
  

 

EXTENDING THE BATTERY LIFE OF MOBILE DEVICE BY COMPUTATION 

OFFLOADING 

 

 

by 

 

 

HAO QIAN 

 

 

 

B.Eng., Yunnan University, China, 2008 

M.S., University of Wyoming, USA, 2011 

 

 

AN ABSTRACT OF A DISSERTATION 

 

 

submitted in partial fulfillment of the requirements for the degree 

 

 

 

DOCTOR OF PHILOSOPHY 

 

 

 

Department of Computing and Information Sciences 

College of Engineering 

 

 

 

KANSAS STATE UNIVERSITY 

Manhattan, Kansas 

 

 

2015 

 

 

  



  

Abstract 

The need for increased performance of mobile device directly conflicts with the desire for 

longer battery life. Offloading computation to resourceful servers is an effective method to 

reduce energy consumption and enhance performance for mobile applications. Today, most 

mobile devices have fast wireless link such as 4G and Wi-Fi, making computation offloading a 

reasonable solution to extend battery life of mobile device. Android provides mechanisms for 

creating mobile applications but lacks a native scheduling system for determining where code 

should be executed. We present Jade, a system that adds sophisticated energy-aware computation 

offloading capabilities to Android applications. Jade monitors device and application status and 

automatically decides where code should be executed. Jade dynamically adjusts offloading 

strategy by adapting to workload variation, communication costs, and device status. Jade 

minimizes the burden on developers to build applications with computation offloading ability by 

providing easy-to-use Jade API. Evaluation shows that Jade can effectively reduce up to 37% of 

average power consumption for mobile device while improving application performance. 
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Chapter 1 - Introduction 

 1.1 Motivation 

Mobile devices (smartphone and tablet) are becoming very popular nowadays. The sales 

of mobile devices are increasing very fast: Annual smartphone sales surpassed sales of feature 

phones for the first time in 2013. Worldwide sales of smartphones to end users totaled 968 

million units in 2013, an increase of 42.3 percent from 2012. Sales of Android Phones passed the 

one billion milestone in 2014. 

Mobile devices are becoming powerful and easy to take, they are replacing traditional 

PCs for both personal use and work purpose. Mobile devices are small computing device 

equipped with multiple sensors, they enable many useful applications which were unrealistic 

before. With the advancement of mobile hardware technology, the development of mobile 

applications has been changed from applications that perform basic computations to 

computationally intensive ones, ranging from advanced 3D games to image processing, speech 

recognition and augmented reality applications. Mobile applications are becoming energy 

hungry. 

Battery technology has become one of the biggest obstacles for future growth of mobile 

device due to several reasons:  

 Mobile device’s ability to consume energy far outpaces the battery’s ability to provide it, 

as processors are getting faster, screens are getting sharper, and devices are equipped 

with more sensors,. Unfortunately, technology development for batteries indicates that 

these limitations are here to stay, so battery life will remain the primary bottleneck for 

handheld mobile devices. 



2 

 Mobile devices are no longer used only for basic computation, e.g., voice 

communication, instead, they are used for computation intensive applications: watching 

videos, gaming, web surfing, and many other purposes. As a result, these applications 

will consume more power and shorten the battery life. 

Energy is a primary constraint for mobile systems. A survey of 7,000 users across 15 

countries showed that “75% of respondents said better battery life is the main feature they want”. 

In order to provide a satisfying user experience, solving the energy problem has quickly become 

the mobile industry’s biggest challenge. 

 1.2 Overview of Computation Offloading Systems 

One popular technique to reduce the energy needs of mobile devices is computation 

offloading: mobile device can take advantage of the resource-rich infrastructure by delegating 

code execution to remote servers. Researchers have been studying computation offloading, 

focusing on different areas, e.g., making offloading decisions, developing offloading 

infrastructures.  

Prior to 2000, researchers mostly focused on making offloading feasible [1-9]. In early 

2000s, the focus moved to designing algorithms for making offloading decisions [10-24], i.e, 

decide whether offloading would benefit mobile users. The direction of offloading has been 

shifted by improvements in virtualization technology, network bandwidths, and cloud computing 

infrastructures [25-37]. The technology advancement has made computation offloading more 

practical (Figure 1-1) [38]. 

Figure 1-1 Enabling technologies for computation offloading 
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For the last two decades, in order to reduce the energy consumption of mobile device, 

there have been many attempts to use computation offloading. Most of these attempts took one 

of the following two approaches [38]:  

 The first approach relies on programmers to specify how to partition a program, what 

computation needs to be offloaded, and how to adapt the offloading strategy to the 

changing network conditions. This approach is fine-grained – applications only offload 

the sub-parts that benefit from remote execution, thereby it leads to large energy savings. 

For example, a video player decodes and plays video. Offloading its decoder which is the 

energy-intensive part can reduce its energy consumption on the mobile device.  

 The second approach is to offload full process or full VM to the infrastructure. For 

example, in Android, each app runs in a process which runs in a separate VM.  The 

advantage of this approach is that it reduces the burden on programmers because they 

don’t modify applications; instead, all their code and program state is automatically 
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offloaded to the remote infrastructure. The downside of this approach is that the 

migration cost is high because all program states need to be transferred.  

Most computation offloading systems have two different goals: 1) enhance application 

performance and 2) reduce energy consumption for mobile device.  

1.2.1 Enhance Performance 

For systems target improving application performance, computation offloading is an 

attractive solution for shortening response time of mobile applications as applications become 

increasingly complex. For mobile devices which have slow processor, computation offloading is 

the only way to meet real-time constraints. There are many examples for such applications:  

 In context-aware computing, input data stream come from different sources like GPS, 

maps, accelerometers, temperature sensors, etc, these data need to be analyzed together in 

order to obtain real-time information about users’ context. 

 A navigating app for a moving robot may need to recognize an obstacle before the robot 

collides with the obstacle. Computation may need to be offloaded if the robot doesn’t 

have fast enough processors.  

For many of these applications, the performance of resource constraint mobile systems 

can be enhanced by offloading computation to powerful servers.  

To enhance the performance for mobile applications, we need to partition a program into 

two parts: 1) one part that must run on the mobile system (e.g., UI rendering and event handling 

for touch screen; and 2) the other part that may be offloaded. We can formulate the condition for 

offloading to improve performance as below. Let sm be the speed of the mobile system, w is the 

amount of computation for the second part. The execution time for the second part on the mobile 

system is [38] 
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𝑤

𝑠𝑚
          (1)  

To consider the execution time of the second part on the server, we ignore initial setup 

time of nextwork and the size of the program (server can download the program before 

offloading). If the second part is offloaded to a server, sending the input data di takes di/B 

seconds at bandwidth B. Offloading can improve application performance if and only if remote 

execution (including program execution and data transfer) can be performed faster than local 

execution. Let ss be the speed of the server. The time to offload and execute the second part is 

𝑑𝑖

𝐵
+

𝑤

𝑠𝑠
            (2) 

We can see that computation offloading improve the performance of application when eq. 

1 > eq.2 [38]: 

𝑤

𝑠𝑚
>  

𝑑𝑖

𝐵
+

𝑤

𝑠𝑠
 => 𝑤 × (

1

𝑠𝑚
−

1

𝑠𝑠
) >  

𝑑𝑖

𝐵
           (3) 

 

This inequality holds for some situations: 

 large w: the program contains heavy computation 

 large ss: the server is fast 

 small di: size of data transferred is small 

 large B: the bandwidth of network is high 

This inequality also shows that if 
𝑤

𝑠𝑚
<

𝑑𝑖

𝐵
 , performance can’t be improved by offloading, 

even if the server is infinitely fast (i.e., ss→∞). Hence, when analyzing the program to be 

offloaded, only tasks that require heavy computation (large w) with light data exchange (small di) 

should be considered. Moreover, if we define 𝑤 (
1

𝑠𝑚
−

1

𝑠𝑠
) −

𝑑𝑖

𝐵
 as the performance gain of 

offloading, the server’s speed has diminishing return: doubling ss will not double the gain. 
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 1.2.2 Reduce Energy Consumption 

Some computation offloading system helps reduce the energy consumption of the mobile 

device by delegating energy intensive computation to remote server. Similar to pervious system, 

when application is processed, we need to consider if a task is suitable for offloading.  

The following analysis explains which task is suitable for computation offloading. Let pm 

be the power of the mobile device, the energy cost of executing the task is 𝑝𝑚 ×
𝑤

𝑠𝑚
 (4). Let pc 

be the power of network interface of mobile device in working state, pi is the power in idle state. 

So the energy consumed by network interface of the mobile device is 𝑝𝑐 ×
𝑑𝑖

𝐵
+ 𝑝𝑖 ×

𝑤

𝑠𝑠
  (5). 

Computation offloading saves energy when eq. 4 > eq. 5, such that [38] 

𝑝𝑚 ×
𝑤

𝑠𝑚
> 𝑝𝑐 ×

𝑑𝑖

𝐵
+ 𝑝𝑖 ×

𝑤

𝑠𝑠
 => 𝑤 × (

𝑝𝑚

𝑠𝑚
−

𝑝𝑖

𝑠𝑠
) > 𝑝𝑐  ×  

𝑑𝑖

𝐵
    (7) 

From eq. 7, we can see that tasks with heavy computation (large w) and light data size 

(small di) are suitable for computation offloading. Here, the assumption is that data is always 

transferred when computation offloading occurs, there are several ways to optimize this [38]: 

 Data can be synchronized between mobile device and server when mobile device is 

charging, so data transfer doesn’t hurt the battery life. 

 If data resides in a remote repository (e.g., cloud), we can pass links to the server and 

server can download the data by itself. 

1.3 Outline and Contributions 

The major published contributions of this dissertation include: 

 Chapter 2: Jade: An Efficient Energy-aware Computation Offloading System with 

Heterogeneous Network Interface Bonding for Ad-hoc Net-worked Mobile Devices 
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In this chapter, we proposed Jade – a computation offloading system which helps reduce 

energy consumption of mobile devices. We show the architecture of the system and its 

implementation details. Nowadays, most mobile devices are equipped with multiple 

wireless interface (e.g., Blue-tooth and WiFi). We provide an in-depth analysis on the 

energy characteristics of each interface and show how to utilize different interfaces for 

data transfer under various conditions in order to optimize energy usage.  

 Chapter 3: Reducing Energy Consumption of Android App 

In this chapter, we show the extended version of Jade – it can offload computation to 

more devices, including: 

1. Android device (e.g., smartphone, tablet) 

2. Non-Android device (e.g., desktop, laptop) 

3. Cloud platform 

In order to improve the energy usage and application performance, the characteristics of 

servers also need to be considered (e.g., workload, battery level). We implemented a 

multi-level task scheduling algorithm which works on both the client and the server. The 

goal of the algorithm is to enhance the performance of application and balance the 

workload between servers. The experiments showed that such task scheduling strategy is 

helpful in a computation offloading system. 

 Chapter 4: An Energy-saving Task Scheduler for Mobile Devices 

The size of data transferred over the network is the dominant factor affecting the 

performance of a computation offloading system. As the network interface of mobile 

device such as Wi-Fi is energy intensive, we need to reduce the amount of data 

transferred when computation offloading occurs. In this chapter, we propose an 
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innovative way to reduce the energy cost for mobile device’s wireless interface: 

separating the task into two parts: 1) app data and 2) app code. Since most mobile devices 

need to be charged frequently in certain pattern (e.g., smartphone users often charge their 

devices at sleep time), during the charging period, data can be synchronized between 

client and server in advance before computation offloading happens. We show the 

implementation of a component (MDSS) which performs such task. With the help of 

MDSS, in most cases, Jade only need to offload app code to the server, thereby, we 

further reduced the energy consumption for mobile devices. We conducted experiments 

on two applications to show that MDSS is a very effective way to extend battery life.   
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Chapter 2 - Jade: An Efficient Energy-aware Computation 

Offloading System with Heterogeneous Network Interface Bonding 

for Ad-hoc Net-worked Mobile Devices 

This chapter is published in [122] and reprinted in full in accordance with the IEEE rules. 

2.1 Introduction 

Mobile devices (e.g., smart phones and tablets) have become a necessity for people 

because they enable us to perform a wide variety of daily activities (e.g., video calls, emails, 

gaming, social networking, navigation, etc.). These devices typically are equipped with a 

relatively powerful mobile processor, a rich set of sensors and a substantial amount of memory. 

It allows previously unimaginable applications to be developed by integrating many sensors 

(e.g., motion sensors, position sensors and environmental sensors).  

Battery life has become one of the biggest obstacles for future growth of mobile devices. 

The energy needs of mobile devices are growing fast as processors are getting faster, screens are 

getting bigger and sharper, and more sensors are installed. Unfortunately, the advances in battery 

capacity have not kept up with the growing energy needs of mobile devices. 

One popular technique to simultaneously reduce the energy consumption and increase the 

performance of mobile devices is computation offloading: application can reduce energy 

consumption by delegating code execution to other devices. Traditionally, computations are 

offloaded to remote servers which are resource-rich.  

Nowadays, it is common for people to have more than one mobile device, and they carry 

those devices at the same time (e.g., smart phone in the pocket and tablet in the briefcase). These 

devices can be networked directly (e.g., Wi-Fi and Bluetooth) without an intermediate access 

point. Sometimes offloading computation to these networked devices is preferable than 
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offloading computation to the cloud. One example is when people are using one device while the 

other device is charging. Offloading computation to the charging device could extend the battery 

life of the un-charged device. Another example is when the Internet connection is unavailable or 

not secure, offloading computation to locally networked devices is a good option. 

In this paper, we present Jade, a computation offloading system for wireless ad-hoc 

networked mobile devices. Jade is targeted at mobile devices running the Android operating 

system. It minimizes energy consumption of applications through fine-grained code offloading 

while reducing the burden on application developers. Jade also reduces the energy consumption 

of network interfaces by dynamically choosing the most energy efficient interface (Wi-

Fi/Bluetooth) for data transfer. Jade achieves these benefits by providing: 1) the runtime engine 

which supports computation offloading between wireless ad-hoc connected devices. By 

gathering the information about application and devices, the runtime engine can decide if code 

should run locally or remotely (offloaded); and 2) the simple programming model which helps 

developers to create applications that have the ability to offload computation. 

We summarize our contributions here as follows: 

 We present a scheduling algorithm which incorporates energy awareness and 

performance for a heterogeneous local cluster of devices. 

 We present the design, implementation and evaluation of a complete system. Jade 

combines many features of the popular Android platform.  

 We show that applications which support computation offloading can be implemented 

without heavy code modification. Android provides a natural separation between user 

interactive activities and background computational services. By following the similar 
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concept, the Jade programming model enables developers to write offloadable code with 

little effort. 

 We evaluate the system with two applications. The result shows that computation 

offloading is an effective method for wireless ad-hoc networked devices. Jade can reduce 

up to 86% of energy consumption on mobile devices we tested, while 

maintaining/improving the performance of applications. 

 2.2 Jade Design 

In this section, we present the high-level overview of Jade’s architecture and its 

programming model in order to show how they all integrate into one system for distributed 

execution of mobile applications. 

For mobile applications with heavy computation needs, computation offloading is a 

helpful technique to reduce the energy consumption and enhance the performance. However, it 

requires additional efforts and skills to develop applications with computation offloading ability, 

and there is no mature framework or tool for mobile application developers. We have designed 

Jade to minimize this effort by: 

 offering the runtime engine which provides services for wireless communication, device 

profiling, program profiling and computation offloading. Conceptually, the Jade runtime 

engine automatically transforms computation on one mobile device into a distributed 

execution optimized for wireless connection, battery usage and capabilities of devices. 

 providing the simple programming model for developing mobile applications which 

support computation offloading. The programming model includes a set of APIs for 

applications to interact with the Jade runtime engine. 

 integrating with existing development tools that are familiar to developers.    
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In Jade, mobile applications contain offloadable code which can be offloaded to other 

devices (Figure 2-1). The device hosting the mobile application is called the client. The device 

which receives and executes the offloaded code is called the server. In Jade, if the code is 

executed on the client (i.e., code is not offloaded), we call it local execution. In contrast, if the 

code is executed on the server (i.e., code is offloaded), we call it remote execution. 

Figure 2-1 Computation offloading by Jade. In Jade, applications contain offloadable code 

which can be executed locally or remotely. Jade runtime engine decides where to execute 

the code and initiates the distributed execution. 

 

 

A. Jade Runtime Engine 

The goal of Jade is to maximize the benefits of computation offloading for mobile 

devices and minimize the burden on developers to develop such applications. To develop mobile 

applications which support computation offloading, there are several tasks we need to handle: 

 Communication. In order to offload code from the client to the server, the applications 

should have the ability to 1) connect to other devices; 2) send data between devices; 3) 

coordinate with other devices for distributed execution; 4) track status of remote 

computation; 5) restore execution if unexpected errors happen (e.g., wireless connection 

lost, remote execution failure); and 6) exchange and maintain information related to 

connected devices (e.g. connection speed, CPU usage, battery level).  
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 Profiling. In order to make correct offloading decision, a profiler is needed which 

performs device and program profiling. Device profiling collects information about 

device’s status, e.g., wireless connection, CPU usage, battery level. Program profiling 

collects information about applications, e.g., execution time, memory usage, size of data. 

 Optimization. The purpose of optimization is to decide if computation is suitable for 

offloading, so as to maximize application’s energy savings and performance.  

These tasks are common for applications which support computation offloading. But it is 

time consuming to implement these tasks. Sometimes implementing these tasks is even harder 

than implementing the application itself. Jade runtime engine handles the above tasks for 

developers. It consists of components shown in Figure 2-2. On the mobile device, Jade runtime 

engine runs in the background as a group of services. Developers can utilize its various 

functionalities by using the easy-to-use APIs provided by the Jade programming model.  

Figure 2-2 High level view of the Jade runtime engine.  

 

 

In section 2.3, we describe in detail the mechanisms for the profiler, the optimizer and the 

communication manager, respectively. 

B. Jade Programming Model 
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In addition to the Jade runtime engine, one of the key contributions of Jade is the 

programming model. The programming model is offered to developers to help build applications 

which support computation offloading. It is the interface between mobile applications and the 

Jade runtime engine. Any application developed using the programming model can interact with 

the Jade runtime engine and harness the power of computation offloading. 

We provide the details of the Jade programming model in section 2.3. 

C. Wi-Fi and Bluetooth Bonding 

Today, most mobile devices are equipped with multiple network interfaces (e.g., Wi-Fi, 

Bluetooth and cellular interface). These interfaces have different characteristics (e.g., range, 

throughput and power). Each interface has its advantage and disadvantage given different 

applications. Ideally, we want to combine these interfaces and leverage strength of them in order 

to improve the application performance and reduce energy consumption.  

Wi-Fi and Bluetooth are the most typical network interfaces found in today’s mobile 

devices. Wi-Fi is known for its high throughput, long range and low energy per bit transmission 

cost. Bluetooth is primarily a cable-replacement technology for battery constrained mobile 

devices. It provides low bandwidth and covers a shorter range. The downside of Wi-Fi is the 

high power consumption for wake up and connection maintenance. In active state, the power of 

Wi-Fi is approximately 890mW, compared to only 120mW for Bluetooth. For mobile devices 

with limited battery capacity, Wi-Fi has been shown to account for a significant portion (up to 

50%) of the total energy consumption.  

The 802.11 standard defines a Power-Saving Mode (PSM), aimed at reducing the energy 

consumption of Wi-Fi. In PSM, the typical power consumption of Wi-Fi is effectively reduced to 
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250mW. In contrast, Bluetooth is optimized to be extremely low-power in idle state, typically 

consuming on the order of 1mW. 

Given the different and often complementary characteristics of both network interfaces, it 

is advantageous to combine Wi-Fi and Bluetooth together, so we can utilize their strength. In 

Jade, we implement a component in the communication manager called Wi-Fi and Bluetooth 

Bonding (WBB). The job of WBB is to decide which interface (Wi-Fi/Bluetooth) will be used 

for data transfer according to different data transfer request of applications. The goal is to reduce 

the energy consumption of network interfaces.  

 2.3 Implementation 

In this section we will highlight the important implementation details of Jade. Sections 

2.3.1, 2.3.2, 2.3.3 and 2.3.4 provide the details of the key components in the Jade runtime engine. 

Section 2.3.5 shows the details of the Jade programming model. 

2.3.1 Profiler 

At runtime, before the offloadable code is invoked, the Jade optimizer determines 

whether the code should run locally or remotely. This decision is based on the information 

provided by the profiler. The profiler collects the following information: 1) the device’s status 

(i.e., charging or not, battery level, CPU load); 2) wireless connection status, such as connected 

or not, the bandwidth; and 3) characteristics of the offloadable code, such as running time and 

size. The profiler measures the code characteristics at initialization, and it continuously monitors 

the device and network characteristics, because for mobile devices, these can often change (e.g., 

wireless connection lost, battery reaches low level). The optimizer may make wrong decision on 

whether the code should be offloaded based on a stale measurement. The current implementation 

of the Jade profiler does not implement automatic program profiling. In the rest of this section, 
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we provide the implementation details of Jade’s techniques for device, program, and networking 

profiling. 

1) Program Profiling 

We use the DDMS debugging tool provided by the Android Development Tools (ADT) 

to profile applications. DDMS is a powerful tool which enables us to 1) view heap usage for a 

process; 2) track memory allocation of objects; and 3) profile methods of object. To measure 

energy consumption of applications, we use PowerTutor and Trepn Plug-in [41] for Eclipse. 

PowerTutor is an application for Android phones that displays the power consumed by major 

system components such as CPU, network interface, display, and GPS receiver and different 

applications. It uses a power consumption model which provides power consumption estimates 

within 5% of actual values. Trepn plug-in for Eclipse is a power profiling tool developed by 

Qualcomm for Android application developers, it is designed to allow developers to easily 

collect performance data from any application running on a mobile device, analyze the resulting 

graphs in the Eclipse IDE and modify code to build power-efficient applications. 

The offloadable code is invoked multiple times, each time with a randomly chosen input. 

For each execution, we measure: 1) runtime duration; 2) the size of data needs to be sent to the 

server (i.e., the size of the code, the size of data referenced by the code and the size of data 

required to be returned to the client once execution is complete); and 3) energy consumption of 

running the offloadable code. The final result is the average of multiple invocations. 

2) Device Profiling 

At runtime, the profiler keeps monitoring status of the device. Android uses broadcasts to 

notify applications if device status changes. Applications can register broadcast listeners to 

receive these broadcasts. The profiler registers broadcast listeners to receive broadcasts related to 



17 

1) battery (i.e., battery level, charging or not); and 2) wireless connection (i.e., Wi-Fi turned 

on/off). 

Due to the nature of mobile devices, the status of wireless connection could change 

frequently (e.g., user moves to other location). Fresh information about wireless connection is 

critical for the optimizer to make correct offloading decision. Similar to MAUI, we use a simple 

method to measure the wireless link: Each time the Jade runtime engine offloads code, the 

profiler measures the transfer duration to obtain a more recent average throughput. This simple 

approach allows the profiler to take into account both the latency and bandwidth characteristics 

of the network. We also build a simple energy cost model of wireless transfer using this 

approach: we send some synthetic data from the client to the server, varying the size of the data, 

and we measure the energy consumption of each transfer. This model lets us predict the energy 

consumption of transferring data as a function of the size of the data. 

 2.3.2 Optimizer 

The purpose of the Jade optimizer is to pick which offloadable code to offload to the 

server, so as to find an offloading strategy that minimizes the client’s energy consumption. The 

optimizer makes the offloading decision by solving an optimization problem using information 

collected by the profiler as input. 

It requires a global view of the application and devices to decide where to execute the 

offloadable code. The optimizer can make adaptive decision based on the status of devices. For 

example: 1) if one device (client or server) is charging, the optimizer will try to offload as many 

computation as possible to that device in which case it is advantageous in terms of saving 

battery; 2) if the battery level of the server is low, the optimizer will send less code to the server 

(similarly if the wireless connection is bad); and 3) if the battery level of the client is low, more 
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code will be offloaded to the server. The goal is to reduce as much energy consumption as 

possible on the client without unduly burdening the battery on the server. 

The characteristics of offloadable code also determine where it should be executed. The 

code should be offloaded only if the energy consumed to execute it locally is greater than the 

energy consumed to transfer it. Code which performs heavy computation on small data falls into 

this category. For some code, the cost of transfer outpaces the cost of local execution (e.g., light 

weight computation on big data), they should not be offloaded.  

     Based on the information provided by the profiler, the optimizer finds the best offloading 

strategy by solving the following problem. 𝐼 represents the set of offloadable code in the 

application. For each offloadable code 𝑖 ∈ 𝐼, 𝐸𝑖
𝑒 is the energy consumed to execute it locally, 𝐸𝑖

𝑡 

is the energy consumed to transfer 𝑖 between the client and the server. 𝑇𝑖
𝑙 is the execution time of 

𝑖 on the client, 𝑇𝑖
𝑟 is the execution time of 𝑖 on the server, 𝑇𝑖

𝑡 is the transfer time of 𝑖. 𝐼𝑖 is the 

indicator variable: 𝐼𝑖 = 0 if 𝑖 is executed locally, 𝐼𝑖 = 1 if 𝑖 is executed remotely. The optimizer 

needs to find the assignment for 𝐼𝑖 such that: 

 maximizes ∑ 𝐼𝑖 × (𝐸𝑖
𝑒 − 𝐸𝑖

𝑡)𝑖∈𝐼  

 guarantees ∑ (1 − 𝐼𝑖) × 𝑇𝑖
𝑙 + 𝐼𝑖 × 𝑇𝑖

𝑟 + 𝐼𝑖 × 𝑇𝑖
𝑡 ≤ 𝑙𝑖∈𝐼  

The first formula is the total energy savings. The second constraint stipulates that the 

total execution time is within l. l can be configured by developers according to different 

requirements. 

As explained in section 2.3.5, the Jade programming model requires that every 

offloadable code i is independent of each other. This further simplifies the above problem. For 

each offloadable code i, the optimizer only needs to solve the following inequation:   

𝐸𝑖
𝑒 −  𝐸𝑖

𝑡 > 0 
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𝑇𝑖
𝑟 + 𝑇𝑖

𝑡 −  𝑇𝑖
𝑙 ≤ 𝑙 

              𝐸𝑖
𝑒 − 𝐸𝑖

𝑡 is the energy saving if 𝑖 is executed remotely. 𝑖 should be considered for 

offloading only when 𝐸𝑖
𝑒 >  𝐸𝑖

𝑡. Similarly, the second inequation guarantees that time difference 

between remote execution and local execution is not greater than 𝑙. 

 2.3.3 Communication Manager 

Computation offloading is handled by the communication manager. The communication 

manager is responsible for: 1) code manipulation (i.e., code transfer, code invocation); and 2) 

device coordination. 

After the optimizer decides an offloadable code should be offloaded, the communication 

manager will perform the following tasks:  

1. looks up the server table for available server (if no server available, then code is executed 

locally).  

2. records information of the code in the offloaded code table, the purpose of the table is to 

track the status of the offloaded code.  

3. offloads the code to the server.  

4. the communication manager of the server receives the code, and executes it in a new 

thread in the task pool. 

5. The communication manager of the server sends the result back to the client after the 

execution is complete. 

6. the communication manager of the client receives the code and updates its information in 

the offloaded code table. 

In case of remote execution failure, the communication manager has mechanisms to 

guarantee the correctness of the application. For example, if wireless connection is lost during 
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the remote execution, the communication manager of the client will re-execute the code locally, 

and the communication manager of the server will abandon the failed execution. If the returned 

code shows its result as failed, it will also be re-executed on the client as well. 

 2.3.4 Wi-Fi and Bluetooth Bonding 

Different applications have different patterns of data transfer. For example, video 

streaming applications need to keep receiving a lot of data in high frequency from the server. 

Weather applications transfer a small amount of data with low frequency (e.g., 10 minutes, 30 

minutes or 1 hour). For big data transfers (e.g., image, video), Wi-Fi is the best choice, because it 

provides high throughput and energy efficiency. But for small and infrequent data transfer (e.g., 

transfer 1KB data every 10 seconds), Wi-Fi may not be the best choice. As shown in previous 

section, with the implementation of PSM, the power of Wi-Fi can be reduced effectively in idle 

state. But Wi-Fi has high power consumption for wake up and connection maintenance. For 

small and infrequent data transfer, the wake up cost for Wi-Fi is high, so Bluetooth is a better 

choice than Wi-Fi. 

Figure 2-3 Wi-Fi and Bluetooth Bonding implementation 
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In Jade, we implement Wi-Fi and Bluetooth Bonding (WBB). WBB is adaptive to 

different data transfer pattern of applications. It can dynamically choose the suitable network 

interface (Wi-Fi/Bluetooth) for different data transfer request (Figure 2-3).  

In WBB, the data to be transferred is put into a buffer. The size of the buffer is 

represented as S, down threshold is D and up threshold is U. The constraint is 0≤D<U ≤S. 

S, D and U can be configured by developers, for example, S is 500KB, D is 50KB and U 

is 350KB. At runtime, the buffer acts like a queue. The data to be transferred is put into the 

buffer from one end, then retrieved from the other end and finally sent by Wi-Fi/Bluetooth. 

WBB keeps monitoring the buffer and dynamically switches between Wi-Fi and Bluetooth 

according to the size of data in the buffer (Figure 2-4).    

Figure 2-4 WBB monitors the buffer and choose suitable network interface for data 

transfer based on the size of data in the buffer. 

 

This design guarantees that by properly configuring S, D and U, WBB can always make 

the desired choice regardless of the data production rate and the size of data. For example, if a 

high quality image needs to be transferred, WBB will choose Wi-Fi, because the size of the 

image can easily exceed the up threshold. Another example is an application which sends small 

data at high frequency. Due to the high data production rate, the size of data in the buffer will 

soon exceeds the up threshold, so Wi-Fi will be used to transfer data. In contrast, if small data is 

generated at low frequency, the size of data in the buffer could remain smaller than down 

threshold, so Bluetooth will be used for data transfer and Wi-Fi is kept in PSM.     
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 2.3.5 Jade Programming Model 

When designing applications which support code offloading, the application needs to be 

partitioned into sub-parts which can be offloaded to the server. There are different levels at 

which to partition an application (e.g., class, method, process, thread). In Jade, an application is 

partitioned at the class level. Developers can produce an initial partition of their applications 

with minimal effort by using the Jade programming model. A class simply needs to implement 

the RemotableTask interface if it should be considered for offloading by the Jade runtime engine.  

In Jade, a class which implements the RemotableTask interface is called remotable class. 

An instance (object) of remotable class is called remotable object (i.e., offloadable code 

mentioned in previous sections). A remotable object can be executed on the client (locally) or on 

the server (remotely). An application developed using the Jade programming model is called 

Jade compatible application. At runtime, a Jade compatible application contains remotable 

objects which can be executed locally or remotely.  

Some types of code must be executed locally, if a class contains the following code, it 

should not be considered for offloading: 

 code that creates the user interface of the application. 

 code that handles user interaction (e.g., callback method for clicking a button). 

 code that access special hardware of the client which could be unavailable on the server 

(e.g., some smart phones are equipped with temperature sensor but some tablets are not). 

 code that is not suitable for re-execution (e.g., code which perform online transaction). 

Our goal of implementing the RemotableTask interface is that developers don’t need to 

guess if a class is suitable for offloading (in terms of energy consumption and performance). 

Once a class doesn’t contain the above code, it can implement the RemotableTask interface. 
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The RemotableTask interface is the key construct in the Jade programming model, it 

defines the following methods which will be called by the Jade runtime engine in sequence: 

 preExecution, which is used to do some preparations before the remotable object 

performs the main task, for instance, initializing the data.  

 loadData, which is used to load data from the file system of the client. If the remotable 

object is running on the server, invoking this method will cause the client to read data 

from the file system and send it to the server.   

 execution, which is invoked to perform the main task. 

 updateData, which is the counterpart of loadData. After the task finishes, update data in 

the file system. If the remotable object is running on the server, the data will be sent back 

to the client to update its file system. 

 postExecution, which is the counterpart of preExecution. If there are any things need to 

be done after the task completes (e.g., disconnect with database, update log and send 

notification to user), we do it here. 

By implementing the RemotableTask interface, the life of a remotable object can be 

divided into three stages: 1) before execution; 2) execution; and 3) after execution. This division 

is natural because it matches the steps of a general computation: 1) preparation (e.g., load data, 

connect to network); 2) execution, which performs computation on the data; and 3) update, 

which wraps up the execution (e.g., update database, notify user). 

All remotable objects of an application will be considered for offloading by the Jade 

optimizer, if a remotable object is chosen for offloading, the Jade runtime engine will handle its 

remote execution following the steps shown in Figure 2-5. 

Figure 2-5 Life-cycle of remotable object which is offloaded to the server. 
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Using Jade programming model, the application development is intuitive. Figure 2-6 

shows an example. Imagine we have an application which collects information entered by the 

user (e.g., name, phone number, address and company), verifies the information, and finally 

saves the information to the database on a remote server. The application could contain three 

steps. Step three is a good candidate for computation offloading, especially when the database 

operation is heavy. In the Jade programming model, we create a remotable class (UpdateInfo) for 

step three. The pseudocode looks like: 

class UpdateInfo implements RemotableTask{ 

     preExecution(){   

         open database connection; 

     } 

     loadData(){  

         do nothing;  

     } 

     execution(){  
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         if new user 

               insert user info into database; 

         else 

               update user info; 

     } 

     updateData(){ 

         do nothing; 

     } 

     postExecution(){ 

         close database connection; 

     } 

} 

       

Figure 2-6 An application which contains task that could be executed remotely. 

 

In Jade, a remotable class should perform task in-dependently. The advantage of this 

design includes: 1) avoid the complexity introduced by dependencies when the Jade optimizer 

makes the offloading decision. In fact, the algorithm of the Jade optimizer is light weight, so it 

consumes less energy; and 2) the application benefits from parallel execution. Since each 

remotable object performs independent task, they can be executed simultaneously locally or 

remotely, which greatly enhances the performance of the application.    
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 2.4 Evaluation 

In this section we evaluate Jade’s ability to improve energy consumption and 

performance of mobile applications. We implemented two applications that contain heavy 

computation for the evaluation. 

Our first application is FaceDetection. It asks user to choose some pictures from the 

photo gallery, then detects faces appearing in these pictures, and finally highlights them by 

putting a rectangle around each face. We build FaceDetection using the Jade programming 

model and the face detection library in Android. The code that detects faces is implemented as a 

remotable class, so it can be offloaded.  

The second application is TextSearch, which searches text files against a library of 1000 

key words. It counts how many times each key word appears in the text files. The search 

algorithm is implemented in a remotable class. At runtime, the text files can be searched locally 

or remotely. 

We used an HTC One smart phone as the client. HTC one is a high end smart phone 

equipped with Qualcomm Snapdragon 600 quad-core 1.7GHz CPU and 2GB RAM. For the 

server, we use a Samsung Galaxy Tab 3 tablet and a Samsung Galaxy S4 smart phone. Galaxy 

Tab 3 is equipped with Intel Atom Z2560 dual-core 1.6GHz processor and 1GB RAM. Galaxy 

S4 has 1.9GHz quad core processor and 2GB RAM. All devices run Android 4.2.2. The client 

and the servers are connected by Wi-Fi and Bluetooth. We measure the energy consumption of 

the two applications on the client by the Trepn Plug-in for Eclipse and the PowerTutor. 

At runtime, Jade can dynamically change its offloading strategy according to the battery 

level of devices. For example, if the battery level of the client is low and the server is charging, 

Jade will offload as much computation as possible to the server (aggressive mode). If the battery 

level of the server is low, Jade will offload less computation to the server to avoid draining its 
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battery (moderate mode). In the following tests, the battery level of the client is kept below 20%, 

and the server is charged, so Jade works in aggressive mode. 

We vary the number of servers to see if it has impact on the performance of applications. 

For tests with one server, we use the Galaxy Tab 3 as single server. For tests with two servers, 

we add the Galaxy S4 as the second server. To see the impact of WBB on the energy 

consumption, we do each test with WBB enabled and disabled. When WBB is disabled, devices 

are connected with both Wi-Fi and Bluetooth, but only Wi-Fi is used for data transfer. 

Figure 2-7 Energy consumption of FaceDetection. 

 

Figure 2-8 Execution time of FaceDetection. 

  

Figure 2-9 Energy consumption of TextSearch. 
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Figure 2-10 Execution time of TextSearch. 

 

To evaluate how much energy Jade saves for FaceDetection, we execute it on the client 

with Jade enabled and disabled, and varying the number of pictures to detect. We only use 

pictures smaller than 200KB. The results are shown in Figure 2-7 and Figure 2-8. 

We use similar method to evaluate TextSearch: execute it with Jade enabled and disabled, 

and varying the total size of text files that are searched. Each text file is 50KB. The energy 

consumption and execution time are shown in Figure 2-9 and 2-10. 

From the tests, we can see that Jade saves 74% of energy for FaceDetection and 86% of 

energy for TextSearch. For execution time, when there is only one server, execution without Jade 

is a little faster than execution with Jade: there is 3.7% and 3% slowdown for FaceDetection and 
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TextSearch. This is due to two reasons: 1) the server is less powerful than the client (CPU and 

memory); and 2) transfer overhead. When there are two servers, the performance improves: Jade 

reduces 43% and 48% of execution time for FaceDetection and TextSearch. 

For FaceDetection, WBB does not reduce energy consumption compared with Wi-Fi only 

mode. This is because each remotable object contains an image, its size exceeds the up threshold 

of the buffer, so Bluetooth is never used for data transfer. For TextSearch, the application send 

small data (50KB per file) at long interval, so WBB effectively reduced 10% more energy 

compared with Wi-Fi only mode.  

WBB keeps monitoring the buffer, and data needs to be stored in the buffer before 

transfer. This introduces overhead, so for both applications, the execution time with WBB is 

longer than Wi-Fi only mode, the execution time increased at most 10%.  

The results demonstrate that Jade can effectively reduce battery consumption of 

applications while improving the performance. It also shows that WBB can dynamically choose 

suitable network interfaces. For applications which send small piece of data at low frequency, 

WBB can further reduce the energy consumption for applications. 

 2.5 Related Work 

Mobile devices have limited resources such as battery capacity, storage and processor 

performance.  Computation offloading is an effective method to alleviate these restrictions by 

sending heavy computations to resourceful servers and receiving the results from these servers. 

Many issues related to computation offloading have been investigated in the past decade: making 

offloading feasible, making offloading decisions, and developing offloading infrastructures. 
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Jade is built upon previous research done in program partitioning, code offloading, and 

remote execution. In this section, we give an overview of what has been proposed by these 

researches and how they relate to Jade. 

There are many earlier efforts on code migration, including systems for mobile 

applications [53 -57]. The primarily focus of these systems is on enabling code and data to easily 

move between devices in a distributed system. None of these systems attempted to ease the 

development process for the programmer, nor did they focus on reducing energy consumption 

for mobile device.  

Cuervo et al. proposed MAUI [39], a system that enables energy-aware offloading of 

mobile code to the infrastructure. MAUI enables developers to produce an initial partitioning of 

their applications by annotating methods and/or classes as remotable. At runtime, MAUI solver 

decides which remotable methods should execute locally and which should execute remotely. 

Unlike MAUI, Jade provides the programming model which enables developers to create 

remotable object. This has one significant benefit: the profiling and optimization overhead is 

low. Because In Jade, each remotable object is an independent unit performing some tasks, for 

the optimizer, it only needs to decide if a remotable object should be offloaded regardless of the 

other code of the application.   

Chun et al. proposed CloneCloud [40], an application partitioner and execution runtime 

that enables unmodified mobile applications running in an application-level virtual machine to 

seamlessly offload part of their execution from mobile devices onto device clones operating in a 

computational cloud. In CloneCloud, to offload computation, threads need to be paused, all 

states of the threads need to be transferred to the server, and finally threads resume on the server. 

The offloading is expensive, especially when the client and the server are both resource 
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constraint mobile devices. In contrast, code offloading in Jade is lightweight. Remotable objects 

are serialized, transferred and deserialized, the overhead is much lower than thread migration. 

 2.6 Future Work 

In our future work we will improve the Jade profiler by providing automatic application 

profiling. This will further reduce the burden on application developers. We will also study the 

impact of automatic profiling on the effectiveness of Jade, since it introduces more overhead. 

 2.7 Conclusion 

In this paper, we have presented Jade, a system which enables computation offloading for 

wireless ad-hoc networked mobile devices. Jade can effectively reduce the energy consumption 

of mobile devices (over 75% in our examples), and dynamically change its offloading strategy 

according to the status of devices. 

We have evaluated Jade with two applications, a face detection application and a text 

search application. The result shows that Jade can reduce the energy consumption effectively for 

both applications while maintaining/improving the performance. 
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Chapter 3 - Reducing Energy Consumption of Android App 

 3.1 Introduction 

Mobile devices, such as smart phones and tablets, have become a necessity because they 

allow people to perform a wide variety of useful activities (e.g., video calls, emails, gaming, 

social networking, navigation, etc.) with mobility. These devices typically are equipped with a 

relatively powerful mobile processor, a rich set of sensors, and a substantial amount of memory. 

It allows previously unimaginable applications to be developed by integrating sensors such as 

motion sensors, position sensors, and environmental sensors.  

However, battery life has become one of the biggest ob-stacles for mobile device 

advancements. Performance de-manded by smartphones and tablets is increasing at a much faster 

rate than technological improvements in battery capacity. The need for increased performance of 

mobile devices directly conflicts with the desire for longer battery life. 

One popular technique to reduce energy consumption of mobile devices is computation 

offloading in which an application reduces energy consumption by delegating code execution to 

other devices. Traditionally, computations are offloaded to remote, resource-rich servers. 

Selection of a proper offloading strategy can reduce power consumption and simultaneously 

enhance mobile device performance. 

In this paper, we present Jade, an energy-aware computation offloading system for 

mobile devices [45 - 51]. Jade, built for mobile devices running Android operating system, 

minimizes energy consumption of mobile applications through fine-grained computation 

offloading by providing the following benefits:  
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1. A runtime engine that enables computation offloading from mobile device to 

servers. By monitoring application and device status, the runtime engine 

automatically decides if code should run locally or remotely.  

2. A programming model that helps developers create applications with computation 

offloading ability. 

Our contributions are summarized as follows: 

 We present the design and implementation of a complete system. Jade is able to 

offload computation from an Android device to any Android/non-Android 

devices.  

 We present a multi-level scheduling algorithm that automatically and seamlessly 

transports workloads to the appropriate server based on performance and energy 

needs. 

 We evaluate Jade with two applications. Results indicated that Jade can 

effectively reduce up to 39% of average power consumption for mobile device, 

while reducing the execution time of application. 

 3.2 System Architecture 

In this section, we present the high-level design of Jade and its programming model in 

order to demonstrate how they integrate into one system, thereby supporting distributed 

execution of mobile applications. 

For mobile applications with heavy computation needs, computation offloading is an 

effective method to reduce energy consumption and enhance performance. However, it requires 

additional efforts and skills to develop applications with computation offloading ability and, 

unfortunately, no mature frameworks or tools exist for mobile application developers. We 
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designed Jade to minimize the workload of developing applications with computation offloading 

ability by: 

 Offering the Jade runtime engine which provides services for wireless 

communication, device profiling, program profiling and computation offloading. 

Conceptually, the Jade runtime engine automatically transforms application 

execution on one mobile device into a distributed execution optimized for 

wireless connection, power usage, and server capabilities. 

 Providing an easy-to-use programming model for developers to build mobile 

applications that support energy-aware computation offloading.   

In order to increase understanding of this offloading system, terms used in Jade must be 

defined. The mobile device that offloads computation is called the client. The device that 

receives and executes the offloaded code is called the server. Mobile applications contain 

remotable tasks which can be offloaded to the server (Figure 3-1). If a remotable task is executed 

on the client (i.e., it is not offloaded), we call it local execution. In contrast, if a remotable task is 

executed on the server (i.e., it is offloaded), we call it remote execution. 

Figure 3-1 Jade enables computation offloading for mobile applications. Ap-plications 

contain remotable tasks that can be offloaded from the client to the server. Jade runtime 

engine automatically decides where to execute remotable tasks and initiates distributed 

execution. 
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 3.2.1 Jade Runtime Engine 

In order to support computation offloading for applica-tions, a computation offloading 

system is needed to handle some essential tasks such as: 

 Communication. In order to offload code from the client to the server, the system 

should be able to 1) connect to other devices; 2) send data between devices; 3) 

coordinate with other devices for distributed execution; 4) track status of remote 

execution; 5) restore execution if unexpected errors occur (e.g., wireless 

connection lost, remote execution failure); and 6) exchange and record 

information related to all connected devices (e.g., connection speed, CPU usage, 

battery level, hardware configuration).  

 Profiling. In order to make correct offloading decisions, the system should have 

fresh information regarding status of the device and application. Device profiling 

is the process of collecting information pertaining to device status, such as 

wireless connection, CPU usage, and battery level. Similarly, program profiling 

collects information about applications, such as execution time, energy 

consumption, memory usage, and data size. 

 Optimization. The system should be able to deter-mine an optimized offloading 

strategy in order to maximize application’s energy savings and performance.  

The goal of Jade is to maximize the benefits of energy-aware computation offloading for 

mobile applications, at the same time, minimizing the burden on developers to build such an 

application. By proving the Jade runtime engine, computation offloading is handled 

automatically in the background, allowing application developers to focus on the application 

without implementing the computation offloading mechanism.  
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Jade runtime engine components are shown in Figure 3-2. On an Android device, the 

Jade runtime engine runs as a group of background services. Jade supports two types of server: 

1) Android server is device running Android and 2) Non-Android server is device running 

operating systems such as Windows and Linux. However, non-Android servers must have Java 

VM in order to support Jade, because Jade runtime engine runs as a Java program on a non-

Android server.    

Figure 3-2 High-level design of the Jade runtime engine. Jade runtime engine supports 

Android/non-Android device. 

 

Section 3.4 details the components of the Jade runtime engine. 

 3.2.2 Jade Programming Model 

In addition to the Jade runtime engine, another key contribution of our system is the Jade 

programming model which helps developers efficiently build applications with computation 

offloading ability. Jade programming model provides APIs in order for mobile applications to 

interact with the Jade runtime engine. Use of the programming model allows developers to 

efficiently build applications that harness the power of computation offloading. 

Details of the Jade programming model are provided in Section 3.4. 
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 3.3 Multi-level Task Scheduling 

Jade decides where to execute remotable tasks dynamically generated in an application 

(i.e., local execution or remote execution). Based on dynamic run time behavior of remotable 

tasks, such as execution time and energy consumption, remotable tasks should be offloaded to 

appropriate servers.  

We implement a multi-level task scheduling algorithm in Jade that enables energy and 

performance-aware task scheduling. The algorithm 1) incorporates server status (e.g., type of 

power supply, computing capability, connection speed); 2) balances the workload between 

servers; and 3) offloads tasks to the most appropriate server according to the energy and 

computing demand of the task. 

The multi-level task scheduling algorithm runs on the client and the server. Details are 

discussed in Sections 3.3.1 and 3.3.2. 

 3.3.1 Task Scheduling on the Client 

The goals of task scheduling on the client include determining the appropriate server for 

each remotable task and balancing the workload for servers.  

Tasks have varying computation demands. Tasks with heavy computation consume more 

energy, thereby requiring additional execution time. Servers also have varying characteristics. 

For example, mobile devices have less powerful hardware, such as CPU and RAM, and limited 

power supplies. Compared to mobile devices, desktop and laptop computers are often equipped 

with more powerful hardware and unlimited power supplies, making them better choices for 

tasks with heavy computation. 
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Server workload must also be considered. If a server currently operates with a high 

workload, it should not be a site to which new tasks are offloaded. In contrast, if a server is idle 

or has a light workload, it is able to receive new tasks. 

We used Energy Delay Product (EDP) to measure computation demand of a remotable 

task. EDP, a performance measure that considers power and execution time, is defined as 𝐸𝐷𝑃 =

𝑇 × 𝐸 = 𝑇2 × 𝑃. For a remotable task i, T is execution time of i, E is energy cost to execute i, 

and P is average power consumption to execute i. Tasks with high computation demand should 

have longer execution time and consume more energy than tasks with low computation demand. 

Therefore, EDP can be used to classify tasks based on computation demand. 

A distributed computing environment contains many useful information concerning 

execution parameters and performance that is readily available at each server but not readily 

available to the client. As a result, an information gap exists between the client and servers. In 

order to balance server workloads, the client ideally would have extensive information exchange 

with servers. Server status can change quickly, so the client must frequently gather information, 

thereby incurring many data transfers that consume energy. To reduce unnecessary energy costs, 

we used work stealing as a task scheduling strategy. Work stealing is a special case of task 

migration in which a “starving” device attempts to steal tasks from a “loaded” device [43]. In 

Jade, the servers attempt to steal tasks from the client. The server monitors its own status and 

requests new tasks based on level of its current workload. For example, if the server was already 

overloaded, it would not ask for new tasks until remaining tasks were completed. The client does 

not need to monitor server status when using work stealing, so the amount of data transferred 

between devices is reduced, consequently saving energy. 
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On the client, two distinct buffers are used to store remotable tasks before offloading. 

One buffer is used for tasks with heavy computation (buffer H) and the other buffer is used for 

tasks with light computation (buffer L). When a remotable task i is generated, Jade calculates the 

EDP value of i, and based on its EDP value, i is put into buffer H or L. We also run 

benchmarking applications on every server to classify server as High Performance Device (H 

device) or Performance Constraint Device (C device). H devices steal tasks from buffer H and 

only steal from buffer L when buffer H is empty. Similarly, C devices steal tasks from buffer L 

and only steal tasks from buffer H when buffer L is empty. If only one kind of device is present 

(e.g., all servers are C devices), they steal tasks from both buffers (Figure 3-3). 

Figure 3-3 Servers stealing tasks from buffers of the client      

 

 3.3.2 Task Scheduling on the Server 

Because mobile device users often spend limited time on one application, response time 

is very important for mobile applications. Given many similar applications to choose from, users 

do not use an application which feels sluggish, hangs, or freezes. To increase application 

responsiveness during computation offloading, the servers must return results of remote task 

execution as quickly as possible. 

In the server, we used Highest Response Ratio Next (HRRN) algorithm to schedule tasks. 

In HRRN, the priority of each job depends on its estimated execution time and the amount of 
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time the job has spent waiting. Jobs increase in priority as they wait, thereby preventing 

indefinite waiting (starvation). HRRN favors shortest jobs, but it also limits waiting time for long 

jobs. The priority of a task is defined as [44]: 

𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦 =
𝑤𝑎𝑖𝑡𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 + 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑟𝑢𝑛 𝑡𝑖𝑚𝑒

𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑟𝑢𝑛 𝑡𝑖𝑚𝑒
 

By selecting shorter tasks to execute, the client receives results frequently, making the 

application more responsive to the user. 

 3.4 Implementation 

This section highlights important implementation details of Jade. Sections 3.4.1, 3.4.2, 

and 3.4.3 describe components in the Jade runtime engine. Section 3.4.4 shows details of the 

Jade programming model. 

 3.4.1 Profiler 

When a remotable task is generated at run time, the Jade optimizer determines whether it 

should be executed locally or remotely. This decision is based on information provided by the 

profiler. The profiler collects the following information: 1) device status, such as charging status, 

battery level, CPU load, and wireless connection status); and 2) characteristics of remotable 

tasks, such as execution time, size, and energy consumption. The profiler measures 

characteristics of a remotable task during task’s first execution and continuously monitors the 

status of devices because mobile device status changes frequently (e.g., loss of Wi-Fi connection, 

reaching low battery level). The optimizer may make wrong decision on whether the code should 

be offloaded based on a stale measurement. 

Offline and online methods are available to measure power consumption of mobile 

devices and applications. An offline method, often used under laboratory conditions, uses 

external measurement tools. This method generates accurate results but requires special skills 
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and equipment. However, most developers and users cannot realistically perform offline power 

measurement. The online method overcomes limitations of the offline approach by utilizing the 

Battery Monitoring Unit (BMU), which provides information related to battery (e.g., supply 

voltage, current, and battery temperature). A majority of current mobile devices are equipped 

with BMU. However, online method may not be as accurate as offline method because the 

information update rate of BMU is much lower than external measurement tools. According to 

previous research of mobile device power modeling, online method can generate satisfying 

results. The Jade profiler uses the online approach to measure energy consumption for devices 

and applications. The evaluation showed that Jade can make correct offloading decision when 

using information generated by this approach. 

 3.4.1.1 Program Profiling 

When a new remotable task is generated, a unique name is assigned to it. (We combine 

the package name of the application and class name of the remotable task to form a unique 

name.) During the remotable task’s first execution, the profiler collects the task’s energy 

consumption E, execution time T, and size S. Then the information is provided to the optimizer. 

Based on the cost model, the optimizer decides if the task is suitable for offloading. Finally, all 

information concerning the remotable task is recorded in a database. When the same or similar 

task is executed again in the future, Jade will find its information in the database in order to 

understand whether or not the task should be offloaded. 

With our automatic program profiling, developers only need to identify potential 

remotable tasks in a program and mark them according to the Jade programming model. When 

an application is installed on a mobile device, developers only need to run the application, 

invoking as many remotable tasks as possible. Jade automatically analyzes marked tasks in the 
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background and decides whether or not they are remotable. Automatic program profiling greatly 

reduces the amount of work required to perform program power analysis, thus speeding up 

application development. 

 3.4.1.2 Device Profiling 

At runtime, the profiler also continuously monitors device status. Collected information 

includes battery (i.e., battery level, charging status), wireless connection (i.e., Wi-Fi turned 

on/off, throughput), and CPU load. 

Due to the nature of mobile devices, wireless connection could change frequently 

because a user could change locations. Fresh information about wireless connection is crucial in 

order for the optimizer to make correct offloading decisions. Similar to MAUI, we used a simple 

method to measure the wireless link: Each time Jade offloads code, the profiler measures the 

transfer duration in order to obtain more recent average throughput. This simple approach takes 

into account both the latency and bandwidth characteristics of the network. We also built a 

simple energy cost model for wireless transfer using this approach: We send synthetic data from 

the client to the server, varying the size of the data, and we measure energy consumption of each 

transfer. This model allows us to predict energy consumption of data transfer as a function of 

data size. 

 3.4.2 Optimizer 

The purpose of the Jade optimizer is to choose suitable remotable tasks to offload to the 

server in order to find an offloading strategy that minimizes the application’s energy 

consumption. The optimizer makes the offloading decision by solving an optimization problem 

using information provided by the profiler. 
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Characteristics of a remotable task determine where it should be executed. The code 

should be offloaded only if the energy cost to locally execute it is greater than the energy cost 

required to transfer it. For example, code performing heavy computation on small data is suitable 

for offloading. For some code, the energy cost of transfer outpaces the energy cost of local 

execution (e.g., lightweight computation on big data), such code should not be offloaded. 

Based on information provided by the profiler, the optimizer determines the best 

offloading strategy by solving the following cost model. 𝐼 represents the set of remotable tasks in 

the application. For each remotable task 𝑖 ∈ 𝐼, 𝐸𝑖
𝑒 is energy consumed to execute 𝑖 locally. 𝐸𝑖

𝑡 is 

energy consumed to transfer 𝑖 between the client and the server. 𝑇𝑖
𝑙 is the execution time of 𝑖 on 

the client. 𝑇𝑖
𝑟 is the execution time of 𝑖 on the server. 𝑇𝑖

𝑡 is the transfer time of 𝑖. 𝐼𝑖 is the 

indicator variable: 𝐼𝑖 = 0 if 𝑖 is executed locally, 𝐼𝑖 = 1 if 𝑖 is executed remotely. The optimizer 

must find the assignment for 𝐼𝑖 such that: 

 maximizes ∑ 𝐼𝑖 × (𝐸𝑖
𝑒 − 𝐸𝑖

𝑡)𝑖∈𝐼  
 guarantees ∑ (1 − 𝐼𝑖) × 𝑇𝑖

𝑙 + 𝐼𝑖 × 𝑇𝑖
𝑟 + 𝐼𝑖 × 𝑇𝑖

𝑡 ≤ 𝑙𝑖∈𝐼  

The first formula is total energy savings. The second constraint stipulates that the total 

execution time is within l. Developers can configure l according to their specific requirements. 

As explained in Section 3.4.4, the Jade programming model requires that every remotable 

task i to perform independent job, so no dependencies exist between tasks. This requirement 

further simplifies the cost model. For each remotable task i, the optimizer must solve only the 

following inequation:   

𝐸𝑖
𝑒 −  𝐸𝑖

𝑡 > 0 
𝑇𝑖

𝑟 + 𝑇𝑖
𝑡 −  𝑇𝑖

𝑙 ≤ 𝑙 
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              𝐸𝑖
𝑒 − 𝐸𝑖

𝑡 is the energy saving if 𝑖 is executed remotely. 𝑖 should be considered for 

offloading only when 𝐸𝑖
𝑒 >  𝐸𝑖

𝑡. Similarly, the second inequation guarantees that time difference 

between remote execution and local execution is not greater than 𝑙. 

 3.4.3 Communication Manager 

Code offloading is handled by the communication manag-er. The communication 

manager is responsible for code manipulation (i.e., code transfer, code execution) and device 

coordination. 

The communication manager handles code offloading by following these steps:  

1. Records code information in the offloaded code table (Table 1). The purpose of the 

table is to track the status of offloaded code.  

2. Offloads the code to the server.  

3. The server receives the code and executes it in a new thread. 

4. The server sends the code back to the client after execution is complete. 

5. The client receives the code and updates code information in the offloaded code table. 

Table 3-1 Example of offloaded code table 

ID Offloaded Server Returned Result 

0001 true 192.168.49.1 true finish 

0002 true 192.168.49.1 false  

0003 true 192.168.49.1 true fail 

For remote execution failure, the communication manager has mechanisms to guarantee 

correctness of the application. For example, if wireless connection is lost during remote 

execution, the client’s communication manager re-executes the code locally and the server’s 

communication manager abandons the execution. If the returned code shows its result as failed, it 

is also re-executed on the client. 
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 3.4.4 Jade Programming Model 

When designing applications that support code offloading, the application must be 

partitioned into sub-parts which can be offloaded to the server. Applications can be partitioned at 

various levels, such as class, method, process, and thread. An application is partitioned at the 

class level in Jade. Developers can produce an initial partition of their applications with minimal 

effort using the Jade programming model.  

To be considered for offloading, a class must implement one of two interfaces: 

RemotableTask interface or RemotableGenTask interface. As mentioned, Jade supports Android 

and non-Android servers. If a class contains Android code, it must run on Android devices, so 

the class must implement RemotableTask interface which is guaranteed to be offloaded to an 

Android server. If a class contains only Java code which does not access any Android API, then 

the class should implement RemotableGenTask interface, Jade can offload such class to more 

servers (i.e., any server with Java VM). With the exception of different target servers, 

RemotableGenTask and RemotableTask have similar mechanisms that support code offloading. 

Therefore, we used RemotableTask interface to demonstrate how it works.   

In Jade, a class that implements the RemotableTask interface is called a remotable class. 

An instance (object) of remotable class is called a remotable object. A remotable object can be 

executed on the client (locally) or on the server (remotely). An application developed using the 

Jade programming model is called a Jade compatible application. At runtime, a Jade compatible 

application contains remotable objects that can run concurrently on multiple servers.  

Some types of code must be executed locally. If a class contains the following code, it 

should not be considered for offloading: 

 Code that creates user interface of the application. 

 Code that handles user interaction (e.g., callback method for clicking a button). 
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 Code that accesses the client’s special hardware which may be unavailable on the 

server (e.g., some smart phones are equipped with GPS sensor, but most 

computers are not). 

 Code unsuitable for re-execution (e.g., code that performs online transactions). 

Our goal in providing the RemotableTask interface is to eliminate the need for developers 

to guess whether or not a class is suitable for offloading in terms of energy consumption and 

performance. When a class does not contain the above code, it can implement the 

RemotableTask interface, and the Jade runtime engine automatically determines if the class is 

suitable for offloading. 

The RemotableTask interface is the key construct in the Jade programming model, it 

defines the following methods called by the Jade runtime engine in sequence: 

 preExecution, performs preparations before executing the main task (e.g., connect 

database, initialize data).  

 loadData, loads data from the client’s file system. If loadData is called on the 

server, data is read and transferred from the client.   

 execution, performs the main task. 

 updateData, the counterpart of loadData. After the task finishes, updateData 

updates data in the client’s file system. If updataData is called on the server, data 

is transferred back to the client. 

 postExecution, the counterpart of preExecution that performs remaining tasks 

after the main task is complete (e.g., disconnect database, update log and send 

notification to user). 
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By implementing the RemotableTask interface, the life of a remotable object is divided 

into three stages (Figure 3-4): before execution, execution, and after execution. This division 

naturally matches steps of a common computation: 1) preparation (e.g., load data, connect to 

network); 2) execution, which performs computation on the data; and 3) update, which finishes 

the execution (e.g., update database, notify user). 

The Jade optimizer considers all remotable objects of an application for offloading. If a 

remotable object is eligible for offloading, the Jade runtime engine handles the code offloading 

by following the workflow shown in Figure 3-4. 

Application development using Jade programming model is intuitive and simple, 

developers only need to follow two steps: 

1. Identify tasks in the application that can be offloaded (code does not violate 

previously mentioned rules).  

2. For each task, create a class that implements the RemotableTask interface. 

Figure 3-4 (a) Life of a remotable object is divided into three stages by im-plementing the 

RemotableTask interface (b) Code offloading workflow   
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For example, an application can potentially perform three tasks: 1) collect information 

entered by the user (e.g., name, phone number, address and company); 2) verify the information; 

and 3) save the information to the database on a remote server. Task three is a good candidate for 

computation offloading. Using the Jade programming model, we create a remotable class 

(UpdateInfo) for Task three. The pseudocode is: 

class UpdateInfo implements RemotableTask{ 

     preExecution(){   

         open database connection; 

     } 

     loadData(){  

         do nothing;  

     } 

     execution(){  

         if new user 

               insert user info into database; 

         else 

               update user info; 

     } 

     updateData(){ 

         do nothing; 

     } 

     postExecution(){ 

         close database connection; 

         send notification to user; 

     } 

} 

In Jade, a remotable object should perform tasks inde-pendently with no dependencies 

between remotable objects. Advantages of this requirement include 1) reduction of cost model 

complexity so the optimizer consumes less energy and 2) scalable remote task offloading in 
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which the number of offloaded tasks can dynamically scale up/down with adding/removing of 

servers.     

The Jade programming model also provides a mechanism for a remotable object to notify 

local objects when the remotable object finishes execution (Figure 3-5). If a class needs to be 

notified, the class can implement the OnTaskReturnedListener interface. This interface defines 

the onTaskResult callback method called by the Jade runtime engine when a specified remotable 

object finishes execution.  

Figure 3-5 Jade programming model provides a mechanism for object B to notify object A 

when object B finishes execution. Object A must implement the OnTaskReturnedListener 

in order to receive the notification. 

 

 3.5 Evaluation 

In this section we evaluate Jade’s ability to reduce energy consumption for mobile 

applications. We implemented two applications that perform common tasks widely used by 

users. 

Image processing, such as image editing and object recognition, is used in many 

applications. Our first application was FaceDetection (FD) which asks users to select pictures 

from the device’s photo gallery. FD then detects human faces in those pictures and highlights 

them by putting a rectangle around each face. Code performing face detection was implemented 

in a remotable class in order to be offloaded to the server.  
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Navigation application is one of the most popular mobile applications. Path finding in 

such applications could be computation intensive, making it suitable for computation offloading. 

Our second application was FindRoute (FR). This application simulates a real world navigation 

application by determining the shortest path between two nodes of a graph. We used Dijkstra's 

algorithm for path finding, and path finding code was implemented in a remotable class. 

We used a Moto X smart phone as the client. Moto X is equipped with Qualcomm 

Snapdragon 1.7GHz Dual-Core CPU, quad-core GPU, and 2GB RAM. We used a Samsung 

Galaxy S3 smartphone and a Dell Inspiron 15 laptop as the servers. Galaxy S3 has a Quad core 

1.4GHz processor and 1GB RAM. Inspiron 15 has a 1.8GHz Dual-Core CPU and 8GB RAM. 

All devices were connected in the same wireless network.  

In order to evaluate how much energy Jade can save for mobile device, we run FD and 

FR on Moto X. FD performs face detection on 50 pictures, the size of each picture is under 

200KB. Each application was executed twice: first time with Jade disabled and second time with 

Jade enabled. We compared the first execution with the second execution to evaluate the 

performance of Jade. 

Results showed that Jade effectively reduces power consumption for FD (Figure 3-6). 

Average power consumption was reduced by 34% (Figure 3-10). FR had similar results (Figure 

3-8): Jade reduced 39% of average power consumption for FR. Power reduction was achieved 

because when Jade was enabled, some computations were offloaded to servers, thereby, reducing 

the workload of the client (Figure 3-7 and 3-9). Because more tasks were executed concurrently, 

Jade also improved the performance of both applications: it reduced 37% and 45% of execution 

time for FD and FR respectively (Figure 3-11).   
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Results demonstrated that Jade can effectively reduce energy consumption of mobile 

applications and improve application performance. 

Figure 3-6 Power consumption of FaceDetection 

 

Figure 3-7 CPU load of FaceDetection 

 

Figure 3-8 Power consumption of FindRoute 
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Figure 3-9 CPU load of FindRoute 

 

Figure 3-10 Average power consumption of FaceDetection and FindRoute 

 

Figure 3-11 Execution time of FaceDetection and FindRoute 
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 3.6 Related Work 

Mobile devices have limited resources such as battery capacity, storage, and processor 

performance. Computation offloading is an effective method to alleviate these restrictions by 

sending heavy computations to resourceful servers and receiving results from these servers. 

Many issues related to computation offloading have been investigated in the past decade, 

including feasibility of offloading, offloading decisions, and development of offloading 

infrastructures. 

Finding energy efficient task scheduling algorithms has been one of hot research topics in 

the area of high performance systems because of the huge energy cost. Since there are many jobs 

running in such systems, efficient power management is a critical problem. Recently, research in 

high performance computing has also introduced and developed power-aware algorithms to 

reduce the total energy not only for the operational cost but also for the system 

Reliability [68 - 81]. 

Jade was built upon previous research regarding program partitioning, code offloading, 

and remote execution. In this section, we provide an overview of proposals by these researches 

and how they relate to Jade. 
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Cuervo et al. proposed MAUI [39], a system that enables energy-aware offloading of 

mobile code to the infrastructure. MAUI enables developers to produce an initial partitioning of 

their applications by annotating methods and/or classes as remotable. At runtime, the MAUI 

solver decides which remotable methods should execute locally and which should execute 

remotely. Unlike MAUI, Jade provides a sophisticated programming model with a full set of 

APIs, so developers have total control on: how application is partitioned, where code is offloaded 

and how remotable code interacts with local code. In Jade, dependencies do not exist between 

remotable tasks, the profiler and optimizer do not need to analyze the whole program, thereby, 

energy cost of program profiling and cost model calculation is lower than MAUI.  

 The energy efficiency of mobile clients and the relation with several metrics for 

characterizing the energy consumption of communication was discussed in [63]. The impacting 

factor for energy usage include: the amount of transferred data, the energy characteristics of the 

device’s wireless transfer, communication bit-rate, traffic pattern, and whether the client is near 

or far from the server. However, the author just discussed the various metrics that characterize 

computation offloading and did not experiment their work in a real offloading system.  

Chun et al. proposed CloneCloud [40], an application partitioner and execution runtime 

that enables unmodified mobile applications running in an application-level virtual machine to 

seamlessly offload part of their execution from mobile devices onto device clones operating in a 

computational cloud. In CloneCloud, threads must be paused, all states of the threads must be 

transferred to the server, and then threads resume on the server in order to offload computation. 

Offloading is expensive, however, especially when the client and server are both resource 

constraint mobile devices. In contrast, code offloading in Jade is lightweight. Remotable objects 
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are serialized, transferred, and deserialized, resulting in much lower overhead compared to 

thread migration. 

Some software-based solutions were also investigated besides computation offloading, 

such as applying power saving modes on processes, network interface cards, display, and sensors 

[64]. There were also hardware-based solutions such as providing low power processor for low 

energy usage tasks and high power processor for energy intensive tasks [65]. Furthermore, some 

research proposed charging the phone from different surrounding sources such as light, speech, 

movement, bacteria, and human heart’s beats [66, 67]. 

 3.7 Future Work 

In our future work, we will extend Jade to include cloud platform. Cloud provides a 

scalable and powerful computing environment which is ideal for complex computing tasks. 

Today, many mobile devices have fast wireless link such as 4G LTE without limitation of 

locations, making cloud platform a good destination for computation offloading. We will also 

study how cloud changes the development pattern of mobile applications. 

Another direction of future work is security [100 - 104]. Jade offloads computation to 

trusted devices, but security concerns arise if computation offloading is scaled up, for example, 

multiple applications accessing a single server, running foreign code on the server, and remote 

codes interfering with each other.  

 3.8 Conclusion 

In this paper, we presented Jade, a system that enables computation offloading for mobile 

devices. Jade can effectively reduce energy consumption of mobile devices, and dynamically 

change its offloading strategy according to device status. 
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We evaluated Jade with two applications: a face detection application and a path finding 

application. Results showed that Jade can effectively reduce energy consumption for both 

applications while improving their performance. 
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Chapter 4 - An Energy-saving Task Scheduler for Mobile Devices 

This chapter is published in [123] and reprinted in full in accordance with the IEEE rules. 

4.1 Introduction 

Mobile devices, such as smart phones and tablets, have become a necessity because they 

allow people to perform a wide variety of useful activities (e.g., video calls, emails, gaming, 

social networking, navigation, etc.) with mobility. These devices typically are equipped with a 

relatively powerful mobile processor, a rich set of sensors, and a substantial amount of memory. 

It allows previously unimaginable applications to be developed by integrating many sensors, 

such as motion sensors, position sensors, and environmental sensors.  

However, battery life has become one of the biggest ob-stacles for mobile device 

advancements. Performance de-manded by smartphones and tablets is increasing at a much faster 

rate than technological improvements in battery capacity. The need for increased performance of 

mobile devices directly conflicts with the desire for longer battery life. 

One popular technique to reduce energy consumption of mobile devices is computation 

offloading in which an application reduces energy consumption by delegating code execution to 

other devices. Traditionally, computations are offloaded to remote, resource-rich servers. 

Selection of a proper offloading strategy can reduce power consumption and simultaneously 

enhance performance for mobile device. 

Nowadays, people can easily access multiple computing devices, e.g., desktop and laptop 

computers at office and home, even when people are traveling, they bring smartphones and 

tablets. So for a computation offloading system, it’s not hard to find suitable servers. With the 

help of faster wireless technology like 4G, cloud platform also becomes a good destination for 

computation offloading. Cloud platform provides a scalable and powerful computing 
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environment which is ideal for complex computing tasks. Cloud enables computation offloading 

without the limitation of location. 

In this paper, we present Jade [45 -51], an energy-aware computation offloading system 

for mobile devices. Jade, built for mobile devices running Android operating system, minimizes 

energy consumption of mobile devices through fine-grained computation offloading to the cloud. 

Jade provides the following benefits: 

1. A runtime engine that enables computation offloading from mobile device to the cloud. 

By monitoring application and device status, the runtime engine automatically decides if 

code should run locally or remotely.  

2. A programming model that helps developers creates applications with computation 

offloading ability. 

3. Jade supports multiple servers, i.e., computation can be offloaded from mobile device to 

mobile device, desktop, laptop and cloud (Figure 4-1).  

Running on mobile device, Jade monitors the energy consumption of apps and offloads 

energy consuming computations to servers. It effectively reduces the amount of computation on 

mobile device in order to extend the battery life of device. Jade is effective under many use 

cases, here are two examples: 

1. Nowadays, people bring multiple mobile devices when they travel, e.g., smartphone and 

tablet. Longer smartphone battery life is desired during the travel, because people want 

to stay connected with others, and it’s usually not easy to re-charge the phone on the 

way. With the help of Jade, energy demanding computations are offloaded from 

smartphone to less used devices (e.g., tablet) in order to reduce the energy consumption. 

Thereby, users can enjoy using their smartphone without worrying about its battery life. 
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2. People working in the office spend a lot of time sitting in front of their computer. For 

users who use their smartphone a lot, they often need to re-charge the phone during the 

day. By enabling Jade, computation intensive code are offload from the smartphone to 

more powerful computers, so users don’t need to re-charge their phone in the middle of 

the day. 

Our contributions are summarized as follows: 

 We present the design and implementation of a complete system. Jade is able to offload 

computation from an Android device to servers running on the cloud.  

 We present a multi-level data storage strategy that optimizes the energy cost of data 

transfer when computation offloading occurs. 

 We present a multi-level scheduling algorithm that automatically and seamlessly 

transports workloads to the appropriate server based on task’s performance and energy 

needs. 

 We evaluate Jade with two applications. Results indicated that Jade can effectively 

reduce up to 40% of average power consumption for mobile device, while reducing the 

execution time of applications. 

Figure 4-1 Jade can offload computation from mobile device to multiple servers  
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 4.2 System Design 

In this section, we present the high-level design of Jade and its programming model in 

order to demonstrate how they integrate into one system, thereby supporting distributed 

execution of mobile applications. 

For mobile applications with heavy computation needs, computation offloading is an 

effective method to reduce energy consumption and enhance performance. However, it’s not 

easy to build computation offloading ability into mobile apps, the reasons includes:  

 It requires additional efforts and skills to develop applications with computation 

offloading ability and, unfortunately, no mature frameworks or tools exist for mobile 

application developers. 

 Most mobile developers (especially independent developers) don’t have expertise on 

profiling and optimizing energy usages of mobile app, and they only focus on the 

functionality of the app without paying attention to its energy usage, e.g., users often 

report that some apps have abnormal energy usage and kill the battery very fast. 

We designed Jade to simplify the process of building energy efficient apps, and also 

minimize the workload of developing such apps by: 

 Offering the Jade runtime engine which provides services for wireless communication, 

device profiling, program profiling and computation offloading. Conceptually, the Jade 

runtime engine automatically transforms application execution on one mobile device into 

a distributed execution optimized for wireless connection, power usage, and server 

capabilities. 

 Providing an easy-to-use programming model for developers to build mobile applications 

that support energy-aware computation offloading.   
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Figure 4-2 Jade enables computation offloading for mobile applications. Applications 

contain remotable tasks that can be offloaded from the client to the cloud. Jade runtime 

engine automatically decides where to execute remotable tasks and initiates distributed 

execution. 

 

In order to increase understanding of this offloading system, terms used in Jade must be 

defined. The mobile device that offloads computation is called the client. The Jade server that 

receives and executes the offloaded code is called the server. Servers run on the cloud. Mobile 

applications contain remotable tasks which can be offloaded to the server (Figure 4-2). If a 

remotable task is executed on the client (i.e., it is not offloaded), we call it local execution. In 

contrast, if a remotable task is executed on the server (i.e., it is offloaded), we call it remote 

execution. 

4.2.1 Jade Runtime Engine 

In order to support computation offloading for applications, a computation offloading 

system is needed to handle some essential tasks such as: 

 Communication. In order to offload code from the client to the server, the system should 

be able to 1) connect to the server; 2) send data between client and server; 3) coordinate 

with server for distributed execution; 4) track status of remote execution; 5) restore 

execution if unexpected errors occur (e.g., wireless connection lost, remote execution 
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failure); and 6) exchange and record information related to client and server (e.g., 

connection speed, CPU usage, battery level, hardware configuration).  

 Profiling. In order to make correct offloading decision, the system should have fresh 

information regarding status of the device and application. Device profiling is the process 

of collecting information pertaining to device status, such as wireless connection, CPU 

usage, and battery level. Similarly, program profiling collects information about 

applications, such as execution time, energy consumption, memory usage, and data size. 

 Optimization. The system should be able to find an optimized offloading strategy in order 

to maximize application’s energy savings and performance. 

      Figure 4-3 High-level design of the Jade runtime engine 

 

The goal of Jade is to maximize the benefits of energy-aware computation offloading for 

mobile applications, at the same time, minimizing the burden on developers to build such an 

application. By proving the Jade runtime engine, computation offloading is handled 

automatically in the background, allowing application developers to focus on the application 

without implementing a computation offloading system. 

Jade runtime engine components are shown in Figure 3. On the client device, the Jade 

runtime engine runs as a group of background services. On the cloud, Jade server also contains a 
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Jade runtime engine. Jade server is platform independent, it can run in any virtual machines on 

the cloud.    

Section 5 details the components of the Jade runtime engine. 

 4.2.2 Jade Programming Model 

In addition to the Jade runtime engine, another key contribution of our system is the Jade 

programming model which helps developers efficiently build applications with computation 

offloading ability.  

The key component in the Jade programming model is the Jade API. We assume that 

most mobile developers don’t have knowledge on energy profiling and they don’t spend much 

time optimizing their code to be energy efficient. So the idea behind Jade API is that developers 

don’t need to guess if a piece of code is energy demanding and suitable for offloading, all they 

need to do is annotating that code. When the code is executed, Jade will decide if it should be 

offloaded or not. Compared with some previous work, Jade greatly reduces the requirement and 

workload for developers to build energy efficient apps. 

 Other attribute of Jade API is that it follows the development logic of Android and Java, 

it introduce no strange rules and concepts. For developers new to Jade, they don’t need to spend 

much time learning, the API is very straightforward and easy to use. Developers become 

comfortable using it immediately.       

Details of the Jade programming model are provided in Section 5. 

4.3 Muti-level Data Storage 

When computation offloading occurs, the dominant energy cost is the energy 

consumption of the network interface. Wireless network interface accounts for a big portion of 

mobile device’s energy consumption. For example, the Wi-Fi interface of a smart phone 
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consumes almost 1500mW when downloading data [42]. Because computation offloading 

system needs to transfer data between client and server frequently, a lot of energy of mobile 

device is consumed by network interface. Thereby, reducing the amount of data transferred 

between client and server is crucial in order to save energy for mobile device. 

Jade provides a Multi-level Data Storage Service (MDSS) that optimizes the energy cost 

of data transfer when computation offloading occurs. MDSS allows developers to save 

application data on the cloud without writing any backend code. Application data is also saved 

locally on mobile devices allowing applications to work when devices are offline. MDSS 

automatically synchronizes data between local device and the cloud, so developers can focus on 

creating applications instead of having to worry about building backend solution to handle data 

storage and synchronization.   

When application generates new data, MDSS first saves the data on local device, so the 

data is always accessible to application. Data is uploaded to the cloud later when MDSS 

performs synchronization. Synchronization of data sets between client device and the cloud can 

be triggered by calling the synchronize method or charging the device. In order to synchronize, 

MDSS reads the latest version of the data available in the cloud and compares it to the local 

copy. After comparison, MDSS writes the latest updates as necessary to the local copy and the 

cloud. MDSS maintains the last-written version of the data by default. 

In a computation offloading system, a remotable task contains two elements: 1) app data 

(e.g., images, texts, numbers) and 2) task code that performs execution on app data (e.g., sorting 

algorithm, image processing). App data and task code are bundled and transferred when a 

remotable task is offloaded to the server. In most cases, the size of app data is much bigger than 

the size of task code (e.g., size of an image could be a few MB, whereas size of task code 
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performing complex computation could be a few KB). By introducing MDSS, a remotable task’s 

app data and task code are separated. In Jade, a remotable task i contains only task code, the app 

data accessed by i is stored separately and referenced by URI. When i is offloaded to the cloud, if 

the cloud already has the most recent copy of app data that i needs to access, Jade only offloads 

task code to the cloud in order to reduce the amount of data transferred. MDSS effectively helps 

reducing the energy consumption for mobile device’s network interface by avoiding transferring 

app data every time when i is offloaded. 

Jade uses URI to reference the app data to be acted on. When a remotable task i is chosen 

for offloading, URI of i’s app data is passed to MDSS which then queries the data using the URI. 

If the latest version of the app data is found on the cloud, Jade offloads i to the cloud without 

synchronization. If the cloud does not have the app data or the cloud has an older version of the 

app data, MDSS synchronizes the cloud with local device before offloading i (Figure 4-4A).  

Jade provides APIs to let developers control when to sync data according to varying 

needs. By default, MDSS automatically performs synchronization only when device is charging 

in order to preserve battery life (Figure 4-4B). Synchronization can be triggered anytime in code 

by calling the synchronize method. Developers can also control synchronization according to 

device’s wireless connection. For example, in order to save user’s mobile data plan, 

synchronization can be disabled when device does not have Wi-Fi access. 

Figure 4-4 (A) Data sync workflow in MDSS (B) MDSS automatically synchronizes data 

between client and server when client is charging 
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MDSS enables interesting new design for mobile apps which can’t be achieved easily 

before. By adopting MDSS, many existing apps can be modified so they become more energy 

friendly. Here is one example: in Motorola’s flagship device Moto X, there is an interesting 

feature called Highlight Reel. Every day, it randomly chooses some pictures taken by user during 

that day and creates a small video. It’s a great idea but video rendering is energy consuming. 

With MDSS, the album of Moto X can be synchronized with cloud when device is charging. 

Since the pictures are already available on the cloud, Jade only offloads the video rendering code 

to the cloud where the video is created and sent back to Moto X. This way, users can also have a 

great video generated everyday but with less energy consumption on their device. 

4.4 Implementation 

This section highlights important implementation details of Jade. Sections 5.1 and 5.2 

describe components in the Jade runtime engine. Section 5.3 shows details of the Jade 

programming model. 
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 4.4.1 Profiler 

When a remotable task is generated at run time, the Jade optimizer determines whether it 

should be executed locally or remotely. This decision is based on information provided by the 

profiler. The profiler collects the following information: 1) device status, such as charging status, 

battery level, CPU load, and wireless connection status); and 2) characteristics of remotable 

tasks, such as execution time, size, and energy consumption. The profiler measures 

characteristics of a remotable task during task’s first execution and continuously monitors the 

status of devices because mobile device’s status changes frequently (e.g., loss of Wi-Fi 

connection, reaching low battery level). The optimizer may make wrong decision on whether 

code should be offloaded based on a stale measurement. 

Offline and online methods are available to measure power consumption for mobile 

devices and applications [82-90]. An offline method, often used under laboratory conditions, 

uses external measurement tools [91-99]. This method generates accurate results but requires 

special skills and equipment, most developers and users cannot realistically perform offline 

power measurement. The online method overcomes limitations of the offline approach by 

utilizing the Battery Monitoring Unit (BMU), which provides information related to battery (e.g., 

supply voltage, current, and battery temperature). A majority of current mobile devices are 

equipped with BMU. However, online method may not be as accurate as offline method because 

the information update rate of BMU is much lower than external measurement tools. According 

to previous research of mobile device power modeling, online method can generate satisfying 

results. The Jade profiler uses the online approach to measure energy consumption for devices 

and applications. The evaluation showed that Jade can make correct offloading decision when 

using information generated by this approach. 
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In Jade, we use Trepn Profiler (Trepn) [41] to measure the energy consumption of the 

device and apps. Trepn is an on-target power and performance profiling application for mobile 

devices. It runs on most Android devices featuring Qualcomm Snapdragon processors or 

development hardware. Trepn has the following features: 

 Overlays appear on screen on top of applications that are being profiled 

 Profile device, or a single app 

 Displays battery power on supported devices 

 View CPU and GPU frequency and utilization 

 Show GPU frequency and utilization 

 Display network usage (cellular and Wi-Fi) 

 Runs on most Android smartphones and tablets (Android 4.0 and higher) 

With Trepn, developers can better understand the impact of their programming choices 

on both power and performance. 

 4.4.1.1 Synchronized App Profiling  

When a new remotable task is generated, a unique name is assigned to it (we combine the 

package name of the application and class name of the remotable task to form a unique name). 

During the remotable task’s first execution, the profiler collects the task’s energy consumption E, 

execution time T, and size S. Then the information is provided to the optimizer. Based on the 

cost model, the optimizer decides if the task is suitable for offloading. Finally, all information 

concerning the remotable task is recorded in a database. When the same or similar task is 

executed again next time, Jade finds its information in the database in order to understand 

whether or not the task should be offloaded. 
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With our automatic program profiling, developers only need to identify potential 

remotable tasks in a program and annotate these tasks as remotable. When the application is 

installed on a mobile device, developers only need to run the application, invoking as many 

remotable tasks as possible. Jade automatically analyzes remotable tasks in the background and 

decides whether or not they are eligible for remote execution. 

We improved the profiling accuracy of the Jade profiler compared with previous 

versions. In order to obtain a more accurate power measurement of a remotable task, we need to 

synchronize the profiler and the remotable task. In Figure 4-5, the blue line represents the actual 

power of the task, the red line represents the reading of BMU. In Figure 4-5A, the profiler starts 

later than the program, so the reading of BMU is less than the actual value. The BMU reports 

more accurate value if the profiling and program starts at the same time (Figure 4-5B).   

Figure 4-5 The start time of remotable task and profiler need to be synchronized in order 

to obtain accurate power measurement 

 

 In order to synchronize profiler and the program, we implemented a controller in the 

profiler which performs several jobs: 

 Collect the information about the BMU (e.g., update rate R) 

 Suspend/release the execution of a remotable task to be measured 
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 Start/terminate the execution of profiler 

      By manipulating the start time of program and profiler, the controller guarantees that the 

profiler starts at the same time with the program to be measured, thereby generating more 

accurate power measurements.  

  

 4.4.1.2 Device Profiling 

At runtime, the profiler also continuously monitors device status. Collected information 

includes battery (i.e., battery level, charging status), wireless connection (i.e., Wi-Fi turned 

on/off, throughput), and CPU load. 

Due to the nature of mobile devices, wireless connection could change frequently 

because users often change locations. Fresh information about wireless connection is crucial in 

order for the optimizer to make correct offloading decisions. Similar to MAUI, we used a simple 

method to measure the wireless link: Each time Jade offloads code, the profiler measures the 

transfer duration in order to obtain more recent average throughput. This simple approach takes 

into account both the latency and bandwidth characteristics of the network. We also built a 

simple energy cost model for wireless transfer using this approach: we send synthetic data from 

the client to the server, varying the size of the data, and we measure energy consumption of each 

transfer. This model allows us to predict energy consumption of data transfer as a function of the 

size of data. 

4.4.2 Optimizer 

The purpose of the Jade optimizer is to choose suitable remotable tasks to offload to the 

server in order to find an offloading strategy that minimizes application’s energy consumption. 
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The optimizer makes the offloading decision by solving an optimization problem using 

information provided by the profiler. 

Characteristics of a remotable task determine where it should be executed. The code 

should be offloaded only if the energy cost to execute it locally is greater than the energy cost to 

transfer it. For example, code performing heavy computation on small data is suitable for 

offloading. For some code, the energy cost of transfer outpaces the energy cost of local execution 

(e.g., lightweight computation on big data), such code should not be offloaded. 

Based on information provided by the profiler, the optimizer determines the best 

offloading strategy by solving the following cost model. 𝐼 represents the set of remotable tasks in 

the application. For each remotable task 𝑖 ∈ 𝐼, 𝐸𝑖
𝑒 is energy consumed to execute 𝑖 locally. 𝐸𝑖

𝑡 is 

energy consumed to transfer 𝑖 between the client and the server. 𝑇𝑖
𝑙 is the execution time of 𝑖 on 

the client. 𝑇𝑖
𝑟 is the execution time of 𝑖 on the server. 𝑇𝑖

𝑡 is the transfer time of 𝑖. 𝐼𝑖 is the 

indicator variable: 𝐼𝑖 = 0 if 𝑖 is executed locally, 𝐼𝑖 = 1 if 𝑖 is executed remotely. The optimizer 

must find the assignment for 𝐼𝑖 such that: 

 maximizes ∑ 𝐼𝑖 × (𝐸𝑖
𝑒 − 𝐸𝑖

𝑡)𝑖∈𝐼  
 guarantees ∑ (1 − 𝐼𝑖) × 𝑇𝑖

𝑙 + 𝐼𝑖 × 𝑇𝑖
𝑟 + 𝐼𝑖 × 𝑇𝑖

𝑡 ≤ 𝑙𝑖∈𝐼   

The first formula is total energy savings. The second constraint stipulates that the total 

execution time is within 𝑙. Developers can configure 𝑙 according to their specific requirements. 

As explained in Section 5.4, the Jade programming model requires that every remotable 

task 𝑖 to perform independent job, so no dependencies exist between remotable tasks. This 

requirement further simplifies the cost model. For each remotable task 𝑖, the optimizer must 

solve only the following inequation:   

𝐸𝑖
𝑒 −  𝐸𝑖

𝑡 > 0 
𝑇𝑖

𝑟 + 𝑇𝑖
𝑡 −  𝑇𝑖

𝑙 ≤ 𝑙 
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               𝐸𝑖
𝑒 − 𝐸𝑖

𝑡 is the energy saving if 𝑖 is executed remotely. 𝑖 should be considered for 

offloading only when 𝐸𝑖
𝑒 >  𝐸𝑖

𝑡. Similarly, the second inequation guarantees that time difference 

between remote execution and local execution is not greater than 𝑙. 

4.4.3 Jade Programming Model 

When designing applications that support code offloading, the application must be 

partitioned into sub-parts which can be offloaded to the server. Applications can be partitioned at 

various levels, such as class, method, process, and thread. An application is partitioned at the 

class level in Jade. Developers can produce an initial partition of their applications with minimal 

effort using the Jade programming model.  

To be considered for offloading, a class must implement the RemotableTask interface. In 

Jade, a class that implements the RemotableTask interface is called a remotable class. An 

instance (object) of remotable class is called a remotable object. A remotable object can be 

executed on the client (locally) or on the server (remotely). An application developed using the 

Jade programming model is called a Jade compatible application. At runtime, a Jade compatible 

application contains remotable objects that can run locally or remotely. 

To partition a program, developers need to follow some rules. Three properties of any 

legal partition are explained here:   

Property 1. Code that access special hardware of the local device can’t be offloaded. 

If remotable task uses special resources such as GPU or other hardware accelerator, the 

code must remain locally. This property guarantees that the partitioned program has a better 

compatibility with other devices. 

Property 2. Code that 1) creates user interface of the application; 2) handles user interaction 

(e.g., callback method for clicking a button) can’t be offloaded. 
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Code related to UI rendering needs to be responsive in order to provide a smooth user 

experience, this property guarantees that offloading doesn’t impact the UI rendering. 

Property 3. Code unsuitable for re-execution (e.g., code that performs online transactions). 

Property 4. Nested offloading is not allowed. 

This implies that nested suspends and nested resumes are not allowed. Once the code is 

suspended for offloading at some point, the code should not suspend again before resume, i.e., 

migration and re-integration should happen alternately. 

            Our goal in providing the RemotableTask interface is to eliminate the need for developers 

to guess whether or not a class is suitable for offloading in terms of energy consumption and 

performance. When a class does not contain the above code, it can implement the 

RemotableTask interface, and the Jade runtime engine automatically determines if the class is 

suitable for offloading. 

The RemotableTask interface is the key construct in the Jade programming model, it 

defines the following methods called by the Jade runtime engine in sequence: 

 sychronize, invoke MDSS to check if app data is available on the server, if not, 

synchronize the data. 

 execution, performs the main task. 

 postExecution, anything follows the main task should be done here, e.g., release some 

resources, synchronize data between devices. 

            By implementing the RemotableTask interface, the life of a remotable object is divided 

into three stages: before execution, execution, and after execution. This division naturally 

matches steps of a common computation: 1) preparation (e.g., load data, connect to network); 2) 
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execution, which performs main task; and 3) update, which finishes the execution (e.g., update 

database, notify user). 

The Jade optimizer considers all remotable objects of an application for offloading. If a 

remotable object is eligible for offloading, the Jade runtime engine handles the code offloading 

by following the workflow shown in Figure 4-6. 

Application development using Jade programming model is intuitive and simple, 

developers only need to follow two steps: 

1. Identify tasks in the application that can be offloaded (code does not violate previously 

mentioned rules).  

2. For each task, create a class that implements the RemotableTask interface. 

For example, an image editing app can detect the human faces appearing in a photo. The 

face detection code is suitable for offloading. Using the Jade programming model, we create a 

remotable class (FaceDetection). The pseudocode is: 

class FaceDetection implements RemotableTask{ 

      synchronize(){   

        // invoked MDSS to make sure data is available on the server 

     } 

     execution(){  

       // the face detection code goes here 

     } 

     postExecution(){ 

      // perform synchronization  

      // release any resources if needed 

     } 

} 

Figure 4-6 Code offloading workflow 
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The Jade programming model also provides a mechanism for a remotable object to notify 

local objects when the remotable object finishes execution (Figure 4-7). If a class needs to be 

notified, the class can implement the OnTaskReturnedListener interface. This interface defines 

the onTaskResult callback method called by the Jade runtime engine when a specified remotable 

object finishes execution. 

Figure 4-7 Jade programming model provides a mechanism for object B to notify object A 

when object B finishes execution. Object A must implement the OnTaskReturnedListener 

in order to receive the notification. 

 

 4.5 Evaluation 

In this section we evaluate Jade’s ability to reduce energy consumption for mobile 

devices. We implemented two applications that perform common tasks widely used by users. 

Image processing, such as image editing and object recognition, is used by many 

applications. Our first application was FaceDetection (FD) which asks users to select pictures 

from the device’s photo gallery. FD then detects human faces in those pictures and highlights 

them by putting a rectangle around each face. Code performing face detection was implemented 

in a remotable class in order to be offloaded to the cloud.  
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The second application is TextSearch (TS), which searches text files against a library of 

1000 key words. It counts how many times each key word appears in the text files. The search 

algorithm is implemented in a remotable class. At runtime, the text files can be searched locally 

or remotely. 

We used a Moto X smart phone as the client. Moto X is equipped with Qualcomm 

Snapdragon 1.7GHz Dual-Core CPU, quad-core GPU, and 2GB RAM. Jade is used under two 

different type of scenarios: 1) code is offloaded to remote server (e.g., cloud) and 2) code is 

offloaded to servers nearby (e.g., tablet, desktop and laptop). We choose different servers to 

represent there scenarios. For remote server, we created two optimized virtual machines on the 

Microsoft Azure cloud platform (Azure) with each virtual machine ran a Jade server. Each 

virtual machine has two cores and 7 GB ram. The client connected to Azure with 4G. For nearby 

server, we use a Samsung Galaxy Tab S 10.5”  tablet (Tab). The Tab has Exynos 5 Octa (1.9Ghz 

Quadcore + 1.3 Ghz Quadcore) processor, 3 GB ram and 7900 mAh battery. The Tab was fully 

charged for the experiments. The client connected to server with WiFi. 

We used Trepn profiler to measure the power consumption and performance of Moto X. 

Trepn profiler is a product of Qualcomm, it is a diagnostic tool that lets developers profile the 

performance and power consumption of Android applications running on devices featuring 

Qualcomm Snapdragon processors. 

 To evaluate how much energy Jade saves for applications, we FD and TS on the client 

with Jade enabled and disabled, and varying the size of app data. Image file is less than 200KB 

in FD and text file is 50KB for TS. 

Results showed that Jade effectively reduced power consumption for FD, average energy 

consumption was reduced by 30% (Figure 4-8). TS had similar results (Figure 4-10): Jade 
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reduced 40% of average power consumption. Power reduction was achieved because some 

computations were offloaded to servers when Jade was enabled, thereby, reducing the workload 

of the client. The result also indicates that WiFi interface is more energy efficient than 4G 

interface, which has been shown in the previous research.   

Jade also improved the performance of both applications when computation was 

offloaded to Tab: it reduced 10% and 15% of execution time for FD and TS respectively (Figure 

4-9 and 4-11). There are two reasons: 1) The server is more powerful than the client and 2) More 

remotable tasks were executed in parallel. We also noticed that when computation was offloaded 

to Azure, the execution time was longer than local execution. The performance of Jade working 

with Azure was worse than working with Tab, there are several reasons: 1) Network delay is 

much higher for 4G than WiFi direct, so the data transfer to Azure time is longer; 2) Our 

implementation of Jade server for Android device is more efficient than Jade server for non-

Android device. In the case of offloading computation to Azure, the execution time penalty was 

less than 4%, which is still acceptable for our applications. 

Figure 4-8 Energy consumption of FD 

 

Figure 4-9 Execution time of FD 
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Figure 4-10 Energy consumption of TS 

 

Figure 4-11 Execution time of TS 
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The results demonstrated that Jade can effectively reduce energy consumption of mobile 

device and improve application performance. 

4.6 Related Work 

Jade was built upon previous research regarding program partitioning, code offloading, 

and remote execution. In this section, we provide an overview of proposals by these researches 

and how they relate to Jade. 

In order to measure whether computation offloading would save energy or not, Kumar et 

al formulated an equation of several parameters [62]. The parameters include: network 

bandwidth, cloud processing speed, device processing speed, the number of transferred bytes, 

and the energy consumption of a smartphone when it’s in idle, processing and communicating 

states. However, the authors only discussed these various parameters and did not experiment 

their work on a real offloading system for real mobile applications. 

Some previous work investigated the use of automatic program [58-61]. Cuervo et al. 

proposed MAUI [39], a system that enables energy-aware offloading of mobile code to the 

infrastructure. MAUI enables developers to produce an initial partitioning of their applications 

by annotating methods and/or classes as remotable. At runtime, the MAUI solver decides which 

remotable methods should execute locally and which should execute remotely. Unlike MAUI, 

Jade provides a sophisticated programming model with a full set of APIs, so developers have 

total control on: how application is partitioned, where code is offloaded and how remotable code 

interacts with local code.  

Chun et al. proposed CloneCloud [40], an application partitioner and execution runtime 

that enables unmodified mobile applications running in an application-level virtual machine to 

seamlessly offload part of their execution from mobile devices onto device clones operating in a 
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computational cloud. Compared with CloneCloud, code offloading in Jade is lightweight. 

Remotable objects are serialized, transferred, and deserialized, resulting in much lower overhead 

compared to thread migration. 

4.7 Future Work 

In our future work, we will focus on enhancing the capability of mobile devices with the 

help of cloud. Although mobile technology advances very fast, mobile devices are still not 

capable of handling complex computations. With computation offloading to cloud, mobile 

devices might be able to run complex applications. We will also study how cloud changes the 

design of mobile applications. 

4.8 Conclusion 

In this paper, we presented Jade, a system that enables computation offloading from 

mobile devices to the cloud. Jade can effectively reduce energy consumption of mobile devices, 

and dynamically change its offloading strategy according to device status. 

We evaluated Jade with two applications: a face detection application and text search 

application. Results showed that Jade can effectively reduce energy consumption for both 

applications while improving their performance.  
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Chapter 5 - Conclusion 

In this dissertation, I have presented a complete system – Jade, for reducing energy 

consumption of mobile devices. This work is significantly based upon the idea of computation 

offloading. 

 In chapter 1, we discussed one of the biggest challenges for mobile device – battery life. 

With the fast advancement of hardware technology, mobile devices are becoming more and more 

energy hungry. In contrast, there is no big breakthrough in battery technology. Balancing 

performance and battery life is a big challenge for mobile industry. One of the solutions to 

reduce energy consumption is computation offloading. We gave a review of computation 

offloading - its history, its goal and its applications. Researchers have been studying computation 

offloading, focusing on different areas, e.g., making offloading decisions, developing offloading 

infrastructures. Computation offloading can achieve two goals: shorten execution time and 

reduce energy consumption. In order to achieve these goals, the program needs to be partitioned 

into remotable parts which can be offloaded to remote server. Two different partition methods: 

static partitioning and dynamic partitioning are discussed. Mathematical models to guarantee the 

performance of computation offloading is also discussed. From these models we can see that not 

every type of code is suitable for computation offloading. 

 In chapter 2, we present a computation offloading system which can offload energy-

intensive code from mobile device to servers. In order to optimize the energy savings, the system 

can automatically choose Wi-Fi and Bluetooth for data transfer based on the characteristics of 

applications. We show the architecture of the system and its implementation details. We 

evaluated the system with two applications. 
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In chapter 3, we present Jade which supports more devices, i.e., Android device, non-

Android device and cloud platform. With the extensive support for devices, Jade becomes more 

useful for users under different scenarios: in the office, at home or traveling. We also 

implemented a new component in order to optimize the performance of servers (e.g., workload, 

battery level). We discussed a multi-level task scheduling algorithm which works on both the 

client and the server. The goal of the algorithm is to enhance the performance of application and 

balance the workload between servers. The experiments showed that such task scheduling 

strategy is important in a computation offloading system. 

In chapter 4, we introduced an innovative improvement for Jade: separating the code and 

data. We analyzed the impact of data transfer on battery life, which shows that the size of data 

transferred over the network is the dominant factor affecting the performance of a computation 

offloading system. As the network interface of mobile device such as Wi-Fi is energy intensive, 

we need to reduce the amount of data transferred when computation offloading occurs. We 

noticed that most mobile devices need to be charged frequently in certain pattern (e.g., 

smartphone users often charge their devices at sleep time), during the charging period, data can 

be synchronized between client and server in advance before computation offloading happens. 

We showed the implementation of a component (MDSS) which performs such task. Evaluation 

showed that with MDSS, Jade only needs to offload app code to the server, thereby, further 

reducing the energy consumption for mobile devices. 
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Chapter 6 - Future Work 

In our future work, we will study problems that are not addressed in our current system. 

In this paper we assume that the environment in which we run Jade is trusted. We need to 

investigate which security measures are needed to secure the communication between the 

smartphone and the remote cloud resources. We also have to pay attention to the security 

implications of running foreign code on the remote servers, and validating whether the returned 

code is from the trusted source. 

We will extend the programming model to support callbacks from the remote servers to 

the client and method parameters to be used as return values, like the AIDL specification 

supports. 

We also want to add context information of the server to the system, such as processor 

speed, available battery, etc., which could lead to more sophisticated task scheduling algorithms 

and interesting scenarios. For example, if the client and server can switch roles depending on the 

battery level, then all connected devices will reach same battery level at some point and consume 

the battery with same pace. There must be some interesting applications which require system 

like this.   

Nowadays, with the introduction and mass production of wearable devices like smart 

watch, extending Jade to support wearable devices is an interesting direction. Most wearable 

devices are small in size, making it difficult to put large battery into such devices. Thereby, 

battery life is even more sensitive and crucial for wearable devices. For example, most smart 

watches need to be charged everyday which is not convenient for users. We need to investigate 

the effectiveness of computation offloading on wearable devices. Since applications running on 

wearable devices like smart watch are different than these running on smartphones and tablets, 

we also need to investigate how to adopt these differences in Jade API without compromising its 

easy-to-use nature. 
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