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Abstract 

The Porcine Disease Complex (PDC) results in major economic problems for swine 

producers. PDC outbreaks result in increased mortality, decreased feed efficiency, higher cull 

rates, prolonged days to market and increased treatment costs. This disease involves the 

interaction and participation of many multifactorial etiologies including both bacterial and viral 

organisms playing a role in disease initiation and progression. The most common viral pathogens 

associated with the PDC include porcine reproductive and respiratory syndrome virus (PRRSV), 

porcine circovirus (PCV2) and swine influenza virus (swIV). The recent outbreak of porcine 

epidemic diarrhea virus (PEDV) in the US swine herd has made the PDC even more 

complicated. In aid of the prevention and control of the PDC, veterinarians and producers require 

fast and efficient diagnostic tests for controlling the disease. In this study, we have generated 

recombinant nucleocapsid antigens to these viruses for use in a Luminex™ technology-based 

fluorescent microsphere immunoassay (FMIA). Utilizing these recombinant nucleocapsid 

antigens, the FMIA was developed to simultaneously detect antibodies in serum from animals 

infected with PEDV, PRRSV, SwIV and PCV2. The FMIA was developed based on testing 

experimentally derived standard positive and negative control sera, and the diagnostic specificity 

and sensitivity were compared to that generated from the classical enzyme-linked 

immunosorbent assay (ELISA) or hemagglutination inhibition (HI) test. Based on an evaluation 

of 4147 serum samples with known serostatus, the multiplex FMIAs reached greater than 97.5% 

sensitivity and 92.3 % specificity. Results showed that multiplexing did not affect the diagnostic 

sensitivity or specificity of each individual assay. This work provides a platform for the 

development of multiplex assays for detecting various swine pathogens simultaneously and aids 

in preventing and controlling the PDC.
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Chapter 1 - Literature Review 

 Porcine Disease Complex 

The Porcine Disease Complex (PDC) is a multifactorial disease complex in pig 

populations which causes severe economic losses for the swine industry. The pathogens involved 

in forming the PDC include common viruses linked to the Porcine Respiratory Disease Complex 

(PRDC): porcine reproductive and respiratory syndrome virus (PRRSV), porcine circovirus type 

2 (PCV2), and swine influenza virus (swIV). Porcine epidemic diarrhea virus (PEDV) was 

recently introduced to the United States and has caused severe outbreaks of fatal diarrhea in 

young pigs and is included in the PDC.   

 Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) 

Porcine reproductive and respiratory syndrome (PRRS) is the most economically 

significant disease of swine. It costs US swine producers $644 million dollars a year (Miller et 

al., 2011). The disease often manifests as reproductive failures in sow operations and severe 

pneumonia in young pigs. It causes late term abortions, stillbirths and mummified fetuses in 

breeding gilts or sows. Increased mortality and decreased growth performance to respiratory 

illness is common in young pigs with PRRS (Corzo et al., 2010).  PRRS has been causing 

clinical outbreaks in the US since the late 1980s and Europe since the early 1990s but the 

responsible agent was still unknown (Wensvoort et al., 1991). Early names given to the disease 

included “mystery swine disease” and “blue-ear pig disease”.  

The etiologic agent responsible for PRRS was discovered to be porcine reproductive and 

respiratory syndrome virus (PRRSV) after it was isolated separately in the Netherlands and the 

USA in 1991 (Collins et al., 1992; Wensvoort et al., 1991). The prototypic North American 

strain was characterized as American Type Tissue Culture (ATCC) VR2332 while the European 
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isolate was identified as Lelystad virus (LV) (Benfield et al., 1992; Wensvoort et al., 1991). 

PRRSV is a single stranded positive sense RNA virus in the family Arterivirdae of the order 

Nidovirales. The other members of the family include lactate-dehydrogenase elevating virus 

(LDV), simian hemorrhagic fever virus (SHFV) and equine arteritis virus (EAV) (Cavanagh, 

1997; Snijder & Meulenberg, 1998; Snijder, Kikkert, & Fang, 2013). PRRS viruses belong to 

two distinct genotypes including Type I (European) and Type II (North American) based upon 

their respective prototypic strain phylogeny. These genotypes only share around 63% nucleotide 

identity (Allende et al., 1999; Nelsen, Murtaugh, & Faaberg, 1999). The genotypes also differ in 

their antigenic properties, highlighting their separate evolutionary divergence (Drew, 

Meulenberg, Sands, & Paton, 1995; Wensvoort et al., 1992). Porcine alveolar macrophages 

(PAMs) are the primary cell targets for PRRSV infection (Duan, Nauwynck, & Pensaert, 1997; 

Nauwynck, Duan, Favoreel, Van Oostveldt, & Pensaert, 1999). Cell lines known to be 

permissive to PRRSV include African green monkey kidney cell line MA-104 and its derivatives 

which include MARC-145 (Kim, Kwang, Yoon, Joo, & Frey, 1993). The major cellular receptor 

for virus entry was determined to be CD163 which belongs to the scavenger receptor cysteine 

rich family (Calvert et al., 2007). 

PRRSV can be transmitted to swine in a number of ways which makes control and 

prevention difficult in swine facilities. The virus has been isolated from many swine bodily 

fluids including serum, semen, saliva, urine, nasal swabs, oropharyngeal swabs as well as fecal 

samples. The primary method of transmission is through direct physical contact but aerosol 

transmission has also been reported (Rossow, 1998). Other methods of transmission include 

fomite transmission (Pitkin, Deen, & Dee, 2009) and semen from both vasectomized and non-

vasectomized boars (Christopher-Hennings et al., 1998).  
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The PRRSV genome is roughly 15.4kb in length and encodes at least 10 open reading 

frames (ORFs). The replicase ORF1a and ORF1b genes are located at the 5’ proximal end of the 

genome and consist of 75% of the total genome. Once released into the cytoplasm, two 

polyproteins pp1a and pp1ab are translated which are subsequently cleaved by proteases to yield 

14 non-structural proteins (nsps). Translation of pp1ab relies on a -1 ribosomal frameshift signal 

in the ORF1a and ORF1b overlap region. The 3’ terminal end of the genome encodes for 

structural proteins which include GP2a, GP2b, GP3, GP4, GP5, ORF5a, matrix (M) and 

nucleocapsid (N) proteins. The N protein is highly antigenic, and induces early antibody 

responses in pigs (Brown et al., 2009; Wootton, Yoo, & Rogan, 2000). It has also been used 

extensively in the development of commercial enzyme-linked immunosorbent assays (ELISAs) 

for PRRSV diagnosis.  

 Porcine Circovirus Type 2 (PCV2) 

Porcine circovirus type 2 (PCV2) is a small closed circular single stranded DNA virus 

which is involved in a number of polymicrobial disease complexes including the porcine 

respiratory disease complex (PRDC), post weaning multisystemic wasting syndrome (PMWS), 

and porcine dermatitis and nephropathy syndrome (PDNS). Porcine circovirus type 2 associated 

disease (PCVAD) is a term which encompasses all pathologies resulting from PCV2 infection. 

Porcine circovirus (PCV) was first reported in 1974 as a cell culture contaminant in a porcine 

kidney cell line (PK-15) (Tischer, Gelderblom, Vettermann, & Koch, 1982). It was characterized 

as a small non-enveloped single-stranded DNA virus with a genome of 1.7kb in length (Tischer 

et al., 1982). Through experimental infection studies, it was found incapable of producing 

disease in pigs (Allan et al., 1995; Tischer, Mields, Wolff, Vagt, & Griem, 1986) .  
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In the late 1990s, a new PCV variant emerged in Europe and North America associated 

with pigs developing PMWS. This variant displayed many genetic differences to the original 

PCV isolate identified in the PK-15 cell line. The newly discovered pathogenic virus was termed 

PCV2 and the nonpathogenic virus PCV1 for differentiation. PCV1 and PCV2 have similar 

genomic organization. Both consist of two major open reading frames (ORFs) including ORF1 

which encodes a replicase protein and ORF2 which encodes the nucleocapsid protein (Hamel, 

Lin, & Nayar, 1998; Meehan, Creelan, McNulty, & Todd, 1997; Meehan et al., 1998; Morozov 

et al., 1998). The 702 nucleotide ORF2 sequence of the PCV2 genome shares only 66% amino 

acid identity with that of the PCV1 ORF2 sequence, while the ORF1 sequences are 85% 

identical (Hamel et al., 1998). Among global PCV2 isolates, the ORF2 nucleotide sequence is 

highly conserved with 95-100% identities (Meehan et al., 1997; Meehan et al., 1998; Morozov et 

al., 1998; Nawagitgul et al., 2000). Previous studies have shown that the ORF2 encoded 

recombinant nucleocapsid protein is immunogenic and reacts strongly with serum from PCV2 

infected swine (Nawagitgul et al., 2000; Nawagitgul et al., 2002).  

Current diagnostic methods for PCV2 detection include serological tests such as the 

indirect immunofluorescence assays (IFA), indirect immunoperoxidase monolayer assay 

(IPMA), serum-virus neutralization assays (SVN) and enzyme linked immunosorbent assays 

(ELISA). The IFA, IPMA and SVN are highly technical and time-consuming assays which 

require previously infected porcine cell cultures. Because of the differences in staining 

interpretation, results may be varied depending on the technician. Virus cross-contamination is 

also a concern with these assays in cell culture. The ELISA is an attractive alternative to these 

methods in terms of being a higher throughput assay with lower risks of biases between results.  
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 Swine Influenza Virus (swIV) 

Swine influenza virus (swIV) causes acute respiratory illnesses in swine of all ages 

around the world. The etiologic agents are Influenza A viruses (IAVs) of the Orthomyxoviridae 

family. These are negative sense, single stranded and segmented RNA viruses. SwIV infection in 

pigs results in an acute illness with symptoms including fever, lethargy, decreased growth 

performance, coughing, sneezing and difficulty breathing. SwIV was first recognized during the 

Spanish influenza pandemic in 1918 as it coincided with human cases (Koen 1919). The classical 

swIV H1N1 strain genetically associated with this lineage was first isolated in 1930 (Shope, 

1931). H1N1 is the most frequently isolated influenza strain in Asia, North America and most 

parts of Europe. H1N1 was the only subtype circulating in North America until 1998 when it re-

assorted with both human H3N2 and an unknown avian influenza strain resulting in a triple re-

assortment H3N2 SwIV. Because pigs contain alpha 2-3-linked as well as alpha 2-6-linked sialic 

acid receptors in their respiratory tract, they can be infected with human, avian or swine 

influenza viruses. For this reason, pigs are often considered the “mixing vessels” for IAVs (Ma 

et al., 2009; Zhou et al., 1999). H1N1, H3N2 and H1N2 are the current subtypes which are 

endemic globally.  

The SwIV particle consists of an outer lipid envelope composed of the hemaglutinin 

(HA), neuraminidase (NA) and M1 structural proteins along with an inner core composed of 

matrix proteins surrounding the viral genome. The genome contains 8 RNA segments which 

encode for 4 structural proteins, 3 subunits of the RNA-dependent RNA polymerase (Rdrp) and 

2 non-structural proteins. These are incorporated into the virion as ribonucleoprotein (RNP) 

complexes which are composed of the viral RNA (vRNA) as well as the Rdrp and the 

nucleoprotein (NP). The NP is a major structural protein of the viral RNP and plays many 

important roles for the virus replication cycle (Li et al., 2009). The NP is 498 amino acids in 
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length and contains highly conserved regions among Influenza A, B and C viruses (Mena et al., 

1999; Portela & Digard, 2002). Antibody responses to the NP are robust and long-lasting 

(Amanna, Carlson, & Slifka, 2007). 

The most commonly used serological tests for SwIV include the hemagluttination 

inhibition (HI) assay, virus neutralization (VN) and the indirect fluorescence antibody test (IFA) 

with the HI being the most common. The HI assay is designed to detect the highly variable, 

hemaglutinin surface protein (HA) so each test needs to be developed with a corresponding 

reference strain to each H subtype. The HI is also very labor intensive which makes high-

throughput sample diagnostics problematic (Yoon, Janke, Swalla, & Erickson, 2004). 

 

 Porcine Epidemic Diarrhea Virus (PEDV) 

Porcine epidemic diarrhea virus (PEDV) is a swine virus which belongs to the 

Coronaviridae family within the Alphacoronavirus genus. PEDV was first reported among 

grower and feeder pigs in the UK in 1971 (Oldham, 1971). The virus was subsequently isolated 

from Belgium in 1978 and the prototypic strain termed CV777 (Pensaert & de Bouck, 1978). 

PEDV is closely related to transmissible gastroenteritis virus (TGEV) which is another 

Alphacoronavirus. PEDV infection in pigs results in a severe watery diarrhea, dehydration, 

vomiting and decreased body weight (Song & Park, 2012; Stevenson et al., 2013). It is 

indistinguishable to TGEV in regard to clinical signs and pathology (Saif et al. 2012).  

PEDV has been endemic in many countries of Europe and Asia over the last few decades 

(Song & Park, 2012). However, it wasn’t until 2010 when substantial PEDV outbreaks occurred 

in China resulting in high mortalities among suckling pigs (Sun et al., 2012). Previously, North 

America had been free of the virus until a major outbreak in April 2013 when a highly virulent 
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strain of PEDV emerged and began spreading across the US (Chen et al., 2014). The virus has 

since spread to over 30 states and Canada. A recent phylogenetic study determined the PEDV 

strain circulating in the US to be almost identical to the AH2012 and CH/ZMDZY/11 PEDV 

strains, suggesting a Chinese origin (Huang et al., 2013). The virus circulating in North America 

has resulted in mortalities as high as 95% in young pigs (Chen et al., 2014; Stevenson et al., 

2013). PEDV is a single-stranded positive sense RNA virus with a genome approximately 28kb 

in length and encodes 7 ORFs. The 5’ two-thirds of the viral genome contains two large open 

reading frames (ORFs), 1a and 1b, which encode two nonstructural polyproteins, pp1a and 

pp1ab, that direct genome replication and transcription. The ORF1b is expressed by a -1 

ribosomal frameshift mechanism. The pp1a and pp1ab are processed into at least 16 functional 

nonstructural proteins (nsps) by a virus-encoded complex proteolytic cascade. The 3’ end of the 

viral genome encodes four structural proteins, including three membrane anchored proteins spike 

(S), membrane (M) and envelope (E) proteins, and the nucleocapsid (N) protein which 

encapsidates the genomic RNA (Spaan, Cavanagh, & Horzinek, 1988). Both the N and M 

antigens have been used in the development of previous serological assays (Song & Park, 2012). 

Figure 1.1 is a schematic depicting the nucleocapsid protein for each of the viruses included in 

the PDC. 

 Fluorescent Microsphere Immunoassay 

The fluorescent microsphere immunoassay (FMIA) is an antigen or antibody detection 

assay which utilizes carboxylated microspheres or beads to serve as coupling surfaces for 

antigen-antibody binding reactions. Similar to ELISA capture assays, a capture antigen is 

immobilized on the bead surface and reacts with a target antibody within the sample. The FMIA 

is based upon xMAP technology which allows for efficient multiplexing within samples. A 
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detailed schematic of the xMAP technology is depicted in Figure 1.2. The technology relies on 

the use of different sets of internally dyed microspheres. Each 5.6 micron sized polystyrene 

microsphere contains a unique ratio of red and infrared dyes in order to distinguish one from 

another within the FMIA. Currently there are 500 available microsphere sets. Early xMAP 

technology was initially developed by Luminex Corporation in 1997 with the release of the 

FlowMetrix platform which consisted of 64 unique fluorescent microsphere sets (Fulton, 

McDade, Smith, Kienker, & Kettman, 1997; Gordon & McDade, 1997). The system utilized the 

principles of flow cytometry and a signal processor to analyze up to 64 coupled reactions in real-

time. Newer platforms have since been developed including the Luminex 100/200, FLEXMAP 

3D and the MAGPIX. While the Luminex 100/200 and FLEXMAP 3D systems utilizes the same 

principles of flow cytometry, the MAGPIX platform is based on fluorescent imaging which uses 

light emitting diodes (LEDs) instead of lasers for microsphere excitation and a CCD camera for 

detection. When performing the FMIA using the Luminex 200 platform, antigen or antibody 

coupled microspheres are transported through a fluidics system until they reach a narrow channel 

where they are excited by a dual-laser system. A red laser (635nm) will excite the internal dyes 

of the microsphere to distinguish it from other microsphere sets and a green laser (532nm) will 

excite the fluorescent dye on the fluorescent reporter.  Four detectors will calculate the 

fluorescent signals, determine the specific bead set and differentiate between single or aggregate 

beads. The machine’s software will generate mean fluorescent intensities (MFIs) for each sample 

by counting a minimum of 100 microspheres from each set tested. Figure 1.3 depicts a schematic 

of the Luminex 200 instrument and its dual laser system. The xMAP based FMIA has many 

distinct advantages compared to other methods for antigen/antibody detection including reduced 

cost and labor through multiplexing within samples, overall less sample required and faster 
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turnaround time. Multiplex FMIA panels would be well suitable in large-scale field application 

for disease surveillance and epidemiology studies. 
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Figures and Tables 

Figure 1-1 Schematic representation of the porcine disease complex (PDC) viral 

nucleocapsid particles  

(Figure adapted from http://viralzone.expasy.org) 
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Figure 1-2 Luminex xMAP Technology  

(Figure adapted from www.luminexcorp.com) 
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Figure 1-3 Schematic of Luminex 200 System  

(Figure adapted from www.luminexcorp.com) 
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Chapter 2 - Development of a 5-Plex FMIA   

 Introduction 

The PDC causes severe economic losses for the US swine industry and because of the 

complicated disease interactions and multifaceted nature, diagnosis and treatment is extremely 

difficult. Currently, there are very few effective multiplex assays available to test all pathogens 

in one sample. Due to biosecurity concerns, diagnostic reagents and materials which have 

already been developed for PEDV in other countries are difficult to import into the US. In this 

study, we have generated recombinant nucleocapsid antigens to these viruses for use in a 

Luminex™ technology-based fluorescent microsphere immunoassay (FMIA). Utilizing these 

recombinant nucleocapsid antigens, the FMIA was developed to serve as a serological diagnostic 

test for PEDV, PRRSV, SwIV and PCV2.  

The nucleocapsid protein was chosen as the appropriate antigen as it is a highly 

conserved region, has proven immunogenicity and is the standard antigen used in many currently 

used diagnostic assays. In a previous study in our lab, the FMIA could detect the PRRSV N 

antibody as early as 7 days post infection (dpi) in experimentally infected animals (Langenhorst 

et al., 2012).  

The multiplex FMIA was validated using a standard set of known negative and positive 

serological sample populations. Diagnostic sensitivity and specificity as well as assay 

repeatability were assessed and optimized utilizing these samples. 

 Materials and Methods 

 Expression and purification of recombinant viral nucleocapsid proteins:  

Full length DNA fragments to PRRSV NA, PRRSV EU, SwIV N, PEDV N and truncated 

PCV2 (43-233) were amplified by reverse-transcription PCR and expressed as His-tag fusion 
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proteins in the pET28a prokaryotic expression vector. Once the fragments were successfully 

cloned into the pET vector, they were transformed into the BL-21 competent E.coli cell line for 

protein expression.  

Initially, 5ml of Lysogeny broth- Lennox (Fisher Scientific) containing the antibiotic 

kanamycin at a concentration of 50µg/ml was inoculated with each respective protein and shaker 

incubated overnight at 37°C. The overnight cultures were then used to inoculate a 500ml culture 

of 2XYT E. coli growth medium containing Kanamycin at 50µg/ml and incubated shaking at 

37°C for 2-3 hours until the OD600 was between 0.4-0.6. Once the cultures were at the 

appropriate OD, 250mM of isopropyl β-D-1-thiogalactopyranoside (IPTG) was added to induce 

protein expression and further shaker incubated at 37°C for 4 hours. For optimal PCV2 protein 

expression, induction was alternatively performed at 30°C for 4 hours. Proteins were 

subsequently pelleted in 250ml bottles by centrifugation at 12,000 x g for 15 minutes.  

Protein extraction from inclusion bodies was then performed using bacterial extraction 

reagents (B-PER, Pierce Thermo-Fisher) with all work performed on ice. Pellets were re-

suspended in 10-20ml of B-PER containing 200µg/ml lysozyme and 1µg/ml PMSF protease 

inhibitor. The solution was made homogenous by pipetting up and down and by vortexing. The 

mixture was passed through a syringe and needle 20 times to disrupt the bacterial cell walls 

followed by centrifugation at 12,000 x g for 10 minutes. Pellets were then dissolved in a 

denaturation buffer containing 8M urea and incubated with Ni-NTA agarose (Qiagen) rotating 

overnight at 4°C.  

Proteins were purified by nickel affinity chromatography as described previously (Brown 

et al., 2009). Denatured proteins were subsequently subjected to a further refolding process using 

a protein refolding kit (Novagen). Two beakers, each containing 2 litres of 1X phosphate 
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buffered saline (PBS) were prepared and cooled at 4°C for 2 hours. Pre-wetted dialysis 

membrane with a 12-14,000 kDa molecular weight cutoff (Spectrum Laboratories Inc.) was cut 

into an approximate 5 inch strip and capped on one end. All previously His-tag purified protein 

was carefully added into the dialysis membrane by pipette. A 1X solubilization buffer 

supplemented with 0.3% N-lauroylsarcosine was added to the protein within the membrane until 

protein particulate was no longer visible. The dialysis membrane was then completely capped 

and placed within the first beaker of 2L PBS. This PBS was supplemented with 0.1M 

dithiothreitol (DTT). The membrane was stir incubated at 4°C for 4 hours and then transferred to 

the second beaker of PBS and stir incubated for another 4 hours. Refolded protein was then 

carefully collected from the membrane and aliquoted into 1.7ml screw cap tubes. Protein purity 

was then analyzed by SDS-PAGE and protein concentration was determined by Lowry Assay.  

 Covalent coupling of recombinant proteins to fluorescent microspheres: 

 Proteins were coupled to magnetic Bio-Plex microspheres (Bio-Rad Laboratories, Inc.) 

utilizing a magnetic tube separator. Initially, 3.125x10
6
 microspheres were washed with 250µl of 

activation buffer 0.1M NaH
2
PO

4
 followed by a second wash with 500µl activation buffer. Beads 

were resuspended by vortex and sonication for 30 seconds following each wash. They were 

allowed to separate by placing them back into the magnetic separator for 5 minutes. 

Microspheres were subsequently activated through the addition of 500 µl activation buffer 

containing 2.5 mg N-hydroxysulfosuccinimide (sulfo-NHS) and 2.5 mg N-(3-

dimethylaminopropyl)-N- ethylcarbodiimide (EDC) (Pierce Chemical Company, Thermo-Fisher) 

and rotated at room temperature for 20 minutes. Activated microspheres were washed twice with 

phosphate-buffered saline (PBS) and sonicated. Coupling was performed by adding a volume 

containing 100µg of each protein to the activated microspheres and the volume was brought up 
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to 500µl in PBS. The samples were then incubated by rotation for 3 hours in the dark at room 

temperature. Coupled microspheres were washed by 1 ml of PBS plus 0.05% NaN3 and 1.0% 

bovine serum albumin (PBS-BN, Sigma-Aldrich) and blocked with an additional 1 ml of PBS-

BN for 30 min to reduce any nonspecific binding. Microspheres were then washed twice, 

counted by hemocytometer and resuspended in PBS-BN to achieve a final concentration of 

2.0x106 antigen-coupled microspheres/ml. Beads were stored in amber tubes at 4°C.  

 Fluorescent Microsphere Immunoassay (FMIA):  

A working bead mixture was prepared in IDEXX buffer diluent so that there were 50 

microspheres per microliter or 2500 beads per well (50µl of 5 x 10
4
 beads/ml stock). Serum 

samples were prepared by diluting them 1/50 in PBS-BN. 50µl of the bead stocks were added to 

each appropriate well in a 96-well black clear bottom assay plate (Corning Inc.). 50µl of the 

diluted serum samples were then added to their respective wells. The plates were covered and 

incubated shaking for 1 hour at room temperature. Since the reactions are light sensitive, black 

plastic lids or aluminum foil covers were used. The plates were then secured in a magnetic plate 

separator (Luminex Corp.) for 1 minute to allow the beads to secure to the bottom of the plate 

and the supernatant was dumped by rapid forceful inversion 2-3 times in quick succession. The 

plates were washed 3 times with PBST (PBS plus 0.05% Tween 20) following this dumping 

procedure. Biotinylated goat anti-swine IgG (Jackson ImmunoResearch Laboratories) was 

diluted 1:10,000 in IDEXX buffer diluent and 50µl was added to each well. The plates were 

covered and incubated shaking for 1 hour at room temperature. The plates were washed by the 

same method previously described. The fluorescent reporter, Streptavidin-R-Phycoerythrin 

(Prozyme) was diluted to 2.5µg/ml in PBS-BN and 50µl was added to each well. The plates were 

incubated by shaking for 30 minutes at room temperature. Following a wash, the microspheres 
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were resuspended in 125µl of PBS-BN. The plate was shook for 5 minutes at room temperature 

and then analyzed on the Bio-Plex 200 instrument (Bio-Rad Laboratories, Inc.). 

 Data Analysis:  

Data was analyzed through Biomanager software version 6.1 (Bio-Rad Laboratories, 

Inc.) which compiles the raw mean fluorescent intensity (MFI) for each sample.  The MFI for 

100 coupled microspheres for each individual target was calculated. Background well containing 

coupled beads with PBS-BN were present on every plate and were automatically subtracted from 

the samples as background. Serum positive or negative standard samples were added to each 

plate in duplicate or triplicate. The sample to positive (S/P) ratios were then calculated for each 

sample to determine the presence of antibody to each swine pathogen. The S/P ratios were 

calculated through the formula (MFI of sample – MFI of buffer) / (MFI of positive control – MFI 

of buffer). 

 Assay validation:  

For assessing the diagnostic sensitivity and specificity for each assay, they were validated 

using samples taken from two distinct animal populations. The negative-testing populations of 

serum validation samples for NA PRRSV, EU PRRSV, SwIV, PCV2 and PEDV were composed 

of 371, 379, 629, 564 and 91 samples respectively. The positive-testing populations of serum 

validation samples for NA PRRSV, EU PRRSV, SwIV, PCV2 and PEDV were 716, 176, 566, 

570 and 85 samples respectively. Receiver operating characteristic (ROC) analysis was 

conducted for each assay to determine assay cutoffs and diagnostic performance, using 

MedCalc®, version 10.4.0.0 (MedCalc® Software, Mariarke, Belgium) 
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 Measurement of Repeatability:  

The repeatability of the FMIA was assessed by running the same set of internal control 

serum standards multiple times on different plates. For all nucleocapsid assays, the intra- and 

inter-assay repeatability was calculated for 36 replicates on a single plate and repeated over a 3 

day period to assess interassay repeatability. Each of the assays was run in a 5-plex format, and 

mean fluorescence intensity values are expressed as means, standard deviations, and percent 

coefficients of variation (% CV) for replicates. The % CV was calculated as described previously 

(Brown et al., 2009). 

 Results 

 Expression of recombinant nucleocapsid proteins 

To develop an FMIA multi-plex assay, we initially expressed His-tagged fusion 

recombinant proteins of PRRSV NA-N from the Type II prototypic strain VR2332, PRRSV EU-

N from Type I strain SD 01-08, SwIV-N from H3N2, PCV2-N from PCV2 genotype B and 

PEDV-N from a Nebraska PEDV field culture isolate. These proteins were expressed as 

inclusion bodies, so further protein purification, electro-elution and a protein refolding step was 

performed. The purity of the proteins was determined using SDS-PAGE followed by Coomassie 

brilliant blue staining. As shown in Fig. 2.1, all of the His-tagged recombinant proteins migrated 

according to their predicted sizes. Recombinant PRRSV NA and EU N proteins both displayed 

17 kDa bands with >99% purity. The protein concentrations were found to be 2.19mg/ml and 

3.16mg/ml respectively. Recombinant PCV2-N displayed a band which migrated to 

approximately 30 kDa with >99% purity. The protein concentration was determined to be 

2.26mg/ml. Recombinant SwIV-N and PEDV-N both displayed a band at 50 kDa with purities 

>99% purity. Their protein concentrations were 1.42 and 2.86mg/ml respectively. The identity of 
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each protein was further confirmed by Western blot analysis using anti-His antibody (data not 

shown). 

 

 Fluorescent microsphere immunoassay development 

 Establishment of control standard 

A set of internal control standards were established using serum collected from 

experimental animals for PRRSV, PCV2, and SwIV. For PEDV, a set of internal controls were 

established using pooled field sample serum. The serum standards were established as ‘high 

positive’, ‘medium positive’, ‘low positive ’and ‘negative’ standard. For NA and EU PRRSV, 

SwIV, PEDV, and PCV2, the ‘high positive’ standard generates an MFI of 25,000- 29,000. The 

NA and EU PRRSV, PEDV, and PCV2 ‘medium positive’ generates an MFI of 15,000-17,000 

while the SwIV ‘medium positive’ generates an MFI of 7,000-9,000. The NA and EU PRRSV, 

PEDV, and PCV2 ‘low postive’ generates an MFI of 7,000-9,000 while the SwIV ‘low positive’ 

generates an MFI of 1,500-2,000. The MFI for the ‘negative’ standards range from 10-200 MFI. 

 Assay Optimization 

To determine the optimal concentrations of antigen to microsphere coupling, a series of 

couplings were performed using different concentration of antigen coated beads and analyzed 

against control standards. Five sets of beads each containing 3.125x10
6 

beads were incubated 

with 3 different concentrations (500µg, 250µg and 100µg) of purified PRRSV NA and EU, 

SwIV, PCV2 and PEDV recombinant nucleocapsid proteins. Based on the highest signal to noise 

ratio for detection for these specific antibodies in serum, we determined 250µg per coupling 

reaction or 80µg per 1x10
6
 microspheres was the optimal concentration for coupling these 

proteins. The coupling efficiency of the antigen coated beads was determined using antigen 
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specific monoclonal antibodies (mAbs) in a log10 dilution series. As shown in Fig. 2.2, relative 

coupling efficiency curves were generated and an average correlation coefficient (R
2
) of 0.994 

was calculated for both PRRSV SR-30 and PCV2 R. Magar regression analytes within the linear 

portion of the curve while the R
2
 calculated for both SwIV mAbs 42-100 and HB-65 was 0.997. 

PEDV coupling efficiency is not shown as mAb to the nucleocapsid antibody was not available. 

The optimal serum dilutions were determined by diluting samples in a log2 titration. Figure 2.3 

shows a concentration dependent MFI signal for PRRSV NA antibody detection. It was 

determined that a 1:50 dilution of serum samples provided an optimal signal to noise ratio. A 

1:50 dilution of serum sample showed optimal signal to noise ratio for all other virus infected 

control serum including EU PRRSV, SwIV, PCV2 and PEDV (not shown). 

 Diagnostic Sensitivity and Specificity 

MedCalc statistical software was used for ROC analysis for each FMIA to determine an 

optimized cutoff value which maximizes both diagnostic sensitivity and specificity. Serum 

samples from known positive populations for each virus (2034 samples total) and serum samples 

from a known negative population for each virus (2113 samples total) were analyzed. These 

samples were obtained from experimental animals as described in the Materials and Methods 

section. The optimal cutoff value, diagnostic sensitivity and specificity of each individual test are 

presented in Figure 2.4. Each of the serum based FMIAs displayed >92% diagnostic sensitivity 

and specificity. Table 2.1 summarizes the results of the ROC analysis.  

 Assessment of assay repeatability 

The precision of each individual FMIA was determined using internal control standards. 

Table 2.2 shows the intra and inter assay repeatability of each test. Both the intra and inter assay 
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repeatability values were <10% CV for all tests, suggesting these FMIAs are highly repeatable in 

diagnostic applications. 

 Development of 5-plex multiplex assay 

Once the validation was completed for each of the individual nucleocapsid based FMIAs 

in singleplex format, we combined them into a 5-plex assay. The 5-plex assay was compared 

with each singleplex to determine whether there was any cross reactivity among the coupled 

bead sets. Each serum internal control standard along with the individual corresponding bead set 

was first tested in a single-plex format and then combined for testing in the 5-plex format. 

Correlation coefficients were determined for comparison between each individual nucleocapsid 

based FMIA and the 5-plex assay. As shown in Figure 2.5, there was no statistical difference 

between multiplex and singleplex analytes for the nucleocapsid based assays. 
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 Figures and Tables 

Figure 2-1 SDS-PAGE gel for recombinant N proteins 

Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of E.coli expressed recombinant 

protein preparations, followed by Coomassie brilliant blue staining. The left lane displays the 

protein molecular weight (MW) marker (lane 1); the remaining lanes represent nucleocapsid 

proteins of PRRSV NA (lane 2) and EU (lane 3), PEDV (lane 4), SwIV (lane 5) and PCV2 (lane 

6). 
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Figure 2-2 Coupling efficiency of antigen coated beads using mAbs 

Coupling efficiency of the antigen coated beads determined using antigen-specific monoclonal 

antibody (mAb). Pairwise, PRRSV SR-30 & PCV2 R. Magar have similar coupling efficiencies 

(r=.994) as determined by the slope within the linear portion of the curves as do both SIV 

antibodies (r= .997).  
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Figure 2-3 Serum dilution optimization 

Optimization of the amount of infected control serum for the fluorescent microsphere 

immunoassay. The volume of internal control serum sample was 2-fold serial diluted against a 

fixed number of antigen coupled microspheres and then tested in the FMIA to generate a 

maximum signal to noise ratio of mean fluorescence intensity (MFI). 
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Table 2-1 Summary of ROC analysis of serum based FMIA results 

 Serum 

Antigen Diagnostic cut off Sensitivity Specificity 

PRRSV Eu-N 

(N = 555) 

0.54 100% 99.7% 

PRRSV NA-N 

(N= 1087) 

0.34 99.3% 98.9% 

SwIV NP 

(N= 1195) 

0.19 98.2% 98.3% 

PCV2 N 

(N = 1134) 

0.57 

 

96.4% 90.1% 

PEDV N 

(N= 176) 

0.40 98.6% 96.3% 
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Figure 2-4 Determination of Diagnostic Sensitivity and Specificity by ROC 

Determination of diagnostic sensitivity and specificity by receiver operating characterstic (ROC) 

analysis for serum based FMIA. Diagnostic sensitivity and specificity were calculated using 

samples from known PCV2, SwIV, PRRSV and PEDV infected swine populations (4147 serum 

samples total). ROC analysis was performed using MedCalc® Version 10.4.0.0 (Medcalc® 

Software, Mariakerke, Belgium). In each panel, the interactive dot plot on the left side indicates 

the negative population, and the dot plot on the right side indicates the positive population. The 

horizontal line between the positive and negative population represents the cut off value which 

provides optimal diagnostic sensitivity and specificity. 
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Figure 2-5 Comparison of singleplex vs. multiplex 

Development of a multiplex fluorescent microsphere immunoassay for the simultaneous 

detection of PRRSV (A), PCV2 (B), SIV (C) and PEDV (D) using standard serum samples.   

Each individual bead set was first tested in a singleplex format and then combined to test all five 

antigens for a multiplex format. Samples were from pigs co-infected with PRRSV, PCV2, SIV 

and PEDV. SP: singleplex; MP: multiplex. 
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Table 2-2 Assay repeatability of serum-based FMIAs 
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Chapter 3 - Discussion and Conclusions 

Recently, many high-health status herds have fallen victim to severe porcine disease 

complex (PDC) outbreaks. The PDC has emerged as a significant economic problem for 

producers.  Since this complex is caused by the interaction of multifactorial etiologies, 

development of diagnostic tests that are able to quickly and simultaneously detect multiple 

pathogens in the PDC offers an important tool for disease surveillance and control 

measurements. 

In this study, we developed a 5-plex FMIA for the simultaneous detection of antibodies 

against the PDC in serum. The nucleocapsid protein was chosen because it is highly conserved 

among the strains of the respective viruses in this study, it has highly immunogenicity and 

because many of the current commercially available serological tests are based on this protein.  

All of the antigens were expressed as recombinant proteins in an E. coli expression 

system. The generation of highly purified recombinant proteins while maintaining their native 

conformations is required for these assays. High levels of expression for these nucleocapsid 

proteins resulted in the formation of inclusion bodies and required further purification and 

refolding steps to return them to native forms. To prevent degradation of the proteins they were 

kept at cold temperatures, multiple freeze-thaw cycles were avoided by creating multiple aliquots 

and using them only once and a protease inhibitor (PMSF) was utilized during the protein 

extraction and purification protocols.  

The diagnostic sensitivity and specificity was greater than 92% for each of the serum 

based FMIAs and multiplexing did not show any significant differences in MFI. In two previous 

studies performed in our lab, the PRRSV antibody response to the N protein could be detected as 

early as 7dpi in a standard panel of serum samples by the FMIA whereas the same panel was 
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tested previously by IDEXX ELISA could only detect antibody at 14dpi (Brown et al., 2009; 

Langenhorst et al., 2012). This highlights the increased sensitivity of the FMIA as compared to 

the ELISA. 

Many aspects of the FMIA make it an attractive prospect for broad scale diagnostic, 

surveillance and epidemiological applications. The multiplex FMIA format presents the 

advantages of simplicity, rapidity, cost-effectiveness, and the potential to increase the number of 

representative individual animals in a large population. Data on the proportion of a herd 

population that has been infected have many important epidemiologic applications including the 

early identification of susceptible groups so that such animals can be quarantined or removed 

quickly to prevent transmission to naïve herd, the evaluation of vaccine efficacy and the use of 

these data in mathematical modeling in order to predict disease outbreaks and design better 

management strategies.   
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