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Abstract 

Weight control through either dietary calorie restriction (DCR) or exercise is associated 

with cancer prevention in animal models. However, the underlying mechanisms are not fully 

defined. Bioinformatics approaches using genomics, proteomics, and lipidomics were employed 

to elucidate the profiling changes of genes, proteins, and phospholipids in response to weight 

loss by DCR or exercise in a mouse skin cancer model. SENCAR mice were randomly assigned 

into 4 groups for 10 weeks: ad lib-fed sedentary control, ad lib-fed exercise (AE), exercise but 

pair-fed isocaloric amount of control (PE), and 20% DCR. Two hours after topical TPA 

treatment, skin epidermis was analyzed by Affymetrix for gene expression, DIGE for 

proteomics, and lipidomics for phospholipids. Body weights were significantly reduced in both 

DCR and PE but not AE mice versus the control. Among 39,000 transcripts, 411, 67, and 110 

genes were significantly changed in DCR, PE, and AE, respectively. The expression of genes 

relevant to PI3K-Akt and Ras-MAPK signaling was effectively reduced by DCR and PE as 

measured through GenMAPP software. Proteomics analysis identified ~120 proteins, with 22 

proteins significantly changed by DCR, including upregulated apolipoprotein A-1, a key 

antioxidant protein that decreases Ras-MAPK activity. Of the total 338 phospholipids analyzed 

by lipidomics, 57 decreased by PE including 5 phophatidylinositol species that serve as PI3K 

substrates. Although there were many impacts that we still need to characterize, it appears that 

both Ras-MAPK and PI3K-Akt signaling pathways are the key cancer preventive targets that 

have been consistently demonstrated by three bioinformatics approaches.  
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Chapter 1 - Review of Literature  

 Obesity Epidemic  

Rising rates of obesity both in the developed and developing world due to increased 

caloric intake and/or sedentary lifestyles has placed a major burden on healthcare systems. With 

obesity rates of greater than one-third for adults and 17% for children in the US in 2009-2010, 

strategies need to be further developed to stabilize and lower these rates.
1
 Obesity is a 

contributing factor for many chronic diseases such as cardiovascular diseases, diabetes, and 

many types of cancer,
2,3

 and it has been associated with increased risk for colorectal, breast, 

endometrial, kidney, esophageal, pancreatic, prostate, and liver cancer.
4
 Obesity has also been 

shown to greatly increase the risk for mortality due to cancer.
3
 Tannenbaum demonstrated that 

calorie restriction reduced spontaneous and chemically induced tumors in several mouse or 

rodent models, demonstrating a direct cancer preventive effect of calorie restriction.
5
 Body 

weight control, through both dietary calorie restriction and exercise, has been identified as a 

possible preventive means to reduce cancer due to obesity.  

Many mechanisms have been studies to better understand the role of obesity in cancer 

etiology. Growth hormones such as IGF-1 and insulin have been shown to increase in obese mice 

with possible cancer promotion. Excess body fat from obesity can further lead to production of 

adipokines such as leptin that have been correlated with increased cancer rates. Inflammatory 

cytokines also seem to be increased with obesity. Increased oxidation and inflammatory response 

are other possible changes due to obesity that may promote cancer.
6
 Many cellular signaling 

pathways have been investigated to better understand the etiology of obesity and cancer. As the 

etiology of weight control to prevent cancer still remains unclear, further investigation is 

warranted. 

 Dietary Calorie Restriction for Cancer Prevention 

 

 History of Calorie Restriction in Mice  

Dietary calorie restriction (DCR) consists of restricting total caloric intake while 

adequate protein and micronutrient levels. DCR is oftentimes called “undernutrition without 

malnutrition.” Caloric restriction typically reduces total calories at 20-40% restriction levels.
7
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Moreschi et al. first performed calorie restriction studies in mice in 1909, noting that caloric 

restriction reduced tumor growth rate.
8
 Tannenbaum in 1940 noted that DCR also decreased the 

number of spontaneous and chemically-induced tumors in mice.
5
 Subsequent rodent studies have 

confirmed that reduction in caloric intake decreases tumor rates.
9
 DCR has been shown to 

decrease cancers such as mammary, skin, colon, pancreas, and leukemia,
10

 and it has been 

identified as the most potent and effective dietary treatment for cancer prevention.
7
 While a 

strong relationship has been established for DCR and cancer prevention, the molecular 

mechanisms remain unclear.
10

 

 Molecular Targets of Dietary Calorie Restriction and Cancer Prevention 

This clear relationship between calorie restriction and decreased cancer rates has led 

researchers to search for specific molecular pathways by which DCR causes cancer prevention. 

Some possible mechanisms by which DCR prevents cancer could include DNA repair, 

antioxidant activity, apoptosis promotion, and inhibition of cellular proliferation. Nuclear factor 

(erythroid-derived 2) 45kDa (NF-E2) pathway induces antioxidant activity, and its levels have 

been increased by calorie restriction.
11

 Anti-inflammation is another possible cancer prevention, 

and peroxisome proliferator-activated receptor-gamma (PPAR-γ) is a possible DNA repair 

protein seen in calorie restriction for anti-inflammation.
12

 Additionally, cancer is induced by 

cellular pathways that promote cellular proliferation and anti-apoptosis activity. One possible 

key target is the Phosphatidylinositide 3-kinase/Protein Kinase B/mammalian target of 

rapamycin (PI3K-Akt-mTOR) towards cell growth and inhibition of apoptosis.
13

 Some possible 

downstream activity related to cancer could include Forkhead box protein O (FOXO), mTOR-S6 

kinase, AMP-activated protein kinase (AMPK), Glycogen synthase kinase 3 beta (GSK-3β), 

silent mating type information regulation 2 homolog 1 (SIRT-1) and Signal transducer and 

activator of transcription 3 (STAT 3).
13-15

 FOXO pathway is believed to promote apoptosis 

through acting as transcription factor for ricin to exit the G1-S phase of cell cycle. Meanwhile, 

mTOR-S6 in a downstream pathway of PI3K-Akt that is believed to promote anti-apoptosis 

activity.
16

 AMPK has a possible cancer preventive effect through reducing anti-apoptosis 

signaling form PI3K-Akt.
17

 GSK-3β is a downstream enzyme that promotes anti-apoptosis.
14

 

STAT 3 is DNA binding protein that is highly phosphorylated in cells with cancer, and it also is 

affected by PI3K-Akt activity.
15,18

 A transgenic mouse with knock-in SIRT1 genes showed 
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similar phenotypes to DCR mice such as reduced body weight, increased insulin sensitivity, 

decreased adipokine levels, and increased metabolism through gluconeogenesis.
19

 The SIRT1-

FOXO3 pathway also has been shown to increase renal cell autophagy in an induced-hypoxia 

model.
20

  Further important mechanisms for SIRT1-FOXO3 and cancer prevention include 

increased DNA repair, cell cycle arrest, and reduction of oxidative stress.
21 

The Ras/MAPK/ERK 

is another pathway that leads to cancer promotion. Higher levels of IGF-1 and insulin have been 

seen in obese mice with a corresponding increase in PI3K-Akt activity. Many of the pathways 

are complicated and are interconnected through crosstalk, and a more global approach using 

bioinformatics could help better elucidate the key biochemical pathways of weight control for 

cancer prevention.   

 Dietary Calorie Restriction and Clinical Trials 

Many epidemiological studies have shown a relationship between decreased caloric 

intake and prevention of chronic disease. Older natives Okinawa islands of Japan who 

traditionally eat a lower calorie diet compared to the general Japanese population are expected to 

live approximately 5% longer and demonstrate decreased cardiovascular-related deaths.
22

 

Following a famine in the Norway during World War II, records have shown decreased deaths 

from cancer and other chronic diseases due to caloric restriction.
23,24

 Western diet, containing 

more energy dense foods, is associated with higher rates of colon cancer; migrants from Japan to 

the United States have demonstrated this relationship of Western diet and increased colon cancer 

risk.
25

 Thus, it appears that epidemiological studies point to calorie restriction as an effective 

treatment for the prevention of chronic diseases such as cancer.  

Dietary Calorie Restriction (DCR) has a strong history in reducing cancer rates and 

improving longevity in a variety of animal and cell culture models. In the late 1980s, DCR 

studies in rhesus monkeys to have a DCR animal model in a species closer to humans. Recent 

studies have shown that DCR in monkeys does reduce cancer rates and improves HDL 

cholesterol. Within the past ten years studies have been conducted to analyze the effectiveness of 

DCR in human clinical trials. In 2008, Fontana et al. reported that 25% DCR for one year did not 

reduce IGF-1 levels unless it was accompanied with protein restriction. Thus, it appears that 

protein restriction could have a major role in providing DCR benefits.
26

 Further studies are 

currently being undertaken to measure the effectiveness of DCR in humans. 
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 Dietary Calorie Restriction Mimetics 

With the variety of pathways identified for DCR and cancer, many pharmalogical 

interventions have been conducted to mimic the effect of DCR on cancer pathways. Higher 

levels of insulin have been identified with increased risk for cancer, and insulin sensitizers could 

improve cancer profile. Metformin is a drug currently accepted for treatment of type II diabetes 

through improving insulin sensitivity, and its use could also protect against cancer through 

means similar to DCR’s insulin sensitivity effect. SIRT-1 and PPAR-γ may also be used to 

improve the lipid profile through reducing lipid accumulation in adipocytes. Reduction of fat 

could reduce adipokines and hormones related to obesity that increase cancer. Increased 

adiponectin has been shown to reduce body weight and increase insulin sensitivity, and 

adiponectin therapy is another possible DCR mimetic that could prevent cancer. Finally, there 

are a number of foods that could prevent IGF-1 including: retinoids, soy isoflavones, and 

flavonoids.
27

  

 

 Exercise for Cancer Prevention 

 Relationship of Exercise to Dietary Calorie Restriction for Cancer Prevention 

Exercise is another form of weight control that has been studied for its possible cancer 

prevention similar to DCR. In humans, long-term exercise has been associated with a decreased 

risk for cancers such as endometrial and colon cancer.
28,29

 In a review on physical activity and 

cancer, Friedenriech et al. noted that cancer prevention was: convincing and/or probable for 

colon, breast and endometrial cancers; possibly associated with lung, prostate, and ovarian 

cancers; and insufficiently supported for other cancers such as leukemia, gastric, kidney, and 

cervical cancers.
30  

 

While exercise does have a positive health benefit to many chronic diseases, its 

effectiveness for cancer prevention still remains unclear. Voluntary wheel running exercise has 

been shown to decrease tumor size in mouse skin cancer models.
31,32

 Moore et al. noted that 

exercise alone does not decrease intestinal polyps in APC
Min

 mice,
33

 similar to our findings that 

exercise needs to be in conjunction with isocaloric intake for cancer prevention.
34

 The impact of 

exercise on physical activity seems positive, but it is not as consistent as DCR.
10

 It appears that 

negative energy balance plays a key role in exercise for cancer prevention. 
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 Biological Targets of Exercise for Cancer Prevention 

Examining potential targets for exercise on cancer prevention is helpful in understanding 

its possible relationship with DCR in cancer prevention. Friedenreich et al. noted that probable 

biological mechanism for physical activity and cancer prevention included: decreased body fat, 

decreased insulin resistance, improved pulmonary function, and decreased sexual hormone 

activity; meanwhile, evidence was more limited for physical activity and biological mechanisms 

such as: increased vitamin D levels, decreased IGF-1 levels, decreased adipokines such as leptin 

and Interleukin 6 (IL-6), decreased inflammation, improved immune function, and increased 

antioxidant activity.
30

 Further study examining both DCR and physical activity is necessary to 

better understand the complex mechanisms of weight control for cancer prevention. 

 Physical Activity and Clinical Trials 

According to the American Cancer Society, regular exercise may reduce the risk for 

colon, breast, endometrial cancers, and possibly late-stage prostate and pancreatic cancers. 

Possible mechanisms for physical activity and cancer prevention include: reduction of oxidation, 

enhanced DNA repair, suppressed proliferation, increased apoptosis, decreased inflammation, 

and induction of differentiation.
35

 For colon cancer, physical 30-60 minutes of moderate to 

vigorous exercise per day is associated with a 30-40% reduction in colon cancer risk. It appears 

that modulation of insulin and IGF-1 pathways, improved antioxidant activity, and decreased 

transit time are the major biological mechanisms for cancer prevention through physical 

activity.
36

 Physical activity has also been shown to lower breast cancer and increase breast 

cancer survivor rates. Physical activity of 2-3 hours per week was shown to reduce insulin and 

IGF-1 levels to prevent breast cancer.
37

 Physical activity is thought to have a protective effect of 

prostate cancer through decreasing IGF-1 levels, improved immunity, and antioxidant activity.
38

 

Many studies are continuing to examine the possible effect of physical activity on other cancers 

in humans. Additionally, many studies have shown an improved survival rate for cancer patients 

who incorporate an exercise routine in recovery following surgery or chemotherapy.
39

 Further 

studies need to be done to determine the effectiveness and chemical pathways through which 

physical activity reduces cancer. 
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 Hormones Related to Weight Control and Cancer Prevention 

 IGF-1 and Insulin 

Insulin-like growth factor-1 (IGF-1) is an endocrine hormone secreted by the liver that 

has similarities with insulin, and it is stimulated by Growth Hormone (GH). IGF-1 can bind to 

six homologues of IGF-1 binding proteins (IGF-BP’s) on the IGF-1 receptor, in addition to its 

ability to bind to insulin receptor.
40

 Binding of IGF-1 to its receptor modulates downstream 

activity of PI3K-Akt and Ras-MAPK, both key cancer pathways for anti-apoptosis and cell 

proliferation respectively.
41

 

IGF-1 serum levels in humans have increased risk for certain cancers such as breast, 

prostate, colon, and lung cancers.
42

 Transgenic mice (HK1.IGF-1) with increased IGF-1 

production experienced more rapidly growing tumors and increased number of tumors in a 

chemically-induced cancer model.
43

 DCR has been shown to decrease IGF-1 levels in 

animals.
23,44

 Injection of IGF-1 into DCR mice has been shown to reverse the cancer protective 

effect as seen in our lab and others.
45,46

 Further, our lab has shown that exercise with isocaloric 

intake, but not ad libitum exercise, also decreases plasma levels of IGF-1.
34

 Thus, it appears that 

negative energy balance modulates decreased IGF-1 levels for possible cancer prevention.      

Insulin is also an important growth factor that could be related to weight control for 

cancer prevention. Higher insulin levels and insulin resistance are characteristic of type 2 

diabetes and obesity. Insulin and IGF-1 are both raised in obese individuals, and they lead to 

increased signaling through the PI3K-Akt pathway towards anti-apoptosis.
33,47

 Negative energy 

balance through both DCR and exercise is a strong possible protection against cancer promotion 

from growth factors like IGF-1 and insulin. 

 Adipokines: Leptin and Adiponectin 

Leptin and adiponectin are adipokines that are secreted by adipose tissue for endocrine 

function. Leptin regulates appetite and body weight through feedback with the hypothalamus.
48

 

High plasma levels of leptin have been associated with increased risk for cancer. Leptin is 

correlated with amount of body fat, and leptin is primarily secreted by adipocytes. Leptin 

receptor activation leads to pro-cancer pathways including: Ras-MAPK, PI3K-Akt, PKC-p38 

kinase, and AP-1 transcription factors.
10,49-50 

(Garofalo 2006, Fruhbeck 2006). Studies have been 

conducted demonstrating a similar cancer promoting effect of leptin and IGF-1, indicating that 
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they may work together in cancer promotion. Studies from our lab have shown that weight 

control modulates a decrease in leptin. Adiponectin has an inverse relationship with cancer risk. 

Adiponectin has been shown to increase insulin sensitivity and decrease body weight. Lower 

levels of adiponectin have been associated with increased risk for breast, prostate, and colon 

cancers.
10

 

 Glucocorticoids 

Glucocorticoid levels have been shown to increase in DCR animals, and increased 

glucocorticoid levels is thought to lead to cancer prevention. A diet with increased corticosterone 

led to decreased in mammary tumors in a rat model. Further, adrenalectomy reversed the cancer 

preventive effect of corticosteroid levels in DCR mice in SENCAR mice.
10

 Glucocorticoid levels 

may be responsible for possible cancer prevention.  

 

 Conclusion 

Weight control through both DCR and exercise show strong cancer preventive effects in 

both animal studies and human clinical trials. Obesity has been identified as a risk factor for 

cancer, but its mechanism of cancer promotion is unclear. Animal models, especially normal 

weight models, demonstrate weight-loss induced cancer prevention. Findings from these studies 

may provide potential mechanisms for future understanding of obesity and cancer. There are 

many different cancer pathways related to obesity and cancer promotion, so further analysis is 

needed to better understand the best pathways to identify to focus for cancer preventive 

measures. Traditional techniques have isolated specific targets to better understand cancer 

pathways. Bioinformatics tools have been developed within the past decade to better understand 

a global approach to pathways related to diseases such as cancer. Our study is looking to identify 

major cancer pathways through analyzing global studies of genes, proteins, and lipids using 

bioinformatics techniques of microarray analysis, proteomics, and lipidomics to better 

understand the etiology of weight control for cancer prevention.  
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Chapter 2 - Both PI3K-AKT and RAS-MAPK Are the Key 

Signaling Targets for Weight Loss-Induced Cancer Preventive 

Mechanisms by Dietary Calorie Restriction or Physical Activity 

 Introduction 

Obesity has been identified as risk factor for many chronic diseases including cancer. 

Since 1960, obesity rates have doubled in US men and nearly tripled in US women, with both 

groups at rates over 30%.
1,2

 Obesity and overweightness contribute to cancer deaths in up to 14% 

for men and 20% for women over age 50, with higher rates of mortality for overweight cancer 

patients.
3
 With rising rates of obesity and chronic diseases, many studies have focused on various 

interventions to prevent obesity-related chronic diseases. In the early 20th century, dietary 

calorie restriction (DCR) was shown to prevent tumor growth in animal models. Since then, it 

has been the most robust nutritional intervention for cancer prevention. As sedentary behavior 

has become endemic worldwide, exercise has been also identified as another lifestyle behavior 

that could reduce body weight and chronic disease risk. Weight control through DCR and/or 

exercise may be responsible, at least in animal models, for cancer prevention.  

DCR is a weight control measure that decreases caloric intake of fats and carbohydrates 

while maintaining protein, fiber, and micronutrients. Typical studies have withheld calories 

between 20 and 40%.
4
 After a pilot study in 1909 by Moreschi, DCR has been shown to prevent 

cancer in a variety of animal models and to be effective in reducing both chemically induced and 

spontaneous tumors.
5
 On the other side, increased energy expenditure through exercise is another 

form of weight control that may contribute to cancer prevention. Exercise has been strongly 

associated with cardiovascular health benefits, but the cancer preventive effect of exercise is less 

consistent. Exercise has demonstrated convincing evidence for cancer prevention in colorectal
6
 

and breast cancer.
7
 Additionally, exercise is probable for prostate cancer prevention, and it is 

possible for endometrial and lung cancer prevention.
8
 Voluntary wheel running exercise 

provided cancer prevention by decreasing tumor size in a mouse skin cancer model.
9,10 

Some 

studies, however, have shown that exercise may not protect against cancer.
11-13

 Furthermore, 

previous studies in our lab had mixed results of exercise for cancer prevention, with protection 

only seen with iso-caloric intake.
14

 Moore et al. demonstrated that a negative energy balance as 
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opposed to exercise alone was responsible for inhibiting intestinal polyps in APC
Min

 mice.
15

 

Thus, our study compared exercised mice with or without iso-caloric intake. 

A variety of studies have been conducted to discover the biological mechanisms of 

weight control for cancer prevention. Many studies have focused on endocrine hormones and 

adipokines that are modified by increased adiposity. IGF-1 is a growth factor that has been 

widely studied for cancer promotion. Increased IGF-1 levels from obesity have been associated 

with increased cancer risks. IGF-1 receptor has been shown to activate downstream pathways 

such as: MAPK towards increased proliferation, PI3K-Akt towards anti-apoptosis and increased 

protein synthesis, and JAK/STAT for gene transcription of IGF-1 receptor.
16-17

 In addition, 

adipocyte-secreted adipokines such as leptin have been shown to promote pro-cancer cellular 

signaling.
18-19

  

While traditional studies have been limited to examining a few select genes, proteins, or 

fat signaling phospholipids of interest to gauge the cancer preventive effect of weight control, 

recently developed -omics tools have enabled us to employ a more global approach to examine 

the etiology of cancer development. Genomics, proteomics, and lipidomics are -omics tools that 

examine the interplay of profiling changes of genes, proteins, and phospholipids on the 

development of cancer. We hypothesized that application of genomics, proteomics, and 

lipidomics in this study may provide new information of a mechanistic understanding of cancer 

prevention by weight control. 

 Methods and Materials 

 Animals and Treatment 

Six-week-old female SENCAR mice were purchased from NIH (Frederick, MD). Mice 

underwent a two-week training period to adjust to the new environment and treadmill exercise. 

Mice were housed individually at 24 ± 1 ˚C with a 12:12 light-dark cycle and given water ad 

libitum. Mice were divided into four treatment groups consisting of sedentary ad libitum-fed 

controls (control), ad-libitum-fed exercise (AE), pair-fed exercise (PE), and 20% DCR.  Ad 

libitum controls and ad libitum exercise mice were allowed to freely access food, while the pair-

fed exercise group was match-fed to the control’s consumption. The basal AIN-93 and 20% 

DCR diets were made by Harland Teklad (Madison, WI). The 20% DCR diet that withheld 

calories from fat and carbohydrate is shown in Table 2.1 (see next page). A speed adjustable 
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rodent treadmill (Boston Gears, Boston, MA) was used for mice in exercise treatment groups. 

After two weeks training, the exercise groups ran on the treadmill at 13.4 m/min, 60 min per day 

and 5 days a week for 10 weeks. This exercise level has been rated as moderate intensity.
20

 

Weekly body weights and food consumption measurements were taken. 

At the end of the experiment, mice were sacrificed and the dorsal skin samples were 

snap-frozen in liquid nitrogen and stored at -70 ˚C until further analyses. 

Table 2.1 Experimental Diet Composition 

 

a
AIN-93 custom made diet by Harlan Teklad (Madison, WI)  

b
DCR mice were fed 0.82 g of diet for every gram consumed by control mice  

c
Dietary calorie restriction from fat source 

d
Dietary calorie restriction from carbohydrate source 

 

 Microarray Analysis 

 Microarray analysis was performed as described in our previous studies.
14,21

 Briefly, labeled 

cRNA was applied to an Affymetrix GeneChip Mouse Genome 430 2.0 Array containing 39,000 

transcripts and 45,101 probe sets (Santa Clara, CA). The images were quantified by using 

GeneChip operating software 1.0 (GCOS 1.0; Affymetrix, Santa Clara, CA). The raw image 

readings were analyzed using Simpleaffy package from BioConductor at 

http://www.bioconductor.org. The data were normalized using either MAS or RMA algorithms. 

The genes that were differentially expressed between treatment groups were identified by using 

Diet Components
a
 Control Diet 20% DCR

b
 

Corn Oil 5.0 3.7
c
 

Casein 20.0 20.0 

DL Methionine 0.3 0.3 

Dextrose 15.0 12.3
d
 

Dextrin 49.9 37.1
d
 

Fiber 5.0 5.0 

AIN-93 Mineral Mix 3.5 3.5 

AIN-93 Vitamin Mix 1.0 1.0 

Choline bitartrate 0.25 0.25 

Total amount of food 100.0 82.0 
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pair wise comparison. The data were filtered by using 1.5-fold difference and a p-value less than 

0.05 as a cutoff. 

Cytoscape v2.6.0 coupled with plug-in BiNGO v2.0 was used to map the predominant 

gene ontology categories of the differentially expressed genes.
22

 The GO annotations p-values 

were obtained by hypergeometric statistical test for cluster verse whole annotation. The test was 

adjusted by Benjamin and Hochberg false discovery rate, which is included in the BiNGO 

package. The dataset consisting of the significantly altered genes was loaded into GenMAPP2.0 

(Gene Map Annotator and Pathway Profiler, www.genmapp.org) to analyze the effect of target 

gene expression on specific pathways. As reported previously,
14,22

 RT-PCR on select genes was 

tested to confirm the microarray results (data not shown). 

 Proteomics Analysis 

 Mouse skin tissues were homogenized, and the protein concentration was determined by 

utilizing Protein RC DC assay (Bio-Rad, Hercules, CA). The protein lysis was purified by 

ReadyPrep 2-D cleanup kit (Bio-Rad, Hercules, CA). The spots of interest were excised and 

subjected to in-gel digestion using proteomics grade trypsin (Sigma, St Louis, MO). The digested 

peptides were analyzed on a MALDI TOF/TOF instrument (Bruker, MA) using α-cyano-4-

hydroxycinnamic acid (Sigma, St. Louis, MO) as matrix. Peak annotation was carried out 

automatically using software Proteinscape supplied by the instrument manufacturer 

(Bruker,MA). The m/z-lists were submitted to MASCOT to search the NCBI protein sequence 

database. 

Sample labeling with cyanine minimal dyes was carried out according to the 

manufacturer’s instructions (GE healthcare, Piscataway, NJ). Protein (25 μg) was used for 

CyDye labeling and the ratio of protein to CyDye is 1 μg protein: 5 pmol CyDye. The internal 

standard was always labeled with cy2, and the samples were labeled with Cy3 and Cy5 

alternatively. The isoelectric focusing was carried on a PROTEAN IEF Cell following 

manufacture’s instruction (Bio-Rad, Hercules, CA). SDS PAGE was conducted using a precast 

8-20% gradient gel (Bio-Rad, Hercules, CA). After running, the gels with Cydye labeled proteins 

were scanned using a Typhoon 9410 scanner (GE Healthcare, NJ) with a resolution of 50 μm. 

Spot detection was performed on the gel images using the DeCyder 6.5 software. Before the 

matching process, up to 20 landmarks were defined all over the gel. After a match, the cycle of 
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reviewing and confirming the matches and re-matching was repeated manually until no new 

level 1 mismatches were found. The differences between the two groups were analyzed by t-test, 

which is provided by Decyder 6.5. The gels containing non-labeled protein were stained with 

Commassie blue for protein identification. The proteomics data were also filtered by using 1.5-

fold difference and a p-value less than 0.05 as a cutoff. Western blot analysis for some select 

proteins was tested to confirm the proteomics results (data not shown).  

 Lipidomics Analysis 

Phospholipid analysis was performed as described in our previous publications.
22,31

 In short, each 

frozen dorsal skin tissue was ground with liquid nitrogen. Then, 1 g of tissue was mixed with 2 

ml solvent [chloroform/methanol (1:2) + 0.01% butylated hydroxytoluene], an additional 1 ml of 

chloroform, and 1 ml of water. The mixture was centrifuged for 15 min at 1,000 rpm, and the 

lower layer was extracted. Another 1 ml of chloroform was added and the mixture was 

centrifuged as previously described, collecting the new lower layer. The two lower layer extracts 

were combined for phospholipid analysis using an automated ESI/MS-MS. Phospholipid 

analysis was able to determine phospholipid classes/subclasses such as Phosphatidic acid, PI, 

PC, lysoPC, alk(en)yl/acyl phosphocholine (ePC), PE, lysoPE, alk(en)yl/acyl 

phosphoethanolamine (ePE), phosphatidylserine (PS), alk(en)yl/acyl phosphoserine, 

sphingomyelin (SM), and ceramide PE. Phospholipid identification was based upon total 

mass/charge and fragment mass/charge consistent with the head group. 

Statistical Analysis  

Body weights were compared between treatment groups using one-way analysis of variance 

(ANOVA). Microarray and proteomics spots were considered statistically significant at 1.5-fold 

change using the student t-test with significance at p<0.05. Cytoscape v2.6.0 coupled with plug-

in BiNGO v2.0 was used for mapping the predominant gene ontology categories and the 

significantly altered genes were loaded into GenMAPP (Gene Map Annotator and Pathway 

Profiler, www.genmapp.org) to analyze the specific pathways. We also provide information on 

protein descriptions and biological pathways using Affymetrix NetAffx web site, GeneSpring, 

and GenMapp relevant software platforms and databases. Lipidomics analysis was performed 
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using one-way ANOVA and F test for significance, with pairwise comparison by the least 

significant difference method. 

 Results 

 Body Weight Change 

Body weight changes for the 13 weeks of the study are shown in Figure 2.1 (see below). The 

control group and AE groups demonstrated weight gains, at about 27 g final body weights at the 

end of the study. Both PE and DCR mice groups had significantly lower body weights of 

approximately 22 and 19 g, respectively, before sacrificing, demonstrating weight control.  Thus, 

DCR had the most pronounced weight loss, followed by PE. 

 

 

Figure 2.1  Body Weight changes. Data are shown for mice in the four groups: sedentary 

control (Control), ad-libitum exercise (AE), pair-fed exercise (PE), and dietary calorie 

restriction (DCR). Values are represented as mean  SE, n=13-17.  Means without a 

common letter differ, P<0.05. 

 Effect of Weight Loss on Gene Expression Profile 

Among 39,000 genes run, 411 transcripts by DCR, 67 transcripts by PE, and 110 transcripts by 

AE were significantly changed versus the control. The gene sets identified by microarray 

analysis that were significantly changed by weight control were further categorized using GO 
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annotations. The over represented GO categories were identified using BiNGO. Figure 2.2 (see 

below) shows the visualization of significantly changed gene network by Cytoscape. The 

shading of the node indicates the degree of statistical significance at black node > grey node > 

white node. There is an overall impact of gene change by DCR > PE > AE. In comparing the two 

weight control groups, DCR>PE in cancer genomic events related to cell homeostasis, cell 

growth, biological regulation and metabolic events such as primary and lipid metabolism. For the 

two exercise groups, PE>AE in cancer-related functions of cell death, cell differentiation, 

biological regulation, plasma membrane; however, cell metabolism genes changed little between 

PE and AE. DCR had distinctly more genetic changes in nearly all the GO categories as opposed 

to AE. Furthermore, Figure 2.3 (see next page) shows examples of the pathway analysis by 

GenMapp, indicating Raf MAP-Kinase pathway was significantly down-regulated by 0.64-fold 

and 0.66-fold change in PE and DCR groups, respectively, but upregulated by 1.55-fold in AE. 

 

Figure 2.2 BiNGO software representation showing which Gene Ontology (GO) sets of 

genes that are higher expressed in (A) AL+Exe Vs Control, (B) PF+Exe Vs Control, (C) 

DCR Vs Control. The coloring of the node indicates the statistical difference in gene 

expression of treatment group versus control (black node>grey node>white node) 
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Figure 2.3 The Hras-Braf MAP-Kinase pathway gene expression was visualized using 

GenMAPP software.  Gene expression is indicated as a ratio versus the control, and either 

up or down regulated (arrows). P<0.05. 

 

 Effect of Weight Loss on Protein Expression Profile 

We were able to identify ~120 proteins using proteomics and 22 proteins that were significantly 

changed by CyDye labeling. Table 2.2 (see next page) lists the 10 proteins that were up-

regulated and 12 proteins that were down-regulated by DCR. Some of the proteins had multiple 

spots including albumin (2), carbonic hydrase 3 (3), enolase 3:beta muscle (3), and ATP 

Synthase (H+ transporting, mitochondrial F1 complex) (2).   
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Table 2.2 Proteins that were up-regulated or down-regulated by Dietary Calorie 

Restriction (DCR) versus the Control utilizing a 2D-DlGE gel.
a   

 

Proteins Up-Regulated by DCR
b
 Proteins Down-Regulated by DCR

c
 

6-phosphogluconolactonase PDZ and LIM domain protein 

trisephosphate isomerase myosin light chain (phosphorytable) 

kininogen 1 precursor myosin A2 catalytic light chain 

albumin enolase 3: beta muscle 

ornithine aminotransferase gelsolin-like capping protein (capG) 

carbonic anhydrase 3 carbonic anhydrase 3 

apolipoprotein A-1 ATP Synthase (H+ transporting, F1) 

heat shock protein (cystallin related) aldose reductase 

Flavin reductase (NADPH-dependent) UGP2 protein 

peroxiredoxin 6 phosphoglycerate kinase 

 aconitase 2 

 adenylate kinase isoenzyme 1 

aProteins were scanned using a Typhoon 9410 scanner with resolution of 50 μm 

b
Up-regulated proteins had fold-change of ≥1.50, p<0.05 

c
Down-regulated proteins had fold-change of ≥1.50, p<0.05  

 

 Effect of Weight Loss on Phospholipid Expression Profile 

Among the 338 phospholipid species analyzed, 57 species were significantly changed by 

exercise. Compared to sedentary controls, most phosphatidylinositol (PI), ether 

phosphatidylcholine (ePC), and some lysophosphatidylcholine (lysoPC) molecular species 

decreased significantly in exercise with pair feeding mice. It should be noted that five PI groups 

decreased in isocaloric exercise PE as opposed to ad libitum feeding (AE). Figure 2.4 (see next 

page) illustrates five PI species that were significantly decreased in PE. 

 



22 

 

 

Figure 2.4 Molar percentage of phosphatidylinositol species between DCR, PE, and control 

as seen through ESI/MS-MS.  Values are shown as mean±SE, p<0.05, n=8-15. Letters 

indicate higher mol% of each lipid species amongst the treatment groups (a>b). 
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 Discussion 

Identical twin studies have identified cancer risk due to genetics at a rate of 

approximately 5-10%, thus emphasizing the importance of environmental factors such as those 

leading to obesity and its pro-cancer effect.
23

 This study demonstrated that both DCR and PE 

were effective in significantly lowering body weight as compared to the control, with DCR 

having the most impact on body weight. Weight loss in isocaloric exercise (PE) was not as 

pronounced as 20% DCR, possibly because the exercise was not strenuous enough to reach 20% 

calories burned in exercise.
14

 It appears that excess food intake in the ad-libitum group is 

responsible for the increased body weight that was comparable to the sedentary control group 

body weights. Meanwhile, AE was not able to reduce body weight and had similar weight levels 

to the control. It seems that exercise alone is not able to contribute to weight loss and its cancer 

preventive effect. Thus, DCR and isocaloric exercise (PE) were effective in reducing body 

weight for potential cancer prevention. 

Out of the 39,000 transcripts measured, 411 genes were changed by DCR, 67 genes by 

PE, and 110 genes by PE, illustrating the largest total number of genes changed occurred through 

DCR. To better grasp the specific molecular targets of DCR, BiNGO software was employed to 

analyze gene functions such as cellular components and regulations of biological processes like 

apoptosis, cell proliferation, and cell differentiation. DCR had the most change in functions 

related to cellular components and biological processes, while PE demonstrated moderate change 

in these functions versus AE. There was a progressive increase in gene change by treatment 

groups (DCR > PE > AE). While both DCR and PE modulated weight control, the genetic 

response shows a major distinction between DCR and PE. Cellular proliferation and anti-

apoptosis genes were decreased in both DCR and PE, with many genes related to MAPK and 

PI3K activity. DCR fostered more pronounced protection in genes related to these pro-cancer 

pathways. For example, insulin-like growth factor binding protein 3 reduces IGF-1 and cancer 

activity, and it was reduced by 1.89-fold change in PE and 2.50-fold change in DCR.  In looking 

for specific cellular pathways, we utilized GenMAPP software to identify specific pathways that 

are changed by diet. DCR and PE both reduced the Braf/MAPK pathway towards cell 

proliferation, whereas this pathway was up-regulated by AE. Braf/MAPK pathway is a cellular 

pathway towards increased cell proliferation that has been shown to be a mechanism for cancer 

promotion. It appears that PE has better genomic expression similar to DCR that is not mimicked 
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by AE.
21

 Additionally, DCR shows a unique metabolism genomic response as compared to the 

two exercise groups. DCR demonstrated the lowest body weight, and the noted change in 

metabolism-related genes provides an in vivo response that correlates with the phenotype of 

body weight change. This change of metabolism-related genes may provide not only insight into 

what negative energy balance affects but also indicator of how negative energy balance acts. 

While further studies need to be done to elucidate how DCR’s gene ontology differs from PE, it 

appears that both down-regulate the TPA-induced Ras-MAPK pathway. 

 Using 2D DIGE proteomics, we identified near 120 proteins. Among these proteins 

identified, we found that 22 proteins were significantly changed in DCR versus the control. The 

cancer-related functions of the proteins analyzed showed common functions such as energy 

metabolism/glycolysis and cellular stress responses. In analyzing the data, we identified proteins 

that may be key targets for cancer prevention and promotion such as Apolipoprotein A-1 

(APOA1) that was up-regulated by DCR (Table 2.2). APOA1 has been studied extensively for its 

cancer protective properties through reducing inflammation.
24

 Over-expression of APOA1 

mimetic peptides was associated with increased survival rates and inhibition of size and number 

of tumors in a mouse ovarian cancer model. APOA1 may foster cancer protection via binding 

lysophosphatidic acid (LPA), a proinflammatory lipoprotein that leads to cellular proliferation 

through the Ras-Rho GTPase crosstalk towards cancer promotion.
24,25

 This anti-activity of 

APOA1 on Ras-MAPK pathway provides a possible link between cancer prevention observed in 

microarray and proteomics data. Finally, oxidized phospholipids contribute to pro-

inflammation,
26

 and it is postulated that APOA1 may reduce this inflammatory response and 

exert pro-cancer effect through reducing MAPK activity.
24

 In contrast, gelsolin-like capping 

protein (capG), was an oncogenic protein that was down-regulated by DCR for cancer 

prevention. Bahassi et al. demonstrated that capG is important for tumor cell motility and cell 

proliferation, and they believe that down-regulation of capG by AP-1 transcription factor 

complex leads to cancer prevention.
27

 Increased cell motility in cancer has been shown to be 

correlated with increased Ras-MAPK activity,
25

 and the downregulation of capG may aid in 

DCR’s cancer prevention. Thus, it appears that DCR decreases pathways towards cancer 

promotion including Ras-MAPK and PI3K-Akt pathways, reduction of inflammation, and 

modulation of phospholipids by DCR for cancer prevention.
22
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Cancer prevention was further demonstrated through reduction of PI phospolipid species 

via PE treatment. Our lipidomics data indicated that weight control through PE reduced 5 PI 

species as opposed to the AE and control groups. The predominant form of PI in mouse tissue is 

PI 38:4.
22,28

 PI species can be a substrate of PI3K for cellular signaling pathway towards 

increased cancer promotion via downstream PI3K-Akt signaling. This decrease in PI 

phospholipids is consistent with previous research that indicates that PIs are decreased in 

exercised groups.
14

 PE had the most pronounced reduction in PI substrates compared to AE or 

the control. Our lab has also shown that exercise-induced reduction in PI phospholipids leads to 

protection from further downstream cancer promoting events through PI3K-related signaling.
22

   

A major hormone decreased for downstream reduction in this PI signaling is IGF-1, 

which is higher in excess fat/obese conditions and lower in weight controlled mice by DCR or 

exercise.
29,30

 In iso-caloric intake exercise-trained mice, our lab showed that IGF-1 restoration 

reversed the reduction of PI phospholipids and PI-associated PI3K down-expression for cancer 

prevention.
31

 Hence, it appears that IGF-1 is a required growth factor that promotes cancer 

etiology in overweight conditions, in part through promoting PI phosphorylation by PI3K and 

downstream Akt activity towards anti-apoptosis.
30,32

 Through demonstrating that PIs decreased 

in the phospholipid membrane, our study helps to better understand the mechanism for IGF-1 

reduction and inactivated PI3K-Akt activity. Morimura et al. demonstrated that IGF-1 promotes 

colocalization of IGF-1 receptor and PIP3, which is phosphorylated PIs by PI3K.
33

 This 

colocalization of IGF-1 receptor and phosphorylated PIs could explain how PIs could amplify 

the signal for anti-apoptosis from IGF-1. Reduced IGF-1 could lead to reduced localization of 

PIs and subsequent reduction of downstream signaling towards PI3K-Akt and anti-apoptosis.  

Figure 2.5 illustrates the possible mechanism through which weight control could lead to reduced 

IGF-1, PI3K activity, and anti-apoptosis. Thus, our phospholipidomics data further illustrates 

weight control’s important cancer prevention mechanism through the PI3K-Akt pathway. 

Although there are many other impacts that have not been figured out yet, it seems that 

cellular signaling pathways of Ras-MAPK and PI3K-Akt are the key cancer preventive targets 

that have been consistently demonstrated by three bioinformatics approaches. A possible 

limitation, for example, is that proteomics analysis did not detect many proteins especially for 

protein kinases. A more recently developed technique of phosphoproteomics may aid in 

identifying more kinases related to signaling pathways. 
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Taken together, this study identified PI3K-Akt and Ras-MAPK as two major pathways 

related to weight control and cancer prevention seen through all three bioinformatics approaches. 

Microarray data showed that the Ras-MAPK pathway was down-expressed in DCR and PE, but 

increased in AE. Our proteomics data showed that APOA1 and capG are proteins that are 

modified for cancer prevention by Ras-MAPK. APOA1 leads to a decrease in proinflammatory 

response that may be helpful for cancer prevention through modulating Ras-MAPK. CapG was 

also a protein reduced by DCR that is indicative of reduced Ras-MAPK and PI3K-Akt activity. 

Finally, lipidomics data showed reduced levels of PI species with isocaloric exercise (PE), 

suggesting how weight control can reduce the PI3K-Akt pathway towards anti-apoptosis. The 

three areas of bioinformatics utilized give us a more global overview for the protective effect of 

weight control through both isocaloric exercise and calorie restriction on cancer prevention. It 

seems that weight control helps to prevent against cancer through reduction in hormones such as 

IGF-1 and cross-talk between IGF-1-dependent and TPA-induced downstream signaling as 

concluded in Figure 2.5. 
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Figure 2.5 Overview of the study illustrating the molecular pathway through which weight 

control leads to cancer prevention. 
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