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Abstract 

The goal of this research is to identify the effects of a local collective action 

management plan on irrigators in Kansas. I compare changes in water use decisions 

of irrigators located inside the policy boundary to changes in water use decisions 

of irrigators located within a five mile buffer surrounding the Sheridan County 6 

Local Enhanced Management Area (LEMA). I use a Difference-in-Difference 

regression model to estimate the effects of the LEMA on irrigated acreage, 

irrigation intensity, and crop type to uncover the adaptation strategies adopted by 

farmers. I also estimate how the LEMA impacted crop yields and the use of 

agricultural inputs such as herbicides, pesticides, fertilizer, and seed. The key 

assumption for the empirical model is that irrigation decisions inside the LEMA 

boundary would have followed the same trend as those in the 5 mile boundary if the 

LEMA water use restriction had not been in place.  

The change in total water use is decomposed into three adjustments: changes in 

irrigated acreage (extensive margin), changes in applied water intensity on the same 

crop (direct intensive margin), and changes in crop allocations (indirect intensive 

margin). My results indicate that the LEMA caused a reduction in total water use of 

25%. The total change in water use was due to a 4% reduction at the extensive margin, 

19% at the direct intensive margin and 3% at the indirect intensive margin. The LEMA 

resulted in an 8% reduction in corn yield and a 4% reduction to soybean yield, the 

primary crops in the region. I further estimate that the changes in cropping patterns due 



  

to changes at the extensive margin result in a 15% reduction in agricultural input 

expenditures through changes in cropping patterns. 

This study improves our understanding of the effects of this type of policy and 

provides implications for future water policy management initiatives. Global 

considerations of depleted groundwater resources have become of greater concern 

and initiatives such as the Sheridan County 6 LEMA could offer alternative 

strategies for effective resource management through a collective action 

management plan led by farmers and legally enforceable by the state. 
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Chapter 1 - Introduction 

 1.1 US Groundwater Policy Management 

Depleting groundwater resources has become a crucial topic across the US. The 

High Plains Aquifer is the largest groundwater storage reservoir in the US covering 

174,000 square miles (110 million acres) of the Great Plains stretching across eight 

states including Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South 

Dakota, Texas, and Wyoming (McGuire, 2002) (Figure 1).  

According to the US Department of the Interior, the future of secure water 

supplies is impacted by increasing competing demands from population growth, 

agriculture, development and climate change. This drives the necessity for states 

and local communities to provide leadership and enactment of policies to increase 

water resources, restore watersheds and invest in programs and management 

strategies that contribute to reversing the growing water crises across the US. 

Defining specific water policy directives for water quality or quantity issues can be 

difficult, however, with various stakeholders having opposing points of interest. 

Over time increased groundwater pumping from various uses has resulted in 

substantial water table declines across the aquifer. Although irrigated agriculture is 

fed from both surface and groundwater, the over-exploitation of the aquifer’s 

resources could significantly change the landscape of crop production in the US. 

Sixty percent of US irrigated land relies directly on groundwater pumping and 

irrigated land over the High Plains account for roughly 27%, making it the largest 

irrigation-sustained cropland in the world. (USGS, 2013). 
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Figure 1: Map of the High Plains Aquifer 
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Concerns about depleted aquifers for agricultural production are not unique to 

the Great Plains. Groundwater extraction for irrigation provides a substantial 

increase in crop yields and stabilizes profits due to uncertain weather; however, 

using data from NASA’s GRACE satellite, Famiglietti (2014) found that 

groundwater is being depleted in the largest global agricultural zones that could 

decrease crop production and subsequently raise food prices. In response to the 

growing concern over appropriate management of the aquifer farmers in Sheridan 

County, Kansas helped to form a Local Enhanced Management Area (LEMA) in 

an effort to self-regulate their water use (Figure 2).  

Ostrom (2009) described factors that lead to collective action indicating that 

users of a resource will invest their time and energy and self-organize to avert a 

tragedy of the commons when it becomes profitable to do so. This occurs when 

benefits exceed the perceived costs of regulation. Although joint benefits may be 

established between users, self-organizing to sustain a resource increases time 

burdens for the users and could result in a loss of short-term economic gains causing 

users to avoid these costly changes and continue to overuse the resource. Farmers 

may be more likely to pursue these collective action efforts to the extent that they 

can adapt to water restrictions and offset the short-run negative impacts. The results 

from this study give some insights into the adaptation strategies pursued by farmers. 
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Figure 2: Map of Sheridan 6 Local Enhanced Management Area LEMA 
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 1.2 Background on the Sheridan 6 LEMA 

In 2012, new legislation granted Kansas Groundwater Management Districts 

(GMDs) the power to originate their own localized water conservation management 

plans which are then legally enforced by the state). Farmers in Sheridan County, 

located in the northwestern corner of Kansas participated in the process to impose 

restrictions on themselves by forming a Local Enhanced Management Area 

(LEMA) in 2013 as a collective action effort to regulate their water use.  

As described by the order of the Chief Engineer, the overarching goal of the 

LEMA is a collective action to restrict irrigated groundwater rights to no more than 

114,000 acre-feet total over January 1, 2013, and December 31, 2017, in a manner 

that preserves the economic benefits of irrigation further into the future. The 99 

square mile area maintains 185 wells for irrigation and 10 non-irrigation wells and 

puts in place the goal of reducing groundwater pumping by approximately 20% 

whereby restricting irrigators to a five-year allocation of 55 inches/acre each (KDA, 

2013).  

In July of 2012, the Sheridan 6 LEMA proposal was transmitted to the Division 

of Water Resources (DWR) including the legal descriptions of sections to be 

included in the LEMA and goals and management actions for limiting water use. 

The proposal was generated through a public consensus process undertaken by the 

stakeholders of the SD-6 High Priority Area over the course of eleven noticed 

meetings and two subcommittee meetings beginning in 2008. The proposed LEMA 

including all wells located in the high priority area, not just wells of irrigators who 
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may have been in favor of the water policy. Although the LEMA was in part farmer-

led, the resulting defined boundary was formally decided externally, by the SD-6 

advisory board that consisted of not only residents, owners, and operators but also 

representatives from the Division of Water Resources, Kansas Department of 

Agriculture, and Groundwater Management District 4. The notes from the June 17, 

2009 meeting outlined exactly how the boundary was defined as follows: 

The observation wells were used to generate an interpolated water 

level value for the center of every section. The 1997 section-center 

values were subtracted from the 2006 values and any section that 

declined 9% or more was identified. The reported water use was also 

aggregated for every section and any section that had more than 275 

acre feet of annually reported water use was identified. Next, any ¼ 

Township that had two or more identified sections, was designated as 

a High Priority Area ¼ Township. Finally, the ¼ Townships were 

combined to form the 6 High Priority Areas. 

Many farmers who spoke out in support of the LEMA indicated that they felt 

that the LEMA provided enough flexibility in water allocation from year to year 

such that farmers would capitalize on their abilities to adapt and could actually be 

more profitable allowing future generations to continue irrigation practices. It is 

noted when questioned about how the irrigators felt the water restriction might 

impact their profits in one of the policy planning meetings, one farmer replied, 

“We’ll probably net more (profits)...”. This did not come without criticisms; 

however, with other farmers pointing out possible disproportionate water use based 

on unequal water right allocations between farmers within the restricted boundaries 
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and a possible result of increased water use due to unlimited flexibility of allocation 

between water rights and unlimited well locations. Some argued this gives farmers 

the ability to purchase additional water rights to irrigate their present place of use 

causing potential for more water use than before the LEMA (KDA, 2013).  

The water management plan is of interest to many due to its uncommon 

collective action establishment with direct input from the irrigators who have an 

interest in extending the life of the aquifer. The boundaries contained within the 

LEMA are defined by critical groundwater conditions and discussions about new 

LEMA enactment are currently being initiated in GMDs across the state. This 

includes GMD 4 in its entirety, five west-central counties (GMD 1), and 12 south-

west counties (GMD 3) suggesting more farmers will be under these quantity 

restrictive policies in the near future. The term LEMA generally refers to this type 

of water management plan, however, in this paper, the term will subsequently 

describe the original Sheridan 6 LEMA as it is the focus of this analysis.  

The Kansas Geological survey maintains and continuously monitors index 

wells in the three western Kansas GMDs to monitor the High Plains aquifer. 

Although it is unclear exactly how much time it takes for water savings to modify 

the depth to water of the aquifer, the recent study by Deines et al. (2019) found 

evidence of stabilizing groundwater levels inside the LEMA compared to outside 

the LEMA.  
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 1.3 Research Overview 

The concentration of this research is to consider impacts from the collective action 

water quantity restriction policy implemented in Sheridan County, Kansas. We use 

Difference-in-Difference estimators to compare changes in irrigation behavior 

inside the policy boundary to behavior in a 5-mile buffer zone outside the policy 

boundary. I estimate the effect of the policy on total water use, irrigated acreage, 

water intensity, cropping patterns and yields. The results give new insights into how 

irrigators adjusted their behavior to adapt to the restriction in the short run. By 

understanding the different margins of adjustment the results also indicate the 

potential effect of water restrictions on other agribusiness industries due to changes 

in agricultural outputs and inputs. I also wanted to consider possible unintended 

consequences from the water management plan and address the concerns of the 

irrigators proposed in the planning process related to disproportionate water 

restrictions.  

Additionally, it is important to note that the Difference-in-Differences 

framework has strict underlying assumptions. It controls for unobserved 

heterogeneity that is constant over time and correlated with the dependent variables 

such that by differencing the data I can remove these time-invariant portions of the 

model. Additionally, it controls for unobserved heterogeneity that is constant across 

individuals and parsed out by a second differencing in the data. However, I believe 

there exists additional variation among farmers that cannot be completely captured 
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by the D-I-D model such that I propose an additional secondary fixed effects 

regression model that controls for differential changes over time by farmer.  

This analysis outlines the methodology for estimating the effects of the policy 

on the LEMA irrigators by beginning with the literature review in Chapter 2 which 

covers Groundwater Policy and Management in the US, previous studies of water 

demand management and decomposed marginal estimates and elasticities as well 

as yield estimation from simulation models and regional specific water budgets.  I 

then outline in Chapter 3 the conceptual model of irrigator water use decisions 

before presenting the data, variables, and model controls in Chapter 4 in addition 

to an explanation of the defined boundary areas. For the purposes of establishing 

our model, it is important to note how the boundary of the LEMA group was 

defined. Chapter 5 explains the fundamentals of the D-I-D model empirical 

methods including the specification of my preferred model, the methodology for 

decomposing marginal effects of water use and specified production function. This 

chapter includes further validation of the methods with explanations of the policy 

event study, dummy corrections, fit of production function and use of robust 

standard errors.  Finally, Chapters 6,7, and 8 cover the results for extensive and 

intensive marginal changes in water use, changes in cropping patterns and input 

expenditures, and changes in crop yields, respectively. 
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Chapter 2 - Literature Review 

Previous studies that address water demand analysis are broad and include topics 

of water pricing, crop production and groundwater sustainability which provide 

valuable background for this study. I begin with a discussion of the general issue 

of long-term groundwater management as it applies to the study area to establish 

the timeliness and need for this research. I then narrow the focus to the literature 

that specifically discusses water user response to price and various demand shifters 

to introduce the void that our estimation of the direct effect from a water quantity 

restriction will fill. Finally, because this study uses an estimation approach that is 

based on a strict set of underlying assumptions I also include a section of literature 

that addresses potential shortcomings and current studies that outline improvements 

to the estimation methodology. 

 2.1 Groundwater Policy and Management 

The issue of appropriate water use management strategies is not just isolated to the 

Ogallala Aquifer. A common theme within all water policy literature is uncertainty 

toward future climate and groundwater depletion rates as agriculture becomes 

increasingly dependent on irrigation technologies. This concern has been long 

withstanding with studies beginning in the early 1970s attempting to evaluate 

which types of policy-induced welfare maximization. In particular, the study by 

Mapp and Eidman (1976) considered a quantity limitation and a graduated tax to 

determine the optimal policy instrument in the central basin of the Ogallala Aquifer. 

While the quantity restriction might be preferable to policy makers due to its ability 
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to reduce water-use rates by the largest amount and easier to implement, they found 

that it provided the lowest level of net farm income with the greatest relative 

variability. Historically, many irrigators share these sentiments and have tended to 

be against water restrictive policies.  

An early study modeling regulated pumping costs in the Texas High Plains 

indicated that even in the face of decreased groundwater resources, the costs for 

regulating Texas farmers were too high and concluded that no regulations of 

groundwater withdrawals needed to be taken (Nieswiadomy, 1985). This 

determination was based on the previous study by Gisser and Sanchez (1980) who 

established the Gisser-Sanchez rule. This widely controversial paradox suggests 

that economic benefits from regulating irrigated groundwater use for irrigation are 

negligible if the groundwater storage capacity is relatively large and the demand 

for groundwater is highly inelastic. At the time, further examination of the rule in 

other western states was not plausible due to a lack of farm-level data on irrigated 

users. Furthermore, current studies lend evidence to the contrary indicating 

structured policy regulations are necessary for improved groundwater management.  

In particular, the study by Kim et al. (2015) concluded that the Gisser-Sanchez 

rule is not applicable when irrigation technology is allowed to vary across time. 

Rather than leaving this resource to the tragedy of the commons, the research 

constructs a theoretical justification for developing socially optimal rates of 

groundwater extraction and conclude that there may be considerable scope for 

improving groundwater management, including increased groundwater quantity 
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restrictions. Additionally, another recent study by Peterson and Ding (2005) 

presented a dynamic model of Kansas and Colorado examining the expected effects 

of alternative restriction policy scenarios. The research determined that without 

water policy intervention, the saturated thickness of the Ogallala would be reduced 

by more than 50 percent, and most irrigated cropland would revert back to rain-fed 

cropland within 60 years. Furthermore, at the time of his study, Neiswiadomy had 

projected the life of the aquifer beneath the Texas High Plains to have another 40-

50 years before the steady-state solution was reached. This seems short-sighted 

given that 30 years later have passed and the condition of the aquifer continues to 

still be a topic of great concern and research with many stakeholders interested in 

determining sustainable appropriation of the groundwater such that the aquifer 

continues to be a viable resource for future generations.  

Many times, the focus of water policy is on improvements in water-saving 

technology; however, the study by Peterson and Ding (2005) indicate that these 

policies may have adverse effects such that improvements in irrigation efficiency 

could potentially increase total irrigated acres (i.e. whereby increasing total water 

consumption) and is dependent on relationships in the crop production process. A 

more recent study by Pfeiffer and Lin (2014) uses empirical evidence in western 

Kansas to validate Peterson and Ding’s findings, concluding that on average, the 

adoption of more efficient irrigation technology resulted in increased water use 

from changes in crop type. As a result, a need for more empirical evidence at the 
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farm level is necessary to model irrigation strategy choice behavior that includes 

variables relating to weather, crop and soil characteristics.  

Hornbeck and Keskin (2014) studied how agricultural production decisions 

changed from the introduction of irrigation over the Ogallala Aquifer. They 

considered impacts from drought and concluded irrigated land use adjusted toward 

water-intensive crops, whereas, irrigators in nearby water-scarce areas maintained 

lower value drought-resistant cropping patterns that naturally reduce water quantity 

sensitivity. While the study presented by Peterson and Ding (2005) provides a 

scenario framework for the consideration of water restrictive policies, the current 

empirical studies on water policy effects neglect to evaluate irrigated user’s 

decisions from a water use restriction with the exception of Hornbeck and Keskin 

(2014) who quantified effects by comparing counties over the Ogallala with nearby 

similar counties while controlling for average differences in soil characteristics and 

weather. Smith et al. (2017) used a Difference-in-Differences model and found that 

a self-imposed groundwater pumping fee in Colorado was effective at reducing 

water use.  Additionally,  a study by Deines et. al. (2019) evaluated the marginal 

effects on irrigators inside the Sheridan 6 Local Enhanced Management Area 

(LEMA) using a Bayesian structural time series approach.  This approach uses a 

counterfactual control group as the basis for comparison to identify the causal effect 

of the policy. I will provide an alternative framework and attempt to simplify the 

model presented by Hornbeck and Keskin (2014) and exploit field-level fixed 

effects through a Difference-in-Differences model similar in approach to Smith et 
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al. (2017) to identify the causal effect of the LEMA. LEMAs are not tied to county 

boundaries but rather to areas identified with critical concerns, therefore, it is 

necessary to describe these policy restriction areas at the field level. 

 2.2 Water Demand 

Currently in the US, as in many other countries, producers obtain a water right to 

pump groundwater for irrigation. Economists argue that regional markets for these 

water rights would lead to more efficient use of water and could offset short-run 

losses due to quantity restrictions resulting in improvements to sustainability of the 

resources (Rosegrant and Binswanger, 1994; Howe et al., 1986; Hearne and Easter, 

1995; Easter and Hearne., 1995; Jr. and Howitt, 1984). In Kansas, as in many other 

western states, water rights are based on prior appropriation which establishes a 

hierarchy based on seniority of the water right. In general, economists argue that 

this misallocates water resources and can cause inefficiencies, for which, water 

markets seek to correct. With the increased attention on water markets, a large 

portion of the policy literature that addresses irrigated users is dedicated to the 

effects of water pricing variation to directly evaluate the impact of a water tax while 

modeling crop irrigation/production functions and willingness to pay/water rents. 

(Green et al., 1996; Iglesias and Blanco, 2008; Scheierling et al., 2006; Varela-

Ortega et al., 1998; Gómez-Limón et al., 2002; Gómez-Limón and Riesgo, 2004).  

The work conducted by Varela-Ortega et al. (1998) estimating the differences 

in water demand observed in three different water basins was explained by the 

structural parameters including crop variety, irrigation technology, farm size, and 
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productivity capacity. The study determined different price effects on irrigation 

water demand, farmers’ income, and government revenues while evaluating the 

changing irrigator strategies on irrigation technology, water management, cropping 

patterns and land use. The authors indicate that although water pricing policies are 

regional specific with respect to water conservation strategies and policies have to 

be carefully defined in each region, the different pricing policies produce 

remarkably uniform effects across regions and water districts such that the ordering 

of the effects on water demand and revenue loss is maintained across regions and 

water management districts. Furthermore, to address future water management 

policies Iglesias and Blanco (2008) proposed a model to evaluate different pricing 

effects on water demand, environmental indicators, cropping patterns, technology 

adoption, labor, farmers’ income, and government revenues.  

There have additionally been other noteworthy studies quantifying important 

water pricing policy effects evaluating water pricing effects or quantity regulations 

on the share of water resources and estimation of the “value” of water (Johansson 

et al., 2002); nonetheless, the current literature is void of studies defining direct 

policy effects on specific crop production decisions. The policy effects that this 

study seeks to estimate include irrigation user’s decisions on irrigation technology 

in the face of a more restricted water use right. To explain irrigation technology 

choices a study by Green et al. (1996) demonstrated that water price is not the most 

important factor when producers are making choices on irrigation system strategy. 

In fact, they find that factors relating to the physical characteristics of crop 
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production including weather, crop and soil characteristics are more important and 

conclude for the need to use farm-level data to determine the effects on irrigation 

technology choices. 

 2.3 Decomposed Marginal Estimates and Elasticities 

The studies conducted by Moore et al. (1994) and Schoengold et al. (2006) 

decompose the water demand estimates into extensive and intensive marginal 

effects. Although they find the majority of the response occurring at the extensive 

margin (defined as changes to cropping patterns) they indicate that if most of the 

price response is at the intensive margin (defined as applied water use), then 

policies that target irrigation intensity or water-saving technologies will be more 

cost-effective. While the study conducted by Moore et al. estimated crop type, 

supply, water demand, and land allocation functions for field crops the study by 

Schoengold et al. (2006) was more narrowly focused on output and irrigation 

strategy additionally suggesting the majority of the response occurring due to 

changes in crop type.  

More recently, Hendricks and Peterson (2012) estimated irrigation water 

demand over the Kansas portion of the Ogallala Aquifer in which they further 

decompose the water demand estimates into an extensive (changes in irrigated 

acreage), direct intensive (changes in applied water use), and indirect intensive 

(changes in crop type) margins finding alternatively the majority of the response at 

the intensive margin due to changes in applied water/acre. They additionally 

introduce a framework and argument to establish that the fixed effects estimates are 
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unbiased and consistent for the policy variable of interest even though the estimates 

for the independent variables are not. 

The management of water resources can be difficult because official resource, 

economic and production data are often available at various non-comparable scales 

(Mallawaarachchi et al., 1996). In the water demand study conducted by Hendricks 

and Peterson (2012) they found few water management studies utilizing micro data, 

or data beyond the county level, with the exception of Moore et al. (1994); 

Schoengold et al. (2006). The goal of this research is to provide estimates of 

irrigator responses under the LEMA policy and compare to nearby irrigators met 

with the same weather and political conditions to uncover the decomposed marginal 

effects from the policy on farmer’s choice behavior such that I evaluate the need 

for farmer-specific and field-specific variables while loosely modeling this study in 

the spirit of Hornbeck and Keskin (2014). 

 2.4 Marginal Effects of Crop Yield Estimation 

Previous studies that consider the effects of water use on yields are widely centered 

around deficit irrigation strategies, crop production, and water pricing policy. 

Although deficit irrigation is in effect a method to reduce water quantities it does 

not specifically speak to a water quantity restriction. Studies are extremely limited 

that consider the impacts of a water quantity restriction policy on subsequent 

irrigator yields.  

Additionally, due to increasing drought management, climate variability, and 

groundwater sustainability, it is important to consider research on outcomes from 
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other water saving policies and the effectiveness of different yield simulation 

models. For this reason, I consider the following two sections which speak to water 

policy and the comparison of different simulated models. 

In Kansas, Golden and Leatherman (2011) produced more recently a study 

considering groundwater demand and revenue loss effects on crop production by 

comparing before and after trends of the Walnut Creek IGUCA in an effort to 

evaluate how a more sustainable water management policy might affect producer’s 

profits. They concluded that the localized policy resulted in significant reductions 

in total area groundwater use, a positive effect on the life of the aquifer, but 

insignificant long run effects on annual irrigated crop revenues. 

 2.5 Crop Yield Simulation Models 

There are many spatial yield models that are used for predicting yields of various 

agricultural crops including CropSys, AquaCrop, and YieldStat. These models 

employ various non-linear regression approaches utilizing databases that are well-

informed on nutrient loads of different crops. These models, however, are not 

regional specific and for the purposes of this study which is done at the micro level, 

I argue that the Kansas Water Budgets are better suited because they have been 

validated with actual data from the policy area. 

 The Kansas Water Budget (KSWB) was developed as a yield predictor for 

both rain-fed and irrigated crops in western Kansas (Stone et al. 1995, 2006; Klocke 

et al. 2010; Khan et al. 1996). It is the basis for two irrigation management tools; 

the Crop Yield Predictor (CYP) and the Crop Water Allocator (CWA) provided by 
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extension from Kansas State University for which we use as a comparison to the 

remotely sensed data. Many studies have validated the use of the KSWB including 

the study by Klocke et al. (2010) which compared the KSWB results with four years 

of field research plot data. In contrast to other models, such as the CERES, it relies 

on inputs of daily maximum and minimum air temperature, crop coefficients, soil 

water stress coefficients; and plant water stress coefficients to calculate effective 

ETe which is related to yield by a locally calibrated yield-ETe relationship. The 

study also provides a nice graphical representation of how the KSWB predicts 

yields.  

 Irrigation needs to be allocated among crops, using crop production 

functions and production costs for optimum economic return Klocke et al. (2010). 

The Crop Yield Predictor University (b) (CYP) and the Crop Water Allocator 

University (a) (CWA) were designed as an interactive decision tool to predict crop 

yields and economic returns for deficit irrigated crops and made available by 

Kansas State University’s Mobile Irrigation Lab. Both the CYP and the CWA use 

the Kansas Water Budget (KSWB) simulation model to predict crop yields, ETr, 

ETc, and daily ASW (Klocke et al. 2010; Stone et al. 1995, 2006; Khan et al. 1996).  

The KSWB was designed to use average daily values from 30 years of weather 

data (maximum and minimum air temperature, solar radiation, and precipitation) 

for each location to calculate ETr, ETc, daily ASW, and crop yields. Klocke et al. 

(2010) described the technical background and operation of the KSWB and 

furthermore compared the results from KSWB simulations with data from a field 
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study conducted at Garden City, Kansas during 2005 through 2008. The KSWB 

was executed with daily weather data and irrigation events from the field study. 

They showed that: (1) actual field and KSWB yield-ET relationships were almost 

identical; (2) soil water contents from field data compared well with KSWB results; 

and (3) KSWB tended to underestimate crop yields relative to fully irrigated yields 

and ETc as irrigation declined. These differences were attributed to calibrations of 

the KSWB with historical data from conventional (tilled) management but the field 

study was managed with no-till techniques.  

CYP users can designate potential irrigation schedules to optimize yields and 

net returns. These schedules can be tested for a range of annual precipitation to find 

yield and income risks from several input scenarios including wet, average, and dry 

years; different dates and amounts of irrigation events; inclusion or exclusion of 

pre-season irrigation (Stone et al. 1987); different soil types; different irrigation 

system application efficiencies; or different soil water contents before or during the 

growing season. The Crop Yield Predictor (CYP) and the Crop Water Allocator 

(CWA) tools derived from the underlying KSWB model can calculate crop-specific 

yields by combining the effects of weather parameters, crop development during 

the growing season, water stress from soil water availability, and the crop’s 

susceptibility to stress during four growth periods as described by Klocke et al. 

(2010).  

The functions of interest for this study that are contained in the KSWB are as 

follows: 
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𝐸𝐸𝐸𝐸𝐸𝐸 =  0.078 +  0.0252(𝑀𝑀𝑀𝑀𝑀𝑀)(𝑅𝑅𝑅𝑅𝑅𝑅) 2.493 − 0.00214(𝑀𝑀𝑀𝑀𝑀𝑀) 

where  

𝐸𝐸𝐸𝐸𝐸𝐸 = reference ET (𝑚𝑚𝑚𝑚)  

𝑀𝑀𝑀𝑀𝑀𝑀 = average daily temperature (𝐶𝐶)  

𝑅𝑅𝑅𝑅𝑅𝑅 = average daily solar radiation (𝑀𝑀𝑀𝑀 𝑚𝑚 − 2). 

The maximum evapotranspiration (𝐸𝐸𝐸𝐸𝐸𝐸) and actual evapotranspiration 

(𝐸𝐸𝐸𝐸𝐸𝐸) calculations are as follows: 

𝐸𝐸𝐸𝐸𝐸𝐸 =  𝐾𝐾𝐾𝐾 ∗ 𝐸𝐸𝐸𝐸𝐸𝐸 

𝐸𝐸𝐸𝐸𝐸𝐸 =  𝐾𝐾𝐾𝐾 ∗ 𝐸𝐸𝐸𝐸𝐸𝐸 

=  𝑙𝑙𝑙𝑙𝑙𝑙(𝐴𝐴𝐴𝐴𝐴𝐴 +  1) 𝑙𝑙𝑙𝑙𝑙𝑙(101)  ∗ 𝐸𝐸𝐸𝐸𝐸𝐸 

where  

𝐾𝐾𝐾𝐾 = crop coefficients  

𝐾𝐾𝐾𝐾 = soil water stress coefficients  

𝐴𝐴𝐴𝐴𝐴𝐴 = available soil water content (%). 

A daily drainage function (𝐷𝐷), specific to Ulysses silt loam soil, is given by Stone 

et al. (1987) and described as a function of total soil water content (TSW) measured 

in 𝑚𝑚𝑚𝑚.  

𝐷𝐷 =  42.7 �
𝑇𝑇𝑇𝑇𝑇𝑇
729

�
18.06

  . 

Additionally, 𝐸𝐸𝐸𝐸𝐸𝐸 was adjusted daily using a water balanced equation of total soil 

water to a depth of 1.8 𝑚𝑚 (𝑇𝑇𝑇𝑇𝑇𝑇𝑡𝑡) and was represented as:  

𝑇𝑇𝑇𝑇𝑇𝑇𝑡𝑡  =  𝑇𝑇𝑇𝑇𝑇𝑇𝑦𝑦  +  𝑃𝑃𝑦𝑦 +  𝐼𝐼𝑦𝑦  − 𝐷𝐷𝑦𝑦  − 𝐸𝐸𝐸𝐸𝑎𝑎𝑦𝑦 
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where  

𝑇𝑇𝑇𝑇𝑇𝑇𝑦𝑦  = total soil water at the beginning of yesterday  

𝑃𝑃𝑦𝑦  = the precipitation that entered the soil yesterday  

𝐼𝐼𝑦𝑦  = the irrigation that entered the soil yesterday  

𝐷𝐷𝑦𝑦  = the water that drained out of the soil yesterday  

𝐸𝐸𝐸𝐸𝐸𝐸𝑦𝑦  = the water extracted out of the soil yesterday. 

Finally, the effective ET (𝐸𝐸𝐸𝐸𝐸𝐸 ∗) is calculated from the ratio of 𝐸𝐸𝑇𝑇𝑇𝑇 to 𝐸𝐸𝐸𝐸𝐸𝐸 with 

crop specific weights (𝑊𝑊𝑔𝑔) that account for water stress during the growing season 

and is as follows:  

𝐸𝐸𝐸𝐸𝐸𝐸 ∗ = ��
�𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸� ∗𝑊𝑊𝑔𝑔

100
� 𝐸𝐸𝐸𝐸𝐸𝐸  

This is combined with the Yield-ET equations to represent crop specific yields 

(𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌) as: 

𝑌𝑌 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 =  𝛼𝛼𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝐸𝐸𝐸𝐸𝐸𝐸 ∗) − 𝛽𝛽𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  

Or more specifically, they use the linear functions presented by Klocke et al. (2010) 

to estimate yields for corn and soybean 𝑌𝑌 [𝑀𝑀𝑀𝑀 ℎ𝑎𝑎−1] as a function of 𝐸𝐸𝐸𝐸𝐸𝐸(𝑚𝑚𝑚𝑚) 

such that the crop-specific yield function is as follows: 

𝑌𝑌𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  =  0.042(𝐸𝐸𝐸𝐸𝐸𝐸 ∗) − 12.33, 

𝑌𝑌𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  =  0.011(𝐸𝐸𝐸𝐸𝐸𝐸 ∗) − 2.39. 
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Chapter 3 - Conceptual Model of Irrigator Water Use 

Decisions 

I conceptually model the effect of the LEMA policy on total acres irrigated, acreage 

planted to different crops, and irrigation intensity as different margins of adjustment 

similar to the study conducted by Hendricks and Peterson (2012). Here I apply the 

same methodology to responses from a water quantity restriction from the Sheridan 

6 LEMA. I decompose the effect of the quantity restriction into the following three 

direct and indirect margins of adjustment: (i) extensive (irrigated acreage), (ii) 

indirect intensive (changes in crop allocation), and (iii) direct intensive (changes in 

irrigation intensity for a given crop). My decomposition follows the same 

methodology as used in the water demand literature that examines the margins of 

adjustment to changes in price (Moore et al., 1994; Schoengold et al., 2006; 

Hendricks and Peterson, 2012).  

Assume we have a representative irrigator such that their water demand for a 

particular well is subject to a water quota denoted q. I identify a particular land use 

as the varying combination of crop type and irrigation technology and represented 

as 𝑗𝑗 =  1, . . . , 𝐽𝐽 land uses. Let irrigators choose 𝑎𝑎(𝑞𝑞) the optimal irrigated acreage, 

and let 𝑤𝑤𝑗𝑗(𝑞𝑞) indicate the optimal applied water intensity in acre inches/acre for 

each of the 𝑗𝑗 land uses. Let 𝑠𝑠𝑗𝑗(𝑞𝑞) represent the optimal share of irrigated acreage 

for each land use. I can then define the average applied water per acre as: 
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𝑤𝑤(𝑞𝑞) = �𝑠𝑠𝑗𝑗(𝑞𝑞)𝑤𝑤𝑗𝑗(𝑞𝑞)
𝐽𝐽

𝑗𝑗=1

  

Here I am only interested in modeling water demand as a function of the LEMA 

water quota restriction. I represent total water use at the field level as a function of 

the total quantity of irrigated water and written as a function of average applied 

water per acre multiplied by the number of acres irrigated: 

𝐷𝐷(𝑞𝑞)  =  𝑤𝑤(𝑞𝑞)𝑎𝑎(𝑞𝑞) 

I can then differentiate the above equation and multiply by 𝑞𝑞 ⁄ (𝐷𝐷(𝑞𝑞)) to give the 

extensive marginal effects such that I can quantify the change in irrigated acres 

µ𝑎𝑎(𝑞𝑞) and the total intensive marginal effect, the change in irrigation intensity µ𝑤𝑤(𝑞𝑞) 

due to a change in the water quota of the LEMA and represent the elasticities: 

𝐷𝐷′(𝑞𝑞)
𝑞𝑞 

𝐷𝐷(𝑞𝑞)  =  𝑤𝑤’(𝑞𝑞)
𝑞𝑞 

𝐷𝐷(𝑞𝑞) +  𝑎𝑎’(𝑞𝑞
𝑞𝑞 

𝐷𝐷(𝑞𝑞)) 

or more simply 

µ𝐷𝐷(𝑞𝑞) =  µ𝑤𝑤(𝑞𝑞) +  µ𝑎𝑎(𝑞𝑞) 

Additionally, I can find from decomposition of the average applied water per acre 

function 𝑤𝑤(𝑞𝑞) the direct and indirect intensive marginal effects or the changes in 

crop allocation due to a change in the water quota of the LEMA. Differentiating 

𝑤𝑤(𝑞𝑞) and multiply by 𝑞𝑞 ⁄ (𝑤𝑤(𝑞𝑞)) such that:  

µ𝐷𝐷(𝑞𝑞) =  ��𝑠𝑠𝑗𝑗(𝑞𝑞)𝑤𝑤′
𝑗𝑗(𝑞𝑞) +  �𝑠𝑠′𝑗𝑗(𝑞𝑞)𝑤𝑤𝑗𝑗(𝑞𝑞)

𝐽𝐽

𝑗𝑗=1

𝐽𝐽

𝑗𝑗=1

�
𝑞𝑞

𝑤𝑤(𝑞𝑞)
 

or rather 
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µ 𝑤𝑤(𝑞𝑞) =  µ 𝑤𝑤𝑤𝑤 +  µ 𝑤𝑤𝑤𝑤. 

Here I find the total intensive margin is made up of two effects 𝜇𝜇𝑤𝑤𝑤𝑤 which can be 

described as the direct intensive marginal effect and  𝜇𝜇𝑤𝑤𝑤𝑤  defined as the indirect 

intensive marginal effect. The indirect marginal effect represents the change in 

water intensity because farmers switched to less water-intensive crops. The direct 

intensive effect represents changes in water intensity due to less water application 

per acre while holding constant the cropping pattern. 
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Chapter 4 - Data 

This analysis merges various spatial data sets to create an unbalanced 

panel data set for irrigated farms in northwest Kansas across a 6 year period 

(2009-2014) to describe the effects on farmers’ decisions and subsequent 

production yields from the LEMA. Because LEMAs are not tied to county 

boundaries but rather to areas identified with critical concerns, it is important to 

construct the data set at a micro level instead of county-level aggregates.  

 4.1 Water Use and Agricultural Variables 

Kansas law requires all water right holders to report annually on irrigation and crop 

characteristics (Hendricks and Peterson, 2012). Because of this, I am able to 

quantify reported water use data at each irrigator’s water well (termed a “point of 

diversion”). Each water right holder is assigned a water right id number which is 

attached to a specific point of diversion and a specific place of use, however, this 

does not necessarily mean that the water right is exclusive to just one point of 

diversion. Because the water use restriction is placed on the water right itself, I 

aggregate the linkages to identify the variables in the model for water withdrawal, 

crop type and irrigation system to the water right level from the Kansas Water 

Rights Information System Database (WRIS). These observations were then 

identified spatially according to the location of the points of diversion associated 

with each water right.  

The specific crops considered in this analysis include alfalfa, corn, sorghum, 

soybeans, and wheat with two additional categories identified as multiple and other. 
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Although there were many crops grown inside the LEMA, there are relatively few 

water rights that are specifically dedicated to one crop other than corn, therefore, 

we can only predict yields for single crops where the entire water use is dedicated 

to the water right.  

The category for other irrigated uses includes fruits, vegetables, sunflowers, 

golf courses, pasture, cotton, athletic fields, turf grass, barley, oats, rye, and dry 

beans. Additionally, some reporting merely indicates that “multiple” crops were 

grown, but not which crops were specifically grown. The Kansas data does not 

indicate the number of acres planted to each crop nor how the irrigated water was 

distributed to each crop when multiple crop types were reported. I, therefore, follow 

the methodology of Hendricks and Peterson (2012) to identify that if 𝑘𝑘 crops were 

grown, the proportion of the field in each crop is simply 1/𝑘𝑘. The irrigation 

technologies in this analysis include flood, drip, center pivot, center pivot with low 

drop nozzles, and other sprinkler types. 

 4.2 Weather Controls 

Additional site specific variables were obtained to describe yields as a function of 

water use intensity at each point of diversion. This accounts for site specific yield-

ET relationships across farmers within the LEMA boundaries to be computed and 

compared to farmers outside the boundary based on net irrigation. Because 

irrigation decisions rely heavily on weather conditions I include a set of weather 

controls in the model obtained from the PRISM Climate group (PRISM). The 

PRISM data are a 4 kilometer interpolated grid and have been shown to be an 
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accurate representation of US climate. Because the LEMA is approximately 99 

square miles (160 square kilometers) this data provides variability between the 

LEMA and control groups. Additionally, I include annual precipitation and 

reference evapotranspiration (ET) to account for changes in water demand due to 

weather. 

  4.3 Construction of the Boundaries 

The points of diversion inside the LEMA boundary and points of diversion in a 5 

mile buffer outside the LEMA boundary are represented as the 2 groups of irrigators 

for comparison. Wells under the LEMA quantity restriction were identified from 

official Kansas Department of Agriculture data. The 5 mile buffer zone surrounding 

the LEMA acting as the control group was then used as the counterfactual group as 

the basis for a Difference-In-Differences (D-I-D) fixed effect model to evaluate the 

causal effect on yields from farmers being subject to the LEMA (Figure 4). These 

boundaries allow us to assess whether yields for the LEMA group would have been 

the same to the 5 mile group, had the LEMA policy not been in place which is the 

fundamental assumption of the D-I-D model. Consideration was additionally given 

to other possible control groups through a series of checks and validations. 
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Note: The red area indicates wells within the LEMA Policy Area and the blue area indicate wells 

located in the control group (i.e., 5 Mile buffer area). 

 

Figure 4: Points of Diversion Located Inside the LEMA and the Control 
Group 

 

 



30 

 4.4 Summary Statistics 

This study contains 2819 observations of which 1889 are before the LEMA went 

into effect. Of those 1889 observations, there were 1175 observations in the 5mile 

control group and 714 observations in the LEMA treatment group. Following Villa 

(2012) I use a balancing t-test of the difference in the means of both the dependent 

variables and covariates between the 5 mile irrigators and the LEMA irrigators in 

period 𝑡𝑡 =  0 based on the kernel weight (Table 1).  

None of the estimates on the independent variables indicate a significant 

difference from each other such that I can identify that there are no pre-policy 

differences between the two groups. However, I do find significant estimates 

indicating pre-policy differences in some of the dependent variables suggesting the 

necessity of the D-I-D framework. I find most LEMA irrigators using a center pivot 

with low drop nozzles (0.870) followed by a traditional pivot (0.059) or pivot and 

flood combination system (0.053). Additionally, we can see in this table that most 

irrigated acreage is dedicated to corn (0.683), with additional land use spread 

between soybean (0.182), wheat (0.22), sorghum (0.002) and alfalfa (0.013) with 

the remaining 10% dedicated to other crops (0.008) or multi-crop (0.088) where the 

exact combination of crop types is unknown. Additionally, I find annual 

precipitation inside the LEMA to be on average 22 inches and evapotranspiration 

at 41inches. 
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Table 1:  Summary Statistics of the LEMA Irrigator Group Compared to the 
5 Mile Control Group 

 

 Variable Mean 5 Mile (control) Mean LEMA (treated) Difference 
log Acres Irrigated   4.888   4.887  -0.001 
log Applied Inches   7.351   7.434  -0.001** 
log Intensity   2.463   2.547   0.084** 
    
Irrigation System    
Flood   0.005   0.004  -0.001 
Drip   0.000   0.000   0.000 
Traditional Pivot   0.052   0.059   0.006 
Pivot with low drop   0.889   0.870  -0.019 
Sprinkler   0.003   0.004   0.001 
Pivot and Flood   0.043   0.053   0.010 
Drip Other   0.005   0.006   0.000 
All Other Irr   0.002   0.004   0.003 
    
Cropping Type    
Alfalfa   0.010   0.013   0.002 
Corn   0.690   0.683  -0.008 
Sorghum   0.003   0.002  -0.000 
Soybean   0.188   0.182  -0.006 
Wheat   0.021   0.022   0.001 
Other Crops   0.009   0.008   0.013 
Multiple Unknown   0.076   0.088  -0.068 
    
Weather    
Precipitation 

 

21.741 21.674  -0.068 
Evapotranspiration 41.096 41.084  -0.012 

 

 4.5 Yield Data 

Since I do not have data on actual yields in each field, I generate predicted yields 

for a given amount of precipitation and irrigation from output created by the 

KSWB. Although many irrigators maintain rotating crops or have a mix of crops 

for a single water right, we only want to predict yield estimates for crops where a 
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single crop was planted to the entire water right. In these cases, we know that all 

the water applied went to the same crop type and can accurately be modeled. 

Because of the nature of the policy and crops grown in the area there were only 

enough observations to predict corn and soybean yields. I represent the crop yield 

as a nonlinear function of net irrigation and precipitation such that: 

𝑌𝑌𝐼𝐼𝐼𝐼𝐼𝐼 =  𝛽𝛽0 + 𝛽𝛽1 ∗ 𝐼𝐼𝐼𝐼𝐼𝐼 + 𝛽𝛽2 ∗ 𝐼𝐼𝐼𝐼𝐼𝐼2  + 𝛽𝛽3 ∗ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 

𝛽𝛽4𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃2  + 𝛽𝛽4 ∗ (𝐼𝐼𝐼𝐼𝐼𝐼 ∗ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃). 

Using the data for yield simulations reported in Stone et al., (1995) we generate the 

necessary coefficients for the nonlinear function of irrigation and precipitation 

variables in the non-linear model to generate the predicted values of yields to use 

in the model.  

Table 2: Predictive Model of Irrigation and Precipitation for Yield Estimates 
 

Cropping Type Corn Soybean 
Variable/Statistic   

Const -182.92**  -55.24** 
 (12.57) (2.75) 
Irr 25.56** 8.19** 
 (0.374) (0.089) 
Irr2 -0.43** -0.13** 
 (0.009) (0.002) 
Precip 12.60** 4.13** 
 (1.557) (0.341) 
Precip2 -0.05 -0.02 
 (0.048) (0.011) 
Irr*Precip -0.43** -0.15** 
 (0.019) (0.004) 
N 275 253 
R2 0.9893 0.9951 

Note: The dependent variable is given by the column heading. Parentheses denote robust clustered (water 
right level) std. errors. ∗ and ∗∗ denote significance at the 5% and 1% levels. Farmer-Time specific estimates 

were removed for conciseness. LEMA effect estimates adjusted for log-linear correction only. 
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Figures 3 and 4 shows a visual plot of the fitted values of the specified yield 

functions for Corn and Soybean, respectively, to the Stone data to identify how well 

the function fits the original data. Note that there are eleven separate fitted lines 

shown for different values of precipitation such that I model a range (11 to 21 

inches) of possible precipitation scenarios. We can see that there is a nonlinear 

relationship between the fitted values and the intensity. In general, we can see that 

the yield estimates increase as an irrigator’s water use intensity increases, however, 

the they do so at a declining rate such that excessive water use intensity results in 

loss of yields. This intuitively makes sense. Overall, the estimated functions fit the 

data very well as can be seen visually, and also apparent from the 𝑅𝑅2 values of 

0.989 and 0.995. 

 I then use the yield functions in table 2 to predict the yield for every water 

right planted completely to either corn or soybeans. I assume that the net irrigation 

is 90% of the total water applied to account for some evapotransiration and system 

loss since I do not know actual losses. We use these predicted yields from these 

functions to then estimate how the LEMA impacted crop yields. 
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Figure 3: Fit of Corn Yield Model of Net Irrigation at Various Levels of 
Precipitation 

 
Figure 4: Fit of Soybean Yield Model of Net Irrigation at Various Levels of 

Precipitation 
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Chapter 5 - Empirical Methods 

 5.1 Difference-In-Differences 

The Difference-In-Differences estimator allows us to model the unobserved 

variability across both irrigators and time that is constant. This is shown graphically 

in the following Figures 5, 6 and 7.  

Consider just the difference in behavior of the LEMA irrigators average post-

policy compared to a pre-policy average response of the same (Case 1: Figure 5). 

Here I exploit only the change of water use decisions and effects on yields before 

and after the LEMA policy went into effect to capture the irrigator fixed effect, 

however, it doesn’t account for changes across time such as weather. 

 

Figure 5: Case 1: Before and After Comparison 
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Now consider rather just the difference in behavior of the LEMA irrigators in 

post-policy compared to other nearby irrigators located in a 5 mile radius 

surrounding the LEMA (Case 2: Figure 6). This exploits the change in water use 

decisions and effects on yields of LEMA irrigators compared to Non-LEMA 

irrigators and captures the time fixed effect, however, this does not capture any 

variability that is specific to just the LEMA irrigators. That is, is there something 

different about the irrigators themselves that may cause them to naturally use more 

or less water than other irrigators?  

 

Figure 6: Case 2: Treated and Control Comparison 
 

 

 

 



37 

If I combine the above two scenarios I can effectively model not only how 

LEMA irrigators changed their behavior pre/post policy but also how that change 

is different from the change that occurred in another non-LEMA group (Case 3: 

Figure 7). Essentially I can parse out common effects to both groups to isolate the 

specific effect of the LEMA policy on the LEMA irrigators by isolating both a time 

fixed effect as well as an irrigator fixed effect. 

 

Figure 7: Case 3: Difference-In-Differences 
 

I use D-I-D to evaluate the difference of the short-run effect of the LEMA on 

farmers’ water use behavior and production such that I control for unobserved 

heterogeneity of water rights that are constant over time and unobserved 

heterogeneity of each year that are constant across fields.  



38 

Consider the on-farm water use decisions (𝑌𝑌0𝑖𝑖𝑖𝑖) made by an irrigator 𝑖𝑖 for a 

particular water right associated with a particular well location where in the absence 

of the LEMA, the irrigator’s on-farm decisions are determined by the sum of a time-

invariant water right effect (𝛼𝛼𝑖𝑖) and a yearly effect captured by (𝛿𝛿𝑡𝑡) that is common 

across all fields. The dependent variables for each irrigator include (𝑙𝑙𝑙𝑙(𝑎𝑎𝑖𝑖𝑖𝑖)) log 

acres irrigated, (𝑙𝑙𝑙𝑙(𝑤𝑤𝑖𝑖𝑖𝑖)) log of water intensity, (𝑙𝑙𝑙𝑙(𝑦𝑦𝑖𝑖𝑖𝑖)) log of yields dedicated 

to a single crop, and proportion planted to each (𝑆𝑆𝑖𝑖𝑖𝑖) crop type. I represent the 

potential outcome of not being subject to the LEMA, (i.e. the untreated group) as 

an expectation that is assumed to be constant over time: 

𝐸𝐸[𝑌𝑌0𝑖𝑖𝑖𝑖|𝑙𝑙, 𝑖𝑖, 𝑡𝑡]  =  𝛼𝛼𝑖𝑖  +  𝛿𝛿𝑡𝑡 

where Y is the outcome variable of interest, 𝑙𝑙 =  1 assigns irrigators to the LEMA, 

and 𝑡𝑡 indicates years from 2009-2014 such that years can be categorized as either 

pre-policy or post-policy. Let the dummy variable (𝐷𝐷𝑙𝑙𝑙𝑙)  =  1 if the irrigator is 

inside the LEMA boundary after the LEMA restrictions were implemented (i.e., 

2013-2014). I incorporate the effect of the policy into the empirical model as 

follows: 

𝐸𝐸[𝑌𝑌1𝑖𝑖𝑖𝑖|𝑙𝑙, 𝑖𝑖, 𝑡𝑡]  =  𝛼𝛼𝑖𝑖  +  𝛿𝛿𝑡𝑡 +  𝛽𝛽𝛽𝛽𝑙𝑙𝑙𝑙 

The treatment effect of being subject to the LEMA is just the difference of the 

above two equations representing the parameter β defined as follows: 

𝛽𝛽 =  𝐸𝐸[𝑌𝑌1𝑖𝑖𝑖𝑖  − 𝑌𝑌0𝑖𝑖𝑖𝑖].  
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I can represent the D-I-D using 2 time periods of data, that is before and after 

the LEMA, as the conditional expectation function such that the difference for the 

LEMA group pre and post-treatment are as follows: 

𝐸𝐸[𝑌𝑌1𝑖𝑖𝑖𝑖 |𝑙𝑙 =  1, 𝑡𝑡 =  𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝] − 𝐸𝐸[𝑌𝑌1𝑖𝑖𝑖𝑖 |𝑙𝑙 =  1, 𝑡𝑡 =  𝑝𝑝𝑝𝑝𝑝𝑝]  =  𝛿𝛿𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  − 𝛿𝛿𝑝𝑝𝑝𝑝𝑝𝑝  +  𝛽𝛽. 

Similarly, I can represent the difference for the control group, those irrigators 

located just five miles outside the LEMA boundary as the following conditional 

expectation function: 

𝐸𝐸[𝑌𝑌0𝑖𝑖𝑖𝑖 |𝑙𝑙 =  0, 𝑡𝑡 =  𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝] − 𝐸𝐸[𝑌𝑌0𝑖𝑖𝑖𝑖 |𝑙𝑙 =  0, 𝑡𝑡 =  𝑝𝑝𝑝𝑝𝑝𝑝]  =  𝛿𝛿𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  − 𝛿𝛿𝑝𝑝𝑝𝑝𝑝𝑝 . 

The aggregate causal effect of interest (𝛽𝛽) can be obtained by taking the difference 

in the differences as follows: 

{𝐸𝐸[𝑌𝑌1𝑖𝑖𝑖𝑖 |𝑙𝑙 =  1, 𝑡𝑡 =  𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝] − 𝐸𝐸[𝑌𝑌1𝑖𝑖𝑖𝑖 |𝑙𝑙 =  1, 𝑡𝑡 =  𝑝𝑝𝑝𝑝𝑝𝑝]}

− {𝐸𝐸[𝑌𝑌0𝑖𝑖𝑖𝑖 |𝑙𝑙 =  0, 𝑡𝑡 =  𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝] − 𝐸𝐸[𝑌𝑌0𝑖𝑖𝑖𝑖 |𝑙𝑙 =  0, 𝑡𝑡 =  𝑝𝑝𝑝𝑝𝑝𝑝]} =  𝛽𝛽. 

I will show D-I-D results for the key outcomes of interest using aggregate 

(average) data across the water rights inside the LEMA boundary and the 5-mile 

buffer. I consider these aggregate results as useful descriptive results, however, 

because of the restrictive assumptions of the D-I-D it is important to explore other 

variability in an expanded fixed effects model that allows for changes across time 

and space simultaneously.  

The D-I-D model isolates changes across time that are constant in space, and 

changes in space that are constant in time. In order for our D-I-D model to be 

correctly specified, there must no systematic differences among our irrigators in our 

treatment group from the irrigators in our control group. That is, I assume that both 
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groups follow a parallel path such that when something changes in one group it also 

changes in the other simultaneously. This assumption allows isolation of any 

differences in the trends as being a causal effect due to the treatment. However, it 

is important to note that this assumption hinges on having no systematic differences 

among the groups of irrigators due to other non-LEMA effects. 

 5.2 Preferred Fixed Effects Model 

I argue that although the D-I-D framework is useful to identify general outcomes 

of the LEMA policy, it is important to account for the differences of each farmer in 

each year in order to accurately measure the causal estimate. For this, I identify the 

following less restrictive fixed effects model such that I control for unobserved 

heterogeneity of water rights that are constant over time, unobserved heterogeneity 

of each year that are constant across water rights, and unobserved heterogeneity of 

farmers that varies across years. Because the D-I-D isolates the difference as being 

due to the LEMA, I relax the assumption to allow for isolation of other non-LEMA 

differences among irrigators.  

The dependent decision variables for each irrigator now represented as the 

potential outcome of not being subject to the LEMA, includes a farmer-time effect 

(𝜆𝜆𝑓𝑓𝑓𝑓) and a vector (𝑍𝑍𝑖𝑖𝑖𝑖) of weather controls such that our previous time fixed effect 

𝛿𝛿𝑡𝑡 is now captured in 𝜆𝜆𝑓𝑓𝑓𝑓: 

𝐸𝐸[𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖|𝑙𝑙, 𝑖𝑖,𝑓𝑓, 𝑡𝑡]  =  𝛼𝛼𝑖𝑖  +  𝛽𝛽𝛽𝛽𝑙𝑙𝑙𝑙  +  𝜆𝜆 𝑓𝑓𝑓𝑓 +  𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖  

Note that I can still isolate the effect of the LEMA water policy (𝐷𝐷𝑙𝑙𝑙𝑙) while 

introducing the farmer-time fixed effects because some farmers manage water 
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rights inside the LEMA boundary and in the 5-mile buffer. Intuitively, my 

econometric model exploits behavior changes of farmers who manage water rights 

both inside and outside the LEMA such that their irrigation behavior for water 

rights inside the policy boundary were different than water rights just outside the 

boundary.  

An important consideration of this research is on the underlying assumptions 

of our model. It is important to consider possible sources of selection bias or 

misspecification in the model. Selection bias can be in many forms such that the 

selection of individuals contained within a specified group are not selected 

randomly and prohibits inference of a causal policy effect and the measures of 

marginal effects would be biased.  

For example, if farmers in the LEMA sample group chose to be in the LEMA, 

then we know that they could potentially differ systematically from farmers who 

did not choose to be in the LEMA and might respond to the policy differently. In 

order to address this concern, I want to validate that the fields inside the LEMA 

boundary are not systematically different from those outside the boundary and that 

the control group is not systematically different from another possible control. This 

can be done by comparing pre-treatment trends of both groups, specifically to 

identify that our counterfactual argument, that irrigators would have acted in the 

same way as our control group, is substantiated. I will compare the control group 

to an additional spatially identified 10 Mile group to establish the validity of the 5 

mile control and uncover any possible issues related to selection bias. 
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In addition, I will test the need for additional explanatory covariates including 

weather and irrigator trends. It is important to correctly specify the model such that 

I can be confident in my interpretations of the causal effect of interest from the 

LEMA policy and to establish that the model is free from endogeneity issues and 

not misspecified. 

 5.3 Decomposing the Marginal Effects of Water Use  

I obtain estimates of the total extensive margin estimates (βa) and the total intensive 

margin estimates (βw) directly from the following log-form regressions for the 

effects on irrigated acres 𝑙𝑙𝑙𝑙(𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖) and intensity of applied water per acre 𝑙𝑙𝑙𝑙(𝑤𝑤𝑖𝑖𝑖𝑖𝑖𝑖): 

 𝑙𝑙𝑙𝑙(𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖)  =  𝛼𝛼𝑖𝑖  +  𝛽𝛽𝑎𝑎𝐷𝐷𝑙𝑙𝑙𝑙 +  𝜆𝜆𝑓𝑓𝑓𝑓  +  𝜃𝜃𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖 +  𝜖𝜖𝑖𝑖𝑎𝑎 (1) 

 𝑙𝑙𝑙𝑙(𝑤𝑤𝑖𝑖𝑖𝑖𝑖𝑖)  =  𝛼𝛼𝑖𝑖  +  𝛽𝛽𝑤𝑤𝐷𝐷𝑙𝑙𝑙𝑙 +  𝜆𝜆𝑓𝑓𝑓𝑓  +  𝜃𝜃𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖 +  𝜖𝜖𝑖𝑖𝑎𝑎 (2) 

where 

 𝛼𝛼𝑖𝑖 is a water right fixed effect 

 𝜆𝜆𝑓𝑓𝑓𝑓 is a farmer-time fixed effect 

 𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖 is a vector of precipitation and evapotranspiration variables  

However, I assume that heterogeneity of soils and hydrological variables are 

constant across time such that they will be captured in the 𝛼𝛼𝑖𝑖.  So that, I can simply 

characterize the direct intensive marginal effect in response to the policy, in 

estimates form, as 𝛽𝛽𝑦𝑦 and the total effect on water use in response to the policy is 

simply the sum both margins, our estimates obtained from equations (1) and (2). 

𝛽̂𝛽𝑎𝑎 +  𝛽̂𝛽𝑤𝑤  =  𝛽̂𝛽 
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I characterize the intensive margin of water use as having both a direct and 

indirect effect. I estimate the direct intensive margin by holding land use constant 

in our regression. Denote 𝑺𝑺𝒊𝒊𝒊𝒊 as a vector of variables indicating the share of irrigated 

acreage for each land use where land use includes the combination of crop and 

irrigation technology. The direct intensive margin of water use is estimated from 

the following regression: 

𝑙𝑙𝑙𝑙�𝑤𝑤𝑖𝑖𝑖𝑖𝑖𝑖� =  𝛼𝛼𝑖𝑖  +  𝛽𝛽𝑤𝑤𝑤𝑤𝐷𝐷𝑙𝑙𝑙𝑙 +  𝜆𝜆𝑓𝑓𝑓𝑓  +  𝜃𝜃𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖 +  𝜌𝜌𝑺𝑺𝒊𝒊𝒊𝒊 +  𝜖𝜖𝑖𝑖𝑖𝑖𝑎𝑎 . (3) 

Hendricks and Peterson (2012) show that we can recover the indirect intensive 

margin as simply the difference between the total intensive margin and the indirect 

intensive margin. 

𝛽̂𝛽𝑤𝑤 +  𝛽̂𝛽𝑤𝑤𝑤𝑤  =  𝛽̂𝛽𝑤𝑤𝑤𝑤 

 

 5.4 Estimating the Effect on Crop Yields 

Additionally, utilizing the same framework I can further obtain estimates of the 

total effect on yields (𝛽𝛽𝑦𝑦) directly from the following log-form regression. 

          𝑙𝑙𝑙𝑙(𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖)  =  𝛼𝛼𝑖𝑖  + 𝛿𝛿𝑡𝑡 +  𝛽𝛽𝑦𝑦𝐷𝐷𝑙𝑙𝑙𝑙 +  𝜃𝜃𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖  +  𝜖𝜖𝑖𝑖𝑖𝑖  
 

 

 5.5 Event Study 

Conceptually, an event study examines how the effect of the policy varied across 

different years rather than just a 2 period (pre and post) aggregate to uncover the 

variability of each year. It applies the same strict assumptions that decisions among 

water right holders in the LEMA would be expected to be the same as water right 

holders in the 5 mile control group if the water policy had not been implemented 
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(i.e. the counterfactual scenario) such that the water use decisions in a given year 

represent the difference between the observed behavior (𝑌𝑌1𝑖𝑖𝑖𝑖𝑖𝑖) in that year and the 

observed behavior of the control group (𝑌𝑌0𝑖𝑖𝑖𝑖𝑖𝑖).  

I consider the impact of the LEMA policy event on the total extensive (i.e. 

changes in irrigated acres) and total intensive (i.e. changes in applied water 

intensity) margins. I represent the effects on the log-linear prediction of the total 

extensive marginal 𝑙𝑙𝑙𝑙(𝑎𝑎𝑖𝑖𝑖𝑖), total intensive marginal 𝑙𝑙𝑙𝑙(𝑤𝑤𝑖𝑖𝑖𝑖),  and direct intensive 

estimates in the following regressions such that I can separate the effects of each 

year on the linear predictions graphically. 

𝑙𝑙𝑙𝑙�𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖� =  𝛼𝛼𝑖𝑖  + � 𝛽𝛽𝑚𝑚𝐷𝐷𝑙𝑙𝑙𝑙𝑚𝑚
2014

𝑚𝑚=2010

+  𝜆𝜆𝑓𝑓𝑓𝑓  +  𝜃𝜃𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖 + 𝜖𝜖𝑖𝑖𝑖𝑖 
(4) 

𝑙𝑙𝑙𝑙�𝑤𝑤𝑖𝑖𝑖𝑖𝑖𝑖� =  𝛼𝛼𝑖𝑖  + � 𝛽𝛽𝑚𝑚𝐷𝐷𝑙𝑙𝑙𝑙𝑚𝑚
2014

𝑚𝑚=2010

+  𝜆𝜆𝑓𝑓𝑓𝑓  +  𝜃𝜃𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖 +  𝜖𝜖𝑖𝑖𝑖𝑖 
(5) 

𝑙𝑙𝑙𝑙�𝑤𝑤𝑖𝑖𝑖𝑖𝑖𝑖� =  𝛼𝛼𝑖𝑖  + � 𝛽𝛽𝑚𝑚𝐷𝐷𝑙𝑙𝑙𝑙𝑚𝑚
2014

𝑚𝑚=2010

+  𝜆𝜆𝑓𝑓𝑓𝑓  +  𝜃𝜃𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖 +  𝜌𝜌𝑺𝑺𝒊𝒊𝒊𝒊 +  𝜖𝜖𝑖𝑖𝑖𝑖𝑎𝑎 . 
(6) 

where 𝐷𝐷𝑙𝑙𝑙𝑙𝑚𝑚 =  1 if the LEMA restriction was applied to the water right and 𝑡𝑡 =  𝑚𝑚. 

Therefore, the estimate for 𝛽𝛽𝑚𝑚 indicates how water use changed for water rights 

inside the boundary compared to the change in the 5-mile buffer in year m compared 

to a baseline year in 2009. 

 5.6 Dummy Correction for Log-Linear Models 

In his paper, Giles (2011) describes some of the errors that can arise if we 

improperly interpret our coefficient on the treatment dummy variable. He identifies 
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the particular post-transformation that must be applied in order to accurately 

interpret the coefficient of a continuous regressor in a regression model, where the 

dependent variable has been log-transformed as follows: 

𝐷𝐷′𝑖𝑖 =  [𝑒𝑒 𝛽𝛽 − 1]  

where 𝛽𝛽 is the coefficient for the LEMA policy effect if our causal effect switches 

from 𝐷𝐷𝑖𝑖 = 0 to 𝐷𝐷𝑖𝑖 = 1. I include this correction on the subsequent estimates unless 

otherwise specified. 

 5.7 Robust Clustered Standard Errors 

I additionally consider my assumptions of the model, the estimates, and the 

standard deviation of the underlying errors. I evaluate the use of the following three 

variance estimators: OLS (1), Robust (2) and Robust Cluster (3). 

𝑉𝑉𝑂𝑂𝑂𝑂𝑂𝑂 =
1

(𝑁𝑁 − 𝐾𝐾)
 �𝜖𝜖𝑖𝑖2
𝑁𝑁

𝑖𝑖=1

∗ (𝑋𝑋′𝑋𝑋)−1 
(7) 

𝑉𝑉𝑅𝑅𝑅𝑅𝑅𝑅 = (𝑋𝑋′𝑋𝑋)−1  ��(𝜖𝜖𝑖𝑖𝑥𝑥𝑖𝑖)′(𝜖𝜖𝑖𝑖𝑥𝑥𝑖𝑖)
𝑁𝑁

𝑖𝑖=1

� ∗ (𝑋𝑋′𝑋𝑋)−1 
(8) 

𝑉𝑉𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = (𝑋𝑋′𝑋𝑋)−1  ��(𝜖𝜖𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖)′(𝜖𝜖𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖)
𝐶𝐶

𝑐𝑐=1

� ∗ (𝑋𝑋′𝑋𝑋)−1 
(9) 

 

where 𝑋𝑋 is a 𝑚𝑚 𝑥𝑥 𝑛𝑛 matrix, 𝑖𝑖 is the residual for the ith observation and 𝑥𝑥𝑖𝑖 is a row 

vector of predictors including the constant. The formula for the clustered estimator 

is simply that of the robust (unclustered) estimator with the individual 𝜖𝜖𝑖𝑖𝑥𝑥𝑖𝑖 replaced 

by their sum of squares over each cluster.  
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I assume that there exist well-specific characteristics that might carry across 

time. Something fundamentally different about the well itself that would cause 

water use to be impacted, this could include impacts from the user, or impacts from 

the underlying physical structure of the well, pumping mechanism and hydrology. 

I can account for this through the use of robust clustered standard errors at the water 

right level such that I assume independence between water rights, but allow for 

correlation over time. 
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Chapter 6 - Results: Extensive and Intensive Marginal 

Changes in Water Use 

 6.1 D-I-D Model and Visual Analysis 

Using the D-I-D framework we can use the aggregated data to estimate the before 

and after average difference inside the LEMA and compare to the before and after 

average difference in the 5 mile buffer zone outside the LEMA to quantify how 

irrigators under the LEMA responded in quantity of irrigated acreage for each crop 

planted compared to irrigators located within the 5 mile boundary. Figure 8 shows 

the graphical results for total acres irrigated (extensive margin) and Figure 9 

indicates the effect on water use intensity (intensive margin). I find that irrigators 

in the 5 mile boundary increased applied intensity slightly, however, if I assume 

that the same trend would have occurred inside the LEMA in the absence of the 

restriction then this implies that the LEMA resulted in a 35% reduction in applied 

inches per acre. The response at the intensive margin is larger than the extensive 

margin, where the extensive margin only resulted in a 3% decrease in irrigated 

acreage. Similar results were found using a Bayesian structural time series model 

reporting a 31% reduction over the 5 year period of the LEMA in Deines et. al. 

(2019). 
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Figure 8: Difference-In-Differences Results for Total Irrigated Acreage 
 

 
Figure 9: Difference-In-Difference Results for Applied Inches per Acre 

(Water Intensity) 
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I additionally consider the crop specific effects from the water policy to identify 

how irrigators of different crops chose to modify their behavior at the extensive and 

intensive margins. Again, comparing to the counterfactual scenario, I find that 

irrigators  chose  to reduce  irrigated  acres  dedicated  to  alfalfa  (-40%)  and  corn  

(-18%). Alternatively, irrigators chose to expand irrigated acreage for sorghum 

(66%), wheat (7%), multiple unknown (17%), and soybean (5%) after the LEMA 

policy (Figures 10-15). Irrigators in the 5 mile zone increased irrigated acreage 

slightly while irrigators in the LEMA boundary decreased irrigated acres slightly. 

I also estimate the response of applied water intensity of irrigators for each 

crop in the LEMA (Figures 16-21). On average, irrigators chose to reduce their 

applied water intensity. It is important to note that although many water rights had 

some sort of crop mix, this analysis could only be applied to water rights that were 

planted to a single crop. The data did not differentiate fields assigned to multiple 

crop mixes and therefore was limited to only water rights of the same crop type. 

Corn and soybean LEMA irrigators primarily responded by reducing average 

applied water compared to irrigators located within the 5 mile boundary who 

applied more inches per acre to these crops. The largest reductions were from wheat 

(-54%) and corn (-46%) followed by alfalfa (-32%), soybean (-28%) and multiple 

unknown  (-16%). The large reduction in multiple crops could be partially attributed 

to the introduction of less water intensive varieties being added to the crop mix. 

However, sorghum irrigators chose to increase applied water per acre by 71% after 

the LEMA policy. 
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Figure 10: Difference-In-Difference Results for Corn Irrigated Acreage 
 

       

 
 

Figure 11: Difference-In-Difference Results for Soybean Irrigated Acreage 
 



51 

 
 

Figure 12: Difference-In-Difference Results for Sorghum Irrigated Acreage 
 

 
 

Figure 13: Difference-In-Difference Results for Wheat Irrigated Acreage 
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Figure 14: Difference-In-Difference Results for Alfalfa Irrigated Acreage 
 

 
 

Figure 15: Difference-In-Difference Results for Multiple Crops Irrigated 
Acreage 
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Figure 16: Difference-In-Differences Results for Corn Applied Water 
Intensity 

 
Figure 17: Difference-In-Difference Results for Soybean Applied Water 

Intensity 



54 

 
 

Figure 18: Difference-In-Difference Results for Sorghum Applied Water 
Intensity 

 

 
Figure 19: Difference-In-Difference Results for Wheat Applied Water 

Intensity 
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Figure 20: Difference-in-Difference Results for Alfalfa Applied Water 
Intensity 

 

 
Figure 21: Difference-In-Difference Results for Multiple Crops Applied 

Water Intensity 
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 6.2 Econometric Results 

 6.2.1 Preferred Specification 

Table 3 reports the set of decomposed marginal effects of water use from the 

preferred fixed effects regression with the LEMA effect adjusted for the log-linear 

form where the total extensive, total intensive, and direct intensive estimates are 

derived from the previous equations (1), (2) and (3), respectively. I find that the 

estimates are significant at the 1% confidence intervals which implies the LEMA 

resulted in a reduction in water use through both the number of total acres irrigated 

(-3.8%) as well as the quantity of applied inches per acre (-21.2%) resulting in an 

overall water use reduction.  

I condition the estimates to include effects from cropping type in order to 

estimate the direct intensive margin (i.e., holding constant land use). I find the 

estimates measure of the direct log of water intensity effect (-18.5%) to be only 

slightly smaller than the total intensive effect (-21.2%) and still significant at the 

1% confidence interval such that the larger intensive response occurs at the direct 

margin indicating little indirect intensive response, i.e. crop switching. I find the 

expected negative signs on the less water-intensive crops for alfalfa (6.1%) 

sorghum (-6.3%) and wheat (-22.6%) when compared to crops within the “other” 

or “multiple crop” category. Additionally, I find positive coefficients for corn 

(18.5%) and soybeans (6.7%) indicative of our more water-intensive crops. The 

larger water use intensity is attributed to corn and wheat, however, which are 

significant to at least the 5% level.  
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I can now follow Hendricks and Peterson (2012) and back out the indirect 

intensive marginal effects by simply subtracting the direct intensive from the total 

intensive margins and find little response (-2.7%) due to changes to cropping 

patterns. 

Table 3: Decomposed Estimates of Marginal Effects of Water Use 
 

  Total Effect Extensive Intensive 
Variable/Statistics    Total Total Direct Indirect 
LEMA policy effect      -0.242**       -0.038**     -0.212** -0.185** -0.027 
      (0.045)       (0.019)     (0.049) (0.046)  
Cropping Type      
Alfalfa       -0.061   
       (0.119)   
Corn        0.185**   
       (0.069)   
Sorghum       -0.063   
       (0.093)   
Soybean        0.067   
       (0.073)   
Wheat       -0.226*   
       (0.112)   
Weather      
Precipitation 

 

     -0.025*       0.010     -0.035** -0.035**  
      (0.012)      (0.007)     (0.012) (0.012)  
Evapotranspiration      -0.035      -0.021     -0.014 -0.046  
      (0.082)      (0.038)     (0.082) (0.075)  
N        2817        2817       2817   2817  
R2     0.1846     0.0076     0.2422 0.2999  

Note: Parentheses denote robust clustered (water right level) std. errors. ∗ and ∗∗ denote significance at the 
5% and 1% levels. Farmer-Time specific estimates were removed for conciseness. LEMA effect estimates 

adjusted for log-linear correction only. 
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 6.2.2 Water Policy Event Study 

The previous model framework has proven useful in the context of isolating the 

causal parameter of interest, however, I also wish to isolate the effect per year, 

rather than just a pre/post aggregate estimate. I now consider how lags and leads of 

the LEMA policy effect impacts our linear estimation whereby an event study 

(Figure 22 and Table 4) using equations (4), (5), and (6). This approach not only 

will help to validate my identification strategy but also allow us to see if the 

response was different in the first year of the LEMA compared to the second to 

uncover possible adaptation or learning among water right holders. 

First, I find that the coefficients pre-policy are not significantly different from 

zero which signals that my model specification is correct. Additionally, I find that 

the total marginal effect is influenced by similar reductions in water use in both the 

policy year (-31.3%) and 2014 (-32.4%) indicating that irrigators may be attempting 

similar water use modifications year to year that are significant at the 1% level. This 

doesn’t suggest any large adaptation strategies at the extensive margins. However, 

I also find the primary impact of the extensive margin to be from modifications to 

acreage in just the policy year (-5.8%) also significant at the 1% level rather than 

any continued reductions at the extensive margin further post policy. Therefore, it 

appears that farmers may have learned that reductions in intensity were the least 

cost method to reduce water use rather than acreage reductions.  

Furthermore, at the intensive margin, I find that the effect is again influenced 

by reductions in the first year after the policy went into effect (-25.5%) with further 
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reductions in 2014 (-30.4%). This could suggest possible adaptation strategies of 

the irrigators such that they find further room to reduce water use at the intensive 

margin. Although, these findings are consistent with the short-run (intensive) 

marginal adjustments of previous studies further review of ongoing water use 

decisions might indicate if this was due to reduced applied inches/acre or to 

switching out to less water-intensive varieties (Peterson and Ding, 2005; Pfeiffer 

and Lin, 2014). 

 
 

Figure 22: Event Study Results: Average Yearly Impact on Water Use at the 
Intensive, Extensive, and Total Margins 
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Table 4: Event Study Coefficient Estimates 
 

Log-form Estimate

  

     2010 

 

2011 2012 2013 2014 
Total Effect      -0.048 -0.062 -0.070  -0.313** -0.324** 

      (0.064)     (0.064)     (0.056)   (0.081)   (0.069) 
Extensive      -0.001      0.002     -0.004   -0.058**   -0.020 

      (0.007)     (0.014)     (0.020)   (0.024)   (0.029) 
Intensive      -0.047     -0.064     -0.065   -0.255**   -0.304** 

      (0.064)     (0.064)     (0.057)   (0.087)   (0.072) 
Note: Parentheses denote robust clustered (well-level) std. errors. ∗ and ∗∗ denote significance at the 5% and 

1% levels. All estimates adjusted for log-linear correction. 
  

 6.2.3 Heterogeneous Response among Large Irrigators 

A concern of some farmers prior to the LEMA being implemented was that a subset 

of farmers might have a greater ability to adjust to the water use restriction because 

they maintained rights on a much larger proportion of wells. That is, they would 

have the flexibility to move water use between wells and possibly use more water 

relative to what other farmers would have to do resulting in a disproportionate water 

use restriction that ultimately restricts smaller firms more.  

I evaluate this concern through the use of an additional set of fixed effect 

regressions of LEMA irrigators with an additional variable to identify the effect of 

well ownership on applied water intensity and acres irrigated (Table 5). The 

estimates for log water use/acre 𝑙𝑙𝑙𝑙(𝑤𝑤𝑖𝑖𝑖𝑖) and log irrigated acres 𝑙𝑙𝑙𝑙(𝑎𝑎𝑖𝑖𝑖𝑖) are reported 

from the following regressions: 

𝑙𝑙𝑙𝑙(𝑤𝑤𝑖𝑖𝑖𝑖)  =  𝛼𝛼𝑖𝑖  +  𝛽𝛽1𝐷𝐷𝑖𝑖𝑖𝑖 +  𝛽𝛽2𝐷𝐷𝑖𝑖𝑖𝑖  ∗ 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖 +  𝜆𝜆𝑓𝑓𝑓𝑓  +  𝜃𝜃𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖  + 𝜖𝜖𝑖𝑖𝑖𝑖 

𝑙𝑙𝑙𝑙(𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖)  =  𝛼𝛼𝑖𝑖  +  𝛽𝛽1𝐷𝐷𝑖𝑖𝑖𝑖 + 𝛽𝛽2𝐷𝐷𝑖𝑖𝑖𝑖  ∗ 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖 +  𝜆𝜆𝑓𝑓𝑓𝑓  +  𝜃𝜃𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖  +  𝜖𝜖𝑖𝑖𝑖𝑖 
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where 𝛼𝛼𝑖𝑖, 𝜆𝜆𝑓𝑓𝑓𝑓, and 𝜃𝜃𝑖𝑖𝑖𝑖 represent the fixed effects and controls, 𝐷𝐷𝑖𝑖𝑖𝑖 is the LEMA 

effect dummy variable, and 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖 is the dummy variable for large well ownership 

if a water right was owned by an irrigator with 2 or more water rights inside the 

policy boundary (i.e., 2 or more wells inside the LEMA policy boundary). 

 

Table 5: Fixed Effects Regression of Disproportionate Restriction 
 

Variable/Statistics  Total Effect Extensive Intensive 
LEMA Policy Effect      -0.262**   -0.067**   -0.210** 

      (0.079)      (0.028)      (0.082) 
LEMA Large       0.041       0.046       0.005 

      (0.095)      (0.036)      (0.102) 
N        2817        2819        2817 
R2      0.1834       0.0072      0.2423 

Note: The dependent variable is given by the column heading. Parentheses denote robust clustered (well-
level) std. errors. ∗ and ∗∗ denote significance at the 5% and 1% levels. Weather and Farmer-time specific 
estimates were removed for conciseness. LEMA effect estimates adjusted for log-linear correction only. 

 

I find no statistical evidence that having more than one well could encourage 

increased water use among those irrigators and lead to a disproportionate water use 

restriction. Table 5 describes the interaction terms as insignificant at all margins of 

adjustment while the LEMA policy effect estimates continue to remain robust. I 

also conducted estimations at varying levels of well ownership (i.e., >2 or more 

wells) and found that this did not change the significance of the estimates or the 

interpretation of the results. 
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 6.2.4 Alternative Specifications 

While the D-I-D model accounts for unobserved heterogeneity of water rights that 

are constant over time (i.e. water right-specific differences) and of each year that is 

constant across fields (i.e. crop, energy, and other input prices) it is important to 

test for the exclusion of any other additional controls such as the farmer-time fixed 

effect in the preferred model. To do so, I follow Villa (2012) and apply the D-I-D 

kernel propensity score matching estimator.  

The benefit of the matching estimator (as opposed to my fixed effects 

estimator) is that it estimates the effect of treatment by comparing changes n 

outcomes of irrigators inside and outside with similar characteristics (crop type, 

irrigation technology, etc). That is, the D-I-D matching estimator groups irrigators 

belonging to a set of covariates and then compares the change in outcomes of 

irrigators in the LEMA to the change in outcomes of similar irrigators in the control 

group controlling for the observed differences among irrigators.  

I then represent the conditional probability of the LEMA as the propensity 

score conditioned on set 𝑋𝑋 such that the conditional mean is the weighted average 

of outcomes when 𝐷𝐷𝐷𝐷 =  0 and the kernel estimator is represented as: 

𝐸𝐸(𝑌𝑌0𝑖𝑖|𝑃𝑃(𝑋𝑋𝑖𝑖),𝐷𝐷𝐷𝐷 =  0)  = � 𝑊𝑊𝑗𝑗�𝑃𝑃(𝑋𝑋𝑖𝑖)�𝑌𝑌0𝑗𝑗

𝑛𝑛0

𝑗𝑗=1�𝐷𝐷𝑗𝑗=0�

 

with a weighting assigned as 

𝑊𝑊𝑗𝑗(𝑃𝑃(𝑋𝑋𝑖𝑖) =
𝐾𝐾(

𝑃𝑃�𝑋𝑋𝑖𝑖�−𝑃𝑃(𝑋𝑋𝑘𝑘)
ℎ𝑛𝑛

∑ 𝐾𝐾
𝑃𝑃�𝑋𝑋𝑖𝑖�−𝑃𝑃(𝑋𝑋𝑘𝑘)

ℎ𝑛𝑛
𝑛𝑛0
𝑘𝑘=1�𝐷𝐷𝑘𝑘=0�

. 
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In general, the kernel function is a non-parametric estimation approach of the 

probability density function of a random variable. Villa (2012) uses a default 

estimator with an underlying epanechnikov kernel smoothing function and 0.06 

bandwidth ℎ𝑛𝑛 such that for mean µand indicator function 𝟏𝟏{. . . } defined on the 

covariate set 𝑋𝑋 : 

𝐾𝐾(µ) =
3
4

(1 − 𝜇𝜇2)𝟏𝟏{|𝜇𝜇|≤1}. 

Recall that I assume that the heterogeneity of the soil type and underlying 

hydrology are already accounted for in the field (water right) fixed effect such that 

I do not include soil or hydrological covariates as these are variables that remain 

constant across time. However, variability in soils related to soil moisture content 

does change over time such that I assume that this variability is embedded in the 

weather variables of precipitation and evapotranspiration. I base the kernel 

propensity score of similar irrigators based on weather, irrigation technology and 

crop type. The results are summarized in Table 6. 

Although I find that failing to account for the differences among irrigators that 

varies through time generates different estimates from our preferred model 

estimates, I find the majority of the response at the total intensive margin (28.1%) 

compared to the total extensive margin (-2.9%) with an overall water use reduction 

of -29.8% which is consistent with our previous descriptive interpretations. 

However, only the response at the intensive margin is statistically significant. I 

additionally explore the importance of the farmer-time effect and the weather 

controls (Table 7).  
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Table 6: Difference-In-Difference Kernel Propensity Score Matching 
Estimator Marginal Effects 

 

Variable(s)

  

 5 Mile LEMA LEMA Effect 
Total Effect Pre-Policy 7.351 7.434  

 Post-Policy       7.411       7.141  
 Difference       0.083**      -0.271**    -0.298** 
       (0.064)      (0.056)    (0.081) 

Extensive Pre-Policy       4.888       4.887  
 Post-Policy       4.902       4.872  
 Difference -0.030      -0.030    -0.029 
  (0.032)      (0.036)    (0.015) 

Intensive Pre-Policy 2.463       2.547  
 Post-Policy       2.515       2.269     
 Difference       0.084**      -0.246**    -0.281** 
      (0.028)      (0.033)    (0.027) 

Notes: * and ** denote significance at the 5% and 1% levels. LEMA effect estimates adjusted for log-linear 
correction. 

 

If I assume that unobserved differences across irrigators are constant across 

time, then the addition of a farmer specific fixed effect would suffice. However, in 

our fixed effects model this is already accounted for in the water right fixed effect 

𝛼𝛼 . I suggest the need to additionally account for unobserved differences across 

irrigators that are varying through time, that is, to account for variability due to 

skills, experience, management practices, finances, etc.  

I evaluate the importance of inclusion of these additional model parameters 

and note the changes to the coefficient estimates with varying controls in Table 6 

below. Column (1) indicates the D-I-D estimates that only include a water right-

specific (𝛼𝛼𝑖𝑖) and time-specific (𝛿𝛿𝑡𝑡) fixed effect without controls. Column (2) 

additionally includes a set of weather (𝑋𝑋𝑖𝑖𝑖𝑖) controls that vary across water rights 

and time. Column (3) includes the set of farmer-time effect (𝜆𝜆𝑓𝑓𝑓𝑓) but removes the 
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weather controls. Column (4) represents the preferred model with both the farmer-

time effect and weather controls. 

Table 7: Comparison of Marginal Effects Estimates with Varying Controls 
 

  Log Total Applied Inches (Total Effect) 
Variable/Statistics (1) (2) (3) (4) 
LEMA policy effect      -0.330**       -0.312**     -0.251** -0.242** 
      (0.027)       (0.026)     (0.046) (0.034) 
     
Weather     
Precipitation 

 

      -0.039**      -0.025** 
       (0.006)      (0.012) 
Evapotranspiration        0.056  -0.035 
       (0.047)  (0.082) 
Water Right Fixed 

 

Yes Yes Yes Yes 
Time Fixed Effect Yes Yes Yes Yes 
Farmer-time Fixed 

 

No No Yes Yes 
N        2817        2817       2817   2817 
R2     0.0708     0.0774     0.1848 0.1846 

Note: Parentheses denote robust clustered (well-level) std. errors. ∗ and ∗∗ denote significance at the 5% and 
1% levels. Water right, Time and Farmer-time specific estimates were removed for conciseness (N>1000). 

LEMA effect estimates adjusted for log-linear correction. 
 

I find confirmation that adding in the weather controls does little to the 

estimates by comparing columns (1) and (2). However, by comparing columns (2) 

and (3) the addition of the farmer-time effect changes the impact more. This lends 

evidence for the preferred specification such that removing the farmer-time effect 

and weather controls will inflate the causal estimate of the LEMA effect. Although 

the weather controls are of no dire consequence to this study, this is likely due to 

the fact that the policy area is small and little variability exists in the weather data. 
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 6.2.5 Falsifications Tests 

I want to alleviate any concerns that the control group might have selection bias or 

rather, is not indeed a valid counterfactual such that LEMA farmers would have 

acted as the control had they not been under the LEMA policy. I compare the 5 

Mile control group to a 10 mile control group and run the same fixed effects model 

of marginal elasticities as a falsification test. There is no statistical difference 

between the two groups, and as such I have confidence that no selection bias is in 

the chosen 5 mile boundary as the basis of comparison for the LEMA (Table 8).  

Table 8: Falsification Test: Measuring the Difference Between a 5 Mile and a 
10 Mile Counterfactual Control Group 

  Total Effect Extensive Intensive 
Variable/Statistics    Total Total Direct 
LEMA policy effect       0.028        0.002      0.028  0.033 
      (0.103)       (0.051)     (0.109) (0.107) 
Cropping Type     
Alfalfa    -0.112 
    (0.116) 
Corn    -0.005 
    (0.087) 
Sorghum     0.159 
    (0.189) 
Soybean    -0.142 
    (0.091) 
Wheat    -0.205 
    (0.135) 
Weather     
Precipitation (inches)      -0.014       0.008  -0.022 -0.018 
      (0.014)      (0.008)  (0.015) (0.015) 
Evapotranspiration      -0.060       0.198     -0.138 -0.194 
      (0.238)      (0.147)     (0.249) (0.259) 
N        1443        1443       1443   1441 
R2     0.1791     0.0161    0.2814 0.2908 

Note: The dependent variable is given by the column heading. Parentheses denote robust clustered (water 
right level) std. errors. ∗ and ∗∗ denote significance at the 5% and 1% levels. Farmer-Time specific estimates 

were removed for conciseness. LEMA effect estimates adjusted for log-linear correction only. 
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I also construct a false timing policy to see if there is any statistical significance 

from our fixed effects model framework. I restrict the data to 2009 through 2012 

(prior to the LEMA) and create a false policy effect in 2010. I run my previous 

regressions for decomposed marginal estimates and find all marginal effects to be 

small with no statistical significance (Table 9). This indicates the effect is not 

statistically different from zero and we can infer a non-effect from the ficticious 

2010 policy. This establishes our statistical importance of the LEMA policy effect. 

 

Table 9: Falsification Test: The Marginal Effects of a False 2010 Time Signal 
   Total Effect Extensive Intensive 

Variable/Statistics    Total Total Direct 
FALSE policy effect      -0.052       -0.001     -0.052 -0.040 
      (0.037)       (0.015)     (0.038) (0.107) 
Cropping Type     
Alfalfa    -0.083 
    (0.124) 
Corn     0.105 
    (0.066) 
Sorghum     0.077 
    (0.104) 
Soybean     0.002 
    (0.091) 
Wheat    -0.421** 
    (0.158) 
Weather     
Precipitation (inches)      -0.010       0.004  -0.014 -0.018 
      (0.013)      (0.005)  (0.013) (0.014) 
Evapotranspiration      -0.076       0.004     -0.014 -0.018 
      (0.013)      (0.005)     (0.078) (0.074) 
N        1889        1889       1889   1889 
R2     0.8063     0.3405    0.7754 0.7880 

Note: The dependent variable is given by the column heading. Parentheses denote robust clustered (water 
right level) std. errors. ∗ and ∗∗ denote significance at the 5% and 1% levels. Farmer-Time specific estimates 

were removed for conciseness. LEMA effect estimates adjusted for log-linear correction only. 
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The fixed effects model is an important framework for identifying the 

causal parameter of interest and provides insight into how irrigators chose to 

change their water use behavior at the extensive and intensive margins. However, 

I additionally want to further describe the heterogeneity in water use decisions 

among the LEMA irrigators. Although this portion of the study is just a pre/post 

policy comparison of changes inside the LEMA and therefore cannot be identified 

as occurring due to the water policy (i.e. because there is no counterfactual 

scenario), it is still useful to extend our analysis of how irrigators chose to change 

their water use behavior into more detailed descriptive statistics 

 6.3 Heterogeneous Response of LEMA Irrigators 

I decompose the intensive response to determine reductions as either changes in 

applied inches/acre or irrigators modifying the crop type planted, however, this 

method cannot be applied at the extensive margin. I do wish to provide further 

description of this response based on varying characteristics among the irrigators.  

I am first interested in the proportion of water right holders that chose to reduce 

irrigated acreage because I found that there was very little average response at the 

total extensive margin. Out of 184 unique LEMA water rights, the majority of 

LEMA water right holders (99) made no changes to irrigated acreage. However, of 

the LEMA irrigators that chose to modify their acreage, 28 water rights had 

reductions up to 10 acres and 18 water rights had expand up to 10 acres, followed 

by various changes in irrigated acreage in much smaller proportions among 

remaining water right holders (Figure 23). 
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Figure 23: Distribution of Water Rights that Made Changes to Total 
Irrigated Acres 

 

I am also interested to see the variability in response to changes in irrigated 

acres among the 180 LEMA water rights holders who have a pivot-drop system 

(87%) as indicated in the summary statistics. Many LEMA water rights (101) that 

have a pivot-drop system maintained the same level of irrigated acreage. Of those 

water rights associated with pivot drop systems and changes to irrigated acreage, 

the majority of irrigators (24) chose to reduce up to 10 acres and 13 irrigators chose 

to expand up to 10 acres, followed again by various changes in irrigated acreage in 

much smaller proportions among the remaining water right holders (Figure 24). 
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Figure 24: Distribution of Irrigators with Pivot-Drop Systems that Made 
Changes to Total Irrigated Acres 

 

I additionally consider the heterogeneous response as it relates to crop specific 

and farmer-specific responses. Of the 184 water rights, all water rights associated 

with alfalfa, wheat, and other crops made no changes to irrigated acreage after the 

LEMA went into effect. For the water rights that were associated with changes to 

irrigated acreage, I find the majority of reductions (157) to come from corn with 13  

water rights reducing up to 10 acres, followed by 11 water rights expanding up to 

10 acres (Figure 25). Soybean farmers had primarily 30-50 acre reductions with 

only 1 farmer choosing to expand up to 10 acres (Figure 26). Additionally, I find 

that all sorghum water rights expanded irrigated acreage between 80-140 acres 

where previously there had not been acreage dedicated to this crop (Figure 27).  
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Figure 25: Change in Irrigated Corn Acres (By Water Rights) 
 

 
 

Figure 26: Change in Irrigated Soybean Acres (By Water Rights) 
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Figure 27: Change in Irrigated Sorghum Acres (By Water Rights) 
 

 6.4 Field and Farmer Specific Characteristics 

Because irrigators can have multiple water rights and multiple wells, I wish to 

explore the heterogeneity as it relates to well ownership and irrigated acreage 

among irrigators. Although we previously selected our unique identifier as the 

water right itself it is now necessary to use the irrigator ID and well ID as the unique 

identifier. This is because irrigators may have multiple water rights on the same 

field or a water right may be associated with multiple wells that are irrigating 

different crops.  

Additionally, because of the nature of water rights and land values, the same 

well cannot be attached to multiple water rights. Because I want to uncover the 

heterogeneity of the response I do not want to aggregate these descriptive statistics 

to the same water right ID, but rather maintain the disaggregated information in the 
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data. Figure 28 indicates that the majority of irrigators inside the LEMA had access 

to just one (38) well followed by irrigators who maintained 2 or more wells.  

Although many corn farmers (14) made no change to irrigated acreage, the 

majority of corn farmers (17) reduced irrigated acreage up to 10 acres (Figure 29). 

Furthermore, all sorghum acreage was expanded new post policy acreage between 

100-130 irrigated acres. For soybean farmers, although 5 irrigators made no change 

to soybean acreage, I find a split between farmers who chose to expand (3) or reduce 

(3) acres irrigated (Figure 30). As a result, we can see more clearly how the small 

reductions of the majority of corn farmers did little to offset the larger expansions 

in soybean and sorghum (Figure 31) of a small number of farmers and resulted in 

little total extensive marginal response. 

 

Figure 28: Distribution of Well Ownership (per Farmer) 
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Figure 29: Change in Irrigated Corn Acres (per Farmer) 
 

 
 

Figure 30: Change in Irrigated Soybean Acres (per Farmer) 
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Figure 31: Change in Irrigated Sorghum Acres (per Farmer) 
 

 6.5 Large Irrigators 

I previously found that 49 irrigators chose to make no changes to irrigated acreage. 

I also indicated that there was no evidence to suggest that irrigators inside the 

LEMA who managed more than one well would increase applied water use. In 

Figure 32 we see how the majority of irrigators with only one well who managed 

the same crop across all years also chose to expand acreage up to 10 acres but very 

few irrigators with multiple wells increased irrigated acres beyond that lending 

further evidence that well flexibility doesn’t allow for disproportionate water 

restrictions.  
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Figure 32: Disproportionate Water Use Among Farmers 
 

I also restrict large irrigators of the same crop using a pivot-drop irrigation 

system and find that the majority of these water right holders reduced acreage. This 

provides further evidence that the majority of the response was related to decisions 

of crop type (more water-intensive varieties) rather than more efficient technologies 

are impacting the extensive marginal effects (Figure 33). This is consistent with the 

findings of Hornbeck and Keskin (2014) in that irrigated land use has adjusted 

toward water-intensive crops. 
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Figure 33: Disproportionate Water Use Among Pivot System Farmers 
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Chapter 7 - Results: Changes in Cropping Patterns and 

Input Expenditures 

Given the LEMA policy significantly impacted planted acres, there could be 

substantial impacts on seed and chemical expenditures. The results in Table 3 from 

Chapter 6 indicate that farmers inside the LEMA responded primarily at the intensive 

margin by reducing their intensity of applied inches per acre. This result is consistent 

with numerical simulations of Foster et al. (2014) and Wibowo et al. (2017) that 

indicate that irrigators respond to reduced water availability by first reducing water use 

at the intensive margin. It is important to note, however, that large restrictions could in 

turn cause farmers to have a greater response at the extensive margin whereby reducing 

crop acreage.  

Nevertheless, even the relatively small changes to cropping patterns have impacts 

on other agricultural sectors. Using Kansas State University’s crop budgets for 

Northwestern Kansas, I estimate the effect the LEMA could have on expenditures for 

corn, soybean, sorghum, and wheat. The subsequent effects of irrigation on other 

agricultural sectors have also received substantial interest (e.g., Hornbeck and Keskin, 

2015). While I do not have actual input data, I can approximate the effects on inputs 

by using the estimates of changes in cropping patterns and information obtained from 

Kansas State University irrigated crop budgets. Table 10 shows the irrigated input 

expenditures for each crop. I use the average of sorghum and wheat for the crop 

category identified as “other” and assume the input of alfalfa to be similar of “other 

crops” and apply those input expenditure estimates.  
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Table 10: Input Expenditure by Crop Type 
Expenditure per Acre 

Input Corn Soybean Sorghum Wheat Other 
Fertilizer $84.18 $18.83 $60.93 $38.74 $49.84 
Herbicide $48.95 $34.95 $6.31 $41.25 $23.78 
Insecticide $14.57 - - - - 
Seed $113.92 $55.50 $18.00 $14.92 $16.46 

Note: “Other” crop expenditures are calculated as the average of sorghum and wheat expenditures. 
Alfalfa expenditures are assumed to be the same as “Other” expenditures. 

 

Unfortunately, I also do not know the exact allocation of crops used in the category 

identified as “multiple crops”, however, I can use a general allocation as follows: 50% 

corn, 20% soybeans, 10% wheat, 10% sorghum, 5% alfalfa and 5% other. I can then 

add this allocation to the individual crop shares to determine an overall crop share 

estimate (Table 11). I then further calculate the change in expenditures for fertilizer, 

herbicide, insecticide, and seed using the pre-treatment average share of each crop from 

Table 10 and the change in the share of each crop due to the LEMA effect  using the 

preferred fixed effects model specification column (1) from Tables 12 and 13 to get the 

resulting input expenditure effects (Table 14). 

 

Table 11:Pre LEMA Average Share of Crop Irrigated Acres 
Pre Policy Share of Acres inside LEMA Boundary   

 Corn Soybean Sorghum Wheat Alfalfa Other Multi 
Mean 0.683 0.182 0.002 0.022 0.013 0.008 0.088 
% of Multi 

 

 

0.5 0.2 0.1 0.1 0.05 0.05  
MultiShare 0.044 0.018 0.0088 0.0088 0.0044 0.0044  
Total Share 0.73 0.20 0.01 0.03 0.02 0.02  
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Table 12: LEMA Effect on Share of Corn, Soybean and Sorghum 

Irrigated Acres 

Variable/Statistic Change in Share Acres 
Corn (1) (2) 
LEMA Effect -0.125* -0.075* 
 (0.0450) (0.030) 
Weather   
Precipitation (inches) -0.004 -0.013* 
 (0.015) (0.006) 
Evapotranspiration 0.139 0.118* 
 (0.137) (0.044) 
N 2819 2819 
R2 0.5018 0.0130 
   
Soybean   
LEMA Effect 0.005 0.009 
 (0.047) (0.022) 
Weather   
Precipitation (inches) 0.007 0.007 
 (0.013) (0.005) 
Evapotranspiration 0.059 -0.060 
 (0.122) (0.033) 
N 2819 2819 
R2 0.4761 0.0120 
   
Sorghum   
LEMA Effect    0.081**     0.415** 
 (0.028) (0.014) 
Weather   
Precipitation (inches) -0.002 0.005 
 (0.004) (0.002) 
Evapotranspiration -0.019 -0.033 
 (0.026) (0.014) 
N 2819 2819 
R2 0.5185 0.0312 
Water Right Fixed 

 

Yes Yes 
Time Fixed Effect Yes Yes 
Farmer-time Fixed 

 

Yes No 
Note: Parentheses denote robust clustered (water right level) std. errors. ∗ and ∗∗ denote significance at the 

5% and 1% levels. Farmer-Time specific estimates were removed for conciseness. 
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Table 13: LEMA Effect on Share of Wheat, Alfalfa and Other 

Irrigated Acres 

Variable/Statistic Change in Share Acres 
Wheat (1) (2) 
LEMA Effect 0.028 0.007 
 (0.031) (0.147) 
Weather   
Precipitation (inches) -0.004 -0.002 
 (0.006) (0.003) 
Evapotranspiration -0.002 0.012 
 (0.037) (0.019) 
N 2819 2819 
R2 0.5895 (0.051) 
   
Alfalfa   
LEMA Effect 0.006 -0.004 
 (0.010) (0.006) 
Weather   
Precipitation (inches) -0.002 0.002 
 (0.002) (0.002) 
Evapotranspiration 0.146 -0.011 
 (0.013) (0.009) 
N 2819 2819 
R2 0.5432 0.0065 
   
Other   
LEMA Effect 0.001 0.006 
 (0.009) (0.008) 
Weather   
Precipitation (inches) 0.002 0.001 
 (0.004) (0.002) 
Evapotranspiration 0.012 0.002 
 (0.017) (0.013) 
N 2819 2819 
R2 0.4377 0.0016 
Water Right Fixed 

 

Yes Yes 
Time Fixed Effect Yes Yes 
Farmer-time Fixed 

 

Yes No 
Note: Parentheses denote robust clustered (water right level) std. errors. ∗ and ∗∗ denote significance at the 

5% and 1% levels. Farmer-Time specific estimates were removed for conciseness. 
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Table 14: LEMA Effect on Crop Specific Input Expenditures 

 Pre Policy LEMA Effect Post Policy  % Change 
Fertilizer      
Corn 

 

$61.45 -$10.52 $50.93  -17% 
Soybean $3.77  $0.09 $3.86  2% 
Sorghum $0.61  $4.94 $5.55  809% 
Wheat $1.16  $1.9 $3.06  469% 
Alfalfa $1.00 $0.30 $1.30  30% 
Other $1.00  $0.05 $1.05  2% 
 $79.94  $65.75  -18% 
Herbicide      
Corn 

 

$35.73 -$6.12 $29.61  -17% 
Soybean $6.99  $0.17 $7.16  2% 
Sorghum $3.71  $0.51 $4.22  14% 
Wheat $0.69 $1.16 $1.85  168% 
Alfalfa $11.89 $0.14 $12.03  1% 
Other $11.89 $0.02 $11.91  2% 
 $70.90  $66.78  -6% 
Insecticide      
Corn 

 

$10.57 -$1.82 $8.75  -17% 
Soybean -  -   0% 
Sorghum -  -   0% 
Wheat - -   0% 
Alfalfa - -   0% 
Other - -   0% 
 $10.57 -$1.82 $8.75  -17% 
Seed      
Corn 

 

$83.16 -$14.24 $68.92  -17% 
Soybean $11.10  $0.28 $11.38  2% 
Sorghum $1.34 $1.46 $2.80  109% 
Wheat $1.98 $0.42 $2.40  21% 
Alfalfa $0.82 $0.10 $0.92  12% 
Other $0.82  $0.02 $0.80  2% 
 $99.22  $88.22  -11% 
Total $260.63  220.75  -15% 
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The effect of the LEMA resulted primarily in reductions to corn (12.5%), however, 

corn has relatively higher input expenditures compared to soybean, wheat, sorghum 

and alfalfa. Because of this impacts to input expenditures will be largely driven by the 

subsequent impacts to changes in corn acreage.  For farmers within the LEMA, overall 

seed and chemical expenditures dropped significantly, especially for corn. The overall 

reduction was roughly 15 percent (Table 14). Although many individual crops, such as 

sorghum and wheat, had an increase in overall expenditures, the relative share and 

associated costs were dominated by the reductions in corn expenditures. Herbicide and 

insecticide expenditures declined by 6 and 17 percent, respectively. Seed expenditures 

dropped by 11 percent and the largest reductions occurred for fertilizer expenditures at 

17 percent. I discussed in Chapter 6 that the LEMA effect had a relatively small impact 

on water savings due to changes in cropping patterns, however, we can see that the 

subsequent changes on chemical and seed expenditures was quite large. These results 

have important implications for the impact of the LEMA on agribusiness firms that sell 

inputs to farmers.  
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Chapter 8 - Results: Changes in Crop Yields 

 8.1 D-I-D Model and Visual Analysis 

In total there are 1,434 observations for corn and only 189 observations for 

soybeans as there are relatively few water rights subject to the LEMA that are 

planted solely to soybeans. I first estimate the effects of water use intensity on yields 

from the LEMA using a standard D-I-D framework. The D-I-D model accounts for 

unobserved heterogeneity of water rights that are constant over time (i.e. water 

right-specific differences) and also accounts for the annual heterogeneity that is 

constant across fields (i.e. crop, energy, and other input prices). The results in Table 

15 indicate a 14.16% reduction in response to the LEMA for corn and a reduction 

of 5.57% for soybeans. These D-I-D results are visualized in Figures 34 and 35. 

Table 15: Difference-in-Difference for Yields 

 Intensive Margin 
 LEMA 5 Mile Dif 

Corn    
Pre 200.68 201.51   -0.83 
 (1.456) (1.286)  
Post 181.42 194.75 -13.33 
 (1.484) (1.394)  
 19.26 6.76 -14.16 
    
Soybean 19.26 6.76 -14.16 
Pre 64.24 61.67    2.57 
 (0.995) (1.134)  
Post 58.82 61.82  -3.00 
 (1.019) (1.600)  
 5.42     -0.15  -5.57 

Note: Parentheses denote std. errors. ∗ and ∗∗ denote significance at the 5% and 1% levels. 
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Figure 34: Difference-In-Difference Results for Corn Yields 
 

 

 

Figure 35: Difference-In-Difference Results for Soybean Yields 
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 8.2 Econometric Results 

Additionally, it is important to consider the need for other control variables 

such as the farmer-time fixed effects that was used in the preferred model when 

investigating the effects at the intensive and extensive margins of water use. It is 

worth noting, however, that in the case of soybeans I have a large number of right 

hand side variables compared to a relatively small number of observations that 

make this unfeasible. 

Table 16 shows the D-I-D regression results. For corn, I find that both models 

(1) and (2) report statistically significant results at the 1% confidence interval, 

however, if we exclude the farmer-time fixed effects (2) we estimate a smaller effect 

of the LEMA on yields by 1.87%, such that the estimated effect on corn yield is a 

reduction of  8.37%. For soybeans, I find that when I include the farmer-time fixed 

effects, the model produces an unlikely result (4). The result for the model omitting 

the farmer-time fixed effects indicates a smaller but statistically significant 

reduction for soybean yield of 4.18% in response to the LEMA (4).  

Although I cannot quantify the exact short-run welfare impacts from the 

LEMA without observed yield data or production cost data, I can use this 

information combined with average price data to discuss the further implications of 

farmers’ welfare. USDA Quickstats (2017) indicates estimates of average bushels 

per acre for corn in neighboring Thomas County, KS to be 200.9 in 2014 and 192.5 

in 2011. USDA indicates soybean yield to be 59 bushels per acre in both 2006 and 

2007. I find similar estimates in average predicted yields for the sample area for 



87 

corn and soybean of 197.76 and 62.22, respectfully.  Schnitkey and Hubbs (2015) 

indicate that a price for corn of $3.50 and $9.75 for soybean for the 2018-2019 

marketing year to be realistic estimates. This indicates average revenues per acre 

for corn at $692.16 and soybean at $606.65. Combining this with the estimates 

produced from Table 16 we can estimate the subsequent reductions on crop 

revenues to be -$57.93 per acre for corn and -$25.36 per acre for soybean. The 

impacts on profits might not have been as large if producers chose to adjust other 

costs of production (e.g. applied less additional inputs.) 

 

Table 16: Comparison of Models of Effects of Yields 
  Log Yield  

Variable/Statistics Corn Soybean 
 (1) (2) (3) (4) 
LEMA policy effect      -10.24**         -8.37**      - 4.18*   47.72 
      (2.299)       (0.980)     (0.603) (4.217) 
Weather     
Precipitation (inches)         0.03**          0.01**         0.73     0.02 
      (0.008)       (0.031)           -                      (0.256) 
Evapotranspiration        -0.01          0.03         3.92     0.06 
      (0.044)       (0.017)           -     (0.056) 
Water Right Fixed Effect Yes Yes Yes Yes 
Time Fixed Effect Yes Yes Yes Yes 
Farmer-time Fixed Effect No Yes No Yes 

N 1430 1430 187 187 
R2 0.0708 0.0774 0.1848 0.1846 

Note: Parentheses denote robust clustered (well-level) std. errors. ∗ and ∗∗ denote significance at the 5% and 
1% levels. Water right, Time and Farmer-time specific estimates were removed for conciseness (N>1000). 

LEMA effect estimates adjusted for log-linear correction. 
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Chapter 9 - Conclusion 

This research uses an econometric approach to uncover the effects on water use and 

crop type from the collective action water management plan identified as the 

Sheridan 6 LEMA. Many agricultural businesses will also be impacted by changes 

in these on-farm decisions through changes to additional input markets such as 

fertilizer use, seed and grain flows. The possibility of new water restricted areas has 

increasingly become a topic for producers and agribusinesses and collective action 

management plans are a potential policy instrument to sustain the life of the High 

Plains Aquifer for generations to come with the recent implementation of two 

additional LEMAs: the district-wide GMD 4 and the Rattlesnake/Quivara 

management area. 

 There are some limitations to this research. I had limited observations for 

many crops apart from corn and soybean, the primary crops of the area, such that I 

could not estimate some crop specific yields in a meaningful way. Additionally, I 

did not know the exact proportion of acreage for farmers who implemented crop 

rotations or had acreage planted to multiple crops, as such I had to make 

assumptions on particular crop mixes to obtain results.  I also did not have actual 

yield data and used simulated data such that it is possible that my yield curve is 

misspecified. Additionally, I used average  pricing data such that I had to assume 

average prices to determine subsequent outcomes on farmers’ welfare. It is also 

possible that irrigators could have made adjustments to minimize any yield losses. 

Additionally, this research only includes 2 years of post-policy data, which provides 
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us with insight on the very short run decisions of the irrigators inside the LEMA, 

however, the policy directive is for 5 years.  It would be important to run the same 

analysis in the future to capture the full effect of the policy. Importantly, farmers’ 

decisions in the first four years could impact how much water they use in the final 

year. It is possible that water use in the last year may have increased compared to 

earlier years when farmers know how much allotment they have remaining, 

assuming they sufficiently reduced water use the prior four years. 

Using a Difference-in-Differences (D-I-D) model I expose the causal effect of 

the LEMA policy on important farmer decisions relating to water use, yields and 

inputs. The more simplistic D-I-D framework allows us to estimate the before and 

after difference inside the LEMA and compare it to the before and after difference 

in the 5 mile buffer zone (control group) just outside the LEMA. This model is strict 

in its assumptions and I find evidence for an alternative regression model that 

controls for variability of each farmer across time by including the use of farmer-

specific year fixed effects. This accounts for farmer variability not captured in the 

time fixed effect or the irrigator fixed effect relating to differences among irrigators 

such as skills, experience, management practices, and finances. Additionally, my 

proposed econometric framework allows for identification of the direct extensive 

(changes to irrigated acreage), direct intensive (changes to applied inches/acre) and 

indirect intensive (changes to crop type) margins of adjustment.  

There are two main findings on the change in water use due to the LEMA. 

First, irrigators located inside the boundary of the LEMA made relatively small 
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changes to total number of reduced irrigated acres and some irrigators moved from 

high water intensity crops to less water-intensive crops. Second, irrigators chose to 

apply significantly less water in inches per acre on corn and soybeans when 

compared to irrigators located in the control group which are the major crops grown 

in the region.  

I find the greatest response to the LEMA at the intensive margin, implying that 

irrigators chose to reduce their applied water intensity by 21% with limited 

reductions in irrigated acreage (4%) indicating that the greater proportion of 

changes to applied inches of water per acre was not due to changes in cropping 

patterns and irrigation technology but due to reductions in applied water use 

intensities for the same crops.  

Additionally, I evaluate concerns that irrigators with ownership of more than 

one well may lead to disproportionate water use restrictions due to the flexibility to 

move water rights between fields. I find no evidence that increased well ownership 

leads to increased water use and impacts smaller farms in greater proportion. In 

general, the collective action management plan was able to reduce water use overall 

having a positive impact on the aquifer and irrigators were able to reduce their water 

use intensity by a larger margin than reductions in irrigated acreage to comply with 

the provisions.  

The impact of the LEMA significantly impacted producers choices on how much 

water to use and the crops raised. Fewer irrigated acres were planted to corn with the 
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primary switch being to sorghum and soybeans. These changes have an impact on the 

crop input markets such as herbicides, pesticides, fertilizer and seed.  

Although reductions in water use will slow the depletion of the aquifer, many 

additional agricultural businesses will be directly impacted by changes in water use 

decisions. My results indicate reductions to both corn (-8.37%) and soybean yields 

(-4.18%) as a direct effect of the LEMA. This has subsequent impacts to many 

businesses that could be impacted by changes in these on-farm decisions and 

additionally has important implications for the entire agricultural sector.  

Not only does water use have a direct relationship with weather and climate 

variation, it also has a relationship to other on-farm production decisions including 

seed, herbicide and fertilizer use. The reduction in water use in the Sheridan County 

LEMA was estimated to reduce crop input expenditures of herbicides, pesticides, 

fertilizer and seed by roughly 15%. Although there were increases in many individual 

crop input expenditures, the relative share and associated costs were outshadowed by 

the reductions in corn expenditures. On the other hand, reduced groundwater depletion 

means that there will likely be more seed and chemical purchases in the future by 

extending the life of the aquifer. Producers have also made changes to irrigated acreage 

and have opted to switch crops for less water-intensive varieties although these changes 

were not the predominant factor.  

The results from this study will prove useful to identify how irrigators adapted 

to the water policy restriction known as the LEMA and provide a framework that 

more accurately estimates the effect of a water policy. The possibility of new water 

restricted areas has increasingly become a topic for irrigators in Kansas. Reduced 
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water use can extend the life of the aquifer but it is important to understand how 

farmers adapt and the subsequent impacts on farmers’ profitability and input 

markets within the agricultural sector. Discussions for the implementation of new 

LEMAs are currently being conducted in other areas of Kansas and this analysis is 

beneficial to stakeholders in these areas and also has broader implications on water 

policy management initiatives across the US.  
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Appendix A - STATA CODE 

*************************************************************************
******* 

***Analysis of the Sheridan 6 LEMA inside/outside 5 Mile D-I-D 
Model*** 

********Ch6: Extensive/Intensive marginal estimates of Water 
Use******* 

**********************************************************************
********** clear 
set 
more 
off 
capt
ure 
log 
clos
e 
log using "..\Dissertation_Ch1_Code_draft - JEEM submission.txt", text 
replace 

 
////////////////////////////////////////////////////////////////////////
//////// 

 
************************************************************************
******** 

//MODIFY KANSAS WATER USE DATA// 
************************************************************************
******** 

 
//Step 1: Clean Data for Combining Datasets 

 
*Import Water Use Data* 
*Kansas Water Rights Information System Database (WRIS) after 
*running the Water Group Tool in GIS 
 
import delimited "..\dataAnalysis\Model and Output 
files\ Kansas_PDIV_Reg_WaterGroup.csv" 
duplicates report 
duplicates report fpdiv_key 
*duplicates list fpdiv_key 
*list in 13937/13938 
duplicates drop fpdiv_key, force 

*Bring in the actual reported Water Use Data 
merge 1:m fpdiv_key using 
"..\dataRaw\Water_Use_1991_2012.dta", /// keep(match 
using) nogen 

 
*Note: wuadet_key needs to be unique to avoid double-
counting duplicates report wuadet_key 

 
*remove unwanted data 
drop join_count target_fid wrf_active right_type vcnty_code /// 
wr_num wr_qual wrf_status source s_umw priority fpv_active 
twp_dir /// rng_dir dwr_id feet_north feet_west qual_four 
qual_three qual_two /// qual_one fo_num basin_num basin_name 
gwmd_num sua_code stream_num /// num_wells lot_number 
lot_qual1 lot_qual2 fpdiv_comm fpdiv_key wrf_key /// 
longitude latitude quant_id auth_quant add_quant quant_unit 
qstor_ind /// rate_id auth_rate add_rate rate_unit rstor_ind 
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last_name first_name /// wris_date file_id name status fid_s 
shape_leng shape_area objectid /// wuacor_num wuafo_num 
wuaumwcode hours_pump pump_rate meter_qty /// meter_unit 
wur_code rpt_wright date_meas dpth_water dpth_well reel_num 
/// blip_num rpt_date chem_ind b_meter_rd e_meter_rd fid 
policy regulation /// grp_wr_cnt grp_pd_cnt 

 
*Update:(need to reformat to merge with new 2013 short data format) 
destring wuapers_id, generate (WUAPERS_ID) ignore(",") 
float drop wuapers_id 
destring wua_year, generate (WUA_YEAR) ignore(",") 
float drop wua_year 
destring wr_id, generate(WR_ID) ignore(",") 
float drop wr_id 
destring pdiv_id, generate(PDIV_ID) ignore(",") 
float drop pdiv_id 
destring acres_irr, generate(ACRES_IRR) ignore(",") 
float drop acres_irr 
destring af_used, generate(AF_USED) ignore(",") float 
drop af_used 

 
 
 

destring tacres_irr, generate(TACRES_IRR) ignore(",") float 
drop tacres_irr 
destring nacres_irr, generate(NACRES_IRR) ignore(",") float 
drop nacres_irr 
destring wr_group, generate(WR_GROUP) ignore(",") float 
drop wr_group 

 
destring crop_code, replace force 
sort crop_code 
gen CROP_CODE = crop_code 
drop crop_code 

 
generate TYPE_SYSTEM = system 
drop system 
generate UMW_CODE = umw_code 
drop umw_code 

 
rename twp TWP 
rename rng RNG 
rename sect SECT 
rename cnty_abrev CNTY_ABREV 

 
save "..\dataAnalysis\Model and Output files\ 
Cleaned_MERGED_WATER_USE_Kansas_PDIV_Reg_W.dta", replace 
clear 

 
*Bring in New 2013 Annual Reporting to match existing Data 

 
import excel "..\dataRaw\ORR_6440_Statewide_2013_Wuse_Data.xlsx", /// 
sheet("Sheet1") firstrow clear 
drop NEW_LONGITUDE NEW_LATITUDE 
drop if WUA_YEAR == . 

 
save "..\dataRaw\Cleaned_ORR_6440_Statewide_2013_Wuse_Data.dta", replace 
clear 
use "..\dataRaw\Cleaned_ORR_6440_Statewide_2013_Wuse_Data.dta", clear 
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**Bring in New 2014 Annual Reporting to match existing Data 

clear 
import excel "..\dataRaw\ORR_7202_2014_WUse_Data.xlsx", sheet("Sheet1") /// 
firstrow clear 
drop NEW_LONGITUDE NEW_LATITUDE 
drop if WUA_YEAR == . 

 
save "..\dataRaw\Cleaned_ORR_7202_2014_WUse_Data.dta", replace 
clear 
use "..\dataRaw\Cleaned_ORR_7202_2014_WUse_Data.dta", clear 

 
append using "..\dataRaw\Cleaned_ORR_6440_Statewide_2013_Wuse_Data.dta", /// 
force 
save "..\dataRaw\Cleaned_ORR_6440_Statewide_2013_2014_Wuse_Data.dta", /// 
replace 
append using "..\dataAnalysis\Model and Output files\ 
Cleaned_MERGED_WATER_USE_Kansas_PDIV_Reg_W.dta", force 

 
*Generate Unique variable to sort on 

 
egen unique = concat (WR_ID PDIV_ID) 
destring unique, replace 
sort unique WUA_YEAR 

 
 

replace TWP = TWP[_n-1] if TWP >= . and unique[_n-1]== unique 
replace RNG = RNG[_n-1] if RNG >= . and unique[_n-1]== unique 
replace SECT = SECT[_n-1] if SECT >= . and unique[_n-1]== unique 
replace CNTY_ABREV = "." if missing(CNTY_ABREV) 
replace CNTY_ABREV = CNTY_ABREV[_n-1] if CNTY_ABREV >= "." and 
/// unique[_n-1]== unique 
replace TACRES_IRR = TACRES_IRR[_n-1] if TACRES_IRR >= . and 
/// unique[_n-1]== unique 
replace NACRES_IRR = NACRES_IRR[_n-1] if NACRES_IRR >= . and 
/// unique[_n-1]== unique 
replace WR_GROUP = WR_GROUP[_n-1] if WR_GROUP >= . and 
/// unique[_n-1]== unique 
replace WUAPERS_ID = WUAPERS_ID[_n-1] if WUAPERS_ID >= . and 
/// unique[_n-1]== unique 

 
*Final Kansas Water Use Dataset 1991-2014 (Dataset 1) 

 
*********************************************  
save "..\dataRaw\Cleaned_Water_Use_1991_2014_Export_Output.dta", replace 
clear 
********************************************* 

 
******************************************************************************** 

//MODIFY PRISM WEATHER DATA// 
******************************************************************************** 

 
//Step 2: Combine PRISM data 2009-2014 with Water Use Data 

*Modify PRISM data to match Water use data 

clear 
use "..\dataRaw\PLSS_PRISM_2009to14_CLEAN.dta" 

*Reformat to match variable names 

rename township TWP 
rename  range RNG 
rename isp_sectio SECT 
rename year WUA_YEAR 
rename month MONTH 

 
*Convert ppt from mm to inches 

replace ppt = ppt*(1/25.4) 
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*Total avg annuals 
 

collapse (rawsum) ppt ET0, /// 
by (TWP RNG SECT WUA_YEAR) 
sum 

 
*Final Kansas Weather (monthly at TWP SECT RNG:3,801,096 obs) (Dataset 2) 

 
*********************************************  
save "..\dataRaw\PLSS_PRISM_2009to14_CLEAN_MONTHLY.dta" , replace 
clear 
********************************************* 

 
******************************************************************************** 

MERGE WATER and WEATHER DATA// 
******************************************************************************** 

 
//Step 3: Match to TWP SECT RNG in the LEMA water use dataset 

 
*Begin with the Water use data (Dataset 1) 

 
use "..\dataRaw\Cleaned_Water_Use_1991_2014_Export_Output.dta" 
sort WR_ID WUA_YEAR 
sort SECT 

 
*Bring in the Weather Data (Dataset 2) 

 
merge m:1 TWP RNG SECT WUA_YEAR using "..\dataRaw\ 
PLSS_PRISM_2009to14_CLEAN_MONTHLY.dta", /// 
keep(match) 
drop _merge 
sort WR_ID WUA_YEAR 

 
*Kansas Water and Weather (Dataset 3) 

 
*********************************************  
save "..\Water_Use_WEATHER_WR.dta", replace 
clear 

********************************************* 
 
//Step 3: Prepare Dataset to include variables for D-I-D LEMA and 5 Mile groups 

 
*Add Dummy Variables for LEMA and 5 Mile to the original datasets 

 
*5 mile boundary data taken from ArcGIS Clipping Model** 
clear 
set more off 
import delimited "..\dataAnalysis\Model and Output files\5 Mile PDIV\ 
Sheridan_LEMA_5Mile_Export_Output.csv" 

 
*check for unique observations 

 
duplicates report fpdiv_key 
duplicates drop fpdiv_key, force 

 
generate FIVE_MILE = 1 
generate LEMA = 0 
drop fid wrf_active right_type vcnty_code wr_num wr_qual wrf_status /// 
source s_umw priority fpv_active twp_dir rng_dir dwr_id feet_north /// 
feet_west qual_four qual_three qual_two qual_one fo_num basin_num /// 
basin_name gwmd_num cnty_abrev sua_code stream_num num_wells lot_number /// 
lot_qual1 lot_qual2 fpdiv_comm fpdiv_key wrf_key longitude latitude /// 
quant_id quant_unit qstor_ind rate_id rate_unit rstor_ind last_name /// 
first_name wris_date file_id auth_quant add_quant auth_rate add_rate /// 
grp_wr_cnt grp_pd_cnt 

*Reformat to match variable names 

generate WR_ID = wr_id 
drop wr_id 
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generate PDIV_ID = pdiv_id 
drop pdiv_id 
generate UMW_CODE = umw_code 
drop umw_code 
generate SECT = sect 
drop sect 
generate TWP = twp 
drop twp 
generate RNG = rng 
drop rng 

 
*Restrict dataset to only irrigated users 

keep if UMW_CODE=="IRR" 

save "..\dataAnalysis\Model and Output files\5 Mile PDIV\ 
Cleaned_Sheridan_LEMA_5Mile_Export_Output.dta", replace 
clear 

 
*Bring in LEMA inside boundary taken from Water Office GIS files 

 
import excel "..\dataRaw\ORS_6440_SD_6_LEMA_WR_IDs_PDIV_IDs.xlsx", /// 
sheet("Sheet1") firstrow 

 
* Note: These are all irrigated water rights 
gen UMW_CODE="IRR" 

 
*check for unique observations 
duplicates report WR_ID PDIV_ID UMW_CODE 
generate FIVE_MILE = 0 

 
save "..\dataAnalysis\Model and Output files\Restricted PDIV\ 
Cleaned_Sheridan_LEMA.dta", replace 

 
**Add back in the 5 Mile PDIV for the D-I-D Analysis 

 
append using "..\dataAnalysis\Model and Output files\5 Mile PDIV\ 
Cleaned_Sheridan_LEMA_5Mile_Export_Output.dta", force 

 
*Reformat to match variable names 
generate TACRES_IRR = tacres_irr 
drop tacres_irr 
generate NACRES_IRR = nacres_irr 
drop nacres_irr 
generate WR_GROUP = wr_group 
drop wr_group 

 
* Note: Two observations are reported as both inside the LEMA and in the 5 
* mile boundary. Assume the KDA report on points of diversion inside the 
* LEMA is correct so drop if a duplicate and if FIVE_MILE==1 

 
duplicates report WR_ID PDIV_ID 
duplicates tag WR_ID PDIV_ID, gen(dup) 
list if dup==1 
drop if dup==1 and FIVE_MILE==1 
duplicates report WR_ID PDIV_ID 
drop dup 

 
*Final Kansas Water Rights dataset with D-I-D groups (Dataset 4) 

 
********************************************* 
save "..\dataAnalysis\Model and Output files\5 Mile PDIV\ 
Cleaned_Sheridan_LEMA_5Mile_COMPLETE.dta", replace 
clear 
********************************************* 

 
//Step 4: Merge the 2 datasets matching on WR_ID and PDIV_ID 

 
* Start with D-I-D groups (Dataset 4) 
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use "..\dataAnalysis\Model and Output files\5 Mile PDIV\ 
Cleaned_Sheridan_LEMA_5Mile_COMPLETE.dta", clear 

 
* Add in Water and Weather (Dataset 3) 
merge 1:m WR_ID PDIV_ID using "..\Water_Use_WEATHER_WR.dta", /// 
keep(match) 

*Already limited to D-I-D groups, but confirm below 

drop if LEMA == . 
drop if FIVE_MILE == . 
sort WUA_YEAR 

 
*Already limited to Irrigated Users, but confirm below 

keep if UMW_CODE == "IRR" 

//Step 5: Create a pre/post LEMA Policy Variable 

gen postLEMA = 0 
replace postLEMA = 1 if WUA_YEAR >= 2013 
generate LEMA_EFFECT = postLEMA*LEMA 

 
//Step 6: Create Crop and Irrigation Code Variables 

 
*Create a variable that indicates the proportion of each observation planted to 
*each crop and account for crop codes with multiple crops 

 
gen ALFALFA=0 
replace ALFALFA=. if CROP_CODE==. 
replace ALFALFA=1 if CROP_CODE==1 
replace ALFALFA=1/2 if CROP_CODE==18 | CROP_CODE==19 | CROP_CODE==20 | /// 
CROP_CODE==21 | CROP_CODE==22 
replace ALFALFA=1/3 if CROP_CODE==33 | CROP_CODE==34 | CROP_CODE==35 | /// 
CROP_CODE==36 | CROP_CODE==37 | CROP_CODE==38 | CROP_CODE==39 | /// 
CROP_CODE==40 | CROP_CODE==41 | CROP_CODE==42 
replace ALFALFA=1/4 if CROP_CODE==53 | CROP_CODE==54 | CROP_CODE==55 | /// 
CROP_CODE==56 | CROP_CODE==57 | CROP_CODE==58 | CROP_CODE==59 | /// 
CROP_CODE==60 | CROP_CODE==61 | CROP_CODE==62 

 
gen CORN=0 
replace CORN=. if CROP_CODE==. 
replace CORN=1 if CROP_CODE==2 
replace CORN=1/2 if CROP_CODE==18 | CROP_CODE==23 | CROP_CODE==24 | /// 
CROP_CODE==25 | CROP_CODE==26 
replace CORN=1/3 if CROP_CODE==33 | CROP_CODE==34 | CROP_CODE==35 | /// 
CROP_CODE==36 | CROP_CODE==43 | CROP_CODE==44 | CROP_CODE==45 | /// 
CROP_CODE==46 | CROP_CODE==47 | CROP_CODE==48 
replace CORN=1/4 if CROP_CODE==53 | CROP_CODE==54 | CROP_CODE==55 | /// 
CROP_CODE==56 | CROP_CODE==57 | CROP_CODE==58 | CROP_CODE==63 | /// 
CROP_CODE==64 | CROP_CODE==65 | CROP_CODE==66 

 
gen SORGHUM=0 
replace SORGHUM=. if CROP_CODE==. 
replace SORGHUM=1 if CROP_CODE==3 
replace SORGHUM=1/2 if CROP_CODE==19 | CROP_CODE==23 | CROP_CODE==27 | /// 
CROP_CODE==28 | CROP_CODE==29 
replace SORGHUM=1/3 if CROP_CODE==33 | CROP_CODE==37 | CROP_CODE==38 | /// 
CROP_CODE==39 | CROP_CODE==43 | CROP_CODE==44 | CROP_CODE==45 | /// 
CROP_CODE==49 | CROP_CODE==50 | CROP_CODE==51 
replace SORGHUM=1/4 if CROP_CODE==53 | CROP_CODE==54 | CROP_CODE==55 | /// 
CROP_CODE==59 | CROP_CODE==60 | CROP_CODE==61 | CROP_CODE==63 | /// 
CROP_CODE==64 | CROP_CODE==65 | CROP_CODE==67 

 
gen SOYBEAN=0 
replace SOYBEAN=. if CROP_CODE==. 
replace SOYBEAN=1 if CROP_CODE==4 
replace SOYBEAN=1/2 if CROP_CODE==20 | CROP_CODE==24 | CROP_CODE==27 | /// 
CROP_CODE==30 | CROP_CODE==31 
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replace SOYBEAN=1/3 if CROP_CODE==34 | CROP_CODE==37 | CROP_CODE==40 | /// 
CROP_CODE==41 | CROP_CODE==43 | CROP_CODE==46 | CROP_CODE==47 | /// 
CROP_CODE==49 | CROP_CODE==50 | CROP_CODE==52 
replace SOYBEAN=1/4 if CROP_CODE==53 | CROP_CODE==56 | CROP_CODE==57 | /// 
CROP_CODE==59 | CROP_CODE==60 | CROP_CODE==62 | CROP_CODE==63 | /// 
CROP_CODE==64 | CROP_CODE==66 | CROP_CODE==67 

 
gen WHEAT=0 
replace WHEAT=. if CROP_CODE==. 
replace WHEAT=1 if CROP_CODE==5 
replace WHEAT=1/2 if CROP_CODE==21 | CROP_CODE==25 | CROP_CODE==28 | /// 
CROP_CODE==30 | CROP_CODE==32 
replace WHEAT=1/3 if CROP_CODE==35 | CROP_CODE==38 | CROP_CODE==40 | /// 
CROP_CODE==42 | CROP_CODE==44 | CROP_CODE==46 | CROP_CODE==48 | /// 
CROP_CODE==49 | CROP_CODE==51 | CROP_CODE==52 
replace WHEAT=1/4 if CROP_CODE==54 | CROP_CODE==56 | CROP_CODE==58 | /// 
CROP_CODE==59 | CROP_CODE==61 | CROP_CODE==62 | CROP_CODE==63 | /// 
CROP_CODE==65 | CROP_CODE==66 | CROP_CODE==67 

 
gen MULTIPLE_UNKNOWN=0 
replace MULTIPLE_UNKNOWN=. if CROP_CODE==. 
replace MULTIPLE_UNKNOWN=1 if CROP_CODE==16 | CROP_CODE==17 

 
gen OTHER_CROP=0 
replace OTHER_CROP=. if CROP_CODE==. 
replace OTHER_CROP=1 if CROP_CODE==6 | CROP_CODE==7 | CROP_CODE==8 | /// 
CROP_CODE==9 | CROP_CODE==10 | CROP_CODE==11 | CROP_CODE==12 | /// 
CROP_CODE==13 | CROP_CODE==14 | CROP_CODE==15 | CROP_CODE==68 | /// 
CROP_CODE==69 | CROP_CODE==70 | CROP_CODE==71 | CROP_CODE==72 | /// 
CROP_CODE==73 | CROP_CODE==74 | CROP_CODE==75 | CROP_CODE==76 | /// 
CROP_CODE==77 | CROP_CODE==78 

*Create dummy variables for each irrigation system 

generate IRR_FLOOD = 0 
replace IRR_FLOOD = . if TYPE_SYSTEM == . 
replace IRR_FLOOD = 1 if TYPE_SYSTEM == 1 

 
generate IRR_DRIP = 0 
replace IRR_DRIP = . if TYPE_SYSTEM == . 
replace IRR_DRIP = 1 if TYPE_SYSTEM == 2 

 
generate IRR_PIVOT = 0 
replace IRR_PIVOT = . if TYPE_SYSTEM == . 
replace IRR_PIVOT = 1 if TYPE_SYSTEM == 3 

 
generate IRR_PIVOTDROP = 0 
replace IRR_PIVOTDROP = . if TYPE_SYSTEM == . 
replace IRR_PIVOTDROP = 1 if TYPE_SYSTEM == 4 

 
generate IRR_SPRINKLER = 0 
replace IRR_SPRINKLER = . if TYPE_SYSTEM == . 
replace IRR_SPRINKLER = 1 if TYPE_SYSTEM == 5 

 
generate IRR_PIVOTFLOOD = 0 
replace IRR_PIVOTFLOOD = . if TYPE_SYSTEM == . 
replace IRR_PIVOTFLOOD = 1 if TYPE_SYSTEM == 6 

 
generate IRR_DRIPOTHER = 0 
replace IRR_DRIPOTHER = . if TYPE_SYSTEM == . 
replace IRR_DRIPOTHER = 1 if TYPE_SYSTEM == 7 

 
generate IRR_OTHER = 0 
replace IRR_OTHER = . if TYPE_SYSTEM == . 
replace IRR_OTHER = 1 if TYPE_SYSTEM == 8 

 
//Step 7: Estimate the means of each ACRES IRR, ACRE FEET USED, WEATHER, 
//CROP TYPE and SYSTEM variable using a weighted mean using acres irrigated as the 
//weight. (This creates the proportion of acres of a water right planted to a 
//particular crop) 

 



107 

collapse (rawsum) AF_USED ACRES_IRR (mean) ppt ET0 ALFALFA CORN 
SORGHUM SOYBEAN WHEAT MULTIPLE_UNKNOWN OTHER_CROP IRR_FLOOD IRR_DRIP /// 
IRR_PIVOT IRR_PIVOTDROP IRR_SPRINKLER IRR_PIVOTFLOOD IRR_DRIPOTHER /// 
IRR_OTHER LEMA FIVE_MILE postLEMA LEMA_EFFECT [aweight=ACRES_IRR], /// 

by(WUA_YEAR WR_ID WUAPERS_ID TACRES_IRR NACRES_IRR) 
sort WR_ID WUA_YEAR 
duplicates report WR_ID WUA_YEAR 
sum 

*Create Intensive marginal variables 

gen APPLIED_INCH = (AF_USED*12) 
gen INTENSITY = (APPLIED_INCH/ACRES_IRR) 

 
*Final Water Policy D-I-D data with WR_ID and PDIV_ID (Dataset 4) 

 
*********************************************  
save "..\DID_LEMA_Dataset_WEATHER_WR.dta", replace 
clear 
********************************************* 

 
clear 
set more off 
 
 
******************************************************************************** 

//ANALYSIS// 
******************************************************************************** 

 
//Step 1: Set up the Model and generate log-form dependent variables 
//Following the methodology in Hendricks and Peterson (2012) to calculate 
//Marginal Effects but using the log form to obtain straghtforward 
//interpretations of the coefficients as elasticities 

 
use "..\DID_LEMA_Dataset_WEATHER_WR.dta" 
xtset WR_ID WUA_YEAR, yearly 
keep if WUA_YEAR>=2009 
xtdescribe 

 
gen lnAPPLIED_INCH=ln(APPLIED_INCH) 
gen lnACRES_IRR=ln(ACRES_IRR) 
gen lnINTENSITY=ln(INTENSITY) 

 
*Table 1: Summary Statistics of D-I-D Groups Comparison of Means Pre-Policy 

 
*Following Villa (2014) balancing t-test of the difference in the means of the 
*covariates between the control and treated groups in period == 0 based on the 
*kernel weight. 

 
diff lnAPPLIED_INCH lnACRES_IRR lnINTENSITY, t(LEMA) p(postLEMA) kernel /// 
cov(IRR_FLOOD IRR_DRIP IRR_PIVOT IRR_PIVOTDROP IRR_SPRINKLER /// 
IRR_PIVOTFLOOD IRR_DRIPOTHER IRR_OTHER ALFALFA CORN SORGHUM /// 
SOYBEAN WHEAT MULTIPLE_UNKNOWN OTHER_CROP ppt ET0 ) id(WR_ID) /// 
robust cluster(WR_ID) test 

 
diff lnACRES_IRR lnACRES_IRR lnINTENSITY, t(LEMA) p(postLEMA) kernel /// 
cov(IRR_FLOOD IRR_DRIP IRR_PIVOT IRR_PIVOTDROP IRR_SPRINKLER /// 
IRR_PIVOTFLOOD IRR_DRIPOTHER IRR_OTHER ALFALFA CORN SORGHUM /// 
SOYBEAN WHEAT MULTIPLE_UNKNOWN OTHER_CROP ppt ET0 ) id(WR_ID) /// 
robust cluster(WR_ID) test 

 
diff lnINTENSITY lnACRES_IRR lnINTENSITY, t(LEMA) p(postLEMA) kernel /// 
cov(IRR_FLOOD IRR_DRIP IRR_PIVOT IRR_PIVOTDROP IRR_SPRINKLER /// 
IRR_PIVOTFLOOD IRR_DRIPOTHER IRR_OTHER ALFALFA CORN SORGHUM /// 
SOYBEAN WHEAT MULTIPLE_UNKNOWN OTHER_CROP ppt ET0 ) id(WR_ID) /// 
robust cluster(WR_ID) test 

 
summ IRR_FLOOD IRR_DRIP IRR_PIVOT IRR_PIVOTDROP IRR_SPRINKLER /// 
IRR_PIVOTFLOOD IRR_DRIPOTHER IRR_OTHER ALFALFA CORN SORGHUM /// 
SOYBEAN WHEAT MULTIPLE_UNKNOWN OTHER_CROP ppt ET0 
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*Average Treatment Effect on the Treated 
summ LEMA LEMA_EFFECT postLEMA if LEMA==1 

 
//Step 2: Visual Analysis (D-I-D) 

 
*Figure 6: Total Extensive and Intensive Marginal Effects 
egen A_PRE_ALL = mean(ACRES_IRR)     if WUA_YEAR <= 2012 and LEMA == 1 
egen A_POST_ALL = mean(ACRES_IRR)     if WUA_YEAR >  2012 and LEMA == 1 
egen A_FIVEPRE_ALL = mean(ACRES_IRR)  if WUA_YEAR <= 2012 and LEMA == 0 
egen A_FIVEPOST_ALL = mean(ACRES_IRR) if WUA_YEAR >  2012 and LEMA == 0 

 
egen I_PRE_ALL = mean(INTENSITY)     if WUA_YEAR <= 2012 and LEMA == 1 
egen I_POST_ALL = mean(INTENSITY)     if WUA_YEAR >  2012 and LEMA == 1 
egen I_FIVEPRE_ALL = mean(INTENSITY)  if WUA_YEAR <= 2012 and LEMA == 0 
egen I_FIVEPOST_ALL = mean(INTENSITY) if WUA_YEAR >  2012 and LEMA == 0 

 
*Figure 7: Crop Specific Extensive Marginal Effects 
egen A_PRE_ALF = mean(ACRES_IRR*ALFALFA) if WUA_YEAR <= 2012 and LEMA == 
1 egen A_PRE_CRN = mean(ACRES_IRR*CORN) if WUA_YEAR <= 2012 and LEMA == 1 
egen A_PRE_SOR = mean(ACRES_IRR*SORGHUM) if WUA_YEAR <= 2012 and LEMA == 
1 egen A_PRE_SOY = mean(ACRES_IRR*SOYBEAN) if WUA_YEAR <= 2012 and LEMA 
== 1 egen A_PRE_WHT = mean(ACRES_IRR*WHEAT)   if WUA_YEAR <= 2012 and LEMA 
== 1 
egen A_PRE_MLT = mean(ACRES_IRR*MULTIPLE_UNKNOWN)  /// 
if WUA_YEAR <= 2012 and LEMA == 1 

 
egen A_POST_ALF = mean(ACRES_IRR*ALFALFA) if WUA_YEAR > 2012 and LEMA == 
1 egen A_POST_CRN = mean(ACRES_IRR*CORN) if WUA_YEAR > 2012 and LEMA == 1 
egen A_POST_SOR = mean(ACRES_IRR*SORGHUM) if WUA_YEAR > 2012 and LEMA == 
1 egen A_POST_SOY = mean(ACRES_IRR*SOYBEAN) if WUA_YEAR > 2012 and LEMA 
== 1 egen A_POST_WHT = mean(ACRES_IRR*WHEAT) if WUA_YEAR > 2012 and LEMA 
== 1 
egen A_POST_MLT = mean(ACRES_IRR*MULTIPLE_UNKNOWN) /// 
if WUA_YEAR > 2012 and LEMA == 1 

 
egen A_FIVEPRE_ALF = mean(ACRES_IRR*ALFALFA) if WUA_YEAR <= 2012 and LEMA == 
0 egen A_FIVEPRE_CRN = mean(ACRES_IRR*CORN) if WUA_YEAR <= 2012 and LEMA == 0 
egen A_FIVEPRE_SOR = mean(ACRES_IRR*SORGHUM) if WUA_YEAR <= 2012 and LEMA == 
0 egen A_FIVEPRE_SOY = mean(ACRES_IRR*SOYBEAN) if WUA_YEAR <= 2012 and LEMA == 
0 egen A_FIVEPRE_WHT = mean(ACRES_IRR*WHEAT)   if WUA_YEAR <= 2012 and LEMA 
== 0 
egen A_FIVEPRE_MLT = mean(ACRES_IRR*MULTIPLE_UNKNOWN)   /// 
if WUA_YEAR <= 2012 and LEMA == 0 

 
egen A_FIVEPOST_ALF = mean(ACRES_IRR*ALFALFA) if WUA_YEAR > 2012 and LEMA == 
0 egen A_FIVEPOST_CRN = mean(ACRES_IRR*CORN) if WUA_YEAR > 2012 and LEMA == 0 
egen A_FIVEPOST_SOR = mean(ACRES_IRR*SORGHUM) if WUA_YEAR > 2012 and LEMA == 
0 egen A_FIVEPOST_SOY = mean(ACRES_IRR*SOYBEAN) if WUA_YEAR > 2012 and LEMA == 
0 egen A_FIVEPOST_WHT = mean(ACRES_IRR*WHEAT) if WUA_YEAR > 2012 and LEMA == 
0 egen A_FIVEPOST_MLT = mean(ACRES_IRR*MULTIPLE_UNKNOWN)  /// 
if WUA_YEAR > 2012 and LEMA == 0 

 
 

*Table of summary statistics 
summ 
*Additional analysis done in excel to generate "counterfactual" and graphs 

 
* Crop Specific Intensive Marginal Effects 
mean INTENSITY if WUA_YEAR <= 2012 and LEMA == 1 and 
ALFALFA==1 mean INTENSITY if WUA_YEAR > 2012 and LEMA == 1 
and ALFALFA==1 mean INTENSITY if WUA_YEAR <= 2012 and LEMA 
== 0 and ALFALFA==1 mean INTENSITY if WUA_YEAR > 2012 and 
LEMA == 0 and ALFALFA==1 

 
mean INTENSITY if WUA_YEAR <= 2012 and LEMA == 1 and 
CORN==1 mean INTENSITY if WUA_YEAR > 2012 and LEMA == 1 
and CORN==1 mean INTENSITY if WUA_YEAR <= 2012 and LEMA 
== 0 and CORN==1 mean INTENSITY if WUA_YEAR > 2012 and 
LEMA == 0 and CORN==1 
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capture mean INTENSITY if WUA_YEAR <= 2012 and LEMA == 1 and 
SORGHUM==1 mean INTENSITY if WUA_YEAR > 2012 and LEMA == 1 and 
SORGHUM==1 
mean INTENSITY if WUA_YEAR <= 2012 and LEMA == 0 and 
SORGHUM==1 mean INTENSITY if WUA_YEAR > 2012 and LEMA == 0 and 
SORGHUM==1 

 
mean INTENSITY if WUA_YEAR <= 2012 and LEMA == 1 and 
SOYBEAN==1 mean INTENSITY if WUA_YEAR > 2012 and LEMA == 1 
and SOYBEAN==1 mean INTENSITY if WUA_YEAR <= 2012 and LEMA 
== 0 and SOYBEAN==1 mean INTENSITY if WUA_YEAR > 2012 and 
LEMA == 0 and SOYBEAN==1 

 
mean INTENSITY if WUA_YEAR <= 2012 and LEMA == 1 and 
WHEAT==1 mean INTENSITY if WUA_YEAR > 2012 and LEMA == 1 
and WHEAT==1 mean INTENSITY if WUA_YEAR <= 2012 and LEMA == 
0 and WHEAT==1 mean INTENSITY if WUA_YEAR > 2012 and LEMA 
== 0 and WHEAT==1 

 
mean INTENSITY if WUA_YEAR <= 2012 and LEMA == 1 and 
MULTIPLE_UNKNOWN==1 mean INTENSITY if WUA_YEAR > 2012 and LEMA == 1 
and MULTIPLE_UNKNOWN==1 mean INTENSITY if WUA_YEAR <= 2012 and LEMA 
== 0 and MULTIPLE_UNKNOWN==1 mean INTENSITY if WUA_YEAR > 2012 and 
LEMA == 0 and MULTIPLE_UNKNOWN==1 

 
mean ppt if WUA_YEAR <= 2012 and LEMA == 1 
mean ppt if WUA_YEAR > 2012 and LEMA == 1 
mean ppt if WUA_YEAR <= 2012 and LEMA == 0 
mean ppt if WUA_YEAR > 2012 and LEMA == 0 

 
* IRR_FLOOD IRR_DRIP IRR_PIVOT IRR_PIVOTDROP IRR_SPRINKLER 
gen flood_acres= ACRES_IRR*IRR_FLOOD 
gen pivotdrop_acres=ACRES_IRR*IRR_PIVOTDROP 
gen pivot_acres=ACRES_IRR*IRR_PIVOT 

 
mean flood_acres if WUA_YEAR <= 2012 and LEMA == 1 
mean flood_acres if WUA_YEAR > 2012 and LEMA == 1 
mean flood_acres if WUA_YEAR <= 2012 and LEMA == 0 
mean flood_acres if WUA_YEAR > 2012 and LEMA == 0 

 
mean pivotdrop_acres if WUA_YEAR <= 2012 and LEMA == 
1 mean pivotdrop_acres if WUA_YEAR > 2012 and LEMA == 
1 mean pivotdrop_acres if WUA_YEAR <= 2012 and LEMA 
== 0 mean pivotdrop_acres if WUA_YEAR > 2012 and LEMA 
== 0 

 
mean pivot_acres if WUA_YEAR <= 2012 and LEMA == 1 
mean pivot_acres if WUA_YEAR > 2012 and LEMA == 1 
mean pivot_acres if WUA_YEAR <= 2012 and LEMA == 0 
mean pivot_acres if WUA_YEAR > 2012 and LEMA == 0 

 
//Step 3: Marginal Estimates 

 
*Table 2: Preferred Model Fixed Effects regression estimates 

*Generate Farmer-Time Specific Variables 

egen f = group(WUAPERS_ID) 
egen FARMER = group(WUAPERS_ID WUA_YEAR) 
sort f 
set matsize 1500 
set emptycells drop 

 
* Total Extensive Margin 

 
xtreg lnACRES_IRR LEMA_EFFECT ppt ET0 i.FARMER i.WUA_YEAR, /// 
fe vce(cluster WR_ID) 

 
*Apply Log-Linear Correction 
nlcom ((exp(_b[LEMA_EFFECT]))-1)*100 
estimates store EXTENSIVE 
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* Total Intensive Margin 

 
xtreg lnINTENSITY LEMA_EFFECT ppt ET0 i.FARMER i.WUA_YEAR, /// 
fe vce(cluster WR_ID) 

 
*Apply Log-Linear Correction 
nlcom ((exp(_b[LEMA_EFFECT]))-1)*100 
estimates store INTENSIVE 

 
* Direct Intensive Margin (Crop Controls) 

 
xtreg lnINTENSITY LEMA_EFFECT ALFALFA CORN SORGHUM SOYBEAN WHEAT ppt ET0 /// 
i.FARMER i.WUA_YEAR, fe vce(cluster WR_ID) 

 
*Apply Log-Linear Correction 
nlcom ((exp(_b[LEMA_EFFECT]))-1)*100 
estimates store INTENSIVE_DIRECT_1 

 
estimates table EXTENSIVE INTENSIVE INTENSIVE_DIRECT_1 /// 
,star stats(N r2 r2_a) 

 
*Table 3: Preferred Model Fixed Effects regression estimates 

 
*Indirect Intensive Margin 

 
//(You can get the effect due to changes in cropping patterns by 
//taking the Total Intensive - Direct Intensive) 

 
*Total Marginal Effect 

 
xtreg lnAPPLIED_INCH LEMA_EFFECT i.FARMER i.WUA_YEAR ppt ET0, /// 
fe vce(cluster WR_ID) 

 
*Apply Log-Linear Correction 
nlcom ((exp(_b[LEMA_EFFECT]))-1)*100 
estimates store TOTAL 

 
//Step 4: Modification to consider disporportionate water use 

clear 
set more off 
use "..\DID_LEMA_Dataset_WR_PDIV.dta" 
keep if WUA_YEAR>=2009 
keep if LEMA ==1 

*Generate Farmer-Time Specific Variables 

egen f = group(WUAPERS_ID) 
egen FARMER = group(WUAPERS_ID WUA_YEAR) 
sort f 
set matsize 1500 
set emptycells drop 

 
*Count PDIV by Year and Irrigator ID (# of wells) 
gen A=PDIV_ID 

 
collapse (count)A, /// 

by(WUA_YEAR WUAPERS_ID) 
sort WUAPERS_ID WUA_YEAR 

 
merge 1:m WUA_YEAR WUAPERS_ID using "..\DID_LEMA_Dataset_WEATHER_WR.dta",/// 
keep(match using) 
drop _merge 

 
*Generate Large Well Dummy Variable 
gen LARGE= 0 
replace LARGE =1 if A>=2 and LEMA==1 
summ LARGE 
gen LEMA_LARGE = (LEMA_EFFECT*LARGE) 
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xtset WR_ID WUA_YEAR 
xtdescribe 

 
*Table 4: Disproportionate Fixed Effects 

*Generate Farmer-Time Specific Variables 

egen f = group(WUAPERS_ID) 
egen FARMER = group(WUAPERS_ID WUA_YEAR) 
sort f 
set matsize 1500 
set emptycells drop 

 
gen lnAPPLIED_INCH=ln(APPLIED_INCH) 
gen lnACRES_IRR=ln(ACRES_IRR) 
gen lnINTENSITY=ln(INTENSITY) 

 
xtreg lnAPPLIED_INCH LEMA_EFFECT LEMA_LARGE i.FARMER i.WUA_YEAR ppt ET0, /// 
fe vce(cluster WR_ID) 
*Apply Log-Linear Correction 
nlcom ((exp(_b[LEMA_EFFECT]))-1)*100 
nlcom ((exp(_b[LEMA_LARGE]))-1)*100 
estimates store L_TOTAL 

 
xtreg lnINTENSITY LEMA_EFFECT LEMA_LARGE i.FARMER i.WUA_YEAR ppt ET0, /// 
fe vce(cluster WR_ID) 
*Apply Log-Linear Correction 
nlcom ((exp(_b[LEMA_EFFECT]))-1)*100 
nlcom ((exp(_b[LEMA_LARGE]))-1)*100 
estimates store L_INTENSITY 

 
xtreg lnACRES_IRR LEMA_EFFECT LEMA_LARGE i.FARMER i.WUA_YEAR ppt ET0, /// 
fe vce(cluster WR_ID) 
*Apply Log-Linear Correction 

 
nlcom ((exp(_b[LEMA_EFFECT]))-1)*100 
nlcom ((exp(_b[LEMA_LARGE]))-1)*100 
estimates store L_ACRES_IRR 

 
estimates table L_TOTAL L_INTENSITY L_ACRES_IRR ,star stats(N r2 r2_a) 

 

//Step 5: Water Policy Event Study 

set more off 
clear 
use "..\DID_LEMA_Dataset_WEATHER_WR.dta" 
xtset WR_ID WUA_YEAR, yearly 
keep if WUA_YEAR>=2009 

*Generate Farmer-Time Specific Variables 

egen f = group(WUAPERS_ID) 
egen FARMER = group(WUAPERS_ID WUA_YEAR) 
sort f 
set matsize 1500 
set emptycells drop 
sort WR_ID WUA_YEAR 

 
gen lnAPPLIED_INCH=ln(APPLIED_INCH) 
gen lnACRES_IRR=ln(ACRES_IRR) 
gen lnINTENSITY=ln(INTENSITY) 
gen Policy_Event=0 

 
replace Policy_Event=1 if d.LEMA_EFFECT==1 
gen _2014=0 
replace _2014=1 if L1.Policy_Event==1 
gen _2012=0 
replace _2012=1 if F1.Policy_Event==1 
gen _2011=0 
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replace _2011=1 if F2.Policy_Event==1 
gen _2010=0 
replace _2010=1 if F3.Policy_Event==1 
gen _2009=0 
replace _2009=1 if F4.Policy_Event==1 

label var _2010 "2010" 

*Figure 9: Total Extensive and Total Intensive 
 

* Total Effect 
set scheme s2mono 
xtreg lnAPPLIED_INCH _2010 _2011 _2012 Policy_Event _2014 i.FARMER /// 
i.WUA_YEAR ppt ET0, fe vce(cluster WR_ID) 
margins, dydx (_2010 _2011 _2012 Policy_Event _2014) 
marginsplot, yline(0)   plotopts(connect(i)) /// 
xlabel(1 "2010" 2 "2011" 3 "2012" 4 "Policy Event" 5 "2014") /// 
xtitle("") ytitle("Relative Change in Water Use") title("Total Response")/// 
graphregion(color(white)) scale(1.25) ylabel(,nogrid) 
graph export "..\..\Dissertation\Dissertation\EventStudy\Total_1.pdf", 
replace 

 
* Total Extensive Margin 

 
xtreg lnACRES_IRR _2010 _2011 _2012 Policy_Event _2014 i.FARMER /// 
i.WUA_YEAR ppt ET0, fe vce(cluster WR_ID) 
margins, dydx ( _2010 _2011 _2012 Policy_Event _2014) 
marginsplot, yline(0)   plotopts(connect(i)) /// 
xlabel(1 "2010" 2 "2011" 3 "2012" 4 "Policy Event" 5 "2014") /// 
xtitle("") ytitle("Relative Change in Water Use") title 
("Extensive Margin Response") /// 
graphregion(color(white)) scale(1.25) ylabel(,nogrid) 
graph export "..\..\Dissertation\Dissertation\EventStudy\Extensive_1.pdf", 
replace 

 
* Total Intensive Margin 

 
xtreg lnINTENSITY _2010 _2011 _2012 Policy_Event _2014 i.FARMER /// 
i.WUA_YEAR ppt ET0, fe vce(cluster WR_ID) 
margins, dydx (_2010 _2011 _2012 Policy_Event _2014) 
marginsplot, yline(0)   plotopts(connect(i)) 
xlabel(1 "2010" 2 "2011" 3 "2012" 4 "Policy Event" 5 "2014") /// 
xtitle("") ytitle("Relative Change in Water Use") 
title("Total Intensive Margin Response") /// 
graphregion(color(white)) scale(1.25) ylabel(,nogrid) 
graph export "..\..\Dissertation\Dissertation\EventStudy\Intensive_1.pdf", 
replace 

 
* Direct Intensive Margin 

 
xtreg lnINTENSITY _2010 _2011 _2012 Policy_Event _2014 ALFALFA CORN /// 
SORGHUM SOYBEAN WHEAT i.FARMER i.WUA_YEAR ppt ET0, fe vce(cluster WR_ID) 
margins, dydx (_2010 _2011 _2012 Policy_Event _2014) 
marginsplot, yline(0)   plotopts(connect(i)) 
xlabel(1 "2010" 2 "2011" 3 "2012" 4 "Policy Event" 5 "2014") /// 
xtitle("") ytitle("Relative Change in Water Use") 
title("Direct Intensive Margin Response") /// 
graphregion(color(white)) scale(1.25) ylabel(,nogrid) 
replace 
graph export "..\..\Dissertation\Dissertation\EventStudy\ 
Intensive_Direct.pdf", replace 

 
//Step 6: Compare Estimates with alternative specifications 

 
*Table 4:Log (Total Effect) Applied Inches 

 
*The Standard D-I-D specification with no controls 
xtreg lnAPPLIED_INCH LEMA_EFFECT i.WUA_YEAR , fe vce(cluster WR_ID) 
*Apply Log-Linear Correction 
nlcom ((exp(_b[LEMA_EFFECT]))-1)*100 
estimates store DID 
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*Fixed Effects Model Without Farmer-Time Specific Controls 
xtreg lnAPPLIED_INCH LEMA_EFFECT ppt ET0 i.WUA_YEAR , fe vce(cluster WR_ID) 
*Apply Log-Linear Correction 
nlcom ((exp(_b[LEMA_EFFECT]))-1)*100 
estimates store FARMER 

 
*Fixed Effects Model Without Weather Controls 
xtreg lnAPPLIED_INCH LEMA_EFFECT i.FARMER i.WUA_YEAR, fe vce(cluster WR_ID) 
*Apply Log-Linear Correction 
nlcom ((exp(_b[LEMA_EFFECT]))-1)*100 
estimates store WEATHER 

 
*Fixed Effects Model As Specified 
xtreg lnAPPLIED_INCH LEMA_EFFECT ppt ET0 i.FARMER i.WUA_YEAR, /// 
fe vce(cluster WR_ID) 

 
*Apply Log-Linear Correction 
nlcom ((exp(_b[LEMA_EFFECT]))-1)*100 
estimates store NO_CORRECT 

 
estimates table DID FARMER WEATHER NO_CORRECT,star stats(N r2 r2_a) 

 
//Step 7: Falsification Tests 

 
*Table 9: Comparison of 5 Mile and 10 Mile (identical steps as LEMA and 5 Mile) 

*********************************(Still need to modify Weather merge)****** 
*Create 10 mile and 5 Mile Dataset 
clear 
set more off 
import delimited "..\dataAnalysis\Model and Output files\5 Mile PDIV\ 
Sheridan_LEMA_5Mile_Export_Output.csv" 
duplicates drop fpdiv_key, force 
generate FIVE_MILE = 1 
generate TEN_MILE = 0 
drop fid wrf_active right_type vcnty_code wr_num wr_qual wrf_status /// 
source s_umw priority fpv_active twp_dir rng_dir dwr_id feet_north /// 
feet_west qual_four qual_three qual_two qual_one fo_num basin_num /// 
basin_name gwmd_num cnty_abrev sua_code stream_num num_wells lot_number /// 
lot_qual1 lot_qual2 fpdiv_comm fpdiv_key wrf_key longitude latitude /// 
quant_id quant_unit qstor_ind rate_id rate_unit rstor_ind last_name /// 
first_name wris_date file_id auth_quant add_quant auth_rate add_rate /// 
sect rng twp grp_wr_cnt grp_pd_cnt 
generate WR_ID = wr_id 
drop wr_id 
generate PDIV_ID = pdiv_id 
drop pdiv_id 
generate UMW_CODE = umw_code 
drop umw_code 
keep if UMW_CODE=="IRR" 
egen unique = concat (WR_ID PDIV_ID) 
duplicates report unique 
save "..\dataAnalysis\Model and Output files\5 Mile PDIV\ 
Cleaned_10_Mile_5Mile_Export_Output.dta", replace 
clear 
import delimited "..\dataRaw\PDIV_10Mile.csv", 
duplicates drop fpdiv_key, force 
generate TEN_MILE = 1 
generate FIVE_MILE = 0 
drop fid wrf_active right_type vcnty_code wr_num wr_qual wrf_status /// 
source s_umw priority fpv_active twp_dir rng_dir dwr_id feet_north /// 
feet_west qual_four qual_three qual_two qual_one fo_num basin_num /// 
basin_name gwmd_num cnty_abrev sua_code stream_num num_wells lot_number /// 
lot_qual1 lot_qual2 fpdiv_comm fpdiv_key wrf_key longitude latitude /// 
quant_id quant_unit qstor_ind rate_id rate_unit rstor_ind last_name /// 
first_name wris_date file_id auth_quant add_quant auth_rate add_rate /// 
sect rng twp grp_wr_cnt grp_pd_cnt 
destring wr_id, generate(WR_ID) ignore(",") float 
drop wr_id 
destring pdiv_id, generate(PDIV_ID) ignore(",") float 
drop pdiv_id 
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destring wr_group, generate(WR_GROUP) ignore(",") float 
drop wr_group 
generate UMW_CODE = umw_code 
drop umw_code 
keep if UMW_CODE=="IRR" 
egen unique = concat (WR_ID PDIV_ID) 
duplicates report unique 
save "..\dataAnalysis\Model and Output files\5 Mile PDIV\ 
Cleaned_10_MILE_Export_Output.dta", replace 
append using "..\dataAnalysis\Model and Output files\ 
5 Mile PDIV\Cleaned_10_Mile_5Mile_Export_Output.dta", force 
duplicates report unique 
generate TACRES_IRR = tacres_irr 

 
drop tacres_irr 
generate NACRES_IRR = nacres_irr 
drop nacres_irr 
duplicates report WR_ID PDIV_ID 
duplicates tag WR_ID PDIV_ID, gen(dup) 
list if dup==1 
drop if dup==1 and FIVE_MILE==1 
duplicates report WR_ID PDIV_ID 
drop dup 
save "..\dataAnalysis\Model and Output files\5 Mile PDIV\ 
Cleaned_10_Mile_5Mile_COMPLETE.dta", replace 
clear 
use "..\dataRaw\Cleaned_Water_Use_1991_2014_Export_Output.dta", clear 
keep if CNTY_ABREV=="TH" | CNTY_ABREV=="SH" 
keep if UMW_CODE == "IRR" 
duplicates report unique WUA_YEAR 
duplicates drop 
merge m:1 WR_ID PDIV_ID UMW_CODE using "..\dataAnalysis\ 
Model and Output files\5 Mile PDIV\Cleaned_10_Mile_5Mile_COMPLETE.dta", 
keep(match) force 
save "..\dataRaw\Cleaned_Water_Use_1991_2014_With10Mileand5Mile.dta", 
replace drop if TEN_MILE == . 
drop if FIVE_MILE == . 
sort WUA_YEAR 
gen postLEMA = 0 
replace postLEMA = 1 if WUA_YEAR >= 2013 
generate LEMA_EFFECT = postLEMA*FIVE_MILE 
sort WR_ID WUA_YEAR 
gen ALFALFA=0 
replace ALFALFA=. if CROP_CODE==. 
replace ALFALFA=1 if CROP_CODE==1 
replace ALFALFA=1/2 if CROP_CODE==18 | CROP_CODE==19 | CROP_CODE==20 | /// 
CROP_CODE==21 | CROP_CODE==22 
replace ALFALFA=1/3 if CROP_CODE==33 | CROP_CODE==34 | CROP_CODE==35 | /// 
CROP_CODE==36 | CROP_CODE==37 | CROP_CODE==38 | CROP_CODE==39 | /// 
CROP_CODE==40 | CROP_CODE==41 | CROP_CODE==42 
replace ALFALFA=1/4 if CROP_CODE==53 | CROP_CODE==54 | CROP_CODE==55 | /// 
CROP_CODE==56 | CROP_CODE==57 | CROP_CODE==58 | CROP_CODE==59 | /// 
CROP_CODE==60 | CROP_CODE==61 | CROP_CODE==62 
gen CORN=0 
replace CORN=. if CROP_CODE==. 
replace CORN=1 if CROP_CODE==2 
replace CORN=1/2 if CROP_CODE==18 | CROP_CODE==23 | CROP_CODE==24 | /// 
CROP_CODE==25 | CROP_CODE==26 
replace CORN=1/3 if CROP_CODE==33 | CROP_CODE==34 | CROP_CODE==35 | /// 
CROP_CODE==36 | CROP_CODE==43 | CROP_CODE==44 | CROP_CODE==45 | /// 
CROP_CODE==46 | CROP_CODE==47 | CROP_CODE==48 
replace CORN=1/4 if CROP_CODE==53 | CROP_CODE==54 | CROP_CODE==55 | /// 
CROP_CODE==56 | CROP_CODE==57 | CROP_CODE==58 | CROP_CODE==63 | /// 
CROP_CODE==64 | CROP_CODE==65 | CROP_CODE==66 
gen SORGHUM=0 
replace SORGHUM=. if CROP_CODE==. 
replace SORGHUM=1 if CROP_CODE==3 
replace SORGHUM=1/2 if CROP_CODE==19 | CROP_CODE==23 | CROP_CODE==27 | /// 
CROP_CODE==28 | CROP_CODE==29 
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replace SORGHUM=1/3 if CROP_CODE==33 | CROP_CODE==37 | CROP_CODE==38 | /// 
CROP_CODE==39 | CROP_CODE==43 | CROP_CODE==44 | CROP_CODE==45 | /// 
CROP_CODE==49 | CROP_CODE==50 | CROP_CODE==51 
replace SORGHUM=1/4 if CROP_CODE==53 | CROP_CODE==54 | CROP_CODE==55 | /// 
CROP_CODE==59 | CROP_CODE==60 | CROP_CODE==61 | CROP_CODE==63 | /// 
CROP_CODE==64 | CROP_CODE==65 | CROP_CODE==67 
gen SOYBEAN=0 
replace SOYBEAN=. if CROP_CODE==. 
replace SOYBEAN=1 if CROP_CODE==4 
replace SOYBEAN=1/2 if CROP_CODE==20 | CROP_CODE==24 | CROP_CODE==27 | /// 
CROP_CODE==30 | CROP_CODE==31 
replace SOYBEAN=1/3 if CROP_CODE==34 | CROP_CODE==37 | CROP_CODE==40 | /// 
CROP_CODE==41 | CROP_CODE==43 | CROP_CODE==46 | CROP_CODE==47 | /// 
CROP_CODE==49 | CROP_CODE==50 | CROP_CODE==52 
replace SOYBEAN=1/4 if CROP_CODE==53 | CROP_CODE==56 | CROP_CODE==57 | /// 
CROP_CODE==59 | CROP_CODE==60 | CROP_CODE==62 | CROP_CODE==63 | /// 
CROP_CODE==64 | CROP_CODE==66 | CROP_CODE==67 
gen WHEAT=0 
replace WHEAT=. if CROP_CODE==. 
replace WHEAT=1 if CROP_CODE==5 
replace WHEAT=1/2 if CROP_CODE==21 | CROP_CODE==25 | CROP_CODE==28 | /// 
CROP_CODE==30 | CROP_CODE==32 
replace WHEAT=1/3 if CROP_CODE==35 | CROP_CODE==38 | CROP_CODE==40 | /// 
CROP_CODE==42 | CROP_CODE==44 | CROP_CODE==46 | CROP_CODE==48 | /// 
CROP_CODE==49 | CROP_CODE==51 | CROP_CODE==52 
replace WHEAT=1/4 if CROP_CODE==54 | CROP_CODE==56 | CROP_CODE==58 | /// 
CROP_CODE==59 | CROP_CODE==61 | CROP_CODE==62 | CROP_CODE==63 | /// 
CROP_CODE==65 | CROP_CODE==66 | CROP_CODE==67 
gen MULTIPLE_UNKNOWN=0 
replace MULTIPLE_UNKNOWN=. if CROP_CODE==. 
replace MULTIPLE_UNKNOWN=1 if CROP_CODE==16 | CROP_CODE==17 
gen OTHER_CROP=0 
replace OTHER_CROP=. if CROP_CODE==. 
replace OTHER_CROP=1 if CROP_CODE==6 | CROP_CODE==7 | CROP_CODE==8 | /// 
CROP_CODE==9 | CROP_CODE==10 | CROP_CODE==11 | CROP_CODE==12 | /// 
CROP_CODE==13 | CROP_CODE==14 | CROP_CODE==15 | CROP_CODE==68 | /// 
CROP_CODE==69 | CROP_CODE==70 | CROP_CODE==71 | CROP_CODE==72 | /// 
CROP_CODE==73 | CROP_CODE==74 | CROP_CODE==75 | CROP_CODE==76 | /// 
CROP_CODE==77 | CROP_CODE==78 
 
 
generate IRR_FLOOD = 0 
replace IRR_FLOOD = . if TYPE_SYSTEM == . 
replace IRR_FLOOD = 1 if TYPE_SYSTEM == 1 
generate IRR_DRIP = 0 
replace IRR_DRIP = . if TYPE_SYSTEM == . 
replace IRR_DRIP = 1 if TYPE_SYSTEM == 2 
generate IRR_PIVOT = 0 
replace IRR_PIVOT = . if TYPE_SYSTEM == . 
replace IRR_PIVOT = 1 if TYPE_SYSTEM == 3 
generate IRR_PIVOTDROP = 0 
replace IRR_PIVOTDROP = . if TYPE_SYSTEM == . 
replace IRR_PIVOTDROP = 1 if TYPE_SYSTEM == 4 
generate IRR_SPRINKLER = 0 
replace IRR_SPRINKLER = . if TYPE_SYSTEM == . 
replace IRR_SPRINKLER = 1 if TYPE_SYSTEM == 5 
generate IRR_PIVOTFLOOD = 0 
replace IRR_PIVOTFLOOD = . if TYPE_SYSTEM == . 
replace IRR_PIVOTFLOOD = 1 if TYPE_SYSTEM == 6 
generate IRR_DRIPOTHER = 0 
replace IRR_DRIPOTHER = . if TYPE_SYSTEM == . 
replace IRR_DRIPOTHER = 1 if TYPE_SYSTEM == 7 
generate IRR_OTHER = 0 
replace IRR_OTHER = . if TYPE_SYSTEM == . 
replace IRR_OTHER = 1 if TYPE_SYSTEM == 8 

 
collapse (rawsum) AF_USED ACRES_IRR (mean) ALFALFA CORN SORGHUM SOYBEAN /// 
WHEAT MULTIPLE_UNKNOWN OTHER_CROP IRR_FLOOD IRR_DRIP IRR_PIVOT /// 
IRR_PIVOTDROP IRR_SPRINKLER IRR_PIVOTFLOOD IRR_DRIPOTHER IRR_OTHER /// 
TEN_MILE FIVE_MILE postLEMA LEMA_EFFECT [aweight=ACRES_IRR], /// 

by(WUA_YEAR WR_ID WUAPERS_ID TACRES_IRR NACRES_IRR) 
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sort WR_ID WUA_YEAR 
gen APPLIED_INCH = (AF_USED*12) 
gen INTENSITY = (APPLIED_INCH/ACRES_IRR) 
duplicates report WR_ID WUA_YEAR 
duplicates drop WR_ID WUA_YEAR, force 
merge 1:m WUA_YEAR WR_ID using "..\Water_Use_WEATHER_WR.dta", /// 
keep(match) 
collapse (rawsum) AF_USED ACRES_IRR (mean) ALFALFA CORN SORGHUM SOYBEAN /// 
WHEAT MULTIPLE_UNKNOWN OTHER_CROP IRR_FLOOD IRR_DRIP IRR_PIVOT /// 
IRR_PIVOTDROP IRR_SPRINKLER IRR_PIVOTFLOOD IRR_DRIPOTHER IRR_OTHER /// 

 
TEN_MILE FIVE_MILE postLEMA LEMA_EFFECT ppt ET0[aweight=ACRES_IRR], /// 

by(WUA_YEAR WR_ID WUAPERS_ID TACRES_IRR NACRES_IRR) 
sort WR_ID WUA_YEAR 
gen APPLIED_INCH = (AF_USED*12) 
gen INTENSITY = (APPLIED_INCH/ACRES_IRR) 
duplicates report WR_ID WUA_YEAR 

 
*Final 10 Mile Dataset for Analysis (Dataset 5) 

 
*********************************************  
save "..\DID_10MILE_Dataset.dta", replace 
clear 

********************************************* 

*Fixed Effects Model at the Extensive and Intensive Margins 

use "..\DID_10MILE_Dataset.dta" 
xtset WR_ID WUA_YEAR, yearly 

 
gen lnAPPLIED_INCH=ln(APPLIED_INCH) 
gen lnACRES_IRR=ln(ACRES_IRR) 
gen lnINTENSITY=ln(INTENSITY) 

 
egen f = group(WUAPERS_ID) 
egen FARMER = group(WUAPERS_ID WUA_YEAR) 
sort f 
set matsize 1500 
set emptycells drop 

 
* Total Extensive Margin 
xtreg lnACRES_IRR LEMA_EFFECT ppt ET0 i.FARMER i.WUA_YEAR, /// 
fe vce(cluster WR_ID) 
*Apply Log-Linear Correction 
nlcom ((exp(_b[LEMA_EFFECT]))-1)*100 
estimates store EXTENSIVE 

 
* Total Intensive Margin 
xtreg lnINTENSITY LEMA_EFFECT ppt ET0 i.FARMER i.WUA_YEAR, /// 
fe vce(cluster WR_ID) 
*Apply Log-Linear Correction 
nlcom ((exp(_b[LEMA_EFFECT]))-1)*100 
estimates store INTENSIVE 

 
* Direct Intensive Margin (Crop Controls) 
xtreg lnINTENSITY LEMA_EFFECT ALFALFA CORN SORGHUM SOYBEAN WHEAT ppt ET0 /// 
i.FARMER i.WUA_YEAR, fe vce(cluster WR_ID) 
*Apply Log-Linear Correction 
nlcom ((exp(_b[LEMA_EFFECT]))-1)*100 
estimates store INTENSIVE_DIRECT_1 

 
* Direct Intensive Margin (Crop and System Controls) 
xtreg lnINTENSITY LEMA_EFFECT ALFALFA CORN SORGHUM SOYBEAN /// 
WHEAT IRR_FLOOD IRR_DRIP IRR_PIVOT IRR_PIVOTDROP IRR_SPRINKLER ppt ET0 /// 
IRR_PIVOTFLOOD IRR_DRIPOTHER IRR_OTHER /// 
i.FARMER i.WUA_YEAR, fe vce(cluster WR_ID) 
*Apply Log-Linear Correction 
nlcom ((exp(_b[LEMA_EFFECT]))-1)*100 
estimates store INTENSIVE_DIRECT_2 
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estimates table EXTENSIVE INTENSIVE INTENSIVE_DIRECT_1 /// 
INTENSIVE_DIRECT_2,star stats(N r2 r2_a) 

 
*Total Marginal Effect 
xtreg lnAPPLIED_INCH LEMA_EFFECT i.FARMER i.WUA_YEAR ppt ET0, /// 
fe vce(cluster WR_ID) 
*Apply Log-Linear Correction 
nlcom ((exp(_b[LEMA_EFFECT]))-1)*100 

estimates store TOTAL 

*False LEMA effect in 2011 
clear 
set more off 

 
use "..\DID_LEMA_Dataset_WEATHER_WR.dta" //(Dataset 4) 
xtset WR_ID WUA_YEAR, yearly 
keep if WUA_YEAR<=2012 

 
gen postFALSE = 0 
replace postFALSE = 1 if WUA_YEAR >= 2011 
generate FALSE_EFFECT = postFALSE*LEMA 

 
gen lnAPPLIED_INCH=ln(APPLIED_INCH) 
gen lnACRES_IRR=ln(ACRES_IRR) 
gen lnINTENSITY=ln(INTENSITY) 

 
egen f = group(WUAPERS_ID) 
egen FARMER = group(WUAPERS_ID WUA_YEAR) 
sort f 
set matsize 1500 
set emptycells drop 
sort WUA_YEAR 

 
xtreg lnAPPLIED_INCH FALSE_EFFECT i.FARMER i.WUA_YEAR ppt ET0, /// 
fe vce(cluster WR_ID) 
*Apply Log-Linear Correction 
nlcom ((exp(_b[FALSE_EFFECT]))-1)*100 
estimates store APPLIED_2 

 
xtreg lnACRES_IRR FALSE_EFFECT i.FARMER i.WUA_YEAR ppt ET0, /// 
fe vce(cluster WR_ID) 
*Apply Log-Linear Correction 
nlcom ((exp(_b[FALSE_EFFECT]))-1)*100 
estimates store ACRES_2 

 
xtreg lnINTENSITY FALSE_EFFECT i.FARMER i.WUA_YEAR ppt ET0, /// 
fe vce(cluster WR_ID) 
*Apply Log-Linear Correction 
nlcom ((exp(_b[FALSE_EFFECT]))-1)*100 
estimates store INTENSITY_2 

 
xtreg lnINTENSITY FALSE_EFFECT ALFALFA CORN SORGHUM SOYBEAN WHEAT /// 
i.FARMER i.WUA_YEAR ppt ET0, /// 
fe vce(cluster WR_ID) 
*Apply Log-Linear Correction 
nlcom ((exp(_b[FALSE_EFFECT]))-1)*100 
estimates store INTENSITY_22 

 
estimates table APPLIED_2 ACRES_2 INTENSITY_2 INTENSITY_22, 
star stats(N r2 r2_a) 

 
**************************************************** 
* Bootstrap standard errors were estimated on server 
**************************************************** 

log close 

 
******************************************************************************** 
******************************************************************************** 

***Analysis of the Sheridan 6 LEMA inside/outside 5 Mile D-I-D Model*** 
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*****************Ch6: Estimates of Effects on Inputs******************* 
******************************************************************************** 
//////////////////////////////////////////////////////////////////////////////// 
clear 
set more off 
capture log close 
log using "DID_INPUTS.txt", text replace 

 
******************************************************************************** 

//INPUT EXPENDITURES// 
******************************************************************************** 
//Step 1: Bring in Table of Estimated Input Expenditures 
import excel "../DID_INPUTS/Input Expenditure Table by Crop Type.xlsx", /// 
sheet("Sheet1") firstrow 

 
*Final Input Expenditure dataset (Dataset 6) 

 
**************************************************** 
 save "../DID_INPUTS/DID_INPUTS.dta", replace clear 
**************************************************** 

 
      //Input Expenditures//  
// Crop Type Fertilizer Herbicide Insecticide Seed Bushels  
// Corn 84.18 48.95 14.57 113.92 225.00  
// Soybeans 18.83 34.95   55.50 60.00  
// Wheat 38.74 6.31   18.00 65.00  
// Sorghum 60.93 41.25   14.92 160.00  
// Other 49.84 23.78   16.46 112.50  
******************************************************************************** 

//ANALYSIS// 
******************************************************************************** 

 
clear 
use "..\DID_LEMA_Dataset_WEATHER_WR.dta" //(Dataset 4) 

xtset WR_ID WUA_YEAR, yearly 
keep if WUA_YEAR>=2009 
xtdescribe 

//Step 1: Generate Input Price Variables 

gen FERTILIZER = 0 
replace FERTILIZER = 84.18      if CORN == 1 
replace FERTILIZER = 18.83      if SOYBEAN == 1 
replace FERTILIZER = 38.74  if WHEAT == 1 
replace FERTILIZER = 41.25  if SORGHUM == 1 
replace FERTILIZER = 23.78  if OTHER_CROP == 1 

 
gen HERBICIDE = 0 
replace HERBICIDE = 48.95       if CORN == 1 
replace HERBICIDE = 34.95       if SOYBEAN == 1 
replace HERBICIDE = 6.31        if WHEAT == 1 
replace HERBICIDE = 60.93       if SORGHUM == 1 
replace HERBICIDE = 49.84       if OTHER_CROP == 1 

 
gen INSECTICIDE 
replace INSECTICIDE = 14.5      if CORN == 1 
replace INSECTICIDE = 0         if SOYBEAN == 1 
replace INSECTICIDE = 0         if WHEAT == 1 
replace INSECTICIDE = 0         if SORGHUM == 1 
replace INSECTICIDE = 0         if OTHER_CROP == 1 

 
gen SEED = 0 
replace SEED = 113.92           if CORN == 1 
replace SEED = 55.50             if SOYBEAN == 1 
replace SEED = 18.00             if WHEAT == 1 
replace SEED = 14.92             if SORGHUM == 1 
replace SEED = 16.46             if OTHER_CROP == 1 

 
//Step 2: Generate Share Input Variables 
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*Total FERTILIZER EXPENDITURE 

gen CORN_FERTILIZER = CORN*FERTILIZER 
gen SOYBEAN_FERTILIZER = SOYBEAN*FERTILIZER gen 
WHEAT_FERTILIZER = WHEAT*FERTILIZER 
gen SORGHUM_FERTILIZER = SORGHUM*FERTILIZER 
gen ALFALFA_FERTILIZER = OTHER_CROP*FERTILIZER 
gen OTHER_CROP_FERTILIZER = OTHER_CROP*FERTILIZER 

 
*Total HERBICIDE EXPENDITURE 

gen CORN_HERBICIDE = CORN*HERBICIDE 
gen SOYBEAN_HERBICIDE = SOYBEAN*HERBICIDE gen 
WHEAT_HERBICIDE = WHEAT*HERBICIDE 
gen SORGHUM_HERBICIDE = SORGHUM*HERBICIDE 
gen ALFALFA_HERBICIDE = OTHER_CROP*HERBICIDE 
gen OTHER_CROP_HERBICIDE = OTHER_CROP*HERBICIDE 
 

 
*Total INSECTICIDE EXPENDITURE 

gen CORN_INSECTICIDE = CORN*INSECTICIDE 
gen SOYBEAN_INSECTICIDE = SOYBEAN*INSECTICIDE gen 
WHEAT_INSECTICIDE = WHEAT*INSECTICIDE 
gen SORGHUM_INSECTICIDE = SORGHUM*INSECTICIDE 
gen ALFALFA_INSECTICIDE = OTHER_CROP*INSECTICIDE 
gen OTHER_CROP_INSECTICIDE = OTHER_CROP*INSECTICIDE 

 
*Total SEED EXPENDITURE 

gen CORN_SEED = CORN*SEED 
gen SOYBEAN_SEED = SOYBEAN*SEED gen WHEAT_SEED 
= WHEAT*SEED 
gen SORGHUM_SEED = SORGHUM*SEED 
gen ALFALFA_SEED = OTHER_CROP*SEED 
gen OTHER_CROP_SEED = OTHER_CROP*SEED 
 
 

 
*Final Acreage Input Expenditure dataset (Dataset 7) 

 
save "..\DID_LEMA_Dataset_WEATHER_WR_INPUTS.dta", replace clear 

 
******************************************************************************** 

//Analysis// 
******************************************************************************** clear 
use "..\DID_LEMA_Dataset_WEATHER_WR_INPUTS.dta" //(Dataset 7) xtset WR_ID 

WUA_YEAR, yearly 
keep if WUA_YEAR>=2009 xtdescribe 

 
//Step 3: Visual Analysis (D-I-D) of Share of Acreage Changes 
**Share Acres** 
*CORN 
 
mean CORN   if WUA_YEAR <= 2012 and LEMA == 1 
mean CORN   if WUA_YEAR >  2012 and LEMA == 1  
mean CORN   if WUA_YEAR <= 2012 and LEMA == 0 
mean CORN   if WUA_YEAR >  2012 and LEMA == 0 
 
 
*SOYBEAN 
mean SOYBEAN if WUA_YEAR <= 2012 and LEMA == 1  
mean SOYBEAN if WUA_YEAR >  2012 and LEMA == 1  
mean SOYBEAN if WUA_YEAR <= 2012 and LEMA == 0  
mean SOYBEAN  if WUA_YEAR >  2012 and LEMA == 0 
 
*WHEAT 
mean WHEAT  if WUA_YEAR <= 2012 and LEMA == 1 
mean WHEAT  if WUA_YEAR >  2012 and LEMA == 1  
mean WHEAT  if WUA_YEAR <= 2012 and LEMA == 0 
mean WHEAT  if WUA_YEAR >  2012 and LEMA == 0 
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*SORGHUM 
mean SORGHUM if WUA_YEAR <= 2012 and LEMA == 1  
mean SORGHUM if WUA_YEAR >  2012 and LEMA == 1  
mean SORGHUM if WUA_YEAR <= 2012 and LEMA == 0  
mean SORGHUM if WUA_YEAR >  2012 and LEMA == 0 
 
*ALFALFA 
mean ALFALFA if WUA_YEAR <= 2012 and LEMA == 1  
mean ALFALFA if WUA_YEAR >  2012 and LEMA == 1  
mean ALFALFA if WUA_YEAR <= 2012 and LEMA == 0  
mean ALFALFA if WUA_YEAR >  2012 and LEMA == 0 
 
*OTHER 
mean OTHER_CROP if WUA_YEAR <= 2012 and LEMA == 1  
mean OTHER_CROP if WUA_YEAR >  2012 and LEMA == 1  
mean OTHER_CROP if WUA_YEAR <= 2012 and LEMA == 0  
mean OTHER_CROP if WUA_YEAR >  2012 and LEMA == 0 
 
*Generate Farmer-Time Specific Variables 

 
egen f = group(WUAPERS_ID) 
egen FARMER = group(WUAPERS_ID WUA_YEAR) sort f 
set matsize 1500 
set emptycells drop 

 
* Share Effects 

 
*CORN 
xtreg CORN LEMA_EFFECT ppt ET0 i.FARMER i.WUA_YEAR, /// fe vce(cluster 
WR_ID) 
summarize CORN_FERTILIZER CORN_HERBICIDE CORN_INSECTICIDE CORN_SEED 

 
*SOYBEAN 
xtreg SOYBEAN LEMA_EFFECT ppt ET0 i.FARMER i.WUA_YEAR, /// 
fe vce(cluster WR_ID) 
summarize SOYBEAN_FERTILIZER SOYBEAN_HERBICIDE /// SOYBEAN_SEED 

 
*WHEAT 
xtreg WHEAT LEMA_EFFECT ppt ET0 i.FARMER i.WUA_YEAR, /// fe 
vce(cluster WR_ID) 
summarize WHEAT_FERTILIZER WHEAT_HERBICIDE WHEAT_INSECTICIDE WHEAT_SEED 

 
 
*SORGHUM 
xtreg SORGHUM LEMA_EFFECT ppt ET0 i.FARMER i.WUA_YEAR, /// 
fe vce(cluster WR_ID) 
summarize SORGHUM_FERTILIZER SORGHUM_HERBICIDE SORGHUM_INSECTICIDE /// SORGHUM_SEED 
 
*ALFALFA 
xtreg ALFALFA LEMA_EFFECT ppt ET0 i.FARMER i.WUA_YEAR, /// 
fe vce(cluster WR_ID) 
summarize ALFALFA_FERTILIZER ALFALFA_HERBICIDE ALFALFA_INSECTICIDE /// ALFALFA_SEED 

 
*OTHER 
xtreg OTHER_CROP LEMA_EFFECT ppt ET0 i.FARMER i.WUA_YEAR, /// 
fe vce(cluster WR_ID) 
summarize OTHER_CROP_FERTILIZER OTHER_CROP_HERBICIDE /// 
OTHER_CROP_INSECTICIDE OTHER_CROP_SEED 

 
* No farmer-time fixed effects 

 
*CORN 
xtreg CORN LEMA_EFFECT ppt ET0 i.WUA_YEAR, /// fe 
vce(cluster WR_ID) 
summarize CORN_FERTILIZER CORN_HERBICIDE CORN_INSECTICIDE CORN_SEED 

 
*SOYBEAN 
xtreg SOYBEAN LEMA_EFFECT ppt ET0 i.WUA_YEAR, /// fe vce(cluster 
WR_ID) 



121 

summarize SOYBEAN_FERTILIZER SOYBEAN_HERBICIDE /// SOYBEAN_SEED 
 

*WHEAT 
xtreg WHEAT LEMA_EFFECT ppt ET0 i.WUA_YEAR, /// fe vce(cluster 
WR_ID) 
summarize WHEAT_FERTILIZER WHEAT_HERBICIDE WHEAT_INSECTICIDE WHEAT_SEED 

 
*SORGHUM 
xtreg SORGHUM LEMA_EFFECT ppt ET0 i.WUA_YEAR, /// fe vce(cluster 
WR_ID) 
summarize SORGHUM_FERTILIZER SORGHUM_HERBICIDE SORGHUM_INSECTICIDE /// SORGHUM_SEED 
 
*ALFALFA 
xtreg ALFALFA LEMA_EFFECT ppt ET0 i.WUA_YEAR, /// fe vce(cluster WR_ID) 
summarize ALFALFA_FERTILIZER ALFALFA_HERBICIDE ALFALFA_INSECTICIDE /// ALFALFA_SEED 

 
*OTHER 
xtreg OTHER_CROP LEMA_EFFECT ppt ET0 i.WUA_YEAR, /// fe vce(cluster 
WR_ID) 
summarize OTHER_CROP_FERTILIZER OTHER_CROP_HERBICIDE /// 
OTHER_CROP_INSECTICIDE OTHER_CROP_SEED 

 
 
log close 

 
******************************************************************************** 

***Analysis of the Sheridan 6 LEMA inside/outside 5 Mile D-I-D Model*** 
*****************Ch8: Estimates of Effects on Yields******************* 

******************************************************************************** 
//////////////////////////////////////////////////////////////////////////////// clear 
set more off capture log close 
log using "DID_YIELDS.txt", text replace 
******************************************************************************** 

//ESTIMATE NONLINEAR FUNCTIONS// 
******************************************************************************** 

 
//Step 1: Import Stone Yield Simulation Data 

 
*CORN 
import delimited "..\DID_YIELDS\CORN_STONE.csv", clear //(Dataset 8) reg yield 
c.netirrigationin##c.netirrigationin c.precip##c.precip c.netirrigationin#c.precip 
predict yield_hat 

 
twoway (scatter yield netirrigationin ) /// 

(line yield_hat netirrigationin if precip==11) /// (line yield_hat 
netirrigationin if precip==12) /// (line yield_hat 
netirrigationin if precip==13) /// (line yield_hat 
netirrigationin if precip==14) /// (line yield_hat 
netirrigationin if precip==15) /// (line yield_hat 
netirrigationin if precip==16) /// (line yield_hat 
netirrigationin if precip==17) /// (line yield_hat 
netirrigationin if precip==18) /// (line yield_hat 
netirrigationin if precip==19) /// (line yield_hat 
netirrigationin if precip==20) /// 
(line yield_hat netirrigationin if precip==21), legend(off) /// xtitle("Net 
Irrigation (in)") ytitle("Corn Yield (bu/acre)") graphregion(color(white)) 

 
graph export "corn_yield_function.png", replace 

 
* Show regression lines outside of original data replace precip=24 
if precip==11 
replace precip=27 if precip==12 replace 
precip=31 if precip==13 drop if precip<=21 
drop yield_hat predict yield_hat 
twoway (line yield_hat netirrigationin if precip==24) /// (line 

yield_hat netirrigationin if precip==27) /// 
(line yield_hat netirrigationin if precip==31), legend(off) /// xtitle("Net 
Irrigation (in)") ytitle("Corn Yield (bu/acre)") 

 
clear 
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use "..\DID_LEMA_Dataset_WEATHER_WR.dta", clear //(Dataset 4) xtset WR_ID 
WUA_YEAR, yearly 
keep if WUA_YEAR>=2009 

* Net Irrigation is the Intensity times the efficiency gen 
netirrigationin=INTENSITY*0.9 
* Rename preciptitation so that it matches yield regression ren ppt 
precip 

 
predict CORN_YIELD if CORN==1 summ 
CORN_YIELD, detail 

 
scatter CORN_YIELD INTENSITY if CORN==1 
* drop outliers 
summ INTENSITY if CORN==1, detail drop if 
INTENSITY>28 and CORN==1 
scatter CORN_YIELD INTENSITY if CORN==1 

 
save "..\DID_YIELDS\DID_LEMA_Dataset_WEATHER_WR_YIELDS.dta", replace 

 
 
*SOYBEAN 
import delimited "..\DID_YIELDS\SOYBEAN_STONE.csv", clear 
reg yield c.netirrigationin##c.netirrigationin c.precip##c.precip 
c.netirrigationin#c.precip 
predict yield_hat 

 
twoway (scatter yield netirrigationin ) /// 

(line yield_hat netirrigationin if precip==11) /// (line yield_hat 
netirrigationin if precip==12) /// (line yield_hat 
netirrigationin if precip==13) /// (line yield_hat 
netirrigationin if precip==14) /// (line yield_hat 
netirrigationin if precip==15) /// (line yield_hat 
netirrigationin if precip==16) /// (line yield_hat 
netirrigationin if precip==17) /// (line yield_hat 
netirrigationin if precip==18) /// (line yield_hat 
netirrigationin if precip==19) /// (line yield_hat 
netirrigationin if precip==20) /// 
(line yield_hat netirrigationin if precip==21), legend(off) /// xtitle("Net 
Irrigation (in)") ytitle("Soybean Yield (bu/acre)") graphregion(color(white)) 

 
graph export "soybean_yield_function.png", replace 

 
* Show regression lines outside of original data replace precip=24 
if precip==11 
replace precip=27 if precip==12 replace 
precip=31 if precip==13 drop if precip<=21 
drop yield_hat predict yield_hat 
twoway (line yield_hat netirrigationin if precip==24) /// (line 

yield_hat netirrigationin if precip==27) /// 
(line yield_hat netirrigationin if precip==31), legend(off) /// xtitle("Net 
Irrigation (in)") ytitle("Soybean Yield (bu/acre)") 

 
clear 
use "..\DID_YIELDS\DID_LEMA_Dataset_WEATHER_WR_YIELDS.dta" 

 
predict SOYBEAN_YIELD if SOYBEAN==1 summ 
SOYBEAN_YIELD, detail 

 
scatter SOYBEAN_YIELD INTENSITY if SOYBEAN==1 
* drop outliers 
summ INTENSITY if SOYBEAN==1, detail drop if 
INTENSITY>24 and SOYBEAN==1 
scatter SOYBEAN_YIELD INTENSITY if SOYBEAN==1 

 
*Final Water Use Yield Dataset (Dataset 9) 

 
*******************************************************  
save "..\DID_YIELDS\DID_LEMA_Dataset_WEATHER_WR_YIELDS.dta", replace 

  ******************************************************* 
 
******************************************************************************** 
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//ANALYSIS// 
********************************************************************************  
 
clear 
use "..\DID_YIELDS\DID_LEMA_Dataset_WEATHER_WR_YIELDS.dta" //(Dataset 9) xtset WR_ID 

WUA_YEAR, yearly 
keep if WUA_YEAR>=2009 xtdescribe 

 
gen ln_CORN_YIELD=ln(CORN_YIELD) 
gen ln_SOYBEAN_YIELD=ln(SOYBEAN_YIELD) 

 
//Step 1: Visual Analysis (D-I-D) 
 

*CORN 
mean CORN_YIELD  if WUA_YEAR <= 2012 and LEMA == 1  
mean CORN_YIELD  if WUA_YEAR >  2012 and LEMA == 1  
mean CORN_YIELD  if WUA_YEAR <= 2012 and LEMA == 0  
mean CORN_YIELD  if WUA_YEAR >  2012 and LEMA == 0 
 
*SOYBEAN 
mean SOYBEAN_YIELD  if WUA_YEAR <= 2012 and LEMA == 1  
mean SOYBEAN_YIELD  if WUA_YEAR >  2012 and LEMA == 1  
mean SOYBEAN_YIELD  if WUA_YEAR <= 2012 and LEMA == 0  
mean SOYBEAN_YIELD   if WUA_YEAR >  2012 and LEMA == 0 
 
*Generate Farmer-Time Specific Variables 
egen f = group(WUAPERS_ID) 
egen FARMER = group(WUAPERS_ID WUA_YEAR) sort f 
set matsize 1500 
set emptycells drop 
 
* Total Effects 
xtreg ln_CORN_YIELD LEMA_EFFECT precip ET0 i.FARMER i.WUA_YEAR, /// fe vce(cluster WR_ID) 
*Apply Log-Linear Correction 
nlcom ((exp(_b[LEMA_EFFECT]))-1)*100 
 
xtreg ln_SOYBEAN_YIELD LEMA_EFFECT precip ET0 i.FARMER i.WUA_YEAR, /// fe vce(cluster WR_ID) 
 
*Apply Log-Linear Correction 
nlcom ((exp(_b[LEMA_EFFECT]))-1)*100 
 
* No farmer-time fixed effects 
xtreg ln_CORN_YIELD LEMA_EFFECT precip ET0 i.WUA_YEAR, /// fe vce(cluster WR_ID) 
 
*Apply Log-Linear Correction 
nlcom ((exp(_b[LEMA_EFFECT]))-1)*100 
 
xtreg ln_SOYBEAN_YIELD LEMA_EFFECT precip ET0 i.WUA_YEAR, /// fe vce(cluster WR_ID) 

*Apply Log-Linear Correction 
nlcom ((exp(_b[LEMA_EFFECT]))-1)*100 log close 

//////////////////////////////////////////////////////////////////////// 
********************************END OF CODE***************************** 
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	1.1 US Groundwater Policy Management

	Depleting groundwater resources has become a crucial topic across the US. The High Plains Aquifer is the largest groundwater storage reservoir in the US covering 174,000 square miles (110 million acres) of the Great Plains stretching across eight stat...
	According to the US Department of the Interior, the future of secure water supplies is impacted by increasing competing demands from population growth, agriculture, development and climate change. This drives the necessity for states and local communi...
	Over time increased groundwater pumping from various uses has resulted in substantial water table declines across the aquifer. Although irrigated agriculture is fed from both surface and groundwater, the over-exploitation of the aquifer’s resources co...
	Figure 1: Map of the High Plains Aquifer
	Concerns about depleted aquifers for agricultural production are not unique to the Great Plains. Groundwater extraction for irrigation provides a substantial increase in crop yields and stabilizes proﬁts due to uncertain weather; however, using data f...
	Ostrom (2009) described factors that lead to collective action indicating that users of a resource will invest their time and energy and self-organize to avert a tragedy of the commons when it becomes proﬁtable to do so. This occurs when beneﬁts excee...
	1.2 Background on the Sheridan 6 LEMA

	In 2012, new legislation granted Kansas Groundwater Management Districts (GMDs) the power to originate their own localized water conservation management plans which are then legally enforced by the state). Farmers in Sheridan County, located in the no...
	As described by the order of the Chief Engineer, the overarching goal of the LEMA is a collective action to restrict irrigated groundwater rights to no more than 114,000 acre-feet total over January 1, 2013, and December 31, 2017, in a manner that pre...
	In July of 2012, the Sheridan 6 LEMA proposal was transmitted to the Division of Water Resources (DWR) including the legal descriptions of sections to be included in the LEMA and goals and management actions for limiting water use. The proposal was ge...
	The observation wells were used to generate an interpolated water level value for the center of every section. The 1997 section-center values were subtracted from the 2006 values and any section that declined 9% or more was identiﬁed. The reported wat...
	Many farmers who spoke out in support of the LEMA indicated that they felt that the LEMA provided enough ﬂexibility in water allocation from year to year such that farmers would capitalize on their abilities to adapt and could actually be more proﬁtab...
	The water management plan is of interest to many due to its uncommon collective action establishment with direct input from the irrigators who have an interest in extending the life of the aquifer. The boundaries contained within the LEMA are deﬁned b...
	The Kansas Geological survey maintains and continuously monitors index wells in the three western Kansas GMDs to monitor the High Plains aquifer. Although it is unclear exactly how much time it takes for water savings to modify the depth to water of t...
	1.3 Research Overview

	The concentration of this research is to consider impacts from the collective action water quantity restriction policy implemented in Sheridan County, Kansas. We use Diﬀerence-in-Diﬀerence estimators to compare changes in irrigation behavior inside th...
	Additionally, it is important to note that the Diﬀerence-in-Diﬀerences framework has strict underlying assumptions. It controls for unobserved heterogeneity that is constant over time and correlated with the dependent variables such that by diﬀerencin...
	This analysis outlines the methodology for estimating the effects of the policy on the LEMA irrigators by beginning with the literature review in Chapter 2 which covers Groundwater Policy and Management in the US, previous studies of water demand mana...
	Chapter 2 -  Literature Review
	Previous studies that address water demand analysis are broad and include topics of water pricing, crop production and groundwater sustainability which provide valuable background for this study. I begin with a discussion of the general issue of long-...
	2.1 Groundwater Policy and Management

	The issue of appropriate water use management strategies is not just isolated to the Ogallala Aquifer. A common theme within all water policy literature is uncertainty toward future climate and groundwater depletion rates as agriculture becomes increa...
	An early study modeling regulated pumping costs in the Texas High Plains indicated that even in the face of decreased groundwater resources, the costs for regulating Texas farmers were too high and concluded that no regulations of groundwater withdraw...
	In particular, the study by Kim et al. (2015) concluded that the Gisser-Sanchez rule is not applicable when irrigation technology is allowed to vary across time. Rather than leaving this resource to the tragedy of the commons, the research constructs ...
	Many times, the focus of water policy is on improvements in water-saving technology; however, the study by Peterson and Ding (2005) indicate that these policies may have adverse eﬀects such that improvements in irrigation eﬃciency could potentially in...
	Hornbeck and Keskin (2014) studied how agricultural production decisions changed from the introduction of irrigation over the Ogallala Aquifer. They considered impacts from drought and concluded irrigated land use adjusted toward water-intensive crops...
	2.2 Water Demand

	Currently in the US, as in many other countries, producers obtain a water right to pump groundwater for irrigation. Economists argue that regional markets for these water rights would lead to more eﬃcient use of water and could oﬀset short-run losses ...
	The work conducted by Varela-Ortega et al. (1998) estimating the diﬀerences in water demand observed in three diﬀerent water basins was explained by the structural parameters including crop variety, irrigation technology, farm size, and productivity c...
	There have additionally been other noteworthy studies quantifying important water pricing policy eﬀects evaluating water pricing effects or quantity regulations on the share of water resources and estimation of the “value” of water (Johansson et al., ...
	2.3 Decomposed Marginal Estimates and Elasticities

	The studies conducted by Moore et al. (1994) and Schoengold et al. (2006) decompose the water demand estimates into extensive and intensive marginal eﬀects. Although they ﬁnd the majority of the response occurring at the extensive margin (deﬁned as ch...
	More recently, Hendricks and Peterson (2012) estimated irrigation water demand over the Kansas portion of the Ogallala Aquifer in which they further decompose the water demand estimates into an extensive (changes in irrigated acreage), direct intensiv...
	The management of water resources can be diﬃcult because oﬃcial resource, economic and production data are often available at various non-comparable scales (Mallawaarachchi et al., 1996). In the water demand study conducted by Hendricks and Peterson (...
	2.4 Marginal Effects of Crop Yield Estimation

	Previous studies that consider the eﬀects of water use on yields are widely centered around deﬁcit irrigation strategies, crop production, and water pricing policy. Although deﬁcit irrigation is in eﬀect a method to reduce water quantities it does not...
	Additionally, due to increasing drought management, climate variability, and groundwater sustainability, it is important to consider research on outcomes from other water saving policies and the eﬀectiveness of diﬀerent yield simulation models. For th...
	In Kansas, Golden and Leatherman (2011) produced more recently a study considering groundwater demand and revenue loss eﬀects on crop production by comparing before and after trends of the Walnut Creek IGUCA in an eﬀort to evaluate how a more sustaina...
	2.5 Crop Yield Simulation Models

	There are many spatial yield models that are used for predicting yields of various agricultural crops including CropSys, AquaCrop, and YieldStat. These models employ various non-linear regression approaches utilizing databases that are well-informed o...
	The Kansas Water Budget (KSWB) was developed as a yield predictor for both rain-fed and irrigated crops in western Kansas (Stone et al. 1995, 2006; Klocke et al. 2010; Khan et al. 1996). It is the basis for two irrigation management tools; the Crop Y...
	Irrigation needs to be allocated among crops, using crop production functions and production costs for optimum economic return Klocke et al. (2010). The Crop Yield Predictor University (b) (CYP) and the Crop Water Allocator University (a) (CWA) were ...
	The KSWB was designed to use average daily values from 30 years of weather data (maximum and minimum air temperature, solar radiation, and precipitation) for each location to calculate ETr, ETc, daily ASW, and crop yields. Klocke et al. (2010) describ...
	CYP users can designate potential irrigation schedules to optimize yields and net returns. These schedules can be tested for a range of annual precipitation to ﬁnd yield and income risks from several input scenarios including wet, average, and dry yea...
	The functions of interest for this study that are contained in the KSWB are as follows:
	𝐸𝑇𝑟 = 0.078 + 0.0252(𝑀𝐴𝑇)(𝑅𝐴𝐷) 2.493−0.00214(𝑀𝐴𝑇)
	where
	𝐸𝑇𝑟 = reference ET (𝑚𝑚)
	𝑀𝐴𝑇 = average daily temperature (𝐶)
	𝑅𝐴𝐷 = average daily solar radiation (𝑀𝐽 𝑚−2).
	The maximum evapotranspiration (𝐸𝑇𝑚) and actual evapotranspiration (𝐸𝑇𝑎) calculations are as follows:
	𝐸𝑇𝑚 = 𝐾𝑐 ∗𝐸𝑇𝑟
	𝐸𝑇𝑎 = 𝐾𝑠 ∗𝐸𝑇𝑚
	= 𝑙𝑜𝑔(𝐴𝑆𝑊 + 1) 𝑙𝑜𝑔(101) ∗𝐸𝑇𝑚
	where
	𝐾𝑐 = crop coeﬃcients
	𝐾𝑠 = soil water stress coeﬃcients
	𝐴𝑆𝑊 = available soil water content (%).
	A daily drainage function (𝐷), speciﬁc to Ulysses silt loam soil, is given by Stone et al. (1987) and described as a function of total soil water content (TSW) measured in 𝑚𝑚.
	𝐷 = 42.7 ,,,𝑇𝑆𝑊-729..-18.06.  .
	Additionally, 𝐸𝑇𝑎 was adjusted daily using a water balanced equation of total soil water to a depth of 1.8 𝑚 (,𝑇𝑆𝑊-𝑡.) and was represented as:
	,𝑇𝑆𝑊-𝑡. = ,𝑇𝑆𝑊-𝑦. + ,𝑃-𝑦.+ ,𝐼-𝑦. −,𝐷-𝑦. −𝐸𝑇,𝑎-𝑦.
	where
	,𝑇𝑆𝑊-𝑦. = total soil water at the beginning of yesterday
	,𝑃-𝑦. = the precipitation that entered the soil yesterday
	,𝐼-𝑦. = the irrigation that entered the soil yesterday
	,𝐷-𝑦. = the water that drained out of the soil yesterday
	,𝐸𝑇𝐴-𝑦. = the water extracted out of the soil yesterday.
	Finally, the eﬀective ET (𝐸𝑇𝑒∗) is calculated from the ratio of 𝐸𝑇𝑎 to 𝐸𝑇𝑚 with crop speciﬁc weights (,𝑊-𝑔.) that account for water stress during the growing season and is as follows:
	𝐸𝑇𝑒∗ =,,,,,𝐸𝑇𝑎-𝐸𝑇𝑚..∗,𝑊-𝑔.-100...𝐸𝑇𝑚
	This is combined with the Yield-ET equations to represent crop speciﬁc yields (𝑌𝑐𝑟𝑜𝑝) as:
	,𝑌 -𝑐𝑟𝑜𝑝.= ,𝛼-𝑐𝑟𝑜𝑝.(𝐸𝑇𝑒∗)−,𝛽-𝑐𝑟𝑜𝑝.
	Or more speciﬁcally, they use the linear functions presented by Klocke et al. (2010) to estimate yields for corn and soybean 𝑌 [𝑀𝑔 ,ℎ𝑎-−1.] as a function of 𝐸𝑇𝑒(𝑚𝑚) such that the crop-speciﬁc yield function is as follows:
	,𝑌-𝑐𝑜𝑟𝑛. = 0.042(𝐸𝑇𝑒∗)−12.33,
	,𝑌-𝑠𝑜𝑦𝑏𝑒𝑎𝑛. = 0.011(𝐸𝑇𝑒∗)−2.39.
	Chapter 3 -  Conceptual Model of Irrigator Water Use Decisions
	I conceptually model the eﬀect of the LEMA policy on total acres irrigated, acreage planted to different crops, and irrigation intensity as diﬀerent margins of adjustment similar to the study conducted by Hendricks and Peterson (2012). Here I apply th...
	Assume we have a representative irrigator such that their water demand for a particular well is subject to a water quota denoted q. I identify a particular land use as the varying combination of crop type and irrigation technology and represented as ...
	𝑤,𝑞.=,𝑗=1-𝐽-,𝑠-𝑗.(𝑞),𝑤-𝑗.(𝑞).
	Here I am only interested in modeling water demand as a function of the LEMA water quota restriction. I represent total water use at the ﬁeld level as a function of the total quantity of irrigated water and written as a function of average applied wat...
	𝐷(𝑞) = 𝑤(𝑞)𝑎(𝑞)
	I can then diﬀerentiate the above equation and multiply by 𝑞⁄(𝐷(𝑞)) to give the extensive marginal eﬀects such that I can quantify the change in irrigated acres ,µ-𝑎(𝑞). and the total intensive marginal eﬀect, the change in irrigation intensity ,...
	𝐷′(𝑞),𝑞 -𝐷,𝑞.. = 𝑤’(𝑞),𝑞 -𝐷,𝑞..+ 𝑎’(𝑞,𝑞 -𝐷,𝑞..)
	or more simply
	,µ-𝐷,𝑞..= ,µ-𝑤,𝑞..+ ,µ-𝑎(𝑞).
	Additionally, I can ﬁnd from decomposition of the average applied water per acre function 𝑤(𝑞) the direct and indirect intensive marginal eﬀects or the changes in crop allocation due to a change in the water quota of the LEMA. Diﬀerentiating 𝑤(𝑞) ...
	,µ-𝐷(𝑞).= ,,𝑗=1-𝐽-,𝑠-𝑗.,𝑞.,,𝑤-′.-𝑗.,𝑞.+ ,𝑗=1-𝐽-,,𝑠-′.-𝑗.(𝑞),𝑤-𝑗.(𝑞)...,𝑞-𝑤(𝑞).
	or rather
	,µ -𝑤(𝑞).= ,µ -𝑤𝑤.+ ,µ -𝑤𝑠..
	Here I ﬁnd the total intensive margin is made up of two eﬀects ,𝜇-𝑤𝑤. which can be described as the direct intensive marginal eﬀect and  ,𝜇-𝑤𝑠.  deﬁned as the indirect intensive marginal eﬀect. The indirect marginal eﬀect represents the change i...
	Chapter 4 -  Data
	4.1 Water Use and Agricultural Variables

	Kansas law requires all water right holders to report annually on irrigation and crop characteristics (Hendricks and Peterson, 2012). Because of this, I am able to quantify reported water use data at each irrigator’s water well (termed a “point of div...
	The speciﬁc crops considered in this analysis include alfalfa, corn, sorghum, soybeans, and wheat with two additional categories identiﬁed as multiple and other. Although there were many crops grown inside the LEMA, there are relatively few water righ...
	The category for other irrigated uses includes fruits, vegetables, sunﬂowers, golf courses, pasture, cotton, athletic ﬁelds, turf grass, barley, oats, rye, and dry beans. Additionally, some reporting merely indicates that “multiple” crops were grown, ...
	4.2 Weather Controls

	Additional site speciﬁc variables were obtained to describe yields as a function of water use intensity at each point of diversion. This accounts for site speciﬁc yield-ET relationships across farmers within the LEMA boundaries to be computed and comp...
	4.3 Construction of the Boundaries
	4.4 Summary Statistics

	This study contains 2819 observations of which 1889 are before the LEMA went into eﬀect. Of those 1889 observations, there were 1175 observations in the 5mile control group and 714 observations in the LEMA treatment group. Following Villa (2012) I use...
	None of the estimates on the independent variables indicate a signiﬁcant diﬀerence from each other such that I can identify that there are no pre-policy diﬀerences between the two groups. However, I do ﬁnd signiﬁcant estimates indicating pre-policy di...
	4.5 Yield Data

	Since I do not have data on actual yields in each field, I generate predicted yields for a given amount of precipitation and irrigation from output created by the KSWB. Although many irrigators maintain rotating crops or have a mix of crops for a sing...
	,𝑌-𝐼𝑟𝑟.= ,𝛽-0.+,𝛽-1.∗𝐼𝑟𝑟 +,𝛽-2.∗,𝐼𝑟𝑟-2. +,𝛽-3.∗𝑃𝑟𝑒𝑐𝑖𝑝+
	,𝛽-4.,𝑃𝑟𝑒𝑐𝑖𝑝-2. +,𝛽-4.∗,𝐼𝑟𝑟∗𝑃𝑟𝑒𝑐𝑖𝑝..
	Using the data for yield simulations reported in Stone et al., (1995) we generate the necessary coeﬃcients for the nonlinear function of irrigation and precipitation variables in the non-linear model to generate the predicted values of yields to use i...
	Note: The dependent variable is given by the column heading. Parentheses denote robust clustered (water right level) std. errors. ∗ and ∗∗ denote signiﬁcance at the 5% and 1% levels. Farmer-Time speciﬁc estimates were removed for conciseness. LEMA eﬀe...
	Chapter 5 -  Empirical Methods
	5.1 Diﬀerence-In-Diﬀerences
	5.2 Preferred Fixed Eﬀects Model
	5.3 Decomposing the Marginal Eﬀects of Water Use
	5.4 Estimating the Effect on Crop Yields
	5.5 Event Study
	5.6 Dummy Correction for Log-Linear Models
	5.7 Robust Clustered Standard Errors

	Chapter 6 -  Results: Extensive and Intensive Marginal Changes in Water Use
	6.1 D-I-D Model and Visual Analysis

	Using the D-I-D framework we can use the aggregated data to estimate the before and after average diﬀerence inside the LEMA and compare to the before and after average diﬀerence in the 5 mile buﬀer zone outside the LEMA to quantify how irrigators unde...
	I additionally consider the crop speciﬁc eﬀects from the water policy to identify how irrigators of diﬀerent crops chose to modify their behavior at the extensive and intensive margins. Again, comparing to the counterfactual scenario, I ﬁnd that irrig...
	(-18%). Alternatively, irrigators chose to expand irrigated acreage for sorghum (66%), wheat (7%), multiple unknown (17%), and soybean (5%) after the LEMA policy (Figures 10-15). Irrigators in the 5 mile zone increased irrigated acreage slightly while...
	I also estimate the response of applied water intensity of irrigators for each crop in the LEMA (Figures 16-21). On average, irrigators chose to reduce their applied water intensity. It is important to note that although many water rights had some sor...
	Corn and soybean LEMA irrigators primarily responded by reducing average applied water compared to irrigators located within the 5 mile boundary who applied more inches per acre to these crops. The largest reductions were from wheat (-54%) and corn (-...
	6.2 Econometric Results
	6.2.1 Preferred Speciﬁcation


	Table 3 reports the set of decomposed marginal eﬀects of water use from the preferred ﬁxed eﬀects regression with the LEMA eﬀect adjusted for the log-linear form where the total extensive, total intensive, and direct intensive estimates are derived fr...
	I condition the estimates to include eﬀects from cropping type in order to estimate the direct intensive margin (i.e., holding constant land use). I ﬁnd the estimates measure of the direct log of water intensity eﬀect (-18.5%) to be only slightly smal...
	I can now follow Hendricks and Peterson (2012) and back out the indirect intensive marginal eﬀects by simply subtracting the direct intensive from the total intensive margins and ﬁnd little response (-2.7%) due to changes to cropping patterns.
	Note: Parentheses denote robust clustered (water right level) std. errors. ∗ and ∗∗ denote signiﬁcance at the 5% and 1% levels. Farmer-Time speciﬁc estimates were removed for conciseness. LEMA eﬀect estimates adjusted for log-linear correction only.
	6.2.2 Water Policy Event Study

	The previous model framework has proven useful in the context of isolating the causal parameter of interest, however, I also wish to isolate the eﬀect per year, rather than just a pre/post aggregate estimate. I now consider how lags and leads of the L...
	First, I ﬁnd that the coeﬃcients pre-policy are not signiﬁcantly diﬀerent from zero which signals that my model speciﬁcation is correct. Additionally, I ﬁnd that the total marginal eﬀect is inﬂuenced by similar reductions in water use in both the poli...
	Furthermore, at the intensive margin, I ﬁnd that the eﬀect is again inﬂuenced by reductions in the ﬁrst year after the policy went into eﬀect (-25.5%) with further reductions in 2014 (-30.4%). This could suggest possible adaptation strategies of the i...
	Note: Parentheses denote robust clustered (well-level) std. errors. ∗ and ∗∗ denote signiﬁcance at the 5% and 1% levels. All estimates adjusted for log-linear correction.
	6.2.3 Heterogeneous Response among Large Irrigators

	A concern of some farmers prior to the LEMA being implemented was that a subset of farmers might have a greater ability to adjust to the water use restriction because they maintained rights on a much larger proportion of wells. That is, they would hav...
	I evaluate this concern through the use of an additional set of ﬁxed eﬀect regressions of LEMA irrigators with an additional variable to identify the eﬀect of well ownership on applied water intensity and acres irrigated (Table 5). The estimates for l...
	𝑙𝑛(,𝑤-𝑖𝑡.) = ,𝛼-𝑖. +, 𝛽-1.,𝐷-𝑖𝑡.+ ,𝛽-2.,𝐷-𝑖𝑡. ∗,𝐿𝑎𝑟𝑔𝑒-𝑖.+ ,𝜆-𝑓𝑡. + 𝜃,𝑋-𝑖𝑙𝑡. + ,𝜖-𝑖𝑡.
	𝑙𝑛(,𝑎-𝑖𝑓𝑡.) = ,𝛼-𝑖. +, 𝛽-1.,𝐷-𝑖𝑡.+ ,𝛽-2.,𝐷-𝑖𝑡. ∗,𝐿𝑎𝑟𝑔𝑒-𝑖.+ ,𝜆-𝑓𝑡. + 𝜃,𝑋-𝑖𝑙𝑡. + ,𝜖-𝑖𝑡.
	where ,𝛼-𝑖., ,𝜆-𝑓𝑡., and ,𝜃-𝑖𝑡. represent the ﬁxed eﬀects and controls, ,𝐷-𝑖𝑡. is the LEMA eﬀect dummy variable, and ,𝐿𝑎𝑟𝑔𝑒-𝑖. is the dummy variable for large well ownership if a water right was owned by an irrigator with 2 or more wa...
	Note: The dependent variable is given by the column heading. Parentheses denote robust clustered (well-level) std. errors. ∗ and ∗∗ denote signiﬁcance at the 5% and 1% levels. Weather and Farmer-time speciﬁc estimates were removed for conciseness. LEM...
	I ﬁnd no statistical evidence that having more than one well could encourage increased water use among those irrigators and lead to a disproportionate water use restriction. Table 5 describes the interaction terms as insigniﬁcant at all margins of adj...
	6.2.4 Alternative Speciﬁcations

	While the D-I-D model accounts for unobserved heterogeneity of water rights that are constant over time (i.e. water right-speciﬁc diﬀerences) and of each year that is constant across ﬁelds (i.e. crop, energy, and other input prices) it is important to...
	The beneﬁt of the matching estimator (as opposed to my ﬁxed eﬀects estimator) is that it estimates the eﬀect of treatment by comparing changes n outcomes of irrigators inside and outside with similar characteristics (crop type, irrigation technology, ...
	I then represent the conditional probability of the LEMA as the propensity score conditioned on set 𝑋 such that the conditional mean is the weighted average of outcomes when 𝐷𝑖 = 0 and the kernel estimator is represented as:
	𝐸(,𝑌-0𝑖.|𝑃(,𝑋-𝑖.),𝐷𝑖 = 0) =,𝑗=1,,𝐷-𝑗.=0.-,𝑛-0.-,𝑊-𝑗.,𝑃,,𝑋-𝑖...,𝑌-0𝑗..
	with a weighting assigned as
	,𝑊-𝑗.(𝑃,,𝑋-𝑖..=,𝐾(,𝑃,,𝑋-𝑖..−𝑃(,𝑋-𝑘.)-,ℎ-𝑛..-,𝑘=1,,𝐷-𝑘.=0.-,𝑛-0.-𝐾,𝑃,,𝑋-𝑖..−𝑃(,𝑋-𝑘.)-,ℎ-𝑛.....
	In general, the kernel function is a non-parametric estimation approach of the probability density function of a random variable. Villa (2012) uses a default estimator with an underlying epanechnikov kernel smoothing function and 0.06 bandwidth ,ℎ-𝑛....
	𝐾,µ.=,3-4.,1−,𝜇-2..,𝟏-,,𝜇.≤1...
	Recall that I assume that the heterogeneity of the soil type and underlying hydrology are already accounted for in the ﬁeld (water right) ﬁxed eﬀect such that I do not include soil or hydrological covariates as these are variables that remain constant...
	Although I ﬁnd that failing to account for the diﬀerences among irrigators that varies through time generates diﬀerent estimates from our preferred model estimates, I ﬁnd the majority of the response at the total intensive margin (28.1%) compared to t...
	Notes: * and ** denote signiﬁcance at the 5% and 1% levels. LEMA eﬀect estimates adjusted for log-linear correction.
	If I assume that unobserved diﬀerences across irrigators are constant across time, then the addition of a farmer speciﬁc ﬁxed eﬀect would suﬃce. However, in our ﬁxed eﬀects model this is already accounted for in the water right ﬁxed eﬀect 𝛼 . I sugge...
	I evaluate the importance of inclusion of these additional model parameters and note the changes to the coeﬃcient estimates with varying controls in Table 6 below. Column (1) indicates the D-I-D estimates that only include a water right-speciﬁc (,𝛼-...
	Note: Parentheses denote robust clustered (well-level) std. errors. ∗ and ∗∗ denote signiﬁcance at the 5% and 1% levels. Water right, Time and Farmer-time speciﬁc estimates were removed for conciseness (N>1000). LEMA eﬀect estimates adjusted for log-l...
	I ﬁnd conﬁrmation that adding in the weather controls does little to the estimates by comparing columns (1) and (2). However, by comparing columns (2) and (3) the addition of the farmer-time eﬀect changes the impact more. This lends evidence for the p...
	6.2.5 Falsiﬁcations Tests

	I want to alleviate any concerns that the control group might have selection bias or rather, is not indeed a valid counterfactual such that LEMA farmers would have acted as the control had they not been under the LEMA policy. I compare the 5 Mile cont...
	Note: The dependent variable is given by the column heading. Parentheses denote robust clustered (water right level) std. errors. ∗ and ∗∗ denote signiﬁcance at the 5% and 1% levels. Farmer-Time speciﬁc estimates were removed for conciseness. LEMA eﬀe...
	I also construct a false timing policy to see if there is any statistical signiﬁcance from our ﬁxed eﬀects model framework. I restrict the data to 2009 through 2012 (prior to the LEMA) and create a false policy eﬀect in 2010. I run my previous regress...
	Note: The dependent variable is given by the column heading. Parentheses denote robust clustered (water right level) std. errors. ∗ and ∗∗ denote signiﬁcance at the 5% and 1% levels. Farmer-Time speciﬁc estimates were removed for conciseness. LEMA eﬀe...
	6.3 Heterogeneous Response of LEMA Irrigators

	I decompose the intensive response to determine reductions as either changes in applied inches/acre or irrigators modifying the crop type planted, however, this method cannot be applied at the extensive margin. I do wish to provide further description...
	I am ﬁrst interested in the proportion of water right holders that chose to reduce irrigated acreage because I found that there was very little average response at the total extensive margin. Out of 184 unique LEMA water rights, the majority of LEMA w...
	I am also interested to see the variability in response to changes in irrigated acres among the 180 LEMA water rights holders who have a pivot-drop system (87%) as indicated in the summary statistics. Many LEMA water rights (101) that have a pivot-dro...
	I additionally consider the heterogeneous response as it relates to crop speciﬁc and farmer-speciﬁc responses. Of the 184 water rights, all water rights associated with alfalfa, wheat, and other crops made no changes to irrigated acreage after the LEM...
	water rights reducing up to 10 acres, followed by 11 water rights expanding up to 10 acres (Figure 25). Soybean farmers had primarily 30-50 acre reductions with only 1 farmer choosing to expand up to 10 acres (Figure 26). Additionally, I ﬁnd that all ...
	6.4 Field and Farmer Speciﬁc Characteristics

	Because irrigators can have multiple water rights and multiple wells, I wish to explore the heterogeneity as it relates to well ownership and irrigated acreage among irrigators. Although we previously selected our unique identiﬁer as the water right i...
	Additionally, because of the nature of water rights and land values, the same well cannot be attached to multiple water rights. Because I want to uncover the heterogeneity of the response I do not want to aggregate these descriptive statistics to the ...
	Although many corn farmers (14) made no change to irrigated acreage, the majority of corn farmers (17) reduced irrigated acreage up to 10 acres (Figure 29). Furthermore, all sorghum acreage was expanded new post policy acreage between 100-130 irrigate...
	6.5 Large Irrigators

	I previously found that 49 irrigators chose to make no changes to irrigated acreage. I also indicated that there was no evidence to suggest that irrigators inside the LEMA who managed more than one well would increase applied water use. In Figure 32 w...
	I also restrict large irrigators of the same crop using a pivot-drop irrigation system and ﬁnd that the majority of these water right holders reduced acreage. This provides further evidence that the majority of the response was related to decisions of...
	Chapter 7 -  Results: Changes in Cropping Patterns and Input Expenditures
	Given the LEMA policy significantly impacted planted acres, there could be substantial impacts on seed and chemical expenditures. The results in Table 3 from Chapter 6 indicate that farmers inside the LEMA responded primarily at the intensive margin b...
	Nevertheless, even the relatively small changes to cropping patterns have impacts on other agricultural sectors. Using Kansas State University’s crop budgets for Northwestern Kansas, I estimate the effect the LEMA could have on expenditures for corn, ...
	Note: “Other” crop expenditures are calculated as the average of sorghum and wheat expenditures. Alfalfa expenditures are assumed to be the same as “Other” expenditures.
	Unfortunately, I also do not know the exact allocation of crops used in the category identified as “multiple crops”, however, I can use a general allocation as follows: 50% corn, 20% soybeans, 10% wheat, 10% sorghum, 5% alfalfa and 5% other. I can the...
	Note: Parentheses denote robust clustered (water right level) std. errors. ∗ and ∗∗ denote signiﬁcance at the 5% and 1% levels. Farmer-Time speciﬁc estimates were removed for conciseness.
	Note: Parentheses denote robust clustered (water right level) std. errors. ∗ and ∗∗ denote signiﬁcance at the 5% and 1% levels. Farmer-Time speciﬁc estimates were removed for conciseness.
	The effect of the LEMA resulted primarily in reductions to corn (12.5%), however, corn has relatively higher input expenditures compared to soybean, wheat, sorghum and alfalfa. Because of this impacts to input expenditures will be largely driven by th...
	Chapter 8 -  Results: Changes in Crop Yields
	8.1 D-I-D Model and Visual Analysis

	In total there are 1,434 observations for corn and only 189 observations for soybeans as there are relatively few water rights subject to the LEMA that are planted solely to soybeans. I ﬁrst estimate the eﬀects of water use intensity on yields from th...
	Table 15: Difference-in-Difference for Yields
	Note: Parentheses denote std. errors. ∗ and ∗∗ denote signiﬁcance at the 5% and 1% levels.
	8.2 Econometric Results

	Additionally, it is important to consider the need for other control variables such as the farmer-time ﬁxed eﬀects that was used in the preferred model when investigating the eﬀects at the intensive and extensive margins of water use. It is worth noti...
	Table 16 shows the D-I-D regression results. For corn, I ﬁnd that both models (1) and (2) report statistically signiﬁcant results at the 1% conﬁdence interval, however, if we exclude the farmer-time ﬁxed eﬀects (2) we estimate a smaller eﬀect of the L...
	Although I cannot quantify the exact short-run welfare impacts from the LEMA without observed yield data or production cost data, I can use this information combined with average price data to discuss the further implications of farmers’ welfare. USDA...
	Note: Parentheses denote robust clustered (well-level) std. errors. ∗ and ∗∗ denote signiﬁcance at the 5% and 1% levels. Water right, Time and Farmer-time speciﬁc estimates were removed for conciseness (N>1000). LEMA eﬀect estimates adjusted for log-l...
	Chapter 9 -  Conclusion
	This research uses an econometric approach to uncover the eﬀects on water use and crop type from the collective action water management plan identiﬁed as the Sheridan 6 LEMA. Many agricultural businesses will also be impacted by changes in these on-fa...
	There are some limitations to this research. I had limited observations for many crops apart from corn and soybean, the primary crops of the area, such that I could not estimate some crop specific yields in a meaningful way. Additionally, I did not k...
	Using a Diﬀerence-in-Diﬀerences (D-I-D) model I expose the causal eﬀect of the LEMA policy on important farmer decisions relating to water use, yields and inputs. The more simplistic D-I-D framework allows us to estimate the before and after diﬀerence...
	There are two main findings on the change in water use due to the LEMA. First, irrigators located inside the boundary of the LEMA made relatively small changes to total number of reduced irrigated acres and some irrigators moved from high water intens...
	I ﬁnd the greatest response to the LEMA at the intensive margin, implying that irrigators chose to reduce their applied water intensity by 21% with limited reductions in irrigated acreage (4%) indicating that the greater proportion of changes to appli...
	Additionally, I evaluate concerns that irrigators with ownership of more than one well may lead to disproportionate water use restrictions due to the ﬂexibility to move water rights between ﬁelds. I ﬁnd no evidence that increased well ownership leads ...
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