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Abstract

To describe the behavior of a gas composed of spherical particles that rotate, the ki-

netic theory approach is presented. First-order approximations to the Boltzmann-Curtiss

transport equation yield conservation equations that govern the translational velocity and

rotation of the particles. The resulting equations match the form of the equations of mor-

phing continuum theory (MCT), a theory derived from the principles of rational continuum

thermomechanics. A direct comparison of corresponding terms provides expressions related

to the new coefficients within MCT, showing a clear departure from classical expressions

derived from a kinetic treatment of classical fluids. The identical expressions for the co-

efficients in the Cauchy stress and viscous diffusion terms in the kinetic linear momentum

equation suggests that the coupling coefficient introduced by MCT outweighs the contribu-

tion of the classical kinematic viscosity. The kinetic theory equations reduce to the form of

the Navier-Stokes equations when the local rotation is equated to the angular velocity, but

the predominance of the coupling coefficient results in a viscous term that differs slightly

from the classical expression derived using the Boltzmann distribution function. For simple

cases of irrotational and incompressible flows, the kinetic equations mimic the form of the

classical momentum equations derived from classical kinetic theory. This result is consistent

with the fact that the difference between the two kinetic approaches is the local rotation of

spherical particles.

Preliminary numerical simulations of the MCT governing equations are discussed, with

an emphasis on the importance of the new coupling coefficient. Turbulent incompressible

profiles are achieved by setting dimensionless parameters to particular values. The key

parameter involves the ratio of the coupling coefficient to the kinematic viscosity. The rela-

tionship between the coupling coefficient and kinematic viscosity is shown to be the driving



force for the development of transitional and turbulent boundary layer profiles. Compress-

ible turbulence results are generated using the same dimensionless parameter values that

generated turbulence in the incompressible case. For supersonic flow over a cylinder, MCT

displays an inverse energy cascade from small to large scales. In addition to visualizing tur-

bulent processes, the results from MCT display the importance of coupling the linear and

angular momenta equations, which is strengthened when the coupling coefficient increases.

The expressions from kinetic theory coupled with the numerical results in MCT indicate

that the physical phenomena driving a fluid composed of spherical particles depends heavily

on the physical properties of the coupling coefficient.



A kinetic analysis of morphing continuum theory for fluid flows

by

Louis Blais Wonnell

B.S., Wake Forest University, 2010

M.S., University of California at San Diego, 2011

M.N.E., North Carolina State University, 2014

A DISSERTATION

submitted in partial fulfillment of the
requirements for the degree

Doctor of Philosophy

Department of Mechanical and Nuclear Engineering
College of Engineering

KANSAS STATE UNIVERSITY
Manhattan, Kansas

2018

Approved by:

Major Professor
James Chen



Copyright

c⃝ Louis Blais Wonnell 2018.



Abstract

To describe the behavior of a gas composed of spherical particles that rotate, the ki-

netic theory approach is presented. First-order approximations to the Boltzmann-Curtiss

transport equation yield conservation equations that govern the translational velocity and

rotation of the particles. The resulting equations match the form of the equations of mor-

phing continuum theory (MCT), a theory derived from the principles of rational continuum

thermomechanics. A direct comparison of corresponding terms provides expressions related

to the new coefficients within MCT, showing a clear departure from classical expressions

derived from a kinetic treatment of classical fluids. The identical expressions for the co-

efficients in the Cauchy stress and viscous diffusion terms in the kinetic linear momentum

equation suggests that the coupling coefficient introduced by MCT outweighs the contribu-

tion of the classical kinematic viscosity. The kinetic theory equations reduce to the form of

the Navier-Stokes equations when the local rotation is equated to the angular velocity, but

the predominance of the coupling coefficient results in a viscous term that differs slightly

from the classical expression derived using the Boltzmann distribution function. For simple

cases of irrotational and incompressible flows, the kinetic equations mimic the form of the

classical momentum equations derived from classical kinetic theory. This result is consistent

with the fact that the difference between the two kinetic approaches is the local rotation of

spherical particles.

Preliminary numerical simulations of the MCT governing equations are discussed, with

an emphasis on the importance of the new coupling coefficient. Turbulent incompressible

profiles are achieved by setting dimensionless parameters to particular values. The key

parameter involves the ratio of the coupling coefficient to the kinematic viscosity. The rela-

tionship between the coupling coefficient and kinematic viscosity is shown to be the driving



force for the development of transitional and turbulent boundary layer profiles. Compress-

ible turbulence results are generated using the same dimensionless parameter values that

generated turbulence in the incompressible case. For supersonic flow over a cylinder, MCT

displays an inverse energy cascade from small to large scales. In addition to visualizing tur-

bulent processes, the results from MCT display the importance of coupling the linear and

angular momenta equations, which is strengthened when the coupling coefficient increases.

The expressions from kinetic theory coupled with the numerical results in MCT indicate

that the physical phenomena driving a fluid composed of spherical particles depends heavily

on the physical properties of the coupling coefficient.



Table of Contents

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Motivation of this Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Introduction to Morphing Continuum Theory . . . . . . . . . . . . . . . . . 3

1.3 The Kinetic Theory Approach . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 The Kinetic Approach: Approximations to the Boltzmann-Curtiss Transport Equa-

tion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 First-Order Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.1 Distribution Function . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.2 Stresses and Heat Flux . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3 Governing Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.4 Physical Meaning of Relaxation Time . . . . . . . . . . . . . . . . . . . . . . 32

2.5 Reduction to Navier-Stokes Equations . . . . . . . . . . . . . . . . . . . . . 34

2.5.1 The Classical Kinetic Equations . . . . . . . . . . . . . . . . . . . . . 36

2.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3 MCT Simulation of Incompressible Flow . . . . . . . . . . . . . . . . . . . . . . . 40

3.1 Morphing Continuum Theory . . . . . . . . . . . . . . . . . . . . . . . . . . 44

viii



3.1.1 Theoretical Foundation . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.1.2 Finite Volume Method . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.1.3 Relation to Navier-Stokes Equations . . . . . . . . . . . . . . . . . . 51

3.1.4 Boundary Conditions and Material Parameters . . . . . . . . . . . . . 52

3.2 Uniform Flow over a Flat Plate . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4 MCT Simulations of Compressible Turbulence . . . . . . . . . . . . . . . . . . . . 61

4.1 Supersonic Flow Past a Cylinder . . . . . . . . . . . . . . . . . . . . . . . . 61

4.1.1 MCT Compressible Flow Equations . . . . . . . . . . . . . . . . . . . 64

4.1.2 Numerical Implementation . . . . . . . . . . . . . . . . . . . . . . . . 67

4.1.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.1.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.2 Transonic Flow over an Axisymmetric Hill . . . . . . . . . . . . . . . . . . . 74

4.2.1 The Q-criterion of MCT . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.2.2 Numerical Implementation . . . . . . . . . . . . . . . . . . . . . . . . 79

4.2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5 Discussion and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.2 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

ix



List of Figures

2.1 Illustration of the relationship between coordinates ri and xi . . . . . . . . . 30

2.2 Diagram of the angular momentum body force Ls. Presence of vorticity in-

duces gyration of left structure, with the strength of the coupling effect de-

termined by 2νr. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.3 A diagram illustrating how the kinetic approach leads to sets of governing

equations that mirror the form of the classical and morphing continuum theory

equations. An additional road to the form of the N-S equations exists via the

Boltzmann-Curtiss distribution, when local rotation equals the angular velocity. 37

3.1 Evolution of a structure with associated micromotion vector ξ and macromotion

vector x,17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.2 Uniform flow U = 5 m
s over a 2 meter flat plate, Plots of y

δ vs. u
U , Data obtained at

x = 0.5 for the transitional case and x = 0.75 for turbulent case, Boundary Layer

thickness δ obtained from point where u = 0.99U , Numerical simulations show good

agreement with experimental data for all cases.95 . . . . . . . . . . . . . . . . . 59

4.1 Comparison of gyration energy 1
2
ρjω2

z and translational energy 1
2
ρv2 behind

shock at x = -2.5, highlighted in blue, and in front of shock at x = -.55,

highlighted in red. Small wavelength eddies lose energy in interaction with

shock wave and a transfer of energy is observed to translational kinetic energy

for low wavenumbers. Plot of absolute rotation, ϵklzvl,k−2ωz, shows structure

and scope of eddies behind the shock . . . . . . . . . . . . . . . . . . . . . . 72

x



4.2 Wireframe of the meshes for the rectangular domain and hill. Axisymmetric

hill was set at 8.4H away from the interior, to allow for flow to develop on

leeward side and to prevent effects from outlet. The bump mesh was tailored

to the curvature of the hill. The hill radius was set at R = 2H according to

Castagna.124 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.3 Comparison of DNS inlet profile obtained by Castagna124 from a precursour

simulation with the experimental profile used by Simpson.125 . . . . . . . . . 83

4.4 Comparison of MCT/DNS velocity perturbations the experimental profile ob-

tained by Spalart.126 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.5 Streamline plot compared with separation bubble boundaries obtained by

Castagna.124 MCT data demonstrate a far larger windward side separation

bubble, but no significant separation on the leeward side. MCT windward

bubble delineated by red dotted line. Large recirculation leads to greater

buildup of pressure before the hill peak. . . . . . . . . . . . . . . . . . . . . . 86

4.6 Streamline plot of the leeward side of the bubble colored by the vorticity, with

the local maximum peak at x = 2.311H highlighted. Large differences in the

vorticity likely responsible for pressure peak in this region. . . . . . . . . . . 86

4.7 Comparison of Cp = pstatic−patm
.5∗ρ∗U2

∞
between experimental data from Simpson,

simulation data from Castagna, and numerical data along the centerline z =

0.124;125 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.8 Comparison of turbulence intensities, averaged in the spanwise direction, at

x = 4.14H and x = 11.6H with DNS data obtained by Castagna.124 . . . . . 88

4.9 Topology of hairpin vortices as visualized by the Q-criterion at 5×105, colored

by the values of the gyration. Low gyration values for hairpin vortex indicate

less variation in small-scale rotation. . . . . . . . . . . . . . . . . . . . . . . 89

xi



List of Tables

3.1 Material properties used as parameters for transitional, and turbulent cases, αn pa-

rameters meant to continue parametric analysis, started by Peddieson, of influence

of microproperties in transition and turbulence regimes.70 . . . . . . . . . . . . . 59

4.1 Dimensionless parameters αn, Turbulent Mach Number Mt, and Reynolds number.105 71

4.2 Parameters for mesh quality and time resolution used in MCT simulations . 84

4.3 Dimensionless parameters αn, Mach Number M , and the boundary layer Reynolds

number matching experiments and DNS.105;124;125 Speed of sound determined for

air at T∞ = 293K . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

xii



Acknowledgments

I would like to thank Dr. James Chen for his assistance and guidance throughout my

tenure at Kansas State University, and for his help with this dissertation. I would like

to thank my coworkers Mohamad Ibrahim Cheikh, Mohamed Mohsen, Khalid Mohammad

Abdelaziz, Leidong Xu and Allison Adams for their friendship and support of this research.

Finally, I would like to thank my parents for all their love and support. This material

is based upon work supported by the Air Force Office of Scientific Research under award

number FA9550-17-1-0154.

xiii



Chapter 1

Introduction

1.1 Motivation of this Work

A recurring difficulty for the theoretician is to obtain a comprehensive mathematical de-

scription of a complex, multiscale physical system. In turn, the numerical analyst desires

to apply this model to this system in a robust, efficient manner and obtain data consistent

with experimental data. The tension between these two goals increases as the complexity

of the physical system increases. Existing mathematical terms in a theory may account for

new physical phenomena, but the practical challenges of implementing the theory may lead

researchers to introduce approximations or ad-hoc models for specific cases. While these

modifications to the original theory may result in an efficient method of obtaining data for

that specific case, the ad-hoc nature of the additional model can limit its repeated use.

Therefore, alternative theories that mitigate the costs associated with precise descriptions of

complex systems continue to advance the progress of their respective fields.

The historical success of the direct numerical simulation (DNS) of turbulent flows by

solving the Navier-Stokes equations1–7 ensures that researchers will continue to press for its

use into modeling flows with lower Knudsen numbers, higher Mach numbers, and higher

temperatures. In these flow regimes, the small-scale dynamics can affect the evolution of the

mean flow.8–11 As numerical analysts seek to make these extreme regimes more accessible to
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current methods, the problem of resolving small length and time scales, and tracking how the

physics at these scales affect the mean flow, will continue to strain the cost of computational

resources involved in the application of DNS.

The key challenge in applying DNS to smaller length scales is that the smallest mesh

element must be the size of the minimally relevant length. The difficulties of implement-

ing DNS for turbulent flows are well documented,12–17 and have led to modifications of the

Navier-Stokes equations that help distinguish important length scales in the problem. The

Reynolds-averaged Navier-Stokes equations (RANS) and large-eddy simulation techniques

(LES) look to establish the presence of a mean flow through time-averaging the N-S equa-

tions or a minimal length scale through the process of filtering the N-S equations. Such

theories are necessarily accompanied by closure models that approximate the dynamics at

the length scales not covered by these models. Smagorinsky developed, in association with

LES, the well-known eddy-viscosity model,18 a model based on the assumption that tur-

bulent kinetic energy and energy dissipation are at equilibrium. Germano et al noted that

Smagorinsky’s model did not incorporate energy transfer from small to large scales, and

updated the eddy-viscosity subgrid model to relate sub-grid scale stresses to resolved turbu-

lent shear stresses with an algebraic identity.19 The universality of this model, however, was

questioned when Lilly noticed that coefficients needed to be altered for shear-driven turbu-

lent flows.20 This effort to adjust and accomodate subscale flow with newer models underlies

the problem associated with extending the Navier-Stokes equations to length scales of an

individual particle or structure. The velocity perturbation introduced in RANS, for instance,

emerges as a mathematical artifact from the time-averaging of the Navier-Stokes equations,

and therefore is introduced as a mathematical term with no a priori physical meaning.

Since its application is reserved exclusively for small-scale flow, however, the variable be-

comes useful for discussing the dynamics of subscale motion and the interactions between

separate length scales within the flow. The chosen model for the velocity fluctuation still

varies based on the chosen case.

The problem of accounting for small-scale dynamics within the Navier-Stokes equations

becomes clear when looking at the theoretical approaches to deriving these equations. The
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equations were originally derived from the assertion that a fluid can be described as a con-

tinuum, or a medium of infinitesimal points with no internal structure.21 The governing

equations were derived from balance laws applied to the continuum, and then expressed as

partial differential equations for the macroscopic properties of the flow. Absent this abstract

approach, the kinetic description employed Boltzmann’s transport equation, characterizing

a fluid as a distribution of point particles.22 Taking moments of this transport equation with

respect to conserved quantities the particles possess, i.e. mass or momentum, also yielded

equations that mirrored the form of the Navier-Stokes equations. In both cases, the individ-

ual components of the system possessed no size, and therefore gave no explicit information

on other degrees of freedom such as rotation or vibration, found in more complex systems.

Therefore, numerical methods based on DNS must confront the burden of making the size

of a cell small enough to capture the relevant physics at that scale.

1.2 Introduction to Morphing Continuum Theory

Recently, multiscale theories have been adopted to resolve, numerically, small-scale physics

within complex flows.17;23–25 A key attraction for incorporting multiscale theories into numer-

ical simulations is the ability to track small-scale motion without developing an additional

ad-hoc subgrid model. If the fluid can be envisioned as a body containing internal structure,

numerical analysts can avoid the need to develop models for the behavior of that internal

structure.

Morphing continuum theory (MCT) considers the fluid to be a space composed of spheri-

cal rotating bodies. These bodies can represent any fundamental structure that is of interest

to the researcher. Since turbulent flows often depend on the behavior of the smallest rele-

vant eddies, these spherical bodies can represent the smallest relevant eddies. Furthermore,

collections of these spheres can accumulate to mimic the behavior of large eddies, which may

themselves be composed of smaller eddies. Richardson noted that turbulent flows contain

this inherent multiscale character, where the apparent smallest eddy in a turbulent flow may

itself be composed of smaller eddies.26 A key result from the description of a fluid as a set
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of rotating spheres is that each point in the continuum contains its own rotation. Multiple

points are not required, as in the classical case, to resolve the smallest length scales associated

with rotation. The implications of this aspect of MCT for numerical simulations of turbulent

boundary layers and small-scale interactions within turbulent flows will be discussed in later

chapters.

The mathematical framework of MCT, due to this pointwise rotational component of

the fluid description, includes an additional variable related to the gyration of the spherical

bodies. The stress tensors affecting the linear and angular momentum of a fluid element

incorporate this gyration, and an independent angular momentum equation governing the

gyration is obtained. This additional equation is not present in the classical Navier-Stokes

formulation, since angular momentum is described entirely by the vorticity. The angular

momentum equation in MCT focuses specifically on the dynamics governing an individual

particle’s rotation, but does account for the effect of the vorticity on the gyration. Indeed,

when the gyration becomes large enough, the vorticity is all that is required to describe the

angular motion of the flow. Chapter 3 will demonstrate how the MCT governing equations

lead to the Navier-Stokes equations when the gyration is equal to the angular velocity.

The independent angular momentum equation within MCT is accompanied by new

stresses and strains related to the behavior of the gyration of the spherical bodies. The

relationship between stresses and strains within MCT is characterized by new coefficients.

A lingering problem in the analysis of MCT is the physical role these new coefficients play

in complex flows. In particular, a coupling coefficient emerges that couples the linear and

angular momentum equations and seems to add to the total viscosity of the fluid. This

coefficient, in addition to additional stresses that MCT introduces with no classical coun-

terpart, is currently described by its apparent impact on the physics of the flow when its

value is modified. The kinetic approach is an attempt to characterize the new stresses and

coefficients of MCT in terms of the physics of individual particle interactions.
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1.3 The Kinetic Theory Approach

When particles contain additional independent motions, the Boltzmann transport equation

can be extended to accomodate these motions, leading to the development of the Boltzmann-

Curtiss transport equation.27–31 If this kinetic approach can provide governing equations

that match the form of governing equations derived from conservation laws, the multiscale

framework of MCT retains a deeper physical meaning. Fluid properties and new coefficients

in MCT are shown to be dependent on basic conditions in the system.

The extension of kinetic theory to flows composed of spherical particles is the main

focus of this work. A simplified form of the Boltzmann-Curtiss transport equation is used

to derive governing equations for this system, with an additional equation characterizing

the new independent rotation these particles possess. These equations are obtained from

a first-order approximation to the Boltzmann-Curtiss transport equation. With a careful

series of assumptions, the form of the kinetic equations will be shown to match the form of

the governing equations in MCT. The common terms in both equations allow for a direct

comparison of the coefficients in MCT with corresponding expressions involving properties

of the fluid.

The significance of new coefficients in MCT, and their relationship to traditional coeffi-

cients in N-S equations, can be discussed in more detail by showing how the kinetic theory

equations reduce to the form of the Navier-Stokes equations. The assumptions behind the

final form of the kinetic theory equations are clearly stated, with possible explanations given

for disparities from classical expressions for corresponding material properties. The impli-

cations of these findings are investigated by simulating compressible and imcompressible

flows using finite-volume solvers based on MCT. The MCT equations also reduce to the N-S

form, allowing for an observation of the influence of the added rotation and new material

properties.

Numerical simulations of MCT have produced turbulent boundary layer profiles only

for certain values of the new coefficients in MCT. The expressions in the kinetic theory

equations can give a physical basis for the relative magnitudes of these coefficients, and their

5



importance for producing turbulent profiles. The goal, then, will be to reduce the need

for speculation of the values for the new coefficients within MCT, and to provide a further

incentive to test its application to more complex flows. Providing this physical grounding for

MCT will help ensure that multiscale theories such as MCT remain as an attractive option

for tackling flows with local spin, reducing the need to incur the high costs associated with

DNS or navigate the ad-hoc models needed to implement RANS or LES.
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Chapter 2

The Kinetic Approach:

Approximations to the

Boltzmann-Curtiss Transport

Equation

Flows with strong local spin have been the focus of extensive theoretical, experimental, and

numerical work for decades.32–37 High-speed, turbulent, compressible, reacting, and poly-

atomic gas flows all involve complex interactions based on strong local spin. The Wang

Chan-Uhlenbeck equation accounts for molecular spin through the lens of quantum mechan-

ics, treating each different quantum state as a separate species of molecule.38 This additional

rigor adds more complexity to the distribution function and the dynamics of the collisional

integral. For classical physics, however, local rotation may affect the dynamics of the entire

flow. Turbulent flows, in particular, may produce additional angular momentum from the

smallest eddies. The rotation of these smallest eddies affects the energy and momentum

transfer at the inertial length scales, requiring researchers to develop methods that capture

this additional small-scale angular momentum. The most effective of these analytical meth-

ods have revealed deeper physical or mathematical characteristics to previously well-tested
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theories of fluid dynamics.32;39–43

Several different fields of research have adapted to flows with local spin, by either mod-

ifying classical theories or developing entirely new approaches. Meng et al constructed a

thermal lattice Boltzmann model based on the ellipsoidal statistical Bhatnagar-Gross-Krook

(ES-BGK) equation to capture dynamics of rarefied gas thermal flows.44 When these flows

approach higher Mach numbers, the higher nonequilibrium flows were more difficult to cap-

ture in the transition regime without driving up computational costs. For hypersonic flows,

Munafo et al proposed a Boltzmann rovibrational collisional coarse-grained model, which

grouped internal energies associated with vibration and rotation into separate energy bins.45

These groups of internal energies were treated as separate species. The main flow equation

was simplified to a one-dimensional inviscid flow, also to save on computational resources.

For polyatomic gases, theoretical approaches often treat local spin as an internal degree

of freedom, similar to molecular vibration. Arima et al modified the approach of rational

extended thermodynamics to treat the molecular and vibrational relaxation processes in

polyatomic gases as separate processes, but included all effects of vibration and rotation in

a separate variable denoting internal motions in the gas.46 For rotation in nonequilibrium

flows, Eu added to his generalized hydrodynamic relations47;48 by introducing excess normal

stress associated with a bulk viscosity.49 Myong et al developed computational models based

on Eu’s relations to analyze high Knudsen number, rarefied diatomic gas flows.50–52

The models previously discussed have typically been modifications to classical approaches,

treating rotation in separate closure models. The history of theoretical work on flows with

local spin, however, shows that much can be learned about these flows by challenging the

assumptions behind the classical approach. From the perspective of statistical mechanics,

Grad developed the generalized thermodynamic relations for nonequilibrium distributions

of molecules.53 These relations were then applied to systems of molecules where individual

molecules possessed internal rotation. When molecular rotation was treated as an internal

variable dependent on the coordinates local to a molecule, the angular momentum equation’s

dependence on the linear momentum equation no longer held for nonequilibrium flows. Ad-

ditionally, the pressure tensor become asymmetric due to the added internal rotation. De
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Groot considered the effects of an asymmetric pressure tensor on the production of entropy,

linear momentum, and angular momentum. The stresses produced by the difference between

internal rotation and the vorticity in the flow were characterized by the “rotational viscos-

ity.”54 Since this new coefficient appeared in the linear and angular momentum equations,

the new parameter played the role of a coupling coefficient. Furthermore, when the material

parameters were assumed to be homogeneous in space, the Navier-Stokes equations were

recovered, with the rotational viscosity included.54

Snider later generalized this work to account for more complex rotational motions in

anisotropic fluids, or fluids where the local equilibrium properties depended on the presence

of this local spin.55 At the small and large scales, fundamental forces and properties of the

fluid are recharacterized when molecules possess strong internal spin. The pressure tensor

becomes asymmetric, and the torque caused by local spin gives rise to a couple stress tensor.

This couple stress is not to be confused with Stokes’ formulation of the couple stress, which

emerges from the vorticity vector.56 Evans added depth to Snider and De Groot’s work by

calculating the transport coefficients in the linear constitutive equations that related stresses

to deformations in the fluid.57 Molecular dynamics simulations of dense polyatomic fluids

between parallel plates produced preliminary data on the so-called “vortex viscosity,” which

corresponded to De Groot’s coupling coefficient, and showed how the variable for internal

rotation approached the angular velocity in the classical limit.57 The characteristic time

that the local rotation approached the macroscopic angular velocity was referred to as the

relaxation time. De Groot and Evans both derived an expression for the relaxation constant

for constant vorticity and zero classical viscosity.54;57 For this simple case, the relaxation

time was shown to be inversely proportional to the coupling coefficient. This analysis was

the first indication that the return to equilbrium for these flows required a reformulation of

the relaxation time. This concept will be treated with greater depth when the kinetic theory

approach to polyatomic gases is discussed.

The presence of the new transport properties in multiple approaches to the problem

of flows with local spin,54;57 and their relevance to the departure from classical fluids sug-

gests the need for a deeper treatment of their physical meaning. As has been shown for
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the Navier-Stokes equations, the physics behind derived material constants can only come

from an approach that achieves a macroscopic description of the fluid from modeling the

interactions of individual particles. Maxwell and Boltzmann showed that these classical

fluid descriptions could arise from the collisions of several particles in a monatomic gas.58;59

Given enough collisions, a probability distribution function could predict how many particles

would occupy a given point in space and possess a certain translational velocity. Maxwell and

Boltzmann showed that a zeroth-order approximation of this distribution function demon-

strates symmetries in physical and velocity space.58;59 Furthermore, the substitution of the

Maxwell-Boltzmann distribution into the balance laws for mass, momentum, and energy

yield governing equations that take the form of the Euler equations. The first-order approx-

imation to the exact solution to the Boltzmann transport equation, in turn, yields equations

that mirror the Navier-Stokes formulation.

This initial work for monatomic gases expanded to fluids that contained particles with

structure. Curtiss extended the Boltzmann transport equation to account for variables asso-

ciated with separate internal motions apart from the translational velocity.27–29 Additional

rotation from diatomic molecules27 and molecules of arbitrary structure28 all resulted in ad-

ditional terms to the Boltzmann transport equation, and complicated the physics behind col-

lisional integrals and transport coefficients. The resulting transport equation became known

as the Boltzmann-Curtiss tranpsort equation. From this bottom-up approach to flows with

structure, Curtiss employed the Chapman-Enskog method29 to obtain explicit expressions

for the transport coefficients of a dilute gas mixture of rigid, non-spherical, symmetric-top

molecules. Curtiss found that the resulting kinetic theory for this specific case matched

the “loaded-sphere” formalism presented by Dahler and Sather.60 She et al generalized this

approach to molecules with arbitrary internal degrees of freedom with intermolecular central

potential forces,30 deriving a solution to the Boltzmann-Curtiss equation for molecules with

translational and rotational motion. She also applied the Chapman-Enskog approach to find

transport coefficients for this limited case.30 When well-known potentials were substituted in

for the perturbations to the equilibrium distribution, the resulting coefficients compared with

well-known models such as the “rough-sphere” approximation. Solutions to the Boltzmann-
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Curtiss equation that accounted for nonequilibrium entropy production consistent with the

second law of thermodynamics were introduced by Eu47;48 and investigated by Myong50–52;61

for cases of high thermal nonequilibrium, where the complexity in the constitutive equations

required a more in-depth theoretical and numerical treatment. The effects of rotational mo-

tion in Eu’s solution were encapsulated by the rotational Hamiltonian, but the fluid was

assumed to have no intrinsic angular momentum.48

The extension of kinetic theory to polyatomic gases also required a detailed investiga-

tion into the process of the gas departing from and returning to an equilibrium state. As

mentioned in the statistical mechanical approach, the relaxation time typically gives a char-

acteristic time for the return to equilibrium. In the classical approach, this relaxation time

could be approximated as the time between two collisions. For the Boltzmann distribu-

tion, the only parameters needed to obtain this time were the mean free path and the most

probable velocity value.22 For kinetic theories involving local rotation as an independent

variable, the transfer of kinetic energy between translation and rotation needed to be con-

sidered. Parker et al focused on deriving the rotational relaxation time for homonuclear

diatomic molecules.62 This description relied on the simplification that the translational en-

ergies already reached equilibrium, and that the rotational energy was initially unexcited.

Furthermore, Parker did not consider rotation as a fundamental degree of freedom with

its own equilibrium temperature.62 In the loaded-sphere approximation, Dahler et al es-

tablished local equilibrium temperatures for both translation and rotation, and derived the

rotational relaxation time from an approximation of the rate of transfer of energy between

these motions.63 This approximation came from assuming a pair distribution for translation

and rotation as the product of each of the two local Boltzmann distributions. Monchick

et al was later able to establish singular relaxation times for rotation and other internal

degrees of freedom based off of the Chapman-Enskog process to the linearized Boltzmann

equation.64 Determination of the relaxation time associated with rotation or vibration of gas

molecules was determined experimentally via absorption of ultrasound frequencies and by

measurements of heat conductivity.65;66 Recently, molecular dynamics simulations have been

performed to give better approximations of the rotational relaxation time67 as well as other
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transport properties such as the shear viscosity. Still, these methods treat rotation as an

internal degree of freedom, and evaluate how well the values match with classical treatments

of the rotation in the flow. The effects of molecular rotation to the total relaxation time of

a polyatomic gas still require a more detailed treatment.

When rotation is treated as an internal or quantum state, the theoretician is challenged

with the task of isolating its contribution from all other internal or quantum states. Dis-

tribution functions corresponding to each quantum state, as solutions to the Wang Chan-

Uhlenbeck equation are formulated,38 must be obtained and compared with avaliable data.

This challenge is eliminated if rotation is treated as an explicit, independent variable, al-

lowing for a single distribution function to describe the small-scale rotation in the system.

Recently, an additional theory derived from the perspective of rational continnum thermo-

mechanics (RCT) has provided governing equations for the mass, momenta, and energy of a

fluid composed of spherical particles.32;40;41;68;69 These equations start from a description of

the fluid that deviates from any classical mechanical fluid. In the framework of MCT, the

fluid is now posed as a morphing continuum, composed of individual spheres that possess

intrinsic rotation as a separate, independent motion. Similar to Snider’s work,55 the gov-

erning equations of morphing continuum theory (MCT) present a series of new coefficients

directly related to the contribution of local spin to various stresses in the fluid. Chen showed

that the inviscid equations of MCT could be derived from a zeroth-order approximation to

the solution of the Boltzmann-Curtiss transport equation.31 The meaning of the additional

coefficients in MCT, and their precise contribution to turbulent flows with local spin, has

yet to be explained through kinetic theory. Peddieson et al derived dimensionless parame-

ters70 that produced a range of boundary layer profiles, including profiles that demonstrated

aspects of turbulence. Still, the choice of the values for these parameters was arbitrary,

with no expectation for which material constants were indispensable for the generation of

turbulent fluctuations. When governing equations derived from kinetic theory descriptions

of a fluid mirror the form of similar equations derived from first principles, further insight

into the role of new material constants arises. Material properties are shown to have intrin-

sic dependencies on other properties of the fluid. Furthermore, differences in the two sets
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of equations may reveal hidden assumptions in the mathematical approach or the need for

higher orders of accuracy in the kinetic theory description. The focus of this paper is to

apply the Chapman-Enskog approach from kinetic theory to extend Chen’s analysis of fluids

with spherical particles to the first-order approximation to the Boltzmann-Curtiss transport

equation. The final form of this approximation is intended to give a deeper insight into the

new coefficients introduced by MCT, and to present a kinetic description of a fluid possess-

ing independent local rotation. The benefit of this approach of treating the local rotation

as independent will be evident as the need for developing complex constitutive relations is

avoided. These first-order equations should possess familiar terms from the Navier-Stokes

equations, and introduce key terms that arise from local rotation. An analysis of these

new equations will require a discussion of the relaxation time used to make this first-order

approximation, due to the presence of local rotation.

First, section 2.1 specifies the assumptions for the fluid and outlines the mathematical

consequences of making these assumptions. The distribution function, conservation equa-

tions, and balance laws will obtain a certain form from these assumptions. In section 2.2,

the first-order approximation to the distribution function is derived from the zeroth order

balance laws by following the Chapman-Enskog approach. With the distribution function,

the expressions for key stresses in the original balance laws are derived and discussed briefly.

Then, section 2.3 derives the governing equations by substituting the stress tensors back into

the original balance laws. A brief comparison with the Navier-Stokes and MCT linear mo-

mentum equations is done to highlight the new terms brought about by the local rotation of

the spherical particles. In section 2.4, the physics underlying the new relaxation time is inves-

tigated. For section 2.5, the equivalence between the gyration and the macroscopic angular

velocity results in a reduction of the governing equations to the Navier-Stokes description.

These reduced equations, however, do not match classical kinetic equations obtained using

the Boltzmann distribution function. The differences between these two sets of equations

are explored. Finally, section 2.6 concludes by remarking on the next steps for verifying and

expanding the influence of this work to pressing problems for turbulent flows and other flows

involving strong local spin.
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2.1 Background

For monatomic gases composed of infinitesimal particles, any kinetic theory needs to track

only the position and translational velocity of the particles. These assumptions greatly

simplify the probability distribution of particles, as well as the transport equation used to

describe the evolution of that distribution. When the particles are given a finite size and

allowed to rotate, additional motions bring additional degrees of freedom to the system.

If the angular motion of the particles is independent from the translational motion and is

dependent on its orientation, then the transport equation has the form:28;68

(
∂

∂t
+
pi
m

∂

∂xi
+
Mi

I

∂

∂Φi

)f = (
∂f

∂t
)coll (2.1)

Here m denotes the mass of a particle, pi represents the linear momentum, Mi the angular

momentum, I the moment of inertia of a particle, and Φi the Euler angle with respect to

the center of mass of the particle.

The solution f(pi,Φi, xi, t) gives the probability a particular particle will possess the

values of the given variables, and generalizes the motion of the system by simplifying the

interactions of individual particles. For instance, this solution is absent of dependencies

on vibrational energy or vibrational motion, as the dynamics of individual collisions are

assumed to be independent of these variables. The right-hand side of equation 2.1 accounts

for the cumulative effect of collisons on the distribution. For this description, the particles are

treated as spheres, so all axial orientations of the distribution are equivalent, i.e. independent

of the Euler angle. Therefore, the Boltzmann-Curtiss transport equation becomes:

(
∂

∂t
+
pi
m

∂

∂xi
)f = (

∂f

∂t
)coll (2.2)

Equilibirum solutions to this equation should look similar to the Maxwell-Boltzmann dis-

tribution function, as the remaining terms are concerned with linear momentum. Still, the

presence of an independent angular rotation, ωi, changes the distribution of kinetic energy

of the particles. From Boltzmann’s principle, the equilibrium solution to equation 2.2 can
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be approximated as:31

f 0(xi, vi, ωi, t) = n(

√
mI

2πθ
)3 exp(−

m(v′lv
′
l) + I(ω′

pω
′
p)

2θ
) (2.3)

Here, the perturbed velocity, v′l = vl − Ul, for mean velocity Ul and the perturbed gyration,

ω′
p = ωp −Wp for mean gyration Wp, are introduced. The form of this distribution function

differs from the classical Boltzmann distribution function,10;71 which assigns a 3/2 power to

the terms in front of the exponential. The increased exponential in equation 2.3 arises due

to the additional contribution to the momentum by the gyration, ω′
p. The number density,

n, of the particles is found by integrating the distribution function f over all the perturbed

variables, v′ and ω′, which is now a six-dimensional integral:

n =

∫ ∫
d3v′d3ω′f 0 (2.4)

The superscript indicates that this function only serves as a zeroth-order approximation to

the true solution. In equation 2.3, the mean thermal energy θ, mean velocity and mean

gyration are assumed to vary slowly in time due to the rapid number of collisions, ensuring a

rapid return to equilibrium. The thermal energy, θ = kT , contains the Boltzmann constant k

and absolute temperature T . Classical kinetic approaches by Huang22 and by Gupta et al for

granular fluids72 often group the Boltzmann constant with the characteristic temperature

to focus on the thermal energy of the system. The velocity and gyration perturbations

represent the rapid fluctuations of the spheres, and provide the main source of any dynamics

at equilibrium. Furthermore, the moment of inertia of a sphere can be expressed in terms

of a parameter j,17 known as the microinertia. This parameter comes from the averaging of

spatial coordinates attached to the sphere, allowing one to show that j = 2
5
d2, where d is

the diameter of the sphere.17 Substituting I = mj into equation 2.3 yields:

f 0(xi, vi, ωi, t) = n(
m
√
j

2πθ
)3exp(−

m(v′lv
′
l + jω′

pω
′
p)

2θ
) (2.5)
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This equilibrium distribution function represents the starting point for the kinetic theory

derivation, providing an abstract description of the system. To account for the evolution

of the physical motion of a particle, the balance laws must be derived. The average of a

quantity A is here defined by the following expression:

⟨A⟩ = 1

n

∫ ∫
Af(xi, vi, ωi, t)d

3v′d3ω′ (2.6)

where n is the number density of the particles and is found by integrating the distribution

function f over all the perturbed variables, v′ and ω′. The mean velocity and gyration

are naturally obtained from ⟨v⟩ and ⟨ω⟩. Therefore, any balance laws governing the mean

velocity and mean gyration must come by averaging the transport equation 2.2 for some

conserved quantity χ(xi, pi):

∂

∂t
⟨nχ⟩+ ∂

∂xi
⟨npi
m
χ⟩ − n⟨pi

m

∂χ

∂xi
⟩ = 0 (2.7)

Note that all potential time derivatives vanished as χ is a function of momentum and position

alone. The collisional term emerging from the averaging of the right-hand side of equation 2.2

is also presumed to vanish, namely, ⟨χ(xi, pi)(∂f∂t )coll⟩ = 0. Huang proved this statement for

any conserved quantity,22 and his proof will be discussed in section 2.2 when the effects of

collisions are discussed in more detail.

The balance laws come by letting χ equal the conserved values of mass m, linear momen-

tum m(vi + ϵiplrlωp), angular momentum mrirpωp and total energy m(e+ 1
2
v′lv

′
l + rprqω

′
pω

′
q).

The new velocity associated with the linear momentum arises from the combined motion

of the classical translational velocity, vi, and the contribution of the gyration to the total

velocity, ϵiplrlωp.
73 The angular momentum is the standard expression involving the the cross

product of the local angular velocity induced by the gyration, rpωp, and the radial coordinate

emerging from the center of mass of the particle, ri. The Levi-Civita tensor, ϵipq, is used for
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cross products of two vectors, and has the properties:

ϵipq =


+1, if (i, p, q) = (x, y, z), (z, x, y), or (y, z, x)

−1, if (i, p, q) = (y, x, z), (z, y, x), or (x, z, y)

0, otherwise

(2.8)

Finally, the conserved quantity of energy contains the kinetic energy associated with the

local angular velocity, rnωn, and adds this to the traditional translational kinetic energy.

Substituting the conserved quantities of mass, linear momentum, angular momentum, and

energy for χ into the conservation equation 2.7 yields:

Continuity
(
χ1 = m

)
∂

∂t
⟨mn⟩+ ∂

∂xi
⟨mnvi⟩ = 0 (2.9)

Linear Momentum
(
χ2 = m(vi + ϵiplrlωp)

)
∂

∂t
⟨mnvi⟩+

∂

∂t
⟨mnϵiplrlωp⟩+

∂

∂xl
⟨mnvivl⟩+ (2.10)

∂

∂xs
⟨mnϵiplvsrlωp⟩ = 0

Angular Momentum
(
χ3 = mrirpωp

)
∂

∂t
⟨mnrirpωp⟩+

∂

∂xl
⟨mnrirpωpvl⟩ = 0 (2.11)

Energy
(
χ4 = m(e+

1

2
[v′lv

′
l + rprqω

′
pω

′
q])

)
∂

∂t
(mne) +

∂

∂xi
(mnevi) +

∂

∂xi

1

2
⟨mnv′lv′lv′i + rprqω

′
pω

′
qv

′
i⟩− (2.12)

mn⟨vi
∂e

∂xi
⟩ = 0

Here e is internal energy and is already itself a mean quantity of the system. Since the veloc-

ity, v, and gyration, ω, are separate coordinates, any derivative of the positional coordinate

with respect to these variables vanishes. Letting the averages of the variables equal their

mean values and splitting total variables into mean and fluctuating components, the balance
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laws become:

Continuity

∂

∂t
ρ+

∂

∂xl
(ρUl) = 0 (2.13)

Linear Momentum

∂

∂t
(ρUs) +

∂

∂xl
(ρUsUl) +

∂

∂xl
(ρ⟨v′sv′l⟩+ ⟨ρϵspqv′lrqω′

p⟩) = 0 (2.14)

Angular Momentum

∂

∂t
(ρispWp) +

∂

∂xl
(ρispWpUl) +

∂

∂xl
(ρ⟨ispω′

pv
′
l⟩) = 0 (2.15)

Energy

∂

∂t
(ρe) +

∂

∂xl
(ρeUl) +

∂

∂xl

1

2
⟨ρv′sv′sv′l + ipqω

′
qω

′
pv

′
l⟩ − ρ⟨vl

∂e

∂xl
⟩ = 0 (2.16)

Here, the properties ⟨v′χ⟩ = 0 and ⟨ω′χ⟩ = 0 are employed. Additionally, the term

⟨ϵiplvsrlWp⟩ = 0 as this can be viewed as an integral of the fluctuating component of the total

velocity.31;74 Also, the term ipq = rprq is used to represent the product of the coordinates,

rp, emerging from the center of mass of the particle. These coordinates measure the relative

deformation of a particle, tracking how the surface varies about the center of mass. The

tensor ipq is related to the earlier parameter j, known as the microinertia. For spherical

particles, ipq is reduced to ipqδpq = ipp, which can be shown to equal 3j
2
.17 Applying this
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reduction to ipq the balance laws become:

Continuity

∂

∂t
ρ+

∂

∂xl
(ρUl) = 0 (2.17)

Linear Momentum

∂

∂t
(ρUs) +

∂

∂xl
(ρUsUl) +

∂

∂xl
(ρ⟨v′sv′l⟩+ ⟨ρϵspqv′lrqω′

p⟩) = 0 (2.18)

Angular Momentum

∂

∂t
(
3ρjWs

2
) +

∂

∂xl
(
3ρjWsUl

2
) +

∂

∂xl
ρ⟨3jω

′
sv

′
l

2
⟩ = 0 (2.19)

Energy

∂

∂t
(ρe) +

∂

∂xl
(ρeUl) +

∂

∂xl

1

2
⟨ρv′sv′sv′l +

3jω′
pω

′
pv

′
l

2
⟩ − ρ⟨vl

∂e

∂xl
⟩ = 0 (2.20)

These conservation equations feature material derivatives for the mean flow variables as well

as gradients of products of perturbed variables. These perturbations are variables in the

distribution function, and so can be treated separately. Defining these expressions in the

following way:

qα =
1

2
⟨ρv′lv′lv′α +

3jω′
pω

′
pv

′
α

2
⟩ (2.21)

tBol
αβ = −ρ⟨v′αv′β⟩ (2.22)

tCur
αβ = −ρ⟨v′αϵβpqrqω′

p⟩ (2.23)

mαβ = −ρ⟨
3jω′

βv
′
α

2
⟩ (2.24)

Here, qα denotes the heat flux, tBol
αβ gives the Boltzmann stress, tCur

αβ yields the Curtiss stress,

and mαβ introduces the moment stress. Plugging these expressions into the balance laws
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gives:

Continuity

∂

∂t
ρ+

∂

∂xl
(ρUl) = 0 (2.25)

Linear Momentum

∂

∂t
(ρUs) +

∂

∂xl
(ρUsUl)−

∂

∂xl
(tBol

ls + tCur
ls ) = 0 (2.26)

Angular Momentum

∂

∂t
(ρjWs) +

∂

∂xl
(ρjWsUl)−

2

3

∂

∂xl
(mls) = 0 (2.27)

Energy

∂

∂t
(ρe) +

∂

∂xl
(ρeUl) +

∂ql
∂xl

− ρ⟨vl
∂e

∂xl
⟩ = 0 (2.28)

Indeed, the expressions 2.21, 2.22, 2.23, and 2.24 refer to familiar stresses that require a

more detailed treatment. At the moment, they represent only source or sink terms for the

momentum and energy of the flow. These terms can be determined from the definition

of the average in equation 2.6 using the equilibrium distribution in equation 2.5, which

would give a very rough approximation of how they contribute to the balance laws. A more

thorough treatment of their contribution, however, requires the derivation of a distribution

function that accounts for departures in the fluid from equilibrium. For this function, the

Chapman-Enskog process is followed to derive a first order approximation to the solution of

the Boltzmann transport equation 2.2.

2.2 First-Order Approximation

2.2.1 Distribution Function

The right-hand side of the transport equation 2.2 tracks the gain or loss of particles due

to collisions in some small time interval. For the equilibrium distribution function in equa-

tion 2.5, the assumption was made that a large number of binary collisions occurred over
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a short time interval, meaning that any deviation from equilibrium would result in a rapid

return to equilibrium. These binary collisions affect the initial rotation and velocity of the

particle instantaneously at the moment the particles collide. Huang studied these binary col-

lisions considering molecules with only translational velocities.22 The existence of spin within

molecules was treated through the lens of quantum mechanics, denoting different spin states

as separate species of molecules. In order to account for these different spins, then, one

would need to solve the Wang Chang-Uhlenbeck equation38 for the distribution function of

each of these molecular species, with a collisional integral that accounts for the cross-section

calculated from the quantum states of these species. Here, the Boltzmann-Curtiss distri-

bution function described in equation 2.5 treats gyration as an additional classical variable

applicable to the same molecules throughout the domain, thus requiring only one solution

to describe the distribution of rotation throughout the system. Additionally, the collisional

integral is easier to calculate since the rotational motion is treated as a classical motion.

The collision rate on the right-hand side of the Boltzmann transport equation 2.2 is given

by the following integral:

(
∂f

∂t
)coll =

∫
d3p2 d

3p′1 d
3p′2 δ

4(Pf − Pi) |Tfi|2 (f ′
2f

′
1 − f2f1) (2.29)

Here, Pf and Pi refer to the total final and initial momenta, p1 and p2 refer to the initial

momenta of the colliding particles while their primed counterparts, p′1 and p′2 each refer to

their respective final linear momentum. As mentioned in the previous section, these linear

momenta contain an added term to the classical linear momentum, pi = mvi, found in the

Boltzmann transport equation. Here, the Boltzmann-Curtiss linear momentum, pi = m(vi+

ϵiplrlωp), includes an additional contribution from the component of the local rotation moving

in the direction of the translational velocity. The transition matrix Tfi contains the elements

of the operator T (E) that converts the particle from its initial to final state in the collision.

Finally the distribution functions f1 and f2 refer to the distributions of particles containing

momenta p1 and p2 respectively while the primed distribution functions contain the final

momenta values denoted by the primed counterparts p′1 and p′2. Any conserved quantity for

a particle initiating a binary collision, χ, integrated with the collision integral 2.29 vanishes.
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Hunag proved this result by interchanging the momenta variables before and after the collison

and integrating over pre-collision and post-collision linear momenta.22 When equation 2.29

is used on the right-hand side of the Boltzmann-Curtiss transport equation 2.2, the Wang

Chan-Uhlenbeck equation is obtained:38

(
∂

∂t
+
pi
m

∂

∂xi
)f =

∫
d3p2 d

3p′1 d
3p′2 δ

4(Pf − Pi) |Tfi|2 (f ′
2f

′
1 − f2f1) (2.30)

This treatment will look at a simplified version of this equation.

In observing the effect of collisions on equation 2.30, it is important to recognize that

(∂f
0

∂t
)coll = 0 for the equilibrium Boltzmann-Curtiss distribution function defined in equa-

tion 2.5. This result emerges from the fact that the coefficients in equation 2.5 do not depend

on the velocity vi.
22 To get a good approximation of the collision integral 2.29, higher order

approximations of f are needed. If the distribution function g is defined by the expression:

g(xi, pi, t) = f(xi, pi, t)− f 0(xi, pi, t) (2.31)

then the collision integral 2.29 can be approximated with the following expression:

(
∂f

∂t
)coll ≈

∫
d3p2 d

3p′1 d
3p′2 δ

4(Pf − Pi)|Tfi|2(f 0′

2 g
′
1 − f 0

2 g1 + g′2f
0′

1 − g2f
0
1 ) (2.32)

where squared terms involving g have been neglected due to their presumed smaller magni-

tude in relation to f 0. Indices associated with different distribution functions again corre-

spond to the initial and final distributions of the particles in the binary collisions. To assess

the relative magnitude of the terms within equation 2.32, the second term on the right-hand

side can be calculated by the expression:

− g1(x,p1, t)

∫
d3p2 d

3p′1 d
3p′2[δ

4(Pf − Pi) |Tfi|2 f 0
2 = −g1

τ
(2.33)

Here, the time constant τ incorporates all the physics associated with the transition from

initial to final states, including the transfer of angular momentum through the new variable

of gyration. A more in-depth treatment of the gyration and the characteristic time constants

associated with its evolution will be given in the next section.
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Given the order-of-magnitude estimate to the collision integral 2.32, the right-hand side

of the Boltzmann transport equation can be given a simpler treatment with the expression:

(
∂f

∂t
)coll = −f − f 0

τ
= −g

τ
(2.34)

The first-order distribution function, g, measures the probability that large numbers of parti-

cles will exit their equilibrium state purely through collisions. The time constant τ now gives

an approximation for the entire distribution departing from equilibrium through collisions.

Therefore, this time constant should characterize the transition of all degrees of freedom to

and from their equilibrium states. If the time-scale of the problem is reduced such that only

one motion departs from equilibrium, as Parker considered for internal rotation,62 then this

time constant can be scaled to focus on this relaxation process. If further approximations

are needed to account for additional physics, the relaxation time can be expanded into a

series of terms that take into account these additional interactions. Chen et al applied this

approach75 to generate an expression for the characteristic collisional time scale of turbu-

lent eddy interactions. Such expansions have the benefit of incorporating multiple physical

processes within one time constant, allowing for the interaction of rotation and translation

to affect the relaxation of the distribution function simultaneously.

If equation 2.34 is substituted into the transport equation 2.2, an approximate form

of the transport equation known as the Bhatnagar, Gross, and Krook (BGK) equation is

obtained:76

g = −τ( ∂
∂t

+ vi
∂

∂xi
)(f 0 + g) (2.35)

Since g measures the probability of large numbers of particles deviating from their equilib-

rium state, its relative magnitude to f 0 matters greatly in terms of what kind of system is

being described. For this paper, it suffices to show what forces and properties are influencing

the mean flow when slight deviations to equilibrium occur. Therefore, it can be assumed

that g << f 0, reducing equation 2.35 to the form:

g = −τ( ∂
∂t

+ vi
∂

∂xi
)f 0 (2.36)
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This equation gives a formula for finding g entirely in terms of derivatives of f 0. Still, the

variables in the transport equation 2.36 are present in f 0 only through its independent vari-

ables. Therefore, to get the spatial derivates of f 0, the following derivatives of its independent

variables are calculated:

∂f 0

∂ρ
=
f 0

ρ
(2.37)

∂f 0

∂θ
= −(3− m(v′2 + jω′2)

2θ
)
f 0

θ
(2.38)

∂f 0

∂Ui

=
mv′i
θ
f 0 (2.39)

∂f 0

∂Wi

=
mjω′

i

θ
f 0 (2.40)

Using the chain rule, the expression for g in equation 2.36 can be written as:

g = −τf 0(
1

ρ
D(ρ) +

1

θ
(
m(v′2 + jω′2)

2θ
− 3)D(θ) + (

mv′i
θ

)D(Ui)

+ (
mjω′

i

θ
)D(Wi))

(2.41)

where D(X) = ( ∂
∂t

+ vi
∂
∂xi

)X. The material derivatives present in equation 2.41 can be

derived from the zeroth order balance laws. To obtain the zeroth order approximations of

the equations 2.25, 2.26, 2.27, 2.28, the terms related to the perturbation of the velocity and

gyration are eliminated, yielding:

∂ρ

∂t
+
∂ρUl

∂xl
= 0 (2.42)

∂

∂t
(ρUs) +

∂

∂xl
(ρUlUs) = − ∂

∂xs
(nθ) (2.43)

∂

∂t
(ρjWs) +

∂

∂xl
(ρjWsUl) = 0 (2.44)

∂

∂t
(nθ) +

∂

∂xl
(nθUl) = −nθ

3

∂Uq

∂xq
(2.45)

From these approximations to the balance laws, the material derivatives found in equa-
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tion 2.41 are obtained:

D(ρ) = v′l
∂

∂xl
ρ− ρ

∂Uq

∂xq
(2.46)

D(θ) = v′l
∂

∂xl
θ − 1

3
θ
∂Uq

∂xq
(2.47)

D(Ui) = v′l
∂

∂xl
Ui −

1

ρ

∂

∂xi
(nθ) (2.48)

D(Wi) = v′l
∂

∂xl
Wi (2.49)

With these final expressions substituted back into equation 2.41, the final form of g is given

as:

g = −τf (0)[
1

ρ
(v′i

∂ρ

∂xi
− ρ

∂Ui

∂xi
)− (

3

θ
− m(v′2 + jω′2)

2θ2
)(v′i

∂θ

∂xi
− θ

3

∂Uq

∂xq
)

+ (
mv′i
θ

)(v′l
∂Ui

∂xl
− 1

ρ

∂

∂xi
(nθ)) + (

mjω′
i

θ
)(v′l

∂Wi

∂xl
)]

(2.50)

Here, the first order distribution is now expressed entirely in terms of the mean and per-

turbed flow properties. All that remains is to find the first order approximations to the

equations 2.21, 2.22, 2.23, and 2.24 to obtain non-zero expressions for the missing terms in

the first-order balance laws 2.17, 2.18, 2.19, and 2.20.

2.2.2 Stresses and Heat Flux

With the definition of the heat flux in equation 2.21, and the stresses in equations 2.22, 2.23,

and 2.24, along with the definition of the average in equation 2.6, the zeroth and first-order

approximations to the missing terms in the balance laws can be calculated. Beginning with
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the zeroth order approximations, the averaging is carried out with f 0:68

q0α =
mρ

2n

∫
(v′lv

′
lv

′
α + jω′

pω
′
pv

′
α)(

m
√
j

2πθ
)3exp(−

m(v′lv
′
l + jω′

pω
′
p)

2θ
) d3v′d3ω′

= 0

(2.51)

tBol,0
αβ = −ρ

∫
v′αv

′
β(
m
√
j

2πθ
)3exp(−

m(v′lv
′
l + jω′

pω
′
p)

2θ
)d3v′d3ω′

= −nθδαβ
(2.52)

tCur,0
αβ = −ρϵβpqrp

∫
ω′
qv

′
α(
m
√
j

2πθ
)3exp(−

m(v′lv
′
l + jω′

pω
′
p)

2θ
)d3v′d3ω′

= 0

(2.53)

m0
αβ = −3ρj

2

∫
ω′
βv

′
α(
m
√
j

2πθ
)3exp(−

m(v′lv
′
l + jω′

pω
′
p)

2θ
)d3v′d3ω′

= 0

(2.54)

Due to the functional form of f 0, those integrals possessing odd powers of v′p or ω′
l vanish.

A key note is that the Boltzmann stress in equation 2.52 yields the hydrostatic pressure P

from nθ due to the assumption that the fluid is an ideal gas. This result is expected as

the zeroth-order Boltzmann stress should reflect the zeroth order pressure of an ideal gas at

equilibrium.

For the first-order approximations to the above stresses, the definitions must now involve

volume integrals of the first-order distribution function g:

q1α =
mρ

2n

∫ ∫
(v′lv

′
lv

′
α + ω′

pω
′
pv

′
α)gd

3v′d3ω′ (2.55)

tBol,1
αβ = −ρ

∫ ∫
v′αv

′
βgd

3v′d3ω′ (2.56)

tCur,1
αβ = −ρ

∫ ∫
ϵβpqrqω

′
pv

′
αgd

3v′d3ω′ (2.57)

m1
αβ = −3ρj

2

∫ ∫
ω′
αv

′
βgd

3v′d3ω′ (2.58)

These volume integrals are more easily evaluated if they can be converted into surface inte-
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grals. Since there is no angular dependence in these integrals, the spherical symmetry of the

integrands implies:∫ ∫
G(v′, ω′)d3v′d3ω′ = 16π2

∫ ∫
v′2ω′2G(v′, ω′)dv′dω′ (2.59)

Additionally, due to the functional form of f 0, terms involving the average of vector compo-

nents of different indices, such as ⟨v′αv′β⟩, retain non-zero values for the integral only when

indices match. Therefore, the identities ⟨v′αv′β⟩ = δαβ
⟨v′2⟩
3

and ⟨v′αv′βv′iv′l⟩ = ⟨v4⟩
15

(δαβδil +

δαiδβl + δαlδβi) are employed for both the velocity and gyration variables. Applying all these

properties to our volume integrals yields:

q1α =−

[
8π2mρτ

3

∫ ∫
dv′dω′(v′6ω′2 + jv′4ω′4)[−4

θ
+
m(v′2 + jω′2)

2θ2
]

(
m
√
j

2πθ
)3exp(−m(v′2 + jω′2)

2θ
)

]
∂θ

∂xα

= −(4nτθ)
∂θ

∂xα

(2.60)

tBol,1
αβ =

[
16π2τρ

15θ

∫
v′6ω′2(

m
√
j

2πθ
)3exp(−m(v′2 + jω′2)

2θ
)dω′dv′

]
(
∂Uα

∂xβ
+
∂Uβ

∂xα
+ δαβ

∂Ul

∂xl
)

−

[
16π2ρτ

3θ

∫
v′4ω′2 (v

′2 + jω′2)

6
(
m
√
j

2πθ
)3exp(−m(v′2 + jω2)

2θ
)dv′dω′

]
δαβ

∂Ul

∂xl

= nτθ(
∂Uα

∂xβ
+
∂Uβ

∂xα
)− nτθ

3
(
∂Ul

∂xl
δαβ)

(2.61)

tCur,1
αβ =

[
16π2ρτmj

9θ
(
m
√
j

2πθ
)3
∫
v′4ω′4exp(−m(v′2 + jω′2)

2θ
)dω′dv′

]
ϵβpqrq

∂Wp

∂xα

= (nτθ)ϵβpqrq
∂Wp

∂xα

(2.62)

m1
αβ =

[
48π2τρj2m

2θ

∫
ω′2v′2ω′

βvαω
′
lv

′
p(
m
√
j

2πθ
)3exp(−m(v′2 + jω′2)

2θ
)dω′dv′

]
∂Wl

∂xp

= (
3nτjθ

2
)
∂Wβ

∂xα

(2.63)

The reduced forms of these stresses appear to follow familiar patterns. The heat flux in

equation 2.60 appears to demonstrate a direct proportionality relationship with the tem-
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perature gradient. The Boltzmann stress contains terms related to the familiar strain-rates

and divergences of the velocity. Still, these stresses all have nonlinear dependence on the

temperature, meaning that simplifications will have to be made before direct comparisons

with classical fluids can occur.

2.3 Governing Equations

A direct substitution of the stresses found in equations 2.60, 2.61, 2.62, and 2.63 into the

first-order balance laws 2.25, 2.26, 2.27, and 2.28 yields:

Continuity

∂

∂t
ρ+

∂

∂xl
(ρUl) = 0

(2.64)

Linear Momentum

∂

∂t
(ρUs) +

∂

∂xl
(ρUlUs)−

∂

∂xl
[−Pδsl + nτθ(

∂Ul

∂xs
+
∂Us

∂xl
)− nτθ

3

∂Uq

∂xq
δsl]−

∂

∂xl
(nτθϵspqrq

∂Wp

∂xl
) = 0

(2.65)

Angular Momentum

∂

∂t
(ρjWs) +

∂

∂xl
(ρjWsUl)−

∂

∂xl
[(nτjθ)

∂Ws

∂xl
] = 0

(2.66)

Energy

∂

∂t
(ρe) +

∂

∂xl
(ρeUl)−

∂

∂xl
(4nτθ

∂θ

∂xl
)− ρ⟨vl

∂e

∂xl
⟩ = 0

(2.67)

These equations contain derivatives of nonlinear terms and products of spatially varying

variables. For this first-order approximation to the balance laws, the products of gradients

of terms are presumed to vanish. Furthermore, equation 2.66 contains a spatial derivative

of the spatial coordinate rp that has its origin at the center of mass of the spherical particle.

Looking at Figure 2.1, the expression for this coordinate is easily derived in terms of the

Eulerian coordinates: ri = x′i − xi. Therefore:

∂ri
∂xl

= −δil (2.68)
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Clearly the derivative is zero unless the components of x and r are the same. Taking this

derivative into account, removing terms associated with products of gradients, and allowing

for the existence of body forces, the governing equations become:

Continuity

∂

∂t
ρ+

∂

∂xl
(ρUl) = 0

(2.69)

Linear Momentum

∂

∂t
(ρUs) +

∂

∂xl
(ρUsUl) +

∂P

∂xs
− nτθ(

∂2Us

∂xl∂xl
+

2

3

∂2Ul

∂xlxs
)−

nτθϵspq
∂Wq

∂xp
− ρFs = 0

(2.70)

Angular Momentum

∂

∂t
(ρjWs) +

∂

∂xl
(ρjWsUl)− nτjθ

∂2Ws

∂xl∂xl
− ρLs = 0

(2.71)

Energy

∂

∂t
(ρe) +

∂

∂xl
(ρeUl)− (4nτθ)

∂2θ

∂xl∂xl
− ρ⟨vl

∂e

∂xl
⟩ − ρH = 0

(2.72)

In the preceding equations the body forces ρFs and ρLs have been introduced to account

for external phenomena unrelated to the stresses previously introduced. Body forces for

the linear momentum are easily found from the classical approach and require no special

treatment. In the independent angular momentum equation, however, the factors affecting

ρLs are more subtle. Figure 2.2 illustrates a body force created by the presence of vorticity

near an individual particle. The connection between the two particles is symbolized by the

coefficient κ. The motion of the right-hand particle creates the classical rotational motion,

or macroscopic angular velocity, which induces the local rotation of the left particle. The

amount of influence the angular velocity has on the gyration is determined by the value of

κ. The body force disappears once the local rotation of the left particle equals the angular

velocity, represented by half of the vorticity. De Groot and Mazur characterized this body

force as an asymmetric pressure tensor,54 which had a linear relationship with the difference
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Figure 2.1: Illustration of the relationship between coordinates ri and xi

between the gyration and the angular velocity:

ρLinterior
s = νr(ϵspq

∂Uq

∂xp
− 2Ws) (2.73)

Here, νr is designated as the “rotational viscosity,” measuring the strength of induced gyra-

tion on a particle caused by the presence of a difference between its gyration and the local

vorticity. This interior body force couples the local rotation with the translational velocity,

ensuring that the linear momentum equation 2.70 and angular momentum equation 2.71

remain intertwined as long as the value of ρLinterior
s remains non-zero. The total angular

momentum body force, ρLs, can be viewed as the sum of this induced interior force and any

external body moment force, ρLs = ρ(Linterior
s + Lexterior

s ).

The continuity equation 2.69 is clearly the classical continuity equation for the mean

velocity field. The deviation from classical kinetic theory becomes clear in the momenta

equations. The compressible Navier-Stokes linear momentum equation, with the assumed

satisfaction of Stokes’s hypothesis, has the form:

∂

∂t
(ρUs) +

∂

∂xl
(ρUsUl) +

∂P

∂xs
− µ

∂2Us

∂xl∂xl
− µ

3

∂2Ul

∂xl∂xs
− ρFs = 0 (2.74)

Here, µ is the dynamic viscosity of the classical fluid. Comparing equations 2.74 and 2.70, the

formulations are very similar, with the molecular viscosity from the Navier-Stokes equations

represented by the expression nτθ, as is expected from the first-order approximation to the
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Figure 2.2: Diagram of the angular momentum body force Ls. Presence of vorticity induces
gyration of left structure, with the strength of the coupling effect determined by 2νr.

Boltzmann transport equation.22 The reduction of equations 2.69, 2.70, and 2.71 to the

Navier-Stokes description will be discussed in more detail in the next section. The new

term introduced by the preceding kinetic description has the form, nτθϵspq
∂Wq

∂xp
. Here, the

new variable of gyration, Wq, produces an additional source of linear momentum due to

its transverse gradient. A notable insight is that the expression in front of the gyration

gradient is also nτθ, suggesting that the new term may contain a coefficient similar to the

viscosity presented in classical fluids theory. To understand the meaning and importance of

this new term in the linear momentum equation, the linear momentum equation from MCT

is presented:77

∂

∂t
(ρUs) +

∂

∂xl
(ρUsUl) +

∂P

∂xs

− (λ+ µ)
∂2Ul

∂xl∂xs
− (µ+ κ)

∂2Us

∂xl∂xl
− κϵspq

∂Wq

∂xp
− ρFs = 0

(2.75)

Here, λ represents the second coefficient of viscosity and a new coupling coefficient, κ, is

added to the total viscosity of the MCT fluid. Additionally, this coupling coefficient corre-

sponds to the coefficient described in Figure 2.2, as it determines the strength of the force

induced by relative rotation within the MCT fluid. This theory, derived from the approach

of rational continuum thermomechanics (RCT),32;40;41;69 starts with the same picture of the

fluid and derives governing equations from kinematic and thermodynamic principles for a

fluid with spherical particles. Comparing equations 2.70 and 2.75, the term associated with

the transverse gradient in the kinetic equation now has a counterpart term associated with
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the coupling coefficient κ. Therefore, the first-order approximation to the Boltzmann-Curtiss

transport equation produces a linear momentum equation consistent with the MCT formu-

lation. Comparisons between the expressions for the coefficients in front of identical terms in

these equations will shed light into the validity of these expressions for the new coefficients

in MCT.

2.4 Physical Meaning of Relaxation Time

The simplification of the collisional term in equation 2.34 presumes that a singular relaxation

time can be used to describe the transition from the real distribution function f to the

equilibrium distribution function f 0. Due to the extra degrees of freedom introduced by the

local rotation of the molecules, this relaxation time cannot be equated directly to the case of

classical fluids. Still, as Chen et al demonstrated,75 expressions for a singular relaxation time

can incorporate multiple processes or models involving several degrees of freedom. These

expressions typically start from a base time constant applied to the relaxation of the motions

of the molecular motion. In the current treatment, this base relaxation time would apply to

the gyration.

De Groot and Mazur investigated the case of viscous flow in an isotropic fluid, but allowed

for asymmetry in the pressure tensor. This asymmetry required for the consideration of an

independent conservation theorem for angular momentum. Furthermore, pressure asymme-

try generated “internal angular momentum,” Sp, which arose from the local angular velocity,

ωp, of groups of particles at a point in the system. From conservation of angular momentum,

De Groot and Mazur derived a balance equation for the internal angular momentum:54

ρ
dSq

dt
= −2Πq (2.76)

Here, Πq is the asymmetrical component of the pressure tensor. Internal angular momentum

could be easily related to the angular velocity through Sq = Iωq, where I denoted the

average moment of inertia of the constituent particles. The asymmetric pressure tensor,

however, needed a more nuanced treatment. By deriving relations for the conservation of
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internal energy and entropy production, De Groot and Mazur found the thermodynamic

force associated with the asymmetric pressure tensor.54 This force emerged from a difference

between the local and classical angular velocities, ωs− 1
2
ϵspqvq,p. Invoking Curie’s principle78

regarding thermodynamic fluxes and forces, De Groot and Mazur derived the following

relation:54

Πs = νr(2ωs − ϵspq
∂vq
∂xp

) (2.77)

Clearly, the asymmetric pressure tensor mirrors the body force found in equation 2.73,

indicating that the body force of the kinetic description can be obtained from a consideration

of thermodynamic fluxes and forces. Given this closure relation, the conservation of internal

angular momentum in equation 2.76 became:

dωs

dt
= −2νr

ρI
(2ωs − ϵspq

∂vq
∂xp

) (2.78)

This equation is equivalent to the kinetic angular momentum equation 2.71 with the diffusion

terms eliminated. Therefore, the kinetic theory is shown to obtain a more general form of

a conservation equation. For the case of initially zero local angular velocity and constant

vorticity, the solution to equation 2.78 becomes:

ωs =
1

2
ϵspq

∂vq
∂xp

(1− e−
t
τo ) (2.79)

where the decay of the local angular velocity is characterized by a relaxation time constant,

τo, that has the form:

τo =
ρI

4νr
(2.80)

Measurements of diatomic hydrogen and deuterium mixtures at p = 1 atm and T = 77K

by Montero et al give a value of 2.20 × 10−8s for the rotational relaxation time.79 Thus,

the assumptions of zero initial local rotation, constant vorticity, and absence of external

forces, leads to the derivation of a characteristic relaxation time that exclusively applied to

internal angular momentum. These assumptions become relevant when the characteristic
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time is sufficiently reduced such that macroscale phenomena, such as the vorticity, can be

approximated as constant compared with the evolution of local rotation. In these short time

scales, equilibrium is achieved for the local rotation once it approaches the constant vorticity.

Equation 2.80 provides a suitable first approximation of the characteristic relaxation time, τ ,

used in our kinetic theory description. De Groot’s characterization of local angular velocity

as the mean angular velocity of groups of particles matches the physical picture of our kinetic

theory description. The addition of body forces into the governing kinetic theory equations

can also incorporate the thermodynamic forces found in De Groot and Mazur’s treatment.

The rotational viscosity, νr, has a counterpart through the coupling coefficient κ in the MCT

linear and angular momentum equations.68 Therefore, numerical simulations of the kinetic

and MCT descriptions should be able to determine the appropriate conditions for the use of

equation 2.80 in this first order approximation.

2.5 Reduction to Navier-Stokes Equations

The introduction of local rotation, ωs, as an independent variable has resulted in a slightly

different physical picture from the classical fluids description shown in the Navier-Stokes

equations. The angular momentum equation 2.71 is not derived from the linear momentum

equation 2.70, while the classical vorticity equation can only be derived from the classical

linear momentum equation previously shown in equation 2.74. Still, the physical picture

from which equations 2.69, 2.70, 2.71, and 2.72 are derived differs from Boltzmann’s classical

picture of a monatomic gas only through the introduction of the variable of gyration. When

the gyration of a particle is distinct from macroscopic rotation, as defined by the angular

velocity, 1
2
ϵsab

∂Ub

∂xa
, the new form of the linear momentum equation 2.70 and the independent

angular momentum equation 2.71 can provide an alternative description to the classical

Navier-Stokes picture. When these two rotations are equivalent, the gyration provides no

new insight from the classical description. Therefore, the governing equations derived in

previous sections should reduce to the Navier-Stokes equations. Setting Ws = 1
2
ϵsab

∂Ub

∂xa
in
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the governing momentum equations 2.70 and 2.71 yields:

Reduced Linear Momentum

∂

∂t
(ρUs) +

∂

∂xl
(ρUsUl) +

∂P

∂xs
− nτθ(

∂2Us

∂xl∂xl
+

2

3

∂2Ul

∂xl∂xs
)−

nτθϵspq
∂

∂xp
(
1

2
ϵsab

∂Ub

∂xa
)− ρFs = 0

(2.81)

Reduced Angular Momentum

∂

∂t
(ρϵsab

∂Ub

∂xa
) +

∂

∂xl
(ρϵsab

∂Ub

∂xa
Ul)− nτθ

∂2

∂xl∂xl
(ϵsab

∂Ub

∂xa
)− 2ρLexterior

s = 0
(2.82)

The common terms of the microinertia j and 1
2
have been eliminated from equation 2.82.

A key observation from equation 2.82 is the absence of the interior body force, ρLinterior
s ,

described in equation 2.73. The difference in rotational motions necessary for the inducement

of gyration on a particle has vanished, thus making ρLinterior
s = 0. Meanwhile, equation 2.82

matches the form of the vorticity equation, derived from the curl of the Navier-Stokes linear

momentum equation 2.74:

∂

∂t
(ρϵsab

∂Ub

∂xa
) +

∂

∂xl
(ρϵsab

∂Ub

∂xa
Ul)− µ

∂2

∂xl∂xl
(ϵsab

∂Ub

∂xa
)− ρϵsab

∂Fb

∂xa
= 0 (2.83)

Looking at the reduced linear momentum equation 2.81, further manipulations will show

how this equation matches the classical picture. Using the identity for the Levi-Civita tensor

ϵsabϵspq = δapδbq − δaqδbp and contracting the appropriate indices, equation 2.81 becomes:

∂

∂t
(ρUs) +

∂

∂xl
(ρUsUl) +

∂P

∂xs
− nτθ(

∂2Us

∂xl∂xl
+

2

3

∂2Ul

∂xl∂xs
)−

nτθ

2
(
∂2Up

∂xs∂xp
− ∂2Us

∂xq∂xq
)− ρFs = 0

(2.84)

Grouping together like terms yields the classical form of the Navier-Stokes linear momentum

equation:

Type II N-S Equation

∂

∂t
(ρUs) +

∂

∂xl
(ρUsUl) +

∂P

∂xs
− nτθ

2

∂2Us

∂xl∂xl
− 7nτθ

6

∂2Up

∂xs∂xp
− ρFs = 0 (2.85)
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The form of the classical momenta equations is achieved when local rotation is indistin-

guishable from macroscopic rotation. Still, the precise formulation found in equations 2.85

and 2.82 requires a more detailed treatment. The coefficient in front of the diffusion term for

the original linear momentum equation 2.70 is equivalent to the classical expression µ = nτθ

derived by Huang.22 In the reduced classical equation 2.85, the expression for the coefficient

in front of the diffusion term is half that value, due to the contribution from the new term

associated with the curl of the gyration. The temperature dependence of viscous rotational

motion appears to have a slightly different limiting behavior as the particle rotation begins

to resemble macroscopic motion.

2.5.1 The Classical Kinetic Equations

The previously discussed expression for the classical kinematic viscosity emerges from the

same approach to the Boltzmann transport equation, with the equilibrium distribution func-

tion set as the Boltzmann distribution:

fBoltz(xi, vi, t) =
n

(2πmθ)3/2
exp(−mv

′
lv

′
l

2θ
) (2.86)

The distribution function has the same qualitative shape as the Boltzmann-Curtiss distri-

bution in equation 2.5, but lacks terms that account for particle rotation. Additionally, the

number density is obtained by integrating this function only over velocity space, changing

the normalization function in front of the exponential.

Following the same logic as in section 2.2, a first-order approximation of the Boltzmann

equation 2.2 using the Boltzmann distribution yields the classical kinetic equation:22

Type I N-S Equation

∂

∂t
(ρUs) +

∂

∂xl
(ρUsUl) +

∂P

∂xs
− nτθ

∂2Us

∂xl∂xl
− nτθ

3

∂2Ul

∂xlxs
− ρFs = 0 (2.87)

The derivation of these equations allowed theorists to understand the physical basis behind

coefficients in the Navier-Stokes equations, and to see how they vary with equilibrium pa-

rameters of the flow.22 A quick comparison between the linear momentum equations 2.85
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and 2.87 demonstrates how the choice of distribution function affects the final form of the

governing equation, even when both equations maintain the classical Navier-Stokes form.

Figure 2.3 gives a visual demonstration for how the two kinetic approaches begin to

diverge in obtaining the sets of equations that mimic their respective continuum theory

counterparts. Equating the local rotation to the angular velocity introduces merges the

terms in front of the Cauchy stress and viscous diffusion terms, yielding the Type II N-

S equation 2.85. This form of the Navier-Stokes equation indicates that, while the local

rotation’s equivalence to macroscopic rotation may yield qualitative classic equations, the

properties of the fluid still reflect the presence of local rotation through the new diffusion

coefficient. A clear reduction in the temperature dependence of the viscous coefficient is

observed while a clear increase in the coefficient of the compressive term is also apparent.

These results may follow from the fact that local rotation is no longer playing a prominent

role in determining the ultimate collisional dynamics of the flow. Viscous resistance, for

instance, in these flows may be highly dependent on the locality of rotation. In any event,

the contribution of the local rotation to the final form of the classical equations is evidently

not eliminated when the particle rotation becomes equivalent to the vorticity.

Figure 2.3: A diagram illustrating how the kinetic approach leads to sets of governing
equations that mirror the form of the classical and morphing continuum theory equations. An
additional road to the form of the N-S equations exists via the Boltzmann-Curtiss distribution,
when local rotation equals the angular velocity.
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2.6 Discussion

The first-order approximation to the Boltzmann-Curtiss transport equation was able to

yield governing equations with terms corresponding to particular stresses in the Navier-

Stokes equations and MCT. Furthermore, new material parameters, introduced by Chen

in the zeroth-order approximation to fluids with spherical particles,31 received expressions

based on the relaxation time, number density, and equilibrium thermal energy. Resulting

equations showed that the contribution of local rotation to the Cauchy stress and viscous

diffusion were weighted equally in the kinetic description of the linear momentum equation.

When transverse gradients in gyration disappear, the kinetic equation becomes the classical

linear momentum equation, with the expression for the total viscosity equivalent to the result

in classical fluids. It should be noticed that the current formulation is at the continuum level.

The rotation here refers to the spin of the whole molecule and should not be confused with

the rotation inside a molecule. The internal rotation and vibration modes are not within the

scope and should be treated separately while these effects are dominant.

The approximations made to the solution of the Boltzmann-Curtiss transport equation

should be understood before applying the obtained expressions to the appropriate terms

within MCT. The collisional term on the right-hand side of equation 2.2 was approximated

as a first-order difference scheme, where the return to equilbrium occurs after a period of

time on the order of a singular time constant, τ . Therefore, the translational velocity and

gyration motions must reach equilibrium within this period of time. As demonstrated in

section 2.4, the neglection of diffusion and the assumption of constant vorticity leads to

an approximation of the relaxation time for local rotation of groups of particles. If these

groups of particles can be approximated as spheres, the preceding kinetic description still

applies. The translational motion, then, should remain at a state of equilibrium, ensuring

that the time constant denotes the rotational relaxation time. Absent these assumptions,

the appropriate relaxation time for both degrees of freedom to equilibrate will need to be

determined experimentally.

Once equilibrium parameters can be determined, preliminary expressions for the coeffi-
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cients of various stresses can be determined. As mentioned in section 2.2, the coefficients

for the diffusion and Cauchy stress terms contain the same expression, nτθ. These expres-

sions correspond to the material properties µ + κ and κ in equation 2.75, respectively. A

direct comparison of the linear momentum equations suggests that the traditional kinematic

viscosity, µ, does not have a counterpart in the kinetic theory description. This conclusion

would be unfounded, as section 2.5 shows how the traditional form of the Navier-Stokes is

also obtained from this description. Kinetic theory extrapolates the overall fluid behavior

from a collection of individual particle motions, while MCT derives the balance laws from

a continuum composed of inner structures. The coefficients from kinetic theory, found by

characterizing and integrating over all the particles in the fluid, depend on the equilibrium

conditions in the flow. The coefficients in MCT, meanwhile, are mathematical tools to re-

late stresses and strains at each point in the fluid. Because of these directions, one-to-one

comparisons can easily be misleading. Therefore, the most accurate statement made in this

derivation is that the first-order approximation to the Boltzmann-Curtiss equation does not

yield a diffusion coefficient of a different magnitude when spherical rotation is added to clas-

sical flow. Meanwhile, the new Cauchy stress in MCT is produced in the kinetic description,

and its coefficient has the same expression as the viscous diffusion. Qualitative comparisons

can be made, but a direct quantative connection to coefficients within MCT is not warranted

by this approach.
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Chapter 3

MCT Simulation of Incompressible

Flow

Predicting the conditions that lead a boundary layer to transition to turbulence is of great

importance for the design of surfaces that can withstand the higher heating rates and drag

forces associated with turbulent flows.80 A consistent challenge in direct numerical simu-

lations (DNS) of transitional flow has been efficiently capturing the physics of structures,

particularly eddies or small vortices, within thin boundary layers.13–17;81 Traditional solu-

tions to this cost barrier have involved linearizing the N-S equations, averaging the velocity

field, or creating a mathematical model for near-wall fluid behavior. Smith and Gamberoni13

and Van Ingen14 derived the eN criterion, which focused on the growth rate N of the most

unstable structures in a boundary layer. As he demonstrated the many applications and

successes of his model, however, Van Ingen explains that the method must be recalibrated

for each new experiment and for each different method of calculating the profile within the

boundary layer.82 Furthermore, Van Ingen’s method superimposes the structures on the

flow, leaving questions about the physical nature of individual disturbances unanswered.

The computational costs of DNS and the limitations of the eN criterion have lead the tur-

bulence and transition (T2) community to make use of local mathematical models that rely

on fundamental artifical parameters. For instance, Von Doenhoff and Braslow developed an
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empirical relationship for Rek, a Reynolds number associated with wall roughness elements

of height k, and d
k
, with d measuring the characteristic length of disturbances in the bound-

ary layer.83 Later models would focus on other physical factors such as the ratio of viscous

stress to shear stress due to ”streaks” in the boundary layer.84 These streaks occur when

vortices imposed on the boundary layer alternate the positions of high-speed and low-speed

structures. Comparisons between these streak models and the models of Von Doenhoff and

Braslow for rough-wall surfaces showed good agreement when ad-hoc closure relations were

applied to velocity perturbations.83–85 In every one of these models for the transition to tur-

bulence within a boundary layer, local parameters, new mathematical parameters, or ad-hoc

closure models were required to obtain a computationally efficient analysis that could pro-

duce any of the physics inside the boundary layer. This reliance on experiments motivated

researchers to derive closure models based on the physical mechanisms driving a flow towards

turbulence. Walters and Coljkat proposed a three-equation model that incorporated closure

models for the RANS equations based on the transport of different types of fluctuations to

different regimes of the flow.86 Transport equations were added for turbulent kinetic energy,

isotropic dissipation, as well as laminar kinetic energy. Source terms for these equations

relied on assumptions about the factors that govern various terms. For instance, laminar

kinetic energy was assumed to be governed by large-scale near-wall turbulent fluctuations.

These physics-based closure models produced results consistent with experimental data and

independent of the experimental setup. Still, Walters’ reliance on physical assumptions to

close the RANS equations highlights a key challenge to approaches that rely on averaging

techniques. The heart of the problem lies in the characterization of near-wall fluid behavior.

Each mathematical model described earlier assumes the fluid to be a continuum of non-

oriented, infinitesmal points. As is well known, adapting a fine mesh to a continuum greatly

increases the cost of computation for resolving motions at small scales in high Reynolds

number flows. To avoid this cost, the fluids community developed averaging techniques to

capture the essential mean flow. Any significant deviations from the mean flow were de-

scribed as perturbations. In other words, the details of an individual structure were not the

focus of the model. Microscale phenomena such as molecular rotation, eddy rotation, or
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flow oscillation did not explicitly factor into the derivation of the governing equations. If

any averaged equation wanted to describe the physics of eddy rotation, for instance, it had

to do so via an external closure model. The challenge still remained of finding a multiscale

description of the fluid that did not depend on the intuition of the researcher. In response

to this challenge, Eringen derived a coherent analytical and physical description of the fluid

as a series of finite mathematically defined structures. The governing equations of this new

description, known as morphing continuum theory, now incorporated a new variable for the

small-scale rotation of these structures.17;70;87–89 For the case of turbulent boundary layers,

Eringen’s structures provide the dynamics of eddy translation and rotation at the scale of

the width of the boundary layer. Eringen demonstrated analytically that all relevant pa-

rameters, such as Reynolds stress, for the classical turbulence formulation could be derived

mathematically without the use of empirical or rheological closure models.32 With specific

boundary conditions, MCT has reliably produced numerical17;70 and analytical88–90 solutions

equivalent to the Navier-Stokes solutions without the assistance of closure models in RANS

or LES,91 or the expensive computational resources in DNS. Still, the success of DNS simula-

tions and the eN method in predicting the transition to turbulence and producing physically

realistic turbulent flows raises questions as to the added value of Eringen’s theory to T2

research. Heinloo confirmed, however, that the physics of small eddy rotation was being ne-

glected historically by the turbulence community, as it was assumed that the average angular

velocity of these smaller eddies went to zero.87 In addition, he suggested that the balance

laws incorporating local rotation in the fluid could complement classical turbulence models

such as k − ω and k − ϵ. Key parameters such as turbulent shear viscosity µt and molec-

ular dissipation ψ factored into more complex relationships to turbulent kinetic energy k.

These relationships took into account the rotational anisotropic behavior of the structures.

When rotational isotropy was assumed, the classical k − ω and k − ϵ equations emerged,

indicating that the governing equations of MCT were perfectly compatible with previous

successful descriptions of turbulence. Heinloo’s conclusions illustrated not only the necessity

of capturing small-scale rotation in the fluid, but also the mathematical rigor underpinning

the new equations associated with local rotation in MCT.87 Recent numerical simulations of
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MCT indicate that turbulent flows can be reproduced without closure relationships when key

material parameters are tuned properly.70;92 Still, numerical implementations of Eringen’s

theory are not immune to the problems facing other numerical methods. Kirwan demon-

strated that the choice of boundary conditions for the gyration at the wall has a significant

impact on the overall velocity profile.88 The main reason for this phenomenon involves the

generation of disturbances, through the gyration, as structures pass by a solid wall. The

nature of the interaction between the wall and passing structures affects the entire boundary

layer flow profile. When the ratios of key microproperties reach critical values, Peddieson

demonstrated that MCT can predict aspects of turbulence.70 The choice of these properties

is, however, key for generating transitional profiles. This paper will present the argument

that MCT is fully capable of providing a theoretical and numerical basis for addressing

boundary layer transitional and turbulent flows without the need for closure models. This

success is attributed to the physics of the newly added structures, and their contribution

to key stresses in the balance laws. Section 3.1 illustrates the physical picture of the fluid

as envisioned by Eringen. The mathematical framework for this description of the fluid is

also explained through the lens of rational continuum thermomechanics. Once the governing

equations are obtained, the physical meaning of the new material parameters is inferred

through nondimensionalizing the equations and obtaining key parameter ratios. Subsections

in section 3.1 are provided for the discussion of appropriate boundary conditions for the

new variables in MCT, and for the explanation of the finite volume method as it relates to

MCT. In section 3.2, the problem of the transition into turbulence within a thin boundary

layer will be explored numerically for Re = 106 over a flat plate. Computational results

are compared with experimental data obtained from the European Research Community on

Flow, Turbulence and Combustion (ERCOFTAC) database, showing good agreement for

boundary layers of each flow regime. Finally, a brief discussion in section 3.3 is given on the

future of MCT, including the potential to model compressible flows.
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3.1 Morphing Continuum Theory

3.1.1 Theoretical Foundation

Classical fluid dynamics, based on the Navier-Stokes equations, treats the fluid as a contin-

uum of structures. Though these structures contribute to the macroscopic behavior of the

system, individual structures cannot drive the complete physics of the fluid singlehandedly.

Furthermore, structures that are located near one another in classical fluid theory typically

do not demonstrate large changes in motion or material characteristics. Changes in the

fluid happen over groups of structures, and even local properties of the fluid apply to large

groups of structures that behave in a similar manner. The characteristics of an individual

structure are dependent primarily on the conditions of its neighboring structures. As the

focus of fluids research turns to the small-scale or microscopic dynamics within the fluid,

the individual properties of a structure receive a more nuanced treatment. Heinloo recounts

the history of the discussion on the relationship between translational and rotational mo-

tion in turbulent fluids.87 From the outset, he claims that the Richardson-Kolmogovorv or

RK conception of turbulence required an independence of the ”internal rotating degrees of

freedom” from the translational motion of the bulk fluid.87 In classical fluids, any rotational

motion of the fluid is characterized by the vorticity, a property dependent on the average

velocity field of the flow. For large enough eddies, the orientation of the motion of these

eddies may be sufficiently characterized by the local vorticity. Heinloo notices, however, that

if one described the angular motion of small-scale eddies through vorticity, eventually the

mathematics would yield an average angular momentum of zero.87 The eddies would possess

no orientation.

Tracking the detailed motion of small-scale eddies, then, requires a departure from the

assumptions of classical fluid dynamics. At the smallest scales, the structures must possess

a finite size and an independent rotational motion. The first rigorous description of such a

fluid came from Eringen.32 His description involved a set of deformable, oriented structures

that can rotate and change size indepedently from the translational motion of the fluid.
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Mathematically, these new independent motions are characterized by a local vector ξk for

its position with reference to the center of the structure and a director χkK that tracks the

deformation of that structure. Figure 3.1 shows how these structures evolve in space and

time. Morphing continuum theory models the evolution of the macromotion xk along with

the micromotion, as the different scales of fluid behavior continuously affect one another:

xk = xk(XK , t) XK = XK (xk , t) (3.1)

ξk = χkK (XK , t)EK EK = χ̄Kkξk (3.2)

K = 1 , 2 , 3 k = 1 , 2 , 3 (3.3)

Attaching the directors to the structure allows for the modeling of the rotation or deformation

of the body of the structure as it undergoes translation. This more complex mathematical

picture is useful for modeling the three-dimensional rotation and deformation of individual

eddies within the turbulent region, as the structures serve as reliable models for the individual

eddies. The observation that certain physical fluids demonstrated internal structure further

led researchers to consider the fluid as a set of simple structures. Blood flows32 and polymer

melts93 all contain individual structures that resist stretching or elongation, but still rotate.

This local resistance to microdeformation is quantified by the microinertia, defined by the

Figure 3.1: Evolution of a structure with associated micromotion vector ξ and macromotion

vector x,17
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following expression:

jkl ≡immδkl − ikl (3.4)

Here, ikl is an integrated quantity similar to the moment of inertia of the structure:

ikl ≡
∫
δv ′ ρ

′(χ, ξ, t)ξkξldv
′∫

δv ′ ρ′(χ, ξ, t)dv ′ ≡< ξkξl > (3.5)

The tensor is obtained by integrating the characteristic microdeformations ξk over the mass

of each structure ρ′δv′. Using the diagonal terms of this tensor, a single numerical value can

be extracted by taking the average of the trace of the microinertia tensor:

j ≡ jmm

3
(3.6)

For morphing continuum theory, the gyrations induced by rough surfaces or free-stream dis-

turbances are the variables of interest in turbulent flow. When microisotropy is assumed,

the degrees of freedom related to expansion or contraction of fluid structures vanish.32 The

resulting fluid differs from classical Navier-Stokes theory only through its local microro-

tation, characterized by the angular momentum ρjω⃗. The equations reduce further when

the structures in the fluid are approximated as spheres, leading to j = 2d2

5
, where d is the

diameter of the spheres.17 Peddieson showed that these simple ”micropolar fluids” predict

characteristics of laminar flow and turbulence.70 For this reason, we approximate our fluid

as a microcontinuum of rigid spherical structures with constant material properties. As

mentioned in the previous section, the main variables of interest for this research involve

the translational motion vk and local gyration ωk , where k indicates the direction of motion.

A more expansive approach would include temperature, heat transfer, and internal energy.

For cases of extreme differences in temperature and pressure, these variables could not be

neglected. The focus of this research is to observe the turbulent gyrations as they form and

how they affect the flow within the boundary layer. Therefore, the only balance laws of

interest involve linear and angular momentum. Following Eringen, we can state these laws
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in the form:32

tlk ,l + ρfk = ρv̇k (3.7)

mlk ,l + ekij tij + ρlk = ρj ω̇k (3.8)

The equations include terms lk and fk that account for body forces in the fluid and now take

into account the local angular momentum of the structures. For our flat plate simulations,

the body forces will be neglected.

The key terms involve the Cauchy stress tensor tlk , a stress tensor familiar to the Navier-

Stokes equations, and the moment-stress tensor mlk , a tensor that arises due to the transverse

or perpendicular gradient of the gyration in the structures.32 One can interpret this stress

as a transfer of spinning energy through the distribution of structures from a compression

or expansion of the fluid.43;94 Any local difference in gyration produces macroscopic tension,

but macroscopic tension also induces more gradients in gyration. Hence, the presence of

structures adds a coupling effect, which is why the moment stress is sometimes called the

couple stress. The added shear from the structures also leads to the Cauchy stress tensor

becoming asymmetric, another departure from the N-S equations. To close the balance laws,

Eringen derived new deformation-rate tensors akl and bkl that included the added deformation

of the structures:32

akl = vl ,k + ϵlkmωm (3.9)

bkl = ωk ,l (3.10)

Here, we make use of the permutation tensor ϵlkm . This independent deformation of the

structures is also characterized by an additional material property κ related to the viscous

resistance at the microscale. Thus, the viscous forces that dominate the swirling motion of

eddies inside a turbulent boundary layer depend partially on the viscous resistance of the

structures.
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With the deformation-rate tensors, constitutive equations can be provided for the Cauchy

and moment stress tensors:17;32

tkl = −Pδkl + λtr(amn)δkl + (µ+ κ)akl + µalk (3.11)

mkl =
αT

θ
ϵklmθ,m + αtr(bmn)δkl + βbkl + γblk (3.12)

Note the appearance of the temperature gradient θ,m . The temperature gradient is relevant

for energy considerations, but drops out of the angular momentum equation when equa-

tion 3.12 is substituted into equation 3.8, i.e. ϵklmθ,ml = 0. Additionally, new material

constants involve the second coefficient of viscosity λ, α and β. The latter two constants still

require a coherent physical explanation, but only matter for three-dimensional flows. With

these new formulations for the Cauchy and moment stress tensors, we can plug equations 3.11

and 3.12 into the balance laws, i.e. equations 3.7 and 3.8, obtaining:

ρ̇+ ρvk ,k = 0 (3.13)

−P,k + (λ+ µ)vl ,lk+(µ+ κ)vk ,ll + κ(ϵklmωl ,m) + ρfk = ρv̇k (3.14)

(α + β)ωl ,lk + γωk ,ll + κ(ϵklmvl ,m − 2ωk) + ρlk = ρj ω̇k (3.15)

where ρ is density, vk is the k-th component of the velocity vector, ωk is the k-th component

of the structure gyration, P is the pressure, µ refers to the first coefficient of viscosity, λ is

the second coefficient of viscosity, ϵklm is the permutation tensor, κ is the structure viscosity

coefficient, fk refers to macroscopic body forces, γ is the structure diffusion coefficient, lk

refers to the body moment forces, j is the microinertia, and α and β are material constants.

Equations 3.13, 3.14, and 3.15 constitute the three vector equations implemented into the

fluid solver, with material properties inputted as parameters.
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3.1.2 Finite Volume Method

In order to make use of the finite-volume code the equations must be written in the conser-

vation form:

∂ρϕ

∂t
+∇ · (v⃗ϕ)−∇ · (Γϕ∇ϕ) = Sϕ (3.16)

Here, ϕ refers to the conserved property of the flow. For our 2D problem, the continuity

equation requires ϕ = 1, linear momentum requires ϕ = vx or vy and angular momentum

requires ϕ = jωz. For a 2D simulation in the x-y plane, any gyration vector must only have

a z-component. If we integrate this equation over a volume V, we obtain:∫
V

∂ρϕ

∂t
dV +

∫
V

∇ · (v⃗ϕ)dV

−
∫
V

∇ · (Γϕ∇ϕ)dV =

∫
V

SϕdV

(3.17)

Here, dV refers to an infinitesmal three-dimensional volume. If we delineate A as the surface

area surrounding volume V , dA as its infinitesmally small component, and n̂ as the normal

vector on the surface pointing outward away from the center of the volume, we can make

use of Gauss’s rule: ∫
V

∂ρϕ

∂t
dV +

∫
A

(ϕv⃗ · n̂)dA

−
∫
A

(Γϕ∇ϕ · n̂)dA =

∫
V

SϕdV

(3.18)

In this format, discretization becomes much simpler. For a single cell of volume Vi surrounded

by Nf faces, each with area Af , we can rewrite equation 3.18 into discrete form:

∂ρϕi

∂t
Vi +

Nfaces∑
f

ρf ṽiϕi

∣∣∣∣
f

· Ãf −
Nfaces∑

f

Γϕi
∇ϕi

∣∣∣∣
f

= SϕiVi (3.19)

When written in this format, our finite volume solver can now readily implement user-defined

functions into ϕ and place them into equations of the form of equation 3.19, with various

types of solvers available for marching forward in time. In this way, the governing equations,

material properties, and relevant boundary conditions for MCT were numerically tested. For
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our two-dimensional case, the conservative form of the governing equations are derived:17

∂Q

∂t
+
∂F

∂x
+
∂G

∂y
= S (3.20)

Taking together our balance laws from equations 3.13, 3.14, and 3.15, the vectors in equa-

tion 3.20 become:17

Q =



ρ

ρvx

ρvy

ρjωz


(3.21)

F = Finv − Fvisc (3.22)

Finv =



ρvx

ρv2x + P

ρvxvy

ρjωzvx


(3.23)

Fvisc =



0

λ(∂vx
∂x

+ ∂vy
∂y

) + (2µ+ κ)∂vx
∂x

µ(∂vx
∂y

+ ∂vy
∂x

) + κ(∂vy
∂x

− ωz)

γ ∂ωz

∂z


(3.24)

Angular momentum ρjωz is implemented as a user-defined function and receives its own

governing equation and boundary conditions. With our balance laws in conservative form,

the relevant input variables and material properties can now be inputted into the fluid solver.

The equations can be solved once appropriate boundary conditions are implemented. Note

the additional property, γ, also known as the microdiffusivity, in the diffusion equation 3.24.

This property determines to what extent gyrations and induced disturbances diffuse through

the motion of the structures. The relative value of this property compared with the boundary
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condition and the values of other microproperties will receive more treatment in later sections.

3.1.3 Relation to Navier-Stokes Equations

An important aspect of the governing equations is the fact that the Navier-Stokes equations

can be recovered through legitimate mathematical arguments. If the rotational motion of

the fluid is limited to the angular velocity of the macroscopic flow profile, we must scale our

gyration term to half of the vorticity, i.e. ωk =
1
2
ϵklmvl,m. When this expression is substituted

for ωk, the equations for linear and angular momentum become:

−P,k + (λ+ µ)vl,lk + (µ+ κ)vk,ll+

κϵklm(
1

2
ϵlmkvm,k),m + ρfk = ρv̇k

(3.25)

(α+ β)(
1

2
ϵlmkvm,k),lk + γ(

1

2
ϵklmvl,m),ll + ρlk = ρj

1

2
ϵklmv̇l,m (3.26)

The first term in equation 3.26 involves a divergence of a curl, so this term must vanish.

For equation 3.25, the following property of the permuation tensor is applied:

ϵklm =


0, if k = l, k = m, or m = l

1, if even

−1, otherwise

(3.27)

With these properties the equations reduce to a much simpler form:

− P,k + (λ+ µ+
1

2
κ)vl,lk + (µ+

1

2
κ)vk,ll + ρfk = ρv̇k (3.28)

γ(
1

2
ϵklmvl,m),ll + ρlk = ρj

1

2
ϵklmv̇l,m (3.29)

If we set µ∗ = µ+ κ
2
, the linear momentum equation 3.28 reduces to the Navier-Stokes form:

− P,k + (µ∗ + λ)vl,lk + µ∗vk,ll + ρfk = ρv̇k (3.30)
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Angular momentum in equation 3.29 now reduces to the familiar vorticity equation if we set

γ
j
= µ∗.

µ∗(
1

2
ϵklmvl,m),ll +

ρlk
j

= ρ
1

2
ϵklmv̇l,m (3.31)

If we took the curl of 3.30 we would arrive at equation 3.31.

Thus, the linear and angular momentum equations for morphing continuum theory are

shown to be an extension of the momentum equations in classical fluids. The limiting

condition of the local rotation set to half of the vorticity ensured that the angular momentum

as defined by MCT, ρjω, would scale to the classical angular momentum, ρrνang. Here, r

refers to the distance from the point to the center of curvature and νang is the macroscopic

angular velocity equal to half of the vorticity, i.e. νang = 1
2
|∇ × v⃗|. For the Navier-Stokes

equations the only way to recover this angular velocity is through the vorticity. Therefore,

MCT is shown to be a mathematical extension of classical fluid dynamics.

3.1.4 Boundary Conditions and Material Parameters

From the development of morphing continuum theory, researchers discovered that the com-

plexity of the physical picture, as illustrated by the balance laws and constitutive equations,

left open questions regarding boundary conditions.39;70;88 Kirwan and Newman declared the

choice of values for gyration at the boundary to be arbitrary, with some minor restrictions

they cited in order to have desirable velocity profiles near the boundary.90 In their estimation,

the fluid did not prefer any value for gyration at the boundary. In observing steady channel

flows, Kirwan demonstrated that the null-stress condition at the wall leads to mathematical

inconsistencies.88 Assuming a velocity profile of u = (u(y), 0, 0) and a gyration profile of

ω = (0, 0, ω(y)), with the y-direction perpendicular to the plate, equations 3.14 and 3.15

reduce to the following:88

(µ+ κ)u
′′
+ κω

′
= −P,x (3.32)

γω
′′ − 2κω − κu

′
= 0 (3.33)
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Integrating equation (3.32) in the y-direction yields:

(µ+ κ)u
′
+ κω = −P,xy + C1 (3.34)

Constant C1 emerges out of the indefinite integral. Setting the left-hand side of equation 3.34

to zero at the walls clearly leads to a mathematical inconsistency as C1 is forced to take two

different values. In other words, C1 |y=upper wall ̸= C1 |y=lower wall. Therefore, Kirwan demon-

strated that the boundary condition at the wall could not be arbitrary. In the case of Couette

flow, at least, the shear stress could not be zero:

κωwall + (µ+ κ)u
′

wall ̸= 0 (3.35)

Similar arguments showed that the condition ωwall =
u
′

2
produces the Navier-Stokes solution

throughout the domain, and reveals no new physics from the velocity profile.90 As mentioned

in the previous subsection, the reason is that the gyration is equated to macroscopic angular

momentum, restricting the gyrations at the wall to the ordinary rotation of a Navier-Stokes

fluid.39 From this discussion, the importance of modeling disturbances in the fluid near

the wall becomes clear. If the bulk fluid experiences shear or moment stresses from the

structures, these stresses will be amplified wherever velocity gradients are the largest. For

flat plate boundary layer flows, this entails specifying the right condition for gyration at the

plate. At the same time, morphing continuum theory must have the capacity to dissipate

or diffuse away large disturbances, in order to capture the competing forces occuring in

transitional flow. As Peddieson and Kirwan noted, this interplay involves the choice of the

right combination of boundary conditions and material properties.70;88 Implied in the shear

stress condition 3.35 was a relationship between ωwall and u
′

wall. The inability to prescribe a

null-stress condition lead several researchers to try a more general condition of the form:

ωwall + n(u
′

wall) = 0 (3.36)
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For the general three-dimensional case, this boundary condition can be written in vector

form:

ω̃wall = −n(∇× ṽwall) (3.37)

In deriving the specific solution to equations 3.32 and 3.33, Kirwan developed a soft con-

straint for n that preserved a negative velocity gradient at the upper boundary and a positive

gradient for the lower boundary, conditions consistent with a no-slip boundary condition for

the velocity:88

n < 1 +
µ

κ
(3.38)

Thus, the value chosen for n affects not only the gyration but also the velocity profile, and

the value of n is intricately tied to the material properties chosen for the flow. For parallel-

plate flows, Kirwan demonstrated that a condition of n > 1
2
amplified the velocity profle

”relative to the N-S solution,” thus pushing the flow towards turbulence.88 In other words,

the presence and nature of the structures, and their response to the boundary condition,

leads to a macroscale amplification of the flow unseen in Navier-Stokes solutions. Meanwhile,

n < 1
2
served to reduce drag on the overall profile produced from near-wall velocity gradients.

For the MCT flat plate simulations, laminar boundary conditions maintained a value of 0 for

ωwall, equivalent to a ”no-spin condition” for structures near the wall. For both transitional

and turbulent cases, the specific case of n = 1 for equation 3.37 was employed:

ω̃wall = −(∇× ṽwall) (3.39)

Therefore, the local gyration near the wall acts with equal magnitude to the large-scale

vorticity. Since these disturbances must produce eddies that disrupt smooth gradients in

the flow, the structures rotate in the opposite direction to the vorticity. This condition

is also consistent with the concept of a rough wall, mentioned briefly in the introduction.

Smooth static surfaces usually imply a no-slip condition, resulting in a smooth velocity

gradient that preserves its vorticity everywhere near the wall. With sharp edges on the
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wall, the direction of the vorticity and its strength are expected to vary unpredictably,

generating turbulence near the wall. Finally, these disturbances near the wall must transfer

their energy to other developing eddies throughout the boundary layer. The ability to

transfer this energy, as is well known throughout the turbulence community, arises from the

values of the fluid properties. From his dimensionalizing of the boundary-layer equations

for flows of micropolar fluids over a flat plate, Peddieson arrived at three dimensionless

parameters that served as parameters for his numerical simulations.70 For our simulations,

these dimensionless parameters have the form:

α1 =
κ

µ
, α2 =

κ

ρ
√
jU

, α3 =
γ

µj
(3.40)

The physical meaning of these ratios can be better understood by nondimensionalizing the

linear momentum equation 3.14 and angular momentum equation 3.15. Defining our dimen-

sionless variables:

t∗ =
U∞t

L

u∗ =
u

U∞

ω∗ = ω
δ

U∞

x∗ =
x

L

y∗ =
y

δ

P ∗ =
P

Pout

(3.41)

Here, U∞ refers to the inflow velocity, δ the thickness of the boundary layer, L the length

of the plate, and Pout the outlet pressure. Note that we have scaled the gyration to the

approximate value of the vorticity inside the boundary layer. Since the wall gyration in

equation 3.36 is scaled to the vorticity for transitional and turbulent flow, this approximation

will be valid at least in the vicinity of the wall. Substituting the expressions obtained for

our original variables into the 2D form of the momentum equations yields:

(
ρU2

∞
L

)(
∂u∗

∂t∗
+
∂u∗2

∂x∗
) = −(

Pout

L
)
∂P ∗

∂x∗
+ (

µU∞

L2
)
∂2u∗

∂x∗2
+ (

µU∞

δ2
)
∂2u∗

∂y∗2
+ (

κU∞

δ2
)
∂ω∗

∂y∗
(3.42)
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(
ρjU2

∞
Lδ

)(
∂ω∗

∂t∗
+
∂u∗ω∗

∂x∗
) = (

γU∞

δL2
)
∂2ω∗

∂x∗2
+ (

γU∞

δ3
)
∂2ω∗

∂y∗2
− (

κU∞

δ
)
∂u∗

∂y∗
− (2κ

U∞

δ
)ω∗ (3.43)

Finally, we divide equation 3.42 by µU∞
δ2

, and equation 3.43 by κU∞
δ

:

(
ρU∞δ

µ
)(
∂u∗

∂t∗
+
∂u∗2

∂x∗
) = (−Poutδ

2

µU∞L
)
∂P ∗

∂x∗
+ (

δ2

L2
)
∂2u∗

∂x∗2
+
∂2u∗

∂y∗2
+ α1

∂ω∗

∂y∗
(3.44)

(
1

α2

)(

√
j

L
)(
∂ω∗

∂t∗
+
∂u∗ω∗

∂x∗
) = (

γ

κL2
)
∂2ω∗

∂x∗2
+ (

γ

κδ2
)
∂2ω∗

∂y∗2
− ∂u∗

∂y∗
− 2ω∗ (3.45)

From inspection, we have already obtained α1 and α2 from our now dimensionless equations.

Deriving α3 involves multiplying γ
κδ2

by the ratio of the inertial parameters on the left-hand

sides of equations 3.44 and 3.45:

γ

κδ2
(

ρU∞δ2

µ L

ρj U∞
κL

) =
γ

µ j
(3.46)

This final derivation shows that the parameters Peddieson used to gauge the onset of tur-

bulence arise from the non-dimensional form of the governing MCT equations. Peddieson

showed that these parameters emerged from a dimensionless form of the boundary-layer

equations of micropolar fluid theory.70 This derivation indicates that they are essential for

the general theory as well. The physical significance of these parameters comes from the

mathematical terms used to generate them. To generate α1 we divided the couple stress re-

lated to the curl of ω, i.e. κ(∇×ω⃗), in equation 3.42 by the viscous diffusion of the velocity in

the y-direction, i.e. µ∂2u
∂y2

. Therefore, this term relates the tension in the fluid, experienced

by and generated from the differing rotation of the structures, with the smoothing effect

of the viscous diffusion within the boundary layer. An increase in its magnitude means a

greater amount of energy is being transferred to gyration, a source of potential disturbances

to laminar flow. Peddieson’s definition of an eddy viscosity also showed a direct proportion-

ality to α1, indicating its contribution to the magnitude of the turbulent kinetic energy.70 For

α2, the expression arose out of a ratio of the structures’ contribution to the Cauchy stress,

i.e. κU∞
δ

or κ(∇ × u⃗), over the inertial term ρjU2
∞

Lδ
, i.e. ρDω⃗

Dt
, in equation 3.43. From this

expression, the parameter expresses the ratio of the viscous shear induced on the structures
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over the inertial angular momentum the structures possess. The greater the shear, the more

the structure’s rotation is due to the effect of macroscopic shear rotating the structure and

the greater the interaction of the structure with the bulk shear flow. If the inertial forces

dominate, the rotation is due to its own inertial spin independent of macroscale behavior,

and less interaction takes place at the microscale. The effect of this ratio on the transition

to turbulence must be less pronounced, as the presence of large rotatonal motion from struc-

tures is all that is required to produce disturbances with the bulk flow. In order to produce

disturbances, however, the structures must influence the regular shear flow or the flow profile

will remain constant. Therefore, an increase in this parameter leads to a greater likelihood of

transitional flow. Finally, the various forces involved in α3 are investigated. The expression

in equation 3.46 involves six different terms balancing each other. The γ
κδ2

relates diffusion of

the structures, i.e. γ∇2ω⃗, to the couple stresses. The fraction on the right is more complex.

To summarize, inertial forces are balanced with viscous diffusion in the boundary layer for

the velocity profile and with couple stresses for the gyration. The end result of this complex

balance involves the ratio of macroscale diffusion through µ and microscale diffusion through

γ, with 1
j
used as a scaling factor. Upon reflection, this scaling factor is needed to assess

how overall diffusion within the flow field is affecting an individual structure. At any rate,

the value of this parameter is expected to be less vital to the development of turbulence.

As mentioned in the discussion of α1, turbulence involves large diffusion through the eddy

viscosity. This coefficient is typically scaled with the macroscale viscosity µ, which tends to

smooth out sharp gradients in the flow. The structure of these eddies must be maintained, so

these gradients in the flow must also be maintained as well. For γ, its role is to smooth out

gradients in the gyration. From the discussion of the couple stresses related to α1, however,

the presence of large changes in rotation is precisely how structures react to and contribute

to disturbances in the flow. Evidently, this parameter follows a similar trend to α2 in that

it determines the extent to which a structure diffuses due to the velocity or due to gyration.

Therefore, we expect α1 to be the dominant parameter in determining whether a flow reaches

a transitional state and eventually becomes turbulent.
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3.2 Uniform Flow over a Flat Plate

Flow past a zero pressure gradient flat plate with ReL = ρUL
µ+κ

of 106, where L is the length

of the plate, is studied. The full comparison of the results obtained with the numerical

simulation and the experimental results from ERCOFTAC are displayed in Figure 3.2. The

figures display normalized velocities compared with normalized y-coordinates at x = 0.5 for

the transitional case and x = 0.75 for turbulent flow in the domain. The turbulent boundary

layer did not produce the same profile for every slice along the domain, indicating that

parts of the domain were still transitioning to turbulence. This is also the reason the results

from ERCOFTAC are taken from various slices along the flat plate. From the numerical

parameters in Table 3.1, as well as the values Peddieson obtains,70 it is apparent that α1

increases by a factor of four from the transition profile to the turbulent profile. Meanwhile,

the values of α2 and α3 remain almost constant, with a slightly noticeable decrease in α3. This

result is consistent with the discussion of the physical significance of Peddieson’s parameters

in Section 3.1. Couple stresses do overpower viscous diffusion, as demonstrated by the

rise of α1, while the precise cause of the gyration or diffusion of the structures, captured

by parameters α2 and α3, does not remain relevant for the production of turbulence. For

transitional flow, the profile shows good agreement throughout the domain as shown in

Figure 3.2. The turbulent flow shows a slight deviation from the results as the profile

gets closer to the free-stream. It is possible that the free-stream motion smoothed out

disturbances occurring near the top of the boundary layer, thus producing a less turbulent

profile. Experiments done with a larger set of experimental datasets and over a larger scale

of Reynolds numbers could confirm if this phenomenon leads to consistent deviations near

the free-stream layer. In all cases, however, near-wall behavior lines on top of experimental

data, indicating that the sharper gradients in the velocity profile are resolved.
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Figure 3.2: Uniform flow U = 5 m
s over a 2 meter flat plate, Plots of y

δ vs. u
U , Data obtained at

x = 0.5 for the transitional case and x = 0.75 for turbulent case, Boundary Layer thickness δ ob-

tained from point where u = 0.99U , Numerical simulations show good agreement with experimental

data for all cases.95

Parameter Transitional Turbulent

κ 9.6× 10−6 9.9× 10−6

γ 2.2× 10−13 4.7× 10−14

α1 24 99
α2 0.00135 0.0014
α3 0.275 0.235

Table 3.1: Material properties used as parameters for transitional, and turbulent cases, αn param-

eters meant to continue parametric analysis, started by Peddieson, of influence of microproperties

in transition and turbulence regimes.70

3.3 Discussion

The preceding simulation and comparison with experimental data served two key purposes

for this work. The successful reproduction of the experimental data related to the transition

to turbulence as well as full turbulence indicates that morphing continuum theory serves as a

useful tool for efficient generation of physically reliable boundary layer profiles for transitional

and turbulent flows. As mentioned in chapter 1, the main goal for MCT was to bypass the

high costs of DNS, while still maintaining integrity in the physics of the flow. The physics

of the smaller eddies is recovered by MCT as the balance laws and constitutive relations

depend on the motion and gyration of the structures.

The second key goal was to test the contribution and importance of new material pa-
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rameters within MCT. New material properties related to the structures, particularly κ,

are shown to drive the evolution of the boundary layer when disturbances are introduced

at the wall. The dominance of the parameter α1 indicates that the key stresses affecting

the fluid, particularly the couple stresses, happen at the microscale. In order to maintain

disturbances in such a thin layer, the structures must transfer energy to each other to create

sharp gradients in their rotation. The relatively tiny magnitudes of α2 and α3, as well as

their constancy between the simulations, indicate that α1 must drive the simulation. Still,

we require the former two parameters to have non-zero values, or the shear flow’s interaction

with a structure is not fully described. Microscale diffusion, as indicated by the choice of γ,

is almost negligible.

The predominance of κ over µ in its influence over the dynamics of the boundary layer

is relevant to the discussion of how the kinetic derivation in the previous chapter relates to

the MCT governing equations. From a first-glance comparison, it appeared that µ did not

contribute to the total viscous diffusion coefficient when both the Cauchy stress and viscous

diffusion terms were present. In this simulation, the transitional and turbulent boundary-

layer profiles emerged only when the value of κ exceeded µ by an order of magnitude. These

more complex flows are the precise kinds of flows that distinguish MCT and the kinetic

description from their classical counterparts, due to the contribution of individual structures.

When the Cauchy stress term becomes more prominent, the expectation is that its coefficient

will approach the value of the total viscous diffusion coefficient and this incompressible

simulation demonstrates this phenomenon.
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Chapter 4

MCT Simulations of Compressible

Turbulence

4.1 Supersonic Flow Past a Cylinder

The interaction of a turbulent flow with a shock continues to pose several challenges to the

fluid dynamics community. The interaction is of practical concern for the mutual interac-

tion of a shock and a turbulent boundary layer. For high-speed engineering flows, turbulent

boundary layers can be distorted and the boundary layer separated as a result of the interac-

tion.96 From experimental and theoretical analyses, a consensus has emerged that Reynolds

shear stress and turbulence intensity are amplified across the shock wave.97 In the case of a

more complex geometry such as a compression corner, factors such as shock movement and

boundary layer curvature also become relevant.97 Though conventional models have been

able to track the mean properties in the region where the boundary layer interacts with the

shock, Humble notes that these models are still unable to give complete predictions of the

properties of turbulence as it interacts with the shock.96 This difficulty speaks to a much

broader problem in analytical turbulent models of resolving rapid changes in fluid properties

at small relevant length scales. Shock-turbulent boundary layer interactions amplify the

need to resolve small regions of interest.
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A complete physical description of turbulent interactions with an oncoming shock has

been the subject of numerical and theoretical study for decades.97–101 Turbulent flows and

turbulent boundary layers continuously undergo a process of energy cascading, where large

eddies transfer kinetic energy to small eddies that in turn dissipate this energy as heat.

When turbulence encounters a shock, this smooth process is interrupted. Large vortices

are deformed, producing more anisotropy in the flow. The distribution of eddy energy and

size changes instantaneously. Compression of the flow leads to an amplification of turbulent

kinetic energy and a general increase in turbulence length scales. To make these general

conclusions, researchers construct turbulent kinetic energy spectra before and after turbu-

lence interacts with a shock. The challenge for the turbulence community is to develop an

efficient method of recording these spectra, while still capturing all the relevant length scales

and structures of turbulent flows and boundary layers. The cost of producing high-speed

flows in the laboratory, and the difficulty of measuring flows near the vicinity of the shock

or inside the boundary layer, require for the development of reliable multi-scale compressible

numerical solvers. As with general turbulence, traditional numerical solvers have limitations

in capturing the full range of physics underlying shock-turbulence interactions. Lee noted

that Direct Numerical Simulation could not account for the physical effects of the ”sub-grid”

length scales on the larger resolved eddies.97 In other words, the choice of mesh resolution

for DNS limits the range of eddies one can resolve, and therefore the scope of turbulent ki-

netic energy (TKE) spectra. Therefore, numerical techniques such as Large-Eddy Simulation

combined with sub-grid models, shock-capturing schemes, and shock-fitting methods have

been employed to resolve shock and turbulence length scales unresolved by DNS.97;97;101;102

Through one or a combination of these alternatives to DNS, much progress has been made

in approximating energy transfer after the shock for smaller eddies and thinner shocks. Still,

the assumptions built into these numerical methods ensure that artificial issues, such as

numerical dissipation or oscillation, will prevent a comprehensive description of the physical

picture. Ducros created a Large-Eddy Simulation method that incorporated numerical dissi-

pation to resolve the discontinuity at the shock while minimizing dissipation away from the

shock to preserve the incoming disturbances in the flow.100 Still, the method was restricted
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for weakly compressible flows, high Reynolds numbers and low turbulent Mach numbers.

Andreopoulos notes that the physics of shock-turbulence interactions depends, among many

factors, on the level of compressibility in the flow and the strength of the incoming tur-

bulence.103 Relying on numerical schemes that work only for limited ranges of parameters

limits the type of interactions one can observe from these solvers. Recently, Ryu has been

using linear analysis to analytically describe turbulent structures behind the shock, where

the Navier-Stokes equations have been known to break down for large Mach numbers and

strong shocks, and demonstrate that DNS solutions converge to the linear analysis solutions

behind the shock.104 This attempt to bring back old analytic methods illustrates how much

work remains to develop a compressible turbulence solver that can produce a physical TKE

spectrum on both sides of a shock front.98;99 In order to produce these spectra, the numer-

ical method must rely on a theory that can accurately model the smallest eddies in close

proximity to the shock. Additionally, the theory must not rely on mesh refinement to model

these eddies, or it poses the same challenges as DNS creates. Such a theory already exists,

and has been shown to be a reliable tool of reproducing turbulence. Eringen developed a

mathematically rigorous theory that allowed for a greater insight to the microstructure of

fluids.32 In a departure from classical fluid theory, these ”micropolar” fluids were composed

of finite structures that possessed orientation. The analysis of the fluid had to account for

the motion and deformation of these elastic structures. For turbulent flows, these structures

describe the motion of individual eddies. When the governing equations were implemented

into incompressible flow solvers, turbulent velocity profiles were reliably generated inside thin

boundary layers.105 Thus, the analytical and numerical descriptions of the fluid now incorpo-

rated terms directly related to the physics at the length scale of the smallest eddies. Recently,

micropolar fluids have been implemented into solvers to model unsteady compressible flows

to model the effect of microstructures on the lift and drag of a cylinder.25 The intent of this

paper is to demonstrate the relevance of Morphing Continuum Theory, a special case of Erin-

gen’s theory, to the problem of turbulent interactions with a shock front. Subsection 4.1.1

reiterates the theoretical background for MCT, but introduces the additional components

associated with compressible flow, and particularly the energy equation. In subsection 4.1.2,
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a brief description of the numerical implementation of compressible MCT is presented, with

relevant initial and boundary conditions shown. Numerical results are presented in subsec-

tion 4.1.3 for free-stream turbulence passing a bow shock around a cylinder. Energy spectra

for the turbulent kinetic energy and translational kinetic energy are shown, leading to a

discussion of energy cascade within the flow. Final reflections on the contributions of MCT

to the field of compressible turbulent flows are presented in subsection 4.1.4.

4.1.1 MCT Compressible Flow Equations

As discussed earlier, Morphing Continuum Theory uses spherical particles as the fundamen-

tal components of the fluid. These spheres still contain their own microinertia, with the

characteristic length scale being the diameter d of the sphere. Chen showed that a fluid of

spherical particles leads to the relation j = 2
5
d2.17 Therefore, j is a parameter available for

controlling the size of eddies one wishes to describe. In addition, it is related to the rotational

energy each of these eddies carries. If we describe the gyrational motion of an eddy as ωk

with k being the direction of motion, then we can define the angular velocity of the structure

as
√
jωk. The total velocity of the fluid can now be written as vtotal = v +

√
jω, where v

is the translational velocity of the structure. If the magnitude of the angular rotation is

small compared to the translational motion, the motion is mathematically equivalent to the

perturbed velocity found in the Reynolds-Averaged Navier Stokes equations. With a new

definition for the total velocity, the definiton of the deformation rate of the fluid must be

reconstituted:32

akl = vl ,k + ϵlkmωm (4.1)

bkl = ωk ,l (4.2)

The akl tensor indicates how the rotation of the particles contributes to the familiar strain-

rate produced only by transverse velocity gradients in the Navier-Stokes equations. The

bkl tensor indicates that an entirely new strain is experienced from simple gradients in the
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gyration. The physical meaning of this strain will become evident when stress tensors are

expressed in terms of the deformation tensors.

In addition to the connection to the perturbed velocity, MCT provides the means of

calculating the turbulent kinetic energy. Given a fluid density ρ, the rotational energy then

becomes 1
2
ρ(
√
jωk)

2 or 1
2
ρjω2

k. In fact, this term has been shown to be mathematically

equivalent to the turbulent kinetic energy when the governing equations for momentum and

energy are derived for MCT.17 In the simulations of turbulence before and after a shock,

this term will carry the information about eddy energy transfer. The governing equations

for MCT are derived from balance laws for mass, linear momentum, angular momentum,

and energy. In tensor form, the balance laws are written as:

∂ρ

∂t
+ (ρvi),i = 0 (4.3)

tlk ,l + ρfk = ρv̇k (4.4)

mlk ,l + ϵkij tij + ρlk = ρj ω̇k (4.5)

ρė− tklakl −mklblk + qk,k − ρh = 0 (4.6)

Here, lk is the body moment density, tkl the Cauchy stress tensor, fk the body force density,

mkl the moment stress tensor, e the internal energy density, and qk the heat flux.

These laws are derived directly from thermodynamics and apply to any microcontinuum,

the term used for any space composed of particles.32;40;41;106 To obtain the governing equa-

tions for MCT, constitutive equations are used to relate the Cauchy and moment stresses

and the heat flux to the various velocities in the flow. These linear constitutive equations

are derived to be:17;32

tkl = −Pδkl + λtr(amn)δkl + (µ+ κ)akl + µalk (4.7)

mkl =
α

θ
ϵklmθ,m + αtr(bmn)δkl + βbkl + γblk (4.8)
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qk =
K

θ
θ,k + αϵklmωm,l (4.9)

Here P is the pressure, µ the first coefficient of viscosity, λ the second coefficient of viscosity,

ϵklm is the permutation tensor, κ the microstructure viscosity coefficient, γ the microdiffusiv-

ity, α and β material constants, θ,m the temperatrue gradient, K the thermal conductivity,

and akl and bkl the deformation-rate tensors shown earlier. Finally, when the expressions for

deformation-rate tensors and stress tensors are plugged into the balance laws, the governing

equations have the form:

ρ̇+ ρvk ,k = 0 (4.10)

−P,k + (λ+ µ)vl ,lk+(µ+ κ)vk ,ll + κ(ϵklmωl ,m) + ρfk = ρv̇k (4.11)

(α + β)ωl ,lk + γωk ,ll + κ(ϵklmvl ,m − 2ωk) + ρlk = ρj ω̇k (4.12)

(tklvl),k + (mklωl),k − qk,k + ρh+ ρflvl + ρliωl = ρĖ (4.13)

where E = e+ 1
2
(vlvl + jωlωl) is the total energy of the fluid.

To close this system of equations, we need to relate the pressure and density with the

specific energy e. For this case, the fluid is presumed to be an ideal gas, leading to the

relations:

e = cvθ = cv
p

ρ(cp − cv)
(4.14)

ρE =
p

( cp
cv

− 1)
+

1

2
ρ(vlvl + jωlωl) (4.15)

Here, cp and cv refer to the specific heat of the fluid at constant pressure and volume re-

spectively. The ratio cp
cv

was set to the value for air, 1.4. These equations establish the basis

of our theory but will be modified to serve the finite volume solver, discussed in the next

section.
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4.1.2 Numerical Implementation

Finite Volume Method

The finite volume solver requires governing equations of the form:

∂ρϕ

∂t
+∇ · (v⃗ϕ)−∇ · (Γϕ∇ϕ) = Sϕ (4.16)

Here, ϕ refers to the conserved property of the flow. For the 2D problem, the continuity

equation requires ϕ = 1, linear momentum requires ϕ = vx or vy, angular momentum requires

ϕ = jωz, and energy requires ϕ = E. The density in equation 4.16 is obtained at each time

step from the ideal gas law.

Integrating equation 4.16 over a volume V yields:∫
V

∂ρϕ

∂t
dV +

∫
V

∇ · (v⃗ϕ)dV −
∫
V

∇ · (Γϕ∇ϕ)dV =

∫
V

SϕdV (4.17)

Here, dV refers to an infinitesmal volume. If we delineate A as the surface area surrounding

volume V , dA as its infinitesmally small component, and n̂ as the normal vector on the

surface pointing outward away from the center of the volume, equation 4.17 can be rewritten

as: ∫
V

∂ρϕ

∂t
dV +

∫
A

(ϕv⃗ · n̂)dA−
∫
A

(Γϕ∇ϕ · n̂)dA =

∫
V

SϕdV (4.18)

For a single cell of volume Vi surrounded by Nf faces, each of area Af , equation 4.18 becomes:

∂ρϕi

∂t
Vi +

Nfaces∑
f

ρf ṽiϕi

∣∣∣∣
f

· Ãf −
Nfaces∑

f

Γϕi
∇ϕi

∣∣∣∣
f

= SϕiVi (4.19)

The finite volume solver can now implement user-defined functions into ϕ and solve them in

equations of the form of 4.19. In this way, the governing equations, material properties, and

boundary conditions for MCT were numerically implemented.

For the two-dimensional compressible case, the conservative form of the governing equa-

tions have been modified to be in conservative form.17 A conservative differential equation
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is defined as:

∂Q

∂t
+
∂F

∂x
+
∂G

∂y
= S (4.20)

Taking together our governing equations 4.10, 4.11, 4.12 and 4.13, the vectors in 4.16 can be

shown to be:

Q =



ρ

ρvx

ρvy

ρjωz

ρE


(4.21)

F = Finv − Fvisc (4.22)

Finv =



ρvx

ρv2x + P

ρvxvy

ρjωzvx

(ρE + P )vx


(4.23)

Fvisc =



0

λ(∂vx
∂x

+ ∂vy
∂y

) + (2µ+ κ)∂vx
∂x

µ(∂vx
∂y

+ ∂vy
∂x

) + κ(∂vy
∂x

− ωz)

γ ∂ωz

∂x

Fvisc[2]vx + Fvisc[3]vy + Fvisc[4]ωz − qx


(4.24)

G = Ginv −Gvisc (4.25)
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Ginv =



ρvy

ρvxvy

ρv2y + P

ρjωzvy

(ρE + P )vy


(4.26)

Gvisc =



0

µ(∂vx
∂y

+ ∂vy
∂x

) + κ(∂vx
∂y

+ ωz)

λ(∂vx
∂x

+ ∂vy
∂y

) + (2µ+ κ)(∂vx
∂y

)

γ ∂ωz

∂y

Gvisc[2]vx +Gvisc[3]vy +Gvisc[4]ωz − qy


(4.27)

S =



0

0

0

κ(∂vy
∂x

− ∂vx
∂y

− 2ωz)

ρh


(4.28)

Angular momentum ρjωz is implemented as a user-defined function, and must be assigned

its own separate equations and boundary conditions in the solver.

Initial and Boundary Conditions

To observe the transfer of energy among various eddies, an initial spectrum of energies was

specified at the inlet of a 10 m domain. A cylinder was placed at x = 0. No-slip boundary

conditions were set at the surface of the cylinder. At the inlet of x = -5, the gyration was

specified to give an energy spectrum of the form:

E(k) = u2o(
k

ko
)2exp[−2(

k

ko
)2] (4.29)
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Here, uo is the root-mean-square velocity, k is a wavenumber of a given oscillation in the

energy, and ko is the wavenumber yielding the maximum energy in the spectrum.

The spectrum was chosen to match the spectrum produced by Lee to generate a low 7

Reynolds number for turbulence.97 Here, the Reynolds number was defined to be Re = ρuo

(µ+κko

so as to have a dimensionless number that captures the forces on the length scale of the

eddies.97 The initial Reynolds number was set at 16. and ko set to be 4, following Lee.97

In MCT, these disturbances are produced by the gyration term, ωz. Therefore, the initial

conditions were specified such that E(k) = 1
2
ρjω2

z would be equal to the turbulent kinetic

energy. The wavelengths were produced through a random number generator and served

as the wavelengths of ωz through an input sine wave. With these oscillations occurring

throughout the domain, it was necessary to specify homogenous boundary conditions at

the boundaries to prevent reflection of any disturbances back towards the shock wave. The

magnitude of the wave for ωz was set to be a maximum of uo√
j
. The maximum turbulent

kinetic energy would then have the value 1
2
ρu2o. The value of this root-mean-square velocity is

determined by the specified turbulent Mach number. The definition and physical significance

of this parameter will be discussed in the next subsection.

Material Properties

In Peddieson’s treatment of micropolar fluids, he used three non-dimensonal parameters

to gauge the onset of turbulence. These parameters can be extracted from the governing

equations through dimensionless analysis.70 For incompressible flow over a flat plate, these

parameters have been used to produce turbulent velocity profiles within a boundary layer.105

The parameters are defined as follows:

α1 =
κ

µ
, α2 =

κ

ρ
√
jU

, α3 =
γ

µj
(4.30)

In the flat plate study, α1 proved to be the pivotal parameter in moving from a transitional

to turbulent profile.105 This parameter serves as a ratio between the microstructures’ con-
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tribution to the Cauchy stress, κϵklmωl,m to the viscous diffusion term, µvll in the linear

momentum equation 4.11. In other words, changes in the gyration of the microstructures

leads to a tension in the fluid that disrupts the otherwise smooth laminar flow. The macro-

scopic viscous diffusion attempts to smooth disruptions created by differences in gyration,

and so the balance of these forces is critical for determining whether a flow has reached tur-

bulence. This result indicated that the tension created by differences in rotational motion

of microstructures needed to exceed viscous diffusion by a considerable amount in order to

maintain turbulence within an incompressible boundary layer.

Parameter Value

α1 99
α2 .0014
α3 .235

Mt =
uo

c
.14

Re = ρ∞uo

µko
16.7

Table 4.1: Dimensionless parameters αn, Turbulent Mach Number Mt, and Reynolds number.105

Table 4.1 gives the values of the three dimensionless parameters for αn that successfully

generated turbulence in the incompressible case. In addition, the table specifies the turbulent

Mach number, defined by the expression
√
q

c
, where q is the Reynolds stress defined in MCT

as jω2
z , and c is the sound speed at 298 K. For our initial conditions, this expression reduces

to the fraction uo

c
. Therefore the value of uo is determined from the initial turbulent Mach

number. The value specified for Mt in the table indicates that the turbulent fluctuations

produce sizable contributions to density and pressure fluctuations in the macroscopic flow.

As mentioned earlier, numerical solvers often require low values ofMt in the free-stream tur-

bulence to reproduce the interaction with the shock faithfully.100 The problem of capturing

sub-grid length scales becomes more important when the turbulence becomes more com-

pressible, as the smallest eddies could be impacted by density fluctuations. This simulation

incorporates no sub-grid models and will allow for the effects of compressible turbulence to

be taken into account.
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Figure 4.1: Comparison of gyration energy 1
2
ρjω2

z and translational energy 1
2
ρv2 behind

shock at x = -2.5, highlighted in blue, and in front of shock at x = -.55, highlighted in red.
Small wavelength eddies lose energy in interaction with shock wave and a transfer of energy
is observed to translational kinetic energy for low wavenumbers. Plot of absolute rotation,
ϵklzvl,k − 2ωz, shows structure and scope of eddies behind the shock

4.1.3 Results

The spectra in figure 4.1 show Fast Fourier Transforms of the data taken at points before and

after the shock. The data was taken only after the simulation yielded statistically stationary

data. The point monitors were chosen to be constantly upstream and downstream of the

shock. The vertical axes of the data correspond to the kinetic energy at each wavelength k.

For the translational energies, the energy is low for the wavelengths before the shock because

there are few oscillations in the translational velocity. The spike in translational energies and

departure from constant slope for relatively low wavelengths demonstrates that the natural

decay of kinetic energy was interrupted by the inverse cascade of energy from eddies due

to their interactions with the shock wave. The random pattern in the spike of energies for

wavelengths of k < 0.1 indicates that these were the wavelengths most directly affected by

turbulent eddies. The translational energy decay is found to be linear in a log-log plot.

When eddies are induced to transfer energy to translational motion, a nonlinear pattern of

energy transfer is observed (see Figure 4.1 (a)).

The amplification of turbulent kinetic energy at all eddy wavelengths observed by Lee
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et al for all was not observed here.97 The shapes of the gyration energy spectra, however,

correspond well with typical TKE spectra.97 The largest eddies still produce the highest level

of energy and gradually transfer their energy to smaller eddies through energy cascade and

eventually dissipation. In this case, the turbulent kinetic energy spectrum show a trend of a

loss of energy for short wavelength eddies after the turbulence passes through the shock. The

TKE spectrum after the shock shows a spread in the distribution of eddy sizes. The largest

and smallest eddy energies come close to pre-shock energy levels, suggesting that different

eddies are compressed or expanded upon passing through the shock. This is consistent with

the relatively high value of Mt, which allowed for more compressibility in our turbulent

fluctuations.

Figure 4.1 also depicts the eddy structure behind the shock through the absolute rotation,

defined by ϵklzvl,k − 2ωz. This quantity measures the difference between the self-spinning

motion of the microstructures, measured by the gyration ωz, and the macroscopic angular

velocity, captured by half of the vorticity. When the gyration of the microstructures is

equal to the macroscopic angular velocity, the absolute rotation vanishes and the governing

equations for MCT reduce to the Navier-Stokes equations.17 After the shock, the absolute

rotation jumps in magnitude and reveals the structure of the eddies near the cylinder. This

picture illustrates that the flow behind the shock is multi-scale. The gyration does not

scale with the vorticity and is non-zero. Therefore, absolute rotation must contribute to the

angular momentum equation 4.12 governing the rotation and bending of the eddies in the

fluid. Furthermore, the flow behind the shock lacks symmetry and demonstrates a wide scale

of eddy sizes, consistent with the random and multi-scale character of turbulence.107

4.1.4 Discussion

The preceding simulation gives an example of MCT generating compressible turbulent flow

using the parameter values that achieved turbulent incompressible profiles in the previous

chapter. The preeminence of the coupling coefficient reinforces comparisons between the

kinetic and MCT descriptions. The turbulent kinetic energy spectra generated demonstrate
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similar shapes to traditional spectra obtained in the literature. A clear case of inverse cas-

cade of energy from turbulent eddies to the macroscopic motion of the flow is demonstrated

by the nonlinear spike shown in the translational energies. The shape of the spectra in-

dicate that MCT is able to obtain reasonable approximations of the physical behavior of

eddies as they pass through the shock. The shape and structure of the turbulence can be

visualized by observing the amplification of the absolute rotation after the shock, providing

an alternative method of observing turbulence structure unavailable to DNS. The spectra

were obtained without the need for local models near the shock and without sub-grid scale

models. In the small length scale regimes where compressible turbulent boundary layers

interact with oncoming shocks, Morphing Continuum Theory should serve as a useful tool

for future numerical simulations. Still, this data was not compared with experimental data

for compressible turbulence flows, a task left for section 4.2.

4.2 Transonic Flow over an Axisymmetric Hill

The demand for comprehensive, robust, and efficient numerical methods for modeling tur-

bulence, while also yielding new physical insights into well-studied cases, is a continuous

challenge to each new model.108–111 The reliability of direct numerical simulation (DNS) in

producing results that conform to experimental data is well documented, but these results

are obtained at the expense of considerable computational resources.14–17;106 The primary

difficulty is the ability to resolve all relevant scales of motion, and in particular the smallest

eddies. For these eddies, viscous diffusion of energy into heat is the primary mode of en-

ergy transfer. Since this cascade process is how energy is ultimately dissipated, no complete

description of turbulent physics can omit these scales of motion. In order to resolve these

eddies in DNS, the mesh must be continuously refined, driving up the computational costs.

Due to this hurdle, the Navier-Stokes equations have been modified with averaging or fil-

tering techniques, producing the familiar large-eddy simulation (LES) and Reynolds-averaged

Navier-Stokes (RANS) methods. Though these techniques do obtain credible results at

cheaper costs, they still require closure models that change depending on the system being
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studied. Typically, different versions of well-tested models are applied to canonical prob-

lems to test their viability, cost, and potential for solving more complex problems. Rodi

et al’s tests of different versions of the k − ϵ model for vortex-shedding flow illustrate the

limits of various closure models and the occasional necessity of combining different models

to approximate increasing levels of turbulence around a bluff body.109 Walters and Coljkat

proposed a three-equation model that incorporated closure models for the RANS equations

based on the transport of different types of fluctuations to different regimes of the flow.86

Depending on the nature of the results, or the geometry of the flow, different RANS models

may be utilized. These models do not come from any first principles and are typically ad hoc,

based off particular experiments or observations. They can be successful in adapting to new

problems. Still, the smallest relevant length scales in turbulent motion may be smoothed

over in the case of averaging, or filtered out as in the case of LES.

Developing a theory that captures these smallest length scales without resorting to ad hoc

closure models is the goal of morphing continuum theory (MCT).17;70;87–89 When the dynam-

ics of a fluid’s inner structure are considered, the resulting governing equations provide new

terms that account for the motion or deformation of individual eddies. These terms arise

from the independent local rotation of finite-sized particles in the fluid that give the fluid

its inner structure. Recent successes in numerical simulations of two-dimensional boundary

layer flows and compressible turbulent flows have produced visualizations of shock-turbulent

interactions, turbulent kinetic energy transfer, transitional profiles, and other experimen-

tal fluids phenomena.77;105;112 The key to these simulations is the ability to generate data

consistent with experiment and DNS results, without the associated high computational

costs.17;77;105;112 Additionally, the new variable of local rotation, the new material properties

associated with the inner structure, and the new governing equations allow for alternative

strategies of visualizing large structures within the flow. These tools can help with the visu-

alization of three-dimensional turbulent boundary layer flow. To prove MCT’s applicability

to physical cases of turbulence, the theory must be able to capture the structures involved

in three-dimensional turbulence. This paper will derive new, objective, mathematical tools

from MCT for visualizing structures within the three-dimensional flow.
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The aim of this paper is to demonstrate the capability of MCT to produce compress-

ible, three-dimensional, turbulent flow data that demonstrate at least qualitative consistency

with experimental and numerical results. In addition, the effectiveness of the objective Q-

criterion will be tested in its ability to visualize structure in three-dimensional turbulence.

Subsection 4.2.1 discusses the importance of having an objective Q-criterion, and derives this

criterion using the strain-rate in MCT. Subsection 4.2.2 will deal with the conversion of the

analytical equations to a form suitable for numerical application. The numerical values for

the material properties will be introduced, with their values determined by key dimensionless

parameters. Subsection 4.2.3 will produce the results from the three-dimensional compress-

ible axisymmetric hill simulation and compare them with experimental and numerical data.

Contour plots of the new, frame-indifferent Q-criterion will unveil large structures such as

hairpin vortices within the flow. Finally, subsection 4.2.4 will present concluding remarks

on the reliability of the new MCT data, the value added by the new objective Q-criterion,

and the future of MCT in modeling three-dimensional turbulence.

4.2.1 The Q-criterion of MCT

The subject of the identification of a vortex has been discussed for decades, with various

mathematical and physical arguments given for how to isolate true vortices in the flow.113–116

Qualitative definitions involving swirling motion or quantitative arguments based on the

presence of high vorticity were among the first criteria proposed to distinguish vortices in

the flow. The Q-criterion, defined by Hunt, focused on restricting the value of the velocity-

gradient tensor and requiring the existence of a local minimum in the pressure.114

This practice of determining which facets of the flow counted as true vortices contin-

ued with the study of invariants. The local pressure minimum criterion eventually evolved

into a requirement that the well-known λ2 invariant remain negative in the flow. In these

cases, vortices become apparent for steady Navier-Stokes flows, with the observer sitting in

a Gallilean coordinate system.116 Haller noted, however, that simple rotations of the coordi-

nate system caused both the Q and λ2 criteria to break down. Haller’s discussion expanded
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into a broader investigation of what kind of criteria succeeded in identifying vortices, inde-

pendent of the physical situation and choice of coordinate system. Specifically, the invariants

used to determine the presence of a vortex needed to preserve “objectivity,” or indifference

to a precise change in the reference coordinate system.68;116

One invariant that satisfies this criterion emerges from the deformation-rate tensor, aij,

defined in equation 4.1.106 This strain encompasses the traditional strain-rate produced from

the velocity gradient and adds the local rotation supplied by the gyration of individual parti-

cles. Including both of these motions is essential to calculating objective quantities in MCT.

Eringen demonstrates that objectivity is maintained in a morphing continuum by taking

into account macroscopic and sub-scale deformations simultaneously, both of which are fea-

tured in equation 4.1.106 Only by accounting for these motions can aij remain indifferent to

coordinate transformations. This characteristic of the deformation in MCT is essential for

maintaining a rigorous standard for vortex identification. This paper will seek to reformulate

the Q-criterion as a first step towards establishing an objective criterion for identifying a

vortex.

From linear algebra, one invariant calculates the level of asymmetry in a two-dimensional

matrix, e.g. the strain-rate tensor. Setting this invariant to be IIa, the expression for this

value has the form:113

IIa =
1

2
(aiiajj − aijaji) (4.31)

where aij is the deformation-rate tensor. If the fluid obeys the continuum assumption, then

this expression expresses a balance between the magnitude of the vorticity and the shear

strain rate.113 Since the deformation-rate tensor in equation 4.1 contains the shear rate and

the gyration, this new invariant involves a balance of more aspects of the flow.

If the expression for aij from equation 4.1 is substituted into equation 4.31, the invariant

becomes:

IIa =
1

2
[(vi,i)(vj,j)− (vj,i + ϵjimωm)(vi,j + ϵijlωl)] (4.32)
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Multiplying and canceling the appropriate terms yields:

IIa =
1

2
[vi,ivj,j − vj,ivi,j − 2vj,iϵijmωm + 2ωmωm] (4.33)

where the identities ϵjim = −ϵijm and ϵjimϵijl = −2δml have been employed. Letting all

the indices go to their respective coordinates in the three-dimensional Euclidean coordinate

system, it is clear that the diagonal terms associated with the compressibility of the fluid

disappear when the indices from the shear terms equal one another. Therefore, the invariant

used for vortex visualization in MCT under Euclidean coordinates has the form:

IIa = [vx,xvy,y + vx,xvz,z + vy,yvz,z − (vx,yvy,x + vx,zvz,x + vy,zvz,y)

− (vy,x − vx,y)ωz − (vx,z − vz,x)ωy − (vz,y − vy,z)ωx + ω2
x + ω2

y + ω2
z ] (4.34)

The final version of the invariant contains the expected shear strain-rate components from

both the large and small scales of motion. The familiar velocity gradient terms, contained

in the Q-criterion for the Navier-Stokes equations, are now balanced with the magnitude

of the gyration for individual particles. If the gyration terms disappear, the Navier-Stokes

Q-criterion is recovered.113;114 This fact is a consequence of the governing equations of MCT

reducing to the Navier-Stokes equations when the gyration is set to zero. Also, if the gyra-

tion equals zero and the macroscopic stresses cancel one another out, then the macroscopic

flow simply has no preferred rotational direction. Finally, if all stresses become zero then,

naturally, no vortical motion could possibly exist and the invariant dissapears once more. As

observed by Jeong et al for the Navier-Stokes’ Q-criterion, a non-zero value for equation 4.2.1

is expected to produce visible eddies but may not be sufficient to visualize a true vortex.113

Future investigations into this criterion and how it relates to other formal definitions of

vortices are needed to make a conclusive case that MCT identifies true vortices. Still, the

new expression from MCT allows for a new objective tool of visualizing eddies and turbulent

structures of various sizes in the three-dimensional flow.
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4.2.2 Numerical Implementation

Kurganov-Noelle-Petrova Scheme

For this work, the finite volume method is used to discretize the MCT balance laws. The

spatial domain is divided into connected control volumes, or cells, with the physical variables

solved at the center of each cell.

The transport equation for any conserved property can be written in the following form:

∂ϕ

∂t
+∇ · (vϕ)−∇ · (Γϕ∇ϕ) = Sϕ (4.35)

Here, ϕ refers to the transport variable, Γϕ is the diffusion coefficient, and Sϕ is the source

function for ϕ. If ϕ = ρ, equation 4.35 becomes the continuity equation 4.10. Setting ϕ = ρvi

yields the linear momentum equation 4.11, while ϕ = jρωi yields the new governing equation

for the angular momentum 4.12. Finally, if ϕ = ρE the new energy equation 4.13 is obtained.

The finite volume method requires that the governing equations in their integral form be

satisfied over the control volume. Applying spatial integration to Eq. 4.35 gives:∫
V

∂ϕ

∂t
dV +

∫
V

∇ · (vϕ)dV −
∫
V

∇ · (Γϕ∇ϕ)dV =

∫
V

SϕdV (4.36)

The diffusion term in equation 4.35 can be approximated as:∫
V

∇ · (Γϕ∇ϕ)dV =

∫
S

(Γϕ∇ϕ) · dS ≈
∑
f

(Γϕ∇ϕ)f · Sf (4.37)

where Sf represents the surface vector of the face, and
∑

f denotes the summation over the

faces of the control volume. The term (Γϕ∇ϕ)f can be obtained from the weighted average

of the gradients at the centroids of the face multiplied by the diffusivity at the centroid:

(Γϕ∇ϕ)f = g(Γϕ∇ϕ)O + (1− g)(Γϕ∇ϕ)N (4.38)

where the subscripts O and N represent the nodes at the center of the owner cells and neigh-

bor cells respectively. Here, g is the geometric interpolation factor related to the position of

the element face f with respect to the cell center O. The gradient term ∇ϕ located at the
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cell center is computed using the Green-Gauss theorem:117

(∇ϕ)c =
1

Vc

∑
f

ϕfSf (4.39)

The nonlinear convection term in equation 4.35 requires a special treatment. The scheme

adopted for the convection term should be able to capture any shock waves and disconti-

nuities, and at the same time avoid oscillations. The convection term can be approximated

as: ∫
V

∇ · (vϕ)dV =

∫
S

(vϕ) · dS ≈
∑
f

vfϕf · Sf (4.40)

Notable methods found in the literature that are able to effectively produce accurate non-

oscillatory solutions are: piecewise parabolic method (PPM);118 essentially non-oscillatory

(ENO);119;120 weighted ENO (WENO);121 and the Runge-Kutta discontinuous Galerkin

(RKDG) method.122 All of these methods involve Riemann solvers, characteristic decom-

position and Jacobian evaluation, making them troublesome to implement.

In the present solver a simple forward-Euler scheme is implemented for the unsteady

term: ∫
V

∂ϕ

∂t
dV =

ϕn
c − ϕo

c

△t
Vc (4.41)

where Vc represents the cell volume, the subscript c gives the cell center, and superscripts n

and o refer to the new and old time values respectively. In these schemes, different temporal

solvers can be substituted. One can input a higher-order Runge-Kutta time integration

scheme to achieve a higher level of accuracy. Kurganov et al demonstrated that stability

is achieved with the implementation of a modified Euler method.123 For this scheme, the

diffusion terms in the momenta equations are solved at the new time step, meaning that

the implicit character that allows for numerical stability of the KNP algorithm is preserved.

The scheme implemented in this study is a second-order semi-discrete, non-staggered scheme,

introduced by Kurganov, Noelle and Petrova (KNP) as a generalization of the Lax-Friedrichs

scheme.123 The interpolation procedure from the cell center to the face center implemented
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in this scheme is split into two directions corresponding to the outward or inward direction

of the face normal:

∑
f

vfϕfSf =
∑
f

[αSf+vf+ϕf+ + (1− α)Sf−vf−ϕf− + ωf (ϕf− + ϕf+)] (4.42)

where Sf+ is the same as Sf and Sf− = −Sf . The subscript f+ is denoted for the directions

coinciding with Sf+, and f− for the opposite direction, α the weighted coefficient, and ωf

is the diffusive volumetric flux. The two terms Sf+vf+ϕf+ and Sf−vf−ϕf− in equation 4.42

represent the flux evaluated at the Sf+ and Sf− directions respectively. The last term,

ωf (ϕf− + ϕf+), is an additional diffusive term based on the maximum speed of propagation

of any discontinuity that may exist at the face. The weighting coefficient α is based on the

local speed of propagation shown below:

ψf+ = max (cf+|Sf |+ ϕf+, cf−|Sf |+ ϕf−, 0) (4.43)

ψf− = max (cf+|Sf | − ϕf+, cf−|Sf | − ϕf−, 0) (4.44)

Here c is the speed of sound of the fluid. The weighting factor is:

α =
ψf+

ψf+ + ψf−
(4.45)

and the diffusive volumetric flux is:

ωf = α(1− α)(ψf+ + ψf−) (4.46)

Initial and Boundary Conditions

An inlet boundary layer profile with a thickness of δ = 0.039m was specified with an otherwise

uniform flow of M∞ = 0.6 at the inlet of a 20H × 2.305H× 10H domain with H = 0.078m

as per Castagna.124 The inflow velocity profile was specified by using the mean velocity

values of Castagna’s precursor simulation124 and comparing the profile with the inflow profile

measured experimentally by Simpson.125 Figure 4.3 shows that the inflow profiles match

very well near the wall and overpredict the velocity in the log layer where y+ > 60. The

profiles share a boundary layer thickness of δ = H
2
= 0.039m. This discrepancy was kept
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to see if MCT could still capture experimental flow phenomena in the bulk flow. Turbulent

fluctuations were specified by equating the root-mean-square (rms) of the new variable of

gyration with the root-mean-square (rms) velocities specified by Castagna and compared

with Spalart.124;126 Figure 4.4 compares the normalized root-mean-square data from MCT

and Castagna with the experimental data obtained by Spalart.126 The discrepancies are

the same for both MCT and Castagna, since Castagna’s data was directly transferred to

the gyration variable, via the expression
√
jωi,rms = ui,rms. Therefore, the kinetic energy

generated by fluctuations in Castagna’s velocity profile matches the rotational kinetic energy

produced by the gyration. Discrepancies between the DNS and experimental data were most

notable in the log-layer. These discrepancies were preserved in the gyration, again to see if

MCT could still produce better agreement with experiment given the same initial flow data.

Inflow density, total viscosity µ + κ, and freestream velocity U∞, were all set to ensure

Figure 4.2: Wireframe of the meshes for the rectangular domain and hill. Axisymmetric
hill was set at 8.4H away from the interior, to allow for flow to develop on leeward side and
to prevent effects from outlet. The bump mesh was tailored to the curvature of the hill. The
hill radius was set at R = 2H according to Castagna.124

the Reynolds number, ReH , based on the height H matched Castagna’s value of 6500. The

time-step for the MCT simulations was 5× 10−8 s, shorter than that of Castagna’s value of

3.04 × 10−5 s. The smaller mesh cells near the wall required these small time step values,

but the resulting data benefited from increased temporal accuracy. Non-reflective boundary
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Figure 4.3: Comparison of DNS inlet profile obtained by Castagna124 from a precursour
simulation with the experimental profile used by Simpson.125

Figure 4.4: Comparison of MCT/DNS velocity perturbations the experimental profile ob-
tained by Spalart.126

conditions were set at the top and outlet of the domain to prevent unphysical pressure effects

from affecting the dynamics at the hill and to follow Castagna’s setup.124 Periodic boundary

conditions were set in the spanwise direction, also in line with Castagna’s conditions.124 Zero

gradient, and no-slip boundaries for the velocity, were set at the floor and hill. The mesh

near the hill was tailored to the shape of the hill, determined by the mathematical functions
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Parameter Value

Maximum Aspect Ratio 8.62886
Time Step 5× 10−8 s

Maximum Skewness 5.124
∆y+min 0.148

Number of cells: y+ < 10 30
Total Number of Cells 6.72× 106

Table 4.2: Parameters for mesh quality and time resolution used in MCT simulations

set in Castagna.124 Table 4.2 lists the key statistics associated with this custom mesh. A

key note is the number of cells for this mesh, totaling around 6.7M elements. With the

unstructured mesh, however, the viscous sublayer, defined by the limit y+ < 10, contained

30 cells as opposed to the 10 cells needed in Castagna’s mesh.124 Still, the argument that

MCT can provide results comparable to DNS data without the associated computational

costs is supported by the dramatic decrease in mesh cell number.

Material Properties

Three non-dimensonal parameters to gauge the onset of turbulence are introduced by Ped-

dieson70 and are later explained by Wonnell and Chen.112 These parameters can be extracted

from the governing equations through dimensionless analysis.70 For incompressible flow over

a flat plate, these parameters produced turbulent velocity profiles within a boundary layer

that matched experimental data produced by the European Research Community on Flow,

Turbulence and Combustion (ERCOFTAC).95;105 The parameters are defined as follows:

α1 =
κ

µ
, α2 =

κ

ρ
√
jU

, α3 =
γ

µj
(4.47)

In the flat plate study, α1 proved to be the pivotal parameter in matching an experimental

turbulent profile.105 This parameter serves as a ratio between the particles’ contribution

to the Cauchy stress, κϵklmωm,l to the classical viscous diffusion term, µvll, in the linear

momentum equation 4.11. Local variation in the gyration of the particles leads to a tension

in the fluid that disrupts the otherwise smooth laminar flow. The classical viscous diffusion

attempts to smooth disruptions created by differences in gyration, and so the balance of
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these forces is critical for determining whether a flow has reached a turbulent state. This

result indicates that the tension created by differences in rotational motion of particles needs

to exceed viscous diffusion by a considerable amount in order to maintain turbulence within

an incompressible boundary layer.

Table 4.3 gives the values of the three dimensionless parameters for αn that successfully

generated turbulence in the incompressible case. The problem of capturing sub-grid length

scales becomes more important when the turbulence becomes more compressible, as the

smallest eddies could be impacted by density fluctuations. The balance of compressibility

with viscous fluctuations occurs at all scales of motion. This balance is reflected in the new

total viscosity, µ+ κ, of the fluid found in the Reynolds number, ReH . The contribution of

individual structures to the total viscous resistance of the fluid is captured through κ. This

simulation incorporates no sub-grid models and will allow for the effects of compressible

turbulence to be taken into account.

Parameter Value

α1 99
α2 0.0014
α3 0.235

M∞ = U∞
c

0.6

ReH = ρ∞U∞H
µ+κ

6500

Table 4.3: Dimensionless parameters αn, Mach Number M , and the boundary layer Reynolds

number matching experiments and DNS.105;124;125 Speed of sound determined for air at T∞ = 293K

4.2.3 Results

Results were obtained after the freestream flow made 1.2 trips through the domain to follow

Castagna’s example, or around t = 0.009s.124 Figure 4.5 highlights the formation of the

separation bubble on the windward side of the hill using streamlines of the flow along the

centerline y = 0. The leeward side does not show any apparent separtion bubble. Meanwhile

the outline of the MCT windward side bubble falls slightly below some of the recirculation

in the MCT data. The reattachment point for the MCT data, at x = −1.66H, is slightly

downstream of Castagna’s point of x = −1.7H, but the size of the windward bubble in MCT
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Figure 4.5: Streamline plot compared with separation bubble boundaries obtained by
Castagna.124 MCT data demonstrate a far larger windward side separation bubble, but no
significant separation on the leeward side. MCT windward bubble delineated by red dotted
line. Large recirculation leads to greater buildup of pressure before the hill peak.

Figure 4.6: Streamline plot of the leeward side of the bubble colored by the vorticity, with
the local maximum peak at x = 2.311H highlighted. Large differences in the vorticity likely
responsible for pressure peak in this region.

clearly exceeds that of Castagna’s predictions. Inflow turbulence generated near the wall

from the gyration and velocity fluctuations may have lead to a much earlier separation point

for the MCT flow.

Figure 4.7 shows that experimental data for the pressure coefficient obtained from Simp-

son125 line up more closely with MCT than the numerical results from Castagna.124 These

successful comparisons add confidence to the statement that numerical simulations of MCT

produce realistic, physical flow data without the need for excessively dense grids or high

computational costs. The pressure peak downstream of the hill appears at x = 2.311H.
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Figure 4.7: Comparison of Cp = pstatic−patm
.5∗ρ∗U2

∞
between experimental data from Simpson,

simulation data from Castagna, and numerical data along the centerline z = 0.124;125

The DNS study failed to capture this peak, but MCT clearly demonsrates a local peak in

this region. After this peak, MCT captures the further evolution of the wall pressure while

Castagna’s data overpredicts the surface pressure. Figure 4.6 shows the streamline plot on

the leeward side of the hill colored by the magnitude of the vorticity. The rapid differences

in the vorticity found near the secondary local peak are likely the cause of the local variance

in pressure. Simpson noted that the pressure coefficient could be directly related to the

vorticity flux,125 and the resolution of this vorticity near the wall likely helps the resolution

of the surface pressure.

Near the wall, turbulent fluctuations in MCT data behave in recognizable patterns, but

contain noticeable differences from Navier-Stokes simulations. Figure 4.8 compares the tur-

bulence intensities from Castagna124 and MCT data at the same Reynolds number. Qual-

tiatively similar results are found near the edge of the boundary layer downstream of the

hill, and near the wall upstream of the hill. MCT results demonstrate the characteristic

peak and decline in turbulence intensity, with some noticeable differences in the wall-normal

data. Downstream of the bump at x = 11.6H, the boundary layer in the MCT data shrinks

considerably, leading to a wider spread of the turbulence intensity. The downstream behav-

ior is likely affected by the formation of structures such as hairpin vortices, which will be

discussed later.

More in-depth information of the structure of the flow is found using the Q-criterion
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Figure 4.8: Comparison of turbulence intensities, averaged in the spanwise direction, at
x = 4.14H and x = 11.6H with DNS data obtained by Castagna.124

defined by equation 4.2.1. Figure 4.9 shows the isosurface of the Q-criterion colored by

the gyration. Figure 4.9 reveals structures within the turbulence, and particularly hairpin

vortices downstream of the hill. Periodic regular hairpin vortices emerge for the Q-value of

5 × 105, with the arches of these vortices characterized by a low value of gyration. Since

these structures are all described by the same value for the Q-criterion, these lower regions

of gyration must correspond to higher values of velocity gradients. Here, the macroscale

component of the flow is dominant. Near the floor, however, gyration plays a more critical

role in determining local evolution of strucutre near the wall. Overall, the new Q-criterion
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provides the tool to visualize the evolution of large-scale structures that form within the flow

and see how small and large scale rotations affect the dynamics and topology of the bulk

flow.

Figure 4.9: Topology of hairpin vortices as visualized by the Q-criterion at 5× 105, colored
by the values of the gyration. Low gyration values for hairpin vortex indicate less variation
in small-scale rotation.

4.2.4 Discussion

Direct comparisons with the experimental results of Simpson125 and the numerical data of

Castagna124 suggest that MCT can reproduce several aspects of flows simulated using the

N-S equations on coarser grids and provide new tools for visualizing the behavior of flow

structures. The obtained plot of the separation bubble lines on the windward side of the

bump yields recirculation qualitatively similar to DNS results, and the associated pressure

coefficient matches more closely with experimental data likely due to the presence of large

vorticity differences near the wall. Turbulence intensities are shown to be qualitatively sim-

ilar to Castagna’s data, though differences are found primarily near the wall. The sharp
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drop in mesh size as compared with Castagna124 show that turbulent fluctuations, hairpin

vortices, and pressure trends can be obtained without incurring high computational costs.

Furthermore, MCT adds an objective Q-criterion for flow visualization, and can observe vari-

ation in local rotation in these structures through the gyration variable. Since the gyration

acts on the flow only at the smallest scales, an analysis can be done to see how the inner

structure of the flow affects the behavior of larger structures. The contour plots suggest that

hairpin vortices contain regions of high gyration near the wall but develop regions of low

gyration at the top. These regions can show where small or large scale differences in rotation

predominate.

These initial comparisons with DNS and experimental data represent a first step for

MCT to model compressible turbulence and identify vortices. The choice of parameters for

material coefficients in MCT produce compressible turbulence results in closer alignment

with experimental data. The new Q-criterion makes possible a new discussion of what

variables and which length scales matter for the formation and evolution of structures within

turbulent flows. Future work with canoncial cases involving the formation of vortices will

illuminate how sub-scale motion affects the formation or decay of large and small vortices.

Altering values for κ which denote the contribution of the inner structure to the evolution of

turbulence will show the role gyration plays in the shape and stability of vortices. Identifying

vortices and distinguishing them from large or small-scale eddies in the flow will give a better

assessment of the structure of the turbulence, which will in turn yield better information

on the turbulence intensity, pressure, and stress profiles. With the multiscale character of

MCT, this information on the structure of turbulence can be obtained from smaller mesh

sizes and fewer computational resources.
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Chapter 5

Discussion and Conclusion

5.1 Discussion

The main purpose of this work was to give a kinetic description of fluids that would yield

insight into material properties or coefficients that MCT had utilized to simulate turbulence

without incurring the high costs of DNS. The key distinction between the classical Boltz-

mann approach to kinetic theory and the preceding derivation is the nature of the individual

structures within the fluid. The Boltzmann particles contained no size and could only move

via a translational velocity. Here, the particles contain a finite size and thus contain three

extra degrees of freedom through their rotation. Therefore, an independent angular momen-

tum equation was needed to account for the transport of this new rotation. This equation, in

turn, introduced a new stress that focused entirely on the contribution of the gyration. This

stress, unlike the familiar Cauchy stress, has no known counterpart in the classical kinetic

description.

Each of these observations of the picture of the fluid portrayed by kinetic theory has a

familiar backdrop within MCT. A morphing continuum does start with a space composed

not of points but of finite-sized structures. Since these structures are all connected within a

continuum, their application to more traditional fluid elements such as eddies makes it an

attractive tool for attacking problems such as turbulence. Mathematical principles imbedded
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in this continuum lead to new deformation rates, which in turn lead to new stress tensors.

Hence, the Cauchy stress contains terms with no classical counterpart and a new moment

stress is needed to deal with forces generated by local differences in rotation. One may be

tempted to conclude that the physical meaning behind new coefficients in MCT is apparent

by observing how the overall flow changes when their values are adjusted. The coupling

of the linear and angular momenta equations in MCT, however, ensures that the coupling

coefficient, κ, can play multiple roles. The relationship between κ and the more familiar

coefficient associated with the kinematic viscosity, µ, has been shown to be more complex

with the dimensional analysis done in chapter 3. These complications ensure the relevance

of an approach designed to base the abstractions within MCT in a more realistic physical

setting.

Due to the similarities between the morphing continuum of MCT and the collection of

rotating particles in the kinetic approach, it is not surprising to see the two sets of equations

match in form. With all of these new aspects introduced into a kinetic description, however,

the relationship between the two approaches to flows with local spin needs more clarification.

The kinetic approach discretizes the fluid in question, extrapolating the behavior of the fluid

from the interaction of these particles. The associated model for the singular relaxation time

will affect the expected values of all coefficients. Numerical simulations that test how well

the expressions within the kinetic equations match with the parameters used in MCT will

have to choose conditions that allow for a good approximation of the relaxation time, in

addition to equilibrium temperature and number density. Turbulent gas flow, hypersonic

flow, and high-altitude flows are some of the examples where kinetic theory can be tested

with regards to MCT.

5.2 Conclusion

The first-order approximation to the Boltzmann-Curtiss equation has provided equations

that give insight into the contribution of material parameters introduced by MCT. The equal

expressions for the coefficient in front of the Cauchy stress and the viscous diffusion suggests
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that the additional rotation of particles does not increase the total viscosity of the flow. When

the Cauchy stress is non-zero, the kinetic equations indicate that the coupling coefficient, κ,

must predominate in determining the total viscosity. Numerical simulations of transitional

and turbulent flow provide evidence for this result. The kinetic equations reduce to the

Type II Navier-Stokes form, with different expressions for the classical viscosity when the

local rotation is equivalent to the angular velocity. Therefore, the additional rotation in the

particles affects how the final viscosity depends on the number density, relaxation time, and

temperature. Viscous resistance in a gas composed of spherical particles evidently changes

when local rotation is no longer independent from macroscopic rotation, suggesting that

the presence of the distinct local rotation generates viscous resistance. For incompressible

and irrotational flows, however, the kinetic equations reduce to the classic kinetic equations

derived from the Boltzmann approach. This result is consistent with the fact that the only

difference between the current and classical approaches is the existence of the local rotation.

The final equations demonstrate that kinetic theory can provide a physical framework for

the mathematics and preliminary numerical results of MCT.

Future work with the kinetic description in this work can focus on the nonequilibrium

effects generated in polyatomic gas flows discussed in chapter 2. The additional rotation

present in polyatomic gases is not explicity accounted for by the classical Boltzmann distri-

bution and is treated as an internal variable. These flows, however, demonstrate additional

angular momentum which effects the collisional dynamics of the equilibrium flow, causing

the true distribution function to depart greatly from the Boltzmann form. The Boltzmann-

Curtiss distribution and its first-order approximation can help yield insight into the explicit

contribution of local rotation to total viscosity, conductivity, relaxation, and other effects ob-

served in non-equilibrium flows. Therefore, comparisons can reach beyond MCT and perhaps

help this kinetic description become a key tool in analyzing polyatomic gas flows.
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[85] B. Aupoix, D. Arnal, H. Bézard, B. Chaouat, F. Chedevergne, S. Deck, V. Gleize,

P. Grenard, and E. Laroche. Transition and turbulence modeling. AerospaceLab, (2):

1–13, 2011.

[86] D. K. Walters and D. Cokljat. A three-equation eddy-viscosity model for reynolds-

averaged navier–stokes simulations of transitional flow. Journal of Fluids Engineering,

130(12):121401, 2008.

[87] J. Heinloo. Formulation of turbulence mechanics. Physical Review E, 69(5):056317,

2004.

[88] A. D. Kirwan. Boundary conditions for micropolar fluids. International Journal of

Engineering Science, 24(7):1237–1242, 1986.

[89] R. Mehrabian and G. Atefi. A Cosserat continuum mechanical approach to turbulent

channel pressure driven flow of isotropic fluid. Journal of Dispersion Science and

Technology, 29(7):1035–1042, 2008.

[90] A. D. Kirwan Jr and N. Newman. Plane flow of a fluid containing rigid structures.

International Journal of Engineering Science, 7(8):883–893, 1969.

[91] S. Kawai and J. Larsson. Wall-modeling in large eddy simulation: Length scales, grid

resolution, and accuracy. Physics of Fluids, 24(1):015105, 2012.

[92] M. Alizadeh, G. Silber, and A. G. Nejad. A continuum mechanical gradient theory

with an application to fully developed turbulent flows. Journal of Dispersion Science

and Technology, 32(2):185–192, 2011.

[93] R Drouot and G. A. Maugin. Phenomenological theory for polymer diffusion in non-

homogeneous velocity-gradient flows. Rheologica Acta, 22(4):336–347, 1983.

[94] R. D. Mindlin. Micro-structure in linear elasticity. Archive for Rational Mechanics

and Analysis, 16(1):51–78, 1964.

102



[95] J. Coupland. Ercoftac special interest group on laminar to turbulent transition and

retransition. T3A and T3B Test Cases, 1990.

[96] R. A. Humble, F. Scarano, and B. W. Van Oudheusden. Experimental study of an

incident shock wave/turbulent boundary layer interaction using piv. AIAA paper, 3361:

2006, 2006.

[97] S. Lee, S. K. Lele, and P. Moin. Interaction of isotropic turbulence with shock waves:

effect of shock strength. Journal of Fluid Mechanics, 340:225–247, 1997.

[98] B. A. Bhutta and C. H. Lewis. PNS predictions of external/internal hypersonic flows

for NASP propulsion applications. Vra–tr–90–01, VRA, Inc., Blacksburg, VA, June

1990.

[99] E. W. Miner and C. H. Lewis. Hypersonic ionizing air viscous shock-layer flows over

nonanlytic blunt bodies. Nasa cr–2250, May 1975.

[100] F. Ducros, V. Ferrand, F. Nicoud, C. Weber, D. Darracq, C. Gacherieu, and T. Poinsot.

Large-eddy simulation of the shock/turbulence interaction. Journal of Computational

Physics, 152(2):517–549, 1999.

[101] P. S. Rawat and X. Zhong. Numerical simulation of shock-turbulence interactions using

high-order shock-fitting algorithms. In Proceedings of the 48th AIAA Aerospace Sci-

ences Meeting Including the New Horizons Forum and Aerospace Exposition, Aerospace

Sciences Meetings, volume 114, 2010.

[102] S. Ghosal, T. S. Lund, P. Moin, and K. Akselvoll. A dynamic localization model for

large-eddy simulation of turbulent flows. Journal of Fluid Mechanics, 286:229–255,

1995.

[103] Y. Andreopoulos, J. H. Agui, and G. Briassulis. Shock wave-turbulence interactions.

Annual Review of Fluid Mechanics, 32(1):309–345, 2000.

103



[104] J. Ryu and D. Livescu. Turbulence structure behind the shock in canonical shock–

vortical turbulence interaction. Journal of Fluid Mechanics, 756, 2014.

[105] J. Chen and L. Wonnell. A multiscale morphing continuum description for turbulence.

In Bulletin of the American Physical Society, volume 60. 68th Annual Meeting of the

APS Division of Fluid Dynamics, 2015.

[106] A. C. Eringen. Simple microfluids. International Journal of Engineering Science, 2(2):

205–217, 1964.

[107] H. Tennekes and J. L. Lumley. A first course in turbulence. MIT press, 1972.

[108] D. C. Wilcox. Reassessment of the scale-determining equation for advanced turbulence

models. AIAA Journal, 26(11):1299–1310, 1988.

[109] W. Rodi. Comparison of LES and RANS calculations of the flow around bluff bodies.

Journal of Wind Engineering and Industrial Aerodynamics, 69:55–75, 1997.

[110] S. H. Park and J. H. Kwon. Implementation of k-omega turbulence models in an

implicit multigrid method. AIAA Journal, 42(7):1348–1357, 2004.

[111] H. Pitsch. Large-eddy simulation of turbulent combustion. Annual Review of Fluid

Mechanics, 38:453–482, 2006.

[112] L. B. Wonnell and J. Chen. A morphing continuum approach to compressible flows:

Shock wave-turbulent boundary layer interaction. In 46th AIAA Fluid Dynamics Con-

ference, pages AIAA 2016–4279, 2016.

[113] J. Jeong and F. Hussain. On the identification of a vortex. Journal of Fluid Mechanics,

285:69–94, 1995.

[114] J. C.R. Hunt, A. A. Wray, and P. Moin. Eddies, streams, and convergence zones in

turbulent flows. Center for Turbulence Research CTR-S88, page 193, 1988.

104



[115] Q. Chen, Q. Zhong, M. Qi, and X. Wang. Comparison of vortex identification criteria

for planar velocity fields in wall turbulence. Physics of Fluids, 27(8):085101, 2015.

[116] G. Haller. An objective definition of a vortex. Journal of Fluid Mechanics, 525:1–26,

2005.

[117] M. Darwish, A. Abdul Aziz, and F. Moukalled. A coupled pressure-based finite-volume

solver for incompressible two-phase flow. Numerical Heat Transfer, Part B: Fundamen-

tals, 67(1):47–74, 2015.

[118] P. Colella and P. R. Woodward. The piecewise parabolic method (PPM) for gas-

dynamical simulations. Journal of Computational Physics, 54(1):174–201, 1984.

[119] C. W. Shu and S. Osher. Efficient implementation of essentially non-oscillatory shock-

capturing schemes. Journal of Computational Physics, 77(2):439–471, 1988.

[120] A. Harten, B. Engquist, S. Osher, and S. R. Chakravarthy. Uniformly high order

accurate essentially non-oscillatory schemes, iii. Journal of Computational Physics, 71

(2):231–303, 1987.

[121] X. D. Liu, S. Osher, and T. Chan. Weighted essentially non-oscillatory schemes.

Journal of Computational Physics, 115(1):200–212, 1994.

[122] B. Cockburn and C. W. Shu. The Runge–Kutta discontinuous Galerkin method for

conservation laws v: multidimensional systems. Journal of Computational Physics,

141(2):199–224, 1998.

[123] A. Kurganov, S. Noelle, and G. Petrova. Semidiscrete central-upwind schemes for hy-

perbolic conservation laws and hamilton–jacobi equations. SIAM Journal on Scientific

Computing, 23(3):707–740, 2001.

[124] J. Castagna, Y. Yao, and J. Yao. Direct numerical simulation of a turbulent flow over

an axisymmetric hill. Computers & Fluids, 95:116–126, 2014.

105



[125] R. L. Simpson, C. H. Long, and G. Byun. Study of vortical separation from an

axisymmetric hill. International Journal of Heat and Fluid Flow, 23(5):582–591, 2002.

[126] P. R. Spalart. Direct simulation of a turbulent boundary layer up to Rθ = 1410.

Journal of Fluid Mechanics, 187:61–98, 1988.

106


	Title Page
	Abstract
	Abstract
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements
	Introduction
	Motivation of this Work
	Introduction to Morphing Continuum Theory
	The Kinetic Theory Approach

	The Kinetic Approach: Approximations to the Boltzmann-Curtiss Transport Equation
	Background
	First-Order Approximation
	Distribution Function
	Stresses and Heat Flux

	Governing Equations
	Physical Meaning of Relaxation Time
	Reduction to Navier-Stokes Equations
	The Classical Kinetic Equations

	Discussion

	MCT Simulation of Incompressible Flow
	Morphing Continuum Theory
	Theoretical Foundation
	Finite Volume Method
	Relation to Navier-Stokes Equations
	Boundary Conditions and Material Parameters

	Uniform Flow over a Flat Plate
	Discussion

	MCT Simulations of Compressible Turbulence
	Supersonic Flow Past a Cylinder
	MCT Compressible Flow Equations
	Numerical Implementation
	Results
	Discussion

	Transonic Flow over an Axisymmetric Hill
	The Q-criterion of MCT
	Numerical Implementation
	Results
	Discussion


	Discussion and Conclusion
	Discussion
	Conclusion

	Bibliography

