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SYNOPSIS

The slope-deflection formulas are derived for con^)utation of the trans-

verse moments at joints, longitudinal stresses of plates (called deep beams),

rotations of deep beams at joints and vertical deflections in folded plate

structures. The slope-deflection formulas are written in terms of the change

of angle 6, at joints between the deep beams. This change of angle, ©, is a

consequence of: deep beam rotation of adjacent slabs caused by unequal

settlewent of joints (chord rotation) and caused by transverse moments. The

structure is treated as a continuous one-way slab that is assumed to be sup-

ported by the joints of the deep beam structure. The reactions from these

imaginary supports will act as forces on the deep beam structure. The slopes

and stresses at the joints must satisfy the continuity of a slab and deep

beam system. The variation of the slope deflections (©) along each joint

is adjusted to fit a similar function along the structure. The computation

procedure is performed in a tabular form which enables easy checking at all

stages. Such a table can also be used for calculations for any folded plate

with a similar cz*oss section.



INTRODUCTION

Folded plates have gained increasing popularity because of their econony <f—

and appearance. Simultaneoiisly, analysis of folded plates has been developed

by many authors.^ Most of them have tried to approach the real solution and

to simplify the procedures of analysis.

In general, the behavior of a folded plate is divided into interde-

pendent behaviors in the transverse and 3.ongitudinal directions. The struc-

ture, in the transverse direction, is treated as a continuous slab. The

transverse strips are assumed to be supported at the joints on rigid or

flexible supports. The longitudinal plates are treated as deep beams with

forces acting on the joints of the plates.

The method of analysis in this report focuses on the slope-deflection

method. The slope-deflection means the change of angle, ^, at joints in the

transverse direction. Two exangjles, a one-span and a two-span structure, will

be presented. The basic assumptions and properties of folded plates will be

demonstrated in the slope-deflection method.

The object of folded plate analysis is to solve for the longitudinal ^ -

stresses, transverse moments, and the deflections of the structure. The

continuous one-way slab is assumed to be rigidly supported by the joints of

the deep beam structures [Fig. 3 (a)] . The one-^way slab is analyzed as an

^Amim Defries-Skene and A. C. Scordelis. "'Direct Stiffness Solution
for Folded Plates." ASCE Vol. 90, No. ST4, August, 1964. p. 15-47. A. C,
Scordelis, "Matrix Formulation of the Folded Plate Equations." ASCE Vol.
86, Ko. STIO, October, I960, p. 1-22. David Yitzliaki and Max Reiss.
"Analysis of Folded Plates." ASCE Vol. CS, No. ST5, October, 1962. p.
107-142. Portland Cement Association. "Analysis of Folded Plates." 1958.
Portland Cenent Association. "Direct Solution of Folded Plate Concrete
Roofs." I960.



ordinazy continuoiis beam, by moment-distribution, for finding the moments and

reactions at joints. I^e ccsnplete stress solution is obtained by allowing

the longitudinal joints to deflect. This is achieved by applying the joint

support reactions to the combined slab and deep beam systan^ which is then ^

free to deflect [Pig. 3(b)] . These reactions are considered to be acting on

the hinged joints. The joint laoments then must provide along the joints to

secure the contiraxity of the slab in the transverse direction. The values of

the joint moments are solved by the slope-deflection equations (page 8). The

deep beam structure will be considered as one which is supported by the end

diaphragms. The method of general beam theory will be used in solving for the

fiber stresses and shear stresses of the deep beams. An additional computa-

tion required in this problem is that of the shearing stress exerted by the

adjacent deep beams.

The slope deflections of each joint in the longitudinal direction can be

expressed similarly along the structure, that is, the corresponding slope

deflections at every transve«e strip will be proportional to the maxljnua

slope deflections of the joints in the longitudijml direction.

The final values of the stresses and deflections are found by combining

the effects of the hinge reactions and joint maaents.

Notation. - The letter symbols adopted for use in this report are de-

fined where they first appear and are arranged alphabetically in Appendix III.



BASIC ASSUMPTIONS AND PROPERTIES

Folded plates are treated as ccanbined slab and beam structures. The

fundamental properties and the assxm^Jtions of the folded plates are stated

below to clarify the application of the analysis,

(a) The material is elastic, isotropic and homogeneous.

(b) The structure is formed by rectangular plates monolithically con-

nected along the joints and supported by transverse diaphragms.

(c) Slab action is defined by the behavior of transverse one-way slabs,

spanning between longitudinal joints,

(d) Longitudinal stresses developed in each plate due to longitudinal

plate action can be calculated by the elementary beam theory. Therefore, the

longitudinal stress varies linearly over the depth of each plate. The shear-

ing strain and the lateral strain of the plates are neglected.

(e) Stiffness of the deep beam structures are caused by the resistance

of the plates to forces acting in their planes.

(f

)

Supporting diaphragjns are infinitely stiff parallel to their own

plane, but perfectly flexible nonnal to their plane.

(g) The length to height ratio, L/h» of the deep beams is at least 2

(Fig. 1).



SLOPE DEFLECTION

The general shape of a one-span folded plate structiire is shown in

Fig, 1. The structure in the transverse direction vdll be solved as a one-

way slab for the moments and reactions at joints, caused by the external

loading. The reactions solved from the one-way slab will be considered as

the forces acting upon the deep beam structures. The elements of a folded

plate are shown in Fig. 2.

JOINTS

FIG. 1. -SIMPLY-SUPPORTED FOLDED PLATE STRUCTURE



(a). One-Way Slab (b). Deep Beam

FIG. 2. -ELEMENTS OF A FOLDED PLATE STRUCTURE

A SUB SYSTEM

A slab strip of xmit width [Fig. 2(a)j vfith the external load is anal-

yzed as a continuous structure. The joints of the deep beams are assumed to

be supported by imaginary supports along the longitudinal direction so that

the external load is carried entirely by the one-way slab system. The

rigidly supported joint moments may be readily obtained by moment distribu-

tion and the joint reactions may then be found by equations of static [Fig.

3(a)J. The reactions thus calculated will be applied as loads to the joints

of the deep beam structure. For applying these reactions to the deep beams,

the joints are assumed to be hinged and the reactions and joint moments are

applied separately to them (Fig. 4). The reactions are split into com-

ponents in the plane of the deep beam members. The joints will be displaced

under these reactions. The structure is monolithically connected along the

joints so that there are unknown moments at the joints to maintain the con-

tinuity of the structure. Solving for these moments, unit moments are applied

at each joint for finding the influence coefficients of the rotations at each

joint to satisfy the slope deflection equations of all joints.
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Assume that nt]^, ia2' ^^^ ^ °^^ iinknown moments at Joint 1> 2, and 3*

"The rotations of the slab structure due to external loads, and joint mcoients

are:

©^ = mi ©^ + mg ©12 "* °5 ^13 "^ ^10 ^^^

©2 = mi ©21 + iHg ©22
"*"

"^ ^23 "^ ©2q
---------———— (lb)

©3 = mj^ ©31 + m2 ©32 + DV3 ©33 +
©^^

(Ic)

where ©^^ ©p* ^^^ ©3 <lenote the angle changes at joints 1, 2, and 3 due to

loads and moments acting on the structure. Angles ©^q, ©2q, and ©^q denote

the angle change at Joints 1« 2^ and 3 due to external loads and hinged sup-

ports. Angles Qyx* ^22* ^^^ ^33 '^^'^^^^ ^^® angle changes at Joints 1, 2, and

3 due to a iinit moment acting at the corresponding Joints. Angles ©^n and

©31 denote the angle changes at Joints 2 and 3 due to a unit moment acting at

Joint 1. Similar notation applies for angles ©^, ©_ , ©,^, and ©-_,

Since the slab is a continuous structiire,

©1 = ©2 = ©3 «= (2)

Equations (1) are subject to the condition of Eq, (2) so we can solve

Eqs. (1) by using a successive approximation method such as a matrix form

using a digital computer. From moments mj^, og* ^^^ ^ vdiich are foimd \fy

solving Eqs. (1), it is easy to solve for the stresses and deflections at the

Joints of the structure due to these moments by proportion of the assumed

Joint mcments to the obtained moments.

The variation of the slope deflections along the Joint can be e:q)res8ed

in the form ej^fix)), in which ©j^ is the maTriTmnn slope deflection, and f(x)



is the fimctlon definjbng the curve of variation in the longitudinal direction.

The variation of the joint mraaents vrill be chosen proportional to the same

f(x), that is, in form m(r(x) )

.

The reactions which are obtained from the slab systan vdll apply as the

loads to the beam system. The form of the deflection curve of a folded plate

due to these reactions depends mainly on its suppoi^ conditions. For the

simply supported structure, for example, vhea. the reactions have the same lon-

gitudinal distribution, the deflection curve is nearly a sine curve^ (other

cases are shovm in Appendix II). For nonhanaonic loading, the difference be-

tween the distribution of the load and the dei'lecticm curve may be overcome

by introducing extra-^rmonic joint loads, such as a form of Fourier sine

series.3 The displacement of the structure computed from the longitudinal

loading must be compatible with the displacement obtained from the transverse

loading. Several iii?)ortant load and support conditions are shown in Appendix

II.

The slope deflection terms at a joint, as previously defined, are illus-

trated in Fig, 5. It will be noted that:

(1) Part of the rotation of joint n, © , is due to the unequal de-

flections of joints in adjacent slabs.

(2; Part of the rotation of joint n, B^, is due to the joint mfflnents.

^David yitzhaki and i-iax Reiss. "Analysis of Folded Plates." ASCE Vol.
88, No. ST5, October, 1962.

3"Direct Solution of Folded Plate Concrete Ptoofs," Portland Cement
Association. I960. The reactiona of simply-supported folded plates are
approximated by a Fourier Series in form of

Wx «= M (sin X2£ + i sin l^ + i sin ii£ + )
3 r 5

Where W is the uniform load of the reactions; Wt is the sum of partial sin-
tisoidal loads. For the design, only the first term of the Fourier Series
needs to be usod.
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^-1
FIG. 5. SLOPE DEFLECTION TERI'IS

h+1

The calctilation of these two cases is shown in the following computa-

tions (reference to Fig, 5)^

n n,n n,n+l

dn-1 ~ On Sn - S n+1

>n+l

10

''n-l,n 6EIn

©; „ = -il-Tfnn
"'" 3EIn

^n,n+l ^^
3EI

n+1

5 = ,

""
.-mn

n+1,n+1 6EI ^,n+1

(4a)

(4b)

(4c)

(4d)

Part of the rotation 6 caused by the bending of the slabs by the ex-

ternal load (loading m = 0) will be separated from this analysis.
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DEEP BEAM SYSTM

The deep beajns are supported at the ends by the diaphragms and the joint

loads which are the reactions of the one-way slab acts along the joints of

the beams. The load fimction is assumed similar along all joints. Loads

that do not vary similarly can be resolved into similarly varying components

and each of the components analyzed separately. The joint loads, R, can be

resolved into components parallel to the adjacent deep beams. The joint

loads and their components are shown in Fig. 6. -

DEEP BEAM n+1

DEEP BEAM n >. r / ^"^l

n+1

FIG. 6. JOINT LOADS AND THEIR COMPONENTS.

Let
Qj^^j^

and Q^ be the components of the load R at joint n acting

on deep beams n and n+1. From the forces of polygon a-b-c-d in Fig. 6, it

is seen that

^=(^,n)«i^r^n-(^,n+l) '^ ^ n+1

but (Q^^^) cos 4 ^ =
(Q^^^+i) cos + = H

(5)

(6)
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.'. R = H (tan 4 - tan i ,,)n n ^n ^ n+1
(7)

Let tan 6 - tan Q
^ n ^

, - = d so that
n+1 n

"n = V '^n

S^,n = «nA "^n
«°^ ^n^

(8)

(9)

where 9^ -^^ ^^® inclined angle of the deep beam n (Fig. 6),

The forces act on the joints of deep beam n must be equal to the sum of

On n ^^^ "^-l n*
^"^ ^^^ resultant of

Q^^ ^ and Q^_^ ^ equals P^^, then

Pn = Qn,n " Vl,n = («n " H^-l)Aos ^^ (10)

The variation of the P-forces is similar to that of the R-loads, The

free body of a deep beam is shown in Fig. 7. •

•^-n.

LLI n UiJJiUJ.

t ftjt IT'fT 1 1 1 1^
i

FIG. 7. FORCES AND STRESSES OF A DEEP BEAM.
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From Fig. 7 It is easy to see that the deep beam anailysis needs scie

modification of the existing sheazdng stresses at the edges and ends of the

beams. The principle of superposition vd.ll be applied to the analysis of

the deep beam structure. First, the free edges of a beam are analyzed.

Second, the shearing stresses acting on the edges are considered. The fiber

stress (or) and shear stress (T) are calculated in the following steps:

Free Edge.

—

n-l,n Zjj v-«-^/

^n,n = - r <^>

^.irH " z ^^°^
"^n+l

Where Z is the section modulus of deep beam n.

Fiber Stresses . - Hie fiber stresses of a beam are solved by the gen-

eral beam theory. Then the shear stresses along the joints of adjacent deep

beams balance the unequal fiber stresses at joints irtiich were solved by the

condition of free edges. The relationship of these stresses is shown in

Fig. 8.

The formulas obtained by the elementary beam theory^ are

" 2n ^ A„ ^n,n 3^ 1^ C12aj

^"Matrix Formulation of the Folded Plate Equations" by A. C. Scordelis,
ASCE, Vol. 86, No. ST 10, October, I960, page 6. "Analysis of Folded Plates"
by David Yitzhaki and Max Reiss, ASCE, Vol. 88, No. ST 5, October, 1962,
page 117. "Advanced Reinforced Concrete" by Clarence W. Dunham, McGraw-Hill
Book Ccampany. 1964, page 329.
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A. U

*.t

TOP EDGE CJpi

BOTTOM EDGE

FIG. 8. FREE BODY DIAGRAM OF A TYPICAL DEEP BEAM.

4T_ 2T
E+l

^n+1
- (12b)

Where Aj^ is section area of deep beam n.

The equations expressed above have one \mknown quantity, T, the

shearing stress.— If we study these equations, we will find that the in-

fluence of the shearing stress on one edge of a deep beam will carry - r of

the value to the far edge of the deep beam. This can be expressed by the

Hardy Cross method of moment-distribution. The first two terms when combined

and solved in terms of the free edge fiber stress show that

A A ,

.

n n+1
Tn=(0n,n+1- ''n.J ni~?W (13)
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n+1

^n = ^n,n "^ ^^n,n^l "V^ '^^^^^i

«^n,n+l - ^Crn,n+1 " ^n,r? I^A
'n+1

(14)

It is obvious from the above equation for <y that the stress-distribution

factors are in inverse proportion to the area of the deep beams.

^n+1
n,n A^ + An+i

(15a)

n
^n,n+l A„ + An ^ ^n+1

(15b)

where r is the distribution factor. After stresses at joints are distributed,

half of the distributed stresses must be carried over to the adjacent joints.

The process continues until the required precision is obtained.

Shearing Stresses. -The equilibrium of the horizontal forces of the deep

beams is shown in Fig, 9.

FIG. 9. EQUILIBRIUM OF HORIZONTAL FORCES.
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The resultants of the shearing stresses at a section of a folded plate

can be calciilated by equilibrium of the horizontal forces (Fig. 8): that is.

JcTdA (16)

The T-values at the joints can be obtained successively by semi-graphic

integration; these become

^1 »• ^2
T^ » Ti + -^~ Ag (17b)

^3 " ^2 "*"—i— h ^^'^''^

At an intermediate point at a distance y on plate n from joint n-1,

0-n-i + cr

V = Vi "* ^-^'"'1—
^) * y (i«>

Where t is the thickness of beam n.

From Fig, 7 the resultants of sheaidng stresses acting along the edges

are

Vl =
J^ 'T'n-l ^ ^

:

^19a)

azid

^n
==

1 Tn ^ ^ ' '—
- (19b)

Where T^ is the unit shearing stress of the edge n. The shear stresses can

be expressed as

dT
<, = -2 (20)
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V/here dx is a small distance in the longitudinal direction. From the equi-

libriiom of the horizontal forces on the deep beam, the shear stresses are

functions of fiber stresses so that maximum shear stress occurs vrtiere moment

is maximum. It is easier to show the shearing stress in terms of the maximum

value. This shearing stress is

^ = ^max ^ = ''max \ (21)
^ Mmaxtdx \^X

Where dKj^ is the change in bending moment between two cross sections a

distance dx in the longitudinal direction.

JOINT DEFLECTIONS AND DEEP BEA1>I ROTATIONS

The vertical deflection o at each interior joint produced by a given

set of R loads can be expressed in terms of the deep beam displacements A of

the two deep beams adjacent to the joint. A Williot diagram for a joint

displacement is used to find the vertical deflection at that joint. The deep

beam displacements are shown in Fig. 10.

-y

LOADING'

ANGLE CHANGES

DEEP BEAM ^
DISPLACEMENTS

M
^

FIG. 10. DEEP BEAM DISPLACMENTS

.
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The deflection ciirve of a deep beam can be expressed by the differential

(^ M <r / ^n-l ^n.
equaticm EI --3- = M. 5y replacing j = — by ( f^ ), the differaitial

ecpsttion can be esqpressed in terms of fiber stresses vMch w^re solved la

the previous section (pages 13-15) at joint n as

Integration of this equation will give the displacement curve of the deep

beam. Also, the deflection ciirve can be esqpressed in terms of the angle

changes shown in Fig. 10, as A„^ = (_2S)(^), in which C„ is a constant that
nx EIn ^v ^

depends on the load variation and support conditions. The significant de-

flection of a folded plate is usually considered to be the maxiimpn deflection.

The maximum deflection ( A_) Ccin be expressed as

^ ^n^aax E h^^ C^
^'^^^

Several coumon cases of C^ are listed on Appendix II. The Eq. 23 shows that

the maxiinura deflection can be expressed in terns of the difference of the

maadmum edge stresses at the point of maximum m<»ient.

A WiUiot diagram of a joint displacement is shown in Fig. 11. The

displaconent A^-j. °^ '^^^P ^®8"° ^^» ^ parallel to the deep beam itself.

On the Williot diagram, the new location of the joint n is denoted as n. The

vertical deflection of joint n, ^j^, can be found by using triangular rela-

tions .

*n (tan 4^ + tan ^^^) = A^ /cos ^^ - A^cos 4^^

Sr, .
S +1

but COS kr,-^, COS +^1=1^
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FIG. 11. WILLIOT DIAGRAM FOR THE DEFLECTION OF A JOINT,

S„ (tan +„ . tan +^^) = [i^H^) - C^^fc^) ] I

2

EC,

or S„ =
((-H=^) - (^^tr^)]i;/(tan *„ . tan 4„,,) - (..)

The rotations of the joints due to the deflections are shown in Fig. 5,

After the joint moments are found by using Eqs. 1, actual fiber stresses

(T, vertical deflections £ , and joint reactions can be found by using the

superposition equations. These equations are shown below.

(25a)^i = ^iO ^ ^\ ^ij

<^i= ^iO-^^^k^ij

Ki = RiO-^^^k%iIJ

(25b)

(25c)

Where i, j and k are the subscripts of the number of the joints.
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CONCLUSION

As ahowi in the two design solutions in Appendix I, the slope-deflection

method used in this report is a practical niethod. The joints of the deep

beams are assumed to be rigidly supported so that the external load is carried

entirely hy the one-^way slab systan. The ccsaplete stress solution is obtained

by allowing the longitudinal joints to deflect. The slope deflections of the

joints are introduced from these deflections. To eliminate these slope de-

flections the transverse moments are introduced at each joint of the structure

to satisfy the slope deflection equations. The procedures of the analysis

have been presented for determination of the longitudinal stresses, transverse

moments and vertical deflections in the case of a sin^jly-eupported folded

plate structure. The method can be applied, however, with proper modifica-

tions to cases involving other end conditions. The deflection curves of all

joints in tiie longitudinal direction (due to the reactions of the one-way

slab on unyielding supports) may be assumed in similar form along the struc-

ture. The c<x(i>utations are functions only of the geometry and dimensions of

the structure cross section and aodultis of elasticity. Thus, th^ need not be

recomputed for each different loading condition. The sinqplifications that have

been made arise from the vae of forces, rotations and displacements; these

concepts emerge as a most powerful aid of structural analysis.

The method is practical because of the convenience of performing the

analysis in a table b^iat reflects all calculaticvis and enables easy checking

in all stages. Such a table can also be used for calculations for any plate

with a similar cross section. Design tables prepared for typical cross sec-

tions will greatly reduce the required con^mtational work.
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APPENDIX I. PROBLE'IS

To illustrate the slope deflection method, two simple problems are

solved.

Example 1 : The dimensions and loadings are stated as follows : single

span; L = 60 ft.; plate thickness t = 4 in. for all plates; loading, live

load 40 psf., dead load is the weight of the plate itself. The shape and •

all dimensions of the folded plate are shown in Fig. 12. The fiinction of

Joint loads in the longitudinal direction will be considered in two cases,

(a) uniformly distributed joint loads, (b) sine curve loads.

UNIFOM LOADS

h
60 ft.

(a) External Loading
H

SINE CURVE LOADS

i J H I H j I j I H j u j 1 ^<<fn 1 1 1 1 [ i I n>^

60 ft.

(b) Joint Moment Forces

FIG. 12. DIMENSIONS AND LOADING OF A SIMPLY-SUPPORTED FOLDED PUTE,
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In view of the syiiiaetry of the structure, only half of the folded plate

will be dealt with in the calctOations . As indicated (page/^ ), the torsional

resistance is neglected in this analysis. The analysis of this problem will

follow the steps of previous discussions and the results of each step will

lead to the tabulation on page 33*

SUB SYSTQC

Loading;

Uve load = 40.0 psf

Dead load

Plate 1 and 6 — 150 x ftj x 4 = 200.0 lb. per ft.

4
Plate 2, 3, 4 and 5 — 150 X ^ = 50.0 psf

Moment-distribution Factors: Joints 1 and 5 are considered to be simply

supported. For joints 2 and 4 distribution factors are

^23 " 1 + 3/4
" ^"^

For joint 3 distribution factors are K^2 ~ ^34 ~ V2

The fixed-end moments are

1^, = - (90 X cos 30°) X 10^ = - 975 ft.-lb.21
g . .

*
* i

,,'i. •-

',-- X '

4 = iSLiLc^^Iflxi^ = 725 rt.-ib.



The iBQBi^it dUtrlbuti<»i coQ$>utatlona are as roUows:
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3/7 V7 -h- 1/2 1/2 -h- Un 3/7 1

-975
107

725

H5
-725

72

725
-72

-725 975

407

-868 868 -653 653 -868 868

Reactions at Joints:

r1 = 200 + 20JL12 . 868 ^ 55Q j^^^ j. ^^

4 = 900 + ^
9.656^^ ^ 922 lb. per ft.

R^

rN

900 - 2 X
868 - 653

9.656
= 856 lb. per ft.

; ,
= Rg = 922 lb. per ft.

5
= 1^= 550 lb. per ft.

The joint moments due to external loading are assvnned to be zero. Now

we consider the joint momenta by the superposition method. The joint moment

is applied separately at each joint for finding the reaction at each joint.

The m(»nents are as follows:

(1) at joints 1 and 5 the moments are zero,

(2) at joints 2 and 4, it is assumed that mg = m, = 1000 "^^"JJ—
^ (lb).

The reacti<nw due to lacMoents VBn and mi are

2 1000
\ " ^M " ^5 lb. per ft.

^ = - ^^ (^ -^
9355) = - 219 lb. per ft.
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I^ = 2 (9^) = 208 lb. per ft."3"- 'i. \
9.^5^

4''A

i-4
(3) at joint 3, it is aastaned that nu = 1000 ^"^t^^ lbn.3

I^ » r|

^ " ^ ""^ = ^°^ ^^- P^"* ^**

I^ - - 2 (9^1^) *= - 208 lb. per ft.

The results obtained by solution of the slab system will be applied to the

deep beam system.

DEEP BEAM SYSTEM

H; The cc»^x>nents of reaction R, are computed by using equation (8)

from page 12.

tan 300 = 0.5774, tan 15° = O.I763

(1) due to R^

H^ =

H2 = 922/(0.5774 - 0.1763) - 2305 lb. per ft.

H3 ° 856/(0.1763 + 0.1763) = 2428 lb. per ft.

(2) due to r2

K^ =

H^ = - 219/0.4011 = - 546 lb. per ft.

H^ »= 208/0.3526 = 580 lb. per ft. '^
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(3) due to r3

H^ =

H = 10U/0,U011 = 259 lb. per ft.

H- •= - 208/0.3526 = - 580 lb. per ft.

P: The loadings of the plate, using Eqs. (10) frcan page l2 vdth cos

30° = 0.8660 and cos 15*' = O.9656, are:

(1) due to H in case (1)

Pj^ = rJ = 550 lb. per ft.

?2 " 2305/0.866 = 2660 lb. per ft.

P3 = (2428 - 2305)/0.9656 = 12? lb. per ft.

^4 = ^2

P^^P,

(2) due to H in case (2)

P]^ = rJ = 115 lb. per ft.

P2 = - 546/0,866 = - 630 lb. per ft.

P3 » (580 + 546)/0.9656 « II65 lb. per ft.

(3) due to H in case (3)

Pj^ «

P = 259/0.866 = 299 lb. per ft.

Po = (- 580 - 259)/0.9656 = - 868 lb. per ft.

CT; (a) Fiber stresses at free edges are computed by using equation (11)

from page 13; (b) Cc^nbine the shear stresses at edges by using equations (14)

from page 14.
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(a) (1) cr = 6 X 550 X (60)2 ^ ^ ^^ ^^ ^^ ^^
0,1 8 X (42 X 4/12)

s2

"1,2-- <^2,1 = - Sti ^^ 215.4 X 1^ = -a.3 k.f

"^.3"- <^,2 -^ ^ l°-3 ^ f?^
- ''-""f

") »-o,i
-

^,3 = -^ X 10.3 X 1^ = -57.0 ksf

(b) (1) Find the distribution factors by Eq. (I5) from page 15,

Joint 1, r, = /,z/. ^^^
/ X

= 0.714•»*" (16/12 + (40/12)

16/12

1»1 (16/12 + (40/12)
= 0.286



(2) Stress-distribution by using Eq. (I4) from page 15.

-i-te 1 -h- 2 '-
-i-^ 3

0.714 0.286 0.500 0.500

Case 1

278.2
-176.3

-278.2 215.2

- 40.0

-215.2

70.5

- 5.7

10.3 -10.3

-* 40.0

116.2 -278.2
323.8

175.4
-129.8

-146.1
78.2

10.3
-78.2

29.7

45.6 45.6 -67.9 -67.9

Case 2

47.1 -47.1
- 2.1 —

3.2 —

-41.3

- 8.9

m

«
*

41.3
0.8

- 1.4

76.5 -76.5

-* 8.9

48.2 -47.1
- 2.2

-50.2

0.9
40.9
17.8

76.5
-17.8

-67.6

-49.3 -49.3 58.7 58.7

Case 3

- 7.0 --

-3.7 -

19.6

10.4

m

-19.6
2.8

1.4

-57.0 57.0

-* -10.4

-10.7

21.4
30.0
- 8.6

-15.4
^0.8

-57.0
20.8

46.6

21.4 21.4 -36.2 -36.2

Elihu Geer's anaethod^ is used in shortening the stress-distribution cal-

culation j a = |x^x|x 0.286 = O.036. After stress-distribution cal-

culations have been cai^jleted, the Joint stresses of adjacent plates agree

with each other due to this balancing procedure. 'Hie assumed moments at

5
Civil Engineering. January 1951, p. 53 by ELihu Geer.
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at joints 2, 3 and 4 can be found fron Eqi. (1) for zero rotation at the

Jolnta. The rotations of the joints are explained on pages 10 and 11, glrliie

Eqi. (3) ai»l (4) «diich 8ho»r that the deflections of the Joints in adjacent

slabs have to b« found before the Joint rotations can bo obtained.

JOINT BEFLmnms

Use Eep. (23) and (24) from pages 18 and 19 for solving the vertical

deflections of joints. The coefficient of C^ is given on Appendix II, and is

Cy " 9.6 for tmifojm load.

» 9«87 fo^ sin® curve load.

(D^l-^.^^^HX^ ^-17.65 (^)

S « 4?>6 f 6?.^ - -^H 7^?'7 3.
( J2)„3o.8"^2 8M W:^ 0.5774 -•- O.I763 ECy

c ^ -67.? ; 29.7 , 29,7 + 67,9 I J2«.57 3/Ji£)O3 "
9:^5^ - 9.656 2 X 0.1763 ECv

^^'"^ ^^^

(2) S^- \ " ^'^^ ^?T? ^«24.4 i

i „ ^8>7 ^ 67.6 ^ 47,^ > ^8,7 ^ J2„7^lJd
^3 9»656 9.656 0.3$26 1% '^' ECy
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5 ==
21,4 + 36.2 ,36.2 - 46.6 _1 l£ = .Q 2 J^

2 8.66 9.656 0.7537 HV EC^

1 ^ -36.2 .. 46.6 46.6 -^ 36.2 1 l£ .^^J^d3= 9.656 - 9.65^ 0352^ ^ = -^7.0^

JOINT ROTATIONS

e' , (1) e- = . iZ^^Jo^^ . 13.15^
1 8.66 ECy ECy

©.= 17»65 - ?0.8 , ;30.8
^J7.^ ^--..10.66^

2 8.66 9.656 ECy ECy

©• = 30-8 ;^ .57.^ « >^7.? - 30.8 j2 ^ ^
3 9.656 9.656 EC^ ^ ec^

(2) ©» = - ^'A •*• ?4»0 ^ = . 6 7 j£^'^^ **1 8.66 EC^ ^'^ EC;

e" = 24.4 + 34.0 .34.0 - 74.1 L^ - ,„ n I?^ 02 ^ 9.65r Ec;~^^-9^

©t ^ -^4-0
7
J^'l . 74.1 + 34.0 l2 ^ 2? ; -ii

®3 9.656 - B.b6 ^ - 22.4 55-
V

(3) ©. . . "8'0 - 20.2 _i2
rj

^•^^ *1
8.66 ECv

^'^ EC^

A* = -8»2 » 20.2 20.2 + 47.0 _l£ _ ^^ ^ L^
**2 8.66 " 9.656 ECy ~ " '°*2^
ei = 20.2 + 47,0 -.47.0 > 20.2 Jl! _ ,, Q -S2**3

9.656 9.656 EC^ ~ ^'^ EC^

6 s (1) Joint 1 is a hinged support, that is, it has no joint moment.
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(2) o" - a" + a" - ^QQQ^2
.
1000h3 _ 2000h

^^^ ®22 ^2,1 ^ %3 " 3El2 ^ Iei;^ ~ IE"

a" =ft" u.ft" „ 100013 lOOOh, _ loooh
^23 ^3,2 • ®3,4 ~ -TeT^ -Tuf ~ 3Er

(3) e" = 12252
3Z 6EI2

©" = 1000h3 ^ lOOOh. ^ 2000h
33 3EI3 3EI^ 3M

Solve the Joint moments by tising Eqs, (1) frran page 8,

l2-10.66 -i~ 4- 17.9^ ^2 +^ ing - 10.2 -i^ nu + iSgh nu = -(A)^1 ^v2 ^^-^ ECv2 ^ 6EI ^ECv2

where I = ^ ^ j^^) = 1/324 ft.^j L = 60 ft.
)

jL = 60x60 ^ / j2^ ^ 60 X 60 ^ , /
ECyji^ Ex 9.60 ^'^^^' ECv2 E x 9.8? ^^^^^

iQQOh lOffly IP. = 3240/E
EI lOOOE (1/324)

^

-10.66 (375/E) + 17.9 ni2 (365A) + 648O m^31^ - 10.2 11.3 x (365/E)

+ 3240 ny'6E =

or - 4000 + 8590 ni2 - 3180 03 =
(A*)

6850 - 7100 Big + 7230 nu =
. „ I. .u-u , ,-. (b')

Solving equations (A) and (B), it is found that

102 = 0.204 (kips) or 204 (IbX

103 = - 0.770 (kips) or -770 (llj.
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Final Values:

E|jr uoijig Eqs. (25) from page 19» values of (T and S are

Q-Q = 116.2 +^ (204) + =^^ (-770) = 134.27 kips/ft.^

^1 " ^^5.6 + ^:^ (204) +^ (-770) = 19.05 kips/ft.^

CTo = -67.9 + "^^ (204) + ^^^ (-770) = -27.73 kips/ft .2
•^ 1000 1000

^3 " ^^'"^ "^ ^^^ ^^°^^ " WW ^"''''''^^ " '^°*°° kip3/ft.2

r2 . .. . t2 , _. t2 . . t2
5, = 17.65 -3^ + 24.4 -ii— 0.204 - (-80) -L- (-0.770) »= 29.29
^ ECvi ^^^ ^2 ECv2

S - 30.8 -Isi. + (-34.0 -^ 0.204) + 20.2 -r^ (-0.770) = 9.22 -^
2 ECvi ^2 ^v2 ECv2

<y = -57.3 -^ + 74.1 -iL 0.204 + (-47.0)-^ (-0.770) = -7.59 -^

EyBtiiple 2 ; A continuous two-epan folded plate has the same cross section

as that in the first example, with the spans (L, = L2 — 60 ft.) continuous

over the middle diaphrag;(a. The loading conditions are the same as in the

first example. Each span is treated as the middle diaphragm.

The stresses and deflections will be calculated at point x = 3L/8 from

the outer support, where th^ have approximately the maximum values. From

Appendix II, the coefficients are Cj^ = 14.28 and C^ = 12.99 for a uniform load,

Cjjj = 17.82 and C^ = 13.33 for a normal load. The procedures of calculation

are almost the same as in example 1. The loads lU of the reactions of the one-

way slab on unyielding supports are the same and lead to the same P-forces.

Some data needs to be modified, such as values for C , <$ » and d. For loading

I the coefficient of the proportion of the maximtmi moments of these two

examples is 8/14.28 (Appendix: II) j for the other loading the coefficient is
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(a) The Dimensions of the Folded Plate

(i) Simply Supported -770 (ii) Continuous
:)f=L/2 xr^L/8

(b) Moments at the Section of the Maximum Deflection,

-19.95
1.52

-28.07

+19.06

(i) Simply Supported (ii) Continuous 73.53
(c) cr at the Section of the Maximum Deflection.

-6.00^-12.85

(i; Simply Supported ^- (ii) Continuous
^L/2 ^3L/8

(d; o at the Section of the Maximum Deflection.

+14.53

FIG. 13. THE RESULTS OF THE ANALYSIS OF THE FOLDED PLATE.
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9.B7/17.83. In calculation of C©", C must be considered and the multiplier

is 12.99/9.6 (Appendix II). The results of the analysis are presented in

Table B.

In this problem we are goin^ to solve the Joint moments m first. We will

use Eqs. (1) and the data irtiich are shown in Table B. The equilibrium equa-

tions are

•5-97^-7 + 17.9—-m2+-35j-m2-3.65^m3+ ^^ x U3 - ~(C)

where I = 1/324 ft.^

C^3L " ^'99

0^2 = 13.33

L = 60ft.

j£ = 60x60 ^
C^l 12.99

^^'

-^ = ^=270.0
C^ 13.33

-5.97 (275/E) + 17.9 (270/E) fflg * 6480 m^3^ - 3.65 (270/E)

+ 3240 ra3/6E =

10.2 (275/E) - 8.3 (270/E) m^ + 3240 m2/3E + 15.7 m^ (270/E)

+ 6480 m3/3E = O

Simplifying the above equations,

-1654 + 6990 mg - 445 m^ = O (C*)

2826 - 1160 fflg + 6400 mj = — — (D»)
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Solve the equations (C) and (D«) to get the values of nu and xsu which are

m2 = 0.211 (kipa) or 211 Ub^

Bjg = -O.4O40d.p«)or -404W
Final Values

:

Using Eq. (25),

^0 = 65.5 +
f55^

(211) + =^ (-404) = 73.53 kips/ft.^

^1 = 25-7 ^ 1o^ ^'"-^ -"^ ^-^^^ = "^-"^ ^^Z"'-"

Cp « -38.3 + 2^ (211) + =2^ (-404) = -23.30 kips/ft.2
2 ^ 1000 1000

§1 = 16.8 + :^2aS (211) + 1^ (-404) = -1.52 kip8/ft.2

*1 = 9.9^ - 13.5^ 0.211 . 4.4^ (-0.404) = U.83^
^2 = "-^^ - "•«^ "-^^ ^ ^-^^ (^•*«>= '-^£
5o = -32.1 -^ + 41.0 -ii— 0.211 - 26.0 -i— (-0.404) = -13.85 r-—
3 ECvi ECv2 ^yr2 ^v2

The calculated values are listed in Table A. They can be explained as

follows

:

1. Record the joint loads of every loading in column 1.

2. Calculate the joint reactirais by moment-distribution and static

equilibrium (Col. 3), the H-forces by Eq, 8 (Col. 4), the P-forces by Eq. 10

(Col. 5), and the free edge stresses by Eqs, 11 (Col. 6),

3. Distribute the stresses in a separate table as demonstrated in

page 2%. Enter the conputed stresses in Col. 7.

4. Calculate the C-values (C = " ) from the joint stresses by

£<3p. 21 and 22 (Col. 8).



38

g

a.

o

CO

CO

8

§
CJ

COH
s

I

•

cq

n

% S:
o
CM C^ c«> ^ ^

u . m . .

<>v; l/N o C^ CO C«> UN

^SL i

r-C •^
• 1

'^

S
>

CM

Vi O H o o

§^ o O
• •

to ^ • •

CM CO

3

^ ^ g s NO C^
- <s. . • • • . •

s& «A 3
ON CM «r\ Co

:d S
^

1

c^m

1

en

1

CM »
^l> V >s >^ CM CM CM

.^"^ »lq CJv CM H fJ UN CO O ^ -4" CM O

33

• . • ...
U

CJ

ON ^ CM

7
II

o P ^ :^
II

o t ^ 1

CM
4i f^ _ „

. 5^ JTV c^ cr\ CO p- c^ l>- »r\ ON c^ o CO

'1
•

CO
•

vO NO
...

C- CM C^
....

W\ H O WN

,
a cy CMvO CM ? H CM C^ C^ Cfj\

* ^ CM >o
.H^^ . . 0^ t^ CM C^ C*- N;i Co -* CM NO

1
vO irv . • . ... ....
d

-4- ON
CM 3 CTN CO Co

t '^ ^
O H NO nQH CM C^ -S-

CM O o O o o o O O
43 • . • • • • • •

«< S^
vO

CM 115
-219

208
° ^ s

^ M> CO ON H cy

.1 o H CM c^ O H CM C^ O H CM cn»

o
•-3

3 M ^ HM
^^

M Q J3 H ^ -
^

H O H M H -*

T
Extezn

load

o

1 r il 1 § "^1
-8 rH 11 -P

t5 a w

9H

I

*

^



3f

o

m

4-1

o n
a.

«
P.

«
I

CO

5

11

o

en

en

CO

• •

u\ en

CO

«o

CM

O^

vO -4-

oi en

I

5



AO

5. CalciOate the slopes (deflection) C©» caused by the joint de-

flections by Eq. 3 (Col. 9) and the slopes (deflections) C©" caused by the

bending of the slab by Eqs. 4 (Col. 10). Combine the slopes (deflection)

© = ©« + ©" (Col. 11).

6. Form the slope-deflection expiations, Eqs. 1. Solve them for

the ift-values.

7. Calculate the final CT and ^ by superposition method.

The final values of 0* and i of the examples 1 and 2 are shown respec-

tively in the left and the right half of the span in Fig. 13. This shows the

section wh^e the ttyaTH™^ moment and the maxiimim deflection occurred. The

unit of the mcraents is ft.-lb., of the stresses kips per square foot, of the

deflection inches. The coefficient C times the ordinate of stresses and

EC.
*

t2
deflections is —

V

8. In the Fig. 13(b) shows the maxirnimi positive moment occuim at

section between the joints, the maximum negative m<Mnent occurs at the joints.

9. In the Fig. 13(c) shows the maximum positive stress occurs at

the edge of the folded plates so the edge beams need be enforced.

10. In the Fig. 13(d) shows the maximum downward deflection occurs

at the edge of the folded plates, if the edge beams are enforced the de-

flection will be reduced.
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APPENDIX II. - MOIffiNT AND DEFLECTION COEFFICIENTS.

1. Uniform load:

>max 9.6EI

2. Sine curve load;

12.99EI

-L_

_qL^

'max
16EI

i^nlTMT^, /mTTKIT^
^

j^.rrTnlW^

-"^9:87

^WL2
»max 9.87EI

^..^ fr^^ 17.82

'nan ii,82

i"^ 13.33EI JJ"^ I7.IEI

3. Concentrated load:
P

1

<smax
12EI

M

^Jiax 6.4

min 5.3s

.l2

max I7.IAEI

M

max 24EI
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see Appeodix I

APPENDIX III - NOTATKai

A = section area of a plate (deep beam)

C = l2/ECv

Cj^ = mMnent constant, M^j^^ = %g^ /^

Cy = deflection constant, Sjoax^ ^ax^^^^^v^^

E "» modulus of elasticity.

H " horizontal component of P.

h = plate depth between longitudinal edges

.

I «= moment of inertia of slab per unit width.

K = moment distribution factor.

L = longitudinal length.

K ^ deep beam moment caused by P.

m — transverse slab moment.

iv-l,n,n+l= subscripts denoting longitudinal joints and deep beams, where deep

beam n is situated between Joint n-1 and n«

pQ - deep beam load parallel to a deep beam.

Q^ ^4.^^
« conpressive force at joint n parallel to plate n+1.

q = load per unit length (or area) of a beam (or plate).

R = vertical joint force equals to the reaction of the slab,

r = stress-distribution factor.

s = horizontal projection of deep beam depth.

T =» resultant of shear stress along a deep beam edge.

V = shear force across a deep beam.

*n n+1
~ deflection of joint n normal to deep beam n+1.

X *= distance from a support along length of deep beam.

y = distance froa joint n across deep beam n+1.

Z = section modulus of a deep beam thV6.
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A '^ deep beam displacement parallel to a deep beam.

S = vertical joint deflection.

e == slope deflection, ©« + ©"

©' = slope deflection at a joint caused by joint deflections,

0" = slope deflection at a joint caused by slab bending.

©
rrt-l

~ slope deflection at joint n produced by m-^-i •

CTu ~ longitudinal stress at edge n at a deep beam section.

(Tn n+1
~ free-edge stress at edge n of deep beam nr+-l.

•J*
= shearing stress.
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A method of analysis of folded plate structures using the slope-deflection

method is presented. Two examples of application of the method are included.

The folded plate is treated as a one-4«ay slab in the transverse direction

and as a deep beam structiu*e in the longitudinal direction. First, the one-

way slab is considered to be supported at the joints of the deep beam struc-

tures and to be acted upon by the external loading. The one-^ay slab is anal-

yzed as an ordinary continuous beam, by using the method of moment-distribution,

for finding the moments and reactions at the joints. Since there are no sup-

ports at the joints of the folded plate, the reactions at the joints will

apply as forces to the structure (after these reactions have been solved, the

external loading does not need to be considered). Second, the deep beam struc-

ture is considered to be acted upon by the reactions at the joints. The slab

can be analyzed in two steps. In the first step, the reactions are considered

to be acting on the hinged joints. In the second step, the joint momants

caused by the deflections of the deep beams under the action of the external

loading will be considered. The rotations of two adjacent deep beams will be

different at their common edges. Joint mcunents m are introduced at each joint

in order to secure the continuity of the structure at the joints. From these

momenta we can find the reactions at the joints. The continuity of the slab

at a joint is maintained if the changes in slope of adjacent slabs, due to the

external load and the joint moment acting simultaneously are reduced to zero.

The slope deflection equations are
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The actual joint moments can be solved from these equations.

The deep beam, which is supported at the end diaphragms, is solved by the

general beam theory. When the shears at the joints of adjacent slabs are con-

sideredj the equations are set up so that the stresses in adjacent plates raist

be equal at their connon edge. The reactions which are found frcm the one-

way slab analysis, are applied to the deep beam structures in order to find

the rotations, stresses, and deflections in the longitudinal direction. After

the calculation processes are ctH:9)leted for the hinged reactions forces, they

can be applied for the case of the joint moment loads by multiplying by a

coefficient. The variation of the longitudinal forces at the joints depends

on the support conditions at the ends. The deep beams are monolithically

joined so that the stresses and deflections of adjacent deep beams must be

equal at a joint. •
^

•

The final stresses and deflections of the structure are calculated at the

section vriiere maximum deflection occurs.

The calculations of the examples are set in tabular form for easy check-

ing and can be used for other structures with similar dimensions.


