 0.213 \text { * } \\ (0.113) \end{gathered}$ |  | $\begin{gathered} 1.584^{* * *} \\ (0.331) \end{gathered}$ | $\begin{aligned} & -0.542 \text { *** } \\ & (0.096) \end{aligned}$ |
| Fat Contents (vs. Regular) Low fat | $\begin{aligned} & -1.090^{* * *} \\ & (0.108) \\ & \hline \end{aligned}$ | $\begin{aligned} & -1.159 \text { *** } \\ & (0.087) \\ & \hline \end{aligned}$ | $\begin{aligned} & -0.710 \text { *** } \\ & (0.133) \end{aligned}$ | $\begin{aligned} & -1.814^{* * *} \\ & (0.178) \\ & \hline \end{aligned}$ |  | $\begin{aligned} & -1.206 \text { *** } \\ & (0.144) \\ & \hline \end{aligned}$ |  | $\begin{aligned} & -1.230^{* * *} \\ & (0.086) \\ & \hline \end{aligned}$ | $\begin{aligned} & -0.297 * * \\ & (0.150) \\ & \hline \end{aligned}$ |
| Distns. of RPs. Std.Devs <br> Price | $\begin{aligned} & 0.394 \text { *** } \\ & (0.043) \end{aligned}$ | $\begin{array}{r} 0.144 \\ (0.162) \end{array}$ | $\begin{array}{r} 0.018 \\ (0.426) \end{array}$ | $\begin{array}{r} 0.005 \\ (0.020) \end{array}$ |  | $\begin{array}{r} 0.001 \\ (0.018) \end{array}$ | $\begin{array}{r} 0.001 \\ (0.066) \end{array}$ | $\begin{array}{r} 0.082 \\ (0.185) \end{array}$ |  |
| Brand (vs. Other) <br> Oscar Mayer <br> Ball Park | $\begin{aligned} & 3.511 \text { *** } \\ & (0.303) \\ & 1.4455^{* * *} \\ & (0.208) \end{aligned}$ | $\begin{array}{r} 0.005 \\ (1.417) \\ 0.001 \\ (2.737) \end{array}$ | $\begin{array}{r} 0.008 \\ (2.077) \\ 0.001 \\ (2.728) \end{array}$ | $\begin{array}{r} 0.007 \\ (0.071) \\ 0.009 \\ (0.126) \end{array}$ |  | $\begin{array}{r} 0.018 \\ (0.069) \\ 0.002 \\ (0.115) \end{array}$ |  | $\begin{array}{r} 0.005 \\ (1.381) \\ 0.001 \\ (3.213) \end{array}$ | $\begin{array}{r} 0.000 \\ (3.005) \\ 0.001 \\ (2.736) \end{array}$ |
| Package size (vs. Small, under 16 oz ) <br> Medium <br> (B/w 16 and $<24 \mathrm{oz}$ ) <br> Large <br> (Larger than 24 oz ) | $\begin{aligned} & 1.783 * * * \\ & (0.287) \\ & 1.964 * * * \\ & (0.315) \end{aligned}$ | $\begin{array}{r} 0.003 \\ (1.502) \\ 0.029 \\ (2.621) \end{array}$ | $\begin{array}{r} 0.008 \\ (2.496) \\ 0.009 \\ (0.914) \end{array}$ | $\begin{array}{r} 0.015 \\ (0.078) \\ 0.018 \\ (0.113) \end{array}$ |  | $\begin{array}{r} 0.016 \\ (0.076) \\ 0.038 \\ (0.089) \end{array}$ |  | $\begin{array}{r} 0.003 \\ (1.434) \\ 0.010 \\ (2.624) \end{array}$ | $\begin{array}{r} 0.000 \\ (2.569) \\ 0.014 \\ (0.921) \end{array}$ |
| Product Size (vs. Other) |  |  |  |  |  |  |  |  |  |


| Jumbo | $\begin{aligned} & 0.774 \text { *** } \\ & (0.191) \end{aligned}$ | $\begin{array}{r} 0.003 \\ (0.956) \end{array}$ | $\begin{array}{r} 0.013 \\ (2.697) \end{array}$ | $\begin{array}{r} 0.004 \\ (0.092) \end{array}$ | - | $\begin{array}{r} 0.006 \\ (0.138) \end{array}$ | - | $\begin{array}{r} 0.002 \\ (0.949) \end{array}$ | $\begin{array}{r} 0.008 \\ (2.432) \end{array}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Meat type (vs. Other) |  |  |  |  |  |  |  |  |  |
| Beef | $2.614^{* * *}$ | 0.012 | 0.011 | 0.001 | - | 0.001 | - | 0.002 | 0.006 |
| (only beef) | (0.236) | (1.248) | (0.777) | (0.135) | - | (0.070) | - | (0.968) | (0.813) |
| Flavor (vs. Other) |  |  |  |  |  |  |  |  |  |
| Regular | $2.509^{* * *}$ | 0.005 | 0.005 | 0.109 | - | 0.000 | - | 0.018 | 0.000 |
| (Regular, Class, Orinial, Old Fashioned) | (0.288) | (2.576) | (0.737) | (0.087) | - | (0.081) | - | (2.132) | (0.739) |
| Fat Contents (vs. Regular) |  |  |  |  |  |  |  |  |  |
| Low fat | $0.894^{* * *}$ | 0.001 | 0.020 | 0.007 | - | 0.028 | - | 0.007 | 0.297 |
|  | (0.164) | (0.849) | (1.903) | (0.121) | - | (0.119) | - | (0.797) | (0.150) |
| Prob(Class) | - | $0.528^{* * *}$ | 0.472 *** | 0.638 *** | 0.362 *** | $0.667^{* * *}$ | 0.333 *** | 0.556 *** | $0.444^{* * *}$ |
|  |  | (0.046) | (0.046) | (0.045) | (0.045) | (0.033) | (0.033) | (0.039) | (0.039) |
| Log likelihood function | -3,505.367 |  | -3,841.051 |  | -4,061.843 |  | -3,968.256 |  | -3,824.832 |
| Restricted Log likelihood function | -4,491.812 |  | -4,491.812 |  | -4,491.812 |  | -4,491.812 |  | -4,491.812 |
| Inf.Cr.AIC | 7,046.7 |  | 7,756.1 |  | 8,161.7 |  | 7,978.5 |  | 7,717.7 |
| AIC/N | 5.228 |  | 5.754 |  | 6.055 |  | 5.919 |  | 5.725 |
| Number of obs. | 1,348 |  | 1,348 |  | 1,348 |  | 1,348 |  | 1,348 |

Note: FAA, PA, PANA, and PR indicate full attribute attendance, only price attendance, price non-attendance, and pure random choice, respectively. Single, double, and triple asterisks ( ${ }^{*},{ }^{* *},{ }^{* * *}$ ) denote significance at the $10 \%, 5 \%$, and $1 \%$ level, respectively. The Standard errors are presented in parentheses. Hyphens (-) indicate 0 , which was restricted by the definition of each choice rule.

Table 2.7 Estimation Results by LC-RPL models (Continues)

| Attribute | Model 6 <br> class 1 <br> FAA <br> Coefficient (S.E) | $\begin{gathered} \text { class } 2 \\ \text { PA } \\ \text { Coefficient } \\ \text { (S.E) } \\ \hline \end{gathered}$ | class 3 <br> PR <br> Coefficient (S.E) | Model 7 <br> class 1 <br> FAA <br> Coefficient (S.E) | class 2 <br> PANA <br> Coefficient (S.E) | $\begin{gathered} \text { class } 3 \\ \text { PA } \\ \text { Coefficient } \\ \text { (S.E) } \\ \hline \end{gathered}$ | class 4 PR Coefficient (S.E) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Random Parameters <br> Price | $\begin{aligned} & -0.214 \text { *** } \\ & (0.061) \end{aligned}$ | $\begin{aligned} & -1.341 \text { *** } \\ & (0.092) \end{aligned}$ | - | $\begin{aligned} & -0.764 \text { *** } \\ & (0.190) \end{aligned}$ |  | $\begin{aligned} & -1.863 \text { *** } \\ & (0.173) \end{aligned}$ |  |
| Brand (vs. Other) <br> Oscar Mayer <br> Ball Park | $\begin{aligned} & -0.673 \text { *** } \\ & (0.118) \\ & -1.710 \text { *** } \\ & (0.257) \end{aligned}$ |  | - | $\begin{aligned} & 1.204 \text { *** } \\ & (0.154) \\ & -0.980^{* * *} \\ & (0.277) \end{aligned}$ | $\begin{aligned} & -2.669 * * * \\ & (0.306) \\ & -1.461 * * * \\ & (0.289) \end{aligned}$ |  |  |
| Package size (vs. Small, under 16 oz ) <br> Medium <br> (B/w 16 and $<24 \mathrm{oz}$ ) <br> Large <br> (Larger than 24 oz ) | $\begin{aligned} & 2.029 \text { *** } \\ & (0.264) \\ & 2.201 \text { 若**} \\ & (0.370) \end{aligned}$ |  |  | $\begin{array}{r} 0.062 \\ (0.156) \\ 0.742 \\ (0.830) \end{array}$ | $\begin{aligned} & 1.562 \text { *** } \\ & (0.261) \\ & 1.639 \text { 早** } \\ & (0.267) \end{aligned}$ |  |  |
| Product Size (vs. Other) <br> Jumbo | $\begin{aligned} & -1.830 \text { *** } \\ & (0.347) \end{aligned}$ |  | - | $\begin{aligned} & -0.932 \text { *** } \\ & (0.209) \end{aligned}$ | $\begin{aligned} & -0.956 \text { *** } \\ & (0.336) \end{aligned}$ |  |  |
| Meat type (vs. Other) | $\begin{aligned} & -0.431 \text { *** } \\ & (0.116) \end{aligned}$ |  | - | $\begin{aligned} & -0.773 \text { ** } \\ & (0.372) \end{aligned}$ | $\begin{aligned} & -0.518 \text { *** } \\ & (0.118) \end{aligned}$ |  |  |
| Flavor (vs. Other) <br> Regular (Regular, Class, Orinial, Old Fashioned) | $\begin{array}{r} -0.100 \\ (0.149) \end{array}$ |  | - | $\begin{aligned} & 1.451 \text { *** } \\ & (0.421) \end{aligned}$ | $\begin{aligned} & -1.105 \text { *** } \\ & (0.109) \end{aligned}$ |  | - |
| Fat Contents (vs. Regular) <br> Low fat | $\begin{aligned} & -2.701 \text { *** } \\ & (0.475) \\ & \hline \end{aligned}$ | - | - | $\begin{aligned} & -1.462 \text { *** } \\ & (0.153) \\ & \hline \end{aligned}$ | $\begin{aligned} & -1.919 * * * \\ & (0.700) \end{aligned}$ |  |  |
| Distns. of RPs. Std.Devs Price | $\begin{array}{r} 0.002 \\ (0.021) \end{array}$ | $\begin{array}{r} 0.001 \\ (0.067) \end{array}$ |  | $\begin{array}{r} 0.187 \\ (0.121) \end{array}$ | $\begin{array}{r} 0.000 \\ (0.000) \end{array}$ | $\begin{array}{r} 0.001 \\ (11.829) \end{array}$ |  |
| Brand (vs. Other) <br> Oscar Mayer <br> Ball Park | $\begin{array}{r} 0.000 \\ (0.080) \\ 0.011 \\ (0.169) \end{array}$ |  | - | $\begin{array}{r} 0.007 \\ (1.990) \\ 0.011 \\ (6.927) \end{array}$ | $\begin{array}{r} 0.003 \\ (7.855) \\ 0.003 \\ (8.391) \end{array}$ |  |  |
| Package size (vs. Small, under 16 oz ) <br> Medium <br> (B/w 16 and $<24 \mathrm{oz}$ ) <br> Large <br> (Larger than 24 oz ) | $\begin{array}{r} 0.000 \\ (0.088) \\ 0.013 \\ (0.096) \end{array}$ |  | - | $\begin{array}{r} 0.003 \\ (1.847) \\ 0.011 \\ (3.297) \end{array}$ | $\begin{array}{r} 0.003 \\ (3.227) \\ 0.016 \\ (1.039) \end{array}$ |  |  |
| Product Size (vs. Other) |  |  |  |  |  |  |  |


| Jumbo | 0.003 | - | - | 0.015 | 0.017 | - | - |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | (0.194) | - | - | (1.788) | (3.989) | - | - |
| Meat type (vs. Other) |  |  |  |  |  |  |  |
| Beef | 0.000 | - | - | 0.013 | 0.004 | - | - |
| (only beef) | (0.085) | - | - | (1.229) | (1.103) | - | - |
| Flavor (vs. Other) |  |  |  |  |  |  |  |
| Regular | 0.000 | - | - | 0.019 | 0.010 | - | - |
| (Regular, Class, Orinial, Old Fashioned) | (0.088) | - | - | (2.014) | (0.822) | - | - |
| Fat Contents (vs. Regular) |  |  |  |  |  |  |  |
| Low fat | 0.019 | - | - | 0.034 | 0.006 | - | - |
|  | (0.270) | - | - | (1.466) | (9.438) | - | - |
| Prob(Class) | 0.507 *** | 0.334 *** | 0.159 *** | 0.403 *** | 0.313 *** | 0.078 *** | $0.207^{* * *}$ |
|  | (0.038) | (0.032) | (0.032) | (0.046) | (0.031) | (0.022) | (0.038) |
| Log likelihood function |  |  | -3,929.801 |  |  |  | -3,744.895 |
| Restricted Log likelihood function |  |  | -4,491.812 |  |  |  | -4,491.812 |
| Inf.Cr.AIC |  |  | 7,903.6 |  |  |  | 7,567.8 |
| AIC/N |  |  | 5.863 |  |  |  | 5.614 |
| Number of obs. |  |  | 1,348 |  |  |  | 1,348 |

Note: FAA, PA, PANA, and PR indicate full attribute attendance, only price attendance, price non-attendance, and pure random choice, respectively. Single, double, and triple asterisks ( ${ }^{*},{ }^{* *},{ }^{* * *}$ ) denote significance at the $10 \%, 5 \%$, and $1 \%$ level, respectively. The Standard errors are presented in parentheses. Hyphens (-) indicate 0 , which was restricted by the definition of each choice rule.

Model 5 examines the PANA decision making rule. The class 1 is for the FAA and the class 2 is for the PANA. The PANA leads the price coefficient to be restricted to zero within the class 2. The LC-MNL result of the model 5 reports the probabilities of the first and second classes are $67.8 \%$ and $32.2 \%$, respectively. In the first class for the FAA, all the coefficient estimates of attributes are the same sign as the first segment of the model 2 . The coefficient estimate of the price in the class 1 was -0.563 . As the price is not considered in the class 2 , the disutility of the price to consumers became larger in the class 1 . In the segment for the FAA, the marginal utility of price is -0.563 while that of Oscar Mayer has a positive value of 0.639 . For consumers who are not paying attention to the price in the class 2 , it is noticeable that the marginal utility of Oscar Mayer was -3.657 and statistically significant. That means consumers who don't pay attention to price don't like Oscar Mayer, compared to other brands. This is because hotdog sausage products with the Oscar Mayer brand may be cheaper than other brand products, and the hotdog products labeled the Oscar Mayer are attractive to shoppers who are sensitive to the price while they are not likely to appeal to customers who do not account for the price. This could be the same as the LCRPL result. The LC-RPL result of the model 5 reveals that the coefficient estimate of the price was -0.684 and that of Oscar Mayer brand was +1.197 within the first class. On the other hand, the coefficient estimate of Oscar Mayer was -1.644 within the second class. The portion of the first and second classes are $55.6 \%$ and $44.4 \%$, respectively, in the LC-RPL.

Model 6 is for examining the PA and PR decision making rule. This model is a combination of the model 3 and 4 . The class 1, 2, and 3 are for the FAA, the PA, and the PR, respectively. The LC-MNL result of the model 6 reports the portions for each segment are $50.8 \%, 33.4 \%$, and $15.8 \%$, respectively. In the first class for the FAA, the coefficient of the price is -0.196 , which is statistically significant. For the segment for the PA, the price coefficient is -1.341. In the LC-RPL
estimation outcome of the model 6 , the probabilities for each segment are $50.7 \%, 33.4 \%$, and $15.9 \%$, respectively. Those are not much different from the LC-MNL estimation.

Model 7 explores the PAAN, PA, and PR decision rule, simultaneously. The model 7 is a combination of the model 3,4 , and 5 . The class $1,2,3$, and 4 are for the FAA, the PANA, the PA, and the PR, respectively. The LC-MNL estimation result of the model 7 reports that the probabilities for each segment are $28.8 \%, 34.1 \%, 27.0 \%$, and $10.1 \%$, respectively. For the FAA class, the coefficient estimates of the price and Oscar Mayer brand are -0.813 and +2.263 , respectively. Consumers in the FAA class are likely to gain bigger utility from choosing Oscar Mayer products. In addition, they are likely to obtain higher utility from medium and large packages, only beef products. On the other hand, they may lose some utility by choosing Ball Park brand, jumbo size, and low-fat products. This is similar to the findings found in model 2 and 5. But, people within the FAA are likely to gain higher utility from only beef. For the PANA class, the Oscar Mayer brand is likely to reduce consumers' utility. In the LC-RPL result of the model 7, the portions for each class are $40.3 \%, 31.3 \%, 7.8 \%$, and $20.7 \%$ respectively. Those are very different from the LC-MNL outcome. In particular, it is noticeable that the portion of the segment for the PA was greatly reduced. For the sign of the coefficients of attributes, the LC-RPL result is similar to the LC-MNL, excluding the characteristic of only beef for meat-type within the segment for the FAA. The coefficient estimate of only beef is -0.773 in the FAA class, -0.518 in the PANA class. This implies that price-sensitive consumers are likely to have smaller utility by selecting hotdog products that are made of only beef.

### 2.5.2 WTP estimates

Willingness-to-pays (WTPs) in Table 2.8 and 2.9 are computed from the MNL and LC-MNL models. We focus on WTP estimates in the FAA segment for each model since the choice heuristics examined in this study, the PA, the PANA, and the PR, do not provide the denominator and the numerators that are required to calculate WTPs. The delta method was employed to get the standard errors for all WTP estimates in NLOGIT 7.0.

The WTP estimates derived by the model 1 are shown in the column 2 of Table 2.8. The WTPs for Oscar Mayer and Ball Park brands are $-\$ 1.55$ and $-\$ 5.05$, respectively. This implies that on average consumers do not prefer these two branded products to other brands and that Ball Park products are relatively less preferred to Oscar Mayer's. The WTPs for medium and large packages are $\$ 5.44$ and $\$ 3.77$, respectively, suggesting that they are preferred to a small package. Therefore, consumer preference for package sizes is the highest in medium, followed by large packages. The WTPs for jumbo size, meat type of only beef, were calculated to $-\$ 2.68,-\$ 3.28$, and $-\$ 5.20$, respectively, inducing that those attributes were less preferred by households. On the other hand, the WTP for a flavor of regular is $\$ 2.79$. Hence, consumers prefer the regular flavor to other flavored hotdog products such as cheese, smoked, and jalapeno.

The WTP estimates calculated by the model 2 are shown in the columns 3 and 4 of Table 2.8. For households belonging to the class 1 , the WTP for Oscar Mayer is $\$ 1.06$, while the WTP for Ball Park is still negative. For households who are in the class 2, the WTP for Oscar Mayer is $\$ 22.02$, which is very high. The WTP for medium packages is $-\$ 16.12$, negative value. This is not only different from the class 1 of the same model, but also the opposite of the model 1. Consumers who are likely to belong to the class 2 less prefer the bigger packages to small.

Table 2.8 Willingness to pay estimates by LC-MNL models

|  | Model 1 | Model 2 |  | Model 3 |  | Model 4 |  | Model 5 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | - | class 1 | class 2 |
| Attribute | FAA | FAA | FAA | FAA | PR | FAA | PA | FAA | PANA |
|  | WTP |
|  | (S.E) |
| Brand (vs. Other) |  |  |  |  |  |  |  |  |  |
| Oscar Mayer | -1.55 *** | 1.06 *** | 22.02 * | -1.19 *** | - | -9.83 | - | 1.13 *** | - |
|  | (0.45) | (0.22) | (11.70) | (0.38) | - | (8.98) | - | (0.23) | - |
| Ball Park | -5.05 *** | -1.47 *** | 0.01 | -4.36 *** | - | -22.03 | - | -2.13 *** | - |
|  | (1.24) | (0.36) | (1.62) | (1.62) | - | (20.25) | - | (0.45) | - |
| Package size (vs. Small, under 16 oz ) |  |  |  |  |  |  |  |  |  |
| Medium | 5.44 *** | 0.90 *** | -16.12* | 2.73 *** | - | 32.79 | - | 0.87 *** | - |
| (B/w 16 and < 24 oz ) | (1.27) | (0.21) | (8.62) | (0.92) | - | (30.23) | - | (0.23) | - |
| Large | 3.77 *** | 1.21 ** | -16.96 | 3.40 *** | - | 21.26 | - | 1.14** | - |
| (Larger than 24 oz ) | (0.62) | (0.48) | (10.69) | (0.98) | - | (16.37) | - | (0.49) | - |
| Product Size (vs. Other) |  |  |  |  |  |  |  |  |  |
| Jumbo | $-2.68 * * *$ | $-0.94 * * *$ | $-1.34$ | $-1.47 * * *$ | - | -23.10 | - | -0.92 *** | - |
|  | $(0.60)$ | $(0.19)$ | (1.98) | $(0.43)$ | - | (20.32) | - | (0.20) | - |
| Meat type (vs. Other) |  |  |  |  |  |  |  |  |  |
| Beef | $-3.28 * * *$ | -0.30 | -0.02 | -7.06** | - | $-5.92$ | - | -0.21 |  |
| (only beef) | $(1.16)$ | (0.31) | (1.04) | (3.56) | - | (6.78) | - | (0.31) | - |
| Flavor (vs. Other) |  |  |  |  |  |  |  |  |  |
| Regular | 2.79 *** | 2.57 *** | 9.22 * | 0.11 | - | 5.29 | - | 2.66 *** | - |
| (Regular, Class, Orinial, Old Fashioned) | (1.03) | (0.52) | (5.30) | (0.79) | - | (6.19) | - | (0.55) | - |
| Fat Contents (vs. Regular) |  |  |  |  |  |  |  |  |  |
| Low fat | -5.20 *** | -1.85 *** | -0.98 | -6.53 *** | - | -24.67 | - | -1.94 *** | - |
|  | (1.27) | (0.32) | (3.11) | (2.42) | - | (22.44) | - | (0.35) | - |
| Prob(Class) | - | $0.710^{* * *}$ | $0.290^{* * *}$ | $0.671^{* * *}$ | $0.329^{* * *}$ | $0.662^{* * *}$ | $0.338^{* * *}$ | 0.678 *** | 0.322 *** |
|  |  | (0.028) | (0.028) | (0.043) | (0.043) | (0.033) | (0.033) | (0.027) | (0.027) |

Note: FAA, PA, PANA, and PR indicate full attribute attendance, only price attendance, price non-attendance, and pure random choice, respectively. Single,
double, and triple asterisks $\left(*,{ }^{* *},{ }^{* * *}\right)$ denote significance at the $10 \%, 5 \%$, and $1 \%$ level, respectively. The Standard errors are presented in parentheses. We use the delta method to get the standard errors in NLOGIT 7.0. Hyphens ( - ) indicate 0 , which was restricted by the definition of each choice rule.

Table 2.9 Willingness to pay estimates by LC-MNL models (Continues)

|  | Model 6 |  |  | Model 7 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | class 1 | class 2 | class 3 | class 1 | class 2 |  | class 3 | class 4 |
| Attribute | FAA | PA | PR | FAA | PANA |  | PA | PR |
|  | WTP | WTP | WTP | WTP | WTP |  | WTP | WTP |
|  | (S.E) | (S.E) | (S.E) | (S.E) | (S.E) |  | (S.E) | (S.E) |
| Brand (vs. Other) |  |  |  |  |  |  |  |  |
| Oscar Mayer | -3.36 *** | - | - | 2.78 *** | - |  | - | - |
|  | (1.03) | - | - | (0.69) | - |  | - | - |
| Ball Park | -8.71 *** | - | - | -0.92 | - |  | - | - |
|  | (2.94) | - | - | (0.76) | - |  | - | - |
| Package size (vs. Small, under 16 oz ) |  |  |  |  |  |  |  |  |
| Medium | 10.13 *** | - | - | 2.09 *** | - |  | - | - |
| (B/w 16 and < 24 oz ) | (3.40) | - | - | (0.61) | - |  | - | - |
| Large | 10.61 *** | - | - | 3.79 *** | - |  | - | - |
| (Larger than 24 oz ) | (2.50) | - | - | (0.41) | - |  | - | - |
| Product Size (vs. Other) |  |  |  |  |  |  |  |  |
| Jumbo | $-9.18{ }^{* * *}$ | - | - | -1.24 *** | - |  | - | - |
|  | (2.62) | - | - | (0.36) | - |  | - | - |
| Meat type (vs. Other) |  |  |  |  |  |  |  |  |
| Beef | -2.37 ** | - | - | 1.37 *** | - |  | - | - |
| (only beef) | (1.14) | - | - | (0.20) | - |  | - | - |
| Flavor (vs. Other) |  |  |  |  |  |  |  |  |
| Regular | -0.32 | - | - | 4.60 *** | - |  | - | - |
| (Regular, Class, Orinial, Old Fashioned) | (0.71) | - | - | (1.37) | - |  | - | - |
| Fat Contents (vs. Regular) |  |  |  |  |  |  |  |  |
| Low fat | -13.85*** | - | - | -1.12 *** | - |  | - | - |
|  | (4.29) |  | - | (0.41) | - |  | - | - |
| Prob(Class) | $0.508^{* * *}$ | 0.334 *** | 0.158 *** | 0.288 *** | 0.341 | *** | 0.270 *** | 0.101 *** |
|  | (0.038) | (0.032) | (0.032) | (0.029) | (0.029) |  | (0.030) | (0.029) |

Note: FAA, PA, PANA, and PR indicate full attribute attendance, only price attendance, price non-attendance, and pure random choice, respectively. Single, double, and triple asterisks $\left({ }^{*},{ }^{* *},{ }^{* * *}\right)$ denote significance at the $10 \%, 5 \%$, and $1 \%$ level, respectively. The Standard errors are presented in parentheses. We use the delta method to get the standard errors in NLOGIT 7.0. Hyphens ( - ) indicate 0 , which was restricted by the definition of each choice rule.

The two-class models that examine the PR, the PA, and the PANA bring about WTP estimates in the columns 5, 7 , and 9 of Table 2.8 , respectively. In the model 3 for the PR, the WTP estimates have the same sign as the model 1. The largest WTP attribute was $\$ 3.40$ in a large package. In the model 4 for the PA, we could not have a significant WTP as the coefficient of the price which enters the denominator in the calculation of WTP was not significant. In the WTP results of the model 5 for the PANA, the regular flavor attribute has the highest value of $\$ 2.66$, followed by the large package of $\$ 1.14$ and the Oscar Mayer brand of $\$ 1.13$. As in the model 2, the Oscar Mayer brand is characterized by a positive WTP in the model 5.

The three-class model explores the PR and the PA produces WTP estimates for the FAA in the column 2 of Table 2.8. The WTP estimations from the model 6 report that households belonging to the FAA have high values for larger packages. The WTPs were $\$ 10.61$ for large and $\$ 10.13$ medium packages. Other attributes appear to have negative WTP, which seems to be less favored by consumers.

The four-class model for examining the PR, the PA, and the PANA yields WTP estimates for the FAA decision-makers in the column 5 of Table 2.9. In the model 7, 28.8\% of consumers applied the FAA. Consumers in this segment were found to have the highest WTP in regular flavor ( $\$ 4.60$ ). The WTP for Oscar Mayer brand was $\$ 2.78$, which implies that these consumers prefer Oscar Mayer to other brand products. They also prefer hotdog products consisting of only beef compared to other meat types. This feature is similar to the results found in models 2 and 5 .

WTPs described in Table 2.10 and 2.11 are calculated from the RPL and LC-RPL models. The WTP estimates computed by model 1 are shown in the column 2 of Table 10. The regular flavor reports the WTP of $\$ 4.01$, compared to others. This is the highest value among attributes considered in this model. The WTPs for Oscar Mayer and Ball Park brands are - $\$ 1.93$ and $-\$ 3.17$,
respectively. This implies that on average consumers less prefer these two branded products to other brands. The WTPs for medium and large packages are $\$ 3.35$ and $\$ 1.44$, respectively. Thus, consumers are likely to prefer bigger packages to small ones. However, the WTPs for meat type of only beef, low-fat contents, and jumbo size were calculated to $-\$ 3.10$, $-\$ 2.63$, and $-\$ 2.23$, respectively, which are negative. This indicates that consumers do not prefer these kinds of attributes, to the opposite attributes within each group.

The WTP estimates derived by model 2 are in the columns 3 and 4 of Table 2.10. For households belonging to the class 1, the WTP for Oscar Mayer is $\$ 1.31$, while that for Ball Park is negative (-\$0.69). They prefer Oscar Mayer but do not Ball Park. In addition, the WTPs for large packages and regular flavors have positive values, indicating being preferred. For consumers belonging to the class 2, the WTPs for Oscar Mayer and Ball Park are $\$ 7.34$ and $\$ 5.81$, respectively, which are the largest values within the second class. They prefer the jumbo size and low-fat products while disliking medium packages. People in the class 1 and those in the class 2 have opposite preferences for other attributes excluding Oscar Mayer.

The two-class models for examining the PR, the PA, and the PANA bring about WTP estimates in the columns 5, 7, and 9 of Table 2.10, respectively. Similar to the LC-MNL of the model 3, we could not get a significant WTP due to the insignificant price coefficient in the FAA of the model 3 and 4. The WTP estimates in the FAA segment of the model 4 shows the same rankings of consumers preference on attributes in the first class of the model 2. The attributes with the largest WTP values were regular flavors (\$2.31), followed by Oscar Mayer (\$1.75) and large packages (\$1.10).

Table 2.10 Willingness to pay estimates by LC-RPL models

|  | Model 1 | Model 2 |  | Model 3 |  | Model 4 |  | Model 5 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | - | class 1 | class 2 |
| Attribute | FAA | FAA | FAA | FAA | PR | FAA | PA | FAA | PANA |
|  | WTP |
|  | (S.E) |
| Brand (vs. Other) |  |  |  |  |  |  |  |  |  |
| Oscar Mayer | -1.93 *** | $1.31^{* * *}$ | 7.34 *** | -0.94 | - | -8.67 | - | 1.75 *** | - |
|  | (0.42) | (0.23) | (2.56) | (0.92) | - | (6.76) | - | (0.33) | - |
| Ball Park | -3.17 *** | -0.69 *** | 5.81 *** | -10.77 | - | -18.33 | - | -0.85 *** | - |
|  | (0.61) | (0.26) | (1.96) | (10.70) | - | (14.34) | - | (0.32) | - |
| Package size (vs. Small, under 16 oz ) |  |  |  |  |  |  |  |  |  |
| Medium | 3.35 *** | -0.17 | -10.71 *** | 5.31 | - | 28.54 | - | -0.10 | - |
| (B/w 16 and $<24 \mathrm{oz}$ ) | (0.54) | (0.15) | (3.63) | (4.85) | - | (22.40) | - | (0.17) | - |
| Large | 1.44 * | 1.05 ** | -4.13 | -0.29 | - | 19.82 | - | 1.10* | - |
| (Larger than 24 oz ) | (0.85) | (0.50) | (2.61) | (6.31) | - | (12.85) | - | (0.56) | - |
| Product Size (vs. Other) |  |  |  |  |  |  |  |  |  |
| Jumbo | -2.23 *** | -0.49 *** | 4.51 * | -1.70 | - | -18.48 | - | -0.60 *** | - |
|  | (0.40) | (0.14) | (2.33) | (1.07) | - | (13.70) | - | (0.15) | - |
| Meat type (vs. Other) |  |  |  |  |  |  |  |  |  |
| Beef | -3.10 *** | -1.10 ** | 0.27 | -20.73 | - | -4.81 | - | -0.91 * | - |
| (only beef) | (0.77) | (0.49) | (0.54) | (24.35) | - | (4.89) | - | (0.51) | - |
| Flavor (vs. Other) |  |  |  |  |  |  |  |  |  |
| Regular | 4.01 *** | 1.92 *** | 1.26 | 2.87 | - | 3.67 | - | 2.31 *** | - |
| (Regular, Class, Orinial, Old Fashioned) | (0.88) | (0.74) | (0.98) | (4.74) | - | (4.07) | - | (0.83) | - |
| Fat Contents (vs. Regular) |  |  |  |  |  |  |  |  |  |
| Low fat | -2.63 *** | -1.45 *** | 4.08 *** | -16.41 | - | -20.76 | - | -1.80 *** | - |
|  | (0.44) | (0.30) | (1.47) | (16.99) | - | (16.02) | - | (0.40) | - |
| Prob(Class) | - | $0.528^{* * *}$ | $0.472^{* * *}$ | 0.638 *** | 0.362 *** | 0.667 *** | 0.333 *** | 0.556 *** | 0.444 *** |
|  |  | (0.046) | (0.046) | (0.045) | (0.045) | (0.033) | (0.033) | (0.039) | (0.039) |

Note: FAA, PA, PANA, and PR indicate full attribute attendance, only price attendance, price non-attendance, and pure random choice, respectively. Single,
double, and triple asterisks $\left({ }^{*},{ }^{* *},{ }^{* * *}\right)$ denote significance at the $10 \%, 5 \%$, and $1 \%$ level, respectively. The Standard errors are presented in parentheses. We use the delta method to get the standard errors in NLOGIT 7.0. Hyphens ( - ) indicate 0 , which was restricted by the definition of each choice rule.

Table 2.11 Willingness to pay estimates by LC-RPL models (Continues)

|  | Model 6 |  |  | Model 7 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | class 1 | class 2 | class 3 | class 1 | class 2 |  | class 3 | class 4 |
| Attribute | FAA | PA | PR | FAA | PANA |  | PA | PR |
|  | WTP | WTP | WTP | WTP | WTP |  | WTP | WTP |
|  | (S.E) | (S.E) | (S.E) | (S.E) | (S.E) |  | (S.E) | (S.E) |
| Brand (vs. Other) |  |  |  |  |  |  |  |  |
| Oscar Mayer | $-3.14^{* * *}$ | - | - | 1.58 *** | - |  | - | - |
|  | (0.90) | - | - | (0.47) | - |  | - | - |
| Ball Park | -7.99 *** | - | - | -1.28** | - |  | - | - |
|  | (2.53) | - | - | (0.52) | - |  | - | - |
| Package size (vs. Small, under 16 oz ) |  |  |  |  |  |  |  |  |
| Medium | 9.48 *** | - | - | 0.08 | - |  | - | - |
| (B/w 16 and < 24 oz ) | (2.97) | - | - | (0.20) | - |  | - | - |
| Large | 10.29 *** | - | - | 0.97 | - |  | - | - |
| (Larger than 24 oz ) | (2.25) | - | - | (0.85) | - |  | - | - |
| Product Size (vs. Other) |  |  |  |  |  |  |  |  |
| Jumbo | -8.55 *** | - | - | -1.22 *** | - |  | - | - |
|  | (2.27) | - | - | (0.25) | - |  | - | - |
| Meat type (vs. Other) |  |  |  |  |  |  |  |  |
| Beef | -2.02 *** | - | - | -1.01 | - |  | - | - |
| (only beef) | (0.94) | - | - | (0.73) | - |  | - | - |
| Flavor (vs. Other) |  |  |  |  |  |  |  |  |
| Regular | -0.47 | - | - | 1.90* | - |  | - | - |
| (Regular, Class, Orinial, Old Fashioned) | (0.63) | - | - | (0.99) | - |  | - | - |
| Fat Contents (vs. Regular) |  |  |  |  |  |  |  |  |
| Low fat | -12.62 *** | - | - | -1.91 *** | - |  | - | - |
|  | (3.64) | - | - | (0.60) | - |  | - | - |
| Prob(Class) | 0.507 *** | 0.334 *** | 0.159 *** | 0.403 *** | 0.313 | *** | 0.078 *** | 0.207 *** |
|  | (0.038) | (0.032) | (0.032) | (0.046) | (0.031) |  | (0.022) | (0.038) |

Note: FAA, PA, PANA, and PR indicate full attribute attendance, only price attendance, price non-attendance, and pure random choice, respectively. Single, double, and triple asterisks $\left({ }^{*},{ }^{* *},{ }^{* * *}\right)$ denote significance at the $10 \%, 5 \%$, and $1 \%$ level, respectively. The Standard errors are presented in parentheses. We use the delta method to get the standard errors in NLOGIT 7.0. Hyphens ( - ) indicate 0 , which was restricted by the definition of each choice rule.

The column 2 of Table 2.11 reports WTP estimates for the FAA in the three-class model results for examining the PR and the PA. The WTP estimates resulted from the model 6 report that households belonging to the FAA have high values for larger packages. The WTPs were $\$ 10.29$ for large and $\$ 9.48$ for medium packages. Other attributes appear to have negative WTP, which seems to be less favored by consumers. This is the same sign in the LC-MNL result.

The four-class model for examining the PR, the PA, and the PANA yield WTP estimates for the FAA decision-makers for the FAA in the column 5 of Table 2.11. In the model 7, 40.3\% of consumers applied the FAA. Consumers in this segment were found to have the highest WTP in regular flavors (\$1.90). They also prefer Oscar Mayer to other brand products as the WTP for Oscar Mayer brand positive (\$1.58).

The ranking of WTPs for the attributes of hotdog products considered in this study varies greatly with models. Therefore, analysts need to carefully specify their models and choose appropriate estimation methods depending on the purpose of research. The contribution of this study is to show that heterogeneity in decision making rules needs to be considered in the use of discrete choice models.

### 2.5.3 Model Fits and LR Test Results

For the LC-MNL methods, the lowest absolute value of the log-likelihood function was reported in the model $7(-3,669.666)$, and followed by the model $5(-3,771.126)$ and $2(-3,771.704)$. In addition, AIC of the model 7 was the smallest as $7,381.3$. The AIC for the model 5 and 1 were 7,578.3 and 7,581.4, respectively. In the LC-RPL applications, the model 1 resulted in the value of the log-likelihood function closest to zero of $-3,505.367$, which is the not case for choice heuristics. And the model 7 and 5 reported the log-likelihood functions of $-3,744.895$ and -

3,824.832, respectively, which include the PANA choice rule. In terms of AIC, the AIC value for the model 1 was the lowest $(7,046.7)$, followed by the model $7(7,567.8)$ and the model $5(7,717.7)$.

The results of the LR tests are shown in Table 2.12. First of all, in the case of the model 1 and 2 that do not account for choice heuristics but for the FAA, the LR test results reveal that the RPL and the LC-RPL could capture preference heterogeneity. The test statistics for model 1 and 2 are $1,194.86$ and 138.69 , respectively, which are significantly larger than the respective critical value at $95 \%$. Hence, we rejected the null hypothesis.

Next, this study moves to the two-segment models for choice heuristics (the model 3, 4, and 5). The results of LR tests report the LC-RPL is not dominant against the LC-MNL in model 3 and 4 as we failed to reject the null hypothesis. However, the LC-RPL could jointly reflect preference and attribute processing heterogeneity in model 5 because the null hypothesis was rejected. In the case of the model 3 for the PR and the model 4 for the PA, coefficient estimates of most attributes are enforced to zero by the definition of the PR and PA. On the other hand, the model 5 for the PANA allows coefficients of most attributes to be freely estimated by econometric models, except the price. Given the nature of the constraints for each model, the LC-RPL may be effective when there are many freely estimated coefficients. The LR test result for the model 6 shows that we rejected the null hypothesis. In addition to the model 6 , the test for the model 7 is the same. Therefore, we could jointly reflect preference and attribute processing heterogeneity in model 6 and 7.

To sum up, our study showed that heterogeneity in preference and heterogeneity in attribute processing rules could be jointly accommodated in the analysis of decision making by employing the LC-RPL. However, in the case of decision rules where many attributes are ignored, the heterogeneous preference may not be well represented in the LC-RPL model.

Table 2.12 LR Test Results

| Model specifications | NumberofClasses | Class |  |  |  | MNL/ LC-MNLLL Fn(Number ofparameters) | $\begin{gathered} \hline \text { RPL / LC-RPL } \\ \text { LL Fn } \\ \text { (Number of } \\ \text { parameters) } \\ \hline \end{gathered}$ | LR Test Statistics | P-Value |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 1 | 2 | 3 | 4 |  |  |  |  |
| Model 1 | 1 | FAA | - | - | - | $\begin{gathered} -4,102.795 \\ (9) \end{gathered}$ | $\begin{gathered} -3,505.367 \\ (18) \end{gathered}$ | 1,194.856 | 0.000 |
| Model 2 | 2 | FAA | FAA | - | - | $\begin{gathered} -3,771.704 \\ (20) \end{gathered}$ | $\begin{gathered} -3,841.051 \\ (38) \end{gathered}$ | 138.694 | 0.000 |
| Model 3 | 2 | FAA | PR | - | - | $\begin{gathered} -4,061.829 \\ (20) \end{gathered}$ | $\begin{gathered} -4,061.843 \\ (38) \end{gathered}$ | 0.028 | 1.000 |
| Model 4 | 2 | FAA | PA | - | - | $\begin{gathered} -3,968.360 \\ (20) \end{gathered}$ | $\begin{gathered} -3,968.256 \\ (38) \end{gathered}$ | 0.208 | 1.000 |
| Model 5 | 2 | FAA | PANA | - | - | $\begin{gathered} -3,771.126 \\ (20) \end{gathered}$ | $\begin{gathered} -3,824.832 \\ (38) \end{gathered}$ | 107.413 | 0.000 |
| Model 6 | 3 | FAA | PA | PR | - | $\begin{gathered} -3,929.742 \\ (30) \end{gathered}$ | $\begin{gathered} -3,929.801 \\ (57) \end{gathered}$ | 0.118 | 0.000 |
| Model 7 | 4 | FAA | PANA | PA | PR | $\begin{gathered} -3,669.666 \\ (40) \end{gathered}$ | $\begin{gathered} -3,744.895 \\ (76) \end{gathered}$ | 150.457 | 0.000 |

Note: FAA, PA, PANA, and PR indicate full attribute attendance, only price attendance, price non-attendance, and pure random choice, respectively. The numbers of parameters are presented in parentheses. The critical values of LR test at $95 \%$ are 16.919 for the model $1,28.869$ for the model $2-5,40.113$ for the model 6 , and 50.998 for the model 7. The MNL / LC-MNL do not have random parameter while RPL / LC-RPL do have.

### 2.6 Conclusions

The present study investigated households' choice heuristics in the hotdog sausage market from the perspective of the discrete choice framework. We applied the IRI marketing data sets into the latent class structure of the discrete choice models (LC-MNL and LC-RPL) to explore choice heuristics based on different attribute processing at the level of the household.

This study makes several contributions. First, our paper attempts to incorporate heterogeneity in decision making rules into a discrete choice analysis based on revealed preference data. Second, many previous choice analyses have tested choice heuristics in terms of ANA by applying stated choice data. On the other hand, our paper differs in that it applied revealed preference data instead of hypothetical CE data. Also, we have the advantage of indirect comparison with existing studies because we applied the similar estimation methods to previous literature based on stated preference data.

The estimation results of this study showed that marginal utilities of attributes and WTP estimates for attributes are sensitive to not only model specifications but also estimation methods. It requires analysts to carefully specify the systematical component of a random utility model and to select estimation models. Our empirical analysis suggests that accounting for heterogeneous decision rules could provide better model fit than in considering only full attribute preservation rule. This is consistent with previous literature. Accordingly, researchers need to consider the heterogeneous decision rules as an alternative to the classic assumption that all attributes are considered in choice situations by decision makers in order to better understand consumer choice.

The limitations of our research can be summarized as follows, and we would like to suggest some future studies that are related to our paper. First, this paper did not examine all ANA scenarios. We have only tested choice heuristics, focusing on some of the simplest extreme ANA
scenarios. Given our number of 531 sample households, if various heuristics were considered there should be many multiple classes for those decision rules and each class might become too thin so that it may lead to impractical estimation of the models. For this reason, four representative decision-making rules that include the FAA and three choice heuristics were examined in this study. The investigation of other scenarios that can happen between the extreme decision rules could be carried out in future research. It is expected that Hensher, Rose and Greene (2012)'s a $2^{\mathrm{K}}$ multinomial logit model may be applied to investigate all combination of attention or inattention with attributes. Second, the present study examined choice heuristics focusing on consumers' food choices at one store. Hence, further research is required to investigate consumer choice heuristics on a larger scale. For example, investigating choice heuristics across multiple stores in a town or at the national level may provide stronger empirical evidence. To do this, store-specific effects should be considered. Researchers should also keep in mind that the choice sets vary from store to store. A nested model may be applicable. Third, our analysis was based on the assumption that 28 alternatives are available to all customers who purchase a hotdog product in the selected grocery store. However, given the entry of new products and the exit of existing ones in a market, this assumption may be somewhat strong. Therefore, if an econometric model could reflect the change of choice set over time, it is expected to be a more realistic analysis. Lastly, the socio-economic characteristics of households could be further considered to obtain policy implications for food consumption.

### 2.7 References

Adamowicz, W.L. 1994. "Habit formation and variety seeking in a discrete choice model of recreation demand." Journal of Agricultural and Resource Economics 19(1): 19-31.

Adamowicz, W.L., and J.D. Swait. 2013. "Are food choices really habitual? Integrating habits, variety-seeking, and compensatory choice in a utility-maximizing framework." American Journal of Agricultural Economics 95(1): 17-41.

Balbontin, C., D.A. Hensher, and A.T. Collins. 2019. "How to better represent preferences in choice models: The contributions to preference heterogeneity attributable to the presence of process heterogeneity." Transportation Research Part B 122: 218-248.

Balbontin, C., D.A. Hensher, and A.T. Collins. 2017. "Integrating attribute non-attendance and value learning with risk attitudes and perceptual conditioning." Transportation Research Part E 97: 172-191.

Balcombe, K., M. Burton, and D. Rigby. 2011. "Skew and attribute non-attendance within the Bayesian mixed logit model." Journal of Environmental Economics and Management 62(3): 446-461.

Bronnenberg, B.J., M.W. Kruger, and C.F. Mela. 2008. "The IRI marketing data set." Marketing Science 27(4): 745-748.

Campbell, D., W.G. Hutchinson, and R. Scarpa. 2008. "Incorporating discontinuous preferences into the analysis of discrete choice experiments." Environmental and Resource Economics 41(3): 401-417.

Caputo, V., J.L. Lusk, and R.M. Nayga. 2019. "Am I getting a good deal? Reference-dependent decision making when the reference price is uncertain." American Journal of Agricultural Economics, aaz042.

Caputo, V., R. Scarpa, and R.M. Nayga. 2017. "Cue versus independent food attributes: the effect of adding attributes in choice experiments." European Review of Agricultural Economics 44(2): 211-230.

Collins, A.T., J.M. Rose, and D.A. Hensher. 2013. "Specification issues in a generalised random parameters attribute nonattendance model." Transportation Research Part B 56: 234-253.

Fosgerau, M., E. Melo, and M. Shum. 2019. "Discrete choice and rational inattention: A general equivalence result." (May 9, 2019), SSRN.

Greene, W.H., and D.A. Hensher. 2003. "A latent class model for discrete choice analysis: Contrasts with mixed logit." Transportation Research Part B 37(8): 681-698.

Heidenreich, S., V. Watson, M. Ryan, and E. Phimister. 2018. "Decision heuristic or preference? Attribute non-attendance in discrete choice problems." Health Economics 27(1): 157-171.

Hensher, D.A., A.T. Collins, and W.H. Greene. 2013. "Accounting for attribute non-attendance and common-metric aggregation in a probabilistic decision process mixed multinomial logit model: a warning on potential confounding." Transportation 40: 1003-1020.

Hensher, D.A., and W.H. Greene. 2010. "Non-attendance and dual processing of common-metric attributes in choice analysis: A latent class specification." Empirical Economics 39(2): 413426.

Hensher, D.A., J. Rose, and W.H. Greene. 2005. "The implications on willingness to pay of respondents ignoring specific attributes." Transportation 32(3): 203-222.

Hensher, D.A., and J.M. Rose. 2009. "Simplifying choice through attribute preservation or nonattendance: Implications for willingness to pay." Transportation Research Part E 45(4): 583590.

Hensher, D.A., J.M. Rose, and W.H. Greene. 2015. Applied Choice Analysis, The Second ed.

Cambridge University Press.
Hensher, D.A., J.M. Rose, and W.H. Greene. 2012. "Inferring attribute non-attendance from stated choice data: implications for willingness to pay estimates and a warning for stated choice experiment design." Transportation 39:235-245.

Hess, S., and D.A. Hensher. 2010. "Using conditioning on observed choices to retrieve individualspecific attribute processing strategies." Transportation Research Part B 44(6): 781-790.

Hess, S., A. Stathopoulos, D. Campbell, V. O'Neill, and S. Caussade. 2013. "It's not that I don't care, I just don't care very much: Confounding between attribute non-attendance and taste heterogeneity." Transportation 40(3): 583-607.

Hole, A.R., J.R. Kolstad, and D. Gyrd-Hansen. 2013. "Inferred vs. stated attribute non-attendance in choice experiments: A study of doctors' prescription behaviour." Journal of Economic Behavior and Organization 96: 21-31.

Joo, J. 2019. "Rational inattention as an empirical framework - With an application to the welfare effects of new product introduction." (September 16, 2019), SSRN.

Kahneman, D. 2003a. "A perspective on judgment and choice: Mapping bounded rationality." American Psychologist 58(9):679-720.

Kahneman, D. 2003b. "Maps of bounded rationality: Psychology for behavioral economics." American Economic Review 93(5): 1449-1475.

Lagarde, M. 2013. "Investigating attribute non-attendance and its consequences in choice experiments with latent class models." Health Economics 22(5):554-567.

Leong, W., and D.A. Hensher. 2012. "Embedding multiple heuristics into choice models: An exploratory analysis." Journal of Choice Modelling 5(3): 131-144.

Malone, T., and J.L. Lusk. 2018. "A Simple diagnostic measure of inattention bias in discrete
choice models." European Review of Agricultural Economics 45(3): 455-462.
Matějka, B.F., and A. Mckay. 2015. "Rational inattention to discrete choices: A new foundation for the multinomial logit model." American Economic Review 105(1): 272-298.

McKendree, M.G.S., G.T. Tonsor, and C.A. Wolf. 2018. "Animal welfare perceptions of the U.S. public and cow-calf Producers." Journal of Agricultural and Applied Economics 50(4): 544578.

Sandorf, E.D., D. Campbell, and N. Hanley. 2017. "Disentangling the influence of knowledge on attribute non-attendance." Journal of Choice Modelling 24: 36-50.

Scarpa, R., T.J. Gilbride, D. Campbell, and D.A. Hensher. 2009. "Modelling attribute nonattendance in choice experiments for rural landscape valuation." European Review of Agricultural Economics 36(2): 151-174.

Scarpa, R., M. Thiene, and D.A. Hensher. 2010. "Monitoring choice task attribute attendance in nonmarket valuation of multiple park management services: Does it matter?" Land Economics 86(4): 817-839.

Scarpa, R., R. Zanoli, V. Bruschi, and S. Naspetti. 2013. "Inferred and stated attribute nonattendance in food choice experiments." American Journal of Agricultural Economics 95(1): 165-180.

Sims, C.A. 2003. "Implications of rational inattention." Journal of Monetary Economics 50(3): 665-690.

Thiene, M., C. Franceschinis, and R. Scarpa. 2018. "Congestion management in protected areas: accounting for respondents' inattention and preference heterogeneity in stated choice data." European Review of Agricultural Economics 46(5): 834-861.

Tonsor, G.T. 2018. "Producer decision making under uncertainty: Role of past experiences and
question framing." American Journal of Agricultural Economics 100(4): 1120-1135.
Train, K.E. 2009. Discrete Choice Methods with Simulation, The Second ed. Cambridge University Press, Cambridge.

Tversky, A. 1972. "Elimination by aspects: A theory of choice." Psychological Review 79(4): 281299.

Tversky, A., and D. Kahneman. 1974. "Judgment under uncertainty: Heuristics and biases." Science 185(4157): 1124-1131.

Weller, P., M. Oehlmann, P. Mariel, and J. Meyerhoff. 2014. "Stated and inferred attribute nonattendance in a design of designs approach." Journal of Choice Modelling 11(1): 43-56.

## Appendix A - Supplement Material for Chapter 1

Table A.1. Descriptive Structure of the FooDS Data for Discrete Choice Models by months

| Year | Month | Number of samples | Percent (\%) | Number of observations | Nnumber of respondents |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 2013 | 6 | 81,243 | 14.02 | 9,027 | 1,003 |
|  | 7 | 82,296 | 14.20 | 9,144 | 1,016 |
|  | 8 | 82,782 | 14.28 | 9,198 | 1,022 |
|  | 9 | 81,243 | 14.02 | 9,027 | 1,003 |
|  | 10 | 86,994 | 15.01 | 9,666 | 1,074 |
|  | 11 | 82,701 | 14.27 | 9,189 | 1,021 |
|  | 12 | 82,377 | 14.21 | 9,153 | 1,017 |
|  | Subtotal | 579,636 | 100.00 | 64,404 | 7,156 |
| 2014 | 1 | 81,324 | 8.2 | 9,036 | 1,004 |
|  | 2 | 82,782 | 8.35 | 9,198 | 1,022 |
|  | 3 | 84,159 | 8.48 | 9,351 | 1,039 |
|  | 4 | 82,296 | 8.30 | 9,144 | 1,016 |
|  | 5 | 82,539 | 8.32 | 9,171 | 1,019 |
|  | 6 | 83,592 | 8.43 | 9,288 | 1,032 |
|  | 7 | 82,377 | 8.30 | 9,153 | 1,017 |
|  | 8 | 81,972 | 8.26 | 9,108 | 1,012 |
|  | 9 | 84,645 | 8.53 | 9,405 | 1,045 |
|  | 10 | 82,296 | 8.30 | 9,144 | 1,016 |
|  | 11 | 81,810 | 8.25 | 9,090 | 1,010 |
|  | 12 | 82,134 | 8.28 | 9,126 | 1,014 |
|  | Subtotal | 991,926 | 100.00 | 110,214 | 12,246 |
| 2015 | 1 | 82,296 | 8.27 | 9,144 | 1,016 |
|  | 2 | 81,000 | 8.14 | 9,000 | 1,000 |
|  | 3 | 84,240 | 8.47 | 9,360 | 1,040 |
|  | 4 | 81,972 | 8.24 | 9,108 | 1,012 |
|  | 5 | 86,184 | 8.66 | 9,576 | 1,064 |
|  | 6 | 83,754 | 8.42 | 9,306 | 1,034 |
|  | 7 | 86,103 | 8.66 | 9,567 | 1,063 |
|  | 8 | 82,782 | 8.32 | 9,198 | 1,022 |
|  | 9 | 81,243 | 8.17 | 9,027 | 1,003 |
|  | 10 | 82,296 | 8.27 | 9,144 | 1,016 |
|  | 11 | 81,729 | 8.22 | 9,081 | 1,009 |
|  | 12 | 81,162 | 8.16 | 9,018 | 1,002 |
|  | Subtotal | 994,761 | 100.00 | 110,529 | 12,281 |
| 2016 | 1 | 81,000 | 8.02 | 9,000 | 1,000 |


|  | 2 | 87,885 | 8.70 | 9,765 | 1,085 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | 3 | 83,430 | 8.26 | 9,270 | 1,030 |
|  | 4 | 81,162 | 8.04 | 9,018 | 1,002 |
|  | 5 | 82,863 | 8.20 | 9,207 | 1,023 |
|  | 6 | 83,835 | 8.30 | 9,315 | 1,035 |
|  | 7 | 81,243 | 8.04 | 9,027 | 1,003 |
|  | 8 | 85,698 | 8.48 | 9,522 | 1,058 |
|  | 9 | 85,941 | 8.51 | 9,549 | 1,061 |
|  | 10 | 83,916 | 8.31 | 9,324 | 1,036 |
|  | 11 | 81,405 | 8.06 | 9,045 | 1,005 |
|  | 12 | 91,692 | 9.08 | 10,188 | 1,132 |
|  | Subtotal | 1,010,070 | 100.00 | 112,230 | 12,470 |
| 2017 | 1 | 85,779 | 8.58 | 9,531 | 1,059 |
|  | 2 | 92,502 | 9.25 | 10,278 | 1,142 |
|  | 3 | 82,458 | 8.25 | 9,162 | 1,018 |
|  | 4 | 60,750 | 6.08 | 6,750 | 750 |
|  | 5 | 83,430 | 8.35 | 9,270 | 1,030 |
|  | 6 | 84,969 | 8.50 | 9,441 | 1,049 |
|  | 7 | 83,025 | 8.31 | 9,225 | 1,025 |
|  | 8 | 83,106 | 8.31 | 9,234 | 1,026 |
|  | 9 | 91,125 | 9.12 | 10,125 | 1,125 |
|  | 10 | 85,050 | 8.51 | 9,450 | 1,050 |
|  | 11 | 84,564 | 8.46 | 9,396 | 1,044 |
|  | 12 | 82,782 | 8.28 | 9,198 | 1,022 |
|  | Subtotal | 999,540 | 100.00 | 111,060 | 12,340 |
| 2018 | 1 | 82,377 | 19.95 | 9,153 | 1,017 |
|  | 2 | 83,025 | 20.10 | 9,225 | 1,025 |
|  | 3 | 83,106 | 20.12 | 9,234 | 1,026 |
|  | 4 | 81,324 | 19.69 | 9,036 | 1,004 |
|  | 5 | 83,187 | 20.14 | 9,243 | 1,027 |
|  | Subtotal | 413,019 | 100.00 | 45,891 | 5,099 |
| Total |  | 4,988,952 |  | 554,328 | 61,592 |

Table A. 2 The Frequency of the Price Variables across the Food Types in the FooDS data

| Price | Burger | Steak | Chop | Ham | Breast | Wing | Bean | Pasta | None |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \$0.00 | - | - | - | - | - | - | 184,776 | - | 554,328 |
| \$0.50 | - | - | - | - | - | - | - | - | - |
| \$0.75 | - | - | - | - | - | 184,776 | - | - | - |
| \$1.15 | - | - | - | 184,776 |  |  | - | - | - |
| \$1.75 | - | - | - | - | 184,776 | 184,776 | - | - | - |
| \$2.00 | 184,776 | - | - | - | - | - | 184,776 | - | - |
| \$2.25 | - | - | 184,776 | - | - | - | - | - | - |
| \$2.50 | - | - | - | - | - | - | - | 184,776 | - |
| \$2.65 | - | - | - | 184,776 | - | - | - | - | - |
| \$3.25 | 184,776 | - | - | - | 184,776 | 184,776 | - | - | - |
| \$3.50 | - | - | - | - | - | - | 184,776 | - | - |
| \$3.75 | - | - | 184,776 | - | - | - | - | - | - |
| \$4.00 | - | - | - | - | - | - | - | 184,776 | - |
| \$4.15 | - | - | - | 184,776 | - | - | - | - | - |
| \$4.75 | - | - | - | - | 184,776 | - | - | - | - |
| \$5.00 | 184,776 | 184,776 | - | - | - | - | - | - | - |
| \$5.25 | - | - | 184,776 | - | - | - | - | - | - |
| \$5.50 | - | - | - | - | - | - | - | 184,776 | - |
| \$6.50 | - | 184,776 | - | - | - | - | - | - | - |
| \$8.00 | - | 184,776 | - | - | - | - | - | - | - |
| Total | 554,328 | 554,328 | 554,328 | 554,328 | 554,328 | 554,328 | 554,328 | 554,328 | 554,328 |

Table A. 3 WTP Estimates, RRS, and OOS Prediction Accuracy Rates by models

| Model | Heterogeneity | LogLikelihood | AIC | IS WTP (\$) |  |  |  |  |  |  |  | RRS <br> (\%) | $\begin{gathered} \text { OOS Pred. } \\ \text { Accuracy (\%) } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | STEAK | BREAST | BURGER | CHOP | HAM | WING | BEAN | PASTA |  |  |
| MNL1 | Base Model | -11,844.204 | 23,706.408 | $\begin{gathered} \hline 6.68 \\ (0.12) \end{gathered}$ | $\begin{gathered} \hline 5.42 \\ (0.12) \end{gathered}$ | $\begin{gathered} 4.65 \\ (0.12) \end{gathered}$ | $\begin{gathered} \hline 3.77 \\ (0.12) \end{gathered}$ | $\begin{gathered} \hline 2.33 \\ (0.13) \end{gathered}$ | $\begin{gathered} \hline 2.33 \\ (0.12) \end{gathered}$ | $\begin{gathered} 1.98 \\ (0.12) \end{gathered}$ | $\begin{gathered} 3.19 \\ (0.13) \end{gathered}$ | - | $\begin{aligned} & 32.59 \\ & (1.68) \end{aligned}$ |
| RRS1 | Base Model | -11,364.791 | 22,749.582 | $\begin{gathered} 6.14 \\ (0.15) \end{gathered}$ | $\begin{gathered} 5.18 \\ (0.13) \end{gathered}$ | $\begin{gathered} 4.55 \\ (0.13) \end{gathered}$ | $\begin{gathered} 3.94 \\ (0.13) \end{gathered}$ | $\begin{gathered} 2.49 \\ (0.13) \end{gathered}$ | $\begin{gathered} 2.41 \\ (0.13) \end{gathered}$ | $\begin{gathered} 1.77 \\ (0.13) \end{gathered}$ | $\begin{gathered} 3.19 \\ (0.14) \end{gathered}$ | $\begin{gathered} 36.7 \\ (0.04) \end{gathered}$ | $\begin{aligned} & 31.64 \\ & (2.13) \end{aligned}$ |
| RRS2 | Gender | -11,362.085 | 22,746.177 | $\begin{gathered} 6.13 \\ (0.15) \end{gathered}$ | $\begin{gathered} 5.17 \\ (0.13) \end{gathered}$ | $\begin{gathered} 4.54 \\ (0.13) \end{gathered}$ | $\begin{gathered} 3.93 \\ (0.13) \end{gathered}$ | $\begin{gathered} 2.49 \\ (0.13) \end{gathered}$ | $\begin{gathered} 2.41 \\ (0.13) \end{gathered}$ | $\begin{gathered} 1.76 \\ (0.13) \end{gathered}$ | $\begin{gathered} 3.19 \\ (0.14) \end{gathered}$ | $\begin{gathered} 36.7 \\ (0.04) \end{gathered}$ | $\begin{aligned} & 32.69 \\ & (1.72) \end{aligned}$ |
| RRS2 | AGE | -11,354.922 | 22,731.840 | $\begin{gathered} 6.11 \\ (0.14) \end{gathered}$ | $\begin{gathered} 5.14 \\ (0.13) \end{gathered}$ | $\begin{gathered} 4.51 \\ (0.13) \end{gathered}$ | $\begin{gathered} 3.92 \\ (0.13) \end{gathered}$ | $\begin{gathered} 2.47 \\ (0.13) \end{gathered}$ | $\begin{gathered} 2.38 \\ (0.13) \end{gathered}$ | $\begin{gathered} 1.74 \\ (0.13) \end{gathered}$ | $\begin{gathered} 3.16 \\ (0.14) \end{gathered}$ | $\begin{gathered} 36.6 \\ (0.04) \end{gathered}$ | $\begin{aligned} & 32.69 \\ & (1.72) \end{aligned}$ |
| RRS2 | EDU | -11,362.552 | 22,747.108 | $\begin{gathered} 6.14 \\ (0.15) \end{gathered}$ | $\begin{gathered} 5.17 \\ (0.13) \end{gathered}$ | $\begin{gathered} 4.55 \\ (0.13) \end{gathered}$ | $\begin{gathered} 3.94 \\ (0.13) \end{gathered}$ | $\begin{gathered} 2.49 \\ (0.13) \end{gathered}$ | $\begin{gathered} 2.41 \\ (0.13) \end{gathered}$ | $\begin{gathered} 1.76 \\ (0.13) \end{gathered}$ | $\begin{gathered} 3.19 \\ (0.14) \end{gathered}$ | $\begin{gathered} 38.0 \\ (0.04) \end{gathered}$ | $\begin{aligned} & 32.69 \\ & (1.72) \end{aligned}$ |
| RRS2 | HSIZE | -11,363.158 | 22,748.310 | $\begin{gathered} 6.14 \\ (0.15) \end{gathered}$ | $\begin{gathered} 5.17 \\ (0.13) \end{gathered}$ | $\begin{gathered} 4.54 \\ (0.13) \end{gathered}$ | $\begin{gathered} 3.94 \\ (0.13) \end{gathered}$ | $\begin{gathered} 2.49 \\ (0.13) \end{gathered}$ | $\begin{gathered} 2.41 \\ (0.13) \end{gathered}$ | $\begin{gathered} 1.76 \\ (0.13) \end{gathered}$ | $\begin{gathered} 3.19 \\ (0.14) \end{gathered}$ | $\begin{gathered} 36.8 \\ (0.04) \end{gathered}$ | $\begin{aligned} & 32.69 \\ & (1.72) \end{aligned}$ |
| RRS2 | HINC | -11,362.682 | 22,747.372 | $\begin{gathered} 6.13 \\ (0.15) \end{gathered}$ | $\begin{gathered} 5.16 \\ (0.13) \end{gathered}$ | $\begin{gathered} 4.54 \\ (0.13) \end{gathered}$ | $\begin{gathered} 3.93 \\ (0.13) \end{gathered}$ | $\begin{gathered} 2.49 \\ (0.13) \end{gathered}$ | $\begin{gathered} 2.40 \\ (0.13) \end{gathered}$ | $\begin{gathered} 1.76 \\ (0.13) \end{gathered}$ | $\begin{gathered} 3.18 \\ (0.14) \end{gathered}$ | $\begin{gathered} 37.2 \\ (0.04) \end{gathered}$ | $\begin{aligned} & 32.69 \\ & (1.72) \end{aligned}$ |
| RRS2 | SCTIME | -11,363.116 | 22,748.230 | $\begin{gathered} 6.14 \\ (0.15) \end{gathered}$ | $\begin{gathered} 5.17 \\ (0.13) \end{gathered}$ | $\begin{gathered} 4.54 \\ (0.13) \end{gathered}$ | $\begin{gathered} 3.94 \\ (0.13) \\ \hline \end{gathered}$ | $\begin{gathered} 2.49 \\ (0.13) \end{gathered}$ | $\begin{gathered} 2.41 \\ (0.13) \end{gathered}$ | $\begin{gathered} 1.76 \\ (0.13) \end{gathered}$ | $\begin{gathered} 3.19 \\ (0.14) \end{gathered}$ | $\begin{gathered} 36.8 \\ (0.04) \end{gathered}$ | $\begin{aligned} & 32.69 \\ & (1.72) \end{aligned}$ |
| MNL2 | Gender | -11,772.485 | 23,580.965 | $\begin{gathered} 6.76 \\ (0.18) \end{gathered}$ | $\begin{gathered} 5.50 \\ (0.18) \end{gathered}$ | $\begin{gathered} \hline 4.74 \\ (0.17) \end{gathered}$ | $\begin{gathered} \hline 3.86 \\ (0.18) \end{gathered}$ | $\begin{gathered} \hline 2.41 \\ (0.19) \end{gathered}$ | $\begin{gathered} 2.41 \\ (0.17) \end{gathered}$ | $\begin{gathered} \hline 2.03 \\ (0.18) \end{gathered}$ | $\begin{gathered} \hline 3.20 \\ (0.20) \end{gathered}$ | - | $\begin{aligned} & 32.62 \\ & (1.73) \end{aligned}$ |
| RRS3 |  | -11,322.504 | 22,683.010 | $\begin{gathered} 6.29 \\ (0.23) \end{gathered}$ | $\begin{gathered} 5.29 \\ (0.20) \end{gathered}$ | $\begin{gathered} 4.68 \\ (0.20) \end{gathered}$ | $\begin{gathered} 4.06 \\ (0.20) \end{gathered}$ | $\begin{gathered} 2.60 \\ (0.20) \end{gathered}$ | $\begin{gathered} 2.52 \\ (0.20) \end{gathered}$ | $\begin{gathered} 1.85 \\ (0.21) \end{gathered}$ | $\begin{gathered} 3.21 \\ (0.22) \end{gathered}$ | $\begin{gathered} 35.8 \\ (0.03) \end{gathered}$ | $\begin{aligned} & 32.78 \\ & (1.75) \end{aligned}$ |
| MNL2 | AGE | -11,747.170 | 23,530.343 | $\begin{gathered} \hline 7.07 \\ (0.21) \end{gathered}$ | $\begin{gathered} 5.85 \\ (0.23) \end{gathered}$ | $\begin{gathered} \hline 5.03 \\ (0.21) \end{gathered}$ | $\begin{gathered} 3.97 \\ (0.21) \end{gathered}$ | $\begin{gathered} 2.64 \\ (0.21) \end{gathered}$ | $\begin{gathered} 2.73 \\ (0.21) \end{gathered}$ | $\begin{gathered} 2.32 \\ (0.21) \end{gathered}$ | $\begin{gathered} 3.51 \\ (0.22) \end{gathered}$ | - | $\begin{aligned} & 32.76 \\ & (1.75) \end{aligned}$ |
| RRS3 |  | -11,300.629 | 22,639.255 | $\begin{gathered} 6.67 \\ (0.28) \end{gathered}$ | $\begin{gathered} 5.74 \\ (0.26) \end{gathered}$ | $\begin{gathered} 5.09 \\ (0.26) \end{gathered}$ | $\begin{gathered} 4.27 \\ (0.25) \end{gathered}$ | $\begin{gathered} 2.94 \\ (0.25) \end{gathered}$ | $\begin{gathered} 2.98 \\ (0.25) \end{gathered}$ | $\begin{gathered} 2.23 \\ (0.25) \end{gathered}$ | $\begin{gathered} 3.63 \\ (0.26) \end{gathered}$ | $\begin{gathered} 34.8 \\ (0.04) \end{gathered}$ | $\begin{aligned} & 32.86 \\ & (1.78) \end{aligned}$ |
| MNL2 | EDU | -11,790.312 | 23,616.622 | $\begin{gathered} \hline 6.85 \\ (0.18) \end{gathered}$ | $\begin{gathered} \hline 5.60 \\ (0.18) \end{gathered}$ | $\begin{gathered} \hline 4.72 \\ (0.17) \end{gathered}$ | $\begin{gathered} \hline 3.89 \\ (0.18) \end{gathered}$ | $\begin{gathered} \hline 2.40 \\ (0.19) \end{gathered}$ | $\begin{gathered} \hline 2.40 \\ (0.18) \end{gathered}$ | $\begin{gathered} 2.12 \\ (0.18) \end{gathered}$ | $\begin{gathered} \hline 3.30 \\ (0.20) \end{gathered}$ | - | $\begin{aligned} & 32.49 \\ & (1.61) \end{aligned}$ |
| RRS3 |  | -11,321.358 | 22,680.718 | $\begin{gathered} 6.30 \\ (0.22) \end{gathered}$ | $\begin{gathered} 5.33 \\ (0.20) \end{gathered}$ | $\begin{gathered} 4.62 \\ (0.20) \end{gathered}$ | $\begin{gathered} 4.05 \\ (0.20) \end{gathered}$ | $\begin{gathered} 2.56 \\ (0.20) \end{gathered}$ | $\begin{gathered} 2.48 \\ (0.20) \end{gathered}$ | $\begin{gathered} 1.86 \\ (0.20) \end{gathered}$ | $\begin{gathered} 3.28 \\ (0.21) \end{gathered}$ | $\begin{gathered} 36.2 \\ (0.03) \end{gathered}$ | $\begin{aligned} & 32.82 \\ & (1.70) \end{aligned}$ |
| MNL2 | HSIZE | -11,801.875 | 23,639.745 | $\begin{gathered} \hline 7.06 \\ (0.21) \end{gathered}$ | $\begin{gathered} \hline 5.81 \\ (0.22) \end{gathered}$ | $\begin{gathered} \hline 5.01 \\ (0.21) \end{gathered}$ | $\begin{gathered} \hline 4.08 \\ (0.21) \end{gathered}$ | $\begin{gathered} \hline 2.64 \\ (0.21) \end{gathered}$ | $\begin{gathered} 2.71 \\ (0.21) \end{gathered}$ | $\begin{gathered} 2.26 \\ (0.21) \end{gathered}$ | $\begin{gathered} 3.50 \\ (0.22) \end{gathered}$ | - | $\begin{aligned} & 32.56 \\ & (1.66) \end{aligned}$ |
| RRS3 |  | -11,338.327 | 22,714.645 | $\begin{gathered} 6.41 \\ (0.25) \end{gathered}$ | $\begin{gathered} 5.44 \\ (0.23) \end{gathered}$ | $\begin{gathered} 4.81 \\ (0.24) \\ \hline \end{gathered}$ | $\begin{gathered} 4.16 \\ (0.23) \end{gathered}$ | $\begin{gathered} 2.72 \\ (0.23) \end{gathered}$ | $\begin{gathered} 2.70 \\ (0.23) \end{gathered}$ | $\begin{gathered} 1.96 \\ (0.23) \end{gathered}$ | $\begin{gathered} 3.42 \\ (0.25) \end{gathered}$ | $\begin{gathered} 36.0 \\ (0.04) \end{gathered}$ | 32.64 <br> (1.73) |
| MNL2 | HINC | -11,756.283 | 23,548.562 | $\begin{gathered} 6.97 \\ (0.19) \end{gathered}$ | $\begin{gathered} 5.72 \\ (0.19) \end{gathered}$ | $\begin{gathered} 4.85 \\ (0.18) \end{gathered}$ | $\begin{gathered} 4.02 \\ (0.19) \end{gathered}$ | $\begin{gathered} \hline 2.48 \\ (0.19) \end{gathered}$ | $\begin{gathered} 2.47 \\ (0.18) \end{gathered}$ | $\begin{gathered} 2.16 \\ (0.19) \end{gathered}$ | $\begin{gathered} 3.40 \\ (0.20) \end{gathered}$ | - | $\begin{aligned} & 32.84 \\ & (1.58) \end{aligned}$ |
| RRS3 |  | -11,290.143 | 22,618.283 | $\begin{gathered} 6.42 \\ (0.22) \end{gathered}$ | $\begin{gathered} 5.41 \\ (0.20) \end{gathered}$ | $\begin{gathered} 4.71 \\ (0.20) \end{gathered}$ | $\begin{gathered} 4.15 \\ (0.19) \\ \hline \end{gathered}$ | $\begin{gathered} 2.59 \\ (0.19) \end{gathered}$ | $\begin{gathered} 2.50 \\ (0.19) \end{gathered}$ | $\begin{gathered} 1.84 \\ (0.20) \end{gathered}$ | $\begin{gathered} 3.32 \\ (0.21) \end{gathered}$ | $\begin{gathered} 35.5 \\ (0.03) \end{gathered}$ | $\begin{aligned} & 33.06 \\ & (1.71) \end{aligned}$ |
| MNL2 | SCTIME | -11,814.439 | 23,664.880 | $\begin{gathered} \hline 6.50 \\ (0.18) \end{gathered}$ | $\begin{gathered} 5.24 \\ (0.18) \end{gathered}$ | $\begin{gathered} 4.52 \\ (0.17) \end{gathered}$ | $\begin{gathered} \hline 3.71 \\ (0.18) \end{gathered}$ | $\begin{gathered} \hline 2.27 \\ (0.19) \end{gathered}$ | $\begin{gathered} 2.29 \\ (0.18) \end{gathered}$ | $\begin{gathered} 1.92 \\ (0.18) \end{gathered}$ | $\begin{gathered} 3.13 \\ (0.20) \end{gathered}$ | - | $\begin{aligned} & \hline 32.64 \\ & (1.69) \end{aligned}$ |
| RRS3 |  | -11,338.058 | 22,714.113 | $\begin{gathered} 6.02 \\ (0.22) \end{gathered}$ | $\begin{gathered} 5.00 \\ (0.19) \end{gathered}$ | $\begin{gathered} 4.42 \\ (0.19) \end{gathered}$ | $\begin{gathered} 3.85 \\ (0.19) \end{gathered}$ | $\begin{gathered} 2.41 \\ (0.19) \end{gathered}$ | $\begin{gathered} 2.35 \\ (0.19) \end{gathered}$ | $\begin{gathered} 1.73 \\ (0.19) \end{gathered}$ | $\begin{gathered} 3.10 \\ (0.22) \end{gathered}$ | $\begin{gathered} 36.5 \\ (0.04) \end{gathered}$ | $\begin{aligned} & 32.76 \\ & (1.79) \end{aligned}$ |

Note: RRS, In-sample (IS) willingness-to-pay (WTP) for each food type, Out-of-sample (OOS) prediction accuracy are the averages of values from 60 individual model estimations. Numbers described in parentheses are also the mean values of 60 individual standard errors for willingness to pay for each food type. We use the delta method to get the standard errors in NLOGIT 7.0. Numbers presented in parentheses for RRS and OOS Predictive Accuracy are the standard deviations.


Figure A. 1 WTP estimates by the MNL 1, RRS 1, and RRS 2


Figure A. 2 WTP estimates by the MNL 1, RRS 1, and RRS 2 (Continues)

Table A. 4 OOS Prediction Results based on Base Models (MNL 1 and RRS 1)

| Year | Month | MNL 1 Prediction |  |  |  | RRS 1 Prediction |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Correct |  | Incorrect |  | Correct |  | Incorrect |  |
|  |  | $\mathrm{A}_{\mathrm{it}}=1$ |  | $\mathrm{A}_{\text {it }}=0$ |  | $\mathrm{A}_{\text {it }}=1$ |  | $\mathrm{A}_{\text {it }}=0$ |  |
|  |  | Frequency | Percent (\%) | Frequency | Percent (\%) | Frequency | Percent (\%) | Frequency | Percent <br> (\%) |
| 2013 | 6 | 986 | 32.80 | 2020 | 67.20 | 975 | 32.44 | 2,031 | 67.56 |
|  | 7 | 1,047 | 34.42 | 1995 | 65.58 | 948 | 31.16 | 2,094 | 68.84 |
|  | 8 | 1,057 | 34.54 | 2003 | 65.46 | 947 | 30.95 | 2,113 | 69.05 |
|  | 9 | 1,034 | 34.40 | 1972 | 65.60 | 999 | 33.23 | 2,007 | 66.77 |
|  | 10 | 1,092 | 33.99 | 2121 | 66.01 | 938 | 29.19 | 2,275 | 70.81 |
|  | 11 | 1,034 | 33.79 | 2026 | 66.21 | 974 | 31.83 | 2,086 | 68.17 |
|  | 12 | 1,010 | 33.20 | 2032 | 66.80 | 931 | 30.60 | 2,111 | 69.40 |
| 2014 | 1 | 975 | 32.44 | 2031 | 67.56 | 974 | 32.40 | 2,032 | 67.60 |
|  | 2 | 1,023 | 33.43 | 2037 | 66.57 | 1,037 | 33.89 | 2,023 | 66.11 |
|  | 3 | 1,092 | 35.07 | 2,022 | 64.93 | 1,089 | 34.97 | 2,025 | 65.03 |
|  | 4 | 940 | 30.90 | 2,102 | 69.10 | 920 | 30.24 | 2,122 | 69.76 |
|  | 5 | 1,055 | 34.58 | 1,996 | 65.42 | 1,059 | 34.71 | 1,992 | 65.29 |
|  | 6 | 1,030 | 33.37 | 2,057 | 66.63 | 1,040 | 33.69 | 2,047 | 66.31 |
|  | 7 | 1,001 | 32.91 | 2,041 | 67.09 | 971 | 31.92 | 2,071 | 68.08 |
|  | 8 | 1,017 | 33.53 | 2,016 | 66.47 | 997 | 32.87 | 2,036 | 67.13 |
|  | 9 | 1,055 | 33.68 | 2,077 | 66.32 | 1,041 | 33.24 | 2,091 | 66.76 |
|  | 10 | 963 | 31.66 | 2,079 | 68.34 | 885 | 29.09 | 2,157 | 70.91 |
|  | 11 | 1,014 | 33.53 | 2,010 | 66.47 | 976 | 32.28 | 2,048 | 67.72 |
|  | 12 | 990 | 32.64 | 2,043 | 67.36 | 927 | 30.56 | 2,106 | 69.44 |
| 2015 | 1 | 1,021 | 33.56 | 2,021 | 66.44 | 1,025 | 33.69 | 2,017 | 66.31 |
|  | 2 | 944 | 31.50 | 2,053 | 68.50 | 949 | 31.66 | 2,048 | 68.34 |
|  | 3 | 943 | 30.28 | 2,171 | 69.72 | 967 | 31.05 | 2,147 | 68.95 |
|  | 4 | 951 | 31.36 | 2,082 | 68.64 | 938 | 30.93 | 2,095 | 69.07 |
|  | 5 | 1,019 | 31.98 | 2,167 | 68.02 | 1,017 | 31.92 | 2,169 | 68.08 |
|  | 6 | 980 | 31.65 | 2,116 | 68.35 | 980 | 31.65 | 2,116 | 68.35 |
|  | 7 | 989 | 31.04 | 2,197 | 68.96 | 971 | 30.48 | 2,215 | 69.52 |
|  | 8 | 1,054 | 34.44 | 2,006 | 65.56 | 987 | 32.25 | 2,073 | 67.75 |
|  | 9 | 974 | 32.40 | 2,032 | 67.60 | 861 | 28.64 | 2,145 | 71.36 |
|  | 10 | 1,015 | 33.37 | 2,027 | 66.63 | 996 | 32.74 | 2,046 | 67.26 |
|  | 11 | 933 | 30.85 | 2,091 | 69.15 | 803 | 26.55 | 2,221 | 73.45 |
|  | 12 | 965 | 32.20 | 2,032 | 67.80 | 933 | 31.13 | 2,064 | 68.87 |
| 2016 | 1 | 1,045 | 34.87 | 1,952 | 65.13 | 1,056 | 35.24 | 1,941 | 64.76 |
|  | 2 | 1,113 | 34.26 | 2,136 | 65.74 | 1,120 | 34.47 | 2,129 | 65.53 |
|  | 3 | 1,051 | 34.05 | 2,036 | 65.95 | 1,076 | 34.86 | 2,011 | 65.14 |
|  | 4 | 988 | 32.97 | 2,009 | 67.03 | 994 | 33.17 | 2,003 | 66.83 |
|  | 5 | 962 | 31.44 | 2,098 | 68.56 | 953 | 31.14 | 2,107 | 68.86 |
|  | 6 | 928 | 29.97 | 2,168 | 70.03 | 928 | 29.97 | 2,168 | 70.03 |
|  | 7 | 820 | 27.28 | 2,186 | 72.72 | 765 | 25.45 | 2,241 | 74.55 |


|  | 8 | 955 | 30.15 | 2,213 | 69.85 | 919 | 29.01 | 2,249 | 70.99 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 9 | 870 | 27.38 | 2,307 | 72.62 | 808 | 25.43 | 2,369 | 74.57 |
|  | 10 | 955 | 30.76 | 2,150 | 69.24 | 916 | 29.50 | 2,189 | 70.50 |
|  | 11 | 973 | 32.37 | 2,033 | 67.63 | 917 | 30.51 | 2,089 | 69.49 |
|  | 12 | 1,142 | 33.66 | 2,251 | 66.34 | 1,098 | 32.36 | 2,295 | 67.64 |
| 2017 | 1 | 969 | 30.59 | 2,199 | 69.41 | 959 | 30.27 | 2,209 | 69.73 |
|  | 2 | 1,121 | 32.78 | 2,299 | 67.22 | 1,118 | 32.69 | 2,302 | 67.31 |
|  | 3 | 962 | 31.53 | 2,089 | 68.47 | 947 | 31.04 | 2,104 | 68.96 |
|  | 4 | 713 | 31.82 | 1,528 | 68.18 | 701 | 31.28 | 1,540 | 68.72 |
|  | 5 | 1,071 | 34.69 | 2,016 | 65.31 | 1,076 | 34.86 | 2,011 | 65.14 |
|  | 6 | 1,124 | 35.78 | 2,017 | 64.22 | 1,133 | 36.07 | 2,008 | 63.93 |
|  | 7 | 1,017 | 33.14 | 2,052 | 66.86 | 926 | 30.17 | 2,143 | 69.83 |
|  | 8 | 1,041 | 33.92 | 2,028 | 66.08 | 1,012 | 32.97 | 2,057 | 67.03 |
|  | 9 | 1,163 | 34.55 | 2,203 | 65.45 | 1,076 | 31.97 | 2,290 | 68.03 |
|  | 10 | 1,003 | 31.93 | 2,138 | 68.07 | 955 | 30.40 | 2,186 | 69.60 |
|  | 11 | 1,011 | 32.37 | 2,112 | 67.63 | 960 | 30.74 | 2,163 | 69.26 |
|  | 12 | 1,033 | 33.76 | 2,027 | 66.24 | 994 | 32.48 | 2,066 | 67.52 |
| 2018 | 1 | 965 | 31.72 | 2,077 | 68.28 | 960 | 31.56 | 2,082 | 68.44 |
|  | 2 | 992 | 32.32 | 2,077 | 67.68 | 1,002 | 32.65 | 2,067 | 67.35 |
|  | 3 | 979 | 31.90 | 2,090 | 68.10 | 979 | 31.90 | 2,090 | 68.10 |
|  | 4 | 981 | 32.63 | 2,025 | 67.37 | 970 | 32.27 | 2,036 | 67.73 |
|  | 5 | 967 | 31.42 | 2,111 | 68.58 | 992 | 32.23 | 2,086 | 67.77 |
| Average |  | 1,002 | 32.59 | 2,072 | 67.41 | 3,074 | 100.00 | 973 | 31.64 |

Table A. 5 OOS Prediction Results based on MNL 1 and RRS 2

| Year | Month | MNL 1 Prediction |  |  |  | RRS 2 Prediction |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Correct |  | Incorrect |  | Correct |  | Incorrect |  |
|  |  | $\mathrm{A}_{\mathrm{it}}=1$ |  | $\mathrm{A}_{\text {it }}=0$ |  | $\mathrm{A}_{\mathrm{it}}=1$ |  | $\mathrm{A}_{\text {it }}=0$ |  |
|  |  | Frequency | Percent (\%) | Frequency | Percent (\%) | Frequency | Percent (\%) | Frequency | Percent <br> (\%) |
| 2013 | 6 | 986 | 32.80 | 2020 | 67.20 | 975 | 32.44 | 2,031 | 67.56 |
|  | 7 | 1,047 | 34.42 | 1995 | 65.58 | 948 | 31.16 | 2,094 | 68.84 |
|  | 8 | 1,057 | 34.54 | 2003 | 65.46 | 947 | 30.95 | 2,113 | 69.05 |
|  | 9 | 1,034 | 34.40 | 1972 | 65.60 | 999 | 33.23 | 2,007 | 66.77 |
|  | 10 | 1,092 | 33.99 | 2121 | 66.01 | 938 | 29.19 | 2,275 | 70.81 |
|  | 11 | 1,034 | 33.79 | 2026 | 66.21 | 974 | 31.83 | 2,086 | 68.17 |
|  | 12 | 1,010 | 33.20 | 2032 | 66.80 | 931 | 30.60 | 2,111 | 69.40 |
| 2014 | 1 | 975 | 32.44 | 2031 | 67.56 | 974 | 32.40 | 2,032 | 67.60 |
|  | 2 | 1,023 | 33.43 | 2037 | 66.57 | 1,037 | 33.89 | 2,023 | 66.11 |
|  | 3 | 1,092 | 35.07 | 2,022 | 64.93 | 1,089 | 34.97 | 2,025 | 65.03 |
|  | 4 | 940 | 30.90 | 2,102 | 69.10 | 920 | 30.24 | 2,122 | 69.76 |
|  | 5 | 1,055 | 34.58 | 1,996 | 65.42 | 1,059 | 34.71 | 1,992 | 65.29 |
|  | 6 | 1,030 | 33.37 | 2,057 | 66.63 | 1,040 | 33.69 | 2,047 | 66.31 |
|  | 7 | 1,001 | 32.91 | 2,041 | 67.09 | 971 | 31.92 | 2,071 | 68.08 |
|  | 8 | 1,017 | 33.53 | 2,016 | 66.47 | 997 | 32.87 | 2,036 | 67.13 |
|  | 9 | 1,055 | 33.68 | 2,077 | 66.32 | 1,041 | 33.24 | 2,091 | 66.76 |
|  | 10 | 963 | 31.66 | 2,079 | 68.34 | 885 | 29.09 | 2,157 | 70.91 |
|  | 11 | 1,014 | 33.53 | 2,010 | 66.47 | 976 | 32.28 | 2,048 | 67.72 |
|  | 12 | 990 | 32.64 | 2,043 | 67.36 | 927 | 30.56 | 2,106 | 69.44 |
| 2015 | 1 | 1,021 | 33.56 | 2,021 | 66.44 | 1,025 | 33.69 | 2,017 | 66.31 |
|  | 2 | 944 | 31.50 | 2,053 | 68.50 | 949 | 31.66 | 2,048 | 68.34 |
|  | 3 | 943 | 30.28 | 2,171 | 69.72 | 967 | 31.05 | 2,147 | 68.95 |
|  | 4 | 951 | 31.36 | 2,082 | 68.64 | 938 | 30.93 | 2,095 | 69.07 |
|  | 5 | 1,019 | 31.98 | 2,167 | 68.02 | 1,017 | 31.92 | 2,169 | 68.08 |
|  | 6 | 980 | 31.65 | 2,116 | 68.35 | 980 | 31.65 | 2,116 | 68.35 |
|  | 7 | 989 | 31.04 | 2,197 | 68.96 | 971 | 30.48 | 2,215 | 69.52 |
|  | 8 | 1,054 | 34.44 | 2,006 | 65.56 | 987 | 32.25 | 2,073 | 67.75 |
|  | 9 | 974 | 32.40 | 2,032 | 67.60 | 861 | 28.64 | 2,145 | 71.36 |
|  | 10 | 1,015 | 33.37 | 2,027 | 66.63 | 996 | 32.74 | 2,046 | 67.26 |
|  | 11 | 933 | 30.85 | 2,091 | 69.15 | 803 | 26.55 | 2,221 | 73.45 |
|  | 12 | 965 | 32.20 | 2,032 | 67.80 | 933 | 31.13 | 2,064 | 68.87 |
| 2016 | 1 | 1,045 | 34.87 | 1,952 | 65.13 | 1,056 | 35.24 | 1,941 | 64.76 |
|  | 2 | 1,113 | 34.26 | 2,136 | 65.74 | 1,120 | 34.47 | 2,129 | 65.53 |
|  | 3 | 1,051 | 34.05 | 2,036 | 65.95 | 1,076 | 34.86 | 2,011 | 65.14 |
|  | 4 | 988 | 32.97 | 2,009 | 67.03 | 994 | 33.17 | 2,003 | 66.83 |
|  | 5 | 962 | 31.44 | 2,098 | 68.56 | 953 | 31.14 | 2,107 | 68.86 |
|  | 6 | 928 | 29.97 | 2,168 | 70.03 | 928 | 29.97 | 2,168 | 70.03 |
|  | 7 | 820 | 27.28 | 2,186 | 72.72 | 765 | 25.45 | 2,241 | 74.55 |


|  | 8 | 955 | 30.15 | 2,213 | 69.85 | 919 | 29.01 | 2,249 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
|  | 9 | 870 | 27.38 | 2,307 | 72.62 | 808 | 25.43 | 2,369 |

Table A. 6 OOS Prediction Results based on MNL 2 and RRS 3 (GEN Interaction Terms)

| Year | Month | MNL 2 Prediction (GEN) |  |  |  | RRS 3 Prediction (GEN) |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Correct |  | Incorrect |  | Correct |  | Incorrect |  |
|  |  | $\mathrm{A}_{\mathrm{it}}=1$ |  | $\mathrm{A}_{\mathrm{it}}=0$ |  | $\mathrm{A}_{\mathrm{it}}=1$ |  | $\mathrm{A}_{\mathrm{it}}=0$ |  |
|  |  | Frequency | Percent (\%) |
| 2013 | 6 | 985 | 32.77 | 2,021 | 67.23 | 988 | 32.87 | 2,018 | 67.13 |
|  | 7 | 1,046 | 34.39 | 1,996 | 65.61 | 1,050 | 34.52 | 1,992 | 65.48 |
|  | 8 | 1,078 | 35.23 | 1,982 | 64.77 | 1,084 | 35.42 | 1,976 | 64.58 |
|  | 9 | 1,038 | 34.53 | 1,968 | 65.47 | 1,050 | 34.93 | 1,956 | 65.07 |
|  | 10 | 1,096 | 34.11 | 2,117 | 65.89 | 1,107 | 34.45 | 2,106 | 65.55 |
|  | 11 | 1,030 | 33.66 | 2,030 | 66.34 | 1,038 | 33.92 | 2,022 | 66.08 |
|  | 12 | 1,016 | 33.40 | 2,026 | 66.60 | 1,018 | 33.46 | 2,024 | 66.54 |
| 2014 | 1 | 974 | 32.40 | 2,032 | 67.60 | 985 | 32.77 | 2,021 | 67.23 |
|  | 2 | 1,048 | 34.25 | 2,012 | 65.75 | 1,043 | 34.08 | 2,017 | 65.92 |
|  | 3 | 1,091 | 35.04 | 2,023 | 64.96 | 1,058 | 33.98 | 2,056 | 66.02 |
|  | 4 | 961 | 31.59 | 2,081 | 68.41 | 952 | 31.30 | 2,090 | 68.70 |
|  | 5 | 1,061 | 34.78 | 1,990 | 65.22 | 1,078 | 35.33 | 1,973 | 64.67 |
|  | 6 | 1,030 | 33.37 | 2,057 | 66.63 | 1,048 | 33.95 | 2,039 | 66.05 |
|  | 7 | 999 | 32.84 | 2,043 | 67.16 | 1,003 | 32.97 | 2,039 | 67.03 |
|  | 8 | 1,020 | 33.63 | 2,013 | 66.37 | 1,015 | 33.47 | 2,018 | 66.53 |
|  | 9 | 1,050 | 33.52 | 2,082 | 66.48 | 1,066 | 34.04 | 2,066 | 65.96 |
|  | 10 | 965 | 31.72 | 2,077 | 68.28 | 940 | 30.90 | 2,102 | 69.10 |
|  | 11 | 1,022 | 33.80 | 2,002 | 66.20 | 1,026 | 33.93 | 1,998 | 66.07 |
|  | 12 | 1,004 | 33.10 | 2,029 | 66.90 | 1,011 | 33.33 | 2,022 | 66.67 |
| 2015 | 1 | 1,027 | 33.76 | 2,015 | 66.24 | 1,020 | 33.53 | 2,022 | 66.47 |
|  | 2 | 940 | 31.36 | 2,057 | 68.64 | 951 | 31.73 | 2,046 | 68.27 |
|  | 3 | 954 | 30.64 | 2,160 | 69.36 | 984 | 31.60 | 2,130 | 68.40 |
|  | 4 | 949 | 31.29 | 2,084 | 68.71 | 946 | 31.19 | 2,087 | 68.81 |
|  | 5 | 1,015 | 31.86 | 2,171 | 68.14 | 1,024 | 32.14 | 2,162 | 67.86 |
|  | 6 | 993 | 32.07 | 2,103 | 67.93 | 985 | 31.82 | 2,111 | 68.18 |
|  | 7 | 1,017 | 31.92 | 2,169 | 68.08 | 1,013 | 31.80 | 2,173 | 68.20 |
|  | 8 | 1,053 | 34.41 | 2,007 | 65.59 | 1,042 | 34.05 | 2,018 | 65.95 |
|  | 9 | 971 | 32.30 | 2,035 | 67.70 | 993 | 33.03 | 2,013 | 66.97 |
|  | 10 | 1,025 | 33.69 | 2,017 | 66.31 | 1,006 | 33.07 | 2,036 | 66.93 |
|  | 11 | 950 | 31.42 | 2,074 | 68.58 | 954 | 31.55 | 2,070 | 68.45 |
|  | 12 | 973 | 32.47 | 2,024 | 67.53 | 962 | 32.10 | 2,035 | 67.90 |
| 2016 | 1 | 1,015 | 33.87 | 1,982 | 66.13 | 1,056 | 35.24 | 1,941 | 64.76 |
|  | 2 | 1,136 | 34.96 | 2,113 | 65.04 | 1,141 | 35.12 | 2,108 | 64.88 |
|  | 3 | 1,056 | 34.21 | 2,031 | 65.79 | 1,068 | 34.60 | 2,019 | 65.40 |
|  | 4 | 950 | 31.70 | 2,047 | 68.30 | 992 | 33.10 | 2,005 | 66.90 |
|  | 5 | 960 | 31.37 | 2,100 | 68.63 | 957 | 31.27 | 2,103 | 68.73 |
|  | 6 | 927 | 29.94 | 2,169 | 70.06 | 922 | 29.78 | 2,174 | 70.22 |
|  | 7 | 816 | 27.15 | 2,190 | 72.85 | 824 | 27.41 | 2,182 | 72.59 |


|  | 8 | 951 | 30.02 | 2,217 | 69.98 | 951 | 30.02 | 2,217 | 69.98 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 9 | 852 | 26.82 | 2,325 | 73.18 | 883 | 27.79 | 2,294 | 72.21 |
|  | 10 | 946 | 30.47 | 2,159 | 69.53 | 959 | 30.89 | 2,146 | 69.11 |
|  | 11 | 967 | 32.17 | 2,039 | 67.83 | 968 | 32.20 | 2,038 | 67.80 |
|  | 12 | 1,124 | 33.13 | 2,269 | 66.87 | 1,129 | 33.27 | 2,264 | 66.73 |
| 2017 | 1 | 963 | 30.40 | 2,205 | 69.60 | 967 | 30.52 | 2,201 | 69.48 |
|  | 2 | 1,106 | 32.34 | 2,314 | 67.66 | 1,102 | 32.22 | 2,318 | 67.78 |
|  | 3 | 952 | 31.20 | 2,099 | 68.80 | 948 | 31.07 | 2,103 | 68.93 |
|  | 4 | 709 | 31.64 | 1,532 | 68.36 | 699 | 31.19 | 1,542 | 68.81 |
|  | 5 | 1,024 | 33.17 | 2,063 | 66.83 | 1,078 | 34.92 | 2,009 | 65.08 |
|  | 6 | 1,121 | 35.69 | 2,020 | 64.31 | 1,133 | 36.07 | 2,008 | 63.93 |
|  | 7 | 1,031 | 33.59 | 2,038 | 66.41 | 1,036 | 33.76 | 2,033 | 66.24 |
|  | 8 | 1,027 | 33.46 | 2,042 | 66.54 | 1,047 | 34.12 | 2,022 | 65.88 |
|  | 9 | 1,162 | 34.52 | 2,204 | 65.48 | 1,171 | 34.79 | 2,195 | 65.21 |
|  | 10 | 1,008 | 32.09 | 2,133 | 67.91 | 1,014 | 32.28 | 2,127 | 67.72 |
|  | 11 | 1,028 | 32.92 | 2,095 | 67.08 | 1,013 | 32.44 | 2,110 | 67.56 |
|  | 12 | 1,046 | 34.18 | 2,014 | 65.82 | 1,036 | 33.86 | 2,024 | 66.14 |
| 2018 | 1 | 964 | 31.69 | 2,078 | 68.31 | 972 | 31.95 | 2,070 | 68.05 |
|  | 2 | 1,011 | 32.94 | 2,058 | 67.06 | 1,004 | 32.71 | 2,065 | 67.29 |
|  | 3 | 980 | 31.93 | 2,089 | 68.07 | 990 | 32.26 | 2,079 | 67.74 |
|  | 4 | 986 | 32.80 | 2,020 | 67.20 | 984 | 32.73 | 2,022 | 67.27 |
|  | 5 | 969 | 31.48 | 2,109 | 68.52 | 976 | 31.71 | 2,102 | 68.29 |
| Average |  | 1,003 | 32.62 | 2,071 | 67.38 | 1,008 | 32.78 | 2,066 | 67.22 |

Table A. 7 OOS Prediction Results based on MNL 2 and RRS 3 (AGE Interaction Terms)

| Year | Month | MNL 2 Prediction (AGE) |  |  |  | RRS 3 Prediction (AGE) |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Correct |  | Incorrect |  | Correct |  | Incorrect |  |
|  |  | $\mathrm{A}_{\mathrm{it}}=1$ |  | $\mathrm{A}_{\mathrm{it}}=0$ |  | $\mathrm{A}_{\mathrm{it}}=1$ |  | $\mathrm{A}_{\mathrm{it}}=0$ |  |
|  |  | Frequency | Percent (\%) |
| 2013 | 6 | 992 | 33.00 | 2,014 | 67.00 | 979 | 32.57 | 2,027 | 67.43 |
|  | 7 | 1,061 | 34.88 | 1,981 | 65.12 | 1,066 | 35.04 | 1,976 | 64.96 |
|  | 8 | 1,064 | 34.77 | 1,996 | 65.23 | 1,055 | 34.48 | 2,005 | 65.52 |
|  | 9 | 1,046 | 34.80 | 1,960 | 65.20 | 1,056 | 35.13 | 1,950 | 64.87 |
|  | 10 | 1,080 | 33.61 | 2,133 | 66.39 | 1,085 | 33.77 | 2,128 | 66.23 |
|  | 11 | 1,025 | 33.50 | 2,035 | 66.50 | 1,041 | 34.02 | 2,019 | 65.98 |
|  | 12 | 1,021 | 33.56 | 2,021 | 66.44 | 1,033 | 33.96 | 2,009 | 66.04 |
| 2014 | 1 | 982 | 32.67 | 2,024 | 67.33 | 994 | 33.07 | 2,012 | 66.93 |
|  | 2 | 1,001 | 32.71 | 2,059 | 67.29 | 1,025 | 33.50 | 2,035 | 66.50 |
|  | 3 | 1,088 | 34.94 | 2,026 | 65.06 | 1,080 | 34.68 | 2,034 | 65.32 |
|  | 4 | 960 | 31.56 | 2,082 | 68.44 | 940 | 30.90 | 2,102 | 69.10 |
|  | 5 | 1,052 | 34.48 | 1,999 | 65.52 | 1,061 | 34.78 | 1,990 | 65.22 |
|  | 6 | 1,035 | 33.53 | 2,052 | 66.47 | 1,041 | 33.72 | 2,046 | 66.28 |
|  | 7 | 1,013 | 33.30 | 2,029 | 66.70 | 1,009 | 33.17 | 2,033 | 66.83 |
|  | 8 | 1,022 | 33.70 | 2,011 | 66.30 | 1,023 | 33.73 | 2,010 | 66.27 |
|  | 9 | 1,058 | 33.78 | 2,074 | 66.22 | 1,057 | 33.75 | 2,075 | 66.25 |
|  | 10 | 968 | 31.82 | 2,074 | 68.18 | 948 | 31.16 | 2,094 | 68.84 |
|  | 11 | 1,036 | 34.26 | 1,988 | 65.74 | 1,029 | 34.03 | 1,995 | 65.97 |
|  | 12 | 990 | 32.64 | 2,043 | 67.36 | 977 | 32.21 | 2,056 | 67.79 |
| 2015 | 1 | 1,018 | 33.46 | 2,024 | 66.54 | 1,027 | 33.76 | 2,015 | 66.24 |
|  | 2 | 949 | 31.66 | 2,048 | 68.34 | 964 | 32.17 | 2,033 | 67.83 |
|  | 3 | 939 | 30.15 | 2,175 | 69.85 | 967 | 31.05 | 2,147 | 68.95 |
|  | 4 | 938 | 30.93 | 2,095 | 69.07 | 944 | 31.12 | 2,089 | 68.88 |
|  | 5 | 1,033 | 32.42 | 2,153 | 67.58 | 1,030 | 32.33 | 2,156 | 67.67 |
|  | 6 | 986 | 31.85 | 2,110 | 68.15 | 1,005 | 32.46 | 2,091 | 67.54 |
|  | 7 | 997 | 31.29 | 2,189 | 68.71 | 997 | 31.29 | 2,189 | 68.71 |
|  | 8 | 1,051 | 34.35 | 2,009 | 65.65 | 1,047 | 34.22 | 2,013 | 65.78 |
|  | 9 | 984 | 32.73 | 2,022 | 67.27 | 996 | 33.13 | 2,010 | 66.87 |
|  | 10 | 1,029 | 33.83 | 2,013 | 66.17 | 1,030 | 33.86 | 2,012 | 66.14 |
|  | 11 | 945 | 31.25 | 2,079 | 68.75 | 953 | 31.51 | 2,071 | 68.49 |
|  | 12 | 973 | 32.47 | 2,024 | 67.53 | 961 | 32.07 | 2,036 | 67.93 |
| 2016 | 1 | 1,057 | 35.27 | 1,940 | 64.73 | 1,049 | 35.00 | 1,948 | 65.00 |
|  | 2 | 1,125 | 34.63 | 2,124 | 65.37 | 1,132 | 34.84 | 2,117 | 65.16 |
|  | 3 | 1,047 | 33.92 | 2,040 | 66.08 | 1,059 | 34.31 | 2,028 | 65.69 |
|  | 4 | 967 | 32.27 | 2,030 | 67.73 | 1,024 | 34.17 | 1,973 | 65.83 |
|  | 5 | 964 | 31.50 | 2,096 | 68.50 | 952 | 31.11 | 2,108 | 68.89 |
|  | 6 | 908 | 29.33 | 2,188 | 70.67 | 925 | 29.88 | 2,171 | 70.12 |
|  | 7 | 842 | 28.01 | 2,164 | 71.99 | 823 | 27.38 | 2,183 | 72.62 |


|  | 8 | 954 | 30.11 | 2,214 | 69.89 | 963 | 30.40 | 2,205 | 69.60 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 9 | 867 | 27.29 | 2,310 | 72.71 | 881 | 27.73 | 2,296 | 72.27 |
|  | 10 | 942 | 30.34 | 2,163 | 69.66 | 948 | 30.53 | 2,157 | 69.47 |
|  | 11 | 973 | 32.37 | 2,033 | 67.63 | 981 | 32.63 | 2,025 | 67.37 |
|  | 12 | 1,131 | 33.33 | 2,262 | 66.67 | 1,127 | 33.22 | 2,266 | 66.78 |
| 2017 | 1 | 956 | 30.18 | 2,212 | 69.82 | 973 | 30.71 | 2,195 | 69.29 |
|  | 2 | 1,119 | 32.72 | 2,301 | 67.28 | 1,133 | 33.13 | 2,287 | 66.87 |
|  | 3 | 968 | 31.73 | 2,083 | 68.27 | 945 | 30.97 | 2,106 | 69.03 |
|  | 4 | 725 | 32.35 | 1,516 | 67.65 | 706 | 31.50 | 1,535 | 68.50 |
|  | 5 | 1,069 | 34.63 | 2,018 | 65.37 | 1,080 | 34.99 | 2,007 | 65.01 |
|  | 6 | 1,141 | 36.33 | 2,000 | 63.67 | 1,158 | 36.87 | 1,983 | 63.13 |
|  | 7 | 1,024 | 33.37 | 2,045 | 66.63 | 1,032 | 33.63 | 2,037 | 66.37 |
|  | 8 | 1,063 | 34.64 | 2,006 | 65.36 | 1,071 | 34.90 | 1,998 | 65.10 |
|  | 9 | 1,191 | 35.38 | 2,175 | 64.62 | 1,175 | 34.91 | 2,191 | 65.09 |
|  | 10 | 1,029 | 32.76 | 2,112 | 67.24 | 1,033 | 32.89 | 2,108 | 67.11 |
|  | 11 | 1,040 | 33.30 | 2,083 | 66.70 | 1,018 | 32.60 | 2,105 | 67.40 |
|  | 12 | 1,053 | 34.41 | 2,007 | 65.59 | 1,053 | 34.41 | 2,007 | 65.59 |
| 2018 | 1 | 965 | 31.72 | 2,077 | 68.28 | 975 | 32.05 | 2,067 | 67.95 |
|  | 2 | 1,000 | 32.58 | 2,069 | 67.42 | 1,011 | 32.94 | 2,058 | 67.06 |
|  | 3 | 980 | 31.93 | 2,089 | 68.07 | 986 | 32.13 | 2,083 | 67.87 |
|  | 4 | 983 | 32.70 | 2,023 | 67.30 | 968 | 32.20 | 2,038 | 67.80 |
|  | 5 | 998 | 32.42 | 2,080 | 67.58 | 1,008 | 32.75 | 2,070 | 67.25 |
| Average |  | 1,007 | 32.76 | 2,067 | 67.24 | 1,010 | 32.86 | 2,064 | 67.14 |

Table A. 8 OOS Prediction Results based on MNL 2 and RRS 3 (EDU Interaction Terms)

| Year | Month | MNL 2 Prediction (EDU) |  |  |  | RRS 3 Prediction (EDU) |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & \hline \text { Correct } \\ & \hline \mathrm{A}_{\mathrm{it}}=1 \end{aligned}$ |  | $\begin{gathered} \hline \text { Incorrect } \\ \hline \mathrm{A}_{\mathrm{it}}=0 \end{gathered}$ |  | Correct$\mathrm{A}_{\mathrm{it}}=1$ |  | $\begin{gathered} \hline \text { Incorrect } \\ \hline \mathrm{A}_{\mathrm{it}}=0 \end{gathered}$ |  |
|  |  |  |  |  |  |  |  |  |  |
|  |  | Frequency | Percent (\%) |
| 2013 | 6 | 974 | 32.40 | 2,032 | 67.60 | 986 | 32.80 | 2,020 | 67.20 |
|  | 7 | 1,042 | 34.25 | 2,000 | 65.75 | 1,055 | 34.68 | 1,987 | 65.32 |
|  | 8 | 1,063 | 34.74 | 1,997 | 65.26 | 1,071 | 35.00 | 1,989 | 65.00 |
|  | 9 | 1,010 | 33.60 | 1,996 | 66.40 | 1,029 | 34.23 | 1,977 | 65.77 |
|  | 10 | 1,098 | 34.17 | 2,115 | 65.83 | 1,096 | 34.11 | 2,117 | 65.89 |
|  | 11 | 1,038 | 33.92 | 2,022 | 66.08 | 1,046 | 34.18 | 2,014 | 65.82 |
|  | 12 | 1,022 | 33.60 | 2,020 | 66.40 | 1,035 | 34.02 | 2,007 | 65.98 |
| 2014 | 1 | 980 | 32.60 | 2,026 | 67.40 | 981 | 32.63 | 2,025 | 67.37 |
|  | 2 | 1,024 | 33.46 | 2,036 | 66.54 | 1,048 | 34.25 | 2,012 | 65.75 |
|  | 3 | 1,095 | 35.16 | 2,019 | 64.84 | 1,092 | 35.07 | 2,022 | 64.93 |
|  | 4 | 956 | 31.43 | 2,086 | 68.57 | 954 | 31.36 | 2,088 | 68.64 |
|  | 5 | 1,047 | 34.32 | 2,004 | 65.68 | 1,058 | 34.68 | 1,993 | 65.32 |
|  | 6 | 998 | 32.33 | 2,089 | 67.67 | 1,031 | 33.40 | 2,056 | 66.60 |
|  | 7 | 970 | 31.89 | 2,072 | 68.11 | 1,002 | 32.94 | 2,040 | 67.06 |
|  | 8 | 1,013 | 33.40 | 2,020 | 66.60 | 1,001 | 33.00 | 2,032 | 67.00 |
|  | 9 | 1,019 | 32.54 | 2,113 | 67.46 | 1,057 | 33.75 | 2,075 | 66.25 |
|  | 10 | 959 | 31.53 | 2,083 | 68.47 | 975 | 32.05 | 2,067 | 67.95 |
|  | 11 | 1,030 | 34.06 | 1,994 | 65.94 | 1,020 | 33.73 | 2,004 | 66.27 |
|  | 12 | 1,010 | 33.30 | 2,023 | 66.70 | 1,015 | 33.47 | 2,018 | 66.53 |
| 2015 | 1 | 993 | 32.64 | 2,049 | 67.36 | 1,029 | 33.83 | 2,013 | 66.17 |
|  | 2 | 966 | 32.23 | 2,031 | 67.77 | 966 | 32.23 | 2,031 | 67.77 |
|  | 3 | 931 | 29.90 | 2,183 | 70.10 | 972 | 31.21 | 2,142 | 68.79 |
|  | 4 | 940 | 30.99 | 2,093 | 69.01 | 938 | 30.93 | 2,095 | 69.07 |
|  | 5 | 996 | 31.26 | 2,190 | 68.74 | 1,025 | 32.17 | 2,161 | 67.83 |
|  | 6 | 971 | 31.36 | 2,125 | 68.64 | 964 | 31.14 | 2,132 | 68.86 |
|  | 7 | 984 | 30.89 | 2,202 | 69.11 | 1,006 | 31.58 | 2,180 | 68.42 |
|  | 8 | 1,046 | 34.18 | 2,014 | 65.82 | 1,059 | 34.61 | 2,001 | 65.39 |
|  | 9 | 997 | 33.17 | 2,009 | 66.83 | 1,001 | 33.30 | 2,005 | 66.70 |
|  | 10 | 1,028 | 33.79 | 2,014 | 66.21 | 1,019 | 33.50 | 2,023 | 66.50 |
|  | 11 | 941 | 31.12 | 2,083 | 68.88 | 982 | 32.47 | 2,042 | 67.53 |
|  | 12 | 968 | 32.30 | 2,029 | 67.70 | 974 | 32.50 | 2,023 | 67.50 |
| 2016 | 1 | 1,040 | 34.70 | 1,957 | 65.30 | 1,057 | 35.27 | 1,940 | 64.73 |
|  | 2 | 1,122 | 34.53 | 2,127 | 65.47 | 1,133 | 34.87 | 2,116 | 65.13 |
|  | 3 | 1,019 | 33.01 | 2,068 | 66.99 | 1,079 | 34.95 | 2,008 | 65.05 |
|  | 4 | 954 | 31.83 | 2,043 | 68.17 | 980 | 32.70 | 2,017 | 67.30 |
|  | 5 | 928 | 30.33 | 2,132 | 69.67 | 957 | 31.27 | 2,103 | 68.73 |
|  | 6 | 938 | 30.30 | 2,158 | 69.70 | 918 | 29.65 | 2,178 | 70.35 |
|  | 7 | 858 | 28.54 | 2,148 | 71.46 | 836 | 27.81 | 2,170 | 72.19 |


|  | 8 | 965 | 30.46 | 2,203 | 69.54 | 949 | 29.96 | 2,219 | 70.04 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 9 | 884 | 27.82 | 2,293 | 72.18 | 891 | 28.05 | 2,286 | 71.95 |
|  | 10 | 960 | 30.92 | 2,145 | 69.08 | 964 | 31.05 | 2,141 | 68.95 |
|  | 11 | 966 | 32.14 | 2,040 | 67.86 | 974 | 32.40 | 2,032 | 67.60 |
|  | 12 | 1,139 | 33.57 | 2,254 | 66.43 | 1,143 | 33.69 | 2,250 | 66.31 |
| 2017 | 1 | 965 | 30.46 | 2,203 | 69.54 | 961 | 30.33 | 2,207 | 69.67 |
|  | 2 | 1,113 | 32.54 | 2,307 | 67.46 | 1,113 | 32.54 | 2,307 | 67.46 |
|  | 3 | 934 | 30.61 | 2,117 | 69.39 | 924 | 30.29 | 2,127 | 69.71 |
|  | 4 | 721 | 32.17 | 1,520 | 67.83 | 720 | 32.13 | 1,521 | 67.87 |
|  | 5 | 1,063 | 34.43 | 2,024 | 65.57 | 1,077 | 34.89 | 2,010 | 65.11 |
|  | 6 | 1,121 | 35.69 | 2,020 | 64.31 | 1,135 | 36.13 | 2,006 | 63.87 |
|  | 7 | 1,035 | 33.72 | 2,034 | 66.28 | 1,017 | 33.14 | 2,052 | 66.86 |
|  | 8 | 1,025 | 33.40 | 2,044 | 66.60 | 1,031 | 33.59 | 2,038 | 66.41 |
|  | 9 | 1,163 | 34.55 | 2,203 | 65.45 | 1,164 | 34.58 | 2,202 | 65.42 |
|  | 10 | 1,000 | 31.84 | 2,141 | 68.16 | 1,012 | 32.22 | 2,129 | 67.78 |
|  | 11 | 1,013 | 32.44 | 2,110 | 67.56 | 1,025 | 32.82 | 2,098 | 67.18 |
|  | 12 | 1,018 | 33.27 | 2,042 | 66.73 | 1,044 | 34.12 | 2,016 | 65.88 |
| 2018 | 1 | 966 | 31.76 | 2,076 | 68.24 | 989 | 32.51 | 2,053 | 67.49 |
|  | 2 | 996 | 32.45 | 2,073 | 67.55 | 1,000 | 32.58 | 2,069 | 67.42 |
|  | 3 | 976 | 31.80 | 2,093 | 68.20 | 981 | 31.96 | 2,088 | 68.04 |
|  | 4 | 992 | 33.00 | 2,014 | 67.00 | 982 | 32.67 | 2,024 | 67.33 |
|  | 5 | 938 | 30.47 | 2,140 | 69.53 | 988 | 32.10 | 2,090 | 67.90 |
| Average |  | 999 | 32.49 | 2,075 | 67.51 | 1,009 | 32.82 | 2,065 | 67.18 |

Table A. 9 OOS Prediction Results based on MNL 2 and RRS 3 (HSIZE Interaction Terms)

| Year | Month | MNL 2 Prediction (HSIZE) |  |  |  | RRS 3 Prediction (HSIZE) |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Correct |  | Incorrect |  | Correct |  | Incorrect |  |
|  |  | $\mathrm{A}_{\text {it }}=1$ |  | $\mathrm{A}_{\mathrm{it}}=0$ |  | $\mathrm{A}_{\text {it }}=1$ |  | $\mathrm{A}_{\mathrm{it}}=0$ |  |
|  |  | Frequency | Percent (\%) | Frequency | Percent <br> (\%) | Frequency | Percent (\%) | Frequency | Percent <br> (\%) |
| 2013 | 6 | 983 | 32.70 | 2,023 | 67.30 | 978 | 32.53 | 2,028 | 67.47 |
|  | 7 | 1,044 | 34.32 | 1,998 | 65.68 | 1,056 | 34.71 | 1,986 | 65.29 |
|  | 8 | 1,055 | 34.48 | 2,005 | 65.52 | 1,044 | 34.12 | 2,016 | 65.88 |
|  | 9 | 1,031 | 34.30 | 1,975 | 65.70 | 1,042 | 34.66 | 1,964 | 65.34 |
|  | 10 | 1,094 | 34.05 | 2,119 | 65.95 | 1,095 | 34.08 | 2,118 | 65.92 |
|  | 11 | 1,028 | 33.59 | 2,032 | 66.41 | 1,044 | 34.12 | 2,016 | 65.88 |
|  | 12 | 1,014 | 33.33 | 2,028 | 66.67 | 1,028 | 33.79 | 2,014 | 66.21 |
| 2014 | 1 | 980 | 32.60 | 2,026 | 67.40 | 995 | 33.10 | 2,011 | 66.90 |
|  | 2 | 1,005 | 32.84 | 2,055 | 67.16 | 1,015 | 33.17 | 2,045 | 66.83 |
|  | 3 | 1,099 | 35.29 | 2,015 | 64.71 | 1,096 | 35.20 | 2,018 | 64.80 |
|  | 4 | 945 | 31.07 | 2,097 | 68.93 | 934 | 30.70 | 2,108 | 69.30 |
|  | 5 | 1,059 | 34.71 | 1,992 | 65.29 | 1,057 | 34.64 | 1,994 | 65.36 |
|  | 6 | 1,024 | 33.17 | 2,063 | 66.83 | 1,024 | 33.17 | 2,063 | 66.83 |
|  | 7 | 998 | 32.81 | 2,044 | 67.19 | 1,016 | 33.40 | 2,026 | 66.60 |
|  | 8 | 1,014 | 33.43 | 2,019 | 66.57 | 1,002 | 33.04 | 2,031 | 66.96 |
|  | 9 | 1,037 | 33.11 | 2,095 | 66.89 | 1,055 | 33.68 | 2,077 | 66.32 |
|  | 10 | 959 | 31.53 | 2,083 | 68.47 | 944 | 31.03 | 2,098 | 68.97 |
|  | 11 | 1,033 | 34.16 | 1,991 | 65.84 | 1,019 | 33.70 | 2,005 | 66.30 |
|  | 12 | 985 | 32.48 | 2,048 | 67.52 | 989 | 32.61 | 2,044 | 67.39 |
| 2015 | 1 | 1,015 | 33.37 | 2,027 | 66.63 | 1,005 | 33.04 | 2,037 | 66.96 |
|  | 2 | 956 | 31.90 | 2,041 | 68.10 | 937 | 31.26 | 2,060 | 68.74 |
|  | 3 | 942 | 30.25 | 2,172 | 69.75 | 966 | 31.02 | 2,148 | 68.98 |
|  | 4 | 949 | 31.29 | 2,084 | 68.71 | 933 | 30.76 | 2,100 | 69.24 |
|  | 5 | 1,012 | 31.76 | 2,174 | 68.24 | 1,017 | 31.92 | 2,169 | 68.08 |
|  | 6 | 976 | 31.52 | 2,120 | 68.48 | 977 | 31.56 | 2,119 | 68.44 |
|  | 7 | 983 | 30.85 | 2,203 | 69.15 | 1,013 | 31.80 | 2,173 | 68.20 |
|  | 8 | 1,048 | 34.25 | 2,012 | 65.75 | 1,046 | 34.18 | 2,014 | 65.82 |
|  | 9 | 983 | 32.70 | 2,023 | 67.30 | 992 | 33.00 | 2,014 | 67.00 |
|  | 10 | 1,026 | 33.73 | 2,016 | 66.27 | 1,010 | 33.20 | 2,032 | 66.80 |
|  | 11 | 947 | 31.32 | 2,077 | 68.68 | 967 | 31.98 | 2,057 | 68.02 |
|  | 12 | 967 | 32.27 | 2,030 | 67.73 | 976 | 32.57 | 2,021 | 67.43 |
| 2016 | 1 | 1,056 | 35.24 | 1,941 | 64.76 | 1,050 | 35.04 | 1,947 | 64.96 |
|  | 2 | 1,112 | 34.23 | 2,137 | 65.77 | 1,123 | 34.56 | 2,126 | 65.44 |
|  | 3 | 1,059 | 34.31 | 2,028 | 65.69 | 1,068 | 34.60 | 2,019 | 65.40 |
|  | 4 | 962 | 32.10 | 2,035 | 67.90 | 991 | 33.07 | 2,006 | 66.93 |
|  | 5 | 955 | 31.21 | 2,105 | 68.79 | 940 | 30.72 | 2,120 | 69.28 |
|  | 6 | 924 | 29.84 | 2,172 | 70.16 | 891 | 28.78 | 2,205 | 71.22 |
|  | 7 | 822 | 27.35 | 2,184 | 72.65 | 848 | 28.21 | 2,158 | 71.79 |


|  | 8 | 964 | 30.43 | 2,204 | 69.57 | 946 | 29.86 | 2,222 | 70.14 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 9 | 878 | 27.64 | 2,299 | 72.36 | 879 | 27.67 | 2,298 | 72.33 |
|  | 10 | 938 | 30.21 | 2,167 | 69.79 | 937 | 30.18 | 2,168 | 69.82 |
|  | 11 | 965 | 32.10 | 2,041 | 67.90 | 968 | 32.20 | 2,038 | 67.80 |
|  | 12 | 1,131 | 33.33 | 2,262 | 66.67 | 1,128 | 33.24 | 2,265 | 66.76 |
| 2017 | 1 | 981 | 30.97 | 2,187 | 69.03 | 962 | 30.37 | 2,206 | 69.63 |
|  | 2 | 1,101 | 32.19 | 2,319 | 67.81 | 1,115 | 32.60 | 2,305 | 67.40 |
|  | 3 | 956 | 31.33 | 2,095 | 68.67 | 955 | 31.30 | 2,096 | 68.70 |
|  | 4 | 718 | 32.04 | 1,523 | 67.96 | 703 | 31.37 | 1,538 | 68.63 |
|  | 5 | 1,062 | 34.40 | 2,025 | 65.60 | 1,087 | 35.21 | 2,000 | 64.79 |
|  | 6 | 1,110 | 35.34 | 2,031 | 64.66 | 1,123 | 35.75 | 2,018 | 64.25 |
|  | 7 | 1,012 | 32.97 | 2,057 | 67.03 | 1,028 | 33.50 | 2,041 | 66.50 |
|  | 8 | 1,039 | 33.85 | 2,030 | 66.15 | 1,048 | 34.15 | 2,021 | 65.85 |
|  | 9 | 1,157 | 34.37 | 2,209 | 65.63 | 1,159 | 34.43 | 2,207 | 65.57 |
|  | 10 | 1,012 | 32.22 | 2,129 | 67.78 | 1,012 | 32.22 | 2,129 | 67.78 |
|  | 11 | 1,018 | 32.60 | 2,105 | 67.40 | 1,030 | 32.98 | 2,093 | 67.02 |
|  | 12 | 1,043 | 34.08 | 2,017 | 65.92 | 1,040 | 33.99 | 2,020 | 66.01 |
| 2018 | 1 | 950 | 31.23 | 2,092 | 68.77 | 962 | 31.62 | 2,080 | 68.38 |
|  | 2 | 999 | 32.55 | 2,070 | 67.45 | 1,009 | 32.88 | 2,060 | 67.12 |
|  | 3 | 985 | 32.10 | 2,084 | 67.90 | 976 | 31.80 | 2,093 | 68.20 |
|  | 4 | 981 | 32.63 | 2,025 | 67.37 | 972 | 32.34 | 2,034 | 67.66 |
|  | 5 | 978 | 31.77 | 2,100 | 68.23 | 983 | 31.94 | 2,095 | 68.06 |
| Average |  | 1,001 | 32.56 | 2,073 | 67.44 | 1,003 | 32.64 | 2,070 | 67.36 |

Table A.10 OOS Prediction Results based on MNL 2 and RRS 3 (HINC Interaction Terms)

| Year | Month | MNL 2 Prediction (HINC) |  |  |  | RRS 3 Prediction (HINC) |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Correct |  | Incorrect |  | Correct |  | Incorrect |  |
|  |  | $\mathrm{A}_{\mathrm{it}}=1$ |  | $\mathrm{A}_{\text {it }}=0$ |  | $\mathrm{A}_{\mathrm{it}}=1$ |  | $\mathrm{A}_{\text {it }}=0$ |  |
|  |  | Frequency | Percent (\%) |
| 2013 | 6 | 976 | 32.47 | 2,030 | 67.53 | 992 | 33.00 | 2,014 | 67.00 |
|  | 7 | 1,036 | 34.06 | 2,006 | 65.94 | 1,061 | 34.88 | 1,981 | 65.12 |
|  | 8 | 1,039 | 33.95 | 2,021 | 66.05 | 1,053 | 34.41 | 2,007 | 65.59 |
|  | 9 | 1,022 | 34.00 | 1,984 | 66.00 | 1,044 | 34.73 | 1,962 | 65.27 |
|  | 10 | 1,089 | 33.89 | 2,124 | 66.11 | 1,086 | 33.80 | 2,127 | 66.20 |
|  | 11 | 1,083 | 35.39 | 1,977 | 64.61 | 1,090 | 35.62 | 1,970 | 64.38 |
|  | 12 | 1,029 | 33.83 | 2,013 | 66.17 | 1,019 | 33.50 | 2,023 | 66.50 |
| 2014 | 1 | 975 | 32.44 | 2,031 | 67.56 | 991 | 32.97 | 2,015 | 67.03 |
|  | 2 | 1,015 | 33.17 | 2,045 | 66.83 | 1,056 | 34.51 | 2,004 | 65.49 |
|  | 3 | 1,077 | 34.59 | 2,037 | 65.41 | 1,088 | 34.94 | 2,026 | 65.06 |
|  | 4 | 962 | 31.62 | 2,080 | 68.38 | 955 | 31.39 | 2,087 | 68.61 |
|  | 5 | 1,056 | 34.61 | 1,995 | 65.39 | 1,065 | 34.91 | 1,986 | 65.09 |
|  | 6 | 1,040 | 33.69 | 2,047 | 66.31 | 1,054 | 34.14 | 2,033 | 65.86 |
|  | 7 | 1,002 | 32.94 | 2,040 | 67.06 | 1,008 | 33.14 | 2,034 | 66.86 |
|  | 8 | 1,006 | 33.17 | 2,027 | 66.83 | 1,004 | 33.10 | 2,029 | 66.90 |
|  | 9 | 1,043 | 33.30 | 2,089 | 66.70 | 1,048 | 33.46 | 2,084 | 66.54 |
|  | 10 | 978 | 32.15 | 2,064 | 67.85 | 968 | 31.82 | 2,074 | 68.18 |
|  | 11 | 1,037 | 34.29 | 1,987 | 65.71 | 1,033 | 34.16 | 1,991 | 65.84 |
|  | 12 | 995 | 32.81 | 2,038 | 67.19 | 1,009 | 33.27 | 2,024 | 66.73 |
| 2015 | 1 | 1,032 | 33.93 | 2,010 | 66.07 | 1,044 | 34.32 | 1,998 | 65.68 |
|  | 2 | 963 | 32.13 | 2,034 | 67.87 | 968 | 32.30 | 2,029 | 67.70 |
|  | 3 | 976 | 31.34 | 2,138 | 68.66 | 1,002 | 32.18 | 2,112 | 67.82 |
|  | 4 | 945 | 31.16 | 2,088 | 68.84 | 953 | 31.42 | 2,080 | 68.58 |
|  | 5 | 1,048 | 32.89 | 2,138 | 67.11 | 1,067 | 33.49 | 2,119 | 66.51 |
|  | 6 | 990 | 31.98 | 2,106 | 68.02 | 986 | 31.85 | 2,110 | 68.15 |
|  | 7 | 995 | 31.23 | 2,191 | 68.77 | 1,004 | 31.51 | 2,182 | 68.49 |
|  | 8 | 1,030 | 33.66 | 2,030 | 66.34 | 1,050 | 34.31 | 2,010 | 65.69 |
|  | 9 | 999 | 33.23 | 2,007 | 66.77 | 1,013 | 33.70 | 1,993 | 66.30 |
|  | 10 | 1,025 | 33.69 | 2,017 | 66.31 | 1,012 | 33.27 | 2,030 | 66.73 |
|  | 11 | 973 | 32.18 | 2,051 | 67.82 | 973 | 32.18 | 2,051 | 67.82 |
|  | 12 | 1,012 | 33.77 | 1,985 | 66.23 | 1,018 | 33.97 | 1,979 | 66.03 |
| 2016 | 1 | 1,062 | 35.44 | 1,935 | 64.56 | 1,080 | 36.04 | 1,917 | 63.96 |
|  | 2 | 1,141 | 35.12 | 2,108 | 64.88 | 1,141 | 35.12 | 2,108 | 64.88 |
|  | 3 | 1,035 | 33.53 | 2,052 | 66.47 | 1,059 | 34.31 | 2,028 | 65.69 |
|  | 4 | 982 | 32.77 | 2,015 | 67.23 | 997 | 33.27 | 2,000 | 66.73 |
|  | 5 | 956 | 31.24 | 2,104 | 68.76 | 946 | 31.90 | 2,084 | 68.10 |
|  | 6 | 954 | 30.81 | 2,142 | 69.19 | 944 | 30.49 | 2,152 | 69.51 |
|  | 7 | 858 | 28.54 | 2,148 | 71.46 | 842 | 28.01 | 2,164 | 71.99 |


|  | 8 | 942 | 29.73 | 2,226 | 70.27 | 947 | 29.89 | 2,221 | 70.11 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 9 | 885 | 27.86 | 2,292 | 72.14 | 883 | 27.79 | 2,294 | 72.21 |
|  | 10 | 959 | 30.89 | 2,146 | 69.11 | 972 | 31.30 | 2,133 | 68.70 |
|  | 11 | 945 | 31.44 | 2,061 | 68.56 | 967 | 32.17 | 2,039 | 67.83 |
|  | 12 | 1,137 | 33.51 | 2,256 | 66.49 | 1,124 | 33.13 | 2,269 | 66.87 |
| 2017 | 1 | 981 | 30.97 | 2,187 | 69.03 | 977 | 30.84 | 2,191 | 69.16 |
|  | 2 | 1,137 | 33.25 | 2,283 | 66.75 | 1,148 | 33.57 | 2,272 | 66.43 |
|  | 3 | 959 | 31.43 | 2,092 | 68.57 | 938 | 30.74 | 2,113 | 69.26 |
|  | 4 | 714 | 31.86 | 1,527 | 68.14 | 709 | 31.64 | 1,532 | 68.36 |
|  | 5 | 1,066 | 34.53 | 2,021 | 65.47 | 1,083 | 35.08 | 2,004 | 64.92 |
|  | 6 | 1,121 | 35.69 | 2,020 | 64.31 | 1,122 | 35.72 | 2,019 | 64.28 |
|  | 7 | 1,024 | 33.37 | 2,045 | 66.63 | 1,032 | 33.63 | 2,037 | 66.37 |
|  | 8 | 1,055 | 34.38 | 2,014 | 65.62 | 1,067 | 34.77 | 2,002 | 65.23 |
|  | 9 | 1,171 | 34.79 | 2,195 | 65.21 | 1,183 | 35.15 | 2,183 | 64.85 |
|  | 10 | 1,019 | 32.44 | 2,122 | 67.56 | 1,015 | 32.31 | 2,126 | 67.69 |
|  | 11 | 1,047 | 33.53 | 2,076 | 66.47 | 1,043 | 33.40 | 2,080 | 66.60 |
|  | 12 | 1,051 | 34.35 | 2,009 | 65.65 | 1,053 | 34.41 | 2,007 | 65.59 |
| 2018 | 1 | 981 | 32.25 | 2,061 | 67.75 | 995 | 32.71 | 2,047 | 67.29 |
|  | 2 | 1,000 | 32.58 | 2,069 | 67.42 | 1,015 | 33.07 | 2,054 | 66.93 |
|  | 3 | 989 | 32.23 | 2,080 | 67.77 | 989 | 32.23 | 2,080 | 67.77 |
|  | 4 | 1,012 | 33.67 | 1,994 | 66.33 | 1,008 | 33.53 | 1,998 | 66.47 |
|  | 5 | 951 | 30.90 | 2,127 | 69.10 | 958 | 31.12 | 2,120 | 68.88 |
| Average |  | 1,010 | 32.84 | 2,064 | 67.16 | 1,016 | 33.06 | 2,057 | 66.94 |

Table A. 11 OOS Prediction Results based on MNL 2 and RRS 3 (SCTIME Interaction Terms)

| Year | Month | MNL 2 Prediction (SCTIME) |  |  |  | RRS 3 Prediction (SCTIME) |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Correct |  | Incorrect |  | Correct |  | Incorrect |  |
|  |  | $\mathrm{A}_{\mathrm{it}}=1$ |  | $\mathrm{A}_{\mathrm{it}}=0$ |  | $\mathrm{A}_{\mathrm{it}}=1$ |  | $\mathrm{A}_{\mathrm{it}}=0$ |  |
|  |  | Frequency | Percent (\%) |
| 2013 | 6 | 990 | 32.93 | 2,016 | 67.07 | 973 | 32.37 | 2,033 | 67.63 |
|  | 7 | 1,037 | 34.09 | 2,005 | 65.91 | 1,045 | 34.35 | 1,997 | 65.65 |
|  | 8 | 1,058 | 34.58 | 2,002 | 65.42 | 1,076 | 35.16 | 1,984 | 64.84 |
|  | 9 | 1,024 | 34.07 | 1,982 | 65.93 | 1,049 | 34.90 | 1,957 | 65.10 |
|  | 10 | 1,079 | 33.58 | 2,134 | 66.42 | 1,100 | 34.24 | 2,113 | 65.76 |
|  | 11 | 1,045 | 34.15 | 2,015 | 65.85 | 1,049 | 34.28 | 2,011 | 65.72 |
|  | 12 | 1,022 | 33.60 | 2,020 | 66.40 | 1,022 | 33.60 | 2,020 | 66.40 |
| 2014 | 1 | 974 | 32.40 | 2,032 | 67.60 | 977 | 32.50 | 2,029 | 67.50 |
|  | 2 | 1,031 | 33.69 | 2,029 | 66.31 | 1,024 | 33.46 | 2,036 | 66.54 |
|  | 3 | 1,092 | 35.07 | 2,022 | 64.93 | 1,078 | 34.62 | 2,036 | 65.38 |
|  | 4 | 937 | 30.80 | 2,105 | 69.20 | 926 | 30.44 | 2,116 | 69.56 |
|  | 5 | 1,066 | 34.94 | 1,985 | 65.06 | 1,075 | 35.23 | 1,976 | 64.77 |
|  | 6 | 1,044 | 33.82 | 2,043 | 66.18 | 1,053 | 34.11 | 2,034 | 65.89 |
|  | 7 | 1,009 | 33.17 | 2,033 | 66.83 | 1,018 | 33.46 | 2,024 | 66.54 |
|  | 8 | 1,011 | 33.33 | 2,022 | 66.67 | 986 | 32.51 | 2,047 | 67.49 |
|  | 9 | 1,048 | 33.46 | 2,084 | 66.54 | 1,070 | 34.16 | 2,062 | 65.84 |
|  | 10 | 968 | 31.82 | 2,074 | 68.18 | 954 | 31.36 | 2,088 | 68.64 |
|  | 11 | 1,037 | 34.29 | 1,987 | 65.71 | 1,021 | 33.76 | 2,003 | 66.24 |
|  | 12 | 993 | 32.74 | 2,040 | 67.26 | 1,006 | 33.17 | 2,027 | 66.83 |
| 2015 | 1 | 1,020 | 33.53 | 2,022 | 66.47 | 1,023 | 33.63 | 2,019 | 66.37 |
|  | 2 | 946 | 31.56 | 2,051 | 68.44 | 943 | 31.46 | 2,054 | 68.54 |
|  | 3 | 940 | 30.19 | 2,174 | 69.81 | 958 | 30.76 | 2,156 | 69.24 |
|  | 4 | 941 | 31.03 | 2,092 | 68.97 | 962 | 31.72 | 2,071 | 68.28 |
|  | 5 | 1,024 | 32.14 | 2,162 | 67.86 | 1,035 | 32.49 | 2,151 | 67.51 |
|  | 6 | 979 | 31.62 | 2,117 | 68.38 | 982 | 31.72 | 2,114 | 68.28 |
|  | 7 | 997 | 31.29 | 2,189 | 68.71 | 1,001 | 31.42 | 2,185 | 68.58 |
|  | 8 | 1,051 | 34.35 | 2,009 | 65.65 | 1,053 | 34.41 | 2,007 | 65.59 |
|  | 9 | 976 | 32.47 | 2,030 | 67.53 | 983 | 32.70 | 2,023 | 67.30 |
|  | 10 | 1,016 | 33.40 | 2,026 | 66.60 | 1,020 | 33.53 | 2,022 | 66.47 |
|  | 11 | 954 | 31.55 | 2,070 | 68.45 | 951 | 31.45 | 2,073 | 68.55 |
|  | 12 | 963 | 32.13 | 2,034 | 67.87 | 969 | 32.33 | 2,028 | 67.67 |
| 2016 | 1 | 1,047 | 34.93 | 1,950 | 65.07 | 1,052 | 35.10 | 1,945 | 64.90 |
|  | 2 | 1,118 | 34.41 | 2,131 | 65.59 | 1,127 | 34.69 | 2,122 | 65.31 |
|  | 3 | 1,044 | 33.82 | 2,043 | 66.18 | 1,062 | 34.40 | 2,025 | 65.60 |
|  | 4 | 958 | 31.97 | 2,039 | 68.03 | 991 | 33.07 | 2,006 | 66.93 |
|  | 5 | 964 | 31.50 | 2,096 | 68.50 | 958 | 31.31 | 2,102 | 68.69 |
|  | 6 | 923 | 29.81 | 2,173 | 70.19 | 926 | 29.91 | 2,170 | 70.09 |
|  | 7 | 826 | 27.48 | 2,180 | 72.52 | 830 | 27.61 | 2,176 | 72.39 |


|  |  |  |  |  |  |  |  |  |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | :--- |
|  | 8 | 964 | 30.43 | 2,204 | 69.57 | 956 | 30.18 | 2,212 |
|  | 9 | 870 | 27.38 | 2,307 | 72.62 | 875 | 27.54 | 2,302 |
| 10 | 944 | 30.40 | 2,161 | 69.60 | 945 | 30.43 | 2,160 | 69.82 |
|  | 11 | 969 | 32.24 | 2,037 | 67.76 | 954 | 31.74 | 2,052 |
| 12 | 1,126 | 33.19 | 2,267 | 66.81 | 1,130 | 33.30 | 2,263 | 68.26 |
| 2017 | 1 | 972 | 30.68 | 2,196 | 69.32 | 964 | 30.43 | 2,204 |
|  | 2 | 1,114 | 32.57 | 2,306 | 67.43 | 1,107 | 32.37 | 2,313 |
|  | 9 | 963 | 31.56 | 2,088 | 68.44 | 949 | 31.10 | 2,102 |

## Appendix B - Supplement Material for Chapter 2

Table B. 1 Sample Sizes by the Number of Choice Situations

| Number of <br> Choice Situation (t) | Number of <br> Unique panel_id | Number of Sample |
| :---: | :---: | :---: |
| 1 | 531 | 531 |
| 2 | 294 | 588 |
| 3 | 181 | 543 |
| 4 | 108 | 432 |
| 5 | 70 | 350 |
| 6 | 41 | 246 |
| 7 | 34 | 238 |
| 8 | 25 | 200 |
| 9 | 18 | 162 |
| 10 | 13 | 130 |
| 11 | 9 | 99 |
| 12 | 6 | 72 |
| 13 | 4 | 52 |
| 14 | 4 | 56 |
| 15 | 4 | 60 |
| 16 | 3 | 48 |
| 17 | 2 | 34 |


[^0]:    ${ }^{1}$ Kragt (2013) pointed out the possibility that in the case of Stated ANA, CE respondents actually made an inattention choice but did not report.

[^1]:    ${ }^{2}$ Malone and Lusk (2018) also employed the FooDS data to examine their RRS concept, comparing with a trap question method. Their study used only a month of data from 1,017 U.S households. On the other hand, we carried out OOS forecasting based on a total of 60 consecutive months of CE data from 61,592 households.

[^2]:    ${ }^{3}$ Our base models used the same specification for indirect utility function as that in Malone and Lusk (2018). This allows us to compare directly with Malone and Lusk (2018).

[^3]:    ${ }^{4}$ This study considered the SECs of survey respondents with the interaction terms of the food types and the SECs. However, the impacts of the SECs were not reported here because the purpose of this essay is to assess the OOS validity of the RRS method, and the SECs impact based on estimation results by monthly data may be too broad to obscure the objective of this study.
    ${ }^{5}$ In these models, chicken wing was preferred to ham, the ranking of WTP values for the other food types are the same.

[^4]:    ${ }^{6}$ The WTP estimates for burger in the MNL 2 were lower than those in the RRS 3 when accounting for age and education as a membership variable. However, in other cases, the MNL 2 results in a larger WTPs than the RRS 3.

[^5]:    ${ }^{7}$ SECs used for a membership variable does affect the WTP estimates for each food product because they bring about a change in marginal utility of food products and marginal (dis) utility of price, although did not lead to a change in the OOS prediction accuracy.

[^6]:    ${ }^{8}$ The standard discrete choice model assume that rational agents select their most preferred option that maximizes their utility based on evaluating all attributes when making choices. Considering every characteristics in choice tasks is called, classic decision rules, full attribute assessment or full attribute preservation.

[^7]:    ${ }^{9}$ Specifically, we combined the two datasets using colupc (the collapsed UPC). The colupc allow us to identify unique products.

[^8]:    ${ }^{10}$ We examined the correlation between attributes by seeing two-way frequency tables. All the attributes are independent except for the correlation of the small package size and the regular flavor. There is no regular hotdog sausage product with a small package. That is, the hotdog products that have regular flavor attributes are available with a medium or a large package.

[^9]:    ${ }^{11}$ For example, we tried to examine nine different decision rules using the latent class structure, but the estimation result was not good due to some thin segments.

[^10]:    ${ }^{12}$ The coefficient estimates of medium and large packages were not statistically significant in the LC-RPL for the model 2.

