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INTRODUCTION

Cost-effective and time-efficient methods of product

development are demanded by the food industry. Faced with

near-zero population growth and a 90% rate of new product

failure, food and bevarage companies have been forced to

make great changes to increase market shares and ensure

future survival (Messenger, 1987). Consumer demand for

quality, freshness, safety, nutrition, variety, and

convenience has made the food industry more market driven

than ever (Pehanich, 1987). Achievement of product

excellence at lowest overall cost and in the least amount of

time is the ultimate goal for research and development

(R&D). Today, design of experiments is viewed as a

technological tool to optimize product and process designs,

to accelerate the development cycle, to reduce development

costs, to improve the transition of products from R&D to

manufacturing and to effectively troubleshoot manufacturing

problems (Joglekar and May, 1987).

Response surface methodology (RSM), an optimization

technique developed in the 1950's (Box and Wilson, 1951),

has proven to be an efficient tool for use in product

development and applied research. Through special

experimental designs, which require fewer data points than

traditional techniques, RSM allows one to measure the

effects of several factors all at once on each response. A

mathematical model estimated from the experimental results

1



considers linear, quadratic, and interactive relationships

among factors. This model then can be used to predict the

effects of any combination of variables and often will lead

to an optimum response within the test range. Multiple

response models can be estimated simultaneously to predict

an overall optimum response. For food product development,

RSM can be used to identify primary ingredients and their

optimum levels, and to provide insight into ingredient

interactions in a product (Giovanni, 1983). This

information can guide final product formulation and future

cost and quality changes. Overall the efficiency of RSM

analyses often can decrease the time and cost required to

develop an optimum product (Walker and Parkhurst, 1984).

The use of RSM has increased in applied food research

since the 1960's and has further expanded into the food

industry with the development of computer software. Kissell

(1967) applied multiple factor analysis to study the effects

of ingredient ratios on volume, contour, and internal

scoring of layer cakes. Lah et al. (1980) found RSM

especially useful in the optimization of whipping properties

of a soy product because of the chemical and physical

complexity of proteins and the large number of interrelated

variables. Floros and Chinnan (1988) discussed an improved

graphical method complementary to RSM for fast process

optimization of chemical sodium hydroxide peeling of

tomatoes. The authors recommended this method because of
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its easy adaptability to most commonly-used computer

software packages and because the graphical diagrams created

can be used as guidelines during processing, quality

control, and product development.

Many response surface designs could be applicable for

an optimization experiment, and a variety of theoretical

statistical criteria exist on which to base a choice. Many

designs are used in food research, but the simplicity of

computation and interpretation of central composite designs

make them the most popular (Morton, 1983). The purpose of

this study was to apply response surface methodology to

optimize the appearance and texture of a reduced-calorie

chocolate layer cake and to compare the optimization

effectiveness of a three-level design (Box and Behnken,

1960b) with a five-level design (Box and Wilson, 1951).



REVIEW OF LITERATURE

Optimization: Classical Approach versus RSM

If an optimum response is affected by a set of

variables, then the experimental method to be undertaken

should discover the levels at which to set each of these

variables to maximize the desired response (Cochran and Cox,

1957). The classical approach to determine an optimum

response generally has involved two methods: (1) modifying

variables one-at-a-time , and/or (2) alternately modifying

variables in a back and forth manner (McLellan, 1986). In

each method, the levels of a selected test variable are

changed while the levels of the other variables are held

constant. The RSM optimization approach tests changing

levels of several variables at one time using special

experimental designs to determine an optimum response.

Researchers (Henika, 1972; 1982; Min and Thomas, 1980;

Giovanni, 1983; McLellan, 1986; Joglekar and May, 1987)

support the use of RSM as an optimization strategy because

the classical approach has critical disadvantages.

Inability to determine an optimum product is one

drawback of the classical approach. The strategy of

modifying variables one-at-a-time fails because it assumes

that the maximizing level of one variable is independent of

the levels of the other variables (Box et al, 1978). As an

example, Giovanni (1983) uses the improvement of bacon

flavor as a function of salt, sugar, and smoke flavor. A
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product with optimum flavor is chosen after changing the

levels of salt in the bacon, while holding the levels of

sugar and smoke flavor constant. In the next round of

experiments, the optimum sugar level is determined while

salt and smoke flavors are held constant. The problem

arises because this change in sugar level modifies the

optimum salt level. The optimum salt level then needs to

be redetermined, and this process continues. At best the

experimenter can only use an educated guess to determine

levels of ingredients to test. RSM can determine an optimum

product because the data is used to estimate a multiple

regression model that can be used to estimate the expected

responses of any and all combinations of the input variables

(Henika, 1982).

Another disadvantage of the classical approach to

optimization is the inability to determine the existence of

interactions among variables and their responses. An

attempt to draw overall conclusions from a group of separate

linear relationships between one variable and one response

can lead to incorrect interpretation of the results (Henika,

1972). RSM can reveal curvilinear relationships and

describe interactions between variables and their responses.

Response surface analysis is deemed to be an important tool

in food product development if several ingredients interact

with one another to give specific physical characteristics

(Min and Thomas, 1980)
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Experimental inefficiency is another reason why the

classical approach is a poor choice. Research efficiency is

defined as the amount of useful information gained per unit

cost (Hunter and Hoff, 1967). The large number of

experimental trials usually required by the classical

approach decreases efficiency because of the increased

expense of data collection (Wells, 1976). By reducing the

number of trials needed to reach an optimum, the cost of

experimentation can be cut substantially. Proper

experimental design will save money by reducing time of

repetition or by obtaining the maximum data for each hour

expended (Holtz, 1977). The experimental designs used in

RSM meet these criteria by selecting a subset of trials from

a total set of possible trials (McLellan, 1986).

General Theoretical Aspects of RSM

RSM is a statistically-based optimization technique

that uses experimental design and regression analysis to

relate a response variable to the changing levels of a set

of input variables. This method is appropriately termed

response surface methodology because the relationship

between the response y and the 'n' decision variables is a

surface in (n + 1) dimensions (Mitchell et al. , 1986).

Experimental design concerns the choice of the input

variables and their levels, and regression analysis enables

a mathematical model to be "fitted" or estimated from

quantitative experimental data. RSM is a powerful modeling
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system that can (1) determine the combination of levels of

input variables that will produce a desired response, (2)

determine how a specific response is affected by changes in

variables over specified levels of interest, and (3)

determine variable levels that will simultaneously satisfy a

desired set of specifications for several response variables

(McLellan, 1986).

RSM is based on the principles and ideas of

experimental strategies first presented by Box and Wilson,

(1951) to optimize conditions in a chemical process.

Through these designs Box exploited three experimental

aspects important to the success of ESM: (1) a relatively

small magnitude of random experimental error, (2) a short

time involved in data collection, and (3) a primary interest

in quantitative variables as opposed to qualitative

variables. Ample literature is available on the theoretical

principles of RSM and its applications in many fields

(Cochran and Cox, 1957; Davies, 1963; Box, 1964; Hill and

Hunter, 1966; Myers, 1971; Mead and Pike, 1975; John and

Quenouille, 1977; Box et al., 1978; Tiao, 1985; Box and

Draper, 1987). Gacula and Singh (1984) and Vuataz (1986)

specifically discussed food applications of RSM.

In general a mathematical equation

Y = f (Xi, X 2 , ... X n ) (1)

relates Y, the response or dependent variable, as a response

function f of Xj, X2, ... X n , a set of quantitative
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independent variables. The objective of experimentation is

to obtain information about this unknown function, which is

assumed to be continuous and relatively smooth. Vuataz

(1986) provided a diagram that illustrates seven responses

to a function determined by two independent variables, xj

and X2 (Figure 1). The levels of xl and X2, which produced

the first response yj are xn and x21 respectively. The

total set of levels of these independent variables is the

design of the experiment. The region of interest is the

space that has been explored by the design. The design

matrix, D, which specifies the coordinates of the

experimental points in the region of interest, is also given

in Figure 1. The surface that provides the best fit to the

response points y^, i=l,...,7, is called the response

surface. In this example, the response surface is a plane.

While the exact form of the response function f

generally is unknown, a simple polynomial model sometimes

will approximate f over the region of interest. A first-

order polynomial model, or a planar response surface, has

the form

Y = 00 + 01 Xl + 02X2 + ... + 0nX n + « (2)

and illustrates a simple linear regression relationship. A

second-order polynomial model, or a quadratic response

surface, has the form

Y = O + 01X1 + ... + 0nX n + 01lX 2
l + ... + 0nnX 2 n

+ 012X1X2 + ... 0n-l,nX n -lX n + « (3)



D =

x2 ,

L*-m *7ll

Figure 1 - Seven responses to a function determined by two
variables, Xj and X2 (Vuataz, 1986)



and illustrates a curvilinear regression relationship.

Table 1 (McLellan, 1986) provides an example of a second-

order polynomial in two variables. The coefficients /S
,

Pi, 02, ••• Pn are unknown parameters that are estimated

from the collected data by regression analysis. When these

parameters are replaced by their numerical estimates, the

resulting function is called a "fitted response function".

This fitted model can be used to predict responses for any

values of the independent variables within the range of the

data. The random errors, «'s, which account for

experimental variation as well as model inadequacy are

assumed to be independent and normally distributed with

means of zero and variances o^'s. The variance in the

responses can be partitioned into three components, the

variation due to the regression model, the variation due to

pure error (variability of center points), and the residual

variation, which measures the "lack-of-fit" or the

inadequacy of the model (Mullen and Ennis, 1979).

Polynomials are popular because of their conceptual and

computational simplicity and their ability to easily locate

the maxima and minima (Morton, 1983). In addition,

mathematical theorems have shown that all continuous

functions can be approxiamated by polynomial models. Some

areas of precaution, however, have been noted. Polynomials

are untrustworthy when extrapolated, and the surface should

be regarded only as an approximation to the true surface
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Table 1 - The second-order polynomial in two variables used
to model the response surface^

SECOND ORDER POLYNOMIAL EQUATION
(2 Variables)

<jt>
o + Center Point

0lXl + /3 2 X2 + Linear Effects

011 x2 l 022 x2 2 + Second Order
(quadratic)

012 x l x 2
Interactions

a (McLellan, 1986)

b j3 s are coefficients which indicate relative importance of

their associated X variable; ordinary regression procedures
give estimates of /3 s
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within the region covered by the experiment (Cochran and

Cox, 1957). Because unrealistic predictions are possible

with only a slight extrapolation, any predicted responses

outside the experimental region should be verified by

experimentation.

Other models can be employed to approximate response

surface functions. More detailed information is provided on

the use of inverse polynomials by Nelder (1966) and on the

use of spline models by Brannigan (1981). Whatever the

choice of model, one should blend as much theory as possible

while maintaining a substantial level of simplicity to

appreciate the results of an RSM study (Hill and Hunter,

1966). The ultimate problem is not one of mathematics but

one of communication.

Examination of response surface relationships are

enhanced by geometrical representation in the form of

contour or response surface diagrams. Through the use of

computer graphics, the predictive models can be used to

generate contour lines or response surfaces. These two- or

three-dimensional diagrams or plots present information,

which relates a response to levels of independent variables

within the experimental region. If more than one response

is measured for a given set of variables, a series of

contour plots can be superimposed to determine a multiple

response optimum. To reduce the number of plots needed for

decision making, Floros and Chinnan (1988) developed an

12



improved graphical method which allows representation of

three variables and several responses on a single diagram.

A point to remember when evaluating results from contour

plots is that these graphs are only estimated

representations of the true response surface (Hill and

Hunter, 1966).

First-Order Designs

In a first-order polynomial surface, the effects of

changing levels of variables are represented by a straight

line relationship with the response. Since a minimum of two

distinct points is required to fit a straight line to data,

the experiment need contain only two distinct levels of any

variable. Two-level factorial designs are most commonly

used to fit first-order models. In the initial stages of

process and product optimization, these designs efficiently

identify critical variables from a collection of many

potential variables (Joglekar and May, 1987). In

particular, their use is valuable in estimating the path of

steepest ascent. Factorial designs can function also as

initial building blocks in the construction of second-order

designs such as composite designs (Box and Draper, 1987).

Factorial Designs: Commonly used factorial designs are

those of the 2n series, i.e., those designs involving n

variables each appearing at two levels. The design points

are coded to have values of -1 and +1 , denoting low and high

levels of the variables. A center point, which corresponds

13



to levels halfway between the high and low points of each of

the variables, can also be incorporated into the design to

permit improved estimation of experimental error (Gacula and

Singh, 1984). All possible combinations of variables and

their high and low levels are examined in a full 2n

factorial experiment. Spatially, factorial designs place a

point of observation at each corner of an n-dimensional

hypercube (Morton, 1983). Figure 2a provides a three-

dimensional diagram of a 23 factorial design. A 23

factorial design involves eight combinations, three

variables at two levels each. From this factorial

experiment, the main effects of each variable and all

possible two- and three-way interactions can be estimated.

Obviously as the number of variables increases, the

number of required experimental trials increases. Morton

(1983) supported the efficiency of factorial designs because

they contain a large amount of "hidden" replication. This

author, however, stated that for larger n values and in

situations where experimental error is likely to be small,

the full factorial experiment provides excess information.

This excess creates a need for more efficient designs.

Fractional factorial designs help to satisfy this need.

Fractional Factorial Designs: Fractional factorial designs

permit the study of large numbers of factors using an

economical number of experiments, e.g., up to seven

variables in eight trials or up to 15 variables in 16 trials

14
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Figure 2a - A three-dimensional diagram of a 23 factorial
design (Joglekar and May, 1987)

Figure 2b - Location of the four design points in a 23-1
fractional factorial design (Joglekar and May,
1987)
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(Joglekar and May, 1987). These designs involve

appropriately chosen fractions of the full factorial designs

(i.e., a subset of the factor combinations required for a

full factorial design). Independent estimation of main and

interaction effects generally is lost. Fractions,

therefore, are constructed in a manner so that estimates of

main effects will confound only with h

i

ghe s t -o r d e

r

interaction effects. High-order effects are often small in

magnitude (Mullen and Ennis, 1985). Thus these effects can

be safely included in the error term leaving a clear

estimate of the main effects. Lah et al. (1980) explained

the concept of confounding when applied to food. Figure 2b

illustrates the location of the four design points in a 23-1

fractional factorial design which is a half replicate of the

full 23 factorial design. Box and Hunter (1961a; 1961b)

provide a complete explanation on the construction of these

designs. Paloheimo et al. (1984) used a half replicate 25-1

factorial design to investigate the effect of oven variables

on the quality of bread. Keagy et al. (1979) and Connor and

Keagy (1981) used a 2^-2 fractional factorial design to

investigate vitamin stability in a cookie system.

Second-order Designs

In a second-order design, the effects of changing

levels of variables are represented by a quadratic

relationship with the response. At least three distinct

points or levels of any variable are required to fit a curve

16



to data. The levels may be spaced equally apart and

assigned coded values of -1, 0, and +1, corresponding to

low, middle, and high, respectively. Three-level factorial

designs can be fit by using second-order models, but some

drawbacks might prevent their use.

First, the use of these designs in studies involving

more than two independent variables may result in a large

number of design points and excessive experimentation. More

seriously, the coefficients of the quadratic terms are

estimated with relatively lower precision than would be

possible with other second-order designs because the

variables are held at only three levels (Box and Wilson,

1951; Morton, 1983; Mitchell et al., 1986). Another

drawback is that three-level factorial designs are not

rotatable. Rotatable designs provide equal predicting powers

because the standard error of the measured response is

constant at equal distances from the center of the

experimental region (Gacula and Singh, 1984). Thus

rotatable central composite designs are usually used to

estimate second-order effects because they can minimize the

effects of many of these problems (Morton, 1983).

Central Composite Designs: A central composite design (CCD)

can be formed by augmenting a two-level factorial design

with enough added points to fit a second-order model.

Figure 3 illustrates 15 design points of a three-variable

CCD in three dimensions. The vertices of the cube

17
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Figure 3 - The 15 design points of a three-variable central
composite design (Gacula and Singh, 1984)



constitute a 23 factorial design, and the six star points

formed on the axes of the center point, and the center point

make up the CCD. Table 2 provides the design matrix.

These designs specify five levels coded -a , -1, 0, +1,

+ a , for each variable. The use of five points allows for

precise estimation of the coefficients of the quadratic

terms in the models.

Certain features of a CCD can make it rotatable if the

center point of the cube represents the center of the

experimental region. The 2 n factorial part of this CCD is

rotatable when used to estimate first-order effects (Gacula

and Singh, 1984). Also the number of replications of the

center-point and the distance of the star points from the

center point can be chosen to satisfy r o t a

t

ability .

Replication of the center point provides model-free

estimates of experimental error, enables testing for "lack-

of-fit" of the chosen model, and determines the standard

error or precision of a measured response at and near the

center (Cochran and Cox, 1957). With many replications of

the center point, the standard of error is low at the center

and increases rapidly as the distance from the center

increases. With only one or two replications, the standard

error can be greater in the center than at other design

points. To make a CCD rotatable, the number of center-point

replications should be chosen so that the standard error of

a measured response is the same at the center as at all

19



Table 2 Design matrix of a three-variable central
composite design 3

Independent variables

Design point Constant

i 00 Xu Xi, *3,

1

2

-i -1 -1'

3 -

1

-1
4 -

1 Eight two-level factorial

5 -i -1 design points

6 -

1

7 -

1

8

9 Center point

10 -2

11 2

12 — 3 Six axial points at i distance

13 a from the center point

14 —a
15 2

a Gacula and Singh, 1984
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points on a circle having radius 1 (Box and Hunter, 1957).

Because the star points are the outer points of the design,

their distance a must be specified in order to also satisfy

this condition. Cochran and Cox (1957) indicated that a

must equal 2nM
j where n is equal to the number of x-

var iables

.

Draper (1982) suggested other statistical criteria for

selecting the number of center points that should be

included in a CCD. Nothing, however, will be lost by

including more center points than the CCD designs require

except the cost of performing additional experimental runs

(Box and Draper, 1987).

Table 3 shows components of rotatable CCDs for

increasing numbers of variables. When the design includes

five or six variables, a half replicate of the two-level

factorial is used. This reduction keeps the amount of

design points to a minimum and prevents excessive

experimentation, which is characteristic of full 25 and 26

factorial designs. The use of a fractional replicate should

maintain adequate estimation of linear, quadratic and

interaction effects. A discussion of confounding effects as

well as orthogonal blocking in second-order designs is

provided by Box and Draper (1987) and Gacula and Singh

(1984). The value of a should equal 2(n-l)M when the

design includes five and six variables and a half-replicate

of the 2n i s used.

21



Table 3 - Components of rotatable central composite designsa

No. of
x-variables

k

Number of points in
2k fac-
torial Star Center

16

16

32

10

12

Total
N

Value
of a

20 1.682

31 2.000

32 2.000

53 2.378

a Cochran and Cox, 1957
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CCDs are the most frequently used response surface

designs in food research. Pearson et al. (1962) reported

one of the earliest food applications of RSM using a CCD to

optimize levels of salt and sugar in cured ham. Smith and

Rose (1963) determined the effects of flour, water, and

shortening using a CCD to optimize a pie crust formulation.

Lee and Hoseney (1982) used two rotatable CCDs to optimize a

f at-emulsif ier system and a gum-egg white-water system for a

single-stage cake mix. Individual three-variable designs

were applied to each system. Dividing the design in this

way reduces the amount of work and simplifies the

interpretation, but for such a division to work efficiently,

there should be no interaction between the two systems,

i.e., the optimum level of the f at-emulsif ier system is

independent of the levels of the gum-egg white-water system

(Mitchell et al. , 1986).

Daley et al. (1978) used a rotatable CCD in the

development of a mullet sausage product using RSM. Mittal

et al. (1987) used a rotatable CCD to determine effects of

smokehouse temperature and relative humidity on meat

emulsion product qualities and developed optimum conditions

based on the acceptable product qualities. Vaisey-Genser et

al. (1987) optimized levels of canola oil, water, and an

emulsifier system in cake formulations using a three-

variable CCD. Payton et al. (1988) applied a rotatable CCD

for three variables to optimize a bread formulation.

23



Useful Three-Level Designs: Circumstances occur where

second-order effects are required using the smallest number

of levels of variables, namely three. Box and Behnken

(1960) developed a useful class of three-level second-order

designs, which are economical in the number of experimental

runs. These designs are formed by combining two-level

factorial designs with incomplete block designs. Table 4

illustrates the construction of a three-level second-order

design for four variables. The two asterisks in every row

of the balanced incomplete block design are replaced by two

columns of the 22 factorial design to create the design in

Table 5. A column of zeros is inserted whenever an asterisk

does not appear. This particular design is, in fact, a

rotation of the four-variable CCD with three center points.

Box and Draper (1987), however, stress that not all designs

of this specific class of three-level second-order designs

can be generated from a CCD by rotation. Only the designs

for four and seven variables are rotatable. Gacula and

Singh (1984) provide a discussion of the use of this class

of designs in food research. Wells (1976) provided an

application of one of these designs in three variables.

Aguilera and Kosikowski (1976) used a three-level fractional

factorial design to study the effects of process

temperature, feed moisture content, and screw speed on a

soybean extruded product.

Mixture Designs: Mixture designs are used in RSM studies

24



Table 4 - Construction of a three-level second-order design
for four variables 3

(a) A balanced incomplete block
design for four variables in
six blocks (b) A 22 factorial design

-1 -1

1 -1
1 1

1 1

Table 5 - An incomplete 3^ factorial in three blocks of nine
experimental runs

[-
-

- 1 -1

1 -1
-1 1

1 1

-l -1

l -1

-l 1

l 1

- 1 -1

1 -1

-1 1

1 1

-1 -1
1 -1

-1 1

1 1

-1 -1

1 -1

-1 1

1
•

1

-1 -1

1 -1
-1 1

1 1

Block

:

a Box and Draper, 1987
25



where the variables are constant proportions of the

components in a mixture. In this case the variables are not

independent; changing the level of one variable will always

change the level of at least one other variable in the

experiment. The constraint that the sum of the variables

must equal 100% impinges on the experimental design.

Cornell (1981) provides a complete explanation of mixture

designs, models, and data analysis.

Figure 4 contrasts the geometric space of independent

and mixture factors in three variables. The experimental

points in the independent space represent two-level

factorial designs. The experimental points in the mixture

space are located on a simplex. As is evident in the three-

variable mixture design, the vertices representing 100% of

each of the three components is an equilateral triangle.

The polynomial models for mixture designs become

reduced versions of the familiar polynomials. The mixture

model need not contain a constant term, O , For example,

the first-order polynomial model derived from a mixture

design is expressed as

Y = 01X1 + 02X2 + ... + 0nXn + «

Estimates of the coefficients can be obtained using multiple

regression by forcing the intercept ( O ) to be zero (Hare,

1974). Hare and Brown (1977) provided information about

plotting response surface contours for mixture designs.

Application of mixture designs should be a

26



Figure 4 - The geometric space of independent and mixture
factors in three variablesa

a Snee, 1971
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consideration in the development of food formulations. Hare

(1974) discussed the basic concepts of mixture designs and

their applications and advantages in food research and

product development. Snee (1971) provided techniques for

the design and analysis of mixture experiments. Johnson and

Zabik (1981), who were interested in the effect of five egg

proteins, in a blend, on the properties of angel food cakes,

used an extreme vertices mixture design of McClean and

Anderson (1966). All possible treatments with five of the

proteins at the maximum and minimum of their ranges were

considered. The level of a sixth protein was adjusted in

each case to make a 100% blend.

Another approach addressing the constraints of mixture

experimentation is provided by Mitchell et al. (1986). They

suggested the use of ratios constructed from the true n

variables as actual variables in a CCD. The true variables

are evaluated based on the knowledge of the ratios. To

study the relative quantity of flour fractions on cake

quality, Donelson and Wilson (1960) used three ratios of

four flour fractions as variables in a CCD. The use of

ratios made interpretation of the derived second-order model

difficult, but the authors were able to illustrate the major

features using three-dimensional plots. Kissell and

Marshall (1962) and Kissell (1967) similarly utilized ratios

of ingredients in cake formulations as variables in a CCD to

determine their relative effects on cake quality.
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Sequential Methods Of Optimization Using RSH

Path of Steepest Ascent

The path of steepest ascent locates an optimum response

area through a sequential exploration of subregions of a

continuous, experimental region (Box and Wilson, 1951), In

the first subregion, which is located in a 'corner' of the

region of interest, a two-level factorial or fractional

factorial design is employed. If the main effects in this

subregion are found to be large compared to interaction

effects, the variable levels are changed in the direction of

optimum response or the path of steepest ascent. A point is

chosen on this path to become the origin of a new first-

order design and produces a new path of steepest ascent

(Vuataz, 1986). This sequential strategy is continued until

the first-order effects make no further significant

contribution to the search for the optimum-response region.

This region is said to be at a near-stationary point of

response. El-Dash et al. (1983) illustrated various

characteristics that this surface can exhibit. Three-level

designs and composite designs are used to estimate second-

order effects to determine the true nature of this localized

region. Motycka et al. (1984) used a 23 factorial design

to determine the path of steepest ascent in the optimization

of boneless ham yield. A 32 factorial design and a central

composite design were used to estimate quadratic effects of

pre-rigor and post-rigor ham, respectively. Sood and
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Kosikowski (1979) also followed the path of steepest ascent

to determine enzyme levels for optimum acceleration of

Cheddar cheese ripening and flavor development. In an

investigation of the performance of a soy protein ingredient

as a whipping aid, Lah et al. (1980) used a 27-3 fractional

factorial design as a basis to determine the path of

steepest ascent.

Evolutionary Operations (EVOP)

Evolutionary operation (EVOP) is an optimization

technique developed by Box (1957) for increasing industrial

productivity. The rationale behind this technique is that

an optimization process conducted in a laboratory or a pilot

plant usually can not be applied to a full-scale process.

EVOP can improve a full-scale process by making small

systematic changes in levels of each variable under study

from normal standard plant operation levels. The changes

are sufficiently small to preclude the disturbance of

process dynamics or the production of of

f

-specif ication

products (Mitchell, 1983). The advantage of EVOP is that it

can and should be applied directly to the processing line

and is, therefore, suitable for quality control (Nakai,

1982). EVOP is, however, restrictive and unsuitable for

application in research and development (Kramer and Twigg,

1970).

Simple two-level factorial designs in two or three

variables are chosen because production personnel are
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directly involved in the process. A design involving more

variables can be too demanding and result in a negative

reaction from the process operators (Mitchell et al., 1986).

Results are analyzed and the variables are altered in the

direction predicted to most improve the process. The number

of times the cycle is repeated depends upon the significance

of the changes that are being detected. EVOP is useful if

measurements are subject to random errors as is the case in

industrial food production (Saguy et al., 1984; Box, 1975).

This method can also be applied in cases where responses are

ranked rather than evaluated quantitatively. An example is

provided by Kramer (1964) who applied EVOP to a blanching

operation on green beans for canning.

Simplex Methods

Simplex optimization is a sequential method of locating

an optimum and is based on a regular simplex, which is a

figure with equally-spaced vertices. For example, in two

dimensions the simplex is an equilateral triangle. Each

vertex of a simplex represents a different combination of

levels of variables. The basic principle of simplex

optimization is to eliminate the experiment (vertex) which

has yielded the worst result (response) in each simplex

consisting of n+1 experiments, where n is the number of

variables (Nakai et al., 1984). The next simplex that adds

another vertex will move the simplex in the opposite

direction from the worst response in the previous simplex.
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The simplex procedure can be used to roughly locate the

optimum (within the region of interest or on its boundary)

when no a priori information is available (Vuataz, 1986).

Morton (1983) discussed noteworthy features of simplex

designs

.

Mitchell (1983) suggested that the simplex approach

would be useful in product development using sensory

evaluation because a panelist would find more ease in

selecting one product from a series than quantitatively

evaluating or ranking all of them. Generally a comparison

is appropriate if confined to two products, but the simplex

method can never compare less than three products.

MacDonald and Bly (1966) applied the simplex method to

determine optimum combinations of four emulsifiers for cake

mix shortenings. A satisfactory formulation was found after

only eight experimental trials. Lee (1984) measured gel

strength of various blends of guar gum, locust bean gum, and

carageenan by simplex and response surface methods to

optimize a gel formulation. Mitchell et al. (1986),

however, failed to optimize an ice cream formulation using

the simplex approach.

Nakai (1982) found that a modified super simplex

algorithm performed best in determining the maxima or minima

when compared to other optimization techniques. A new

mapping super-simplex optimization (Nakai et al., 1984)

improved the efficiency of 20 food processing experiments.
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Most experiments on food analysis and processing were

optimized within 25 to 30 iterative experiments depending on

the number of variables.

RSM Strategy

The RSM process requires clearly defined steps to

ensure success. Giovanni (1983), McLellan (1986), and

Mitchell et al.(1986) summarized four major steps.

Preliminary Investigation

1. Identify critical factors.
2. Determine appropriate ranges of factor levels.
3. Identify responses to be measured and methods of

measurement

.

Design of the Experiment

1. Choose equations or models relating responses to factor
levels

.

2. Select an appropriate experimental design.
3. Conduct the experiment.

Analysis and Interpretation

1. Fit the equations to the data.
2. Determine if the "fits" are satisfactory and appropriate.
3. Determine optimum responses from the fitted equations

and/or contour plots.

Validation

1 . Run an independent experiment to validate equation
predictions

.

2, Compare observed responses to predicted responses.

Preliminary Investigation

Identification of variables that account for the major

variation in a process or product is critical to the outcome

of the RSM study. If the variation of an ingredient level

leads to wide changes in taste, texture, or appearance of a

food product, the ingredient is a candidate for inclusion
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in the optimization process (Fishken, 1983). Ignoring a

pertinent variable could result in a significant lack-of-fit

of the model (Vuataz, 1986). The number of experimental

trials increases rapidly with the number of variables and

with the complexity of the model to be fitted (Mitchell et

al., 1986). If many variables are important, Mullen and

Ennis (1985) have provided fractional factorial designs for

screening experiments using up to 15 variables. The

important point to remember is that the screening of

variables should never be left to the sole discretion of any

statistical procedure (Draper and Smith, 1981).

Determination of an appropriate range of variable

levels also will influence the success of the RSM study.

The range over which the variables will be changed is

governed by the conflicting requirements of obtaining

sufficient data in the critical region to predict an optimum

precisely and making the experimental region large enough to

avoid missing the optimum region altogether (Mitchell et

al., 1986). Experimenters must use their technological

skill, intellect, and experience to help determine these

levels (Fishken, 1983). Both foreknowledge and some

practice are required to locate and scale the design axes

satisfactorily to the response surface (Wilson and Donelson,

1965). McLellan (1986) stated that the range of levels

should encompass the physical limitations of the product and

the midpoints must be selected so that they are
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representative of typical conditions. The range of factor

levels should be large enough to detect curvatures in the

response surface, if they exist (Vuataz, 1986). Giovanni

(1983) advised that factor levels be set fairly broad, and

when needed, conduct a second RSM experiment to yield a more

accurate representation of the optimum. Limitations may

exist for some food products because factor levels may be

restricted by physical and cost limitations and by

government regulations (Norback and Evans, 1983). In this

case a specific optimum may not be determined.

Identification of meaningful response variables and

selection of appropriate methods of measurement have a

decisive impact on the results of the RSM study. Physical

or functional properties, sensory properties, nutritive

value, safety, and cost are general areas of consideration

in the food field. The overall goal is to select responses

that adequately describe the effects of changing the

variables (Olkku et al., 1983).

Physical and functional propeties of a product and

their measurements are common response variables. Nielsen

et al. (1973) used protein denaturation , pH, and total

solids as responses for evaluating the role of processing

variables upon protein denaturation in heated whey systems.

El-Dash et al. (1983) measured sample viscosity and degree

of gelat i nizat ion and r et rogradation to investigate and

optimize conditions for extruded corn starch pastes.
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Aguilera and Kosikowski (1976) used water absorption

capacity, War ne r-B r a t z 1 e r shear values, and trypsin

inhibitor activity as responses to optimize a soybean

extruded product. Lin and Zayas (1987a; 1987b) optimized

functional properties such as emulsifying capacity and water

retention of defatted corn germ proteins in model systems

that corresponded to sausage batter systems.

Sensory evaluation provides meaningful response

variables for food product optimization. Wells (1976)

provided techniques for the quantitative measurement of

sensory responses. Cooper et al. (1977) used magnitude

estimation to optimize sensory responses of whey protein gel

systems. Daley et al. (1978) measured flavor, texture, and

overall acceptability using a seven-point hedonic scale to

optimize a sausage-type product using RSM. Drewnowski and

Moskowitz (1985) applied RSM to determine consumer selection

of snack products using new evaluation techniques to

evaluate preference levels of salt and spiciness

intensities

.

Descriptive analysis is the most appropriate sensory

tool for optimization of food products because no a priori

knowledge exists concerning important sensory

characteristics (Stone and Sidel, 1985). A sensory data

base is developed from a group of highly trained panelists

that provide quantitative descriptive responses. Panelists

evaluate these key product characteristics using intensity
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scales. Flavor intensities of extruded snacks and crackers

were evaluated by panelists using anchored line scales in an

RSM study conducted by Lane (1983). Neville and Setser

(1986) used unstructured, six-inch line scales to optimize

textural attributes of reduced-calorie layer cakes using

RSM. Data generated by the use of unstructured line scales

tend to be continuous and normally distributed (Gacula and

Singh, 1984). These characteristics lend credibility to RSM

application because they satisfy the mathematical

assumptions of regression analysis. Zook and Wessman (1977)

described the selection and use of panelists for

Quantitative Descriptive Analysis (QDA) and supported the

use of QDA in an optimization process. McLellan et al.

(1984) employed QDA in RSM optimization of a carbonated

apple juice beverage.

Nutritive value of food products also can be a

consideration when choosing response variables. Payton et

al. (1988) developed a fortified bread formulation designed

to increase calcium, riboflavin, and thiamin content.

Hedonic flavor responses were measured as a function of

selected ingredients, which supplied the added nutrients.

Keagy et al. (1979) and Connor and Keagy (1981) used

regression analysis to investigate vitamin retention in

enriched cookies. A cookie system was chosen because it

represented extreme temperature and pH conditions in a baked

product

.
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Design of the Experiment

Choosing an appropriate equation relating responses to

variable levels is a difficult task because the researcher

often does not know the exact relationship. Second-order

polynomials have been most frequently applied in the food

field; first-order polynomials are applied when making a

rough survey of a target area in optimization (Olkku et al.,

1983).

First-order or linear effects between responses and

variables are investigated using factorial designs. Two-

level fractional factorial designs reduce the number of

experimental runs and still derive accurate first-order

models (McLellan, 1986). Mullen and Ennis (1985)

recommended fractional factorial designs for product

development. Lah et al. (1980) used a 27-3 fractional

factorial design to screen seven potentially important

variables in the optimization of whipping properties of a

soy product.

Joglekar and May (1987) stated that to ensure success

in product and process optimization, the problem must be

viewed in stages. Central composite designs, in particular,

allow the researcher to evaluate the data in stages. These

designs determine first-order effects using two-level

fractional factorial designs and if needed they estimate

second-order quadratic effects simply by adding further

points to the design (Vuataz, 1986). Central composite

38



designs also form a nucleus for a design to which a third-

order cubic polynomial model can be fitted (Derringer,

1969). The use of a third-order design requires a large

increase in the number of parameters in the model, which may

be unreasonable. Hill and Hunter (1966) recommended a

simple transformation analysis to reduce the number of

parameters. Third-order cubic models, however, are not

ususally needed to model response surfaces in food

applications .

If the goal of an optimization process is to improve an

existing situation, the logical center point of an

experimental design is the current levels of the factors

used for the product or process (Mitchell et al. , 1986).

Coding the levels of variables makes the design of

experiments easier because homogeneous scales on the axes

that span the surface create a spherical, symmetrical design

space (Vuataz, 1986). The value of variables at the center

point are coded zero. After determining the range of

interest for each variable, extreme values are coded as the

-1 and +1 levels in a first-order design, or as -a and +ot

in a second-order design. In order to establish the

physical possibility of running all experimental design

points, Olkku et al. (1983) and Vuataz (1986) strongly

suggested that one should check the 'extreme conditions' of

the design in the laboratory before conducting the

experiment

.
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Many RSM designs could be applicable for any

experimental investigation and a variety of statistical

criteria exist on which to base a selection. Allowance for

error estimation, orthogonal blocking, and rotatability are

desirable design features. The goodness-of-f it of a derived

equation can be determined from a design that includes a

replicated center point from which an estimate of

experimental error can be made (Derringer, 1969).

Orthogonal blocking divides a design into blocks or

groups that are smaller in size than the total number of

design points (Gacula and Singh, 1984). The design points

within each block are uncorrelated with all the estimates of

the coefficients in the response model. This arrangement

provides for the coefficients of the response model to be

independent of the block differences. Terms can, therefore,

be dropped from the fitted surface without affecting other

parameter estimates, and any reestimation of the parameters

is unnecessary (Morton, 1983). Box and Hunter (1961a;

1961b) developed appropriate design criteria for block

effects and described the corresponding analyses. Central

composite designs can be arranged easily in orthogonal

blocks (DeBaun, 1956; Box and Hunter, 1957).

Box and Hunter (1957) expounded on the concept of

rotatability as a criteria for design selection. The models

derived from rotatable designs predict responses equally in

all directions from the center point of the design (Gacula
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and Singh, 1984). Rotatable designs are efficient because

they require only a subset of all possible experimental

combinations (McLellan, 1986). These designs cover the

range of variables, but emphasize those combinations closest

to the midpoints of the ranges. First-order designs can be

orthogonal and/or rotatable, but second-or higher-order

designs cannot be both (Morton, 1983). In these cases,

rotatability has been the preferred property (Nalimov et

al . , 1970). An example of a sound design, which was neither

orthogonal nor rotatable, was used by Cooper et al. (1977)

to develop formulations for whey protein gel systems.

Because many other designs fall into this category,

other methods have been suggested to judge optimal designs.

Morton (1983) has reviewed the use of the theory of

statistical estimation as a basis of design selection. Box

and Draper (1957) listed five properties for an optimum

response surface design. This list later was increased to

15 criteria (Box and Draper, 1975). Andrews and Herzberg

(1979) have also addressed criteria for design selection.

Careful control of all the constraints imposed in the

planning stages of the experiment is critical in the data

collection process. Olkku et al. (1983) advised the use of

a completely randomized order in the running of experimental

trials. Vuataz (1986) advised that the center points of the

design, from which experimental error is estimated, should

be scattered throughout the experiment. The presence of any
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trend can, therefore, be detected. With RSM, the misuse of

statistical principles, such as randomization and blocking,

will cause one to determine an incorrect model to describe

the data (Giovanni, 1983). Box and Guttman (1966)

considered aspects of randomization pertaining to response

surface designs.

Data Analysis and Interpretation

Multiple regression analysis using the method of least

squares is the standard procedure for estimating the

coefficients ( & 1 , 02 , . . . /3 n ) of the response surface

equation, i.e., to fit a model to the data. When

standardized the coefficients indicate the relative

importance of their associated x value. Mullen and Ennis

(1979) explained that the value of a standardized

coefficient indicates the degree of importance of its

associated x value; a large value indicates much importance

and a small value indicates lack of importance. In a

quadratic polynomial model, the coefficients of the

interaction terms measure the amplitude of this interaction,

which can be tested for significance (Vuataz, 1986).

Although often neglected, examination of the data for

adequacy of the assumptions on the error term is advised

(Mead and Pike, 1975). The information on adequacy lies in

the residuals, which are the differences between the

observations and values that would be predicted by the

fitted model. If the fitted model is correct, the residuals
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should exhibit tendencies that confirm the assumptions

(Draper and Smith, 1981). Analysis of residuals is done by

constructing simple graphical plots, which are very

revealing when the assumptions are violated. These graphs

provide a check of whether the residuals are normally

distributed about zero or not. Distinct patterns signify an

inappropriate model or violated assumptions. Half-normal

plots, which provide another source for data examination,

were developed by Daniel (1959) and are effective in the

analysis of factorial designs and if replication is not

included. Joglekar and May (1987) and Lah et al. (1980)

employed the use of half-normal plots in food applications

of RSM. The analysis of variance will give information

about the overall goodness-of-f it of the model.

Selection of the best-fitting model can be based on

procedures fully explained by Draper and Smith (1981).

Comparison of R2 values and significant F-tests, and

deletion of variables that fail to make significant

contributions to the model are common criteria. The final

model is a generalized equation for the response as a

function of the independent variables. This equation can be

used to plot the estimated response surface contour which

provides a clear indication of the relationship between the

responses and variables, i.e., the optimum. Predicted

responses for any combination of levels not actually tested

can be derived from the equation within the range of the
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data. Overlaying contour plots for each individual response

can determine compromises between factor levels, which can

provide an overall multiple response.

If more than three independent variables are involved

in the analysis, interpretation of the response surface by

either the models or the contour plots can be difficult. To

gain insight into the nature of the response surface, Hill

and Hunter (1966) recommended a canonical analysis on the

equation. Canonical analysis consists of (1) shifting the

origin of the design to the stationary point of the system

of curves (conies) representing the contour surface, and (2)

rotating the axes of the design so that they correspond to

the axes of these conies (Box and Wilson, 1951). Linear and

cross product terms are removed from the model in this

process thus allowing a clear indication of the quadratic

effects

.

Although not usually used in food research and

processing, canonical analysis can be effective in

understanding the nature of a second-order response surface

(Vuataz, 1977). Wilson and Donelson (1965) used canonical

analysis successfully after complications arose in

determining the contour of layer cakes as a function of

chlorine dosage of flour and liquid level. These authors

provide excellent contour plots illustrating the rotation of

axes. Efforts by Kissell (1967) to relocate axes at the

stationary points of the contour surfaces of cake contour
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and score responses were not as successful. Interpretation

of the response surfaces after canonical transformation

revealed off-scale points. Use of the models to predict

responses out of the range of the data was, therefore, of

marginal value. Olkku and Vainionpaa (1977) also performed

a canonical analysis in an RSM study of high

t emp er a t ur e / sh o r t time (HTST) extrusion of texturized

starch-protein-sugar paste.

Analysis of regression models and contour plots in the

optimization process usually involves creative efforts.

Results are best interpreted cooperatively by the

statistician, product developer, sensory scientist, and

others involved in the data collection (Giovanni, 1983).

Sidel and Stone (1983) agreed that creativity is an integral

part of the optimization process. These authors explained

that the availability of statistical models and other

resources such as those in sensory evaluation are intended

to expand the intellectual limits and provide a deeper

perspective on the product.

Validation

The ability of the regression equations to predict

responses for observed points within the range of the data

should be validated in an independent experiment. Observed

responses from this experiment are compared to the predicted

responses derived from the equations. Giovanni (1983)

stressed the importance of this step of RSM in food product
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optimization especially with the use of sensory analysis.

Although many authors of papers in food research agree, few

indicate validation studies were performed.

Kissell (1967), Henselman et el., (1974), and Neville

and Setser (1986) were three exceptions. In an RSM

optimization study of cake formulations, Kissell (1967)

obtained agreement with observed and predicted values for

volume, contour, and most crumb scores in a validation

experiment. Levels outside of the range of the RSM

experimental data were also tested and predicted values for

responses were always below the observed values. Precision

of prediction by the regression models, therefore, was

reduced when extrapolated outside the data. Henselman et

al. (1974) validated the optimization of flavor of high

protein bread with a subsequent consumer preference test.

Neville and Setser (1986) also validated textural

optimization of layer cakes using a highly trained panel to

compare observed and predicted sensory responses.

Limitations of RSM

The accuracy of RSM is dependent upon the degree to

which certain limitations are controlled. Giovanni (1983)

and McLellan (1986) discussed these considerations:

(1) Large factor variation can result in misleading

conclusions.

(2) Incorrectly specified or insufficiently defined

variables result in an inaccurate model.
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(3) Inaccurate variable ranges can be too narrow or

too broad to locate the optimum.

(4) Misuse of statistical principles such as

randomization and blocking may result in an

incorrect model.

(5) Researchers can rely excessively on the computer

rather than their own judgment and knowledge to

draw conclusions from the generated model.

RSM is a powerful research technique that efficiently

models relationships among interacting variables and

effectively helps researchers make be 1 1 e r - i n f o r m e d

decisions. RSM, however, is not an end-all in solving

product and process optimization. Without careful planning,

precise conducting of experiments, and correct

interpretation of the resulting data, RSM will not provide

useful results.
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MATERIALS AND METHODS

RSM Optimization

Materials

A starting formulation (Table 6) for a reduced-calorie

chocolate layer cake was developed from a yellow layer cake

formulation (Bramesco and Deming, 1987). Water,

polydextrose , guar gum, and xanthan gum were selected as the

most influential ingredients affecting the appearance and

texture of tested cakes. Cake volume and sensory evaluation

responses were chosen to measure the effects caused by

variation in ingredient levels. Each ingredient was ordered

from a single lot prior to the beginning of the study.

Whole eggs were purchased weekly from a local supermarket.

Preparation Methods

Mixing and baking procedures are given in Table 7.

Ingredients were weighed one day prior to cake preparation.

Eggs were beaten slightly and weighed immediately before

mixing. Distilled water was used as the liquid. Volume and

sensory measurements were obtained within one hour after

baking

.

Measurement of Responses

Volume: Values for volume were determined using AACC Method

10-91 (1984) adapted for 6" cakes. Cakes were cut in half

and measurements were taken from a randomly selected half.

Sensory: Five professional panelists trained in descriptive

analysis techniques at the KSU Sensory Analysis Center were
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Table 6 - Starting chocolate cake formulation for response
surface optimization

Ingredient % Flour Weight g Weight

Cake floura

Maltodextrin 180b

Whey protein concentrate c

Cocoad

Double acting baking powder e

Salt

Sodium saccharin

Aspartamef

Whole eggs, fresh

Emulsif ierg

Polydextroseh

Guar gumi

Xanthan gumj

Water

100.00

16.60

5.00

10.00

7.50

2.20

0.17

0.22

75.00

15.00

60.00

0.15

0.15

175.00

120.00

20.00

6.00

12.00

9.00

2.64

0.20

0.26

90.00

18.00

72.00

0.18

0.18

210.00

a Pillsbury, Minneapolis, Minnesota
b Grain Processing Corp,. Muscatine, Iowa
c Land 0' Lakes, Inc,. Minneapolis, Minnesota
o Ambrosia Chocolate Co,. Milwaukee, Wisconsin
e ADM Arkady, Olathe, Kansas
i Searle Inc., Skokie, Illinois
g Patco Inc., Kansas City, Missouri
h Pfizer Inc. New York, New York
i Meer Corp. North Bergen, New Jersey
j Kelco Co. Inc. San Diego, California
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Table 7 - Mixing and baking procedures for chocolate cakes

Procedure

1. Sift dry ingredients; mix.

2. Add emulsifier, egg, water; mix,

3. Scrape; mix.

4. Scrape; mix.

5. Scale 275 grams of batter into
greased, 6" aluminum cake pan.

6. Bake in preheated 325o F ovenb.

7. Cool on wire rack.

8. Remove cake from pan; cool on
wire rack.

Speeda Time
(min)

2 1

2 0.5

10 2

10 2

30

15

15

a Hobart Kitchen Aid mixer, Model K5-A, wire whip attachment

b Rotary hearth oven, National Mfg. Co. Model 280C.

50



familiarized with selected textural and appearance

attributes of cake samples. Two scorecards used by this

panel in previous cake optimization work were modified for

this study. During six one-hour training sessions panelists

redefined terms if necessary and developed specific

procedures for evaluating samples. Consistency of

panelists' scoring for each attribute was checked with

duplicate samples on different days.

Textural attributes included crumb fragileness, initial

moistness, crumb adherence, cohesiveness during mastication,

and moistness during mastication. Appearance attributes

included crust surface, crust stickiness, cell uniformity,

cell size, and undercrust stickiness. Intensities of each

attribute were recorded on both a computer and a scorecard

using unstructured six-inch line scales with end and

midpoint anchors. Definitions of attributes and procedures

for evaluation were provided on the scorecards. Sample

scorecards are given in the Appendix (Form A-l and A-2).

Fifteen minutes before evaluation, cakes were cut in half.

Responses of the five panelists were averaged for each

attribute for data analysis.

A randomly selected half of each cake was divided into

five equal-sized wedges for texture evaluation by the panel.

Each wedge was placed on a six-inch paper plate coded with a

three-digit random number. Samples were loosely covered

with plastic wrap to prevent drying. The other half of the
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cake, which was used for appearance evaluation, was placed

on a white ceramic plate coded with a number corresponding

to that used for texture analysis. To prevent condensation

effects on the crust surface, this display sample was left

uncovered .

Four cakes were evaluated per session. Reference

pictures were provided at each session for the following

appearance attributes: cell uniformity, cell size, and

undercrust stickiness. Order of sample evaluation for each

panelist was randomly allocated by the computer. Distilled

water and apple slices were provided between samples.

Instrumental: Cake crumb was evaluated for selected

textural attributes using the Instron Universal Testing

Machine (IUTM) according to Bourne (1978). Samples were

scaled into 20-mm cubes from the cake half used for sensory

appearance attributes. Procedures for IUTM evaluation are

given in the Appendix (Table A-l).

Experimental Design and Statistical Analysis

Two second-order response surface designs were selected

to compare their effectiveness in predicting the

optimization of cake attributes. A rotatable, three-level

design obtained by combining a balanced incomplete block

design with a 22 factorial (Box and Behnken, 1960) allowed

for the investigation of the four ingredients in 27 trials

(Table 8). A rotatable central composite design (Table 9)

varied the ingredients at five levels. This design was
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Table 8 - Experimental design for four ingredients at three
levels 3

X[ x
2

-v
.l

Vj

- 1 -1

1 -1

-1 1

1 1 f)

-1 -1

1 -1

-1 1

1 1

- 1 -1

1 -1
-1 1

1 1

-1 -1

1 -1
-1 1

1 1

-1 -1

1 -1
-1 1

1 1

-1 -1

1 -1
-1 1

1 1

v
l Water

:

X3 = Guar Gum;

a Box and Draper, 1987

X2 = Polydextrose
X4 = Xanthan Gum
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Table 9 Experimental design for four ingredients at five
levels 3

4 z-variables N = 31 treatment combinations

2 4
factorial + star design + 7 points in the center

ii ?3 XI J2 X3 x4

_2
2

— 2

2

_2
2

-2
2

*1
x3

Water

;

Guar Gum:
X2 = Polydextrose
X<4 = Xanthan Gum

a Cochran and Cox. 1951
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obtained by augmenting a 24 factorial design with eight star

points and seven center points requiring 31 trials. For

this study four of the center points were omitted to

equalize the number of trials in both designs. Center

points for each design were the same. The 27 trials from

each design were combined and then randomized for

preparation

.

Percentage levels of each ingredient were assigned

coded values for each design in Table 10. The experimental

design points for the three-level design were coded zero,

the level based on the starting cake formulation, and -1 and

+ 1, equal levels above and below that point. For the five-

level design, levels of the star points were coded -2 and +2

and corresponded to the levels coded -1 and +1 in the three-

level design. The levels coded -1 and +1 in the 24

factorial portion of the five-level design were midpoint

levels between those at zero and those at -2 and +2. All

ingredient levels were coded zero for the center points of

both designs.

Data were analyzed using the Statistical Analysis

System (SAS, 1982) procedure for response surface regression

(RSREG). Responses were examined for significance of

linear, quadratic, and interaction effects. Best-fitting

models then were determined using a backward elimination

procedure. The significance level required for a variable

to stay in the model was 0.15. If a linear term was not
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significant and its squared and/or interaction terms were

significant, the linear term was required to be in the

model. Best-fitting models were used to plot response

surfaces using GCONTOUR and G3D procedures in SAS GRAPH.

Validation

Follow-up Study

Four formulations (Table 11) focusing on optimum

ingredient levels determined by RSM were compared to a

commercial chocolate layer cake mix. Emulsifier level was

increased from the starting formulation in two out of the

four selected formulations. Baking time was increased from

30 to 40 minutes. An explanation for these changes is given

in the Results and Discussion section. Preparation methods

used in the RSM optimization were followed in this study.

Cake volume using AACC method 10-91 and descriptive

sensory techniques using four trained panelists were

employed to evaluate cakes. Some terms from the scorecards

used in the RSM optimization were redefined and others were

omitted. Appearance attributes selected for this study

included elevation of crust tier/ring, cell unevenness, cell

size, and undercrust inconsistency (stickiness). Texture

attributes included moistness, firmness, cohesiveness , and

crumbliness. Intensities of attributes were recorded on a

computer using unstructured, six-inch line scales with end

and midpoint anchors. After training, panelists'

performance was checked. Panelists gave consistent

5 7



Table 11 - Four formulations selected from RSM optimization

One

Formulation

Two Three Four

Ingredient

Water 152

Polydextrose 53

Guar gum .05

Xanthan gum .05

Emulsifier 20

182 198 238 190 228 150 180

64 67 79 70 84 56 67

.06 .05 .06 .25 .30 .25 .30

.06 .05 .06 .15 .18 .05 .06

24 15 18 20 24 15 18

Standard Ingredients Level %

Cake flour

Maltodextrin 180

Whey protein concentrate

Cocoa

Double acting baking powder

Salt

Sodium saccharin

Aspartame

Whole eggs, fresh

00.00 120.00

16.60 20.00

5.00 6.00

10.00 12.00

7.50 9.00

2.20 2.64

0.17 0.20

0.22 0.26

75.00 90.00



judgments for all attributes of duplicate samples.

Scorecards for textural and appearance attributes are

provided in the Appendix (Form A-3 and A-4). Responses of

the four panelists were averaged for each attribute for data

analysis .

Sample preparation was identical to that used in the

RSM optimization except for sample size used in texture

evaluation. Instead of cake wedges, 3/4" cubes of cake were

used. Five cakes were evaluated per session. References

developed by Bramesco (1988) for baked products were used

for texture evaluation. Reference cakes and pictures were

provided for appearance evaluation. Order of sample

evaluation for each panelist was randomized by the computer.

Distilled water was provided for rinsing between samples.

Experimental Design

This study was designed (1) to compare differences

among the cakes prepared from the four formulations and a

commercial cake mix, and (2) to compare each cake separately

to the commercial mix cake. A split-plot design using the

five cake formulations as the main plots and the four

panelist evaluations as the subplots was selected. Each

formulation was replicated once on each of four different

days. Days were used as blocks and cakes were randomly

allocated within each block.

Analysis of variance (ANOVA) according to Table 12

was performed on the data using SAS. The cake formulation
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Table 12 - Analysis of variance for volume and sensory data

Volume

Source of variation Degrees of freedom

Cake formulations

Days (blocks)

Error

4

3

12

Total 19

Sensory Measurements

Source of Variation Degrees of Freedom

Cake formulations (CF)

Days (blocks) (D)

CF x D

Panelist (P)

CF x P

Error

4

3

12

3

12

45

Total 79
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by blocks interaction term was used as the F-test

denominator for cake effects. Sample means were compared

using Least Squares Differences (LSD). The Dunnett Test

(ASTM, 1968) was used to compare the means of the cakes

prepared from the four formulations with the means of the

commercial mix cake. The standard error in these

computations was determined from the cake formulation by

blocks interaction term.
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RESULTS AND DISCUSSION

Preliminary Investigation

Crust evenness and undercrust stickiness developed as

specific concerns in the r e d uc e

d

-cal or ie yellow cake

formulation with the addition of cocoa and subsequent

modification to a chocolate formulation. Braraesco and

Deming (1987) found in reduced-calorie yellow cakes that, of

the ingredients studied, water and polydextrose influenced

the largest number of sensory parameters and volume;

linearly, quadratically , and interactively. Thus, these two

ingredients were included again for optimization in the

chocolate cake formulation. Preliminary investigations also

indicated that guar gum and xanthan gum would interact with

the water and contribute to batter flow characteristics

influencing the crust evenness and undercrust stickiness.

In earlier studies (Neville, 1986; Bramesco and Deming,

1987) the emulsifier system was found to have quadratic

effects on volume and crumb tenderness. Increased

emulsifier levels increased volume and crumb tenderness to

an optimum, after which the crumb was so tender that the

structure collapsed. Other ingredients had relatively

predictable positive linear effects, thus, this study

optimized just the four ingredients; water, polydextrose,

xanthan and guar gums; using an emulsifier level that

appeared to achieve positive effects with the test cake

formulations

.
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Trimbo et el. (1966) attributed ring formation in cakes

to a combination of lateral and vertical flow patterns in

cake batters. They explained that during baking, the batter

moved up from the bottom along the edge of the pan, inward

across the top of the cake, and then downward thereby

forming a surface ring. The ring and downward movement of

the batter progressed toward the center of the pan as baking

progressed, and stopped only when the batter became "set" in

the area outside the ring. These authors found that white

layer cakes made with guar gum at a 0.5% (fwb) level did not

develop flow rings. The increased batter viscosity kept the

surface fluid and uniform in appearance during baking.

Further investigation into the relationship between

viscosity and flow in the batters in this study is needed.

Optimization

Best-fitting regression models for volume and sensory

responses for each design and for a combination of both

designs are summarized in Table 13. Conflicting information

for sensory responses between designs could be attributed to

lack of consistency among panelists' responses. Plots of

sensory responses by sample for each of the five panelists

(Figures A-l through A-ll) revealed the extent of variation,

especially in the center point cakes. Instrumental (IUTM)

data plots (Figures A-19 through A-23) indicated that

formulation intolerance was minimal because variation among

center point cakes was relatively low.
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Variation of sensory responses might be attributed to the

following :

1. Human differences in salivation among panelists might

explain some of the unaccountable variation in responses

involving chewing: for crumb adherence and cohesiveness

and moistness during mastication. Later work in the

laboratory indicated that this source of variation, not

known at the time, should have been taken into account

(Bramesco, 1988).

2. Unexplained variability in other responses might have

resulted from the complexity of the expected judging

task, which became apparent over a period of time. For

example, the evaluation of crust evenness required an

integrated response to overall crust surface

characteristics and the degree of raised ring formation

in the cake center. In the validation study, this task

was simplified to an evaluation only of the degree of the

raised ring formation, and variation was minimal among

replications. Modifications of terminology developed by

Bramesco (1988) simplified texture responses, which also

resulted in minimal variation among replications in the

validation study.

To increase precision of optimization, response surface

regression models for the combined designs were used to

optimize the layer cake formulation. Significant effects

from regression analysis are summarized in Table 14. The
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Table 14 - Significants F-ratlos from response surface
regression analysis on volume and sensory
responses

Cross Total Lack-of-
Linear Quadratic Product Regression fit
F-ratio F-ratio F-ratio F-ratio F-ratioResponse

Volume 13.99
(0.0001)

1.36
NS

1.56
NS

5.06
(0.0001)

2.11
NS

Crust
Evenness

12.54
(0.0001)

0.81
NS

1.58
NS

4.49
(0.0001)

0.96
NS

Fragile-
ness

7.92
(0.0001)

1.03
NS

0.62
NS

2.82
(0.0053)

0.34
NS

Moistness 7.75
(0.0001)

2.39
NS

0.64
NS

3.17
(0.0022)

0.53
NS

Undercrust
Stickiness

8.81
(0.0001)

0.99
NS

1.30
NS

3.36
(0.0014)

0.54
NS

a Significant probabilities shown in parentheses;
NS - not significant.
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F-ratios for all models indicate highly significant linear

effects for volume, crust evenness, fragileness, moistness,

and undercrust stickiness; quadratic and cross product

interactions are not significant. Linear relationships

between sensory perceptions and ingredient levels are

typical (Moskowitz, 1983). Lack-of-fit F-ratios indicate

that these are plausible models, which have been found to be

adequate by the data. Total regression F-ratios are

significant for all models.

Summaries of the analysis of variance tables for best-

fitting models are given in Table 15. The F-ratios for all

models indicate significance at the 0.0001 level. The

measure-of-f it of crust evenness, fragileness, moistness,

and undercrust stickiness to the response surface is low,

ranging from 38-55% as shown by the R-square values. In the

use of RSM with sensory evaluation, explained variances

above 85% are considered very good (Henika, 1982). Lack-of-

fit tests produced non-significant F values for sensory

models indicating their adequacy. The low R-square values

found in this study probably are explained by the wide

variation in responses among panelists illustrated in the

plots of the sensory data (Figures A-l through A-ll).

The R-square value for volume is 0.60. The lack-of-

fit test for this model also produced a non-significant F

value. The model, therefore, is considered adequate by the

data. Unaccountable variation in the measurement of cake
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Table 15 - Analysis of variance summaries for best-
fitting regression models of volume and sensory
responses

Mean Mean Lack-of
square square fit

Response R-square Regression error F-ratio F-ratio

Volume 0.60 394.70 77.73 11.51* 1.96"

Crust
Evenness 0.55

Fragileness 0.47

Moistness 0.44

923.03 78.64 11.74* 0.91**

55.00 6.59 8.35* 0.31**

61.17 4.65 13.16* 0.50**

Undercrust
Stickiness 0.3E 1837.37 115.09 15.97* 0.56

* Significant at 0.0001 level

** Not significant
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volume could explain this low R-square value (Hoseney,

1988). When cakes exhibited rings, the inner crust surface

was raised; this elevation differed among cakes. Cakes

without rings had no crust surface elevation. These

differences could have increased the variablity of volume

measurement. Perhaps this explanation also could account

for the variation in volume responses of the center point

cakes (Figure A-24), which did exhibit crust elevation.

Other unmanipulated ingredients that affect volume such

as emulsifier and baking powder also might have accounted

for the low R-square for volume. These ingredients,

however, were optimized in the yellow layer cake formulation

used as the starting formulation in this study. In

preliminary testing of the chocolate formulation, emulsifier

and baking powder levels were investigated, but ingredients

chosen for optimization appeared to exhibit a greater effect

on responses of concern for this study (crust evenness and

undercrust stickiness).

The best-fitting models determined by backward

elimination illustrate which ingredients best explain the

variation that was observed. Response surface regression

coefficients from best-fitting models for cake volume and

sensory responses are given in Table 16. The direction of

the effect of each ingredient, the squared products, and the

cross product interactions are determined by the signs of

the regression coefficients within each model. Overall
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significant main effects of ingredients on responses are

summarized in Table 17. Water and polydextrose were equally

influential on all responses. Cake volume and fragileness

decreased with increasing levels of both ingredients.

Opposite effects of water and polydextrose are noted for

crust evenness, moistness, and undercrust stickiness.

Increasing levels of guar gum increased volume and decreased

crust evenness and fragileness. Xanthan gum only influenced

crust evenness; increasing levels significantly decreased

this response at the 0.01 level.

The F-ratios for these main effects and for quadratic

and cross product effects are given in Table 18.

Polydextrose clearly has the greatest influence on crust

evenness. Water and polydextrose have equally significant

F-ratios for undercrust stickiness. The only significant

quadratic effects noted for water are on fragileness and

moistness. An interaction effect between guar gum and

xanthan gum on crust evenness is the only significant cross

product term indicating some synergism. Sanderson (1982)

has reported that combinations of xanthan and guar gum

produce synergistic increases in solution viscosity. Batter

viscosity could have been related to crust evenness in this

study .

Two-dimensional contour plots were generated to

graphically illustrate the impact of ingredients on

responses. Each response was plotted as a function of water
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Table 17 - Overall main ingredient effects on cake volume and
sensory responses determined by best-fitting
regression models

Response

Ingredient

Xanthan Gum Guar Gum Water Polydextrose

Volume

Crust
Evenness

Fragileness

Moistness

Undercrust
Stickiness

(-)a

( + )c -)b (-)b

(-)b _)a
( + )

a

(-)b :-)b (-)b

:-)* ( + )
b

+ )a (_)a

a Significant at 0.01

t> Significant at 0.05

c Significant at 0.07
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and polydextrose because these ingredients exhibited the

most significant effects. Guar gum and xanthan gum were

kept at constant levels for each plot.

The contour plots for volume in Figures 5, 6, and 7

exhibit curved response lines which reflected the quadratic

and cross product influences noted in Table 16. At low guar

gum levels in Figure 5 the curvature is more defined

indicating the quadratic and interactive effects of water

and polydextrose. The nature of this response surface

indicates a falling trough, where the actual stationary

minimum point is remote from the experimental region and the

response decreases on approaching it. Volume responses in

this plot are predicted to be highest at water levels less

than 152% based on flour weight (fwb) and polydextrose

levels less than 51.5% (fwb) in the lower right corner of

the plot. Other predicted volume responses which are

acceptable are located in the upper right corner of the plot

at water levels greater than 198% (fwb) and polydextrose

levels greater than 52% (fwb). At higher guar gum levels,

the curvature of the volume response is less pronounced

which could indicate a stronger interaction effect between

polydextrose and guar gum. Optimum volume responses should

be realized for water and polydextrose combinations

occurring on the left side of this plot. Three-dimensional

response surfaces corresponding to Figures 5, 6, and 7 are

given in the Appendix (Figures A-12, A-13, and A-14).
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Figures 5, 6, and 7 - Series of contour plots for cake

volume at three combinations of xanthan and

guar gum levels. Levels of water and
polydextrose lie on the y and x axes,
respectively. Optimum responses occur on

the left side of the plots.
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Contour plots for crust evenness in Figures 8 through

11 exhibit straight diagonal lines indicating the strong

linear relationship between crust evenness and both water

and polydextrose . The lack of curvature in these plots

reflects the absence of quadratic and interaction effects

between these two ingredients on crust evenness. Optimum

responses for crust evenness are obtained for water and

polydextrose combinations selected in the lower right corner

of the plots. The negative effect of increasing levels of

guar gum on crust evenness also is evident from the plots in

Figures 8 and 9. The plot in Figure 10 reveals the more

striking effect of increasing xanthan gum levels. A

positive synergistic effect of guar gum and xanthan gum on

crust evenness is exhibited at the highest levels of both

ingredients in Figure 11. A three-dimensional response

surface for crust evenness is given in the Appendix (Figure

A-15).

The contour plots for fragileness in Figures 12 and 13

only predict sensory responses slightly greater than 25,

which is relatively low. A three-dimensional response

surface for fragileness is provided in the Appendix (Figure

A-16). Low variation among panelists for this response

(Figure A-7) indicates tested cakes probably were firm.

Sanderson (1982) noted that xanthan gum can be used as a

partial structure replacement for egg white or non-fat dry

milk in certain cakes. Manipulation of egg, whey protein
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Figures 8, 9, 10, and 11 - Series of contour plots for

crust evenness at four combinations of xanthan
and guar gum levels. Levels of water and
polydextrose lie on the y and x axes,
respectively. Optimum responses occur on the
right side of the plots.
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Figures 12 and 13 - Contour plots for fragileness at two
combinations of xanthan and guar gum levels.
Levels of water and polydextrose lie on the y

and x axes respectively.
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concentrate, and emulsifier levels in this study might have

balanced the cohesive force within the cake batter to

increase crumb fragileness.

Kim et al. (1986) concluded that polydextrose and

sucrose similarly altered onset gelatinization temperatures

in wheat starch-water systems. Polydextrose might delay

gelatinization temperatures in reduced-calorie layer cakes

to allow for leavening gases to increase volume and to

increase crumb tenderness. Studies by Neville and Setser

(1986) showed that increasing polydextrose significantly

increased softness of reduced-calorie yellow cakes. This

finding contrasts with the finding in this study that

increased levels of polydextrose decreased crumb

fragileness. Differences are likely to be a result of the

specific combinations of ingredients in each system and the

differences in levels used for optimization. In this study,

the range of polydextrose used was from 50-70%, fwb,

compared to levels of 50-100%, fwb, in the cakes in the

study by Neville and Setser. Water levels were 150-200% and

80-160%, respectively, in the two studies. In addition,

cocoa increases the need for more liquid, which impacts the

interaction between water and polydextrose.

Contour plots for moistness (Figure 14) and undercrust

stickiness (Figure 15) clearly show linear relationships

between these responses and both water and polydextrose.

Gum levels have no effect on these responses. The plot for



Figure 14 - Contour plot for raoistness at xanthan and
guar gum levels of 0.05% (fvb). Levels of

water and polydextrose lie on the y and x

axes, respectively. Optimum response occurs
above the contour line.
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Figure 15 - Contour plot for undercrust stickiness at
xanthan and guar gum levels of 0.05Z (fwb).
Levels of water and polydextrose lie on the y

and x axes, respectively. Optimum response
occurs in the lower right corner of the plot.
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moistness revealed only one response line, which is within

the optimum limits for this study. High responses are

predicted at high water levels and moderate to high

polydextrose levels as illustrated by the upper left portion

of the plot. Acceptable responses for undercrust stickiness

occur in the lower right corner of the plot at low water

levels and high polydextrose levels. Three-dimensional

response surfaces for moistness and undercrust stickiness

are given in the Appendix (Figures A-17 and A-18).

Based on the measure-of-f it of the data (R-square) and

on the acceptability limits of responses from the contour

plots, volume and crust evenness were used to determine

regions of predicted optimum performance. The acceptable

limit for volume was set at 125 and for crust evenness at

30. Overlapping plots (Figure 16) of these two responses at

guar gum and xanthan gum levels of 0.05% (fwb) delineate two

regions of optimal response. One region localizes in the

lower left corner at low levels of water (150-162% fwb) and

low levels of polydextrose (53-58% fwb). The other region

is located in the upper right corner at high levels of water

(189-200% fwb) and moderate to high levels of polydextrose

(60-70% fwb). Optimal responses for volume and crust

evenness are predicted at these two opposite ranges of water

and polydextrose and at the 0.05% (fwb) level of guar gum

and xanthan gum.
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Figure 16 - Overlapping contour plot of cake volume and
crust evenness at xanthan and guar gum levels
of 0.05% (fwb). Shaded areas are optimum
regions for both responses.
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Validation

Cakes were baked from the predicted optimal areas for

volume and crust evenness. Predicted volume responses were

higher than actual volume responses measured in the

laboratory (Table 19). From preliminary studies on yellow

cakes, eraulsifiers were found to increase volume

quadrat ical ly . Further baking of cakes with increased

emulsifiers indicated that optimal levels could go higher

with the predicted formulations from this study. Increased

baking times were used to further decrease undercrust

stickiness. For the final validation study an emulsifier

level of 20% (fwb) was used for two of the tested

formulations. When baking times were increased from 30 to

40 minutes, undercrust stickiness was decreased for all

formulations. The cracking/ring on the crust surface, which

was a major problem with the cakes in preliminary and

optimization studies, disappeared when pan diameter was

increased from six to eight inches using the generated

optimization formulations.

F-ratios from analysis of variance tables for volume

and sensory data are provided in Table 20. Highly

significant differences (p <_ 0.01) in volume, cell

unevenness, cell size, and moistness for cake formulations

are indicated. Differences in firmness and crumbliness (p <_

0.05) for cake formulations are also noted.

Differences in least squares means for cake volume and
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Table 20 - F-ratios from analysis of variance tables for
volume and sensory data

Source of variation

Cake Days
Formulations (blocks) Panelist

Parameter (CF) (D) CF x D (P) CF x P

Volume 21 .07* 4.86*

Crust Ring 3,,20 41.39*

Cell
Unevenness 43,,65* 7.01*

Cell Size 58,,95* 2.45

Undercrust
Inconsistency 3,,18 0.75

Moistness 3,,93* 4.78*

Firmness 3,,35** 1.66

Cohesiveness 2.50

Crumbliness 3.54**

2.23

0.71

10.89* 17.30* 1.97

1.09 45.00* 2.27**

2.59** 18.73* 3.31*

1.70 28.17* 1.78

1.27 2.77 1.19

0.91 102.35* 1.20

1.34 15.23* 0.65

1.65 53.01* 2.02**

* Significant at 0.01 level

** Significant at 0.05 level
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sensory appearance characteristics are given in Table 21.

Significant differences at the 0.05 level for all

characteristics were noted. Mean sensory scores for crust

ring were lowest for the commercial cake mix and for

formulations two and four. The mean sensory scores for cell

unevenness, cell size, and undercrust inconsistency for the

commercial mix cake differed from all the other cakes.

Dunnett's test comparisons of means for volume and

sensory appearance characteristics using the commercial cake

mix as a control are given in Table 22. The volumes of

cakes two, three, and four differed significantly from the

volume of the commercial mix cake. All cakes differed

significantly from the control mix for cell unevenness and

cell size. Higher sensory scores corresponded to the

extreme of these characteristics, which means that the

commercial mix cake had a less uniform cell structure and

larger cell size than the other cakes. No significant

differences in crust ring and undercrust inconsistency

between the commercial mix cake and every other cake were

found

.

Significant differences in least squares means for

sensory texture characteristics are given in Table 23. The

mean sensory scores for all cakes within each characteristic

were located in the same area on the evaluation scale.

Although significant differences were noted, these trends

indicate that all cakes were similar in moistness, firmness,
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Table 21 - Least squares means 3 for volume'5 and sensory
appearance characteristics for four cake
formulations and a control^

Cake Volume

Characteristic

Crust Cell Cell Undercrust
Ring Unevenness Size Inconsistency

C d U3.25a 3.31c 21.69a 30.75a

1 148.75a 12.13ab

2 115.25c 2.69c

3 123.75bc 14.63a

4 125.00b 5.19bc

10.44b 10.50b

6.63c 6.69b

10.13b 7.88b

8.31bc 6.44b

4.88a

2.69b

2.38b

3.06b

3.13b

a Four replications; means in the same column with the same
letter are not significantly different (p <_0.05).

b Determined by AACC Method 10-91.

c Based on a scale from zero to 60; high values correspond
to the extreme of the characteristic

d Pillsbury German Chocolate Cake Mix
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Table 22 - Dunnett's test comparisons of means 3 for volume
and sensory appearance characteristics'3 of four
cake formulations and a control c

Characteristic

Crust Cell Cell Undercrust
Cake Volume Ring Unevenness Size Inconsistency

CC 143.25 3.31 21.69 30.75 4.88

1 148.75 12.13 10.44** 10.50* 2.69

2 115.25* 2.69 6.63* 6.69* 2.38

3 123.75** 14.63 10.13* 7.88* 3.06

4 125.00** 5.19 8.31* 6.44* 3.13

3 Based on four replications.

Based on a scale from zero to 60; high values correspond
to the extreme of the characteristic.

c Pillsbury German Chocolate Cake Mix.

* Significantly different at 0.01 level.

Significantly different at 0.05 level.
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Table 23 - Least squares meansa for sensory texture
characteristicsb for four cake formulations
and a controlc

Characteristic

Cake Moistness Firmness Cohesiveness Crurablines

Cc 46.63c 9.38ab

1 47.56bc 7.94b

2 50.13ab 9.13b

3 50.75a 9.00b

4 47.94bc 11.56a

46.94b

48.25ab

49.06ab

47.13b

50.25a

45.75ab

48.69a

43.81b

43.38b

41.19b

a Four replications; means in the same column with the same
letter are not significantly different (p <_0.05).

b Based on a scale from zero to 60; high values correspond
to the extreme of the characteristic.

c Pillsbury German Chocolate Cake Mix.
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cohesi veness , and crumbliness as evaluated by the sensory

panel. Dunnett's test comparisons of means for sensory

texture characteristics in Table 24 indicated that none of

the tested cakes differed significantly from the commercial

mix cake. All cakes were similar in raoistness, firmness,

cohesiveness , and crumbliness compared to the control mix

cake. This validation study indicated that slight

modifications of the formulations predicting optimal cakes

produced chocolate layer cakes similar in appearance and

texture to a commercial mix cake.
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Table 24 - Dunnett's test comparisons of meansa for sensory
texture characteristics^ of four cake
formulations and a control

Characteristic

Cake Moistness Firmness Cohesiveness Crumbliness

Cc 46.63 9.38 46.94

1 47.56 7.94 48.25

2 50.13 9.13 49.06

3 50.75 9.00 47.13

4 47.63 11.56 50.25

45.75

48.69

43.81

43.38

41.19

a No significant differences were noted; mean based on four
replications.

b Based on a scale from zero to 60; high values correspond
to the extreme of the characteristic.

c Pillsbury German Chocolate Cake Mix.
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SUMMARY AND CONCLUSIONS

Application of RSM to optimize a reduced-calorie

chocolate layer cake formulation was completed using design

points from two response surface designs. Regression

analysis indicated that significant ingredient effects were

linear. Water and polydextrose had equally significant

effects on all responses. Increasing levels of both

ingredients decreased cake volume and crumb fragileness.

Opposing effects for these ingredients were found for crust

evenness, moistness, and undercrust stickiness. Increasing

guar gum significantly decreased crust evenness and crumb

fragileness and increased volume. Crust evenness was

significantly decreased by increasing levels of xanthan gum.

Quadratic effects from best-fitting models were noted

for water on fragileness and moistness. A significant

synergistic, cross product effect between guar gum and

xanthan gum increased crust evenness. Optimal formulations

were predicted from the contour plots at low gum levels

(0.05% fwb), low polydextrose (53-58% fwb) levels, and low

water (150-162% fwb) levels. Moderate to high levels of

polydextrose (60-70% fwb) and high levels of water (189-200%

fwb) at the same gum levels, also, were predicted to provide

optimal formulations.

Results from the validation study revealed that with

slight modifications, four formulations selected from the
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RSM study were comparable to a commercial cake mix

formulation. Changes in emulsifier level and bake time were

made on the selected formulations. Least squares means for

volume of cakes baked from three out of the four

formulations differed significantly from that of the

commercial mix and one other formulation. All cakes

differed from the commercial mix cake for cell unevenness

and cell size. The commercial mix cake had a less uniform

cell structure and overall larger cell size than the other

cakes

.

Although significant differences in least squares

means for texture were noted among all cakes, trends in the

sensory scoring indicated that all cakes were similar in

rooistness, firmness, cohesiveness , and crumbliness. None of

the cakes baked from the RSM formulations differed

significantly from the commercial mix cake for any of the

texture characteristics.

In summary, RSM was a valuable tool in the

optimization of a reduced-calorie chocolate layer cake

formulation. Changes in emulsifier level and bake time

allowed further optimization of formulations selected from

the contour plots. Further optimization experiments

involving pan size, baking temperatures and baking times are

suggested

.
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Form A-l - Appearance scorecard for RSM optimization

Name Panel f
Date Sample #_

LATEI CAIE APPEARANCE

Evenness of Crust Surface
Uneven

Crust Hardness
Not Hard Very Hard

1

Stickiness of Crust
Not Sticky Very Sticky

1

Cell Dnlformltv
Uneven Even

Cell Size
Very Small Very Large

1

Undercrust Stickiness
Not Sticky Very Sticky

1

Definitions of terms:

Evenness of crust surface - degree of ups and downs, hills or
bumpiness on surface, raised portion in center

Crust hardness - amount of give obtained with finger touch;
flinty hard feel to touch

Stickiness of crust - adhesiveness to finger when placed on crust

Cell uniformity - amount of large air cells or tunnels in
otherwise small air cells

Cell size - size of the majority of cells on the area of cut
surface

Undercrust stickiness - extremely gummy appearing area
immediately below the crust
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Form A- 2 - Texture scorecard for RSM optimization

Name
. Panel #

Date Sample #_

LATER CASE TEXTURE

First Bite Crumbliness/Fragileness
Not Fragile Very Fragile

Initial Moistness
Not Moist Very Moist

Crumb Adherence
None

Cohesiveness of Mass at Swallowing (Gumminess)
Not Gummy Very Gummy

Moistness of Crumb During Mastication
Not Moist (Very Dry) Very Moist

Definitions of terms:

First bite crumbliness/fragileness - how readily front 1/2 inch
crumb breaks off on initial bite with incisor teeth; includes
gummy crumbly and dry crumbly

Initial moistness - First feeling of moisture (cool dampness) as
bite into cake

Crumb adherence - amount of crumb adhering to teeth and palate,
teeth and oral cavity in general with normal bite (allows contact
with front of mouth)

Cohesiveness of mass (gumminess) at swallowing - ball-like mass
that is difficult to swallow; judged when ready to swallow

Moistness of crumb during mastication - very dry when needs more
saliva as chew; measure moistness of crumb not of mouth
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Form A-3 - Appearance scorecard for validation study

Name Panel #

Date Sample #_

LATER CAKE APPEARANCE

Appearance of Tier EleTation - the degree of elevation of the
inner tier located on the crust
surface

Cell DneTennesB - amount of large air cells or tunnels within
the small air cells

Cell Size - the size of the majority of cells on the area of

cut surface

Very Small Very Large

Undercrust Inconsistency - the height, width, and depth of the
undercrust area which is inconsistent
with the rest of the crumb
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Form A-4 - Texture scorecard for validation study

Name Panel #
Date Sample #

LATER CAIE TEXTURE

Hoistness - blot lips; amount of moisture/cooling perceived on
the surface of the sample when held between both lips

Saltine Corn Bread

Low High

Crumb Firmness - place sample between molars; evaluate the force
required to completely compress the sample

Angel Food Cake Pound Cake

Low High

PLEASE DSE A HEW SAMPLE TO EVALUATE THE NEXT ATTRIBUTE

CohesiTenesa of Mass - degree to which the mass holds together
after chewing 10 times (greater balling
equals greater cohesiveness)

Wonder Bread

Low High

Cromblineaa - using the tongue measure the ease with which
individual pieces separate, immediately after
placing the sample in the mouth ; biting, chewing
and compression are not a part of this test

Wonder Bread Corn Bread

None Hlgh
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Figures A-l, A-2, A-3, A-4 , A-5, and A-6 - Plots of
sensory appearance responses by sample for
crust evenness, crust hardness, crust
stickiness, cell uniformity, cell size,
and undercrust stickiness. Center point
cakes are samples 1, 3, 10, 31, 36, and
50.
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Figures A-7, A-8, A-9, A-10, and A-ll - Plots of

sensory texture responses by sample for
fragileness, initial moistness,
adherence, guraminess, and moistness.
Center point cakes are samples 1, 3, 10,

31, 36, and 50.
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Figures A-12, A-13, and A-14 - Three-dimensional
response surface diagrams of cake volume

at three combinations of guar and

xanthan gum levels.
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Figure A-15 - Three-dimensional response surface
diagram of crust evenness.
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Figure A-16 - Three-dimensional response surface
diagram for fragileness.
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Figure A-17 - Three-dimensional response surface
diagram for moistness.
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Figure A-18 - Three-dimensional response surface
diagram for undercrust stickiness.
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Figures A-19, A-20, A-21, A-22, and A-23 - Cake crumb
evaluation using the Instron Universal
Testing Machine (IUTM). Plots are of
values for hardness 1, hardness 2,
cohesiveness , gumminess, and chewiness
by sample. Center point cakes are
samples 1, 3, 10, 31, 36, and 50.
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Figure - A-24 - Plot of volume response by sample.
Center point cakes are samples 1, 3,
10, 31, 36, and 50.
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Table A-l - Procedures for IUTM evaluation of cake crumb

IUTM Model 1122

Load Cell - 2 kg

Compression - 40%

Full Scale Load - 2 (200 g)

Crosshead Speed - 50 mm/min

Chart Speed - 200 mm/min

The upper limit was set one millimeter above the sample for

testing. Two compression cycles were completed for each

sample. An average of two repeated measures per cake was

recorded .

154



APPLICATION OF RESPONSE SURFACE METHODOLOGY TO OPTIMIZE A

REDUCED-CALORIE CHOCOLATE LAYER CAKE FORMULATION

by

DENISE MARIE DEMING

.S., Cornell University, 1986

AN ABSTRACT OF A MASTER'S THESIS

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Foods and Nutrition

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1988



Response surface methodology (RSM) was used to

optimize a reduced-calorie chocolate layer cake formulation,

and two response surface designs were chosen to compare

optimization effectiveness. Water, polydextrose , xanthan

gum, and guar gum were varied using a three-level design and

a five-level design. A total of 54 combinations, 27 per

design, were baked in a random order and responses were

determined for volume (AACC 10-91), and selected sensory

attributes using a computerized six-inch line scale.

Response surface regression analysis on the combined

data from both designs revealed that ingredient main effects

were linear. Water and polydextrose had equally significant

effects on cake volume, crumb fragileness, crust evenness,

moistness and undercrust stickiness. Guar gum affected

crust evenness, crumb fragileness, and volume. Xanthan gum

only affected crust evenness.

Best-fitting models indicated quadratic effects for

water on fragileness and moistness. A significant

synergistic, cross product effect between guar gum and

xanthan gum increased crust evenness while separate main

effects of these ingredients decreased the response.

Contour plots for volume and crust evenness localized two

regions of ingredient ranges that predicted optimal response

within the experimental range. Wide variability in the

sensory responses prevented accurate comparison of designs.

Test baking and a follow-up study were conducted to

validate equation predictions within the experimental range.
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Four formulations selected from the RSM optimization and a

commercial cake mix were compared for volume and sensory

appearance and texture characteristics. Emulsifier level

was increased in two of the formulations and baking time was

increased for all cakes. Analysis of variance (ANOVA),

least significant differences (LSD), and the Dunnett Test

were computed for the data.

Volume of cakes baked from three out of the four

formulations were significantly different from the

commercial mix cake and one other formulation. All cakes

differed in cell evenness and cell size from the commercial

mix. The sensory panel indicated that the commercial mix

cake had a less uniform cell structure and overall larger

cell size. None of the cakes baked from the RSM formulations

differed significantly in moistness, firmness, cohesiveness

,

and crumbliness from the commercial mix cake. The

validation study indicated that slight modifications in the

formulations predicting optimal cakes produced chocolate

layer cakes similar in appearance and texture to a

commercial mix cake.


