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Abstract

Rift Valley fever is a vector-borne zoonotic disease which causes high morbidity and mortality in livestock. In the event Rift
Valley fever virus is introduced to the United States or other non-endemic areas, understanding the potential patterns of
spread and the areas at risk based on disease vectors and hosts will be vital for developing mitigation strategies. Presented
here is a general network-based mathematical model of Rift Valley fever. Given a lack of empirical data on disease vector
species and their vector competence, this discrete time epidemic model uses stochastic parameters following several PERT
distributions to model the dynamic interactions between hosts and likely North American mosquito vectors in dispersed
geographic areas. Spatial effects and climate factors are also addressed in the model. The model is applied to a large
directed asymmetric network of 3,621 nodes based on actual farms to examine a hypothetical introduction to some
counties of Texas, an important ranching area in the United States of America. The nodes of the networks represent
livestock farms, livestock markets, and feedlots, and the links represent cattle movements and mosquito diffusion between
different nodes. Cattle and mosquito (Aedes and Culex) populations are treated with different contact networks to assess
virus propagation. Rift Valley fever virus spread is assessed under various initial infection conditions (infected mosquito
eggs, adults or cattle). A surprising trend is fewer initial infectious organisms result in a longer delay before a larger and
more prolonged outbreak. The delay is likely caused by a lack of herd immunity while the infection expands geographically
before becoming an epidemic involving many dispersed farms and animals almost simultaneously. Cattle movement
between farms is a large driver of virus expansion, thus quarantines can be efficient mitigation strategy to prevent further
geographic spread.
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Introduction

Rift Valley fever (RVF) was first identified in Egypt in 1931 [1]

and is endemic in the eastern and southern regions of Africa [2].

Viral infection may result in abortion in adults and death in

newborn livestock [3]. Sheep, goats and cattle are the most

important domestic animal hosts affected when viewed from an

economic standpoint [2] although humans also can become

infected [3,4].

Aedes and Culex genera of mosquitoes are thought to be main

RVF disease vectors with respect to vector competence [4]. The

virus is maintained between epidemics through vertical transmis-

sion within the Aedes mosquitoes [5], and is thought to be

propagated and amplified during epidemics by both Aedes and

Culex species mosquitoes. High RVF transmission is typically

related to persistent, above average rainfall and El Niño/Southern

Oscillation (ENSO) events in Eastern Africa which create

favorable mosquito habitats [6]. Aedes mosquitoes lay eggs in dry

mud [7] and the eggs can survive for long periods of time [2]. After

flooding, RVF virus-infected eggs can develop into infected adult

mosquitoes [2]. Infected adult Aedes mosquitoes then feed on

animals which become infected, and spread the infection to other

Aedes and Culex genera adult mosquitoes feeding on infected

animals.

Animal movements, typically motivated by livestock trading and

marketing may accelerate the transmission of zoonotic diseases

among animal holdings which may cover a vast area [8]. In 1977,

the trade of sheep from east Africa during Ramadan was

considered to be a likely pathway for the introduction of RVF

virus to Egypt [9–11]. A boy from Anjouan, an island of Comoros

archipelago, was diagnosed to have been infected with RVF virus

on the French island of Mayotte in 2007 [4]. The Rift Valley fever

virus was likely to be introduced by live ruminants imported from

Kenya or Tanzania in the trade during the 2006–2007 Rift Valley

fever outbreak [4].
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Humans can acquire the infection from the bites of infected

mosquitoes or directly from contact with the bodily fluids of

infected animals [12]. Individuals working with animals, such as

farmers and veterinarians, are the most vulnerable to RVF virus

infection during animal outbreaks [13] because of increased

exposure to mosquitoes in an outdoor environment and direct

contact with animals. Rift Valley fever virus infection causes severe

influenza-like disease in humans with serious consequences such as

blindness, or even death [3]. It has been reported that more than

200 persons died of RVF in Mauritania in 1987 [14]. There were

738 reported human cases in Sudan, including 230 deaths, in

2007–2008 [15]. It is likely that the number of human cases has

been underreported in the past, especially in rural areas [4]. Rift

Valley fever virus has spread outside of Africa to Yemen and Saudi

Arabia in 2000 [4] and the French island of Mayotte with multiple

human cases reported [16]. Rift Valley fever virus could possibly

be introduced to the United States, similar to the experience with

West Nile virus which was introduced into the North America in

1999 [17]. A mathematical epidemiological model can be applied

to non-traditional locations in order to study the potential for

spatial spread of RVF virus.

Epidemiological modeling plays an important role in planning,

implementing, and evaluating detection, control, and prevention

programs [18]. Mathematical modeling takes the advantage of

economic, clear and precise mathematical formulation, e.g.,

applications of differential, integral, or functional differential

equations [18]. Mathematical models of infection transmission

include interpretation of transmission processes and are often

useful in answering questions that cannot be answered only with

empirical data analysis [19], as well as to explore biological and

critical ecological characteristics of disease transmission [20,21].

Current RVF virus transmission models are useful in representing

infection transmission process [19] but are limited in determining

and testing relevant risk factors. For the Ferlo area of Senegal, a

pond-level meta-population model which considered only vectors

was developed assuming that Aedes mosquitoes were the only

vector and rainfall was the only driving force [2]. It has been

shown that within Ferlo, the virus would persist only if the

livestock moved between ponds and the rainfall did not occur in all

ponds simultaneously [2]. Very few mathematical dynamic

transmission models have explored mechanisms of RVF virus

circulation [19] on a larger geographical scale. A theoretical model

in a closed system including Aedes and Culex mosquitoes and

livestock population was earlier proposed [22]. The key result was

that RVF virus can persist in a closed system for 10 years if the

contact rate between hosts and vectors is high [19,22]. Another

theoretical RVF virus transmission mathematical model [23]

modified the model in [22] by adding human hosts, merging all

mosquitoes into one class, removing mosquito egg compartment,

as well as vertical transmission of mosquitoes. Sensitivity indices of

the reproduction number are used to determine the most sensitive

parameters to the basic reproduction number of RVF virus

transmission [23]. It has been found that both the reproduction

number and disease prevalence in mosquitoes are sensitive to

mosquito death rate and the disease prevalence in livestock and

humans are more sensitive to livestock and human recruitment

rates [23]. A theoretical ordinary differential equation meta-

population involving livestock and human mobility was presented

[24]. They analyzed the likelihood of pathogen establishment and

provided hypothesized examples to illustrate the methodology

[24]. A three-patch model for the process by which animals enter

Egypt from Sudan, are moved up the Nile, and then consumed at

population centers is proposed [25]. Using [22] and [23] as a

foundation, the homogeneous models have been extended to a

meta-population differential equation model including Aedes, Culex,

livestock, and humans and a case study was carried out for South

Africa during a country-wide outbreak in 2010 [26]. The model

was based on RVF virus spatial transmission during an outbreak,

where a network with three nodes corresponding to three affected

provinces in South Africa was established. To make the output of

the model [26] easily compared with incidence data if available

and the simulation for thousands of nodes easily implemented, a

discrete time epidemic model is developed and a much larger

network on which to study the dynamics of the larger system is

established.

Proposed here is a deterministic network-based RVF virus

transmission model with stochastic parameters. Two competent

vector populations: Aedes mosquitoes, Culex mosquitoes, and two

host populations: cattle and humans are considered. The

dynamical behavior of mosquito and livestock populations are

modeled using a meta-population approach based on weighted

contact networks. The nodes of the networks represent geograph-

ical locations, and the weights represent the level of contact

between regional pairings. In particular, nodes represent different

farm sizes or operator businesses of the cattle industry, nominally

markets and feedlots. Heterogeneous aspects of the spreading are

considered in the model through realistic modeling of the cattle

movement among different nodes of the network. Additionally, the

mosquito population and development is modeled as a function of

climatic factors, such as humidity and temperature. It is easy to

implement simulations of the model even for networks with

thousands of nodes, and it is easy to compare the output of the

model with incidence data if available. The role of starting location

has been shown to be important in the final size of rinderpest

epidemic [27]. To investigate the role of starting location, and the

size of initial infection in RVF virus spread, the proposed model

has been applied to a case study to some counties in Texas, U.S.

and the model outcomes (the human and cattle cases, and the

timing of the epidemic’s characteristics) indicate which biotic

factors will play an important role if RVF virus is introduced to the

United States.

Materials and Methods

Network-based Meta-population Models
Aedes mosquitoes, Culex mosquitoes, livestock, and human

populations each are considered in the network-based meta-

population models. The movement of each population is

represented by networks, where nodes denote locations, and links

denote movement flow between locations. In the mosquito diffu-

sion network, the nodes represent farms and the links represent

mosquito diffusion from one farm to the neighboring farms. The

weights are diffusion rates v1ij for Aedes population, and v3ij for

Culex population from location i to location j. In the livestock

movement network, the nodes represent farms, livestock markets,

and feedlots. The links represent livestock movements due to

livestock trade between the nodes and the weight is the movement

rate v2ij from node i to node j. The mosquito and livestock

networks are shown in Fig. 1A and Fig. 1B, respectively.

The compartmental models are adapted to represent the status

of each population during a simulated RVF virus transmission.

The models are built based on the principle of the RVF virus

transmission flow diagram illustrated in [26]. Adult Aedes and Culex

populations are distributed among susceptible Sai, exposed Eai,

and infected Iai compartments. Only those mosquito species that

are known to be competent vectors of RVF virus transmission are

considered and they are broadly grouped by Aedes and Culex genera

mosquitoes. The subscript a~1 denotes Aedes in node i, and a~3

Network Modeling of Rift Valley Fever Epidemics
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denotes Culex mosquitoes in node i. Uninfected and infected

mosquitoes eggs are represented by Pai and Qai, respectively. Culex

mosquitoes do not display vertical transmission. Therefore, only

uninfected Culex eggs are incorporated in the model. The livestock

and human hosts are likewise considered Sbi, Ebi, Ibi, and Rbi. The

subscript representing livestock in node i is b~2, and humans in

node i are represented with b~4. The descriptions of the

parameters in the models are found in Table 1. All the transitions

to be discussed below are for location i at day t.

Aedes Population Model

P1i(tz1){P1i(t)~b1(N1i(t){q1I1i(t)){h1P1i(t)) ð1Þ

Q1i(tz1){Q1i(t)~b1q1I1i(t){h1Q1i(t) ð2Þ

S1i(tz1){S1i(t)~h1P1i(t)z
Xn

j~1,j=i

v1jiS1j(t){

Xn

j~1,j=i

v1ijS1i(t){d1S1i(t)N1i(t)=K1

{b21S1i(t)I2i(t)=N2i(t)

ð3Þ

E1i(tz1){E1i(t)~
Xn

j~1,j=i

v1jiE1j(t){
Xn

j~1,j=i

v1ijE1i(t){

d1E1i(t)N1i(t)=K1zb21S1i(t)I2i(t)=N2i(t)

{e1E1i(t)

ð4Þ

I1i(tz1){I1i(t)~
Xn

j~1,j=i

v1jiI1j(t){
Xn

j~1,j=i

v1ijI1i(t)z

h1Q1i(t){d1I1i(t)N1i(t)=K1ze1E1i(t)

ð5Þ

N1i(tz1)~S1i(tz1)zE1i(tz1)zI1i(tz1) ð6Þ

There are b1N1i(t) eggs laid, including b1q1I1i(t) infected eggs,

and b1N1i(t){b1q1I1i(t) uninfected eggs each day. After the

development period, h1P1i(t) uninfected eggs develop into

susceptible adult Aedes mosquitoes and h1Q1i(t) infected eggs

develop into infected adult Aedes mosquitoes. The number of Aedes

mosquitoes infected by livestock is b21S1i(t)I2i(t)=N2i(t). Following

the incubation period, e1E1i(t) Aedes mosquitoes transfer from

exposed compartment to infected compartment. The number of

Aedes mosquitoes dying naturally in compartment X is given as

d1X1i(t). The percentage of Aedes mosquitoes moving from

location i to location j is v1ij . The change in the number of

Aedes mosquitoes due to mobility in compartment X is given asPn
j~1,j=i v1jiX1j(t){

Pn
j~1,j=i v1ijX1i(t) [28].

Culex Population Model

P3i(tz1){P3i(t)~b3(t)N3i(t){h3(t)P3i(t) ð7Þ

S3i(tz1){S3i(t)~h3(t)P3i(t)z
Xn

j~1,j=i

v3jiS3j(t){

Xn

j~1,j=i

v3ijS3i(t){d3S3i(t)N3i(t)=K3

{b23S3i(t)I2i(t)=N2i(t)

ð8Þ

Figure 1. Network illustration. (A) A hypothetical mosquito diffusion network demonstrating how mosquito move to farms that are smaller than
2 km away. (B) Livestock move bidirectionally between livestock farms and livestock markets but only move unidirectionally to feedlots as
demonstrated in the livestock movement network.
doi:10.1371/journal.pone.0062049.g001
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E3i(tz1){E3i(t)~
Xn

j~1,j=i

v3jiE3j(t){
Xn

j~1,j=i

v3ijE3i(t){

e3E3i(t){d3E3i(t)N3i(t)=K3

zb23S3i(t)I2i(t)=N2i(t)

ð9Þ

I3i(tz1){I3i(t)~
Xn

j~1,j=i

v3jiI3j(t){
Xn

j~1,j=i

v3ijI3i(t)

ze3E3i(t){d3I3i(t)N3i(t)=K3

ð10Þ

N3i(tz1)~S3i(tz1)zE3i(tz1)zI3i(tz1) ð11Þ

There are b3N3i(t) eggs laid each day. After the development

period, h3P3i(t) eggs develop into susceptible adult Culex

mosquitoes. After the incubation period, e3E3i(t) Culex mosquitoes

transfer to infected compartment I . The number of Culex

mosquitoes acquiring infection from livestock is denoted by

b23S3i(t)I2i(t)=N2i(t). The Culex mosquitoes removed from com-

partment X due to natural death is d3X3i(t). The percentage of

Culex mosquitoes moving from location i to location j is v3ij . The

change in the number of Culex mosquitoes due to movement in

compartment X is given as
Pn

j~1,j=i v3jiX3j(t){
Pn

j~1,j=i

v3ijX3i(t) [28].

Livestock Population Model

S2i(tz1){S2i(t)~b2(t)db(i)N2i(t)z
Xn

j~1,j=i

v2jiS2j(t)

{
Xn

j~1,j=i

v2ijS2i(t){d2dd (i)S2i(t)N2i(t)=K2

{b12S2i(t)I1i(t)=N1i(t){b32S2i(t)I3i(t)=N3i(t)

ð12Þ

Table 1. Parameter ranges for numerical simulations.

Para-meter Description Range
Assumed most
possible value Units Source

b12 contact rate: Aedes to livestock (0:0021,0:2762) 0.1392 1=day [43–49]

b21 contact rate: livestock to Aedes (0:0021,0:2429) 0.1225 1=day [43–47,50]

b23 contact rate: livestock to Culex (0:0000,0:3200) 0.16 1=day [44–47,50,51]

b32 contact rate: Culex to livestock (0:0000,0:096) 0.04 1=day [44–47,51]

b14 contact rate: Aedes to humans (0:001,0:002) 0.0015 1=day Assume

b24 contact rate: livestock to humans 0.00006 1=day Assume

b34 contact rate: Culex to humans (0:0005,0:001) 0.000525 1=day Assume

recovery period in livestock (2,5) 3.5 1=day [52]

recovery period in humans (4,7) 5.5 1=day [23]

1=d1 longevity of Aedes mosquitoes 31.5 days [47,53,54]

1=d2 longevity of livestock (360,3600) 1980 days [55]

1=d3 longevity of Culex mosquitoes 31.5 days [47,53,54]

b1 birth rate of Aedes mosquitoes weather dependent 1=day [35]

b2 birth rate of livestock d2 1=day [55]

b3 birth rate of Culex mosquitoes weather dependent 1=day [35]

1=[1 incubation period in Aedes mosquitoes (4,8) 6 days [48]

1=[2 incubation period in livestock (2,6) 4 days [56]

incubation period in Culex mosquitoes (4,8) 6 days [48]

incubation period in humans (2,6) 4 days [23]

m2 mortality rate in livestock (0:025,0:1) 0.0375 1=day [52,56]

q1 transovarial transmission rate in Aedes mosquitoes (0,0:1) 0.05 1=day [57]

1=h1 development period of Aedes mosquitoes weather dependent days [36]

development period of Culex mosquitoes weather dependent days [35]

K1 carrying capacity of Aedes mosquitoes Assume

K2 carrying capacity of livestock 1000000 Assume

K3 carrying capacity of Culex mosquitoes 100000000 Assume

p reduction in v2ij due to infection 1

2

Assume

doi:10.1371/journal.pone.0062049.t001
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E2i(tz1){E2i(t)~
Xn

j~1,j=i

v2jiE2j(t){
Xn

j~1,j=i

v2ijE2i(t){

d2dd (i)E2i(t)N2i(t)=K2{e2E2i(t)z

b12S2i(t)I1i(t)=N1i(t)z

b32S2i(t)I3i(t)=N3i(t)

ð13Þ

I2i(tz1){I2i(t)~p
Xn

j~1,j=i

v2jiI2j(t){p
Xn

j~1,j=i

v2ij I2i(t){

d2dd (i)I2i(t)N2i(t)=K2ze2E2i(t)

{c2I2i(t){m2I2i(t)

ð14Þ

R2i(tz1){R2i(t)~
Xn

j~1,j=i

v2jiR2j(t){
Xn

j~1,j=i

v2ijR2i(t)z

c2I2i(t){d2dd (i)R2i(t)N2i(t)=K2

ð15Þ

N2i(tz1)~S2i(tz1)zE2i(tz1)zI2i(tz1)zR2i(tz1) ð16Þ

The daily number of newborn livestock in location i is

b2(t)N2i(t). The variables db(i) and dd (i) are used to differentiate

different types of nodes. If location i is a farm, then db(i)~1,

dd (i)~1. If location i is a market, then db(i)~0, dd (i)~0. If

location i is a feedlot, then db(i)~0, dd (i)~1. The numbers of

livestock infected by Aedes mosquitoes and Culex mosquitoes are

denoted by b12S2i(t)I1i(t)=N1i(t) and b32S2i(t)I3i(t)=N3i(t), re-

spectively. After the incubation period, e2E2i(t) livestock transfer

from exposed state to infected state. After the infection period,

c2I2i(t) livestock recover from RVF virus infection. The number of

dead livestock in compartment X is given as d2X2iN2i(t)=K2 in

which K2 is the carrying capacity of livestock in each node. The

change in the number of livestock in compartment X due to

mobility is given as
Pn

j~1,j=i v2jiX2j(t){
Pn

j~1,j=i v2ijX2i(t) for

livestock in compartments S, E, and R, and p
Pn

j~1,j=i

v2jiX
½m�
2j (t)-p

Pn
j~1,j=i v2ijX

½m�
2i (t) [28], (0vpv1) for livestock in

compartment I .

Human Population Model

S4i(tz1){S4i(t)~{b14S4i(t)I1i(t)=N1i(t){

b24S4i(t)I2i(t)=N2i(t){

b34S4i(t)I3i(t)=N3i(t)

ð17Þ

E4i(tz1){E4i(t)~b14S4i(t)I1i(t)=N1i(t)z

b24S4i(t)I2i(t)=N2i(t)z

b34S4i(t)I3i(t)=N3i(t){e4E4i(t)

ð18Þ

I4i(tz1){I4i(t)~e4E4i(t){c4I4i(t) ð19Þ

R4i(tz1){R4i(t)~c4I4i(t) ð20Þ

The number of humans in each node is constant because birth,

death, mortality, and mobility of humans are not considered. The

number of humans infected by Aedes mosquitoes, Culex mosquitoes,

and livestock is b14S4i(t)I1i(t)=N1i(t), b24S4i(t)I2i(t)=N2i(t), and

b34S4i(t)I3i(t)=N3i(t), respectively. There are e4E4i(t) humans

transferring to infected compartment after incubation period, and

c4I4i(t) humans recovering from RVF virus infection after

infection period.

Case Study: Texas, U.S.A. from 2005 to 2010
Networks in the study area. As a case study, various RVF

virus introduction scenarios were tested using the model to

determine the hypothetical model outcomes (number of livestock

cases and timing of the epidemic). Although the model accounts

for their exact locations when simulating RVF virus spread, we do

not report any of this information or even discuss ranches in areas

smaller than county level. The exact farms and counties are very

well masked from the results. Texas cattle ranches were selected

because they have large cattle concentrations and we have

aggregate survey data on cattle movements in these areas [29].

A network with 3,526 cattle farms [30], 3 livestock markets [30],

and 92 cattle feedlots [30] is constructed. The cattle farms, and

livestock markets are located in one region, and the feedlots are in

another region. The location of each node is uniformly distributed

in each county according to the total number of farms within each

county [30]. The exact location of each farm is obscured because

those data are not publicly available [31] due to confidentiality.

The initial number of cattle in each farm is categorized as 0{9,

10{19, 20{49, 50{99, 100{199, 200{499 and more than

500 [30]. The initial number of susceptible cattle in each farm or

feedlot for numerical simulation is assumed according to the

number of cattle in each county in 2007 [30] and the histogram of

the number of cattle [30]. For cattle movement, if cattle are sold

from one node to another, then there is a link between the nodes.

The movement rate of cattle denoted by v2ij shown in Table 2 is

estimated based on the aggregate movement rates from survey

[29] and inversely proportional to the distance between source-

destination pairs. Movement rate is the average movement rate for

all cattle at different ages, and the movement rate of cattle in

compartment I is assumed to be half the movement rate for cattle

in compartments S, E, and R, namely, p~
1

2
.

For mosquito diffusion, if the distance between two farms is

smaller than an assumed radius, two kilometers, then there is a link

between the nodes in the network. The diffusion rates of Aedes and

Culex mosquitoes are shown below [32].

v1ij~v3ij~

0, if the nodes are disjoint

diff =d2
ij , if two nodes share a border

8><
>:

where dij is the distance between the centers of node i and node j

[32] and diff is a diffusion like parameter within the range

(830,8300)m2=day [32].

Network Modeling of Rift Valley Fever Epidemics
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Parameters for numerical simulations. Vector compe-

tence varies within and between mosquito species [33]. Stochastic

parameters were used to account for broad range of vector

competence between Aedes and Culex species and individual

variation within each species. The PERT distribution has few

constraints (minimum, maximum, and most likely value), similarly

to the triangular distribution applied in [34] to simulate West Nile

virus epidemic. In the following simulations, PERT distributions

are selected to generate stochastic parameters with ranges and the

most likely values listed in Table 1. Any appropriate parameter

distribution can be adapted into the model.

The egg laying rates of Aedes and Culex mosquitoes changing

with moisture conditions as indicated in Equation (21) [35] are

shown in Fig. 2A. The egg development rate of Aedes mosquitoes

varying with temperature in Equation (24) [36] and that of Culex

mosquitoes in Equation (25) are in Fig. 2E and Fig. 2B,

respectively. The parameters for egg laying rates of Aedes

mosquitoes and Culex mosquitoes, and parameters for egg

development rate of Culex mosquitoes are derived from data

concerning West Nile virus in 2010 in the Northern U.S. [35], and

the parameters for the egg development rate of Aedes mosquitoes is

derived using the model for Aedes aegypti [36], which are the best

models currently available. More precise parameters can be

adopted, as they become available. The egg laying rates of Aedes

and Culex mosquitoes, egg development rate of Culex mosquitoes,

and egg development rate of Aedes mosquitoes computed with the

climate data for the region where cattle farm and markets located

in the study area of Texas from January, 2005 to October, 2010,

are shown in Fig. 2C, Fig. 2D, and Fig. 2F, respectively. If the

temperature is too low, the eggs will not develop into larvae and

then adult mosquitoes. If the temperature is too high, the lifespan

of the mosquitoes is shortened and the development rate

decreases. Moisture index is the difference between precipitation

and evaporation as shown in Equation (22). A lower moisture

index correlates to fewer adult mosquitoes because low moisture

index represents a combination of low precipitation and high

evaporation. For some days, the missing precipitation data from

January, 2005 to December, 2010 [37] are assumed to be zero.

The evaporation data are calculated using Equation (23) [38]. The

parameters in Equations (21) through (25) are listed in Table 3.

Although humans move between nodes, they do not transmit virus

between nodes and the number of humans in each node (i.e., farm)

is assumed to be fewer than 15.

b1 Temp,precipitation,Td ,tð Þ~b3 Temp,precipitation,Td ,tð Þ

~b0z
E max

1z exp {
Moisture tð Þ{Emean

Evar

h i ,
ð21Þ

Moisture tð Þ~
Xt

D~t{6

precipitation Dð Þ{Evaporation Dð Þ, ð22Þ

Evaporation tð Þ~ 700 Temp tð Þz0:006hð Þ= 100{latitudeð Þ
80{Temp tð Þ

z
15 Temp tð Þ{Td tð Þð Þ

80{Temp tð Þ ,

ð23Þ

h1(Temp,t)~A1 �
(Temp(t)zK)

298:15
�

exp½HA1

1:987
� (

1

298:15
{

1

Temp(t)zK
)�

1zexp½HH1

1:987
� (

1

TH1
{

1

Temp(t)zK
)�

,

ð24Þ

h3(Temp,t)~A � (Temp(t)zK)

298:15
�

exp½ HA

1:987
� (

1

298:15
{

1

Temp(t)zK
)�

1zexp½ HH

1:987
� (

1

TH
{

1

Temp(t)zK
)�

,

ð25Þ

where

Temp(t)~air temperature in units of oC [38].

latitude~the latitude (degrees) [38].

Td (t)~the mean dew-point in units of oC [38].

h~the elevation (meters) [38].

K~Kelvin parameter.

Results

The Novel Mathematical Model
Presented is a discrete time compartmental mathematical model

based on a network approach. Rift Valley fever is transmitted by

several species of mosquito vectors that have varying levels of

vector competence; therefore, each genus and species combination

requires modeling the vector competence, movement, and life

stage development patterns which is too complicated while

considering only a single species or genus is not accurate.

Consequently, the species are loosely grouped as their genera

and the parameters are allowed to vary following PERT

distributions. The distribution captures uncertainties on inherent

variability between species, as well as variability among individual

mosquitoes. The mosquito parameters are functions of climate

factors to reflect the impact of climate and season on mosquito

dynamics. Only Aedes and Culex genera mosquitoes that are

Table 2. Cattle movement rate v2ij , where nm(i) = the
number of markets connected to farm i, nf (i) = the number of
farms connected to market i, nffe(i) = the number of feedlots
connected to farm i, nmfe(i) = the number of feedlots
connected to market i.

i j Range Source

farm market (nm(i)|dij )60:7%/ [29]

market farm (nf (i)|dij )60:7%/ [29]

farm feedlot (nffe(i)|dij )10:9%/ [29]

market feedlot (nmfe(i)|dij )10:9%/ [29]

feedlot farm 0 [29]

feedlot market 0 [29]

doi:10.1371/journal.pone.0062049.t002
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competent vectors of RVF virus transmission are considered in the

model.

Different networks are developed for mosquito diffusion and

livestock movement considering heterogeneity in both. In the

cattle movement network, different types of nodes distinguish

between sources, sinks, and transitions.

The model can be used to simulate networks with the number of

nodes up to thousands with the easily solvable discrete time model.

To use the model in any location, one only needs the initial

populations, the movement rates, ranges of the parameters, and

climate factors in each location to obtain the epidemic curve.

Case Study
Sixteen initial conditions shown in Table 4 in two regions of

Texas, U.S.A. from January 2005 to October, 2010 were tested

with the model to determine their effects on the simulated and

hypothetical spread of Rift Valley fever virus were it to be

introduced. The average results of 100 realizations for each

scenario starting in the same small or large farm are presented

qualitatively in Table 5, and the quantitative numerical simulation

results are shown in the Supporting Information section. For the

simulations an introduction to a small farm is a farm with fewer

than 10 cattle and the large farm is considered a farm with more

than 500 cattle. By changing initial locations in extensive

numerical simulations, we obtained different value for each

variable from that of corresponding one in the table of Supporting

Information but similar trends. Note at this time no specific

mitigation strategies are applied here; during an outbreak the RVF

virus control methods post detection will be expected to modify

any such results.

Size of the epidemics. The suffix l or s, (which denote large

or small farms) were removed from the initial condition labels

when comparing results with different initial infections in the same

scale of initial location. The impact of the Rift Valley fever

epidemic in terms of infected cattle depends on the size of the

initial infection.

When the initial condition of the outbreak is assumed to be

Aedes-eggs-f (few Aedes eggs), the simulations result in a larger

cumulative number of infected cattle than the one obtained in the

case of Aedes-eggs-m (many Aedes eggs). When the initial condition

of the outbreak is assumed to be Aedes -f (few adult Aedes

mosquitoes), the simulations result in a larger cumulative number

of infected cattle than the ones obtained in the case of Aedes-m

(many adult Aedes mosquitoes). Similarly, fewer initial infected

Culex mosquitoes (Culex-f) leads to larger cumulative number of

infected cattle than the one obtained in the case of Culex-m

throughout the simulation period.

When the initial condition of the outbreak is assumed to be

Cattle-f (few cattle), the simulations result in a larger cumulative

number of infected cattle than the ones obtained in the case of

Cattle-m (many cattle).

The total number of infected humans and the total number of

farms with at least one infected human remain fewer than one

regardless of initial infection conditions. This is likely because the

human population of each farm is assumed to be fewer than 15.

Therefore, human infection is unlikely in this case but this should

not be inferred or generalized to be similar in a more heavily

populated region or where there are many more persons in direct

contact with animals (e.g., slaughter plants).

Timing of the epidemics. The temporal characteristics of

Rift Valley fever cases followed the general trend that fewer

infected individuals in the initial introduction resulted in a delayed

epidemic peak. When the initial condition of the outbreak is

assumed to be Aedes-eggs-f-s, the simulation results in a peak 895
days later than the one with initial starting conditions of Aedes-eggs-

m-s. When the initial condition of the outbreak is assumed to be

Figure 2. The relationship between egg laying rates, egg development rates of mosquitoes and climate factors. (A) The egg laying
rates of Aedes and Culex mosquitoes with moisture [35]. (B) The egg development rate of Culex mosquitoes with temperature [35]. (C) The egg laying
rates of Aedes and Culex mosquitoes in the nine counties in the south of Texas from January, 2005 to October, 2010. (D) The egg development rate of
Culex mosquitoes in one region of Texas from January, 2005 to October, 2010. (E) The egg development rate of Aedes mosquitoes with temperature.
(F) The egg development rate of Aedes mosquitoes in one region of Texas from January, 2005 to October, 2010.
doi:10.1371/journal.pone.0062049.g002

Table 3. Parameters in Equations (21) through (25).

Parameter Description Value Source

A1 parameter in Equation (24) 0:15460 [36]

HA1 parameter in Equation (24) 33,255:57 [36]

HH1 parameter in Equation (24) 50,543:49 [36]

TH1 parameter in Equation (24) 301:67 [36]

A parameter in Equation (25) 0:25 [35]

HA parameter in Equation (25) 28094 [35]

HH parameter in Equation (25) 35692 [35]

TH parameter in Equation (25) 298:6 [35]

b0 minimum constant fecundity rate 0 [35]

Emax maximum daily egg laying rate 20 [35]

Emean the mean of the daily egg laying rate 0 [35]

Evar variance of function 12 [35]

doi:10.1371/journal.pone.0062049.t003

Table 4. Sixteen different initial conditions.

Farm size Quantity Infected

Aedes eggs Aedes mosquitoes Culex mosquitoes Cattle

Small Few Aedes -eggs-f-s Aedes -f-s Culex -f-s Cattle-f-s

Many Aedes -eggs-m-s Aedes -m-s Culex -m-s Cattle-m-s

Large Few Aedes -eggs-f-l Aedes -f-l Culex -f-l Cattle-f-l

Many Aedes -eggs-m-l Aedes -m-l Culex -m-l Cattle-m-l

doi:10.1371/journal.pone.0062049.t004
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Aedes-eggs-f-l, the simulations result in a later peak than the Aedes-

eggs-m-l condition. Comparing another pair of initial conditions,

the epidemic peak happens no sooner when few initially infected

Aedes eggs are considered than when few initial infected Aedes adult

mosquitoes are assumed. Similarly, the epidemic peak happens not

sooner when many initial infected Aedes eggs are considered than

the one when many initial infected Aedes adult mosquitoes are

assumed. When the initial condition of the outbreak is assumed to

be Aedes-f, the simulations result in a later peak than the Aedes-l

condition. When the initial condition of the outbreak is assumed to

be Culex-f, the simulations result in a later peak than the Culex-l

condition. Few initially infected cattle produce a later peak than

the one when many cattle are initially infected.

Discussion

The original meta-population model for Rift Valley fever

described by Equations (1) through (20) has been proposed and

applied to a case study in two study areas of Texas, the United

States. The simulation results are helpful in understanding the

mechanisms of RVF virus transmission. Modeling each mosquito

species individually requires specific species information to

parameterize the model, such as vector competence, which is

often not available or is based on assumptions from other species.

Therefore, the model groups competent mosquito vectors into two

main genera of RVF competent mosquitoes, Aedes and Culex. The

PERT distribution allows for mosquito species of the same genera

to be clumped together and for individual variation within a single

mosquito species by having a distribution with a most likely value

and a range of possible values for each parameter. The distribution

also allows the model to be easily adapted to new environments

where the vector competence of mosquitoes remains uncharacter-

ized. The model can accommodate various mosquito species of the

same genus by adjusting the most likely values and the range of

values to account for the variation in vector competence between

species. Moreover, the model is not limited to the known mosquito

vector species, and newly discovered competent vectors of RVF

can be readily included in the model.

The model can be used to study not only local transmission

between hosts and vectors, but also trans-location transmission of

RVF virus with the network approach. The roles of mosquitoes

and livestock in RVF virus transmission can be studied indepen-

dently because they have separate networks. One infected farm

node can spread the infection to other nodes connected to it;

therefore, more nodes can be infected over time. The temporal

and spatial evolution of RVF virus and its driving force can be

analyzed. The spread of RVF virus is estimated within farms as

well as between farms, markets, and feedlots. The goal of the

simulation analysis is to provide insights into possible pathways for

rapid spread of RVF virus among farms and counties. Using the

cattle networks, the impact of cattle movement from trade can be

investigated as newborn calves mature to weaning and on to

harvest. The cattle farms are the source nodes where the cattle are

Table 5. Qualitative numerical simulation results of different scenarios with respect to infected cattle.

Initial source of infection

Farm size Initial infection size Outcome characteristics Aedes eggs Aedes adult Culex adult Cattle

Small Few (1) A average small very small very small

B very large very large large average

C very large very large average very small

D very long very long long medium

E medium long very long short

Many (&1) A very small large very large average

B average small very small small

C very small small average very small

D short short short short

E short very short very short very short

Large Few (1) A very small very small very small small

B very large large average very large

C very small small very small average

D long long short very long

E very long medium short long

Many (&1) A very large very large very large very small

B very small small small large

C average large average small

D short very short very short long

E very short short short medium

Numerical values and definitions are in the Supporting Information. We define that if there is at least one cattle infected, then the farm is infected. A represents the
number of infected farms. B represents the cumulative number of infected cattle throughout simulation. C is the total number of infected cattle when the number of
infected cattle farms is maximum. D denotes the time to peak number of infected farms, that is, the time it takes from the first day to the day on which the largest
number of infected farms appears as shown in Fig. 3. E denotes epidemic duration, defined as the number of days with more than 60 infected cattle farms. The average
number of infected farms in each day is in the range of ½350,400), the average cumulative number of infected cattle during simulation is within the range

½350|103,380|103), and the average time to peak is within ½1000,1200).
doi:10.1371/journal.pone.0062049.t005
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born and raised for several months before being sold through

markets or direct to feedlots, or to other farms as stockers or

replacement females. Cattle on an infected farm may become

infected and then carry the virus to the livestock market or else

transition nodes before being sold to another farm, which may

introduce the virus to a new farm. On the other hand, infected

cattle movement to feedlots (sink nodes) does not propagate the

transmission because there is no further transfer of cattle from the

nodes except onto slaughter. Different mitigation strategies can be

applied according to each node type (source, sink, and transition)

within livestock movement network.

Discrete time modeling is appealing in the way it describes the

epidemic process, which is conceptualized as evolving through a

set of discrete time epochs instead of continuously [39]. Typically

infections or illnesses are reported at discrete time (daily or weekly)

[39,40]. Discrete time modeling makes it easier to compare the

incidence data with the output of simulations [40]. Moreover, the

numerical exploration of discrete time models is more straightfor-

ward [40]. Thus, it can be easily implemented [40] by non-

mathematicians [40,41], an advantage in the public health world

[40]. Our model allows for simulations of RVF outbreaks on small

networks with a few nodes and large scale networks with thousands

of nodes. The model is developed not only for the purpose of being

applied to the study area of Texas, but also to any geographic

region or habitat type of concerns without changing the model. To

apply the model to a new study area, the modelers only need to

adapt corresponding data into the model. It is time consuming and

easy to make mistakes by frequently changing the model to adapt

it to a new environment.

In large populations, with a large scale of epidemic incidence,

deterministic models can provide good approximations [28].

Moreover, deterministic models are easier to analyze and

interpret. However, the given starting condition and fixed

parameters of a deterministic model will always result in the same

solutions [18] because deterministic models do not reflect the role

of chances in disease spread [18]. In principle, stochastic models

are more realistic than deterministic models in representing real

world activities [28]. In a stochastic model, there are probabilities

at each time step transferring from one epidemiological state to

another [18]. Hence, the outcomes of different runs may be

different [18] and a probability or credibility interval, similar to

the confidence interval achieved from statistical analysis of

empirical data, can be established. Stochastic models produce

quantities such as the probability for an epidemic outbreak to

occur and the mean epidemic duration time instead of determin-

istic results [18]. To reflect the chance of infection more

appropriately, a stochastic model will later be developed.

However, epidemic outcomes can still be compared with the

presented deterministic model applied to case study in the study

area of Texas, the United States.

Concerning the discussion of simulation results, Aedes are the

bridge between Culex and livestock starting with Aedes egg infection.

Infected Aedes eggs may hatch infected Aedes mosquitoes. The

susceptible livestock become infected after being fed on by the

infected Aedes mosquitoes. Culex mosquitoes are amplifiers of RVF

virus transmission. Culex mosquitoes acquire the infection after

blood meals on infected livestock. In return, the infected Culex feed

on livestock and RVF virus infection is thus amplified. If there are

more infected adult mosquitoes at the beginning, whether Aedes or

Culex mosquitoes, the rate of infection is faster, herd immunity is

reached faster, the cumulative number of infected cattle is smaller

because most recover before they further diffuse to other farms to

spread RVF virus, as shown in Fig. 3. If most livestock infected by

mosquitoes in a node recover before they move to other nodes, the

Figure 3. Disease epidemic characteristics based on model output with different numbers of initially infected Culex mosquitoes on
a small farm. Time to peak infection is the time until the maximal number of cases is observed and epidemic duration is the amount of time an
epidemic persists.
doi:10.1371/journal.pone.0062049.g003
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number of infected livestock and mosquitoes that transmit RVF

virus to other nodes is reduced. The eggs do not hatch until their

habitats, such as dambos (in Africa) or playas/ponds/sloughs

(Texas) are created by rainfall. Moreover, it takes time for Aedes

eggs to become adult Aedes mosquitoes. Consequently, it may take

longer to reach the epidemic peak with initially infected Aedes eggs

than with initially infected Aedes mosquitoes.

Cattle can be spreaders of virus because they are frequently

bought and sold [42]. Infected cattle may infect a large number of

mosquitoes via mosquito bites in a new location. In turn, the

infected mosquitoes can bite a large number of susceptible cattle

and transmit the virus to them. Movement bans during a RVF

outbreak can restrict the further spatial spread of RVF. Therefore,

very few infected cattle can infect a large number of susceptible

cattle, by interacting with mosquito vectors. Early detection of

infected cattle is essential. After local and regional authorities are

warned and response planning initiated, such as cattle movement

restrictions, culling, insecticide treatments, quarantines, and other

methods to limit transmission can also be effective. These methods

will be explored in future models. The cumulative number of

infected cattle with few infected cattle at the beginning is larger

than that with a large number of infected cattle at the beginning.

The consequence caused by few initially infected cattle should also

be taken seriously.

There are no human cases (integers) in the simulations

regardless of initial starting conditions because of the small

constant human population in each node of the study region. In

high population areas, there can be a large number of human

cases. Humans are often exposed to fewer mosquitoes than cattle,

especially in more developed countries, which results in lower

probability of being infected by mosquitoes. The probability that

humans are infected by cattle is also low in this region because the

model does not account for contact with the virus via animal

slaughter. Hence, the number of infected humans in each farm

produced by simulations is fewer than 1. Therefore, an

introduction of RVF in the study area of Texas, the United States

is likely to be mainly a concern for livestock farms and not an

outbreak in humans as recently seen in South Africa based on the

deterministic mathematical model presented by [26]. During

previous outbreaks, many reported human cases proceeded with

livestock cases. In the United States, humans still have the

potential of being infected by mosquitoes and livestock especially

when many livestock cases are reported. For this reason, the

dynamics of human infection during an outbreak and the factors

that affect RVF virus transmission will also be studied in future

models.

In conclusion, the general epidemiological trend of a smaller

initial infection observed through various simulations with various

initial staring locations is: (1) a larger total number of infected

cattle, (2) a longer delay after introduction until the peak of the

epidemic, and (3) a more prolonged epidemic. If the infection

remains small (and possibly undetected) for a longer duration, it

expands geographically before the epidemic explodes involving

many cattle almost simultaneously. Therefore, an established and

endemic condition can generate larger epidemic disease incidence

after a long period of apparent hibernation.

Supporting Information

Table S1 Quantitative simulation results of different
scenarios.

(PDF)
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