
EXPERIMENTS IN ROBOT FORMATION CONTROL WITH

AN EMPHASIS ON DECENTRALIZED CONTROL

ALGORITHMS

by

Joshua Cook

B.S., Kansas State University, 2008

A THESIS

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Mechanical Engineering

College of Engineering

KANSAS STATE UNIVERSITY

Manhattan, Kansas

2011

Approved by:

Major Professor
Dr. Guoqiang Hu

Copyright

Joshua Cook

2011

Abstract

In this thesis, several algorithms and experiments involving the control of robot for-

mations are presented. The algorithms used were focused on decentralized control. The

experiments were implemented on two different experimental testbeds consisting of teams

of wheeled mobile robots. The robots used are described along with their sensors and sup-

porting hardware. Also, there is a discussion of the programming framework used to build

the control software.

The first control algorithm and experiment uses a robust consensus tracking algorithm

to control a formation of robots to track a desired trajectory. The robots must maintain the

correct formation shape while the formation follows the trajectory. This task is complicated

by limited communication between the robots, and disturbances applied to the information

exchange. Additionally, only a subset of the robots have access to the reference trajectory.

In the second experiment, the same algorithm was re-implemented in a decentralized way,

which more effectively demonstrated the goals of the algorithm.

The second algorithm involves controlling a formation of robots without a global ref-

erence frame. In order to accomplish this, the formation description is reformulated into

variables describing the relative positions of the robots, and vision-based measurements are

used for control. A homography-based technique is used to determine the relative positions

of the robots using a single camera. Then a consensus tracking controller similar to the one

used previously is used to distribute the measured information to all of the robots. This

is done despite the fact that different parts of the information are measured by different

agents.

Table of Contents

Table of Contents iv

List of Figures vi

List of Tables vii

1 Introduction 1
1.1 Overview . 1
1.2 Project Areas . 2
1.3 Literature Review . 4

2 Experimental Testbed 7
2.1 Robot Platforms . 7

2.1.1 AmigoBot . 7
2.1.2 Pioneer 3-DX . 9

2.2 Sensors . 10
2.2.1 Encoders . 10
2.2.2 Sonar . 10
2.2.3 Cameras . 11

2.3 Software . 12
2.4 Previous Work . 15
2.5 Preliminary Experiments . 16

2.5.1 Simultaneous Robot Control . 16
2.5.2 Sonar Characterization . 17

3 Robust Consensus Formation Tracking Control Experiment 20
3.1 Problem Description . 20
3.2 Theoretical Development . 21

3.2.1 Robust Consensus Tracking . 21
3.2.2 Motion Controller . 23

3.3 Experiment . 25
3.3.1 Hardware Implementation . 25
3.3.2 Software Implementation . 26
3.3.3 Implementation Challenges . 27
3.3.4 Experimental Parameters . 29
3.3.5 Experimental Results . 32

3.4 Distributed Experiment . 34
3.4.1 Hardware Implementation . 34

iv

3.4.2 Software Implementation . 35
3.4.3 Implementation Challenges . 36
3.4.4 Experimental Parameters . 38
3.4.5 Experimental Results . 38

4 Formation State Description and Measurement 42
4.1 Motivation . 42
4.2 Formation State Description . 43
4.3 Measurement Rules and Assumptions . 46
4.4 Image Measurement . 48

5 Vision-Based Formation Tracking Experiment With Consensus 54
5.1 Problem Description . 54
5.2 Consensus Tracking Protocol . 55

5.2.1 Model . 56
5.2.2 Control Objective . 57
5.2.3 Consensus Protocol Design and Error System 57
5.2.4 Stability Analysis . 60

5.3 Robot Motion Control . 63
5.3.1 Relative Agent Dynamics . 64
5.3.2 Low-Level Motion Controller . 66

5.4 Hardware Implementation . 66
5.5 Software Implementation . 68
5.6 Implementation Challenges . 69
5.7 Experimental Setup . 71
5.8 Experimental Results . 74

6 Conclusion 80

Bibliography 85

A Code For Distributed Formation Tracking Experiment 86

v

List of Figures

2.1 AmigoBot Robot . 8
2.2 Pioneer 3-DX Robot . 9

3.1 General Experimental Framework . 21
3.2 Snapshot of Formation Shape . 24
3.3 Wheeled Mobile Robot Schematic . 25
3.4 Experimental Hardware Configuration . 26
3.5 Control Software Structure . 27
3.6 Information Exchange Graph . 30
3.7 Consensus Tracking Results pxci(t), pyci(t) . 33
3.8 Consensus Tracking Results θci . 33
3.9 Trajectory Tracking Results . 34
3.10 Formation Tracking Error . 35
3.11 Distributed Experimental Hardware Configuration 36
3.12 Distributed Control Software Structure . 37
3.13 Consensus Tracking Results pxci(t), pyci(t) . 39
3.14 Consensus Tracking Results θci . 40
3.15 Trajectory Tracking Results . 40
3.16 Formation Tracking Error . 41

4.1 Fully Described Robot Formation . 45
4.2 Image Measurement Coordinate Frames . 49
4.3 Relationships Between Relative Position Orientation and States 53

5.1 General Experimental Framework . 55
5.2 Relative Agent Dynamics . 64
5.3 Hardware Configuration . 67
5.4 Formation Initial Configuration . 72
5.5 Formation Final Configuration . 73
5.6 Consensus Tracking Results d12, d23 . 75
5.7 Consensus Tracking Results β12, β23 . 76
5.8 Consensus Tracking Results θ12, θ23 . 77
5.9 Visual Formation Tracking Error . 77
5.10 Visual Formation Consensus Error . 78
5.11 Visual Formation Consensus Estimator . 78
5.12 Robot Velocity Command . 79
5.13 Robot Angular Velocity Command . 79

vi

List of Tables

3.1 Experimental Control Gains . 31
3.2 Consensus Initial Conditions . 31
3.3 Postion Initial Conditions . 32

4.1 Relationships Between Coordinate Frames 50

5.1 Experimental Control Gains . 74

vii

Chapter 1

Introduction

1.1 Overview

As robots become ever more useful in today’s society, the demand for them to do more

continues to grow. Some of the potential applications of robots do not always require a

single, incredibly complex robot. Instead, sometimes, a task can be best achieved by a

team of simpler robots working together. These teams working together in the real world

present several new and interesting challenges. Working together requires communication

and coordination that can be difficult in real environments. Because of the challenges and

potential benefits, control of teams of robots is an active area of research. As new theories

are developed for coordination and control of teams of robots, experiments need to be done

to evaluate their effectiveness.

In this thesis several algorithms for the control of formations of mobile robots are pre-

sented. Then experiments and their results are given to demonstrate the effectiveness of the

proposed algorithms. To conduct these experiments, a experimental test bed consisting of

several wheeled mobile robots was used. In fact two different test beds were used. One test

bed had a larger number of smaller simpler robots, while the other had a fewer number of

larger more advanced robots. Both test beds are equipped with a variety of sensors, different

sensors were used in different experiments. Some of the algorithms and experiments used

cameras as sensors.

1

One of the concepts which has gained significant support and interest in the field of

multi-robot control is decentralized control. In decentralized control, there is no central

global decision making, and the control decisions are made in a distributed manner based

on locally available information. There are many benefits of decentralized control over

centralized control. One of the commonly cited benefits is it can make a system robust to

failure of part of the system. In a centralized control system, if the central controller or the

communication from the controller to the rest of the system fails, the entire system fails.

In a decentralized control system, if part of the system fails it will not necessarily bring

down the rest of the system. Another benefit is that such a system can reduce the load and

requirements on the communication system. Due to the benefits of decentralized control,

the algorithms in this thesis focus on a decentralized approach.

1.2 Project Areas

Over the course of the project, several different areas of research were explored. Some

became the focus of this document, and others served as a basis for later work. Other areas

of research were explored briefly and abandoned to focus on the main topic of research. This

section briefly outlines some of the areas of work that were explored. It also discusses some

projects which were begun or investigated, but did not fit with the rest of the research.

One of the earliest projects focused on practical implementation. The robots that were

going to be used in experiments had been purchased, and some work had been done on

controlling individual robots. However, it was desired to be able to control multiple robots

simultaneously from one control program. This goal lead directly into later experiments

which required controlling a team of robots. This task was accomplished relatively easily,

but required gaining a greater understanding of the robot control software, and served as a

basis for later projects.

Once a team of robots could be controlled simultaneously, work was done to try and

apply this to coordination of multiple robots. There are many different types of coordi-

2

nation. Some examples include: follow-the-leader algorithms, formation control, confining

an uncooperative agent, etc. This led to the evaluation of the robot’s sensors, and their

usefulness in these sort of tasks. Eventually it was decided to focus on the formation control

problem, and consensus-based algorithms in particular.

Another area of research which was investigated was human control of robots. In partic-

ular, using brain waves or electrical impulses from a human face to control a robot. One of

the obvious applications of technology such as this include controlling a robotic wheelchair.

To investigate this concept a commercial device was purchased. This device, called a Neural

Impulse Actuator by the manufacturer, can measure electrical and brain wave data from

sensors on an operator’s face, and then translate this to key strokes. The sensors were

mounted to a headband worn by the user. This headband was connected to a device that

communicated with software installed on a computer. There was some success in controlling

a robot with the device, but the product’s proprietary interface limited the work that could

be done, and eventually efforts were focused elsewhere.

Eventually the primary focus of the work became implementing consensus algorithms.

In particular, robust consensus-based formation control algorithms. This was built on the

earlier work on controlling multiple robots. An experiment was developed demonstrating a

robust consensus tracking algorithm for formation control that was robust to disturbances

in the information exchange. Later, this experiment was re-implemented using network

communication for the consensus exchange instead of controlling all of the robots from the

same application.

It was decided to incorporate cameras into the experiments. Initially, there was a plan

to use a camera in a localization system. The camera would be fixed in some location

where it would be able to see the space where the robots were operating. Then, using image

processing, accurate locations for each of the robots could be determined. This configuration,

where a fixed camera is used to control the motion of something in its field of view, is referred

to as a camera-to-hand configuration. The other popular configuration is where the camera

3

is fixed to the object it is being used to control. This configuration is known as camera-

in-hand. It was decided that camera-in-hand provided a better opportunity to further the

main focus of the research, so work on the camera-to-hand configuration was abandoned.

This switch did require acquiring new experimental hardware to accommodate the cameras

mounted to the robots.

In order to sort out implementation challenges and prove that the experimental hardware

worked, the first experiment using a camera mounted to the robot was fairly simple. The

camera was used to make the robot follow a desired trajectory and approach a visual tar-

get. An existing vision-based control algorithm based on adaptive control and homography

techniques was used. The lessons learned were of vital importance for later vision-based

control experiments.

Finally, vision-based control was incorporated with the formation control and consensus

algorithms. This new experiment used cameras and homography techniques for measure-

ments, and robust consensus for distributing information. It then used this information to

control a team of robots into a desired formation.

1.3 Literature Review

There are many applications where cooperating mobile robots could be a good solution.

A few of these have been discussed in the literature. One example presented in the paper

[1] uses a team of robotic highway safety cones to mark out construction sites. Each cone

contains a simple robot which must work with the others to close down a lane for highway

maintenance or other activities. Papers such as [2] and others examine the problem of

controlling formations of spacecraft such as satellites. Another area of application involves

distributed sensor networks where there are many agents each equipped with sensors. The

paper [3] is an example of this, where a formation of robots tracks the maximum or minimum

of some sensed variable in the environment. Another example of a distributed sensing

application is the paper [4] which looks into the problem of distributing optimally agents

4

with sensors in an environment. There are many other potential applications.

Several different approaches have been explored for controlling formations of robots.

One approach is the behavior-based method which is discussed in papers such as [5–7]. In

this approach different goals such as formation keeping, obstacle and collision avoidance,

and navigation are implemented as separate simple behaviors. These behaviors are usually

simple rule-based controllers. Their outputs are then averaged together using weights to

determine the motion of the robots. This approach has several drawbacks, one of which is

that it is very difficult to analyze or guarantee the stability of the formation.

Another approach is the virtual structure method as discussed in [8, 9]. A virtual

structure is a concept where the desired positions of the robots are considered to be part of

a structure. This structure is then moved or changed to move or change the formation, and

each robot simply attempts to match it’s position with its desired position in the structure.

One of the drawbacks to this method is that the virtual structure needs to be calculated

centrally and then communicated to the robots.

Leader-follower methods such as described in [10–12] have been studied extensively. In

the leader follower framework one or more robots are designated as leaders, and others as

followers. This means that separate controllers have to be developed for the leaders and

followers. There a few drawbacks to this technique, in particular, the leaders often serve as

a central point of failure for the formations.

The paper [13] discusses a synchronization approach to robot formation control. The

idea is that each robot attempts to move to its own desired location while synchronizing

its motion with its neighbors. This helps with maintaining formation shape and other

constraints during a change in formation.

Another approach which has been studied is consensus-based formation control. In

consensus, the robots make control decisions based on the states of their neighbors, and

there is no central coordination of the formation. Often concepts from graph theory are

used to model the connections between the robots, and to help analyze the stability of

5

the control algorithms. The paper [14] provides an overview of many of the concepts in

consensus. In [15] the authors looked at proving the stability of a formation using graph-

theory-based concepts to model the communications and measurements made by the robots.

Then, they used a Nyquist-based criterion to examine the stability of the formations. In

[16] the authors apply consensus to a leader follower problem, and develop a discontinuous

controller to ensure convergence in finite time. The authors in [17] examine several different

consensus algorithms to track a time-varying reference signal. This reference signal then

serves as a virtual leader for the formation. There are many more examples of papers dealing

with consensus.

Cameras and computer vision algorithms can provide a wealth of information as sensors.

For this reason, they are often used in robotics for control. Several papers such as [10, 18]

have used cameras and vision for robot formation control. Despite the benefits of cameras

as sensors, they have several drawbacks. Such as limited field of view, and re-constructing

three dimensional coordinates from a two dimensional image.

6

Chapter 2

Experimental Testbed

2.1 Robot Platforms

Two different types of robots were used in the experiments. Both were manufactured by

MobileRobots inc. Specifically, the two models used were AmigoBots and the Pioneer 3-DX.

Both are non-holonomic, wheeled, mobile robots. They have two independently controlled

drive wheels and a rear caster for balance. Both have built in microcontrollers, but require

an external computer to send them commands.

2.1.1 AmigoBot

The AmigoBot (pictured in Figure 2.1) is the smaller and simpler robot of the two used

in the experiments. Its small size lends it to being used in experiments on multi-agent

systems. However, its small size limits its payload carrying capacity significantly. Because

of this, they are usually used in conjunction with a separate computational system such as

an off-board computer.

The robots themselves have simple microcontrollers that control all of their hardware.

The motion commands sent to the robot are executed using a PID controller [19]. The mi-

crocontroller uses optical encoders on the wheel motors to calculate the position and velocity

of the robot. Also connected to the on-board controller is a WiBox wireless network adapter.

This adapter connects to the controller through a standard serial interface, and is capable

7

Figure 2.1: AmigoBot Robot

of forwarding serial information through an 802.11b wireless Ethernet network. Through

this interface the robot can send and receive packets of information. In the communication

model used, the robot sets itself up as a server which sends out Server Information Pack-

ets (SIP). Then separate clients can receive these packets, and send out their own packets

known as command packets. The client in our case is a PC running robot control software.

The separate client is where the high level thinking and control takes place. The client (PC

running software) receives information from the server (AmigoBot), decides what it wants

the robot to do, and sends it commands in a command packet. This process continues while

there is a connection. For this purpose, an Ad-Hoc wireless network is setup. Then both the

robot, and the PC running the client software connect to this network. The client software

then attempts to establish a TCP connection to the server. After they are connected they

can begin to exchange packets.

The microcontroller used in the AmigoBots is a 32-bit Renesas SH2-7144 RISC micro-

processor [19]. They are equipped with two built in 12 Volt, sealed, lead-acid batteries that

8

provide the robot and any accessories with a total of 55.2 watt-hours.

2.1.2 Pioneer 3-DX

The Pioneer 3-DX, pictured in Figure 2.2, has many of the same features as the AmigoBots.

Unlike the AmigoBots they do not have the built in wireless adapter, they must communicate

with the controlling computer through the serial port. They are larger, have a bigger payload

capacity, and better battery life. They have larger tires, and can handle rougher terrain.

Figure 2.2: Pioneer 3-DX Robot

To connect to the computers a USB to RS-232 adapter was used. These have been

known to cause problems with dropped information from time to time. These had to be

used because the laptops did not have serial ports.

The Pioneer 3-DX comes equipped with the same basic microcontroller as is used in

the AmigoBots. For power, the Pioneer 3-DX robots can have up to three hot-swappable

batteries installed at a time. The batteries are 12 Volt sealed lead acid batteries, and with

three installed, they provide a total of 252 watt-hours for the robot and accessories [20].

9

2.2 Sensors

The AmigoBot robots come with two installed sensors. The motor encoders, and the sonar

array. The encoders are used to calculate the robot’s approximate displacement and heading

from a starting position, and its velocity. The sonar currently are only used for obstacle

avoidance routines. The P3-DX robots also came with two sensors, wheel encoders and

a sonar array. Additionally cameras were mounted to the P3-DX robots to take visual

measurements.

2.2.1 Encoders

Each robot has two linear encoders, one attached to each motor shaft. These are used for

odometery to estimate the robot’s position and orientation relative to its starting location.

They are also used to calculate the velocity feedback for the on-board velocity control

loop. The robot’s microcontroller calculates the distance traveled and the velocity from the

encoder readings. It then makes this information to any client software connected to the

robot. The raw encoder data is also available if necessary.

2.2.2 Sonar

Each robot is equipped with an array of eight sonar sensors. Each sensor works by sending

out a pulse of sound, which bounces off objects, and returns to the sensor. By timing how

long it takes for the reflected sound to be picked up by the sensor, one can estimate the

distance to the object off which the sound bounced. The sonar sensors are controlled by a

specialized board inside the robot that relays the information to the robot’s microcontroller.

The microcontroller can then pass this information on to the client software. The sonar

sensors fire in sequence, with a small delay between each firing. One sensor fires, then

listens for a return, then the next sensor in the sequence fires. There are a few software

controllable parameters for the sonar array. First, the sequence of firing for the sensors can

be set. Second, the firing rate can be also be set in software. Lowering the firing rate gives

10

less time between successive readings on the same sensor, but also reduces the maximum

range of the sensors.

The sonar sensors are very useful for determining the range from the robot to some

object or obstacle in its environment. In order to determine the objects position relative to

the robot more information is needed than just the range. To solve this problem, an array

of sensors is used. Each sensor can only detect obstacles in a narrow region directly in front

of the sensor. Using an array of such sensors, it is possible to determine the relative position

of an object based on the range reading, and which sensor detected it. This is useful in

tasks such as obstacle avoidance where the goal is simply to avoid driving too closely to any

object in the environment.

There are several limitations of the sonar sensor. In particular it only gives range to an

object, and gives us little to no information about that object. All we can really say with

certainty is that it reflects sound waves. This is compared to cameras which can give many

different pieces of information about an object, but have their own limitations, as well. Also,

because of the narrow sensing region for the sonar, blind spots can occur where no sensor

would detect an object. Certain objects do not reflect sound well or deflect it to a direction

other than the one it came from. This results in certain objects such as small-diameter,

vertical cylinders being invisible to the sonar sensors.

2.2.3 Cameras

Cameras can be very powerful sensors in robotics. They are capable of discerning a great deal

about the environment, yielding a lot of information from each image. For the experiments

where cameras were used, the cameras were mounted on top of the Pioneer 3-DX robots. The

cameras used were Sony XCD-SX910 digital machine vision cameras. They communicate

with computers over the firewire interface also knows as IEEE 1394. The XCD-SX910 is a

black and white camera with a maximum image resolution of 1376x1024 with a maximum

frame rate of 15 fps [21]. There are several selectable modes with different image resolutions,

11

and frame rates.

The cameras are designed to draw their power from the firewire cable. Unfortunately

most laptop computers are not equipped with 6-pin powered firewire ports. Instead most

only have the unpowered 4-pin firewire ports. This makes using the cameras along with

on-board laptops problematic. One solution is to power the camera separately. The Pioneer

3-DX robots are designed to be expanded with attachments, so they are designed to provide

power to external devices. The motor power board provides conditioned 5 Volts direct

current at 1.5 Amps total and unconditioned battery power at approximately 12 Volts direct

current for accessories [20]. The power specifications for the Sony XCD-SX910 specify that

it requires from 8 to 30 Volts supplied by the firewire cable. Its power consumption is listed

as 3.5 Watts at 12 Volts [21]. This implies that the unconditioned battery voltage supplied

by the robots should be sufficient for powering the camera. To power the camera and have

it connected to the computer at the same time, a 4 to 6-pin firewire connector was modified

to tie the power pins on the 6-pin side to separate external supply wires. These supply wires

were then connected to the robot’s motor power board’s accessory connections.

2.3 Software

Included with the robots was a variety of software for controlling the robots and for devel-

oping custom robot-control software. One particular software package of interest is ARIA or

Advanced Robotics Interface for Applications, which serves as a programing interface for the

robots. It’s a set of C++ programs and header files which make it easy to write programs

that interface with and control the robots. ARIA is open source, and is licensed under the

GPL or General Public License. Also included was a program called MobileSim. MobileSim

is a robot and environment simulator, allowing control software to be tested on virtual

robots inside a virtual environment. Another API or Application Programming Interface

that was used was OpenCV or Open Computer Vision. OpenCV is used for communicating

with the cameras, and for most of the image processing tasks.

12

For each task required of the robots, a new control program was typically developed.

These control programs are sometimes referred to as robot client software because of the

way they communicate with the robot. As was mentioned before, the ARIA API was used

for communicating with the robots, and many other tasks. These libraries are all written in

C++ and make extensive use of object oriented programming. Each robot that the client

will connect to is represented by an ArRobot class object. The connection to the robot is

represented by an ArTcpConnection object which is then associated with the robot object.

In some of the programs, the ArTcpConnection is used indirectly, and other classes such

as ArRobotConnector are used to setup and establish the connection. The client software

can easily connect to several robot servers by creating multiple ArRobot objects with a

ArTcpConnection object for each one.

The ARIA software has three basic levels of commands it can send to the robot. The

first are low-level, direct commands which directly set parameters on the robot. The second

level is direct motion commands. These are more user friendly, but still fairly basic. They

do things such as specify velocities for the wheels, or command the robot to drive a certain

distance, etc. The third level is actions. Actions are more sophisticated commands that can

contain logic and produce several different motions. You can also stack actions, and the

ARIA software will decide what motion commands to send based on the motions requested

by each action. The action structure proved to be useful for developing control programs,

although the stacking feature was less useful.

These actions are custom classes which are children of the ArAction class. Actions are

class objects which can store data, and have code made up of direct motion commands

and logic. After an instance of an action is created, it is “attached” to a robot object.

Afterward, whenever the robot communication loop runs, it executes that action’s code.

The code makes a decision on what direct motion commands it would like to send to the

robot, such as a certain forward velocity, and returns this desired command to the “action

resolver.” The action resolver is a class object of ArActionResolver or a class inherited

13

from it, and its task is to take the desired commands from several actions and combine

them, relying on a weighting system, into one command. This command is then sent to the

robot. The multiple actions with weights system allows for several very simple actions to

be combined to get more complicated behavior from the robot.

One important feature for some of the robot control software developed is multi-threading.

Multi-threading allows a program to execute multiple blocks of code in parallel. The differ-

ent tasks may not actually execute simultaneously depending on the number of processor

cores in the computer, and other programs running at the time. ARIA includes several tools

for working on multi-threaded programs. Its classes handle all of the platform specific details

of creating and managing threads, making it easy to develop cross-platform, multi-threaded

code. The most common example of threads in ARIA are robot objects. To communicate

with and control the robots, a loop waits for a communication packet from the robot, then

executes a series of tasks before sending a response packet to the robot and resumes wait-

ing. Those tasks include interpreting the sensor data, any actions that have been added to

the robot, and others. This loop can be run either synchronously in the thread where the

object was originally created (usually the program’s main thread) or asynchronously in it’s

own new thread. If this loop is run synchronously in the main thread, the no other tasks

can be executed in that thread until it disconnects from the robot. Whereas if it is run

asynchronously, the main thread can continue on executing other tasks such as connecting

to other robots, or image processing.

A major issue that comes up in the development of multi-threaded programs is data

access. If two threads running in parallel try to access or write to the same space in memory

at the same time, the results will be unpredictable at best. Such an occurrence might crash

the program or worse. To keep this from happening, the concept of locking is used. Locking

allows for multiple threads to access the same data while preventing them from doing so at

the same time. It is accomplished using an object known as a “mutex” which is short for

mutual exclusion. The mutex has a state that is either locked or unlocked, and its state can

14

be changed using a function call. Before accessing any data, a thread will attempt to lock

the mutex associated with that data, and unlock it after it is done. If the mutex has been

locked by another thread, it will not allow the thread that attempted to lock it to proceed

until the lock has been removed. In this way, as long as the threads always attempt to lock

the mutex before accessing data, no two threads can access the data at the same time.

OpenCV was used to handle the access to the cameras. Also it provided a convenient

interface for working with images, and matrices. Most importantly though, OpenCV in-

cludes many built in image processing algorithms. These include simple tasks such as image

filtering, and scaling, and more complicated things like optical flow calculations, which is a

method for tracking a series of points through successive images. Using several assumptions

and the locations of the points in a previous image, it finds the points in a new image. This

allows for the tracking of specific feature points in a video stream; giving the ability to track

an object in the camera’s field of view as the camera and object move.

2.4 Previous Work

Previously, some work had already been done with the experimental hardware. In particular,

some work had been done with the AmigoBots described in Section 2.1.1. Most of this

work focused on setting up the wireless network communications between the robots and

a computer. First, the WiBox wireless Ethernet to serial adapters on board the robots

were configured to use an “Ad-Hoc” network with a particular name. This process involved

connecting to the wireless adapter from a computer over a serial connection. Then a Belkin

802.11g wireless USB network adapter was installed in a desktop computer, and configured

to use the same Ad-Hoc network. This adapter was also configured to have a static IP

address on the same subnet as the wireless adapters on the robots.

Most of the other preliminary efforts revolved around establishing a base for robot control

program development. This included preparing a development environment on a computer

with all of the appropriate libraries and ARIA installed. Then, several example programs

15

that came included with the ARIA source code were compiled. Once this development

environment was established and tested, some of the example programs were modified to

demonstrate the ability to create custom control programs. In particular, a simple program

was created that gave a robot a series of direct motion commands.

2.5 Preliminary Experiments

Early on there were several tests and experiments that were focused on gaining understand-

ing of the experimental hardware and software. These preliminary experiments also served

as a base from which later experiments and code were built.

2.5.1 Simultaneous Robot Control

The simultaneousRobotControl program was designed to demonstrate the ability to send

commands simultaneously to two robot servers from one client application. The goal was

to have two different physical robots executing different and independent tasks while being

controlled by a single application. This is made possible by the threaded nature of the

program. The packet sending/receiving and action command processing for each robot is

done in its own thread separate from the main program thread. This is accomplished by

calling the ArRobot member function runAsync(). At that point the main program starts a

thread for each robot, then waits for the robot threads to end. The robot threads are where

the actual processing is performed. This concept would later be extended to controlling

multiple robots, and allowing them to work collaboratively.

The concept of Actions in ARIA was used in this program. Each robot was given a

set of two default actions, one to recover from stalls, and one to avoid obstacles in front

of the robot. The obstacle avoidance action relied on the robot’s sonar sensors to detect

and measure the distance to obstacles. Additionally, the first robot was given an action

that commanded it to simply drive in a circle continuously. This action was given a lower

priority than the other two, so that the robot would stop turning if it stalled or encountered

16

an obstacle. Similarly, the second robot was given an action that has it drive a set distance,

turn around, then repeat the process. These tasks demonstrated the use of the action

framework, and clearly illustrates the ability to connect to multiple robots and give them

distinct commands.

The application was a success, although several problems were encountered during the

development. Up to this point most of the work had used ARIA helper classes to simplify

parsing options from the command line and establishing the network connection to the robot.

Unfortunately, these helper classes assumed that the application would connect to only one

robot. After a careful search of the ARIA documentation and code, the underlying tools used

were identified, and the command line parsing and network connections were implemented

in a way that accommodated several robots. Also, there were issues in programing the

action that drove back and forth in a straight line. The odometery from the wheel encoders

was used to determine when the appropriate distance had been traveled, and the current

angle of the robot. This proved to be somewhat unreliable, particularly the angle. As a

result, the robot would not always turn around a full 180 degrees, thereby not following the

same path every time as was intended.

2.5.2 Sonar Characterization

In order to evaluate the usefulness of the sonar sensors installed on the robots, several

experiments were conducted to measure their performance. Of particular interest was the

feasibility of using them to measure the locations of other robots or similar objects in

their environment. Some of the factors which would affect this include the maximum and

minimum range of the sensors, and how often the data is updated. Also important is how

narrow of a sector can each sensor see. This information can be used to determine if the

sonar array has blind spots, and how accurately the position of an object can be determined.

The sonar data collected by the robot is sent to the client computer in each SIP or Server

Information Packet. When the client receives a SIP it starts its robot task processing cycle.

17

In order to save the sensor readings from the sonar array, a “Sensor Interpretation Task”

was added to this cycle that writes the raw sensor readings and the times they were taken

to a file. These readings are thereby saved for later analysis.

The setup for the range verification tests was fairly simple. A single amigoBot was

placed on a flat surface, and a vertical sonar target was placed in the path of one of the

sonar sensors a known distance from the robot. The robot and its sonar array were then

activated, and the returning data was collected for several seconds. The target was moved

to a different distance from the robot, and the process was repeated. Both the robot and

the target remained stationary during the data collection. The experiment was first run

with the default sonar polling rate of 40ms between each of the eight sensors. At this rate

each individual sensor obtains a new reading every 320ms. The sonar data is sent in a

packet from the robot server to our client software at a rate of 100ms, so only every third or

forth packet contained updated readings. To get a better data sampling rate, a polling rate

of 12ms was used next. This corresponds to a new individual sensor reading every 96ms;

therefore, each packet from the robot should contain an updated sensor reading. The same

experiment was repeated with this new sample rate.

From these tests, it was evident that the polling rate has a significant affect on the

maximum range. For the default rate of 40ms the maximum range is approximately 5 meters

while at a rate of 12ms the maximum range is decreased to approximately 2 meters. This is a

significant reduction in the maximum range capabilities of the sonar sensors. The minimum

range appears to be unaffected by polling rate, and was found to be approximately 0.2m.

The sonar still detects objects closer than this, but it reports their range as the minimum.

The setup for the angular width determination test was very similar to the setup above.

The primary difference in this experiment was that the target was at a fixed range from the

sensor, and instead of increasing its range it was moved in a circular arc with the sensor

at the arc’s center. First the target was placed directly in front of the sensor then moved

slowly off to the side increasing the distance between its edge and a line extending straight

18

out from the sensor. The object had a square corner, and the front face of the target was

kept normal to a line extending from the sensor to this corner. Again, both the robot and

target were stationary during data collection. At each target configuration, perpendicular

distance between the target corner and the line extending out from the sensor was recorded.

The default sonar polling rate of 40ms was used in the tests.

The data was analyzed to determine the largest angle at which the sonar sensor still

returned a valid range. Then the next highest angle for which data was recorded was

determined. These two angles bound the maximum angle away from its normal at which

at which a single sensor can still detect an object. Data was taken at two different ranges.

One set of data was taken at approximately .6 meters and the other at approximately 1.8m.

At 0.6m the maximum angle was between 5.85 and 7.03 degrees. At 1.8m the maximum

angle was between 6.32 and 6.72 degrees. The second set of measurements yielded a more

accurate estimate of the angle, but both sets agree. The data shows that the maximum

angle from the sensor normal at which the sensor can pick up an object is approximately ±

6.5 degrees or a total angular width of 13 degrees.

From the results of these two tests, we can construct a graph of the regions around the

robot where it can detect an object with the sonar. We can also identify any blind spots

that the sonar sensors may have. From the robot parameter file we can obtain the (x,y)

position and heading of each sensor.

19

Chapter 3

Robust Consensus Formation
Tracking Control Experiment

3.1 Problem Description

In this chapter, an algorithm and results are presented for multi-robot formation control.

Some of the work in this chapter was presented in [22]. We consider a team of wheeled

mobile robots that can move in a plane. The goal is for these robots to maintain a desired

formation shape while the formation follows a time-varying desired trajectory. Each of the

robots or agents makes independent control decisions. To coordinate the agents’ actions, a

robust consensus tracking algorithm is used. Each agent implements the consensus algorithm

to track the formation’s desired trajectory. From the formation’s desired trajectory, each

agent calculates its own desired trajectory using a previously known desired formation shape.

Finally, each robot implements a motion controller to follow this desired trajectory.

The problem is complicated by a limited information exchange between the robots. Each

robot can only share or receive information from its neighbors in the formation. Also, the

time-varying, actual, desired trajectory for the formation is only provided to a subset of the

agents. Disturbances that represent both external disturbances and unmodeled dynamics are

applied to the information exchange dynamics, which is why a robust consensus algorithm

is needed.

Initially, this experiment was implemented with all of the agents controlled by one in-

20

stance of the control software running on one computer. This simplified the experiment, and

removed the need for multiple computers. Having all the agents controlled by one computer

is inherently centralized, and removed possible network effects. To address these problems,

the control software was rewritten to be implemented so that each agent was controlled by

a different computer. This brought up several challenges that had to be addressed.

3.2 Theoretical Development

Before the experiment was conducted, the supporting theory was developed. Figure 3.1 gives

a general overview of the algorithm’s structure. What follows is the theoretical background

for the experiment, and an overview of the stability proof.

Figure 3.1: General framework for the experiment

3.2.1 Robust Consensus Tracking

The detailed theoretical development for the robust consensus tracking controller was pre-

viously published in [23].

The consensus controller deals with the information states for each agent. Equation 3.1

shows the information state dynamic model including disturbances.

ẋi = ui + fai + fbi(xi), i = 1, . . . , N (3.1)

21

In this equation xi(t) ∈ Rn is agent i’s information state, ui(t) ∈ Rn is a control input to be

designed, fai(t) ∈ Rn and fbi(xi) ∈ Rn are disturbances that are a function of time and the

state respectively.

The control objective is that all of the information states converge and track the desired

trajectory xd.

The information exchange graph topology is modeled with an adjacency matrix A ∈

RN×N where aij 6= 0 if agent i receives information from agent j and N represents the

number of agents. Access to the reference trajectory is represented by the diagonal matrix

B = diag{b1, b2, . . . , bN} ∈ RN×N where bi 6= 0 if agent i has access to the reference

signals. For this experiment it is assumed that the information exchange is an undirected

graph. Meaning that if agent i receives information from agent j then agent j also receives

information from agent i. This results in the A matrix being symmetric.

The control algorithm is presented below. First, a consensus tracking error for agent i

is defined in Equation 3.2. Where xi, xj, and xd are the agent’s, the neighbor’s, and the

reference state respectively.

efi =
N∑
j=1

aij (xi − xj) + bi (xi − xd) (3.2)

Based on this error, a non-linear estimator term is designed to estimate the unknown dis-

turbance terms in Equation 3.1.

f̂i = k1 (efi − efi(0)) +

∫ t

0

(k2sgn(efi) + efi) dτ (3.3)

In this controller, the signum function sgn(efi) gives the sign of the error, and is defined

element-wise. k1, and k2 are positive constant control gains. Finally, these pieces are

combined to design the control input ui.

ui = −f̂i(t) + biẋd − kcefi (3.4)

This controller has three terms. The first term is the estimate of the disturbances to remove

them from the dynamics. The second term is a feed-forward, velocity term based on the

22

reference signals. This term is only present if the agent has access to the reverence trajectory,

as is indicated by the bi. The last term is simply a proportional error term where kc is another

positive constant control gain.

3.2.2 Motion Controller

Once the agents determine the desired trajectory for the formation using the consensus

algorithm, each agent calculates its own desired trajectory using a formation shape vector.

This formation shape vector gives the position of that agent relative to the formation center.

Equation 3.5 gives this calculation, and Equation 3.6 gives the desired speeds.[
pxdi
pydi

]
=

[
pxci
pyci

]
+

[
cos(θci) − sin(θci)
sin(θci) cos(θci)

] [
dxi
dyi

]
(3.5)

[
ṗxdi
ṗydi

]
=

[
ṗxci
ṗyci

]
+ θ̇ci

[
− sin(θci) − cos(θci)
cos(θci) − sin(θci)

] [
dxi
dyi

]
(3.6)

Figure 3.2 shows the desired formation shape along with the reference trajectory for

this experiment. The formation is a square that travels in a circle in such a way that the

formation is aligned with the circle.

The robots used in these experiments are non-holonomic wheeled mobile robots. A

simple schematic of the robots is shown in Figure 3.3. The kinematic model for robot i is

given in Equation 3.7.

ṗxoi = vi cos(θi) (3.7)

ṗyoi = vi sin(θi)

θ̇i = ωi

Where vi and ωi are the control inputs to the robot. To deal with the non-holonomic

constraint, the position of the robot’s heading point is controlled instead of the position of

the robot’s center. The kinetics of the heading point relative to the robot’s center are given

in Equation 3.8. [
ṗxi
ṗyi

]
=

[
vi cos(θi)− lωi sin(θi)
vi sin(θi) + lωi cos(θi)

]
,

[
uxi
uyi

]
(3.8)

23

60
0

m
m

X

Y

3 4

12

Reference
Trajectory

Figure 3.2: Snapshot of formation shape along with reference trajectory

Where l is the distance between the center and the heading point. uxi, uyi ∈ R are auxiliary

control inputs that can be designed to achieve the trajectory tracking goal. Once these

control inputs are determined, the actual robot control inputs are back calculated as follows.[
vi
ωi

]
=

[
cos(θi) sin(θi)
−1

l
sin(θi)

1
l

cos(θi)

] [
uxi
uyi

]
(3.9)

These auxiliary control inputs are designed to track each robot’s desired trajectory. A

proportional-integral-derivative or PID controller with a velocity feed forward term is used

for this. This controller is given in Equation 3.10.

uxi = ṗxdi − kPx (pxi − pxdi)− kDx (ṗxi − ṗxdi)− kIx
∫

(pxi − pxdi) dτ (3.10)

uyi = ṗydi − kPy (pyi − pydi)− kDy (ṗyi − ṗydi)− kIy
∫

(pyi − pydi) dτ

Where kPx, kPy, kDx, kDy, kIx, kIy are constant control gains.

24

θ
i

O p
xoi

p
yi

p
yoi

p
xi

Figure 3.3: Wheeled mobile robot schematic showing the heading point

3.3 Experiment

Once the control algorithm was developed, an experiment was developed to demonstrate its

effectiveness. What follows are the details and results for this experiment.

3.3.1 Hardware Implementation

The robots used for this experiment were AmigoBots, which were introduced in Section 2.1.

The robots made use of their built in linear encoders to keep track of the their global position,

and for velocity control feedback. The control algorithm was implemented in software on a

remote workstation, and velocity commands were sent to the robots over an Ad-Hoc wireless

IEEE 802.11b network. All four robots were controlled by the same computer as shown in

Figure 3.4. The control computer was a simple desktop workstation running the Microsoft

Windows XP operating system. It communicated with the network using a USB wireless

Ethernet adapter.

25

WorkstationUSB Wireless
Adapter

Robots

Figure 3.4: Experimental Hardware Configuration

3.3.2 Software Implementation

The control software for these experiments was written in C++ using the ARIA robot

API. ARIA was previously discussed in Section 2.3. The control loops for each robot were

implemented in separate threads. This allowed the control calculations to be done in parallel.

A central data storage thread modeled the network interaction and calculated the reference

trajectory. The main thread of the program was responsible for initializing communication

with robots, and spawning all the other threads. Figure 3.5 shows a graphical representation

of the program’s structure, and how these different threads interact. The robot control

threads were responsible for the communication with the robots. These threads would wait

for a communication packet from the robot, perform the necessary calculations, and respond

with a command packet. This resulted in the time step for the control calculations being

dependent on the robot communication.

26

Main Thread

Information Exchange
Thread

Robot
Thread 2

Robot
Thread 1

Robot
Thread 3

Robot
Thread 4

Initializes
Communicates

Robot

Robot

Robot

Robot

Wireless

Figure 3.5: Control Software Structure

3.3.3 Implementation Challenges

There were a great many challenges to be overcome in the implementation of this experiment.

Most of them were related to writing the control software, and overcoming the practical

limitations imposed by real systems.

In order to simplify the process of fixing issues with the software, the code was tested

in stages. First, the trajectory tracking code was tested and initial PID gains were set

before the consensus algorithm was implemented. Initially, all the robots were placed in

their desired formation shape. This resulted in small or zero initial error in the robots’

positions, removing a small aspect of the difficulty of the experiment. When the consensus

algorithm was implemented it initially did not have any disturbances, and was given initial

conditions identical to the desired signal’s initial conditions. This allowed for initial setting

of the consensus gains. After the experiment worked at each stage, another level of difficulty

(such as disturbances) was added, and any new issues addressed. Also, at each stage, the

MobileSim robot simulation program that came with the robots was used to test for problems

27

before the experiment was run with real robots.

Some issues were easy to fix, but difficult to correctly identify. During the tuning of the

motion controller, the robots were given a specific circular desired trajectory without any

consensus. When the experiment was run the robots would drive in a circle, but of the wrong

radius. Initially, it was believed that poor tuning or some issue with the communication was

at fault. Later, it was discovered that the robot was expecting an angular velocity command

in degrees per second, while the control algorithm was calculating it in radians per second.

A simple unit conversion solved the problem that was very hard to identify.

The largest issue with the experiment involved noisy output from the consensus con-

troller. The trajectory tracking controller calculates the desired trajectory for the robot

from the the consensus state and its derivative. The derivative of the consensus state for

the experiment is calculated as a combination of the consensus control input and the dis-

turbances. It was found that the consensus trajectory and particularly the derivative were

very noisy. This caused the trajectory tracking controller to fail. The experiment would

appear to be working at the start, but eventually one of the robots would turn in the wrong

direction literally spiraling out of control, and not be able to recover. Sometimes they would

recover, but seldom would the experiment run for long.

Several steps were taken to eliminate the problem of the noisy consensus states. The

main issue was that part of the control law involved the signum function of the error. This

discontinuous function was responsible for a large portion of the noise in the consensus

states. First, the consensus control gains were changed to try and reduce that function’s

influence on the noise. This had limited benefit because changing the gains lowered the

tracking performance. Next, a low pass filter was applied to the computed trajectory before

being used in the tracking controller. This helped reduce some of the noise, but not all.

More aggressive filtering could have removed more of the noise, but would have began to

affect the underlying signal leading to steady-state errors in the tracking. Slowing down

the reference trajectory also helped to reduce the chance of the experiment failing, and it

28

increased the odds of the robots recovering from a fault.

Despite all of these attempts to improve performance, the experiment continued to fail.

Finally, it was decided to replace the discontinuous signum function in the control law with

a continuous approximation. This did not remove all the noise, but it reduced the noise

enough that the previous improvements were enough to solve the problem. The hyperbolic

tangent function, like the signum function, returns 1 for large positive numbers and returns

-1 for large negative numbers, but at the origin it has a smooth transition from -1 to 1

instead of a sharp step. In the implementation, before the error was passed to the hyperbolic

tangent function, it was multiplied by a positive constant. Increasing this constant made

the hyperbolic tangent function approximate the signum function better, of course it also

increased the noise on the consensus state. This allowed the control law to be adjusted to

reduce the noise while still maintaining performance. Once the consensus control gains were

re-adjusted this allowed the experiment to proceed.

3.3.4 Experimental Parameters

The reference trajectory was selected as a circle where the formation rotates to stay aligned

with a tangent to the circle. A circle was selected to ensure the robots would be able to

execute their trajectories without any problems. Also, it allowed the experiment to run for

a reasonable amount of time without facing the space constraints of the test environment.

Equation 3.11 gives the derivatives of the reference states that were integrated to generate

the reference trajectory.

ṗdxc = vdc cos(θdc) (3.11)

ṗdyc = vdc sin(θdc)

θ̇dc = ωdc

The reference velocities for the experiment were vdc = 20[mm/sec] and ωdc = π
150

[rad/sec].

29

The initial conditions used for the integration of the reference states were:pdxc(0)
pdyc(0)
θdc (0)

 =

0
0
0

 (3.12)

As was shown in Figure 3.2 the formation shape for this experiment is a square centered

on the reference trajectory with a robot at each corner. The formation shape vectors for

robot i was calculated as follows.

dxi = 600 cos
(π

2
i− π

4

)
[mm], i = 1, . . . , 4 (3.13)

dyi = 600 sin
(π

2
i− π

4

)
[mm]

The information exchange graph details are shown graphically in Figure 3.6. For the

experiment only the first agent has access to the reference signals, and the information ex-

change between the agents is undirected. Mathematically the information exchange topology

Ref

1

3

2

4

Figure 3.6: Undirected information exchange graph showing connections between agents

30

Gain Value
k1 0.01
k2 0.7
kc 11

kPx = kPy 0.1
kDx = kPy 0.001
kIx = kIy 0.01

Table 3.1: Experimental Control Gains

x1(0) x2(0) x3(0) x4(0)
-1000 [mm] 500 [mm] 1000 [mm] -500 [mm]
-500 [mm] 1500 [mm] 500 [mm] 1000 [mm]

1 [rad] 0.75 [rad] 0.5 [rad] 0.25 [rad]

Table 3.2: Consensus Initial Conditions

is given the the following A and B matrices.

A =


0 1 0 0
1 0 1 0
0 1 0 1
0 0 1 0

 B =


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 (3.14)

To ensure that each agent had different disturbances on the information exchange dy-

namics, the applied disturbances were a function of the agent number. The dynamics along

with the disturbances are given in Equation 3.15 below.

ẋi = ui + 0.1 sin

(
i

7
t

)
+ 0.1 cos(xi), i = 1, . . . , 4 (3.15)

Values for the control gains from Equations 3.3, 3.4, and 3.10 are all listed in Table 3.1.

To better illustrate the tracking capabilities of the consensus tracking controller, each

robot was given non-zero initial consensus state. The initial conditions used are given in

Table 3.2.

The robots were not initially placed in the desired formation. Instead, they were arranged

in a line. This helped illustrate the capabilities of the trajectory tracking motion controller.

Additionally, it helped avoid collisions between the robots during initial transients. The

initial conditions for position are given in Table 3.3.

31

Robot pxoi(0) [mm] pyoi(0) [mm] θi [rad]
1 -150 750 0
2 -150 250 0
3 -150 -250 0
4 -150 -750 0

Table 3.3: Position Initial Conditions

3.3.5 Experimental Results

After the control software was written, the control gains were tuned, and all of the issues

previously mentioned were solved, the experiment was run to get the results. After the

experiment was run for an appropriate amount of time, the data collected was saved and

analyzed. Then graphs were generated to illustrate the performance of the algorithm.

First, the consensus tracking results were analyzed. Figure 3.7 shows the consensus

tracking results for the coordinates of the center of the formation. Each robot’s under-

standing of the state is graphed along with the desired reference signal. Despite the initial

conditions, the consensus states quickly converge to the desired value. Because of the dis-

turbances and noise, the tracking is not perfect; however, it is very close, and the error is

small relative to the signal.

Figure 3.8 shows the consensus tracking results for the desired angle for the formation.

Each robot’s understanding is graphed along with the desired reference signal. Because

the desired signal in this case is a ramp, the difference between the robot’s states and the

reference state is also graphed. Again the states quickly converge to the desired value, and

remain close despite the disturbances.

The trajectories of the robots’ heading points are graphed in Figure 3.9. Also shown

is the shape of the formation at 50 seconds and 200 seconds into the experiment. This

graph clearly shows that the initial positions were not in the desired formation. It takes the

agents several seconds to begin tracking their respective trajectories, but after 50 seconds

the formation is almost the desired shape. After 200 seconds, the formation has already

32

0 50 100 150 200 250 300
−1000

−500

0

500

1000

p xc
i [m

m
]

p
xc
d

p
xc1

p
xc2

p
xc3

p
xc4

0 50 100 150 200 250 300
−500

0

500

1000

1500

2000

time [sec]

p yc
i [m

m
]

p
yc
d

p
yc1

p
yc2

p
yc3

p
yc4

Figure 3.7: Consensus tracking results for states pxci(t), pyci(t), i = 1, . . . , 4 and reference
states pdxc, p

d
yc

0 50 100 150 200 250 300
−2

0

2

4

6

8

θ ci
 [r

ad
]

θ
c
d

θ
c1

θ
c2

θ
c3

θ
c4

0 50 100 150 200 250 300
−1

−0.5

0

0.5

1

time [sec]

θ ci
−

θ cd [r
ad

]

θ

c1

θ
c2

θ
c3

θ
c4

Figure 3.8: Consensus tracking results and error for state θci, i = 1, . . . , 4 and reference
state θdc

33

achieved the desired shape, and is clearly tracking its desired path.

−2000 −1500 −1000 −500 0 500 1000 1500 2000

−500

0

500

1000

1500

2000

p
xi

 [mm]

p yi
 [m

m
]

Robot 1
Robot 2
Robot 3
Robot 4

Figure 3.9: Actual trajectory of the robots with formation snapshots at 50 seconds and 200
seconds

Shown in Figure 3.10 is the position tracking error for one of the robots. This error

converges to zero.

3.4 Distributed Experiment

As was mentioned earlier, there were several aspects of the experiment, which despite the

distributed nature of the algorithm, made it centralized. To address these issues the experi-

ment was re-designed. What follows are the details and results for this reworked experiment.

3.4.1 Hardware Implementation

The use of one computer for control is one of the main centralized aspects of the experiment,

so for the distributed experiment, one computer was used for each agent (4 to be exact).

Figure 3.11 shows the hardware setup for the distributed version of the experiment. The

34

0 50 100 150 200 250 300
−800

−600

−400

−200

0

200

400

600

800

time [sec]

T
ra

ck
in

g
E

rr
or

 [m
m

]

p

x3
 − p

xd3

p
y3

 − p
yd3

Figure 3.10: Formation tracking error for Robot 3

computers used were four laptops running a Linux operating system. The same Ad-Hoc

network was used for communicating with the robots, but instead of external adapters, the

laptops were all equipped with built in wireless networking cards. The same network was

also used for the inter-agent communication required by the consensus algorithm.

3.4.2 Software Implementation

Most of the changes between the original and distributed versions of the experiment were in

software implementation. Instead of one control program, a different instance of the control

software was run for each agent. All these control programs were running on different

computers, and using the wireless network for communication. This allowed the experiment

to be decentralized. Figure 3.12 shows the new structure of the control software.

What was previously a central data storage thread became the consensus control thread.

The consensus tracking controller code was separated from the motion controller code and

implemented in this new thread. This allowed greater control over the execution rate of

35

Robots

Control
Computers

Figure 3.11: Distributed Experimental Hardware Configuration

the consensus algorithm that improved its stability. Instead of executing at the robot com-

munication rate which is about 10 Hz the control loop could execute at a much faster rate

of approximately 100 Hz. The consensus thread also handles initializing and monitoring

network connections to the other agents in the formation. Only the agents that are ad-

jacent have communication links established. An extra initialization phase was added to

the program where it waits for all necessary connections to be made between the agents

before connecting to the robots, or starting the control algorithms. The source code for this

experiment is listed in Appendix A.

3.4.3 Implementation Challenges

There were several challenges in implementing the distributed version. The initial failure of

the consensus algorithm proved to be a major obstacle. Even for a simple case, the consensus

information quickly grew too large, due to delays in the information, and numerical issues

arising from large step sizes.

Originally all the control calculations for both the consensus and motion control were

36

Main
Thread

Robot
Thread

Initializes
Communicates

Robot 1

Wireless

Consensus
Thread

Main
Thread

Robot
Thread

Robot 2

Consensus
Thread

...

Figure 3.12: Distributed Control Software Structure

done in the robot control loop in a custom “action”. Periodically the robot sends a packet

containing status and sensor information to the control computer. This triggers an iteration

of the robot control loop. During each iteration several tasks are executed including the cus-

tom action containing the control code. Then a response packet containing the new control

inputs is sent by the control computer to the robot. This process happens approximately

every 100 ms. This relatively large step size coupled with a delay in receiving information

from the other agents was causing the consensus calculations to diverge quickly.

The sample rate for the packets sent by the robots could have been increased, but this

would have added additional network load. Instead, the consensus calculations were run in a

separate thread in parallel to the robot control thread. They were moved to the data storage

thread, along with the code to handle the exchange of consensus information between the

agents over the network. Because this thread did not depend on receiving a packet from the

robot to trigger its execution, it could run much faster with smaller time steps solving the

stability issues.

37

3.4.4 Experimental Parameters

Many of the parameters from the original experiment remained unchanged for the distributed

version. One of the major differences was in the speed of the reference trajectory. Decreasing

the time step for the consensus calculations improved the performance of both the consensus

controller and the motion controller. This allowed for the motion controller to track a

faster trajectory. The new reference trajectory parameters were wdc = π
50

[rad/sec] and

vdc = 60[mm/sec].

3.4.5 Experimental Results

As in Section 3.3.5, after the control program was complete, the experiment was run and

data collected. What follows are graphs showing that the performance is maintained despite

the changes. In fact, the performance is actually improved somewhat.

Figure 3.13 shows the first two consensus states and their reference states. The figures

in this section have the same time scale as the figures for the centralized experiment. One

of the changes between the previous experiment and this one was increasing the speed of

the formation by increasing the reference state parameters. Despite the increase in speed,

and the disturbances, the consensus algorithm is still able to track the reference states quite

well.

The third consensus state and its corresponding reference state are graphed in Figure

3.14. Just as in the previous figure, the tracking is good. Unlike Figure 3.8 the error was

not shown. Because of the distributed nature of the experiment, the reference state has a

different time scale than the consensus states. This made it difficult to compute the error

accurately.

The actual paths of the four robots during the experiment are shown in Figure 3.15.

As before, the robots begin the experiment without the desired configuration. After a few

seconds, the robots move into the desired formation shape, and the formation tracks the

desired trajectory. The exact position tracking is not quite as good as it was previously.

38

0 50 100 150 200 250 300
−1000

−500

0

500

1000

p xc
i [m

m
]

0 50 100 150 200 250 300
−500

0

500

1000

1500

2000

time [sec]

p yc
i [m

m
]

p
xc
d

p
xc1

p
xc2

p
xc3

p
xc4

p
yc
d

p
yc1

p
yc2

p
yc3

p
yc4

Figure 3.13: Consensus tracking results for states pxci(t), pyci(t), i = 1, . . . , 4 and reference
states pdxc, p

d
yc

This is likely due to the greatly increased speed of the formation. The increase in speed

was to demonstrate that the improved consensus performance allowed the tracking of faster

trajectories.

The position tracking error for the third robot is shown in Figure 3.16. Again, the

tracking is not perfect but is close. It takes several seconds to stabilize to the desired values.

This is partially because of the increased speed of the formation.

39

0 50 100 150 200 250 300
−2

0

2

4

6

8

10

12

14

16

θ ci
 [r

ad
]

time [sec]

θ
c
d

θ
c1

θ
c2

θ
c3

θ
c4

Figure 3.14: Consensus tracking results and error for state θci, i = 1, . . . , 4 and reference
state θdc

−2000 −1500 −1000 −500 0 500 1000 1500 2000

−500

0

500

1000

1500

2000

p
xi

 [mm]

p yi
 [m

m
]

Robot 1
Robot 2
Robot 3
Robot 4

Figure 3.15: Actual trajectory of the robots with formation snapshots at 50 seconds and
200 seconds

40

0 50 100 150 200 250 300
−800

−600

−400

−200

0

200

400

600

800

time [sec]

T
ra

ck
in

g
E

rr
or

 [m
m

]

p

x3
 − p

xd3

p
y3

 − p
yd3

Figure 3.16: Formation tracking error for Robot 3

41

Chapter 4

Formation State Description and
Measurement

4.1 Motivation

In the previous chapter, the positions of the agents in the formation were described in terms

of two pieces of information. The global position and orientation of the formation’s center,

and the relative locations of the agents from this center. This approach requires each agent

to know its own position relative to some common, global, reference frame. The inclusion of

a global reference frame presents several challenges. First, a single reference for all the agents

leads to a centralized framework. Second, each agent must measure its position accurately.

In all the previous experiments (Sections 3.3 and 3.4), the position and orientation of the

robots were measured by wheel encoder odometery. This process leads to slight errors

accumulating over time, and wheel slip can cause significant drift in the measurements.

Also, the initial positions of the robots must be known. Another traditional solution to this

problem is to use Global Positioning System or GPS measurements. Unfortunately, GPS

measurements may not always be available, such as in indoor environments.

Removing the dependence on a global reference frame gives a more decentralized ap-

proach. It also removes the problems associated with needing the global position and ori-

entation of each agent. New problems arise with the removal of the global reference. In

particular, it requires new ways of describing and measuring the agent’s positions in the

42

formation. Instead of global positions, only relative measurements between two agents, or

between an agent and its environment are possible. This leads toward describing the state of

the formation in terms of the relative positions of the agents, or in terms of the geometry of

the formation. Using these tools it is possible to build up a state that completely describes

the configuration of the agents in a formation. Sections 4.2 and 4.3 addresses this problem.

One of the ways to make relative measurements within a formation of robots is to use

cameras mounted to the robots. Cameras and computer vision algorithms are capable of

making relative measurements with some constraints. Field of view constraints for most

cameras, and other practical considerations, limit their measurement capabilities. Related

to the formation control problem, it is unlikely that every agent will be able to make all the

measurements necessary to completely describe the formation. In the same way, it is unlikely

that any one agent will be able to obtain this information by itself. The assumption that may

be made more safely, is that if all of the information being measured was combined somehow,

a complete description of the formation’s state could be developed. Section 5.2 describes a

way to combine measurements made by different agents into a complete description of the

formation. This is done in a distributed manner using a consensus tracking algorithm based

on the one used in section 3.2.

4.2 Formation State Description

To begin with, only a formation consisting of three mobile robots will be considered. The

shape of such a formation is obviously a triangle. The goal is to describe this formation

without reference to a global frame. To describe the shape of three points in a plane uniquely,

a minimum of four variables, and a local coordinate frame are needed. One of these four

should relate to the coordinate frame. Then three more pieces of information that relate the

shape to a global frame are needed to completely describe the shape in the global reference

frame. Again these three must be independent.

Considering the fact that the robots have size and therefore orientation makes this a

43

formation of robots. This can be accounted for by considering a coordinate frame aligned

with each robot and fixed to each point. Because one coordinate frame already exists, only

two have to be added. This corresponds to adding two more pieces of information to fully

describe the formation. These two pieces of information don’t have to take the form of

coordinate frames, but they do have to relate the orientation of two different robots to the

formation. This brings the number of independent variables up to 6, three to describe the

shape of the formation, and three to relate the orientations of the robots to the formation.

It is not necessary to think of any of these latter three in terms of coordinate frames at all,

but it may prove to be convenient. These must also be independent.

For example, a formation of three robots can be described with the following independent

set of 6 variables: two of the distances between the robot centers; two of the bearing angles;

and two of the relative rotations between robots. Specifically, dij the distance from the

center of (origin of) robot i to the center of (origin of) robot j. There are three of these

distances because dij = dji and dii = 0. The bearing angle βij is the bearing angle from

robot i to robot j, it is the angle measured positive counter clockwise, from the coordinate

frame of robot i to the line connecting the center of robot i to the center of robot j. βij

is defined on (−π, π] and is measured from the axis pointing out of the front of the robot.

βii is undefined, and βij 6= βji. θij is the relative angle of rotation from robot i to robot j.

It is the angle measured positive counter clockwise between one local axis of robot i and

the same local axis of robot j. It can also be defined as θij = θj − θi where θi and θj are

the orientation angles of the two robots measured in some global frame. Figure 4.1 shows a

formation of three robots described with these variables.

Relating this example back to the earlier discussion, these variables can be thought of as

describing a triangle with local coordinate frames at each vertex. The distances correspond

to the lengths of two of the sides of the triangle. The bearing angles give the relative

orientation of two of the coordinate frames to adjacent sides of the triangle. Then, each

relative rotation angle tells the angle between two coordinate frames. With these distances

44

F1

F2

θ12

β12

d12

F3

d
23

β23

θ23

Figure 4.1: Fully Described Robot Formation

and angles, it is possible to calculate any other variable that could describe the formation.

For example using the bearing angles, and the relative rotations, the internal angle where

the two known sides of the triangle meed could be determined. Then, using this angle

and the known lengths, the length of the third side could be determined using the law

of cosines. It is clear that these 6 variables serve as a basis set for all variables that can

describe the formation. Any descriptor of the formation can be calculated from these using

geometric relationships. This basis set is not unique, any complete set of independent

variables describing the geometry of the formation will do.

This concept can be generalized to larger formations with more robots. For each ad-

ditional robot in the formation, the number of states required to completely describe the

formation increases by the number of degrees of freedom for the robot. For example to

completely describe a formation of four robots with each having three degrees of freedom, 9

variables are required. As previously mentioned, a similar formation with only three robots

would require 6 variables. In general the positions of robots in a formation irrespective of

45

a global frame can be described by the number of degrees of freedom for the robots times

the number of robots minus the number of degrees of freedom for the global frame. For the

formation of four robots this equates to 3 degrees of freedom times 4 robots minus 3 degrees

of freedom for the global frame, or 9 variables total.

4.3 Measurement Rules and Assumptions

Three states exactly define the relative displacement between two robots with three degrees

of freedom on a plane. That is one robot can be uniquely placed relative to another using only

a three-dimensional state. Therefore, a robot who has only one robot visible to it, can make

at most 3 independent measurements. Also, it means that if a robot has two robots visible, it

can make 6 independent measurements. An example of these 3 independent measurements

would be distance dij and the two bearing angles βij and βji. Or, the distance dij one

bearing angle βij and the relative rotation θij. Note that if robot i makes three independent

measurements of robot j, no measurements of robot i made by robot j will be independent

of the original three.

Considering the three independent measurements of one robot from another as a basis

set for all possible measurements allows some freedom. For example, given three of these

measurements from robot i to robot j, they can easily be converted into the equivalent

measurements from robot j to robot i.

Assuming three measurements are possible, the following measurement rules were devel-

oped:

• Robot j is visible to robot i if robot j is in the field of view of robot i’s camera. This

is true if |βij| < σi/2, where σi is the view angle of robot i’s camera.

• If a third robot is blocking robot i’s view of robot j, robot j is not visible.

• If a robot is visible, it can be uniquely identified.

46

• If robot j is visible to robot i, robot i can accurately measure three independent states

describing their relative locations, such as βij, dij, and θij.

With these rules and assuming a three robot formation there are 36 possible measure-

ments, and for each robot that is visible, three of these are measured. However, remembering

that the independent measurements form a basis set; relations can be developed such as the

following: dij = dji, θij = −θji, βij = θij + π + βji. Using relations such as these, for each

robot that is visible, six of the possible measurements can be calculated. If only three of

these measurements are used, that is, d12 is considered a measurement, and not d21. This

reduces the total number of measurements from 36 to 9 without causing too many problems

because when a robot is visible 6 variables are calculated then the 3 that are not desired

measurements are discarded.

So, for the case of a three robot formation there are 9 possible measurements. Any 6 of

these are independent, and with any 6 we can completely define the shape of the formation

as discussed in Section 4.2. These measurements are made by the robots three at a time.

For the experiments, a particular measurement configuration for the formation will be

assumed. This ensures that all of the states are measurable. It will be assumed that

robot 2 is always visible to robot 1, and robot 3 is always visible to robot 2. Using the

measurement rules defined above, this allows the selection of a state made up of variables

directly measurable. Because of the chosen formation case, the distance, bearing angle, and

relative rotation between robots 1 and 2, and robots 2 and 3 will be the states used.

These definitions give the following state (Equation 4.1) that describes the shape of the

formation and the orientation of the robots irrespective of a global reference frame.

x =


d12
β12
θ12
d23
β23
θ23

 (4.1)

47

4.4 Image Measurement

Homography techniques allow the comparison of two images taken of the same plane and

can determine the translation and rotation required to transform one image into the other.

This gives the translation and rotation of the camera’s coordinate frame as it moves from

the reference configuration where the first image was taken to the configuration where the

second image was taken. Or the camera remains still and the plane translates and rotates.

In the case of two robots the motion will likely be a combination of these two. One image

can be taken to represent a reference configuration where the relative positions of the robots

are known, and a second image to represent a configuration where the relative positions of

the robots are unknown. Then using homography, and certain information known about

the reference configuration, the relative positions and orientations of the two robots can be

determined. This process is simplified slightly by the fact that the robots are constrained

to move in a plane, essentially removing two rotational and one translational degrees of

freedom.

The two papers [24, 25] discuss similar development for image based measurements using

homography.

Consider two wheeled mobile robots Robot 1 and Robot 2 that are moving in a plane.

Robot 1 has a camera rigidly attached to it pointing towards the front of the robot. Robot

2 has a plane π containing feature points rigidly attached to it facing rearward. Figure 4.2

shows the robots, several coordinate frames, and vectors in two configurations. The first con-

figuration is a static reference configuration. The coordinate frames for Robot 1 and Robot

2 are F1r and F2r respectively. There is also a camera coordinate frame Ir. After undergoing

some translations and rotations, the robots arrive at the second configuration where their

coordinate frames are F1 and F2. The camera coordinate frame in this configuration is I.

The rotations and translations between various coordinate frames shown in Figure 4.2

are summarized in Table 4.1. Rr, R
′
r, R,R

′, RI ∈ SO(3) represent rotation matrices between

the various coordinate frames. xfr, x
′
fr, xf , x

′
f , xI ∈ R3 are the relative positions of the

48

F1r

F2r

Ir

F1

I

F2

si

si
πr

π

Figure 4.2: Image Measurement Coordinate Frames

various coordinate frames. The subscript r indicates a variable or coordinate frame in the

reference configuration. Also the use of ′ indicates rotations or translations relative to the

camera coordinate frame.

xfr =
[
xr yr zr

]
(4.2)

xf (t) =
[
x(t) y(t) z(t)

]
(4.3)

RI and xI are not pictured in the figure, but they relate the location and orientation of

the camera to the robot to which it is attached. The constant Euclidean coordinates of the

ith feature point on the plane π described in Robot 2’s coordinate frame are denoted si.

m̄ri ∈ R3 is the Euclidean coordinates of the ith feature point on the plane πr described in Ir.

Also, m̄i ∈ R3 is the Euclidean coordinates of the ith feature point on the plane π described

in I. That is they are the coordinates of the feature points in the camera coordinate frame

for the reference and second configurations respectively.

49

Rotation Translation Coordinate Frames
Rr xfr F2r to F1r in F1r

R′r x′fr F2r to Ir in Ir
R xf F2 to F1 in F1

R′ x′f F2 to I in I
RI xI I to F1 in F1

Table 4.1: Relationships Between Coordinate Frames

m̄ri =
[
xri yri zri

]
(4.4)

m̄i(t) =
[
xi(t) yi(t) zi(t)

]
(4.5)

The camera follows the pinhole camera model represented by the Equation 4.6.

pi = Ami (4.6)

Where pi represents the image space pixel coordinates of some point, A is the intrinsic

camera matrix, and mi is the normalized version of m̄i. The normalized coordinates are

given as follows.

mri =
[
xri
zri

yri
zri

1
]

(4.7)

mi(t) =
[
xi(t)
zi(t)

yi(t)
zi(t)

1
]

(4.8)

Through camera calibration, the intrinsic camera parameters represented by the matrix

A are known. Also through calibration, the relative position and orientation of the camera

coordinate frame to the first robot’s frame xI and RI respectively are known.

From the geometry of the problem shown in Figure 4.2, the following relationships can

be developed.

xfr =xI +RIx
′
fr Rr = RIR

′
r (4.9)

xf =xI +RIx
′
f R = RIR

′ (4.10)

50

The relationships in Equation 4.9 lead to expressions to calculate the translations and

rotations from the camera coordinate frame. Given the extrinsic camera calibration param-

eters, and the exact relative locations of the robots in the reference configuration, these

parameters can be calculated as follows.

xfr =xI +RIx
′
fr

RIx
′
fr =xfr − xI

x′fr =RT
I (xfr − xI) (4.11)

Rr =RIR
′
r

R′r =RT
I Rr (4.12)

The feature point locations relative to the camera can be described as follows.

m̄ri =x′fr +R′rsi (4.13)

m̄i =x′f +R′si (4.14)

These can be combined to eliminate the constant coordinates si.

m̄i =x′f +R′R′Tr
(
m̄ri − x′fr

)
m̄i =x′f −R′R′Tr x′fr +R′R′Tr m̄ri

m̄i =x′n +R′nm̄ri (4.15)

Where the auxiliary variables x′n ∈ R3 and R′n ∈ SO(3) are defined as follows.

x′n = x′f −R′nx′fr, R′n = R′R′Tr (4.16)

For further analysis, dr ∈ R and nr ∈ R3 are defined, such that:

dr = nTr m̄ri (4.17)

51

Where dr represents the perpendicular distance from I to the plane π, and nr is a unit

vector normal to π pointing toward I. Substituting Equation 4.17 into Equation 4.15 yields

the following.

m̄i =
x′nn

T
r m̄ri

dr
+R′nm̄ri

m̄i =

(
x′n
dr
nTr +R′n

)
m̄ri

mizi =

(
x′n
dr
nTr +R′n

)
mrizri

mi =
zri
zi

(
x′n
dr
nTr +R′n

)
mri

mi =αiHmri (4.18)

Where

H =
x′n
dr
nTr +R′n, αi =

zri
zi

(4.19)

From corresponding feature points in the reference and second image, and equation 4.18

it is possible to calculate H. Then, using a homography decomposition algorithm, it is

possible to calculate x′n
dr

and R′n if nTr is given. Because they are constant, and related

to the feature point locations in the reference configuration nTr and dr can be calculated

beforehand. Once x′n and R′n are obtained, xf and R can be calculated using equations

4.16, and 4.10.

xf = xI +RI

(
x′n +R′nx

′
fr

)
, R = RI (R′nR

′
r) (4.20)

After calculating these relative positions and orientations, it is necessary to calculate

the states used for formation control. Specifically dij, βij, and θij. These quantities are

pictured in Figure 4.3. θij can be calculated from R. Because the robots are constrained

to a plane, R represents the rotation about robot j’s z axis that would align it with robot

i. The angle of this rotation is the same as θij, so to obtain the angle, the rotation matrix

is transformed into a quaternion, or rotation vector representation from which the angle

of rotation is extracted. The distance between the robots dij is simply the magnitude of

xf . The slightly more complicated calculation is determining βij. It can be found with the

52

F1

F2

θ12

β12

x

y

d12

Figure 4.3: Relationships Between Relative Position Orientation and States

following equation.

βij = tan−1
(y
x

)
(4.21)

Calculating angles with the inverse tangent function can cause issues if the vector is in the

second or third quadrant. In this case however, it is assumed that the angle of view of the

camera is much less than 180◦; therefore, the x coordinate will always be positive. If it were

not, the other robot would not be visible, and no measurement would have been made.

53

Chapter 5

Vision-Based Formation Tracking
Experiment With Consensus

5.1 Problem Description

The goal in this chapter is to develop an algorithm and experiment using the formation

description developed in Chapter 4. That state description, and measurement method will

be applied to a team of three robots with cameras mounted on them. The robots will use

that information to achieve and maintain a desired formation shape.

As mentioned before, there needs to be a method for combining and distributing the

information measured by different agents. A consensus algorithm similar to the one used

in Section 3.2 can be used to accomplish this task. Previously this algorithm was used

to distribute a time-varying reference signal from one leader to the rest of the formation

while ensuring that all the agents had the same understanding of this signal. Additionally

the algorithm was robust to disturbances in the information exchange, and the agents had

limited information exchange. In this new case, the algorithm will be used to combine

measured information collected from multiple agents, and distribute it to all the agents

ensuring they all have the same information. Again, this will be accomplished despite

limited information exchange.

Finally after the robots have an accurate picture of the formation they need a way

to design their movements to achieve the desired formation shape. To accomplish this,

54

first a desired formation state derivative is calculated. Second, this desired derivative is

transformed into desired velocities for the robots using an inverse Jacobian matrix.

All of these individual pieces are combined into an experiment implemented on real

hardware with real robots and cameras. A general framework for the algorithm used is

shown in Figure 5.1. In the experiment, the robots, who do not share any common reference

frame, must achieve a desired formation shape based on measurements made with on-board

cameras. Additionally, no single agent is able to measure all of the required information,

instead the information is measured by several agents. This information is exchanged over

a wireless network with limited communication, that is, not all of the agents communicate

with each other.

Figure 5.1: General framework for the experiment

5.2 Consensus Tracking Protocol

Each robot can only measure part of the relative state information, while the rest of the

information is measured by other robots. In order for the robots to make a control decision,

they need this information from the other robots in the formation. In order to share this

information, a consensus tracking protocol is designed to estimate all the states. This

protocol is similar to the one presented in Section 3.2 with a few key differences. The most

significant difference is that instead of a single reference state being provided by one or a

55

subset of the agents, different pieces of a measured state are provided by different agents.

The consensus algorithm is designed to be generic to the number of states and agents.

This allows this same algorithm to be applied to other problems with more or less states,

and more or less agents. There is little restriction on the states as well, so they could easily

represent any information that is measured by several agents in a distributed manner. Be-

cause of this, the consensus algorithm could have applications to distributed sensor networks

as well.

5.2.1 Model

The goal of this consensus algorithm is to provide a consistent estimate of the formation state

to all of the agents. The actual formation state is the current relative positions of the robots

in the formation. This state is then measured in a distributed way by several of the agents

in the formation. It is the job of the consensus algorithm to update each robot’s estimate or

understanding of the actual state using these measurements and the understandings of its

neighbors. Many consensus algorithms are designed to reach an agreement between several

agents on a constant value. This algorithm, however, must track a time-varying state. In

order to track this state effectively, the dynamics of the state must be considered.

The current configuration of the robot formation, which is a function of the actual

locations of the robots, is given by the state x ∈ Rn. This state is treated as the desired

value that the consensus algorithm must track, but it is essentially unknown to the robots.

Instead portions of this state are measured, and that information is used to update the

consensus states. The dynamics of x, given in Equation 5.1, are related to the dynamics of

the robots. They are a function of the motions of the robots, and any real-world disturbances

they encounter such as wheel slip or uneven terrain.

ẋ = J(x)v + fa(x, v, t) = f(x, v, t) (5.1)

In this equation, v ∈ R2N is a vector containing the angular and linear velocities of all the

robots. J(x) ∈ Rn×2N is the Jacobian matrix that relates the angular and linear velocities

56

of the robots to the derivatives of the states, and is a non-linear function of the states.

The unknown function fa(x, v, t) ∈ Rn represents the unknown real world disturbances on

the motion of the robots. It also incorporates any unmodeled dynamics of the robots. For

convenience, f(x, v, t) ∈ Rn is the sum of these two terms. This derivative is not measurable

by any individual robot. Even the portion that is a function of the robot control inputs is

mostly unknown because each robot is assumed to only know its own velocity.

As previously mentioned, each robot has an information state xi ∈ Rn that represents

robot i’s understanding of the current formation configuration. This state is an internal

control variable, and as such it can be assigned dynamics that facilitate the later control

development. Because this state is meant to track x, it would be beneficial to assign dy-

namics to this state that exactly match that of the formation. Unfortunately, as previously

mentioned, most of the dynamics are unknown, so instead the state will be given simple

first order dynamics with a control input to be designed later. The dynamics of each robot’s

information state are chosen as follows in Equation 5.2.

ẋi = ui, i = 1, . . . , N (5.2)

5.2.2 Control Objective

The control objective is to design a control law ui(t) such that each robot’s information

state xi(t) tracks the current configuration of the formation x(t) in the sense that

xi (t)→ x (t) as t→∞

5.2.3 Consensus Protocol Design and Error System

Define a consensus and measurement error for robot i as:

eci =
N∑
j=1

aij (xi − xj) +Bi (xi − x) , ∈ Rn (5.3)

Where xi is the information state of robot i, and x is the state as measured by robot i. The

scalars aij are the elements of the adjacency matrix A that describes the network connections

57

between the agents. N is the number of agents and n (which does not appear) is the number

of states. The matrix Bi ∈ Rn×n is a diagonal matrix that represents what states in x are

measurable to robot i. All of the off diagonal terms are zero, and the diagonal terms are

equal to 1 if robot i can measure the corresponding state, and zero otherwise.

The control algorithm is defined as follows:

ui = −kceci − f̂i (5.4)

f̂i = k1 (eci − eci (t0)) +

∫ t

0

(k2sgn(eci) + k3eci) dτ (5.5)

In 5.4 and 5.5 the scalars k1, k2, k3, kc ∈ R are positive constant control gains. In 5.4 the

term −f̂i serves to estimate a feed-forward term.

To enable the analysis of the entire system as a whole, concatenated vectors are defined

as follows.

X =
[
xT1 , . . . , x

T
N

]T
(5.6)

U =
[
uT1 , . . . , u

T
N

]T
(5.7)

Ec =
[
eTc1, . . . , e

T
cN

]T
(5.8)

F̂ =
[
f̂T1 , . . . , f̂

T
N

]T
(5.9)

B =blockdiag(B1, B2, . . . , BN) (5.10)

Where X,U,Ec, F̂ ∈ RnN and B ∈ RnN×nN . The concatenated error can be written as:

Ec = (L⊗ In)X +B (X − 1⊗ x) (5.11)

Where L ∈ RN×N is the Laplacian matrix of the communication graph. For convenience we

define a matrix H = (L⊗ In) +B. Using this definition, the error becomes

Ec = HX −B (1⊗ x) (5.12)

Also

F̂ = k1 (Ec − Ec (t0)) +

∫ t

0

(k2sgn(Ec) + k3Ec) dτ (5.13)

58

sgn (Ec) = [sgn (e11) , . . . , sgn (eNn)]T

U = −kcEc − F̂ (5.14)

Taking the time derivatives of the concatenated error and estimate law.

Ėc =HẊ −B (1⊗ ẋ) (5.15)

=HU −B (1⊗ f)

=H
(
−kcEc − F̂

)
−B (1⊗ f)

˙̂
F = k1Ėc + k2sgn (Ec) + k3Ec (5.16)

For further analysis, define an auxiliary error r ∈ RnN

r = H−1Ėc + kcEc (5.17)

= H−1
(
H
(
−kcEc − F̂

)
−B (1⊗ f)

)
+ kcEc

= −kcEc − F̂ −H−1B (1⊗ f) + kcEc

= −F̂ −H−1 (H − (L⊗ In)) (1⊗ f)

= −F̂ − (1⊗ f) +H−1 (L⊗ In) (1⊗ f)

= −F̂ − (1⊗ f) +H−1 (L1⊗ f)

= −F̂ − (1⊗ f) = −F̂ −G

In the above analysis, a property of the Kroncker product (⊗) and a property of the Lapla-

cian matrix L were used. Specifically it is a property of the Laplacian that L1 = 0. Also

G = (1⊗ f). Taking the time derivative of this auxiliary error

ṙ = − ˙̂
F − Ġ

= −k1Ėc − k2sgn (Ec)− k3Ec − Ġ

= −k3Ec − k2sgn (Ec)− Ġ− k1Ėc

= −k3Ec − k2sgn (Ec)− Ġ− k1 (Hr − kcHEc)

= −k1Hr − k3Ec − k2sgn (Ec)− Ġ+ k1kcHEc

= −k1Hr − k3Ec − k2sgn (Ec) + Ψ (5.18)

59

Where

Ψ = −Ġ+ k1kcHEc (5.19)

Now for further analysis, define a desired Ψd.

Ψd = −Ġ = −
(
1⊗ ḟ

)
(5.20)

Ψ̃ = Ψ−Ψd = k1kcHEc (5.21)

5.2.4 Stability Analysis

To show that the consensus controller will achieve the control objective, Lyapunov stability

analysis is used. First a matrix and a function are shown to be positive definite.

Lemma 5.2.1. The matrix H will be positive definite if the undirected communication graph

is connected, and every state is measured by at least one agent.

Proof. N ∈ R is the number of agents. n ∈ R is the number of states. The connectivity of

the graph is given by the Laplacian matrix L ∈ RN×N

For each agent i there is a diagonal matrix Bi ∈ Rn×n that describes which states are

measured by that agent. The jth diagonal element of Bi is denoted bij ∈ R. If bij 6= 0 agent

i measures state j. Define a block diagonal matrix B = blkdiag (B1, B2, · · · , BN) ∈ RNn×Nn

For each state j there is a diagonal matrix Pj ∈ RN×N that describes which agents

measure that state. The ith diagonal element of Pj is denoted pji ∈ R. If pji 6= 0 state j

is measured by agent i.We define a block diagonal matrix P = blkdiag (P1, P2, · · · , Pn) ∈

RNn×Nn

Note that bij = pji however Bi 6= Pi and B 6= P . The format of the matrix B is that

it contains blocks for each agent with the rows and columns of those blocks corresponding

to different states. The matrix P however contains blocks for each state with the rows

and columns of those blocks corresponding to different agents. It is useful to define a

transformation matrix T ∈ RNn×Nn such that:

T TBT = P

60

In the matrix H = (L⊗ In) + B the term (L⊗ In) has the same basic format as B in

that it contains blocks for each agent with rows and columns of those blocks corresponding

to different states. Because of this similarity, it is clear that

T T (L⊗ In)T = (In ⊗ L)

If this transformation is applied to H, a block diagonal matrix is obtained.

T THT =T T ((L⊗ In) +B)T = (In ⊗ L) + P (5.22)

=blkdiag (L+ P1, L+ P2, · · · , L+ Pn)

If the undirected graph G1 is connected and at least one agent measures state j, then the

matrix L+ Pj is positive definite.

Since at least one agent has access to the desired trajectory, not all pji’s are equal to

zero. Say pjm > 0,m ∈ {1, ..., N}.

Denote the N eigenvalues of L as λ1, λ2, ..., λN ∈ R with λ1 = 0 and λi > 0, i ∈ {2, ..., N}.

A set of N orthogonal nonzero eigenvectors associated with the N eigenvalues of L are

represented as ξi ∈ RN with ξ1 = 1. An arbitrary nonzero vector y ∈ RN can be represented

as

y = a11 +
N∑
i=2

aiξi

with at least one ai 6= 0, i ∈ {1, ..., N}. If a1 = 0 and aj 6= 0 for at least one j ∈ {2, ..., N},

then

yT (L+ Pj) y = yTLy + yTPjy ≥
N∑
i=2

a2iλiξ
T
i ξi + pjmy

2
m ≥ a2jλjξ

T
j ξ > 0

If a1 6= 0 and aj = 0 for all j ∈ {2, ..., N}, then

yT (L+ Pj) y = yTLy + yTPjy = 0 + pjmy
2
m > 0

If the above conditions are met for all of the states, all of the blocks in T THT will be positive

definite, and the combined matrix itself will be positive definite. Because T is an invertible

transformation, H is also positive definite.

61

Lemma 5.2.2. The function s(t) ∈ R defined as follows, is positive definite.

s(t) , Ec(t0)
Tk2sgn(Ec(t0))− Ec(t0)TΨd(t0)− q(t) (5.23)

q̇(t) = rTHT (Ψd(t)− k2sgn(Ec)) ∈ R. (5.24)

Proof. The integration term q(t) is given by

q(t) =

∫ t

t0

rTHT (Ψd(t)− k2sgn(Ec)) dτ

=

∫ t

t0

(
Ėc + kcHEc

)T
(Ψd(t)− k2sgn(Ec)) dτ

=

∫ t

t0

kcE
T
c H

T (Ψd − k2sgn(Ec)) dτ +

∫ t

t0

ĖT
c Ψddτ −

∫ t

t0

ĖT
c k2sgn(Ec)dτ

Integrating the last two terms∫ t

t0

ĖT
c Ψddτ = ET

c Ψd

∣∣t
t0
−
∫ t

t0

ET
c Ψ̇ddτ∫ t

t0

ĖT
c k2sgn(Ec)dτ = Eck2sgn(Ec)|tt0

q(t) =

∫ t

t0

kcE
T
c H

T (Ψd − k2sgn(Ec)) dτ + ET
c Ψd

∣∣t
t0
−
∫ t

t0

ET
c Ψ̇ddτ − Eck2sgn(Ec)|tt0

=

∫ t

t0

kcE
T
c H

T

(
Ψd −

1

kc
H−T Ψ̇d − k2sgn(Ec)

)
dτ + ET

c Ψd − Ec (t0) Ψd (t0)

− ET
c k2sgn (Ec) + ET

c (t0) k2sgn (Ec (t0))

≤
∫ t

t0

kc||HEc||
(
||Ψd||+

1

kc
||H−T Ψ̇d|| − k2

)
dτ

+ ||Ec|| (||Ψd|| − k2) + ET
c (t0) k2sgn (Ec (t0))− ET

c (t0) Ψd (t0)

If 1
kc
||H−T Ψ̇d|| − k2 < 0 then the integral satisfies the following inequality∫ t

t0

q (τ) dτ ≤ ET
c (t0) k2sgn (Ec (t0))− ET

c (t0) Ψd (t0)

Therefore

s (t) = Ec(t0)
Tk2sgn(Ec(t0))− Ec(t0)TΨd(t0)−

∫ t

t0

q(τ)dτ ≥ 0

62

Theorem 5.2.1. The consensus protocol will converge if the control gains are chosen ap-

propriately.

Proof. Define a Lyapunov function candidate as:

V =
1

2
k3E

T
c Ec +

1

2
rTHr + s (5.25)

Taking the time derivative

V̇ =k3E
T
c Ėc + rTHṙ + ṡ

=k3E
T
c (Hr − kcHEc) + rTH (−k1Hr − k3Ec − k2sgn (Ec) + Ψ)

− rTH (Ψd − k2sgn (Ec))

=− kck3ET
c HEc − k1rTH2r + k3E

T
c Hr

− k3rTHEc − k2rTHsgn (Ec) + k2r
THsgn (Ec) + rTHΨ− rTHΨd

=− kck3ET
c HEc − k1rTH2r + rTHΨ̃

=− kck3ET
c HEc − k1rTH2r + rTHk1kcHEc

=− kck3

(
ET
c HEc −

1

k3
k1r

TH2Ec +

(
−1

2k3
k1H

T r

)T
H

(
−1

2k3
k1H

T r

))
− k1rTH2r +

1

4k3
k21kcr

TH3r

=− kck3
(
Ec −

k1H
T r

2k3

)T
H

(
Ec −

k1H
T r

2k3

)
− k1rTH2

(
I − k1kc

4k3
H

)
r (5.26)

From 5.26 it is apparent that the derivative of the Lyapunov function will be negative

semi-definite provided that kc, k1, k3 are selected such that

I − k1kc
4k3

H > 0(i.e., positive definite). (5.27)

5.3 Robot Motion Control

Once the current state of the formation is fully determined using the consensus algorithm,

the objective becomes controlling the robots to achieve the desired state xd. Just like the

63

robots discussed in Section 3.2.2 the robots for this experiment are non-holonomic. Their

two control inputs are the forward velocity and angular velocity.

5.3.1 Relative Agent Dynamics

The time derivative of the formation state is related to the velocities of the robots in the

formation. To find the derivative of the state, the kinetics of two robots and their relative

velocities will be examined. The development is as follows.

d
ij

β
ij

β
ji

e
j2

e
j1

e
β

e
d

e
i1

e
i2

v
i

v
j

i

j

Figure 5.2: Relative Agent Dynamics

Consider 2 robots i and j in a formation with velocities and angular velocities of ~vi ~ωi

and ~vj ~ωj respectively. The formation shape is defined in terms of dij θij and βij. Note

that βji is not a state, but is a function of the states. For robot i, define a local coordinate

system with basis unit vectors ~ei1 and ~ei2 where ~ei1 points to the front of the robot. In the

same way, define a local coordinate system for robot j. Define an auxiliary polar coordinate

system relative to j with unit vectors ~ed and ~eβ. This configuration is depicted in Fig.5.2

64

The velocity of robot i can be written as:

~vi = ~vj + ~vi/j

vi~ei1 = vj~ej1 + ḋij~ed + dijωij~eβ

Where ωij is the angular speed of the line connecting i to j. Noting that:

~ei1 = − cos(βij)~ed + sin(βij)~eβ

~ej1 = cos(βji)~ed − sin(βji)~eβ

The velocity can be rewritten as:

vi (− cos(βij)~ed + sin(βij)~eβ) = vj (cos(βji)~ed − sin(βji)~eβ) + ḋij~ed + dijωij~eβ

Equating like terms on either side of the equals sign gives

~ed : −vi cos(βij) = vj cos(βji) + ḋij

~eβ : vi sin(βij) = −vj sin(βji) + dijωij

Rearranging these equations, the equations for the following derivatives are obtained

ḋij = −vi cos(βij)− vj cos(βji)

ωij =
vi
dij

sin(βij) +
vj
dij

sin(βji)

Based on the geometry of the problem, ωij = ωi + β̇ij and βji = βij − θij − π thus the

derivatives are obtained as:

ḋij = −vi cos(βij)− vj cos(βij − θij − π)

β̇ij = −ωi +
vi
dij

sin(βij) +
vj
dij

sin(βij − θij − π)

From the definition of the relative angle:

θij = θj − θi

θ̇ij = θ̇j − θ̇i

θ̇ij = ωj − ωi

65

Finally all of the state derivatives are given by:

ḋij = −vi cos(βij) + vj cos(βij − θij)

β̇ij = −ωi +
vi
dij

sin(βij)−
vj
dij

sin(βij − θij) (5.28)

θ̇ij = ωj − ωi

And the combined state derivative is:

ẋ =



ḋ12
β̇12
θ̇12
ḋ23
β̇23
θ̇23


=



−v1 cos(β12) + v2 cos(β12 − θ12)
−ω1 + v1

d12
sin(β12)− v2

d12
sin(β12 − θ12)

ω2 − ω1

−v2 cos(β23) + v3 cos(β23 − θ23)
−ω2 + v2

d23
sin(β23)− v3

d23
sin(β23 − θ23)

ω3 − ω2

 (5.29)

5.3.2 Low-Level Motion Controller

Equation 5.29 can be rewritten as a product of a Jacobian matrix J and a vector of control

inputs v.

ẋ =



− cos(β12) 0 cos(β12 − θ12) 0 0 0
1
d12

sin(β12) −1 − 1
d12

sin(β12 − θ12) 0 0 0

0 −1 0 1 0 0
0 0 − cos(β23) 0 cos(β23 − θ23) 0
0 0 1

d23
sin(β23) −1 − 1

d23
sin(β23 − θ23) 0

0 0 0 −1 0 1




v1
ω1

v2
ω2

v3
ω3

 (5.30)

Suppose that J is invertible and xd and ẋd are provided for feedback, then the controller

[vi, ωi]
T can be designed as

v = J−1
(
−k (x− xd) + ẋd + f̂

)
(5.31)

If J is singular, an estimate Jd based on desired information xd will be used instead.

5.4 Hardware Implementation

The robots used for this experiment were three Pioneer 3-DX robots. Each one was equipped

with an on board computer mounted to the top of the robot. Also mounted to the top of the

66

robots where three Sony XCD-SX910 firewire cameras. These were mounted with a custom

cardboard bracket. The brackets were designed to hold the cameras in place roughly level

while allowing some motion in the event of a collision. This, less than rigid, mounting

dampened some vibrations, and helped protect the cameras. Each camera was equipped

with a Pentax TV Lens with a focal length of 6 mm. This focal length was chosen to give a

reasonable field of view for the cameras. A robot with the attached computer and camera

is shown in Figure 5.3.

Figure 5.3: Hardware configuration showing: robot, laptop, camera, mounting bracket, and
modified cable

The cameras draw their power from the firewire cable. One of the laptops used is

equipped with a 6-pin powered firewire port that can supply the required power. The other

two laptops, however, only have non-powered 4-pin firewire ports. To provide power to

those cameras, special cables were constructed that allowed the power pins to be tied into

the robot’s power distribution board. The robot’s power distribution boards are equipped

with screw terminals for powering external accessories. Referencing the data sheet for the

67

camera and the robot, the power supplied at these terminals was found to be appropriate for

powering the cameras without any modification. So the two power pins on a 6-pin firewire

connector were tied to these terminals using some auxiliary wires, while the four data pins

were connected to a standard 4-pin connector.

Each laptop was positioned so that the top of the lid was facing the rear of the robot.

The target pattern for the image processing was attached to the lid of the laptop allowing it

to be easily visible to the robot following, and making its angle adjustable to ensure that it

is vertical. The target pattern used was a chessboard with four squares to a side centered on

a white sheet of paper. The chessboard pattern was chosen to simplify the image processing

tasks. OpenCV already had built in functions that could locate the internal corners of a

chessboard pattern in an image. Also the internal corners of the chessboard provided good

high contrast points for tracking by optical flow algorithms.

5.5 Software Implementation

The structure is similar in some ways to the distributed formation tracking experiment.

The consensus code in particular, is based on the code from the distributed experiment.

It only required a few modifications. Mainly, it does not calculate the reference trajectory

any more, instead the reference signals come from the image measurements. The control

action follows the same basic underlying structure as was used previously, except the control

algorithm has been changed significantly.

The most drastic change was the addition of the image processing code. The image

processing is done inside the main function. After the initialization of all of the other

components, and the establishment of the network connections the image processing is

initialized. Then there is a image processing loop that waits for the robot to be stopped to

end. Actually, it is waiting for the user to press the escape key that triggers the key handler

attached to the robot and signals the program to end.

Within this loop, images are captured and processed to extract the desired feature points.

68

Initially a function that searches the image for a chessboard pattern is used to locate the

feature points. Unfortunately, this function takes a long time to find the chessboard, so if it

was used exclusively, the image processing loop would execute slower than the image capture

rate of the camera. To solve this problem, after the points have been found, an optical flow

algorithm tracks them from one image to the next. The optical flow algorithm has less

computational overhead, so it can locate the feature points in a new image faster than the

camera is capturing images. Then using these feature points, and ones extracted from a

reference image, the homography matrix is composed. Then homography decomposition

and the algorithm developed in Section 4.4 are used to calculate the states. These states

are then used to update the desired values of the consensus algorithm.

5.6 Implementation Challenges

As with previous experiments, there were several challenges to the implementation. Some

challenges arose from the decentralized nature of the experiment. Most came from the added

complexity of incorporating visual measurements. Some problems were avoided by relying

on experience from the previous experiments. For example, there were very few issues with

the network communication between the robots because most of those issues were solved in

the previous experiments.

One challenge was choosing an appropriate final goal for the experiment. The motion

controller developed for the robots involves calculating the inverse of a Jacobian matrix.

This is not possible if that matrix is singular. It was found that certain combinations of

states would make this matrix singular. This limited the possible final configurations for the

robots because the motion controller could not drive the robots to a singular configuration.

In particular it became apparent that the final configuration could not have all the robots

with the same heading. Looking at the physical interpretation of these singular states,

they arise when non-zero robot velocities result in zero formation change. For example,

if all of the robots have the same heading, and the same non-zero forward velocity, the

69

formation shape will not change despite the fact that the robots are moving. The solution is

to design a formation shape where any non-zero robot velocities would result in a change in

the formation states. This is how the final formation shape was chosen for the experiment.

The biggest challenge for this experiment was losing visibility between robots. In order

for the experiment to work properly, the robots making measurements must continue to do

so. Unfortunately, often one robot or the other would move in such a way that the target

would leave the camera’s field of view. This posed several challenges. At first when this

happened, the experiment essentially failed. There is no algorithm implemented to restore

the formation to a visible state after this happens. So, when the visibility was lost, there

was no guarantee that it would be restored. Also, often the optical flow algorithm would

continue to return points for a frame or two after the points it was tracking were lost. This

resulted in drastically incorrect values of the state being passed to the consensus algorithm.

Another issue arose from the image processing algorithm. When the target would be lost,

the image processing algorithm would revert to searching the image for a chessboard pattern.

As previously mentioned, this made the image processing loop slower than the image capture

rate, but the camera continued to capture images at the same rate. This resulted in a delay

accumulating between when an image was captured and when it was processed. The issue

being that if the image processing did manage to re-acquire the target, it would be out of

the field of view again before the image processing could catch up.

Many different steps were required to alleviate the issues with the loss of visibility. The

main goal was to prevent the visibility from being lost in the first place. Also, when it was

lost, the algorithm needed to be more robust and more likely to recover. The first action

taken was to saturate the control inputs to the robot, particularly the angular velocity. This

prevented spikes in the inputs from causing drastic rotations that would cause the visibility

to be lost. Other steps included turning down the motion control gains, and making the final

configuration more stable. This made a significant improvement in maintaining the visibility.

Another change that had a positive improvement was tuning the consensus controller to track

70

the measured states more accurately. Transients and delays in the consensus, particularly in

the beginning, were causing the motion controller to give the robots incorrect commands. To

improve the robustness, several sanity checks were implemented in the code that calculates

the states. This helps prevent unreasonable states from being passed along to the consensus

algorithm. This has the effect of freezing the desired value for the consensus algorithm at

the last known good measurement until a new measurement is made. Finally, the image

processing code was modified so that when it is searching the whole image for the chessboard,

it only operates on every other image. This helped to prevent the delay that was being

experienced. All of these steps combined allowed the experiment to function correctly. It

also made it more tolerant to faults in the image processing.

5.7 Experimental Setup

To setup the experiment, all the key parameters were set in advance, then a starting configu-

ration was chosen. The staring configuration was chosen to be far from the final configuration

while still maintaining visibility between the robots. The possible starting configurations

were limited by the constraint that the visibility between the appropriate robots had to be

established at the beginning of the experiment.

The starting configuration of the robots used in the experiment is shown in Figure 5.4.

For the measurement configuration, the first robot was considered to be able to see

the second robot and the second robot could see the third robot. Given the measurement

assumptions, the first robot would measure the first three states and the second robot would

measure the last three states. In this configuration, the third robot does not measure any

states. Mathematically this configuration can be described with the Bi matrices mentioned

71

Figure 5.4: Formation initial configuration

in Equation 5.3, these matrices are given for each robot in Equation 5.32.

B1 =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 B2 =


0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 B3 = [0] (5.32)

The desired reference configuration is given in Equation 5.33.

xd =


1[m]
− π

12
[rad]

−π
6
[rad]

1[m]
π
12

[rad]
π
6
[rad]

 (5.33)

Also Figure 5.5 shows the robots in this configuration. The information exchange between

the agents was specified by an adjacency matrix A, which is given in Equation 5.34.

A =

0 1 0
1 0 1
0 1 0

 (5.34)

72

Figure 5.5: Formation final configuration

The initial conditions for the consensus states were all set to zero. Additionally, the

desired or measured state for the consensus algorithm was initialized to zero as well. This

was important because the consensus calculations began running before the image process-

ing began. Setting both the initial conditions and the measured state to zero prevented

the consensus state from changing before the image processing had started taking valid

measurements. Also, an all zero state resulted in a singularity in the motion control. This

was actually helpful because it prevented the motion controller from calculating any control

inputs until after the consensus states were non-zero. This ensured that the robots did not

start moving until the network communications were established, and the image processing

had started.

The control gains from Equations 5.4, 5.5, and 5.31 are given in Table 5.1.

73

Gain Value
k1 1
k2 7
k3 10
kc 11
k = diag(0.2)

Table 5.1: Experimental Control Gains

5.8 Experimental Results

After the experiment was run successfully, the collected data was consolidated and analyzed

to evaluate the performance. This task was somewhat complicated by the fact that most of

the data had different time scales. Data from the different robots started at different times,

and data from the consensus threads started at different times from the data collected in the

robot control thread. Also, the time steps between data points were not always consistent,

particularly in the robot control data. Using corresponding points in the communications

data, the time arrays for each data set were shifted to have a common reference point. Then

the data was graphed.

Figure 5.6 shows the measured value and each robot’s consensus understanding of two

states. These two states represent the distance between the robots as measured by the

image processing. As previously stated the consensus states and the measured values are

initially zero. Then when the image measurements begin, there is a step change. There is

a noticeable amount of overshoot in the consensus states. Though the states quickly settle

down and track the measurements quite well.

The two measured bearing angles and the corresponding consensus understandings are

graphed in Figure 5.7. These states represent the angle measured relative to the robot’s

heading to the next robot in the formation. The overshoot is less of an issue for these states.

These measured states show more noise than the distances. Much of this noise is actually

filtered by the consensus algorithm giving smoother states for the control of the robot.

74

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

x i1 (
d 12

)
[m

]

Measured
Robot 1
Robot 2
Robot 3

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

time [sec]

x i4 (
d 23

)
[m

]

Measured
Robot 1
Robot 2
Robot 3

Figure 5.6: Consensus tracking results for states d12, d23 and their reference states

The final two consensus states are graphed in Figure 5.8. Again, the measured states

are graphed along with each robot’s consensus understanding. These states are the relative

rotation between the robots’ headings. In particular, the relative rotation between the first

and second, and the second and third robots. The measured values show the same noise

seen in the plot of the bearing angles, and after an initial transient, the tracking is quite

good.

Figure 5.9 demonstrates the accomplishment of the experiment’s primary goal. That is

to drive the state of the formation to a desired value. The figure shows the error between

the measured states and the desired formation shape. These all eventually converge nicely

to zero. A few states appear to have some slight steady state error. This is likely due to

the robot rounding control inputs to whole numbers. The result being that angular velocity

commands less than 1 degree per second do not get executed. It is noticeable in this figure

that the second robot’s image processing started a few seconds before the first robot’s.

The consensus error for the first robot is plotted in Figure 5.10. These results are typical

75

0 10 20 30 40 50 60 70 80 90 100
−1

−0.8

−0.6

−0.4

−0.2

0

x i2 (
β 12

)
[r

ad
]

Measured
Robot 1
Robot 2
Robot 3

0 10 20 30 40 50 60 70 80 90 100

−0.4

−0.2

0

0.2

0.4

time [sec]

x i5 (
β 23

)
[r

ad
]

Measured
Robot 1
Robot 2
Robot 3

Figure 5.7: Consensus tracking results for states β12, β23 and their reference states

for all there robots.

Figure 5.11 shows the non-linear estimation term for all six states for the first robot.

These results are typical for all three robots. Initially, there is a large spike growing from

zero. These spikes are particularly noticeable for the two distance states. They are the

result of the step change and overshoot seen at the beginning of the consensus states.

Each robot’s forward velocity command is shown in Figure 5.12. The velocity commands

were actually saturated before being sent to the robot, but this figure shows the calculated

un-saturated velocities. Within the first few seconds the calculated velocity is quite large.

This portion is due in part to the transients in the consensus states. After this initial phase,

the velocities settle down nicely.

Figure 5.13 shows the calculated angular velocity commands for each robot. Like the

forward velocity, the angular velocity commands were saturated before being sent to the

robot. Because of the significant saturation many of the spikes in the first few seconds were

filtered out.

76

0 10 20 30 40 50 60 70 80 90 100
−1

−0.5

0

0.5

1

x i3 (
θ 12

)
[r

ad
]

Measured
Robot 1
Robot 2
Robot 3

0 10 20 30 40 50 60 70 80 90 100
−1

−0.5

0

0.5

1

time [sec]

x i6 (
θ 23

)
[r

ad
]

Measured
Robot 1
Robot 2
Robot 3

Figure 5.8: Consensus tracking results for states θ12, θ23 and their reference states

0 10 20 30 40 50 60 70 80 90 100

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

time [sec]

x
−

 x
d [m

 &
 r

ad
]

d
12

β
12

θ
12

d
23

β
23

θ
23

Figure 5.9: Visual formation tracking error showing convergence to desired values

77

0 10 20 30 40 50 60 70 80 90 100
−1.5

−1

−0.5

0

0.5

1

time [sec]

e c1
 [m

 &
 r

ad
]

d
12

β
12

θ
12

d
23

β
23

θ
23

Figure 5.10: Vision based formation consensus tracking error for agent 1

0 10 20 30 40 50 60 70 80 90 100
−1.5

−1

−0.5

0

0.5

1

time [sec]

f 1 [m
/s

ec
 &

 r
ad

/s
ec

]

d
12

β
12

θ
12

d
23

β
23

θ
23

Figure 5.11: Vision based formation consensus derivative estimate for agent 1

78

0 10 20 30 40 50 60 70 80 90 100
−8

−6

−4

−2

0

2

4

time [sec]

v
[m

/s
ec

]

Robot 1
Robot 2
Robot 3

Figure 5.12: Robot forward velocity commands

0 10 20 30 40 50 60 70 80 90 100
−3

−2

−1

0

1

2

3

4

5

time [sec]

ω
 [r

ad
/s

ec
]

Robot 1
Robot 2
Robot 3

Figure 5.13: Robot angular velocity commands

79

Chapter 6

Conclusion

In this thesis, several robot formation control algorithms were presented. Experiments were

conducted to demonstrate the effectiveness of those algorithms. Results of these experiments

were presented demonstrating their success.

The first main experiment focused on robust consensus formation control. The algorithm

for this experiment was discussed in Section 3.2. The primary focus of the algorithm is

robust consensus tracking. All of the agents came to agree on a time-varying reference

signal despite disturbances applied to their information exchange. It compensated for the

disturbances with a special non-linear term that estimates them. For the motion control of

the robots, they compute a desired trajectory from the consensus state, and implement a

trajectory tracking controller to follow it. To compensate for the non-holonomic constraint

on the robots, the position of the front of the robots is controlled instead of the robot’s

center. The trajectory tracker uses a PID controller to design the velocity of this point;

then computes the required linear and angular velocity inputs for the robot.

After the algorithm was developed, the AmigoBot robots described in Section 2.1.1 were

used to demonstrate it in the experiment. The robots were able to achieve the desired

formation shape of a square, and the formation was able to track the desired trajectory.

Results from the experiment are in Section 3.3.5. All of the robots in the experiment were

controlled by a single computer, and all of the information exchange for the consensus

algorithm was modeled using a central data storage.

80

The previous experiment showed the consensus algorithm working, but poorly demon-

strated the distributed information exchange between the robots. In the development it was

intended that robots could only access the consensus states of their neighbors, and that this

data would be communicated over a network. In the original experiment, limited informa-

tion exchange between the agents had to be artificially enforced, and possible complications

from the network were not modeled. To try and better capture these complications, the

experiment was re-implemented using a separate computer to control each robot. This sec-

ond experiment is discussed in Section 3.4. In order to solve issues arising from the network

communication, the software program had to be reorganized separating the consensus con-

troller from the motion controller. This had the added benefit of improving the performance

of the consensus algorithm. The results from this experiment are all in Section 3.4.5.

It was decided to use on-board cameras as the primary sensor for the next experiment,

so a new approach had to be formulated to incorporate visual measurements. Previously,

all of the robots were told their initial starting locations, and used encoders on the motors

to keep track of their positions. Instead of this approach, which relied on a common global

reference frame, it was decided to reformulate the problem to rely on relative measurements

made with vision. First in Section 4.2, a formulation was developed which could describe

the robot formation in terms of only relative measurements. Then, in Section 4.4, a process

was developed to make relative measurements with cameras mounted to the robots. This

process involved relating a current image to a previously captured reference image.

One challenge to the new formation description was that a complete description of the

formation would not be measured by any one robot. Also, the different pieces of information

were measured by different robots, and some robots took no measurements at all. To

incorporate all of the data, and ensure that all of the robots had access to it, a consensus

tracking controller was developed. This controller is similar to the one used previously with

a few key differences. The development of this controller can be found in Section 5.2. This

consensus controller, instead of tracking a desired signal calculated by a leader, tracks the

81

measurements made by the cameras. Also, there is no single leader for the information,

instead, each agent serves as a leader for the information it measures. The convergence

and stability of this algorithm is shown using a Lyapunov based stability analysis. This

controller could have applications beyond the task it was designed for; in particular, it

allows the fusion of distributed measurements made by agents with limited communication.

A motion controller for the formation was designed based on the formation state de-

scription previously developed. A controller was designed to stabilize the formation state

derivatives and drive the state to a desired final value. Then an inverse Jacobian matrix

was used to relate these state derivatives to the velocity control inputs of the robots. There

were some issues that had to be resolved relating to singularities in the Jacobian matrix,

but solutions were found.

Finally, a new experiment using these tools was run involving a formation of three robots

with on-board cameras. They were able to achieve the final desired formation using only

visual measurements after starting at previously unspecified initial positions. Section 5.8

shows the results of this experiment.

Overall, several successful experiments were conducted with formations of robots. These

experiments demonstrated several formation control algorithms that focused on distributed

control. The derivation of some of these algorithms were also detailed. In addition, a method

of obtaining measurements describing the relative positions of robots using on-board cameras

was developed. Along with this measurement scheme, a process for describing a formation

of robots in terms of these relative measurements and also a method using these to control

the formation was developed. These pieces combined to result in a insightful examination

into robot formation control experiments with distributed control.

82

Bibliography

[1] X. Shen, J. Dumpert, and S. Farritor, “Design and control of robotic highway safety

markers,” Mechatronics, IEEE/ASME Transactions on, vol. 10, no. 5, pp. 513–520,

2005.

[2] J. R. Lawton and R. W. Beard, “Synchronized multiple spacecraft rotations,” Auto-

matica, vol. 38, no. 8, pp. 1359–1364, Aug. 2002.

[3] P. Ogren, E. Fiorelli, and N. Leonard, “Cooperative control of mobile sensor net-

works:Adaptive gradient climbing in a distributed environment,” Automatic Control,

IEEE Transactions on, vol. 49, no. 8, pp. 1292–1302, 2004.

[4] J. Cortes, S. Martinez, T. Karatas, and F. Bullo, “Coverage control for mobile sensing

networks,” Robotics and Automation, IEEE Transactions on, vol. 20, no. 2, pp. 243–

255, 2004.

[5] T. Balch and R. Arkin, “Behavior-based formation control for multirobot teams,”

Robotics and Automation, IEEE Transactions on, vol. 14, no. 6, pp. 926–939, 1998.

[6] L. Parker, “ALLIANCE: an architecture for fault tolerant multirobot cooperation,”

Robotics and Automation, IEEE Transactions on, vol. 14, no. 2, pp. 220–240, 1998.

[7] J. Lawton, R. Beard, and B. Young, “A decentralized approach to formation maneu-

vers,” Robotics and Automation, IEEE Transactions on, vol. 19, no. 6, pp. 933–941,

2003.

[8] M. A. Lewis and K. Tan, “High precision formation control of mobile robots using

virtual structures,” Autonomous Robots, vol. 4, no. 4, pp. 387–403, Oct. 1997.

83

[9] M. Egerstedt and X. Hu, “Formation constrained multi-agent control,” Robotics and

Automation, IEEE Transactions on, vol. 17, no. 6, pp. 947–951, 2001.

[10] A. Das, R. Fierro, V. Kumar, J. Ostrowski, J. Spletzer, and C. Taylor, “A vision-

based formation control framework,” Robotics and Automation, IEEE Transactions

on, vol. 18, no. 5, pp. 813–825, 2002.

[11] J. Huang, S. Farritor, A. Qadi, and S. Goddard, “Localization and follow-the-leader

control of a heterogeneous group of mobile robots,” Mechatronics, IEEE/ASME Trans-

actions on, vol. 11, no. 2, pp. 205–215, 2006.

[12] J. Shao, G. Xie, and L. Wang, “Leader-following formation control of multiple mobile

vehicles,” Control Theory & Applications, IET, vol. 1, no. 2, pp. 545–552, 2007.

[13] D. Sun, C. Wang, W. Shang, and G. Feng, “A synchronization approach to trajec-

tory tracking of multiple mobile robots while maintaining Time-Varying formations,”

Robotics, IEEE Transactions on, vol. 25, no. 5, pp. 1074–1086, 2009.

[14] R. Olfati-Saber, J. Fax, and R. Murray, “Consensus and cooperation in networked

Multi-Agent systems,” Proceedings of the IEEE, vol. 95, no. 1, pp. 215–233, 2007.

[15] J. Fax and R. Murray, “Information flow and cooperative control of vehicle formations,”

Automatic Control, IEEE Transactions on, vol. 49, no. 9, pp. 1465–1476, 2004.

[16] S. Khoo, L. Xie, and Z. Man, “Robust Finite-Time consensus tracking algorithm for

multirobot systems,” Mechatronics, IEEE/ASME Transactions on, vol. 14, no. 2, pp.

219–228, 2009.

[17] W. Ren, “Consensus tracking under directed interaction topologies: Algorithms and

experiments,” Control Systems Technology, IEEE Transactions on, vol. 18, no. 1, pp.

230–237, 2010.

84

[18] N. Moshtagh, N. Michael, A. Jadbabaie, and K. Daniilidis, “Vision-Based, distributed

control laws for motion coordination of nonholonomic robots,” Robotics, IEEE Trans-

actions on, vol. 25, no. 4, pp. 851–860, 2009.

[19] Team AmigoBot Operations Manual, MobileRobots Inc., January 2007.

[20] Pioneer 3 Operations Manual, MobileRobots Inc., July 2007.

[21] Digital Video Camera Module Technical Manual, XCD-SX910, Sony Corporation, 2003.

[22] J. Cook and G. Hu, “Experimental verification and algorithm of a multi-robot coopera-

tive control method,” in Advanced Intelligent Mechatronics (AIM), 2010 IEEE/ASME

International Conference on, July 2010, pp. 109 –114.

[23] G. Hu, “Robust consensus tracking for an integrator-type multi-agent system with

disturbances and unmodelled dynamics,” International journal of control, vol. 84, no. 1,

pp. 1–8, 2011.

[24] G. Hu, S. Mehta, N. Gans, and W. Dixon, “Daisy chaining based visual servo control

part i: Adaptive quaternion-based tracking control,” in Control Applications, 2007.

CCA 2007. IEEE International Conference on, Oct. 2007, pp. 1474 –1479.

[25] G. Hu, N. Gans, S. Mehta, and W. Dixon, “Daisy chaining based visual servo control

part ii: Extensions, applications and open problems,” in Control Applications, 2007.

CCA 2007. IEEE International Conference on, Oct. 2007, pp. 729 –734.

85

Appendix A

Code For Distributed Formation
Tracking Experiment

/∗
∗ formationTracking . cpp
∗
∗ Written by : Joshua Cook
∗ Date : 01/19/10
∗
∗ Program to perform formation and consensus t r a c k i n g and con t r o l wi th

mu l t i p l e robo t s .
∗ Each robo t i s c o n t r o l l e d by a d i f f e r e n t in s tance o f the program .
∗/

// Inc lude a l l the Aria headers e t c
#include ”Aria . h”
#include ”ArNetworking . h”
#include ”ActionFormation . h”
#include ”ConsensusThread . h”

int main (int argc , char ∗∗ argv)
{

// v a r i a b l e s
char∗ host ;
char∗ host1 ;
char∗ host2 ;
char∗ host3 ;
char∗ host4 ;
std : : vector<std : : s t r i ng> host s ;
int port ;
int port1 ;

86

int port2 ;
int port3 ;
int port4 ;
std : : vector<int> por t s ;
int IDnumber ;
int r e t ;
s td : : s t r i n g s t r ;
bool argSet = fa l se ;

// Other o b j e c t s
ArKeyHandler keyHandler ;

// Robot ’ s o b j e c t s
ArRobot robot ; // The robo t
ArTcpConnection connect ion ; // The tcp connect ion f o r the robo t
ArSonarDevice sonar ; // Sonar f o r the robo t

// I n i t i a l i z e Aria
Aria : : i n i t () ;

//
// Parse out a l l o f the command l i n e op t i ons .
//

// Create and argument parser to parse out the command l i n e op t i ons
ArArgumentParser par s e r (&argc , argv) ;
pa r s e r . loadDefaultArguments () ;

// Determine my robo t ’ s ID number in the formation
argSet = fa l se ;
pa r s e r . checkParameterArgumentInteger (”−IDnumber” , &IDnumber , &

argSet) ;

// Figure out connect ion in format ion f o r the robo t s
// User can s p e c i f y hostname and por t number at command l i n e
host = par s e r . checkParameterArgument (”−rh”) ; // My robo t ’ s

remote hos t name
i f (! host) host = ” l o c a l h o s t ” ;
host1 = par s e r . checkParameterArgument (”−rh1”) ; // Host name fo r

remote s e r v e r
i f (! host1) host1 = ” l o c a l h o s t ” ;
host2 = par s e r . checkParameterArgument (”−rh2”) ; // Host name fo r

remote s e r v e r
i f (! host2) host2 = ” l o c a l h o s t ” ;
host3 = par s e r . checkParameterArgument (”−rh3”) ; // Host name fo r

87

remote s e r v e r
i f (! host3) host3 = ” l o c a l h o s t ” ;
host4 = par s e r . checkParameterArgument (”−rh4”) ; // Host name fo r

remote s e r v e r
i f (! host4) host4 = ” l o c a l h o s t ” ;

// Set d e f a u l t po r t s
port = 8101 ;
port1 = 7272 ;
port2 = 7272 ;
port3 = 7272 ;
port4 = 7272 ;
i f (strcmp (host1 , host2) == 0)
{

// same host , i t must be us ing two por t s (but can s t i l l
o v e r r i d e be low with −rp2)

port2++;
}
i f (strcmp (host2 , host3) == 0)
{

// same host , i t must be us ing two por t s (but can s t i l l
o v e r r i d e be low with −rp3)

port3 = port2 + 1 ;
}
i f (strcmp (host3 , host4) == 0)
{

// same host , i t must be us ing two por t s (but can s t i l l
o v e r r i d e be low with −rp4)

port4 = port3 + 1 ;
}

// Check to see i f po r t s were s p e c i f i e d
argSet = fa l se ;
pa r s e r . checkParameterArgumentInteger (”−rp” , &port , &argSet) ;
i f (! argSet) par s e r . checkParameterArgumentInteger (”−r r tp ” , &port) ;
argSet = fa l se ;
pa r s e r . checkParameterArgumentInteger (”−rp1” , &port1 , &argSet) ;
i f (! argSet) par s e r . checkParameterArgumentInteger (”−r r tp1 ” , &port1) ;
argSet = fa l se ;
pa r s e r . checkParameterArgumentInteger (”−rp2” , &port2 , &argSet) ;
i f (! argSet) par s e r . checkParameterArgumentInteger (”−r r tp2 ” , &port2) ;
argSet = fa l se ;
pa r s e r . checkParameterArgumentInteger (”−rp3” , &port3 , &argSet) ;
i f (! argSet) par s e r . checkParameterArgumentInteger (”−r r tp3 ” , &port3) ;
argSet = fa l se ;

88

par s e r . checkParameterArgumentInteger (”−rp4” , &port4 , &argSet) ;
i f (! argSet) par s e r . checkParameterArgumentInteger (”−r r tp4 ” , &port4) ;

// Store hostnames and por t s
host s . push back (host1) ;
hos t s . push back (host2) ;
hos t s . push back (host3) ;
hos t s . push back (host4) ;
por t s . push back (port1) ;
por t s . push back (port2) ;
por t s . push back (port3) ;
por t s . push back (port4) ;

// Check to see o f the he l p op t ion was g iven at the command l ine ,
// and warn about unparsed arguments
i f (! pa r s e r . checkHelpAndWarnUnparsed ())
{

ArLog : : l og (ArLog : : Terse , ”Usage : format ionTracking −IDnumber <
number> [− rh <hostname>] [− rp <port >]\n”\

”[− rh1 <hostname1>] [− rh2 <hostname2>] [− rh3 <hostname3
>] [− rh4 <hostname4>]\n”\

”[− rp1 <port1 >] [− rp2 <port2 >] [− rp3 <port3 >] [− rp4 <
port4 >]\n”\

”\ t<number> I s the zero based index o f the robot in the
format ion . ”

”\ t<hostname> I s the network host name o f the robot .
Defau l t i s l o c a l h o s t (f o r the s imu la tor) .\n”\

”\ t<port> I s the TCP port number o f the l o c a l robot .
Defau l t i s 8101 .\n”\

”\ t<hostnameN> I s the network host name o f the Nth
robot ’ s s e r v e r . Defau l t i s l o c a l h o s t .\n”\

”\ t<portN> I s the TCP port number o f the Nth robot ’ s
s e r v e r . De fau l t i s 7272 .\n”) ;

Aria : : e x i t (0) ;
}

//
// Create more o b j e c t s now tha t we have ob ta ined the s e t t i n g s from

the command l i n e .
//

// Setup the r e f e r ence t r a j e c t o r y thread
ConsensusThread X r (hosts , ports , IDnumber) ;
// S t a r t i n g p o s i t i o n o f the robo t
ArPose robotStar t1 (−150 , 250∗(3−IDnumber∗2) , 0) ;

89

// Pos i t i on c o n t r o l l e r
ActionFormation format ion (robotStart1 , 600∗ cos ((IDnumber∗2+1)∗M PI

/4) , 600∗ s i n ((IDnumber∗2+1)∗M PI/4) , &X r , IDnumber) ; //
Formation Tracking

//
// Get t h i n g s going and connect to the robo t s
//

// Connect to the robo t s i f t h i s f a i l s e x i t
ArLog : : l og (ArLog : : Normal , ”Connecting to l o c a l robot at %s :%d . . . ” ,

host , port) ;
i f ((r e t = connect ion . open (host , port)) != 0)
{

s t r = connect ion . getOpenMessage (r e t) ;
p r i n t f (”Open f a i l e d on l o c a l robot : %s \n” , s t r . c s t r ()) ;
Aria : : e x i t (1) ;

}

// add the sonar to the robo t
robot . addRangeDevice(&sonar) ;

// s e t the dev i c e connect ion on the robo t
robot . setDeviceConnect ion(&connect ion) ;

// t r y to connect , i f we f a i l e x i t
i f (! robot . blockingConnect ())
{

p r i n t f (”Could not connect to robot 1 . . . e x i t i n g \n”) ;
Aria : : e x i t (1) ;

}

// turn on the motors and d i s a b l e the sonar
robot . enableMotors () ;
robot . comInt (ArCommands : : SONAR, 0) ;

// add ac t i on s
robot . addAction(&formation , 55) ;

// Create a ArKeyHandler and a t t ach i t to the robo t so the program
w i l l e x i t when Escape i s pres sed

Aria : : setKeyHandler(&keyHandler) ;
robot . attachKeyHandler(&keyHandler) ;

// S ta r t the consensus c a l c u l a t i o n s running in t h e i r own thread

90

X r . runAsync () ;

// S ta r t running the robo t in i t ’ s own thread
robot . runAsync (true) ;

// Don ’ t end the main program thread u n t i l the robo t i s done
robot . waitForRunExit () ;

// Stop the consensus thread
X r . stopRunning () ;
do {

ArUti l : : s l e e p (250) ;
} while (X r . getRunningWithLock ()) ;

// Shut down Aria
Aria : : shutdown () ;
return 0 ;

}

#ifndef ACTIONFORMATIONH
#define ACTIONFORMATIONH

#include ”ArAction . h”
#include ”ArRobot . h”
#include ”ConsensusThread . h”
#include <vector>
#include <fstream>

/∗
∗ Action t ha t has the robo t f o l l ow other robo t s in formation
∗
∗ Written By : Joshua Cook
∗/

class ActionFormation : public ArAction
{
public :

// Constructor
ActionFormation (ArPose& startPose , double formationX , double

formationY , ConsensusThread∗ data , int number) ;
// Des t ruc tor
virtual ˜ActionFormation (void) ;
// c a l l e d by the ac t i on r e s o l v e r to ob ta in t h i s ac t i on ’ s r e que s t ed

behav ior
virtual ArActionDesired ∗ f i r e (ArActionDesired cur r entDes i r ed) ;

protected :

91

/∗ Our curren t d e s i r ed ac t i on : f i r e () mod i f i e s t h i s o b j e c t and
re turns

to the ac t i on r e s o l v e r a po in t e r to t h i s o b j e c t .
This o b j e c t i s kep t as a c l a s s member so t ha t i t p e r s i s t s a f t e r

f i r e ()
r e turns (o the rw i s e f i r e () would have to c r ea t e a new o b j e c t each

invocat ion ,
but would never be a b l e to d e l e t e t ha t o b j e c t) .

∗/
ArActionDesired myDesired ;

ConsensusThread∗ myData ;
ArPose myStartPose ;
ArTime myTzero ;
int myNumber ;
double myD;
// Contro l Var iab l e s
double t , t minus ;
double t r e f ;
double p xo , p yo , theta ; // t h e t a in rad
double p x , p y ;
double d x , d y ;
double p xd , p yd ;
double p xd dot , p yd dot ;
double p xd dot minus , p yd dot minus ;
double p xd minus , p yd minus ;
double f i l t e r t a u ;
double p x minus , p y minus ;
double i n t e g r a lE r r o r x , i n t e g r a lE r r o r y ;
double ux , uy ;
double v , omega ;
// Consensus v a r i a b l e s
double p xc , p yc , th e t a c ; // i ’ th robo t ’ s unders tanding o f

r e f e r ence t r a j e c t o r y , t h e t a c in rad
double p xc dot , p yc dot , t h e t a c do t ;
// Contro l ga ins
double kx , ky , kix , kiy , kdx , kdy ;
bool myStart , myStart2 ;

// F i l e o b j e c t
std : : o f s tream myFile ;
// F i l e name
std : : s t r i n g myFileName ;

} ;

92

#endif /∗ACTIONFORMATIONH∗/

// ActionFormation . cpp
#include ”ActionFormation . h”

// Constructor
ActionFormation : : ActionFormation (ArPose& startPose , double formationX ,

double formationY , ConsensusThread∗ data , int number) : ArAction (”
Formation” , ”Try to have the robot f o l l ow a format ion ”)

{
myStartPose = sta r tPose ;
myData = data ;
d x = formationX ;
d y = formationY ;
myNumber = number ;

// Open a f i l e f o r data c o l l e c t i o n
int tmp = myNumber + ’ 0 ’ ;
myFileName = ” format ion ” ;
myFileName += tmp ;
myFileName += ” . csv ” ; //”C:\\Documents and S e t t i n g s \\Joshua \\My

Documents\\Data\\” + f i l e ;
p r i n t f (”Opening f i l e : %s \n” , myFileName . c s t r ()) ;
myFile . open (myFileName . c s t r ()) ;

myFile << ” t , t r e f , p xo , p yo , theta , p x , p y , p xd , p yd ,
p xd dot , p yd dot , ux , uy , v , omega , ”
<< ” p xc , p yc , theta c , p xc dot , p yc dot , t h e t a c do t ” <<

std : : endl ;

// I n i t i a l i z e v a r i a b l e s
myStart = true ;
myStart2 = true ;
myD = 150 . ; // Distance to f r on t o f robo t mm
// Contro l v a r i a b l e s
t = t minus = 0 . ;
t r e f = 0 . ;
p xo = p yo = 0 . ;
theta = 0 . ;
p x = p y = 0 . ;
p xd = p yd = 0 . ;
p xd dot = p yd dot = 0 . ;
p xd dot minus = p yd dot minus = 0 . ;
p xd minus = p yd minus = 0 . ;
f i l t e r t a u = 5 . ;

93

p x minus = p y minus = 0 . ;
i n t e g r a lE r r o r x = in t e g r a lE r r o r y = 0 . ;
ux = uy = 0 . ;
v = omega = 0 . ;
// Consensus v a r i a b l e s
p xc = p yc = the ta c = 0 . ;
p xc dot = p yc dot = the t a c do t = 0 . ;

// Contro l Gains
kx = 0 . 1 ;
ky = 0 . 1 ;
k ix = 0 . 0 0 1 ;
k iy = 0 . 0 0 1 ;
kdx = 0 . 0 1 ;
kdy = 0 . 0 1 ;

}

// Des t ruc tor
ActionFormation : : ˜ ActionFormation (void)
{

p r i n t f (”Clos ing f i l e : %s \n” ,myFileName . c s t r ()) ;
myFile . c l o s e () ;

}

// Fire
ArActionDesired ∗ActionFormation : : f i r e (ArActionDesired cur r entDes i r ed)
{

myDesired . r e s e t () ;

// Do some i n i t i a l i z a t i o n the f i r s t time through
i f (myStart)
{

myTzero . setToNow () ;
myRobot−>moveTo(myStartPose) ;
myStart = fa l se ;

}

// Get the most current p o s i t i o n o f the robo t
myRobot−>getPose () . getPose(&p xo , &p yo , &theta) ;
theta = theta ∗M PI/180 ; // conver t t h e t a to rad .
p x = p xo + myD∗ cos (theta) ;
p y = p yo + myD∗ s i n (theta) ;

// Update the l o c a l time v a r i a b l e
t = (double)myTzero . mSecSince () / 1000 . ;

94

// Get unders tanding o f r e f e r ence t r a j e c t o r y from consensus thread
double tmp [STATES] ;
myData−>getX i (myNumber , tmp) ;
p xc = tmp [0] ;
p yc = tmp [1] ;
t h e t a c = tmp [2] ;
myData−>ge tX i do t (myNumber , tmp) ;
p xc dot = tmp [0] ;
p yc dot = tmp [1] ;
t h e t a c do t = tmp [2] ;
t r e f = myData−>getT () ;

// Ca l cu l a t e the de s i r ed po s i t i o n and v e l o c i t y f o r t h i s robo t
p xd = p xc + d x∗ cos (th e t a c) − d y∗ s i n (th e t a c) ;
p yd = p yc + d x∗ s i n (th e t a c) + d y∗ cos (th e t a c) ;
p xd dot = p xc dot + the t a c do t ∗(−d x∗ s i n (th e t a c) − d y∗ cos (

th e t a c)) ;
p yd dot = p yc dot + the t a c do t ∗(d x∗ cos (th e t a c) − d y∗ s i n (

th e t a c)) ;

// Do some low pass f i l t e r i n g on the de s i r ed v e l o c i t i e s
p xd dot = p xd dot ∗(t − t minus) /(f i l t e r t a u + (t − t minus)) +

p xd dot minus ∗ f i l t e r t a u /(f i l t e r t a u + (t − t minus)) ;
p yd dot = p yd dot ∗(t − t minus) /(f i l t e r t a u + (t − t minus)) +

p yd dot minus ∗ f i l t e r t a u /(f i l t e r t a u + (t − t minus)) ;
p xd = p xd ∗(t − t minus) /(f i l t e r t a u + (t − t minus)) + p xd minus
∗ f i l t e r t a u /(f i l t e r t a u + (t − t minus)) ;

p yd = p yd ∗(t − t minus) /(f i l t e r t a u + (t − t minus)) + p yd minus
∗ f i l t e r t a u /(f i l t e r t a u + (t − t minus)) ;

// Ca l cu l a t e i n t e g r a l e r ror
i n t e g r a lE r r o r x += (p x − p xd) ∗(t − t minus) ;
i n t e g r a lE r r o r y += (p y − p yd) ∗(t − t minus) ;

// Command v e l o c i t i e s o f a po in t on the f r on t o f the robo t us ing
PID c o n t r o l l e r

ux = p xd dot − kx ∗(p x − p xd) − kix ∗ i n t e g r a lE r r o r x − kdx ∗((p x
− p x minus) /(t − t minus) − p xd dot) ;

uy = p yd dot − ky ∗(p y − p yd) − kiy ∗ i n t e g r a lE r r o r y − kdy ∗((p y
− p y minus) /(t − t minus) − p yd dot) ;

// Actual c on t r o l i npu t s
v = ux∗ cos (theta) + uy∗ s i n (theta) ;
omega = 180/M PI∗(−1/myD∗ux∗ s i n (theta) + 1/myD∗uy∗ cos (theta)) ;

95

// Save ac t ua l and de s i r ed p o s i t i o n s e t c . to f i l e
myFile << t << ” , ” << t r e f << ” , ” << p xo << ” , ” << p yo << ” , ” <<

theta << ” , ”
<< p x << ” , ” << p y << ” , ” << p xd << ” , ” << p yd << ” , ”
<< p xd dot << ” , ” << p yd dot << ” , ”
<< ux << ” , ” << uy << ” , ” << v << ” , ” << omega << ” , ”
<< p xc << ” , ” << p yc << ” , ” << th e t a c << ” , ”
<< p xc dot << ” , ” << p yc dot << ” , ” << t h e t a c do t << std : :

endl ;

// Do some check ing j u s t in case
i f (v > myRobot−>getAbsoluteMaxTransVel ())
{

v = myRobot−>getAbsoluteMaxTransVel () ;
p r i n t f (”Exceeded max v e l o c i t y \n”) ;

}
i f (omega > myRobot−>getAbsoluteMaxRotVel ())
{

omega = myRobot−>getAbsoluteMaxRotVel () ;
p r i n t f (”Exceeded max r o t a t i o n a l v e l o c i t y \n”) ;

}

// Set the de s i r ed inpu t s
myDesired . s e tVe l (v) ;
myDesired . setRotVel (omega) ;

// Save o f f p rev ious va l u e s
p x minus = p x ;
p y minus = p y ;
p xd dot minus = p xd dot ;
p yd dot minus = p yd dot ;
p xd minus = p xd ;
p yd minus = p yd ;
t minus = t ;

return &myDesired ;
}

#ifndef CONSENSUSTHREADH
#define CONSENSUSTHREADH

#include ”ArASyncTask . h”
#include ”ArMutex . h”
#include ” a r i aU t i l . h”
#include ”ArNetworking . h”

96

#include <iostream>
#include <fstream>
#include <s t r i ng>
#include <vector>

/∗ ConsensusThread
∗ Implements a robus t consensus t r a c k i n g a l gor i thm .
∗ Also i t c a l c u l a t e s the r e f e r ence t r a j e c t o r y f o r a robo t formation
∗ and prov ide s i t to the robo t s .
∗/

// Some cons tan t s f o r array s i z e s
#define NUMROBOTS 4
#define STATES 3

class ConsensusThread : public ArASyncTask
{
public :

// Constructor /Des t ruc tor
ConsensusThread () ;
ConsensusThread (std : : vector<std : : s t r i ng> hosts , s td : : vector<int>

ports , int ID) ;
virtual ˜ConsensusThread () ;

// Functions
virtual void∗ runThread (void ∗) ;
void l o ck () ;
void unlock () ;
void getX d (double (&x) [STATES]) ;
void getX d dot (double (&x dot) [STATES]) ;
void getX i (int id , double (&x) [STATES]) ;
void s e tX i (int id , double (&x) [STATES]) ;
void ge tX i do t (int i , double (&x) [STATES]) ;
double getT () ;
double a (int i , int j) ;
double b(int i) ;
void ge tSta t e (ArServerCl i ent ∗ c l i e n t , ArNetPacket ∗packet) ;
void c l i e n tGe tS ta t e (ArNetPacket ∗packet) ;

private :
// Mutex to l o c k the thread
ArMutex myMutex ;

// F i l e o b j e c t s
std : : o f s tream myFile ;

97

std : : o f s tream myPacketFile ;
// F i l e names
std : : s t r i n g myFileName ;
std : : s t r i n g myPacketFileName ;

// Server and C l i en t Ob jec t s f o r network communication
ArServerBase myServer ;
int myID ;
std : : vector<std : : s t r i ng> myHosts ;
s td : : vector<int> myPorts ;
s td : : vector<ArClientBase∗> myClients ;
ArFunctor2C<ConsensusThread , ArServerCl i ent ∗ , ArNetPacket ∗>

myGetStateCB ;
ArFunctor1C<ConsensusThread , ArNetPacket∗> myClientUpdateCB ;

// Data
bool s ta r t , myStart2 ; // Used f o r i n i t i a l i z a t i o n
ArTime myTimeZero ;
double t , t minus ;
double v c d , w c d ;

// Consensus v a r i a b l e s
double e f [STATES] ; // error f o r consensus a l gor i thm
double e f 0 [STATES] ; // Beginning error f o r consensus a l gor i thm
double f ha t [STATES] ; // es t imate o f d i s t u r bance f o r c e
double f h a t i n t [STATES] ; // I n t e g r a l par t o f e s t imate
double u [STATES] ; // con t r o l input f o r consensus
double x i d o t [STATES] ;
double x c d [STATES] ; // ac t ua l r e f e r ence t r a j e c t o r y , ang l e s in

rad
double x c d dot [STATES] ;
// Contro l ga ins
double k1 , k2 [STATES] , k3 , k4 [STATES] , kc ; // consensus con t r o l

ga ins

double A[NUMROBOTS] [NUMROBOTS] ; // Adjacency matrix
double B[NUMROBOTS] ; // Vector g i v i n g acces s to

r e f e r ence t r a j e c t o r y
double X[STATES] [NUMROBOTS] ; // Matrix o f robo t x i ’ s

} ;

#endif /∗CONSENSUSTHREADH∗/

// ConsensusThread . cpp

#include ”ConsensusThread . h”

98

// Constructor /Des t ruc tor
ConsensusThread : : ConsensusThread ()
{
}

ConsensusThread : : ConsensusThread (std : : vector<std : : s t r i ng> hosts , s td : :
vector<int> ports , int ID) :

myID(ID) , myHosts (hos t s) , myPorts (por t s) , myGetStateCB(this , &
ConsensusThread : : g e tS ta t e) ,

myClientUpdateCB (this , &ConsensusThread : : c l i e n tGe tS ta t e)
{

// I n i t i a l i z e v a r i a b l e s
s t a r t = true ;
myStart2 = true ;
t = t minus = 0 . ; // s

// Reference t r a j e c t o r y parameters
v c d = 3∗20 ; // mm/s
w c d = 3∗M PI/150 ; // rad/ s

// Consensus Contro l Gains
k1 = . 0 1 ;
k2 [0] = .7∗1000 ;
k2 [1] = .7∗1000 ;
k2 [2] = . 7 ;
k3 = 1 ;
k4 [0] = 0 . 0 1 ;
k4 [1] = 0 . 0 1 ;
k4 [2] = 1 ;
kc = 11 ;

// Consensus v a r i a b l e s
for (int i = 0 ; i < STATES; i++)
{

e f [i] = 0 . ;
e f 0 [i] = 0 . ;
fha t [i] = 0 . ;
f h a t i n t [i] = 0 . ;
u [i] = 0 . ;
x i d o t [i] = 0 . ;
x c d [i] = 0 . ; // ac t ua l r e f e r ence t r a j e c t o r y , ang l e s in rad
x c d dot [i] = 0 . ;

99

}

// I n i t i a l i z e matr ices
for (int i = 0 ; i < NUMROBOTS; i++)
{

B[i] = 0 . ;
for (int j = 0 ; j < NUMROBOTS; j++)
{

A[i] [j] = 0 . ;
}

}
for (int i = 0 ; i < STATES; i++)
{

for (int j = 0 ; j < NUMROBOTS; j++)
{

X[i] [j] = 0 . ;
}

}

// Information−Exchange
B[0] = 1 ;
B [1] = 0 ;
B [2] = 0 ;
B [3] = 0 ;
A [0] [1] = 1 ;
A [1] [0] = 1 ;
A [1] [2] = 1 ;
A [2] [1] = 1 ;
A [2] [3] = 1 ;
A [3] [2] = 1 ;

// Consensus I n i t i a l Condi t ions
X[0] [0] = −1000.; X [0] [1] = 1000 . ; X [0] [2] = 5 0 0 . ; X [0] [3] =

−500.;
X [1] [0] = −500.; X [1] [1] = 5 0 0 . ; X [1] [2] = 1500 . ; X [1] [3] =

1000 . ;
X [2] [0] = 1 . ; X [2] [1] = 0 . 7 5 ; X [2] [2] = 0 . 5 ; X [2] [3] =

0 . 2 5 ;

// Open f i l e s f o r data c o l l e c t i o n
int tmp = myID + ’ 0 ’ ;
myFileName = ” consensus ” ;
myFileName += tmp ;
myFileName += ” . csv ” ; //”C:\\Documents and S e t t i n g s \\Joshua \\My

Documents\\Data\\” + f i l e ;

100

std : : cout << ”Opening f i l e : ” << myFileName << std : : endl ;
myFile . open (myFileName . c s t r ()) ;

myPacketFileName = ”packets ” ;
myPacketFileName += tmp ;
myPacketFileName += ” . csv ” ;
std : : cout << ”Opening f i l e : ” << myPacketFileName << std : : endl ;
myPacketFile . open (myPacketFileName . c s t r ()) ;

// Write a headers to the f i l e s
myFile << ”t , ” ;
for (int j = 0 ; j < NUMROBOTS; j++)
{

for (int i = 0 ; i < STATES; i++)
{

myFile << ”X[” << i << ”] [” << j << ”] , ” ;
}

}
for (int i = 0 ; i < STATES; i++) myFile << ” x c d [” << i << ”] , ” ;
for (int i = 0 ; i < STATES; i++) myFile << ” x c d dot [” << i << ”] ,

” ;
for (int i = 0 ; i < STATES; i++) myFile << ” e f [” << i << ”] , ” ;
for (int i = 0 ; i < STATES; i++) myFile << ” fhat [” << i << ”] , ” ;
for (int i = 0 ; i < STATES; i++) myFile << ”u [” << i << ”] , ” ;
for (int i = 0 ; i < STATES; i++) myFile << ” x i d o t [” << i << ”] , ”

;
myFile << std : : endl ;

myPacketFile << ”t , n , x , y , theta ” << std : : endl ;

// S ta r t s e r v e r running
i f (! myServer . open (myPorts [myID] , myHosts [myID] . c s t r ()))
{

std : : cout << ”Could not open s e r v e r . ” << std : : endl ;
}
myServer . addData (” g e t s t a t e ” , ”Returns the consensus s t a t e . ” ,

&myGetStateCB , ”none” , ”Return Desc r ip t i on ”) ;

myServer . runAsync () ;

// F i l l up the vec to r wi th c l i e n t o b j e c t s , so I can use t h e i r
p o s i t i o n as t h e i r ID

for (int i = 0 ; i < NUMROBOTS; i++)
{

myClients . push back (new ArClientBase ()) ;

101

}

// Make a l l o f the c l i e n t connec t ions
bool connected = fa l se ;
while (! connected)
{

connected = true ;
for (int i = 0 ; i < NUMROBOTS; i++)
{

// Only s t a r t a c l i e n t i f we r e c e i v e in format ion from tha t
agent .

i f (a (myID, i) != 0 .)
{

i f (((myClients [i])−>ge tSta t e () == ArClientBase : :
STATE NO CONNECTION)

| | ((myClients [i])−>ge tSta t e () == ArClientBase
: : STATE FAILED CONNECTION))

{
connected = fa l se ;
// Attempt to connect the c l i e n t to the s e r v e r
const char∗ host = myHosts . at (i) . c s t r () ;
i f (! (myClients [i])−>blockingConnect (host , myPorts

[i] , true))
{

std : : cout << ”Could not connect to s e r v e r ” <<
host << ” at port ” << myPorts [i] << std : :
endl ;

}
else
{

(myClients [i])−>addHandler (” g e t s t a t e ” , &
myClientUpdateCB) ;

(myClients [i])−>r eque s t (” g e t s t a t e ” , 100) ;
}

}
}

}
}

}

ConsensusThread : : ˜ ConsensusThread ()
{

// Empty the vec t o r o f c l i e n t o b j e c t s
for (int i = 0 ; i < NUMROBOTS; i++)

102

{
delete myClients [i] ;

}
myClients . c l e a r () ;

// Close the f i l e s
std : : cout << ”Clos ing f i l e : ” << myFileName << std : : endl ;
myFile . c l o s e () ;
s td : : cout << ”Clos ing f i l e : ” << myPacketFileName << std : : endl ;
myPacketFile . c l o s e () ;

}

// Functions
// Main thread loop
void∗ ConsensusThread : : runThread (void ∗)
{

// Run t h i s thread u n t i l another thread r e qu e s t s i t s top
while (this−>getRunningWithLock ())
{

// l o c k mutex wh i l e we are changing v a r i a b l e s
l o ck () ;
// F i r s t time through do i n i t i a l i z a t i o n
i f (s t a r t)
{

myTimeZero . setToNow () ;
s t a r t = fa l se ;

}
// Update the l o c a l time v a r i a b l e
t = (double)myTimeZero . mSecSince () / 1000 . ;

// Ca l cu l a t e a c t ua l r e f e r ence t r a j e c t o r y
x c d [2] = w c d∗ t ;
x c d [0] = v c d /w c d∗ s i n (x c d [2]) ;
x c d [1] = −v c d /w c d∗ cos (x c d [2]) + v c d /w c d ;
x c d dot [0] = v c d ∗ cos (x c d [2]) ;
x c d dot [1] = v c d ∗ s i n (x c d [2]) ;
x c d dot [2] = w c d ;

// Consensus Error
for (int i = 0 ; i < STATES; i++) e f [i] = 0 . ;
for (int j = 0 ; j < NUMROBOTS; j++)
{

for (int i = 0 ; i < STATES; i++) e f [i] += a (myID, j) ∗(X[i] [
myID] − X[i] [j]) ;

}

103

for (int i = 0 ; i < STATES; i++) e f [i] += b(myID) ∗(X[i] [myID]
− x c d [i]) ;

i f (myStart2)
{

for (int i = 0 ; i < STATES; i++) e f 0 [i] = e f [i] ;
myStart2 = fa l se ;

}

// Disturbance e s t ima t ion
for (int i = 0 ; i < STATES; i++) f h a t i n t [i] += (k2 [i]∗ tanh (k4 [

i]∗ e f [i]) + k3∗ e f [i]) ∗(t−t minus) ; // ((e f x >0)−(e f x <0))
for (int i = 0 ; i < STATES; i++) fhat [i] = k1 ∗(e f [i] − e f 0 [i

]) + f h a t i n t [i] ;

// Consensus Contro l input
for (int i = 0 ; i < STATES; i++) u [i] = −f ha t [i] + b(myID) ∗

x c d dot [i] − kc∗ e f [i] ;

// Ca l cu l a t e unders tanding o f r e f e r ence t r a j e c t o r y (wi th
d i s t u r bance)

x i d o t [0] = u [0] + 100∗ s i n ((myID+1) /7 .∗ t) + 100∗ cos (X [0] [myID
]/1000) ;

x i d o t [1] = u [1] + 100∗ s i n ((myID+1) /7 .∗ t) + 100∗ cos (X [1] [myID
]/1000) ;

x i d o t [2] = u [2] + 0 .1∗ s i n ((myID+1) /7 .∗ t) + 0 .1∗ cos (X [2] [myID
]) ;

for (int i = 0 ; i < STATES; i++) X[i] [myID] += x i d o t [i] ∗ (t −
t minus) ;

// Write data to f i l e
myFile << t << ” , ” ;
for (int i = 0 ; i < NUMROBOTS; i++)
{

for (int j = 0 ; j < STATES; j++)
myFile << X[j] [i] << ” , ” ;

}
for (int i = 0 ; i < STATES; i++) myFile << x c d [i] << ” , ” ;
for (int i = 0 ; i < STATES; i++) myFile << x c d dot [i] << ” , ” ;
for (int i = 0 ; i < STATES; i++) myFile << e f [i] << ” , ” ;
for (int i = 0 ; i < STATES; i++) myFile << f ha t [i] << ” , ” ;
for (int i = 0 ; i < STATES; i++) myFile << u [i] << ” , ” ;
for (int i = 0 ; i < STATES; i++) myFile << x i d o t [i] << ” , ” ;
myFile << std : : endl ;

unlock () ;

104

// Run a l l o f the c l i e n t l oops once i f they are supposed to be
connected

for (int i = 0 ; i < NUMROBOTS; i++)
{

// Only run a c l i e n t i f we r e c e i v e in format ion from tha t
agent .

i f (a (myID, i) != 0 .)
{

(myClients [i])−>loopOnce () ;
}

}

// Save o f f p rev ious va l u e s
t minus = t ;
// Loop keeps running to keep thread a l i v e
ArUti l : : s l e e p (10) ; // s l e e p the thread f o r 10 ms

}

return NULL;
}

// Lock the mutex to prevent mu l t i p l e th reads acce s s ing data
s imu l t aneous l y

void ConsensusThread : : l o ck ()
{

myMutex . l o ck () ;
}

// Unlock the mutex
void ConsensusThread : : unlock ()
{

myMutex . unlock () ;
}

// Get the a c t ua l r e f e r ence t r a j e c t o r y
void ConsensusThread : : getX d (double (&x) [STATES])
{

l o ck () ;
for (int i = 0 ; i < STATES; i++)
{

x [i] = x c d [i] ;
}
unlock () ;
return ;

105

}

// Get the a c t ua l r e f e r ence t r a j e c t o r y d e r i v a t i v e
void ConsensusThread : : getX d dot (double (&x dot) [STATES])
{

l o ck () ;
for (int i = 0 ; i < STATES; i++)
{

x dot [i] = x c d dot [i] ;
}
unlock () ;
return ;

}

// Get the l o c a l v e r s i on o f the consensus s t a t e f o r agent i
void ConsensusThread : : ge tX i (int id , double (&x) [STATES])
{

i f (id < 0 | | id >= NUMROBOTS)
return ;

l o ck () ;
for (int i = 0 ; i < STATES; i++)
{

x [i] = X[i] [id] ;
}
unlock () ;
return ;

}

// Set the l o c a l v e r s i on o f the consensus s t a t e f o r agent i
void ConsensusThread : : s e tX i (int id , double (&x) [STATES])
{

i f (id < 0 | | id >= NUMROBOTS)
return ;

l o ck () ;
for (int i = 0 ; i < STATES; i++)
{

X[i] [id] = x [i] ;
}
unlock () ;
return ;

}

// Get the l o c a l v e r s i on o f the consensus s t a t e d e r i v a t i v e f o r agent i
// Only works f o r the l o c a l agent
void ConsensusThread : : g e tX i do t (int i , double (&x) [STATES])

106

{
i f (i < 0 | | i >= NUMROBOTS)

return ;
l o ck () ;
for (int i = 0 ; i < STATES; i++)
{

x [i] = x i d o t [i] ;
}
unlock () ;
return ;

}

// Get the l o c a l time v a r i a b l e
double ConsensusThread : : getT ()
{

double r e t ;
l o ck () ;
r e t = t ;
unlock () ;
return r e t ;

}

// Get e lement o f adjacency matrix
double ConsensusThread : : a (int i , int j)
{

i f ((i < 0 | | i >= NUMROBOTS) | | (j < 0 | | j >= NUMROBOTS))
return 0 . ;

double r e t = 0 . ;

l o ck () ;
r e t = A[i] [j] ;
unlock () ;

return r e t ;
}

// Get e lement o f the vec t o r B
double ConsensusThread : : b (int i)
{

i f (i < 0 | | i >= NUMROBOTS)
return 0 . ;

double r e t = 0 . ;

107

l o ck () ;
r e t = B[i] ;
unlock () ;

return r e t ;
}

// Server packe t hand l ing c a l l−back func t i on
void ConsensusThread : : g e tS ta t e (ArServerCl i ent ∗ c l i e n t , ArNetPacket ∗

packet)
{

ArNetPacket sending ;

// l o c k the thread to prevent s imul taneous acces s
l o ck () ;

// Load the data in t o the packe t
sending . byte2ToBuf (myID) ;
for (int i = 0 ; i < STATES; i++)
{

sending . doubleToBuf (X[i] [myID]) ;
}

// Unlock
unlock () ;

c l i e n t−>sendPacketTcp(&sending) ;
}

// C l i en t packe t hand l ing c a l l−back func t i on
void ConsensusThread : : c l i e n tGe tS ta t e (ArNetPacket ∗packet)
{

int id ;
double x [STATES] = {0 . 0} ;

// Extrac t the data from the packe t
id = packet−>bufToByte2 () ;
for (int i = 0 ; i < STATES; i++)
{

x [i] = packet−>bufToDouble () ;
}

myPacketFile << getT () << ” , ” << id << ” , ” ;
for (int i = 0 ; i < STATES; i++)
{

108

myPacketFile << x [i] << ” , ” ;
}
myPacketFile << std : : endl ;

// Update s t o r ed va l u e s
s e tX i (id , x) ;

}

109

	Abstract
	Table of Contents
	List of Figures
	List of Tables
	Introduction
	Overview
	Project Areas
	Literature Review

	Experimental Testbed
	Robot Platforms
	AmigoBot
	Pioneer 3-DX

	Sensors
	Encoders
	Sonar
	Cameras

	Software
	Previous Work
	Preliminary Experiments
	Simultaneous Robot Control
	Sonar Characterization

	Robust Consensus Formation Tracking Control Experiment
	Problem Description
	Theoretical Development
	Robust Consensus Tracking
	Motion Controller

	Experiment
	Hardware Implementation
	Software Implementation
	Implementation Challenges
	Experimental Parameters
	Experimental Results

	Distributed Experiment
	Hardware Implementation
	Software Implementation
	Implementation Challenges
	Experimental Parameters
	Experimental Results

	Formation State Description and Measurement
	Motivation
	Formation State Description
	Measurement Rules and Assumptions
	Image Measurement

	Vision-Based Formation Tracking Experiment With Consensus
	Problem Description
	Consensus Tracking Protocol
	Model
	Control Objective
	Consensus Protocol Design and Error System
	Stability Analysis

	Robot Motion Control
	Relative Agent Dynamics
	Low-Level Motion Controller

	Hardware Implementation
	Software Implementation
	Implementation Challenges
	Experimental Setup
	Experimental Results

	Conclusion
	Bibliography
	Code For Distributed Formation Tracking Experiment

