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Abstract

Cadmium Zinc Telluride (CdZnTe) has been used for many applications, such as medi-

cal imaging and astrophysics, since its first demonstration as a room temperature operating

gamma-ray detector in 1992. The wide band gap, high effective Z-number and high resis-

tivity of CdZnTe make it a good candidate for use as a room temperature operated detector

with good absorption efficiency, while maintaining a low bulk leakage current at high elec-

tric fields. Nevertheless, the low mobility lifetime products µτ of holes in CdZnTe makes

detectors position sensitive, unless advanced detector designs are employed. Among those

designs is the Frisch collar technology which turns the detector into a single carrier device

by negating the degrading effects of hole trapping and low mobility. The superiority of the

Frisch collar technology over other methods include its inexpensive associated electronics

and straight forward fabrication process.

The main objective of this research study is to develop a large volume gamma-ray de-

tector with an array of individual CdZnTe Frisch collar gamma-ray spectrometers while still

using a single readout. Several goals were to be accomplished prior to the main objective.

One goal is to develop a reliable low cost method to fabricate bulk CdZnTe crystals into

Frisch collar detectors. Another goal was to investigate the limitations of crystal geome-

try and the crystal electrical properties to obtain the best spectroscopic performance from

CdZnTe Frisch collar detectors. Still another goal was to study all other external parame-

ters such as the collar length, anode to cathode ratio, the insulator thickness and applied

voltage on performance of CdZnTe Frisch collar detectors. The final goal was to construct

the CdZnTe Frisch collar devices into an array and to show its feasibility of being used for

large volume detector.
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Chapter 1

INTRODUCTION

1.1 Gamma-Ray Detection

While experimenting with Lenard and Crookes tubes, Wilhelm Conrad Röntgen, a German

physicist, produced and detected X-rays for the first time in 1896. He was rewarded for his

discovery with the first ever Nobel Prize in physics in 1901. While studying radiation emit-

ted from radium, Paul Villard discovered γ-ray (gamma-ray) in 1900. In 1903 Rutherford

named this radiation discovered by Villard’s as gamma-rays. Röntgen [1] observed small

ionization while measuring the electric conductivity of quartz and mica in 1913 and later the

influence of radiation on the electric conductivity of certain crystals. Later, Jaffé [2] (1932)

systematically investigated the observation of radiation in solids, and further summarized

and documented the work done by previous scientists including Röntgen and Joffé. In par-

ticular, Jaffé [2], in a series of experiments with thin sheets of mica and quartz, observed

that the current passing through crystal biased with a high electric field is noticeably altered

by α-rays.

Despite early discoveries, no significant achievement in developing solid state radiation

detectors occurred until 1945, when Van Heerden introduced AgCl in his PhD dissertation:

The Crystal Counter. Heerden detected α particles emitted by 210Po with the first semicon-

ductor detector, AgCl, while the detector was cooled at low temperatures. Subsequently,

the first room temperature operated γ-ray detector was successfully tested by Harding in
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1960 using GaAs crystals as detecting medium [3]. Later in 1967, Akutagawa showed the

first CdTe room temperature gamma-ray detector [4].

1.2 CdZnTe Detectors

Cadmium zinc telluride (CdZnTe) as a room-temperature operated gamma-ray detector was

first introduced in 1992 [5]. Since then, CdZnTe has shown great promise for many applica-

tions such as medical imaging, industrial tomography, and astrophysics. Room temperature

detectors are widely used for gamma-ray spectroscopy in nondestructive analysis of nuclear

materials, portable applications and field surveys [6–8]. Due to Cd1−xZnxTe’s relatively

wide band gap (about 1.55 eV, depending on Zn concentration x), it is a good candidate

for a room temperature operated detectors. This characteristic makes the CdZnTe devices

so demandable which facilitate the detector to operate well without complicated cryocool-

ing systems to cool the detectors to liquid nitrogen temperature. Also, the material’s high

resistivity (about 1.0×1011 Ω cm) provides a low bulk leakage current while operating in

high electric field (or bias), which subsequently decreases the effect of noise. Additionally,

the high atomic number Z of Cd (ZCd=48) and Te (ZTe=52), makes the fabricated CdZnTe

detector a remarkable gamma-ray absorption medium. The high Z (average) and high re-

sistivity, along with the wide band gap, of CdZnTe material make it a good candidate for

gamma-ray spectroscopy. The material, however, suffers from low mobility-lifetime products

µτ of charge carriers, especially for holes. Thus, the energy resolution of planar CdZnTe

devices is degraded by poor charge-carrier transport properties (CdZnTe hole mobility µ

and lifetime τ , are generally poor).

Researchers have presented various methods to improve the energy resolution of CdZnTe

devices. These methods are the small pixel effect [9], co-planar grids [10], geometric weight-

ing, and the Frisch collar effect [11–13], all of which generally concentrate on negating the

degrading effects of hole trapping and low mobility. All approaches are based on minimiz-

ing the effect of poor mobility-lifetime product µτ of the holes by modifying the device
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design and electrode configuration (rather than making external corrections), and turning

the detector into a single carrier device.

However, the Frisch collar technique is superior to the others, due to its robustness, low

cost and simplicity. Frisch collar spectrometers [11, 12, 14–25] are one of the most promising

types of single carrier devices that are easy to fabricate and require simple, commercially

available readout electronics. Other types of single carrier devices, such as pixelated devices,

are either hard to fabricate and/or require expensive, complicated readout electronics.

For some specific applications such as medical imaging where a large detecting area is

desired, pixelated devices are the most commonly used method. However, there are several

issues with large detectors using pixelated devices or similar single carrier devices. First, ac-

quiring a large-volume CdZnTe single crystal is costly. The second issue with such a CdZnTe

crystal is the availability of the material; in most cases, the crystal is difficult and sometimes

impossible to acquire. Furthermore, it may require very expensive and complicated readout

electronics. Fabricating and handling a large-volume pixelated CdZnTe device is also time

consuming and requires complicated equipment. Finally, there are some technical issues and

limitations with pixelated devices, such as charge-sharing and cross-talking (since the pixels

share the active region of the device). To overcome the complexities of pixelated devices for

a large detecting area, an array of bar shaped CdZnTe Frisch collar detectors are proposed.

However, such an array of CdZnTe Frisch collar detectors (collimated/non-collimated) is

still under development and is not commercially available.

1.3 Research Objectives

In the proposed method (Fig. 1.1 and Fig. 1.2), each pixel is basically dedicated to one

previously fabricated Frisch collar detector. Such a design resolves several issues of other

types of single carrier devices. First, acquiring smaller volume CdZnTe single crystals for

several Frisch collar detectors is less costly than obtaining the same amount of total detecting

volume with one large-volume single crystal. This fact reduces the capital cost of the
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project significantly. Also, the fabricating process of CdZnTe Frisch collar detectors is

simple and does not necessarily require time-consuming photolithography processing and

other expensive clean-room costs. Finally, there is no charge-sharing effect between the

pixels, because each pixel has its own individual active volume. For an array of collimated

Frisch collar detectors, the effect of cross-talking (through Compton scatter gamma-rays

from one pixel volume to another) can be minimized by using a high atomic number material,

such as tungsten, for the collimators. This reduction in cross-talking is due to absorption of

scattered gamma-ray in the collimator materials. However, the complexity of the readout

electronics for such an array still remains.

Figure 1.1: Array of collimated Frisch collar detectors.

The main objectives of this work are summarized as follows.

- Develop a reliable, low-cost fabrication method for CdZnTe Frisch collar detectors.

- Characterize CdZnTe Frisch collar devices for different geometries and configurations.

- Investigate the robustness of the Frisch collar effects on CdZnTe devices.
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Figure 1.2: Array of non-collimated Frisch collar detectors.

- Optimize the CdZnTe Frisch collar devices’ performance.

- Construct the CdZnTe Frisch collar devices into an array.

The results of this study are presented in six chapters. Chapter one introduces the ex-

isting problem and the primary objectives of the study. Chapter two reviews the literature

on principles of Frisch collar devices and introduces the present research. Chapter three de-

scribes the theoretical considerations and the procedures to model the device. Chapter four

describes the experimental setups and instrumentation, equipment and facilities, and the

measurement procedures. Chapter five details the results of the experiments and compares

them with theoretical simulations and previous research. Chapter six summarizes the study

results and makes recommendations for future research.
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Chapter 2

BACKGROUND OF CdZnTe
FRISCH COLLAR DEVICES AND
THE PRESENT RESEARCH

This chapter briefly reviews previous work on Frisch collar detectors and describes the basics

of the Frisch collar device. The first part gives a brief history of the Frisch collar (or Frisch

grid or Frisch ring) detector and the basic concept based on major previous research. The

second part of this chapter describes the present work and the studies conducted on Frisch

collar devices.

2.1 Previous Work on Frisch Collar Devices

As previously mentioned, the Frisch collar spectrometer is one of the most promising designs

of single carrier devices. Indeed, the CdZnTe Frisch collar detector has been widely used in

radiation detection by many other research groups [11, 12, 14–25] since its inception [11, 12].

The idea behind the Frisch collar effect in semiconductors comes from the Frisch grid effect

in ion chambers [26]. Specifically, the dependence of the signal (pulse height) on the position

of interaction in an electron sensitive ion chamber can be eliminated by dividing the chamber

volume, using a Frisch grid. The grid can be designed and built in such a way that most

of the radiation interactions occur in the volume between the grid and the cathode of the

chamber. Such a design requires the grid to be virtually transparent to the electrons, while
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the grid is maintained at an intermediate potential between the anode and the cathode, to

keep the electric field uniform. The grid also needs to be closer to the anode, while the

anode is set as the readout electrode. In this design, the signals (pulse height) are produced

primarily from the motion of the electrons over the small distance between the grid and the

anode. The Frisch grid effect in ion chambers provided the base for the invention of Frisch

collar design in semiconductor detectors.

Reported research on the performance of Frisch collar devices focuses on initial design,

the effect of bulk, surface leakage current and charge collection efficiency. The first design

of the Frisch grid effect in semiconductor devices was reported in the literature [11, 12] as

contacting grid devices (Fig. 2.1b and Fig. 2.1c). Semiconductor Frisch collar (ring/grid)

devices using contacting grids applied directly to a semiconductor surface, as illustrated in

Fig. 2.1b and Fig. 2.1c, have voltage limitations imposed by leakage currents flowing between

the grid and the collecting anodes [11–19, 21]. The non-contacting grid proposed by [19,

20, 22, 23] has a thin high resistive insulator between the conductive collar (ring/grid) and

the CdZnTe detector (Fig. 2.1d). Subsequently, non-contacting grids [20, 22–25] have less

limitation on applied voltage. One of the unique characteristics about the non-contacting

grid device, the so-called Frisch collar device, is that the device’s total leakage current does

not increase as the Frisch collar is applied to a planar device. This important feature allows

a variety of configurations for conductive collars.

Next, the effect of bulk and surface leakage current on the performance of CdZnTe (Frisch

collar) devices was studied by [24, 27], and results showed that the bulk and surface leakage

current are the main limiting factors on performance of CdZnTe devices. Fluctuations in

the charge losses due to electron trapping, as the electron cloud drifts toward the anode,

was mentioned as the additional factor degrading the performance of the long-drift CdZnTe

(Frisch collar) device. In another study by the same research group [28], several effects

was proposed to have impact on the performance of Frisch-collar devices. Among those

are the aspect ratio of the device, the thickness of the insulating layer, and the portion of
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Figure 2.1: The different designs of Frisch collar (ring/grid) as reported in the literature.
The anode is the top metal contact for all the detectors shown in this figure. (a) A planar
device with deposited metal contacts on both ends as the electrodes. (b) The Frisch grid
strip as in [12]. The grid is grounded or maintained at an intermediate potential between
the anode and the cathodes. No insulator is used between the grid and the detector. (c) The
extended cathode (non-insulated Frisch collar) in which no insulator is used between the
conductive collar and the detector. (d) The insulated non-contacting Frisch collar with a
deposited insulator between the conductive collar and the detector surfaces [20, 23].
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the device covered by the conductive collar (length of collar) (see Fig. 2.1c, d). In another

study [23], the effect of the conductive collar length on device spectroscopic performance

was systematically investigated; however, the results were only for a specific device size (3.0

× 3.0 mm2 ×L = 6.0 mm) and can not be generalized for other geometries.

The effects of the dielectric layer thickness, the conductive collar length, and the ring

position (see Fig. 2.1) on spectroscopic performance of a 4.0 × 4.0 mm2 ×L = 6.0 mm

CdZnTe detector were investigated by [20]. However, in that study [20] a lack of enough

experimental data led to no clear conclusion, and further experimental results with higher

energy gamma-rays was proposed as future work.

The charge collection efficiency (CCE) of Frisch collar devices was first reported by [16,

18] for a trapezoidal-shaped Frisch grid CdZnTe gamma-ray detector. In a systematic series

of experiments, the detector was probed with a collimated 59.5 keV gamma-ray source of

241Am along the bottom and sides. Because 97% of the 59.5 keV gamma-rays are absorbed

within the 1.0 mm of the CdZnTe detector surface, most of the charge carriers were excited

within 1.0 mm of the detector surface. The results proved that charge-carriers were col-

lected from all locations along the surface. A similar study was conducted by [29] and the

charge collection efficiency profile along the length of a bar-shaped Frisch collar device was

determined, using highly collimated gamma-rays of 412 keV. In that study, unlike in a pla-

nar configuration, the charge collection efficiency profile along the length of a Frisch collar

device is considerably improved. The study was performed for a 3.4 × 3.4 mm2 ×L = 5.5

mm CdZnTe Frisch collar device with a variety of conductive collar lengths. The study also

showed that a 3.4 × 3.4 mm2 ×L = 5.5 mm device with full-length Frisch collar (Lf = L)

has the best charge collection efficiency profile compare to the devices with Frisch collar

length Lf , less than the total device length L. The study clearly confirms the robustness of

Frisch collar technology. However, further investigation for different device geometries and

aspect ratios, as well as testing for higher gamma-ray energies was merited. In the following,

a systematic intensive study on CdZnTe Frisch collar device is presented with the focus on
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the issues that was not addressed previousely. These issues can be summarized as, device

optimization for the best aspect ratio, insulator layer thickness, Frisch collar length and the

ratio of anode area to cathode area. Further investigation is peformed on the device post

fabrication surface treatment and the directional sensitivity of collimated device.

2.2 The Present Work on Frisch Collar Devices

Researchers whose previous work is summarized in Section 2.1 studied CdZnTe Frisch collar

detectors and determined some characterizations of Frisch collar devices. However, further

characterizations are required to investigate and predict the CdZnTe Frisch collar detector’s

response in a variety of conditions. In this research work, intensive studies have been con-

ducted to characterize and optimize CdZnTe Frisch collar detectors in variety of conditions

and for different geometries. Further, this research assesses the feasibility of CdZnTe Frisch

collar devices in an array of detectors. The theoretical consideration and the numerical

models for all devices for all studies are discussed in Chapter 3, while the experimental

setup and procedures are shown in Chapter 4, and the results are presented in Chapter 5.

Some major issues that have not been previously investigated on Frisch collar devices

are covered in this dissertation. Among those are the impacts of crystal geometry or aspect

ratio (length over width) on performance of Frisch collar devices. This research shows a

minimum aspect ratio at which the Frisch collar effect starts showing its performance. The

research also shows a range of geometries for which the Frisch collar enhances the device

spectroscopic performance significantly.

Further device characterization investigates the impact of dielectric layer thickness on

performance of Frisch collar detectors, revealing an optimum dielectric layer thickness for

Frisch collar devices, at which the device shows its best spectroscopic performance. This

research also shows that the optimum thickness strongly depends on the crystal geometry

and aspect ratio. The experiments are carried out for several CdZnTe Frisch collar devices.

The optimum dielectric layer thickness was experimentally determined for each device and

10



the results were verified through three-dimensional geometry modeling of the potential and

electric field.

The surface passivation and final surface treatment on the lateral sides of CdZnTe/CdTe

gamma-ray detectors have been studied by many research groups. However, none of the

studies addressed the impact of final surface treatment on CdZnTe Frisch collar devices.

Existing research lacks information on how surface treatment affects the device spectroscopic

performance while a higher energy gamma-ray source (like 137Cs) is used. Therefore, this

research covers systematic studies on spectroscopic performance and current voltage (IV) for

characteristic behavior of Frisch collar devices as a result of surface treatments. In particular,

a variety of final surface treatments and oxidizing agents were applied to different CdZnTe

detectors, and the effects on the IV characteristic behavior and spectral performance of

Frisch collar devices at 662 keV are reported.

More device characterization was performed by probing the non-contacting Frisch collar

with a highly collimated 662 keV gamma-ray source of 137Cs. The spectroscopic response

was investigated by probing a 4.7 × 4.7 × 9.5 mm3 CdZnTe Frisch collar device along

the lateral side using a 137Cs source and a 0.6 mm Pb-collimator. Then the results were

confirmed by simulating the charge collection efficiencies of the device under the operated

condition.

To investigate the possibility of using the Frisch collar devices in imaging applications,

the spatial resolution of a 3.4 × 3.4 mm2 ×L = 5.8 mm collimated CdZnTe Frisch collar

detector was investigated for two different tungsten collimators (8 cm and 4 cm) using

a 198Au gamma-ray source. A two-dimensional model for the detector-collimator-source

geometry was developed and applied. Results showed that the angular resolution of a

collimated CdZnTe Frisch collar gamma-ray spectrometer depends strongly on the collimator

length. The dependency of angular response on collimator length along with simplicity of

detector geometry makes the bar-shaped Frisch detectors an excellent candidate for large

area imaging applications.
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Finally, an array of 16-channel CdZnTe Frisch collar detectors was successfully con-

structed and tested using readout electronics developed at the Brookhaven National labo-

ratory (BNL). The readout electronics are designed to support 32 CdZnTe detectors being

operated simultaneously. These readout electronics were built to be a substitute for the

preamplifier, amplifier, and high voltage supply in commercial Nuclear Instrument Modules

(NIM) bins while supporting 32 detectors simultaneously.
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Chapter 3

THEORETICAL
CONSIDERATIONS

3.1 Induced Charge and Induced Current

This section covers Green’s reciprocation theorem, the definition of weighting potential, the

definition of weighting field, Shockley-Ramo theorem, and induced charge. The application

of Shockley-Ramo theorem to a gamma-ray detector while using the weighting potential/field

distribution within the device, facilitate to evaluate the charge collection efficiency (CCE)

distribution for a gamma-ray detector. Based on this CCE distribution, the device respond

to gamma-ray can be predicted and subsequently, the device can be designed for its optimum

configuration to obtain the best spectral performance.

3.1.1 Green’s reciprocation theorem and induced charge

Green’s Reciprocation Theorem states that if a series of charges Q1, Q2, Q3,..., Qn on a

system of conductors produces potentials of V1, V2, V3,..., Vn on each of the conductors

respectively (initial condition) and likewise another series of charges Q′1, Q
′
2, Q

′
3,..., Q

′
n

on the same system of conductors gives potentials of V ′1 , V ′2 , V ′3 ,..., V ′n respectively (final

condition) [30], then
n∑
i=1

QiV
′
i =

n∑
i=1

Q′iVi . (3.1)
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Assume that four points in space are labeled as points 1 through 4, with points 1 through 3

stationed on three conductors and the potential at point 1 is held constant at V1 through

an external bias supply (Fig. 3.1). A finite number of dielectric layers with specific values

of permittivity κ exist between the conductors (two dielectric layers are shown in Fig. 3.1

with different permittivities κ1 and κ2). Point 4 is an arbitrary point where the numerical

value of potential is known. Application of Equation 3.1 for the system shown in Fig. 3.1

yields

Q1V
′
1 = Q′1V1 +Q′4V4 . (3.2)

Because V1 = V ′1 , then,

Q1 −Q′1 = Q′4

(
V4

V1

)
. (3.3)

The term (Q1 − Q′1) is called the change in induced charge ∆Q1, which can be sensed

V3=0 V1
Q1

Q3

V’3=0 V’1=V1

I

4

Q’3

Q’2

V2=0

V’2=0

Q’1

Q2

V4
Q4=0

қ1
қ2

қ1
қ2

Q΄4

V΄4

Figure 3.1: Green’s Reciprocation Theorem [30] for three electrodes resembling a two-
terminal Frisch collar device. Two of the electrodes are held at zero potential, while the
collecting electrode senses the generation and motion of the charge generated at point 4.
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on conductor 1 by a charge sensitive preamplifier. Notably, this amount of charge ∆Q1 is

first induced as a result of generation of charge Q′4 at point 4 (such as that produced by a

radiation interaction). As Q′4 moves in space, it induces current I on conductor 1, which is

the derivative of induced charge with respect to time.

3.1.2 The definition of potential, weighting potential, electric field,
weighting field and Shockley-Ramo theorem

3.1.2.1 Potential and electric field

The electric field E(r) is defined as the force F(r) per unit charge at a given point r, which

is a vector function of position [31]. The force F(r) on a point charge q at r in space due to

the existing electric field E(r) at r can be written in the following form,

F(r) = qE(r) . (3.4)

Now, based on Coulomb’s law, if F(r) is the force on a point charge q at r due to another

point charge Q at R, then,

F(r) =
qQ

4πε0

r−R

| r−R |3
, (3.5)

whereQ and q are charges and can have positive or negative values. ε0 = 8.85419× 10−12 F m−1

is the permittivity of free space (vacuum). From Equations 3.5 and 3.4, the electric field at

r due to a point charge Q at R can be defined by the following equation,

E(r) =
Q

4πε0

r−R

| r−R |3
. (3.6)

The differential form of Gauss’s law of electrostatics in vacuum can be written as [31],

∇ · E(r) = ρ(r)/ε0 , (3.7)

where E(r) can be defined in terms of the scalar potential V (r) as,

E(r) = −∇V (r) . (3.8)

In the presence of a dielectric, Gauss’s law can be written as,

∇ ·D(r) = ρ(r) , (3.9)
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where D(r) is the electric displacement [31], and for an isotropic dielectric medium with

permittivity of κ(r), it is defined as,

D(r) = κ(r) ε0 E(r) . (3.10)

By combining equations 3.8 through 3.12, Poisson’s equation can be derived as

∇ · [κ(r) ε0 ∇V (r)] = −ρ(r) . (3.11)

In the case of a medium with a uniform dielectric constant (κ does not change with posi-

tion r), Equation 3.9 is reduced to,

∇2V (r) = −ρ(r)/(κε0) . (3.12)

For media with various different dielectric materials (Fig. 3.1), Equation 3.11 must be solved

for each region with appropriate boundary conditions at the interface between the different

materials. The results for different media with uniform dielectric constants indicate that

the normal component of D(r) and the tangential component of E(r) should satisfy the

boundary conditions derived from the full set of Maxwell equations [31], namely

[D2(r)−D1(r)] · n21 = σ , (3.13)

[E2(r)− E1(r)]× n21 = 0 , (3.14)

where n21 is the unit normal vector to the interface surface directing from medium 1 to

medium 2, and σ is the macroscopic charge density at the interface surface.

3.1.2.2 Weighting potential and weighting field

If a system of conductors (electrodes) 1, 2, 3,..., n in space at r1, r2, r3,..., rn is held at

potentials V1, V2, V3,..., Vn with the space charges ρ(r) distribution among them, then the

potential distribution V (r) in the medium with permittivity distribution of κ(r) can be

evaluated by solving Poisson’s equation (see Equation 3.11), with appropriate boundary

conditions (each electrode is set to its corresponding potential).
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Unlike the actual potential, the weighting potential profile (distribution) depends on the

conductor (electrode) of interest that is sensing the moving charge. For instance, in Fig. 3.1,

it is electrode 1 that is of interest, and therefore, the weighting potential distribution would

be calculated with respect to electrode 1. For the system of conductors in Fig. 3.1, as

charge Q′4 is generated and moved, the change in induced charge on electrode 1 can be

expressed through Equation 3.3 by (Q1 −Q′1) or ∆Q1. The change in induced charge ∆Q1

can be sensed on conductor 1 by a charge sensitive preamplifier. The normalized potential

(V4/V1) is called weighting potential ψ [32, 33], which is dimensionless and is normalized

such that 0 ≤ ψ ≤ 1. Notably, V4 is the potential at point 4 with initial condition (Q4 = 0).

Therefore, to evaluate the weighting potential at point 4, an arbitrary point, one solves

Poisson’s equation (see Equation 3.11), with no space charge, the appropriate boundary

conditions, V (r2) = V (r3) = 0 and V (r1) = V1, and the appropriate permittivities of the

materials. Poisson’s equation reduces to Laplace’s equation in the absence of space charge,

∇ · [κ(r) ε0 ∇ψ(r)] = 0 , (3.15)

with the boundary condition of ψ = 1 at the collecting electrode and ψ = 0 for all other

electrodes. The boundary conditions for the problem with regions of different dielectric

constants (κ1 and κ2) are discussed in Section 3.1.2.1.

Similar to the definition of electric field E(r), the weighting field Ew(r) (normalized

electric field [32, 33]) can be found by applying Equation 3.8 to the weighting potential ψ(r),

Ew(r) = −∇ψ(r) . (3.16)

The vector Ew(r) has the norm (length) of Ew(r) with the unit of cm−1. The commercial

package, Integrated Engineering Software LORENTZ, was employed for three-dimensional

geometry potential modeling [34] for all the studies in the work described.

3.1.2.3 Shockley-Ramo theorem

The procedure explained in Section 3.1.1 about the induced charge is based on the hypothesis

proposed first by Shockley [35]. Later and in a separate work, Ramo [36] proposed the same
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idea with a slightly different approach; however, the results were almost identical. Ramo’s

method [36] of calculating the induced current on a conductor due to an electron’s motion

is as follows. Assume a series of conductors, among which a single electron is moving with

a known path and velocity ve. Then, the instantaneously induced current I on a desired

electrode can be evaluated by:

I = eveEw , (3.17)

where e is the charge of the electron, and Ew is the component of normalized electric field in

the direction of velocity as the electron moves along its path. The normalized electric field

Ew, also referred to as the weighting field [32, 33], can be evaluated in the same way as the

electric field with the following conditions, (1) the electron is removed (assuming no space

charge), and (2) the desired conductor is raised to unit potential, and (3) all other conductors

are grounded. The Shockley-Ramo theorem [35, 36] has become the most popular method

for evaluating the induced current in radiation detectors. The Shockley-Ramo theorem

application to semiconductor devices is described by [37–41].

3.1.3 Charge collection efficiency

The charge collection efficiency CCE(r) at a given point r within a gamma-ray detector is

defined as the normalized change in induced charge resultant from the gamma-ray interaction

at that point. For instance, if Q0 is generated by a single photon interaction at point r within

the device, and Qtot(r) is the total induced charge sensed by the collecting electrode after

the remaining charges are collected including the trapping effect, then the charge collection

efficiency CCE(r) at point r is defined by:

CCE(r) =
Qtot(r)

Q0

. (3.18)

In most compound semiconductors, there is significant charge carrier trapping, which de-

grades the device performance due to incomplete charge collection. Therefore, the CCE(r)

is almost always smaller than unity. For planar devices (Fig. 2.1a), the Hecht equation can
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be used [41–44],

CCE(x) =
E(x)

L

[
µeτe

(
1− exp

[
x− L

E(x) µeτe

])
+ µhτh

(
1− exp

[
−x

E(x) µhτh

])]
, (3.19)

where L is the distance between the electrodes (detector length), x is the interaction location

in the detector measured from the cathode, E(x) is the magnitude of the electric field at

point x and µe,hτe,h is the mobility-lifetime product of the electrons and holes. The charge

collection efficiency plots for a planar detector based on the Hecht equation are well presented

in [41]. Obviously, the CCE(x) at a given point x within the planar detector is significantly

affected by the charge carrier transport property µτ , applied bias (or electric field E(x)),

and detector geometry (primarily the detector thickness L), as can be seen from the Hecht

equation.

3.1.3.1 Charge collection efficiency for a two-terminal CdZnTe Frisch collar
device

This section discusses the methods and assumptions used to develop the charge collection

efficiency for a two-terminal CdZnTe Frisch collar device. Note that a two-terminal Frisch

collar device referred to in this work is shown in Fig. 2.1b, c and d, with the conductive

ring and the cathode grounded (zero voltage potential) for all cases. The electric/weighting

field within the Frisch collar device is not uniform. Hence, to predict the device behavior

through the charge collection efficiency, one needs first to solve Poisson’s and/or Laplace’s

equations (see Equations 3.11 and 3.15) to determine the magnitude and distribution of the

electric/weighting field. Afterwards, Shockley-Ramo theorem is applied to determine and

plot the charge collection efficiency profiles.

The following assumptions are used to evaluate the electric/weighting field and the in-

fluence of the cloud of electrons/holes pairs generated from a radiation interaction. The

perturbation of electric field due to the stationary space charges is considered negligible

compared to the electric field from an externally applied voltage; hence, stationary space

charges are neglected. Hence, Poisson’s equation (see Equation 3.11) reduces to Laplace’s
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equation (see Equation 3.15) to determine the electric field distribution. Also, for a two-

terminal device (with both the cathode and conductive collar grounded), the electric field

has the same shape as the weighting field, differing only in magnitude and units. For such

a two-terminal device, one can conclude,

E(r) = V (r) Ew(r) , (3.20)

where, V (r) is the applied voltage in V (volt), E(r) is the electric field in V cm−1, and Ew(r)

is the weighting field in cm−1 (all parameters at point r).

The second assumption is to combine the effect of recombination and long term trapping

of the charge carriers, while neglecting the effect of de-trapping. Hence, the charge carrier

life-time (or mean free drift time or mean transient time) τ is used to consider the average

time interval in which the current is induced on the desired electrode before the charge

carrier is lost. Therefore, if Q0 charges exist at time t = 0, the amount of charge Q(t) at

time t = ∆t is,

Q(t) = Q0 exp

[
−∆t

τ

]
. (3.21)

It is also assumed that the diffusion of the charge cloud is negligible compared to the drift

caused by the external applied bias. This assumption is valid for detectors with a large

area for the collecting electrode, such as Frisch collar detectors with a minimum of 9 mm2

electrode area (a detector with 9 mm2 collecting electrode area is the smallest detector used

in this study). However, the negligible diffusion assumption may cause significant error for

long drift detectors with a small collection area (such as those in pixelated devices) [9].

With the above assumptions, and application of the Shockley-Ramo theorem [45–47] to

charge Q0 in Fig. 3.2, the induced current on the collecting electrode can be written as,

I =
dQ

dt
= Q0 [v(r) ·∇ψ(r)] , (3.22)

where v(r) is the velocity of the charge carrier Q0 at point r, I is the induced current on

collecting electrode, and dQ is the change in induced charge (sensed by collecting electrode).
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Figure 3.2: Shockley-Ramo theorem applied to charge Q0 on a certain path for a two-
terminal system of electrodes while the weighting field and the electric field vectors are
in the same direction and have the relation in Equation 3.20 (two-terminal Frisch collar
device).

Because the velocity is dr/dt (see Fig. 3.2) and with Equation 3.16, one can rewrite Equation

3.22 for the instantaneous induced current as,

I =
dQ

dt
= Q0

[
dr

dt
· Ew(r)

]
. (3.23)

By using Equation 3.23 one can evaluate the induced current caused by the motion of charge

Q0 within a two-terminal device (both Frisch collar and planar configuration), knowing

the weighting field vector, Ew(r) = Ewxi + Ewyj + Ewzk along the charge carriers’ path,

r = xi + yj + zk (where i, j and k are the unit vectors in x, y and z directions). By

simplifying the problem and considering only the charge carriers along the central line of a

two-terminal device as in Fig. 3.3, Equation 3.23 reduces to,

I =
dQ

dt
=
dx

dt
Q0 Ew(x) . (3.24)

The change in induced charge ∆Q(x) for Q0 charges moving along the central x-axis over
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Figure 3.3: Applying Shockley-Ramo theorem to a two-dimensional Frisch collar device
along the central axis Ew(r) = Ewx(x)i = Ew(x)i. The conductive Frisch collar is coupled
to the cathode and both are grounded.

the interval ∆x at x is,

∆Q(x) = Q0 Ew(x) ∆x = Q0 ∆ψ(x) , (3.25)

where ∆x is the length of segments on device’s central line, as shown in Fig. 3.3, with the

device length L divided into n equal segments, i.e.,

∆x1 = ∆x2 = · · · = ∆xi = ∆xn = ∆x = L/n . (3.26)

Obviously, ∆Q(x) is the change in induced charge on the collecting electrode (anode in this

case) as charge Q0 moves within the device. Now, assume that a gamma interaction occurs

at an arbitrary point xi, and Q0 charge is generated. Charge carriers are trapped as they
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move toward their corresponding electrodes as described by Equation 3.21. Therefore, the

Shockley-Ramo relation in Equation 3.25 (which is along the device’s central line), can be

written for charge carriers as follows (considering the trapping effects),

∆Qe,h(x) = ∆x Ew(x) Q0 exp

[
−∆te,h
τe,h

]
, (3.27)

in which,

∆te,h =
∆x

[vx(x)]e,h
=

∆x

µe,h Ex(x)
, (3.28)

where vx(x) is the velocity of electrons and holes in the x-direction along the device’s central

line, and Ex(x) is the magnitude of the electric field in the x-direction along the device’s

central line. It is important to remember that along the device’s central line, the electric

field, the weighting field, and the velocity have only an x-component (E(r) = E(x) =

Ex(x)i = E(x)i and Ew(r) = Ewx(x)i = Ew(x)i and v(r) = v(x) = vxi = vi). Therefore,

the Shockley-Ramo theorem in Equation 3.27 can be stated as

∆Qe,h(x) = ∆x Ew(x) Q0 exp

[
−∆x

µe,hτe,h E(x)

]
. (3.29)

It is also known that the total induced charge Qtot(xi) (due to radiation interaction at xi in

Fig. 3.3) has contributions from both electrons Qe(xi) and holes Qh(xi),

Qtot(xi) = Qe(xi) +Qh(xi) . (3.30)

The electron and hole contribution to charge induction is the summation of ∆Qe(xi) and

∆Qh(xi) over the entire path of their motion from when they are generated until they are

trapped (or collected). In other words, if an interaction occurs at xi in Fig. 3.3, then the

holes travel from x = xi to the cathode at x = 0, while the electrons travel from x = xi

to the anode at x = L. Therefore the total induced charge Qtot(xi), due to Q0 charges

generated at xi, can be expressed as (see Fig. 3.3)

Qtot(xi) =
i∑

k=1

∆Qh(xk) +
n∑

k=i+1

∆Qe(xk) . (3.31)
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Note that appropriate signs are needed for the charge carrier type (negative or positive) and

the direction of charge carrier (see Fig. 3.3). By applying Equation 3.29, the contribution

of electrons and holes to the change in induced charge can be separated and added over

the entire length of the device, L. The change in induced charge with trapping in each

segment 1 to n in Fig. 3.3 after an interaction at some arbitrary point xi can be evaluated,

given a known material (i.e., the µe,hτe,h), geometry, and applied bias (i.e., distribution of

Ew(x) and E(x)). This contribution to charge induction is detailed in each segment (see

Fig. 3.3 and the right hand side of Equation 3.31), from point xi where Q0 is generated and

moves toward the two respectives electrodes at x0 and xn. The total induced charge due to

hole motion is
∑i

k=1 ∆Qh(xk), and the change in induced charge due to motion of holes in

segment ∆xk is ∆Qh(xk), which can be written as,

∆Qh(xk) = ∆x Ew(xk) Q0 exp

[
−∆x

µhτh

(
i∑

j=k+1

1

E(xj)

)]
, k = 1, ..., i . (3.32)

The total induced charge due to electron motion is
∑n

k=i+1 ∆Qe(xk), and the change in

induced charge due to motion of holes in segment ∆xk is ∆Qe(xk), which can be written as,

∆Qe(xk) = ∆x Ew(xk) Q0 exp

[
−∆x

µeτe

(
i+1∑

j=k−1

1

E(xj)

)]
, k = i+ 1, ..., n . (3.33)

Hence, the right hand side of Equation 3.31 can be evaluated by the summation of all the

∆Qe’s and ∆Qh’s within ∆x1 to ∆xn, as shown above. One can also factor out the term

Q0 in all the ∆Qe,h, and meanwhile divide both sides of Equation 3.31 by Q0 to get the

charge collection efficiency CCE(xi) at point xi due to a gamma-ray interaction at this

point, namely

CCE(xi) =
Qtot(xi)

Q0

=

∑i
k=1 ∆Qh(xk) +

∑n
k=i+1 ∆Qe(xk)

Q0

. (3.34)
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Equation 3.34 can be used to plot the CCE(x) along the central line of any symmetrically

made detector (including Frisch collar and planar detector). The parameters that must

be known and/or evaluated before using Equation 3.34 are ∆x = L/n (n is the number of

segments along the device central line), Ew(x) and E(x). To evaluate Ew(x) and E(x), Equa-

tions 3.15, 3.16 and 3.20 can be applied that required the device geometry, applied voltage,

electrode configurations, and the dielectric constant κ of all materials. The last parameter

that needs to be known is the electrical property of the semiconductor material µe,hτe,h.

3.1.3.2 Validity of charge collection efficiency model

To validate the model presented in Section 3.1.3.1, the CCE results simulated by the pre-

sented model are compared to some of the known and previously published results, such as

those for the planar device in [41] and the Frisch collar device presented in [29]. Later, in

Chapter 5, the CCE(x) (or CCE) results simulated by the present model are used to predict

the experimental results observed with highly collimated probing of a CdZnTe Frisch collar

device along its central line. The model is written in a FORTRAN code (see Appendix A)

in which the electric field and the weighting field along the device central line are in an

input file. These input files are the data outputs from the LORENTZ package [34]. Other

input parameters used to model the CCE include electrical properties of the semiconductor

material µe,hτe,h, device length L, and the number of segments n. The number of segments

n must be the same for both the FORTRAN code and the outputs of LORENTZ.

In the present section, a 5 × 5 × 10 mm3 planar device is simulated for the CCE plots

using both the Hecht equation 3.19 (see [41]) and the model presented in Section 3.1.3.1.

Before presenting the results of CCE plots for the 5 × 5 × 10 mm3 planar device, it is

best to review the terms presented by [41]. To replicate the CCE plots (or normalized pulse

height) in [41], the carrier extraction factor ρ is reintroduced as,

ρe,h =
ve,hτe,h
L

=
E µe,hτe,h

L
. (3.35)

Equation 3.19 can be rewritten as,
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CCE(x) = ρe

(
1− exp

[
x− L
L ρe

])
+ ρh

(
1− exp

[
−x
L ρh

])
, (3.36)

where L is the distance between the electrodes (detector length), x is the interaction location

in the detector measured from the cathode, as described in Equation 3.19. Fig. 3.4 illustrates

the plots of CCE(x) predicted by Equation 3.36 for a variety of carrier extraction factors

ρe = ρh (see [41]). The constraint ρe = ρh, for a 5×5×10mm3 planar detector can be satisfied

by considering 1000 V applied voltage and assuming corresponding values of µeτe = µhτh.

Fig. 3.5 shows the plots of CCE through the model in Section 3.1.3.1, which is applied to

the 5×5×10mm3 planar detector for a variety of µeτe = µhτh. Figs. 3.4 and 3.5 represent

identical CCE plots using the Hecht equation and the model in Section 3.1.3.1.
CCE map along the centeral line of a planar device (Hetch equation)
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Figure 3.4: The charge collection efficiency CCE profile for a 10.0 mm long planar device
at 1000 V, applied to anode (collecting electrode). The CCE is plotted based on the Hecht
relation (Equation 3.36). The mobility-lifetime product µe,hτe,h for electrons and holes is
assumed to be the same, which results in equal carrier extraction factor ρe,h, resembling
similar conditions to previously presented values for ρe,h in [41].
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CCE map along the centeral line of a planar device (FORTRAN code)
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Figure 3.5: The charge collection efficiency CCE profile for a 10.0 mm long planar device
at 1000V, applied to anode (collecting electrode). The CCE is plotted based on the model
in Section 3.1.3.1. The operating conditions, device geometry, and the material mobility-
lifetime product µe,hτe,h are assumed to be the same values as in Fig. 3.4. The presented
model and the Hecht relation(Fig. 3.4) are predicting identical CCE profiles.

3.2 Parameters Affecting Charge Collection Efficiency

The impacts of the charge collection efficiency profile on device spectroscopic performance

are very important and the considerations are detailed in the literature [11]. However, recall

that a constant value of CCE plot is desired to obtain the best spectroscopic performance.

Therefore, while explained in this section are the parameters affecting the device CCE, the

focus is on how to optimize the CCE performance.
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In the first part of this section, the impact of the weighting potential/weighting field

distribution on CCE plots is discussed. The parameters that affect this distribution are

detailed and explained. Later, sections 3.2.2 and 3.2.3 discuss the parameters that do not

affect weighting potential/weighting field distribution, but that do directly affect CCE and

subsequently the Frisch collar device performance. Later, Section 3.2.4 discusses the impacts

of device length on CCE plots. Device length has a dual and complex impact on CCE;

as the device becomes longer, the weighting potential/weighting field distribution is altered

favorably, but charge carrier trapping increases.

3.2.1 Effect of weighting potential/field distribution on CCE

The distribution of the weighting potential/weighting field within the device is one of the

most important factors that affects device CCE and the change in induced charge on collect-

ing electrode. Therefore, this section determines the weighting potential and the weighting

field distribution within a 4.7 × 4.7 × 9.5 mm3 CdZnTe detector (both planar and Frisch

collar configurations). Then, device CCEs are evaluated and plotted using the model pre-

sented in Section 3.1.3.1. Finally, the pulse hight spectrum of a fabricated CdZnTe device

is presented and compared for the detector in both planar and Frisch collar configurations.

The 4.7 × 4.7 × 9.5 mm3 CdZnTe detector is a typical device size used in most of the studies

in this thesis, although many other device sizes and geometries are also modeled and later

tested to confirm the theoretical model.

The weighting potential and the weighting field distribution within the device are de-

termined along the central line through full three-dimensional geometry modeling using

LORENTZ (Section 3.1.2). The dielectric constants of CdZnTe and the insulator between

the detector and Frisch ring (Teflon in this case) is considered 11.0 and 1.8 (in Equation 3.15)

for all weighting potential and weighting field calculations [48]. These distributions are plot-

ted in Fig. 3.6 for the 4.7 × 4.7 × 9.5 mm3 CdZnTe detector. The electric field distributions

can easily be evaluated by Equation 3.20 since both planar and Frisch collar CdZnTe detec-
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Figure 3.6: The weighting potential and weighting field distributions for a 4.7×4.7×9.5mm3

CdZnTe device along the central axis (Frisch collar and planar). The weighting potential
and weighting field distributions for the Frisch collar device are modeled by considering a
0.35 mm insulator layer and 9.5 mm Frisch collar length (entire device length). The graph
shows how the weighting potential distribution is altered into a nonlinear distribution due
to the conductive collar. The graph also shows how the uniform field in planar device is
altered to a nonuniform field distribution by applying the Frisch collar.

tors are two-terminal devices. Next, the CCE plots and the pulse height spectra are shown

in Figs. 3.7 and 3.8, respectively. Clearly, based on Equation 3.25, most of the charge induc-

tion occurs where there is the greatest change in weighting potential ∆ψ. In other words, the

majority of charge induction, as the charge carriers are drifted toward their corresponding

electrodes, occurs when the weighting field Ew has its maximum values.

It is easy to comprehend the impact of the Frisch collar on planar devices from Fig. 3.6

and Equation 3.25. Hence, the Frisch collar alters the linear distribution of weighting po-
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Figure 3.7: The charge collection efficiency CCE profile at 1000V applied to anode (collect-
ing electrode) for a 4.7×4.7×9.5mm3 CdZnTe device along the central axis. The CCE is
plotted based on the model presented in Section 3.1.3.1. The µτ values of 0.045 and 0.0001
cm2.V−1 are assumed for the electrons and holes, respectively. The plot shows significant
enhancement in CCE of the detector when the Frisch collar is applied to the planar device.

tential in a planar device into a non-linear distribution for the same device in a Frisch collar

configuration (see Figs. 3.3 and 3.6), for which the majority of the change in weighting po-

tential is near the anode region. As a result, those charge carriers drifting towards the anode

(electrons in this case) contributes to the induced charge more than those charge carriers

drifting towards the cathode (holes). Therefore, the low mobility and higher trapping effect

of the holes are negated in the Frisch collar device compared to the planar configuration.

These effects alter the CCE plots of a planar device to a more uniform CCE plot for the

corresponding Frisch collar device (Fig. 3.7). The more uniform CCE plot results in better
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Figure 3.8: Pulse height spectra taken with a 4.7×4.7×9.5mm3 CdZnTe device being fully
irradiated with a 137Cs source. A 0.89% FWHM energy resolution is achieved at 662 keV.

pulse height spectra as illustrated in Fig. 3.8, since the charge induction (linearly related

to the photoelectric peak channel on a multichannel channel analyzer, MCA) depends less

on position of interaction. It should be noted that the main criteron of CdZnTe material

that allows the fabricated device to benefit from the Frisch collar effect is the high mobility-

lifetime product µτ of the electrons compared to holes. In other words, the higher electron

mobility-lifetime product (compared to hole mobility-lifetime product) enables it to be an

excellent candidate for a single carrier device to compensate for the effect of hole trapping

and low mobility.
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The previous discussion shows how the Frisch collar alters the weighting potential/weighting

field distribution and makes the CdZnTe planar device into a single carrier device. Thus, the

parameters affecting this distribution are of interest and need to be studied in detail. These

parameters are listed in this section, and their impacts on weighting potential/weighting

field distribution and subsequently the CCE plots are discussed. Some of these parameters

are also investigated experimentally and the results of the experiments are presented in

Chapter 5.

The parameters directly affecting the weighting potential/weighting field distribution

are as follows: the crystal geometry and the aspect ratio of bar shaped crystal, the Frisch

collar length, the ratio of the anode area to the cathode area (or the small pixel effect),

the thickness of the insulator layer, and the dielectric constant of the insulator layer. Other

parameters with no effect on weighting potential/weighting field distribution but impacts

the CCE plots and subsequently device performance, such as mobility-lifetime product µτ

of the CdZnTe materials and applied voltage, are discussed toward the end of Section 3.2.

Regarding the effect of one parameter, it is assumed that the other parameters remain

constant, since the parameters are independent of each other. Device length L is the only

exception that changes the aspect ratio and has direct impact on CCE; therefore, it needs

further clarification and is discussed in Section 3.2.4.
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3.2.1.1 Crystal geometry

As mentioned at the beginning of Section 3.2.1, one of the most promising designs of single

carrier devices is the Frisch collar device, which benefits from the nonlinearity of weighting

potential near the anode region. This nonlinearity along the length of the device enables the

electrons to contribute to the majority of the charge induction, thereby improving device

performance.

The weighting potential profiles for several different device geometries and aspect ratios

were modeled. The numerical values of the weighting potential distribution were then plot-

ted for the central plane. The device performance as a function of the aspect ratio, before

and after applying Frisch collars for various CdZnTe devices, are experimentally investigated.

The experimental method and setup are detailed in Section 4.3.1, and the results of the ex-

periment are presented in Section 5.3.1. Fig. 3.9 shows the designed pattern for fabricating

CdZnTe crystals to prepare the starting devices. As shown in Fig. 3.9, the device’s length

L is kept constant, and the device width W is reduced in size, thereby increasing the aspect

ratio L/W . The second prepared device is also illustrated in Fig. 3.9 and labeled as CZT5.

The dimensions and names of the subsequently designed detectors are presented in Table 3.1.

Table 3.1: CdZnTe devices with the same length L (4.8 ± 0.2) and different L/W to render
the impact of geometry on weighting potential profiles along device central plane.

Device label Device dimensions Average aspect ratio
(mm) (L/W)

CZT1 19.08 × 19.34 × 4.95 0.26
CZT5 9.44 × 9.45 × 4.88 0.52
CZT6 6.65 × 6.89 × 4.84 0.71
CZT7 5.05 × 5.02 × 4.84 0.96
CZT8 4.03 × 4.00 × 4.76 1.19
CZT9 3.51 × 3.51 × 4.76 1.36
CZT10 2.90 × 2.90 × 4.60 1.59
CZT11 2.40 × 2.40 × 4.60 1.92
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Figure 3.9: Sample devices showing the CZT1 (entire sample) and CZT5 (second device).

In Table 3.1 and Fig. 3.9, the length L is kept constant while the aspect ratio is in-

creased. The effect of length is studied separately in Section 3.2.4 due to its simultaneous

effect on CCE and weighting potential distribution. The weighting potential profiles for the

central plane of devices in Table 3.1 are evaluated and plotted in Figs. 3.10 through 3.17.

Clearly, the nonlinearity of the weighting potential distribution does not penetrate into the

device bulk for the devices with aspect ratios near 1.0 or less (Figs. 3.10 through 3.13).

Those devices with aspect ratio greater than 1.0, but less than 1.5, have nonlinear weight-

ing potential distributions within the bulk, although some change still occurs in the bulk

(Figs. 3.14 and 3.15). Devices with aspect ratios greater than 1.5 show a more uniform

distribution of weighting potential within the bulk; hence, better performance is expected

(Figs. 3.16 and 3.17). These predictions based on the weighting potential distribution are

experimentally verified and presented in Sections 4.3.1, and the results are shown in Sec-

tion 5.3.1.

34



L W

Figure 3.10: The weighting potential profile for Frisch collar CZT1 (19.08 mm × 19.34 mm
× L=4.95 mm) for the central plane on z-axis (plane z=9.54 mm). The device length, L, is
along the x-axis. The cathode is on x=0; the anode is on x=L plane.

L W

Figure 3.11: The weighting potential profile for Frisch collar CZT5 (9.44 mm × 9.45 mm ×
L=4.88 mm) for the central plane on z-axis (plane z=4.72 mm). The device length, L, is
along the x-axis. The cathode is on x=0; the anode is on x=L plane.
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Figure 3.12: The weighting potential profile for Frisch collar CZT6 (6.65 mm × 6.89 mm ×
L=4.84 mm) for the central plane on z-axis (plane z=4.72 mm). The device length, L, is
along the x-axis. The cathode is on x=0; the anode is on x=L plane.

L W

Figure 3.13: The weighting potential profile for Frisch collar CZT7 (5.05 mm × 5.02 mm ×
L=4.84 mm) for the central plane on z-axis (plane z=4.72 mm). The device length, L, is
along the x-axis. The cathode is on x=0; the anode is on x=L plane.
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Figure 3.14: The weighting potential profile for Frisch collar CZT8 (4.03 mm × 4.00 mm ×
L=4.76 mm)) for the central plane on z-axis (plane z=4.72 mm). The device length, L, is
along the x-axis. The cathode is on x=0; the anode is on x=L plane.

L W

Figure 3.15: The weighting potential profile for Frisch collar CZT9 (3.51 mm × 3.51 mm ×
L=4.76 mm) for the central plane on z-axis (plane z=4.72 mm). The device length, L, is
along the x-axis. The cathode is on x=0; the anode is on x=L plane.
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Figure 3.16: The weighting potential profile for Frisch collar CZT10 (2.90 mm × 2.90 mm
× L=4.60 mm) for the central plane on z-axis (plane z=4.72 mm). The device length, L, is
along the x-axis. The cathode is on x=0; the anode is on x=L plane.

L W

Figure 3.17: The weighting potential profile for Frisch collar CZT11 (2.40 mm × 2.40 mm
× L=4.60 mm) for the central plane on z-axis (plane z=4.72 mm). The device length, L, is
along the x-axis. The cathode is on x=0; the anode is on x=L plane.
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3.2.1.2 Frisch collar length

Given that the length of the Frisch collar LF has a great impact on device performance

[23, 29], it is easy to conclude that as the length of the Frisch collar decreases to a fraction

of the device length L, the effect of the Frisch collar starts to change. Eventually, as the

length approaches zero, the Frisch collar device mimics a planar device. In this section,

the CCE plots for a 4.7 × 4.7 × 9.5 mm3 device with a variety of Frisch collar lengths

are presented along with weighting potential/weighting field calculations. Figs. 3.18, 3.19

and 3.20, show the weighting potential, weighting field and CCE plots for a 4.7 × 4.7 ×

9.5 mm3 CdZnTe device along the central line.

Figure 3.18: The weighting potential distribution for a 4.7×4.7×9.5mm3 CdZnTe Frisch
collar device (with AR=L/W = 2.0) along the central axis with different collar lengths and
a 0.35 mm insulator layer thickness. The distribution is calculated using LORENTZ.
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Figure 3.19: The weighting field distribution for a 4.7×4.7×9.5mm3 CdZnTe Frisch collar
device (with AR=L/W = 2.0) along the central axis with different collar lengths and a 0.35
mm insulator layer thickness. The distribution is calculated using LORENTZ.

It is shown in Fig. 3.20 that for a 4.7 × 4.7 × 9.5 mm3 CdZnTe device, the conductive

collar length LF around the device length (in this case 9 mm) predicts the best spectral

performance (flat CCE response for about two-thirds of the device volume as in Fig. 3.20).

Devices with aspect ratios close to 2.0 demonstrate best performance with a full Frisch

collar, as reported in [23, 29], which helps to substantiate these research findings.
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Figure 3.20: The charge collection efficiency CCE profile for a 4.7×4.7×9.5mm3 CdZnTe
Frisch collar device (with AR=L/W = 2.0) along the central axis with different collar
lengths.

3.2.1.3 Ratio of anode area to cathode area, small pixel effect

It is shows in Figs. 3.10 and 3.13 (Section 3.2.1.1) that devices with aspect ratios near 1.0

and lower, having weighting potential whose nonlinear property does not penetrate into the

bulk of the device. The effect can be remedied by making the area of the anode smaller

than that of the cathode, thereby allowing the device to benefit from the small pixel effect

as well as Frsich collar effect. The simultaneous Frsich collar effect and small pixel effect

enable the device to benefit from the nonlinearity of weighting potential and turn it into a

single carrier device. Figs. 3.21, 3.22, and 3.23 show the weighting potential distributions,

weighting field, and CCE plots for a 5.0 × 5.0 × 5.0 mm3 CdZnTe Frisch collar device along

the central line for three different anode to cathode area ratios.
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Figure 3.21: The weighting potential distribution for a 5.0 × 5.0 × 5.0 mm3 CdZnTe Frisch
collar device (with AR=L/W = 1.0) along the central axis with different anode areas. The
distribution is calculated using LORENTZ considering a 0.35 mm insulator layer thickness.
The graph shows the small pixel effect along with the Frisch collar effect on weighting
potential distribution.

It is shown in Fig. 3.23 that for a 5.0 × 5.0 × 5.0 mm3 CdZnTe device with small aspect

ratios (around 1.0), where the Frisch collar effect is not prevalent, the small pixel effect can

potentially turn the detector into a single carrier device. Fig. 3.23 indicates that decreasing

the anode area enhances the CCE profile and offers a method to optimize the CCE for

devices with aspect ratios lee than 1.0.
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Figure 3.22: The weighting field distribution for a 5.0 × 5.0 × 5.0 mm3 CdZnTe Frisch
collar device (with AR=L/W = 1.0) along the central axis with different anode areas. The
distribution is calculated using LORENTZ considering a 0.35 mm insulator layer thickness.
The graph shows the small pixel effect along with the Frisch collar effect on weighting field
distribution.

3.2.1.4 Thickness of insulator/dielectric layer

The thickness of the dielectric layer between the bare CdZnTe semiconductor crystal and the

conductive collar has been reported to impact the device performance [20]. As the dielectric

layer thickness of the two-terminal Frisch collar device increases, the overall device AR de-

creases. Correspondingly, a decrease in AR affects the uniformity of the weighting potential

distribution (Section 3.2.1.1). Unfortunately, this change degrades the device performance,
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Figure 3.23: The charge collection efficiency CCE profile for a 5.0 × 5.0 × 5.0 mm3 CdZnTe
Frisch collar device (with AR=L/W = 1.0) along the central axis with different anode areas.
The graph shows how the small pixel effect along with the Frisch collar effect alters the CCE
profile.

especially if the aspect ratio of the device is significantly altered. Similarly, the great dif-

ference between the dielectric constant of CdZnTe and the insulator layer also forces the

weighting potential toward a linear distribution as the dielectric thickness increases. How-

ever, the operating potential profile moves toward a linear distribution, thereby increasing

the electric field near the cathode region, which improves the device performance by im-

proving charge carrier transport. Hence, increasing the dielectric thickness has two different

effects on device performance, whereby one effect improves device performance (electric

field), and the other deteriorates device performance (weighting potential).

44



In this section, the impact of the insulator layer thickness on CCE plots is investigated.

The results of simulations are confirmed through experimental data, presented in Chapters 4

and 5. Figs. 3.24, 3.25, and 3.26 show the weighting potential distributions, weighting field,

and CCE plots for a 4.7 × 5.0 × 19.6 mm3 CdZnTe device along the central line for different

insulator thicknesses.

Figure 3.24: The weighting potential distribution for a 4.7×5.0×19.6mm3 CdZnTe Frisch
collar device (with average aspect ratio L/W = 4.0) along the central axis with different
insulator thicknesses. The distribution is calculated using LORENTZ.

Fig. 3.24 shows the CCE plots for the 4.7 × 5.0 × 19.6 mm3 CdZnTe Frisch collar

device along the central axis with different insulator layer thicknesses. The device has an

AR=4.0, which results in low electric/weighting field distributions near the cathode region

when applying a thin insulator layer (Fig. 3.25). Consequently, the CCE near the cathode
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Figure 3.25: The weighting field distribution for a 4.7×5.0×19.6mm3 CdZnTe Frisch collar
device (with average aspect ratio L/W = 4.0) along the central axis with different insulator
thicknesses. The distribution is calculated using LORENTZ.

region is expected to be low, as plotted in Fig. 3.26. Fig. 3.26 indicates that increasing

the dielectric layer thickness enhances the CCE profile and offers a method to optimize

the device performance. Note that, for the simulations of the effect of insulator thickness

on CCE, all other parameters (including the device geometry, Frisch collar length, applied

bias, and material properties) are assumed to be the same.
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Figure 3.26: The charge collection efficiency CCE profile for a 4.7×5.0×19.6mm3 CdZnTe
Frisch collar device (with average aspect ratio L/W = 4.0) along the central axis with
different insulator layer thicknesses. The graph shows an optimum insulator layer thickness
for the best CCE profile.

3.2.2 Effect of CdZnTe electrons/holes mobility-lifetime product
on CCE

The electrical properties of the CdZnTe material, primarily the electron/hole mobility-

lifetime products µe,hτe,h, are the most important material properties and have a great

impact on device performance. The effect is investigated in this section through CCE mod-

eling of a 4.7 × 4.7 × 9.5 mm3 CdZnTe Frisch collar device. Since µe,hτe,h have no direct

effect on weighting potential and weighting field distributions, these distributions are similar
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to those previously presented in Fig. 3.6. The numerical values of these distributions, pre-

viously presented in Section 3.1.3.1, are used to plot the CCE. Figs. 3.27 and 3.28 present

the CCE profile for the 4.7 × 4.7 × 9.5 mm3 CdZnTe Frisch collar device along the central

axis for different values of µe,hτe,h.

Figure 3.27: The charge collection efficiency CCE profile for a 4.7 × 4.7 × 9.5 mm3 CdZnTe
Frisch collar device (with AR=L/W = 2.0) along the central axis with different values for
holes mobility-lifetime product µhτh. The plots show CCE enhancement for the higher
values of µhτh.
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Figure 3.28: The charge collection efficiency CCE profile for a 4.7 × 4.7 × 9.5 mm3 CdZnTe
Frisch collar device (with AR=L/W = 2.0) along the central axis with different values for
electron mobility-lifetime product µeτe. The plots show CCE deterioration for the lower
values of µeτe.

Fig. 3.27 shows the impact of the µhτh on CCE profiles, while the electron mobility-

lifetime product is assumed to be constant (µeτe = 0.045 cm2 V−1). Similarly, Fig. 3.28

shows the impact of the µeτe on CCE profiles, while the hole mobility-lifetime product is

assumed to be constant (µhτh = 0.0001 cm2 V−1). However, the CCE plots in Fig. 3.27 and

Fig. 3.28 show that the µhτh has less impact on CCE (compare to µeτe), and consequently

has less impact on device performance. The plots on Fig. 3.27 with low µhτh values show that

the CCE profiles remain relatively uniform for more than half the device volume. Whereas

low µeτe value deteriorates the CCE and device performance as in Fig. 3.28. Hence, CdZnTe

Frisch collar device performance is limited by electron transport properties.
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3.2.3 Effect of applied voltage (bias) on CCE

In semiconductor radiation detectors, the primary need of voltage is to separate the electrons

and holes generated due to radiation interaction. As a result of existing voltage, the electrons

and holes are drifted towards their corresponding electrodes. At low voltages (or electric

fields) the electrons and holes recombine or undergo significant trapping. Consequently,

little to no charge is induced on the collecting electrode. The secondary effect of applied

voltage HV is its impact on the CCE profile after the electrons and holes are drifted toward

corresponding electrodes. Fig. 3.29 shows the CCE profile for a 4.7× 4.7× 9.5 mm3 CdZnTe

Frisch collar device along the central axis at different applied voltages.

Figure 3.29: The charge collection efficiency CCE profile for a 4.7 × 4.7 × 9.5 mm3 CdZnTe
Frisch collar device (with AR=L/W = 2.0) along the central axis at different applied volt-
ages. The plots show CCE is enhanced at higher voltages. The mobility-lifetime product
µe,hτe,h of 0.045 and 0.0001 cm2.V−1 are assumed for the electrons and holes, respectively.
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The effect can be predicted through Equation 3.20, where higher applied voltages result

in higher electric fields E and subsequently higher charge carrier velocities (ve,h = µe,h E).

This allows better charge collection and greater change in induced charge ∆Q (Equa-

tion 3.29, page 23). Consequently, the CCE is enhanced for higher applied voltages

(Fig. 3.29). The Frisch collar device is modeled under applied voltages of 1500V, 1200V,

1000V, 800V, 600V, and 400V to the collecting electrode (anode in this case). The plots

in Fig. 3.29 shows that the CCE is enhanced at higher applied voltages. Fig. 3.29 also

shows that above some voltage (about 1200V for this device) the CCE is not significantly

enhanced, but rather reaches a relatively uniform and flat response. The experimental

procedures and results for this effect are presented in Sections 4.3.3 and 5.2 .
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3.2.4 Effect of crystal length on CCE

As mentioned earlier in this section, device length has a dual and complex impact on CCE.

Primarily, crystal (device) length L directly affects device aspect ratio AR (L/W ). Conse-

quently, the change in AR significantly alters the weighting potential/weighting field distri-

butions and affects the CCE. Alternatively, more charge carriers are trapped in a longer

device with longer traveling distance, because the mobility-lifetime product of the charge

carriers are limited. Hence, to exclusively study the impact of length on CCE, four differ-

ent Frisch collar devices are assumed to have identical aspect ratios of 1.8 for simulation

purposes. Figs. 3.30 and 3.31 show the weighting potential and the CCE profile along the

central line of all devices with the same aspect ratios and different lengths.

Figure 3.30: The weighting potential distribution along the central axis of CdZnTe Frisch
collar devices with the same aspect ratios (L/W = 1.8) and different lengths. The dis-
tribution is calculated using LORENTZ considering different thicknesses of insulator layer
proportional to Frisch collar devices lengths. The graph shows identical weighting potential
distribution for devices with the same AR.
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Figure 3.31: The charge collection efficiency CCE profile along the central axis of CdZnTe
Frisch collar devices with the same AR (L/W = 1.8) and different lengths. The high voltages
applied to the collecting electrode (anode) are proportional to Frisch collar device length.
The plots show that CCE is enhanced for devices with shorter length. The µe,hτe,h of 0.045
and 0.0001 cm2 V−1 are assumed for the electrons and holes, respectively.

Three of the devices were actually fabricated and tested, and the experimental results

are in Chapter 5. The largest Frisch collar device (18.3×18.3×33.0 mm3), however, was

not fabricated due to lack of material. As expected, the weighting potential distributions

are almost identical; however, the CCE plots are different. Due to similarity in shape with

a known ratio of magnification for all four devices, the weighting potential distributions

resemble each other. However, since longer devices suffer more from trapping effects, the

CCE profiles are not the same, and shorter devices show more uniform response to gamma-

rays (Fig. 3.31).
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Chapter 4

EXPERIMENTAL PROCEDURES
AND SETUP, CdZnTe DEVICE
FABRICATION AND
CHARACTERIZATION

This chapter offers a detailed description of the fabrication process of Frisch collar CdZnTe

gamma-ray detectors, including alternative methods of each process. The chapter also

discusses the methods to characterize the fabricated devices. Finally, the chapter details

the experimental setup and characterization of a 16-channel CdZnTe Frisch collar detectors.

4.1 CdZnTe Detector Fabrication Process

The process of fabricating a CdZnTe Frisch collar detector can be divided into three main

steps: planar device fabrication, post fabrication process (surface treatment) and conductive

(Frisch) collar utilization. The planar device fabrication can be divided into mechanical

treatment, chemical treatment, and contact deposition, which are detailed in Section 4.1.1

through Section 4.4. The post fabrication process (surface treatment) and the alternative

methods are explained in Section 4.3.5, and applying an insulator and a conductive (Frisch)

collar is detailed in Section 4.1.4.
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4.1.1 Mechanical treatment

Bulk CdZnTe material acquired from Redlen Technologies and eV Products, labeled as

counter grade, was used to fabricate several Frisch ring detectors. The material was initially

inspected with an infrared (IR) microscope to locate regions containing relatively few visible

defects. A diamond wire saw was then utilized to section volumes of low defect density from

the bulk samples. The extracted pieces were next shaped through grinding and lapping into

right parallelepipeds. The sliced material was first ground using an L-shaped stainless steel

jig shown in Fig. 4.1, to form the piece into a rectangular bar shape. The L-shaped stainless

steel jig was mounted on a stainless steel block as shown in Fig. 4.1.

Figure 4.1: The stainless steel block and the L-shaped stainless steel jig used for grind-
ing/lapping CdZnTe crystals.

Silicon carbide (SiC) papers of 2400 and 4000 grit were used in the grinding step and

continuously cleaned by running water. This process was performed using a lapping machine,

as shown in shown in Fig. 4.2.The ends of the bar-shaped crystals were hand lapped with

alumina powders suspended in deionized (DI) water, starting with 3 µm powders, and after

a progression of diminishing sized powders, ending with 0.05 µm powder on BUEHLER

Chemomet polishing cloths (Fig. 4.3). The 1 µm and 0.3 µm alumina powder solutions
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were used as intermediate polishing steps, and at least 1 µm of material was polished away

from each of the sides. Because mechanical polishing causes surface damage extending into

the crystal bulk typically three times the size of the powder being used [49], it was important

to remove all of the surface damage caused in the previous step. Afterwards, the samples

were rinsed with DI water and isopropyl alcohol before chemical etching.

Figure 4.2: Lapping/grinding the CdZnTe crystals on the lapping machine

Figure 4.3: Polishing CdZnTe crystals on polishing pads
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4.1.2 Chemical etching

The last step of mechanical polishing (0.05 µm powder) also causes surface damage; hence

polishing was followed by a chemical etching step with a 2% volume of bromine/methanol

solution for two minutes. The samples were then rinsed once more with isopropanol.

4.1.3 Contact deposition

Gold was deposited on the ends of the crystal to form the ohmic contacts through an

electroless deposition technique using gold chloride (AuCl3) solution. Gold was deposited

by applying AuCl3 solution for eight minutes on each contact. It is believed that the AuCl3

reacts with the cadmium on surface of CdZnTe crystals based on the following reaction,

2 AuCl3 + 3 Cd −→ 2 Au + 3 CdCl2

which results in the gold ions to be precipitated [50]. Then, the gold diffuses into the crystal

introducing dopant sites which produces an ohmic (tunnelling) contact [51]. A sample of

CdZnTe block undergoing electroless deposition (plating) is shown in Fig. 4.4.

Figure 4.4: Contact deposition on CdZnTe crystals using gold chloride solution.
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4.1.4 Applying insulator and Frisch collar to planar device

The planar detector was wrapped with thin Teflon tape, which acted as an insulating bound-

ary. The Teflon was extended beyond the anode about 1.0 mm to avoid discharge between

the collar and the anode. A thin copper shim was cut to size and used as the Frisch collar

(Fig. 4.5), which extended the length of the device and was connected to the device cathode.

In this manner, the Frisch collar was held at the cathode potential (or ground).

Figure 4.5: Fabricated CdZnTe Frisch collar detectors using copper shim and Teflon tape

The planar device can be turned into a Frisch collar device by applying any insulator

layer that has high resistivity and low dielectric constant, and by applying a conductive

layer on the insulator. The alternative processes for applying the insulator layer and con-

ductive collar have been published previously in the literature [52]. In the method employed

in [52], thin layers of Parylene-N and Parylene-C were deposited as the insulator layer using

Specialty Coating Systems PDS 2010 LABCOTER 2. The conductive (Frisch) collar was

also applied with conductive paint and sprays such as nickel-based paint, silver-based paint,

and Silverdag.
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4.2 CdZnTe Detector Characterization Methods

On fabricated devices, three main measurement methods are employed for characteriza-

tion purposes: the leakage current, the pulse height spectrum, and the charge collection

efficiency. For the devices with post fabrication processes (surface treatment), Scanning

Electron Microscopy (SEM) analysis has been performed on the surfaces, which is men-

tioned in Section 4.2.4. Pulse height spectral measurements (Section 4.2.2) were conducted

for each device reported in all studies. In spite of varied equipment for spectral measurement

(especially preamplifiers), the main setup and Nuclear Instrument Modules are essentially

the same. In this section, the general methods of taking a pulse height spectrum and mea-

suring leakage current are explained. Later, sections describe individual measurements, the

details of the equipment, and the differences in experimental procedures.

4.2.1 Leakage current measurement

A Keithley I-V Curve Tracer was used to perform the current-voltage (I-V) measurements.

The machine automatically sweeps through voltage increments, with a delay at each point

before logging a value. The delay at each point was set to 0.5 seconds for all studies, while

the voltage increment was set from 2.0 to 5.0 V (varied for different studies). The maximum

regulated voltage was set up to ±1100 V depending on device size. The machine can perform

the current-voltage measurement for devices with different configurations, such as bare and

wired, in both planar and Frisch collar configurations. The Keithley I-V Curve Tracer is

equipped with a platform (probe station) where the bare device (not wired) can easily be

tested for an I-V curve. The machine can also be connected to an aluminum test box to

measure the leakage current of wired devices (wired devices should be mounted inside the

aluminum test box).
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4.2.2 Pulse height spectra measurements

The fabricated CdZnTe detectors (both planar and Frisch collar) were positioned in an

aluminum test box for spectral collection of various radionuclides (Fig. 4.6). The detector

within the box was connected to a preamplifier (the type of preamplifier is mentioned in each

study), and the aluminum test box and preamplifier were placed inside a copper Faraday

cage to shield the test box from low energy electromagnetic waves and subsequently minimize

electronic noise. The measurement system consisted of an amplifier, an oscilloscope, a multi-

channel analyzer (MCA), a high voltage supply, a pulse generator, and a personal computer,

all positioned outside the Faraday cage (Fig. 4.7). Gamma sources were always placed in

the same position, either outside the aluminum test box (Fig. 4.6) or inside the aluminum

test box, such that the detector cathode faced the source.

Aluminum
test box

Source
holder

CdZnTe
detector

Anode

Cathode
grounded

BNC connector

Gamma ray 
source

Preamp

 

Figure 4.6: Diagram of the aluminum test box used for spectral measurements.

During the experiment, the temperature and the relative humidity were recorded for

each study, and operating parameters were held constant throughout the entire individual

experiments. Additionally, the amplifier shaping time of 1 µs was held constant for all

studies, while the high voltage bias, amplifier gain, and the lower level discriminator (LLD)

were varied in different studies depending on detector size, dead time, and system noise.
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Figure 4.7: Copper Faraday cage and the NIM electronics outside the cage

Accordingly, the values of high voltage bias and amplifier gain are mentioned in each study

separately. The spectral testing time also varied for different detectors and studies.

Pulse height spectra were collected from gamma-rays sources of 241Am, 137Cs, 57Co,

133Ba, 198Au, and 235U. The 241Am, 137Cs, 57Co, and 133Ba, samples were standard commer-

cially available calibration sources. The 198Au was prepared through an (n,γ) reaction by

irradiating gold foil samples in the Kansas State University TRIGA Mk II nuclear reactor

core (see Section 4.4.2.3). The 235U source was in the form of a 93% enriched 235U-nitride

solution. As explained, the electronic settings were consistent for all measurements, and en-

ergy resolutions for gamma-ray photopeaks (see Chapter 5) are reported with no electronic

corrections. While, the primary results of gamma-ray spectroscopy with CdZnTe detectors

are reported in Section 5.1, the results of each individual study are presented in Chapter 5

under each study section.
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4.2.3 Charge collection efficiency measurement

A 4.7 × 4.7 × 9.5 mm3 CdZnTe Frisch collar device was fabricated as in Section 4.1, and

the CdZnTe raw materials for this study were acquired from Redlen Technologies. A 43.0

mm long collimator was made by casting lead with a 0.6 mm diameter rod inserted, which

was later removed, leaving behind a 0.6 mm hole. The 43.0 mm long Pb-collimator was

designed to attenuate 99.6% of 662 keV gamma-rays, except for the solid angle of the 0.6

mm hole (Fig. 4.8). The 0.6 mm hole in the collimator allowed the CdZnTe detector to

be fully irradiated for a 0.72 mm diameter circular area (Fig. 4.9). The Pb-collimator was

mounted on a linear stage with two degrees of freedom (Fig. 4.10). This way, the 4.7 ×

4.7 × 9.5 mm3 CdZnTe Frisch collar device could be probed by the highly collimated 137Cs

gamma-ray source with a desired increment along the device length and width, which are

illustrated in Fig. 4.9. The Frisch collar device was irradiated for seven columns (1 through

7) along the device length (9.5 mm) and for three rows (r, t and v) along the device width

(4.7 mm). The Frisch collar detector was also placed 8.7 mm away from the Pb-collimator

(Fig. 4.8) and was held in place for the entire experiment (Fig. 4.10). The 137Cs gamma-ray

source was placed between the collimator and the linear stage so that the source was aligned

with the collimator hole. The detector, gamma-ray source, Pb-collimator, and linear stage

were placed inside an aluminum test box (see Fig. 4.10).

Before the probing experiment began, pulse height spectra were taken using a 137Cs

gamma-ray source placed directly underneath the fabricated CdZnTe device (both planar

and Frisch collar configurations). The pulse height spectra for full irradiated with 662 keV

gamma-rays are shown in Fig. 3.8, which also shows the sub-0.9% full width half maximum

(FWHM) energy resolution at 662 keV for the Frisch collar device (with no electronic cor-

rection) using a commercial ORTEC 142A preamplifier. The measurement setups and the

counting time are also indicated in Fig. 3.8.

Afterwards, the 4.7 × 4.7 × 9.5 mm3 CdZnTe Frisch collar device was probed with a

highly collimated 137Cs gamma-array source to investigate the uniformity of the Frisch collar
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4.7x4.7x9.5mm3

CdZnTe detector
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137Cs gamma
ray point source

0.6 mm diameter hole
within the Pb-collimator
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detector and collimator

r t v

1234567

Anode

Figure 4.8: The schematic setup for the gamma-ray source, Pb-collimator, and the 4.7 ×
4.7 × 9.5 mm3 CdZnTe Frisch collar detector for the CCE measurement. A 2 MBq 137Cs
gamma-ray source was placed at the end of a 0.6 mm circular hole in a 43.0 mm long
Pb-collimator. The CdZnTe Frisch collar detector was held in place 8.7 mm away from
Pb-collimator. The Pb-collimator and gamma-ray source were mounted on a linear stage
with two degrees of freedom to irradiate desired points shown on the CdZnTe device.

device’s response to high energy gamma-rays. The following setup and testing equipment

were used for the probing experiment. The aluminum test box was connected to an eV-550

preamplifier through an SHV connector. The aluminum test box and the preamplifier were

then placed inside a copper Faraday cage where the preamplifier was connected to a high-

voltage supply amplifier (Canberra Model 2021) and a pulse generator. An oscilloscope, a

multichannel analyzer (MCA), and a personal computer were used to monitor and acquire

the data.
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Figure 4.9: The irradiated points on the 4.7 × 4.7 × 9.5 mm3 CdZnTe Frisch collar device
for the CCE measurement. The collimated gamma-ray source on a linear stage allows
irradiating the desired points shown on the CdZnTe device. Here, the Frisch collar device
was irradiated in increments of 1.3 mm along the length and 1.6 mm along the width.
The partially irradiated area is due to the size of the 137Cs gamma-ray source, which was
comparable to that of the collimator hole (0.6 mm).

Figure 4.10: The lead collimator-detector setup within the aluminum test box for the CCE
measurement. As shown the Pb-collimator is mounted on a linear stage with two degrees
of freedom, and the CdZnTe Frisch collar detector is held in place immobile, ready to be
probed by the highly collimated gamma-ray.
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To conduct the probing experiment, the device’s lateral side (columns 1 through 7 and

rows r, t and v on Figs. 4.8 and 4.9) was probed with collimated 662 keV gamma-rays,

and pulse height spectra were taken for two hours real time while the device was biased at

1200V (twenty one data points). Displacement of the source was performed by moving the

collimated source using the two-dimensional linear stage in increments of 1.3 mm along the

device length (columns 1 through 7 on Figs. 4.8 and 4.9), and increments of 1.6 mm along

the device width (rows r, t and v on Figs. 4.8 and 4.9). The resulting pulse height spectra

are presented in Section 5.2, consisting of 21 data points, with the detector at 1200V. Each

individual measurement was two hours long.

4.2.4 Surface analysis

A Hitachi S-3400N Scanning Electron Microscope (SEM) was used in conjunction with an

IXRF EDS2008 detector and its commercial software using Energy Dispersive Spectroscopy

(EDS) as part of the Electron Microprobe (EMP) technique. The detector was positioned

within the SEM such that approximately 25% of the surface area was imaged using the

EDS. An acceleration of 10 kV and 70 mA was used for the electron source, and a Gaussian

curve fit algorithm was selected for peak fitting. Additionally, automatic element selection

as well as manual peak identification for Cd, Zn, and Te were performed, allowing a count

rate of approximately 3000 counts per second over a two minute collection time. This

characterization was conducted for the post fabrication surface treatment on devices in

Section 4.3.5, and the results of surface analysis are presented in 5.3.4.
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4.3 Investigating Parameters Affecting CdZnTe Frisch

Collar Device Performance

In this section the parameters that affect the performance of CdZnTe Frisch Collar devices

are experimentally investigated. Among these are the crystal geometry (aspect ratio and

length), insulator layer thickness, high voltage, crystal, and surface treatment.

4.3.1 Effect of crystal aspect ratio on performance of CdZnTe
Frisch collar devices

To investigate the effect of crystal aspect ratio on performance of CdZnTe Frisch collar

devices, specific designs were considered to fabricate the required devices. The CdZnTe

crystal was then sliced and fabricated into the designed devices. The experimental procedure

for device preparation and testing (current voltage characteristic measurement and pulse

height spectrum measurement) are detailed in this section.

4.3.1.1 Device designs

A specific strategy was followed to investigate the effect of the crystal aspect ratio on Frisch

collar devices’ spectral performance. Specifically, many devices were fabricated and tested

in both planar and Frisch collar configurations. Fig. 3.9 shows the slicing pattern on the

starting CdZnTe crystal to prepare the designed device. The details of device preparation

and testing are explained in sections 4.3.1.2 and 4.3.1.3. Note that for every single fabricated

device, the same series of spectral measurements was performed for both planar and Frisch

collar configurations. However, the current-voltage characteristic measurements were only

performed for bare devices. This section details the device designs and dimensions for all of

the fabricated CdZnTe detectors.

A piece of CdZnTe crystal (19.08 × 19.34 × 4.95 mm3) was acquired from Redlen

Technologies and was polished. Initially, the device was fabricated as a planar detector

(CZT1 in Fig. 3.9) and subsequently a Frisch collar detector. Thus, CZT1 is the starting

CdZnTe device for this investigation. To fabricate the required devices, CZT1 was sliced into
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smaller crystals and fabricated into planar devices. The device length L was kept constant,

and the device width W was reduced, thereby increasing the aspect ratio (L/W). The second

device prepared is also illustrated in Fig. 3.9 and labeled as CZT5. However, the dimensions

and names of subsequently fabricated detectors are in Table 3.1. The operating conditions

and gamma-ray sources used for this study are also in Table 4.1.

Table 4.1: The operating voltage applied to the detectors and the spectral testing time for
the Frisch collar geometry effect study.

Detector name Applied bias (V) Spectral testing time (s)
CZT1 800 (400 for 241Am) 1800 for 137Cs-900 for 241Am
CZT5 800 1800 for 137Cs-900 for 241Am
CZT6 800 3600 for 137Cs-1800 for 241Am
CZT7 800 5200 for 137Cs-2600 for 241Am
CZT8 800 7200 for 137Cs-3600 for 241Am
CZT9 800 9000 for 137Cs-4500 for 241Am
CZT10 800 10800 for 137Cs-5400 for 241Am
CZT11 800 12600 for 137Cs-6300 for 241Am

4.3.1.2 Device preparation

The CdZnTe devices were prepared as in Section 4.1. Again, the same fabrication process

was applied in each step to prepare the smaller device. Then, the lateral sides of the devices

were polished with a final slurry of 1.0 µm powder. The ends, however, were finished

with a fine slurry of 0.05 µm powders. Lapping and polishing was concluded when the

detector dimensions reached the final desired dimensions summarized in Table 3.1. Next,

current-voltage (IV) measurements and spectral measurements were performed on the planar

devices. The Frisch collar device was prepared by wrapping the planar device with two layers

of thin Teflon tape slightly past the full length of the device. Next, a thin Copper shim was

applied as the Frisch collar covering the full length of the device and subsequently connected

to the device cathode. After taking spectral measurements on the Frisch collar device, the

detector was resized (through slicing/grinding) to form the subsequent detector dimensions.
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4.3.1.3 Device testing: spectral measurement

The pulse height spectra for two cases of planar and Frisch collar devices were acquired

using standard calibration gamma-ray sources of 241Am and 137Cs. The CdZnTe detectors

(planar and Frisch collar), were placed in an aluminum test box for spectral collection, while

the detector cathode faced the gamma-ray source, which was placed in the same location

outside the aluminum test box as in Fig. 4.6. The aluminum test box was then connected to

an Ortec model 142A preamplifier through a BNC connector, and both were placed inside a

Copper Faraday cage, which shields the low energy electromagnetic waves and subsequently

minimizes the noise. The preamplifier was connected to a high-voltage supply, amplifier,

and pulse generator sitting outside of the Faraday cage. An oscilloscope, a multichannel

analyzer (MCA), and a personal computer were used to monitor and acquire the data. The

temperature and the relative humidity were recorded as 27±1◦ C and 60±1 %, respectively

for all experiments. An amplifier gain of 106 and shaping time of 1 µs were held constant

for the spectral measurements and the amplifier polarity was set to positive. The operating

high voltage bias was kept at 800 V (except for the one case mentioned in Table 4.1) and

kept the same for either detector whether planar or Frisch collar. The operating biases are

listed in Table 4.1. The spectral testing time also varies for different detectors. The spectra

were taken for a longer period of time for the smaller detectors to maintain good counting

statistics. The spectral testing times are listed in Table 4.1. The spectra for all devices are

presented in Section 5.3.1.

68



4.3.2 Effect of insulator layer thickness on performance of CdZnTe
Frisch collar devices

4.3.2.1 Device designs and preparation

To determine the effect of insulator (dielectric) thickness on the performance of Frisch collar

CdZnTe devices, six planar devices in a variety of sizes were fabricated from raw CdZnTe

materials acquired from Redlen Technologies and with different dielectric layer thicknesses.

The planar devices were labeled as Device 1 through Device 6. The sizes of the planar devices

and the names of the subsequently fabricated Frisch collar devices are given in Table 4.2.

Table 4.2: The device names and dimensions to study the effect of insulator layer thickness
on performance of CdZnTe Frisch collar devices. The aspect ratio is the planar device length
L over device average width W .

Planar Device Dimension No. of Frisch Frisch Collar Aspect
Name (mm) Collar Devices Device Names Ratio

Device 1 4.95×4.76×L=4.87 4 Device 1 #1 to #4 1.0
Device 2 4.70×4.56×L=6.03 4 Device 2 #1 to #4 1.3
Device 3 3.36×3.34×L=5.68 6 Device 3 #1 to #6 1.7
Device 4 3.96×4.01×L=11.60 13 Device 4 #1 to #13 2.9
Device 5 3.92×3.89×L=10.82 11 Device 5 #1 to #11 2.8
Device 6 5.01×4.73×L=19.63 7 Device 6 #1 to #7 4.0

Both planar and Frisch collar devices were prepared as in Section 4.1, and Teflon tape

was used as the dielectric layer. Then, the dimensions of each Teflon-wrapped device were

measured using a micrometer to evaluate the thickness of the dielectric layer. Once the

dielectric layer was applied, the conductive copper shim was cut to size and used as the

Frisch collar covering the entire lateral surface of the device and connecting to the device

cathode. As each Frisch collar device was prepared, a spectral performance measurement

was conducted. The conductive collar was then removed to fabricate each next Frisch collar

device by either adding or removing Teflon layer(s). Finally, a new conductive copper shim
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was added to complete the new Frisch collar device. The dielectric layer thicknesses for

Device 1 to Device 6 in Frisch collar configurations are also summarized in Table 4.3.

Table 4.3: The insulator layer thickness for Device 1 to Device 6.

Dielectric Thickness, t in (mm)
Frisch collar # Device 1 Device 2 Device 3 Device 4 Device 5 Device 6

#1 0.27 0.27 0.38 1.54 1.36 2.5
#2 0.16 0.16 0.32 1.34 1.16 1.6
#3 0.1 0.1 0.27 1.14 0.95 1.4
#4 0.05 0.05 0.22 0.94 0.81 1.25
#5 N/A N/A 0.16 0.8 0.7 1.1
#6 N/A N/A 0.1 0.7 0.6 0.95
#7 N/A N/A N/A 0.59 0.5 0.45
#8 N/A N/A N/A 0.5 0.39 N/A
#9 N/A N/A N/A 0.38 0.27 N/A
#10 N/A N/A N/A 0.27 0.16 N/A
#11 N/A N/A N/A 0.22 0.08 N/A
#12 N/A N/A N/A 0.16 N/A N/A
#13 N/A N/A N/A 0.08 N/A N/A

4.3.2.2 Device testing: current-voltage characteristic and spectral measure-
ment

Two measurements were taken with each device: a 137Cs pulse height spectrum and a

current-voltage (I-V) curve as explained in Sections 4.2.1 and 4.2.2. The I-V curve mea-

surement was performed only for the planar devices, while a 137Cs spectrum was recorded

for every device in all planar and Frisch collar configurations.

The pulse height spectra were acquired for devices in both planar and Frisch collar con-

figurations using standard 137Cs calibration sources. The CdZnTe detectors were mounted

in an aluminum test box such that the detector cathode faced the gamma-ray source, which

was placed outside the project box, except for Device 6, in which the source was placed

directly underneath the detector. The aluminum test box was then connected to a pream-

plifier with an appropriate connector. Device 1 to Device 3 were tested using an ORTEC

142A preamplifier through a BNC connector, while Device 4 to Device 6 were tested using

70



a Canberra 2001A preamplifier through an SHV connector. The aluminum test box and the

preamplifier were then placed inside a copper Faraday cage to minimize electronic noise, and

the preamplifier was connected to a high-voltage supply, amplifier (Canberra Model 2021),

and a pulse generator. An oscilloscope, a multichannel analyzer (MCA), and a personal

computer were used to monitor and acquire the data.

The temperature and the relative humidity were recorded as 23±2◦ C and 50±5 %,

respectively for all experiments, and an amplifier shaping time of 1 µs was held constant

for all spectra collected. However, the amplifier gain, the operating bias, and the device to

source distance were different. The bias was held constant for each device when operated

either as a planar or as a Frisch collar device. While data collection time varied for different

detectors, collection time was the same for each device in both planar and all Frisch collar

configurations. Settings and data collection times are in Table 4.4, and the results of the

spectral measurements are discussed in Section 5.3.2.

Table 4.4: The experimental setup to study the effect of insulator layer thickness on the
performance of CdZnTe Frisch collar devices. A different standard 137Cs gamma-ray source
was used for Device 6, and only this device was placed directly on the source.

Planar Device Amplifier Bias Device to Source Real Time
Name Gain (V) Distance (mm) (s)

Device 1 100X 736 23.6±0.1 3600
Device 2 100X 905 23.6±0.1 3600
Device 3 100X 1000 23.6±0.1 3600
Device 4 50X 1600 20.8±0.1 1800
Device 5 50X 1500 20.8±0.1 1800
Device 6 10X 3000 0 900

The I-V Curve Tracer was used to perform the I-V curve measurements (as in Sec-

tion 4.2.1) with the voltage increment set to 5.0 V and the delay at each voltage point set

to 0.5 seconds. Additionally, the maximum/minimum regulated voltage was set to ±1000

V for these measurements. The results of the I-V curve measurements are in Section 5.3.2.
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4.3.3 Effect of high voltage on performance of CdZnTe Frisch col-
lar devices

The CdZnTe Frisch collar device was probed with a 137Cs gamma-ray source at different

high voltages as mentioned in Section 4.2.3. Specially, the 4.7 × 4.7 × 9.5 mm3 CdZnTe

Frisch collar device in Section 4.2.3 was probed along the central line (row t on Figs. 4.8

and 4.9) at 1000V, 600V, 800V and 400V with collimated 662 keV gamma-rays. Pulse

height spectra were taken for one hour real time at each radiated point for the previously

mentioned high voltages with the highly collimated 137Cs gamma-ray source. The resulting

pulse height spectra are presented in Section 5.2.

4.3.4 Effect of crystal length on performance of CdZnTe Frisch
collar devices; experimental procedures and setups

The device preparation for this study is the same as that presented in Section 4.3.1; however,

the aspect ratios of the fabricated devices are unchanged (see Fig. 4.11). Accordingly, two

devices (Device ii to Device iii) were fabricated and tested through reshaping, Device iii

being fabricated from resizing Device ii. However, another device (with the same aspect

ratio) was fabricated from a separate ingot (Device i). During fabrication, the aspect ratio

was unchanged (L/W = 1.8) by shortening both device length and width. The designed

slicing/grinding patterns to fabricate the detectors are illustrated in Fig. 4.11, and the

fabricated CdZnTe Frisch collar detectors names and dimensions are in Table 4.5.

Next, the pulse height spectra for two cases of planar and Frisch collar devices were

acquired by using a standard calibration gamma-ray source of 137Cs. The CdZnTe detectors

(planar and Frisch collar) were placed in an aluminum test box for spectral collection, while

the detector cathode faced the gamma-ray source. The test box was then connected to a

preamplifier with an appropriate connector. Device i was tested using a Canberra 2001A

preamplifier though an SHV connector, while Device ii and Device iii were tested using

an ORTEC 142A preamplifier through a BNC connector. The aluminum test box and the

preamplifier were then placed inside a copper Faraday cage to minimize electronic noise
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L/W=1.8

Figure 4.11: The devices’ aspect ratio L/W is kept unchanged by shortening the device
sizes.

with the preamplifier being connected to a high-voltage supply, amplifier (Canberra Model

2021), and a pulse generator. Again, an oscilloscope, a multichannel analyzer (MCA), and

a personal computer were used to monitor and acquire the data. The temperature and the

relative humidity were recorded as 27 ± 5 ◦ C and 60±5%, respectively for all experiments.

An amplifier gain of 106X for the measurement with Device ii and Device iii was held

constant, while for the spectral measurement with Device i, the amplifier gain was set to

150X. However, an amplifier shaping time of 1 µs was held constant for all the spectral

measurements. The spectral testing times and the applied voltages are in Table 4.5, while

the spectra taken with all devices are presented in Section 5.3.3.

Table 4.5: The device names, dimensions, and the experimental setup to study the effect of
device length on performance of CdZnTe Frisch collar devices. A different standard 137Cs
gamma-ray source, preamplifier, and Al-test box were used for Device i.

Detector name Dimensions (mm) Applied bias (V) Testing time (s)
Device #i 12.50×12.50×L=23.00 3000 1800
Device #ii 4.81×4.84×L=8.80 968 3600
Device #iii 3.86×3.89×L=7.02 772 7200
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4.3.5 Post fabrication process: surface treatment (passivation)

CdZnTe device total leakage current consists mainly of bulk leakage current and surface

leakage current. As mentioned, the bulk leakage current depends strongly on bulk material

resistivity, while the morphology and stoichiometry at the surface of the device affects the

surface leakage current. Subsequently, this section investigates final surface treatment on

CdZnTe spectrometers following contact formation. To reduce the surface leakage current

and enhance the detector performance, surface treatments (passivation) have been widely

used in the fabrication process of CdZnTe detectors, applied mostly after contact deposi-

tion. Three major surface passivation methods have been reported for CdZnTe: deposition

of a dielectric material such as SiN and SiO2 [53], in situ growth of wide band gap II-VI

compound semiconductor heterostructures such as ZnS [54], and native oxide film coat-

ings [55–60]. The first two techniques require costly equipment, and sometimes elevated

temperatures. Unfortunately, such an environment can potentially degrade the CdZnTe de-

tector’s spectroscopic performance. Hence, they are not widely used for surface passivation

of CdZnTe; therefore, the focus of this section is native oxide film coating techniques.

Hydrogen peroxide (H2O2) was first used as an oxidizing agent on the surfaces of

CdTe [56], and later in another study, on the surfaces of CdZnTe [55]. Surface oxida-

tion using low energy atomic oxygen was shown to result in a lower level of leakage current

compared to the H2O2 treatments, which subsequently resulted in better detector perfor-

mance [61]. These studies on oxidizing of CdZnTe [55, 57, 62, 63] provide a basis for further

studies with different oxidizing agents such as NH4F/H2O2 [58–60]. Theses studies demon-

strated how surface treatments affect the CdZnTe device leakage current. However, few

works have been conducted on spectroscopic performance of CdZnTe planar detectors as

a result of surface treatment. Furthermore, no systematic study has been performed on

how surface treatment affects the spectroscopic performance of CdZnTe Frisch collar de-

tectors. Therefore, this section presents the experimental methods applied to investigate

the impact of final surface treatments on CdZnTe Frisch collar device. In particular, the
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section address varieties of mechanical and chemical surface treatments and their effects

on the performance of CdZnTe as a Frisch collar spectrometer along with their impacts on

leakage current. The atomic concentration of elements at the surface was determined using

the Electron Microprobe (EMP) technique before and after each treatment.

Consequently, six CdZnTe detectors were fabricated in planar and Frisch collar con-

figurations using CdZnTe crystals acquired from Redlen Technologies. The names and

specifications of the fabricated detectors are in Table 4.6. The details of detector prepa-

rations are explained later in this section (see Section 4.3.5.1), and device testing (taking

pulse height spectra and current-voltage characteristic curves) is explained in Section 4.3.5.2

through 4.3.5.4. The results of the device testing for the post fabrication surface treat-

ment are in Section 5.3.4, and the surface characterization of the devices is explained in

section 4.2.4. Once the original Frisch collar detector was fabricated and tested, surface

treatment (passivation) was performed only on the lateral sides of each planar detector,

while the detector contacts (ends) were protected using LOGITECH Plasticized bonding

wax (Detector 6 contacts were protected with APIEZON mounting wax). Later, the pas-

sivated planar detectors were fabricated into Frisch collar detectors, and the same series of

spectral and I-V measurements were performed.

Table 4.6: CdZnTe devices’ names, dimensions, and surface treatment methods. The un-
certainty in detector dimensions is ±0.02 mm, and L is the detector length.

Original CdZnTe Planar dimensions Lateral surface Method
detector name (mm) treatment

Detector 1 4.75×4.78×L=9.22 Mechanical Polishing
Detector 2 5.00×4.55×L=9.21 Chemical NH4F/H2O2

Detector 3 4.95×4.54×L=9.22 Chemical H2O2

Detector 4 4.97×4.50×L=9.24 Chemical NaClO3/H2O2

Detector 5 5.00×4.56×L=9.23 Chemical KClO3/H2O2

Detector 6 4.92×4.98×L=9.82 Mechanical Ion milling
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4.3.5.1 Device fabrication

Six different CdZnTe Frisch collar detectors were fabricated as described in Section 4.1, and

the CdZnTe detectors were labeled Detector 1 through Detector 6 (Table 4.6). The same

fabrication process was applied to prepare each detector in the original planar configuration.

For each original detector preparation, the lateral sides were polished with a final slurry of

1.0 µm alumina powder, while the ends were finished with a fine slurry of 0.05 µm alumina

powders; However, no further surface treatment was performed after the chemical etching

(2% bromine/methanol) and contact depositions (AuCl3). Therefore, the lateral sides of

each original detector have native bromine etched surfaces. The Frisch collar detector was

subsequently fabricated with Teflon tape covering slightly past the full length of the device

(see Section 4.1.4), while a thin copper shim used as the Frisch collar covered the full

length of the device (Section 4.1.4). The same dielectric thickness and the same conductive

collar length were used to fabricate each planar detector into a Frisch collar detector before

and after each surface treatment. For Detector 2 through Detector 5, gold wires (Alfa

Aesar, 0.005in diameter, 99.99% metal base) were attached to the anode and cathode using

conductive silver epoxy (Epoxy Technology, EPO-TEK H20E). To make a strong connection

between the Au wires and the contacts, the detectors were baked in an oven with an inert

atmosphere (nitrogen) at 90◦ C for 5 hours.

4.3.5.2 Post fabrication process 1: Mechanical

Polishing and grinding were performed on the lateral sides of Detector 1. LOGITECH Plas-

ticised Bonding Wax protected the contacts from the post fabrication surface treatment, and

then five different grinding/polishing methods were performed. This detector was labeled

after each surface treatment as Detector 1 #2 through Detector 1 #6 (Detector 1 #1 has the

native bromine etched surface). Once each treatment was performed, the bonding wax was

removed, and the planar device was fabricated into a Frisch collar detector. Later, the same

spectral and current-voltage (I-V) measurements were performed on Detector 1 #2 through

76



Detector 1 #6 (as detailed in Section 4.2). Note that before each treatment, bonding wax

was applied to protect the gold contacts; therefore, the same contacts were recovered for

Detector 1 #1 through Detector 1 #6. The summary of each surface treatment and its

application method (grinding with SiC paper and/or polishing with alumina powder) are in

Table 4.7.

Table 4.7: Post fabrication process 1: Mechanical treatment and the technique applied to
the lateral surface of Detector 1. Six detectors were fabricated through different treatment
on Detector 1, labeled as Detector 1 #1 to Detector 1 #6

Detector 1 # Steps Treatment Method Type
Detector 1 #1 Step 1 Etching 2%Br/Meth Native surface
Detector 1 #2 Step 2 Grinding SiC 1200 Grit
Detector 1 #3 Step 3 Grinding SiC 2400 Grit
Detector 1 #4 Step 4 Grinding SiC 4000 Grit
Detector 1 #5 Step 5 Polishing Alumina 1 micron
Detector 1 #6 Step 6 Polishing Alumina 0.05 micron

4.3.5.3 Post fabrication process 2: Chemical

The chemical surface treatment (passivation) was performed on Detector 2 through Detec-

tor 5 as the final surface treatment (see Table 4.6). LOGITECH Plasticised Bonding Wax

protected the contacts from the chemical surface treatment. The passivation solutions were

prepared by adding 10.76 g of the chemicals (NH4F, NaClO3, and KClO3) in turn listed in

Table 4.6 in 68 ml of deionized (DI) water and 32 ml of hydrogen peroxide (H2O2). For

Detector 3, only H2O2 was used as the oxidation agent. Each chemical passivation solution

was applied to the crystal surfaces for 10 minutes. Once the treatment was performed on

each detector, the bonding wax was removed, and the planar device was fabricated into

the Frisch collar detector. Later, the same spectral and current-voltage (I-V) measurements

were performed on Detector 2 through Detector 5 (Section 4.2). Before each surface treat-

ment, bonding wax was applied to protect the gold contacts; therefore, the same contacts

were recovered for Detector 2 through Detector 5 before and after passivation. The results

are in Section 5.3.4.
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4.3.5.4 Post fabrication process 3: Ion-mill

Ion milling of lateral sides was performed on Detector 6 using a Millatron ion mill equipped

with a Kaufman ion source. APIEZON mounting wax protected the contacts from the

surface treatment. Xenon gas was used as the ion source, while a beam current of 81 mA,

a beam voltage of 250 V, and an accelerator voltage of 250 V were held constant during

the milling process. Detector 6 was clamped to a cooled stage and milled for 90 minutes on

each lateral side. After ion milling one side, the ion chamber was opened and the detector

was flipped to mill all other lateral sides. After milling all four lateral sides, the protective

mounting wax was removed from the contacts, and the same spectral measurements and

current-voltage (I-V) measurements were performed on Detector 6 as well as surface analysis

using EDS on Detector 6. Later, the lateral sides of Detector 6 were polished with 1.0

µm alumina powders while the contact was protected as explained. Current-voltage (I-V)

measurements and a pulse height spectrum were collected for Detector 6, and the results

are in Section 5.3.4.

4.4 Angular Dependency of the Collimated CdZnTe

Detector

In the following section, the directional sensitivity of a 3.4 × 3.4 × 5.8 mm3 W-collimated

Frisch collar CdZnTe detector is investigated for two different collimator lengths: a 4 cm

Tungsten collimator and an 8 cm Tungsten collimator. Further, the relevant equations,

setups, and procedures are presented to help determine the relative change in detector

count rate as a function of irradiation angle.

4.4.1 Two-dimensional assembly

Figs. 4.12 through 4.16 show basic two-dimensional diagrams of the detector-collimator-

source assembly, which are used to analyze the expected count rate response. Using a point

gamma-ray source in the model, Figs. 4.12 through 4.16 show that as the point source moves
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on a circular path with respect to the detector center point, three different exposure regions

can be defined. These regions depend on the geometry and positions of the collimator and

detector, and the position of the source with respect to the detector-collimator assembly.

Tungsten
collimator

CdZnTe
detector

a
b

t

Detector-collimator
center line

L

c

d

Tungsten
collimator

CdZnTe
detector

a
b

t

Detector-collimator
center line

L

c

d

Figure 4.12: Diagram of two-dimensional model for the detector-collimator configuration.
The values b and c are the CdZnTe detector dimensions (in this work, 3.4 mm and 5.8 mm),
L is the collimator length, and t is collimator thickness.

For the designated source path, two critical angles are identified, labeled here as αc1

and αc2 (Fig. 4.13). Angle α, the source-detector angle, is defined as the angle between the

point source and the detector-collimator center line (Fig. 4.13), where the angle apex is at

the detector center. The first critical angle αc1 occurs at the point along the arc at which

the tungsten collimator begins to shield the detector from the point source (Fig. 4.13). The

second critical angle αc2 occurs at the point along the arc at which the detector becomes
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Figure 4.13: Diagram of two-dimensional model for detector-collimator-source positions
showing the two critical angles and the source position with respect to detector-collimator
assembly (r=50 cm).

completely shielded by the collimator (Fig. 4.13). Angle α is the only independent variable

as the source moves along its circular path of constant radius r for each particular test.

In the first region shown in Fig. 4.14, the source-detector angle ranges between zero

degrees and αc1. Consequently, the detector is entirely exposed to the point source. The

second region, shown in Fig. 4.15, describes the source-detector angles between αc1 and αc2.

Here, the detector is only partially shielded from the point source. In this second region,

the total gamma-ray flux emitted from the source is partially attenuated before reaching
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the detector. Finally, the third region shown in Fig. 4.16 is described by those angles that

are between αc2 and 90◦. Here, all gamma-ray emissions will intersect the collimator before

reaching the detector in this third region; hence the flux will be attenuated.

ω(α)

αc1

α

Region 1

Tungsten
collimator

CdZnTe
detector

ω(α)

αc1

α

Region 1

Tungsten
collimator

CdZnTe
detector

Figure 4.14: Diagram of two-dimensional model for detector-collimator-source position while
the source is in region 1.

The following assumptions were made to derive the relation between the counts and

the source-detector angle. First, it was assumed that the decrease in counts observed will

be a relative function with respect to the total gamma-ray attenuation coefficient, which

is a function of the collimator and detector material and the gamma-ray energy. In other
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Figure 4.15: Diagram of two-dimensional model for detector-collimator-source position while
the source is in region 2.
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Figure 4.16: Diagram of two-dimensional model for detector-collimator-source position while
the source is in region 3.
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words, the expected gamma-ray interactions in the detector can be normalized and scaled

appropriately for various gamma-ray energies and collimator materials. Next, to simplify

the geometry, the two angles α1 and α2 shown in Fig. 4.16 are approximated as equal to

the source-detector angle α, an approximation that incorporates little error provided that

the exposure angle between the point source and the detector, ω(α), is small. Indeed, for

geometries used in the experiment, also shown in Figs. 4.14 through 4.16, the exposure

angles are approximately 0.5 ± 0.1 degrees, hence allowing such a simplifying assumption

to be used. Using this assumption, for a specific source position and angle α in the third

region (Fig. 4.16), the gamma-ray flux is attenuated through an average shielding thickness,

t(α), termed the effective thickness.

The exposure angle, ω(α), can be described as follows. Retaining the definitions given

in Figs. 4.12 and 4.13, the shaded regions in the lower portion of Fig. 4.16, which form two

right triangles (note that the corner of the larger triangle is located at the point source),

yield:

(d/2) cos(γ) =

[
r −

(
d

2

)
sin(γ)

]
tan [ω(α)/2] , (4.1)

where,

γ = 90◦ − (α + β) , (4.2)

and β is defined as,

β = arctan (b/c) . (4.3)

By substituting β and γ into Equation 4.1 and rearranging, the following equation can be

obtained for the exposure angle,

ω(α) = 2 arctan

[
d/2 sin (arctan(b/c) + |α|)

r − d/2 cos (arctan(b/c) + |α|)

]
, (4.4)

where b and c are the dimensions of the CdZnTe bar detector (Fig. 4.12), d can be evaluated
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as (b2 + c2)1/2, and r is the distance between the source and the detector center (Fig. 4.13).

Closer inspection reveals that ω(α) is an even function, due to symmetry, and increases

with α. The angular limits under investigation range from ±17◦; hence ω(α) has values of

0.39◦and 0.57◦at α-values of 0◦and ±17◦, respectively.

Since the incident gamma-rays on the CdZnTe detector would be absorbed based on the

detector efficiency, ε, it would be important to consider the effect of the CdZnTe total linear

attenuation coefficient for the incident gamma-ray energy. Since the exposure angle ω(α) is

small, and the detector-source distance, r, is much greater than the detector sizes, b and c,

it would be an appropriate assumption to consider parallel beams of gamma-rays impinging

upon the detector at a given angle, α (Fig. 4.17).

To evaluate the detector efficiency, ε, at angles other than zero degrees, the following

assumption is made. The detector is rotating toward the source in a way that the detector

face is always perpendicular to the parallel beam of incident gamma-rays for the same ω(α)

evaluated by Equation 4.4. This assumption is illustrated in Fig. 4.17. The equivalent

CdZnTe detector at the source-detector angles other than zero degrees is shown by the

hatched rectangle in Fig. 4.17 and named as the virtual detector. The virtual CdZnTe

detector needs to have the same amount of volume (or area in 2-dimensional analysis) as

the original CdZnTe detector. The virtual CdZnTe detector should also have the same

exposure angle ω(α) to the point source and the exact detector-source distance, r, as the

original CdZnTe detector. To maintain the equal detector-source distances, the center of

the two detectors needs to be at the same point (Fig. 4.17). To find the dimensions of the

virtual detector, geometrical relations were employed. For the triangle ABC in Fig. 4.17,

AB = AC cos(γ) or AB = d cos(γ). Considering the same volume for both detectors, the

following expression is valid:

AB tv = b c , (4.5)

where b and c are the original CdZnTe detector dimensions (Fig 4.12), and tv is the thickness

of the virtual detector exposed to the point source and varying with angle α (Fig. 4.17);
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Figure 4.17: The CdZnTe detector and the virtual CdZnTe detector (bottom figures) at any
angle α. The total areas of the two detectors are equal.
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Therefore,

tv =
b c

d cos(γ)
. (4.6)

Note that the angle, γ, is defined in Equation 4.2 and is a function of the angle, α.

The dimensions of the virtual detector are well-defined. As mentioned, it is assumed that

the parallel beams are impinging upon the virtual detector of thickness tv, for any angle

α. Hence, if one gamma-ray interaction within the CdZnTe detector generates a detectable

pulse, then the CdZnTe detector efficiency is given by [64, 65] as:

ε(α) = 1− exp[−σc tv] . (4.7)

Where, σc is the CdZnTe total linear attenuation coefficient for the incident gamma-ray

energy. For CdZnTe in this study, the total linear attenuation coefficient for the gamma-ray

energy of 412keV emitted by 198Au is given as 0.60 cm−1 [66]. Lastly, the virtual detec-

tor approximation is only a simplistic analytical method to predict gamma-ray response,

whereas a more rigorous and accurate result may be found through numerical methods.

The detector count rate in the first region (Fig. 4.14) is proportional to the product of the

CdZnTe detector efficiency and exposure angle in the first region. However, in the second

region (Fig. 4.15), the tungsten collimator dramatically impacts the total number of counts

observed, although the detector is only partially shielded by the tungsten collimator. In the

third region, the gamma-ray flux is completely shielded by the tungsten collimator, yet the

effective thickness, t(α), decreases with increasing α (Fig. 4.16). The decrease in effective

thickness in the third region results in an increase in count rate as α increases. Consequently,

the predicted number of counts, N(α), in the first and third regions (Figs. 4.14 and 4.16)

can be expressed as,

N(α) = η ω(α) ε(α) for 0◦ ≤ α ≤ αc1 , (4.8)
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and,

N(α) = η ω(α) ε(α) exp [−σw t(α)] for αc2 ≤ α ≤ αmax , (4.9)

where η is a normalization factor, and σw is the total linear attenuation coefficient of the

collimator material at the desired energy. The gamma-ray energy of interest in this work is

the 412 keV emission from 198Au, in which the attenuation coefficient for tungsten is 3.5319

cm−1. The effective thickness, t(α), can be easily obtained from Fig. 4.16 as,

t(α) =
t

sin(α)
, (4.10)

where t is the nominal collimator wall thickness (Fig. 4.12).

The value of N(α) can be obtained in the second region from Fig. 4.15 by considering

the entire exposure angle as a sum of the angle for which part of the detector is unshielded

(ω1(α) on Fig. 4.15) and the angle for which attenuation occurs (ω2(α) on Fig. 4.15), such

that,

ω(α) = ω1(α) + ω2(α) . (4.11)

In Equation 4.11, ω1(α) is defined as the angle between the point source and the portion of

the detector for which no shielding occurs, and ω2(α) is the angle between the point source

and the portion of the detector that is shielded by the collimator. From Fig. 4.15, ω1(α)

and ω2(α) can be evaluated as,

ω1(α) = 0.5 ω(α) + ω′ , (4.12)

and,

ω2(α) = 0.5 ω(α)− ω′ , (4.13)
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where from the shaded triangle, SMX, in Fig. 4.15,

ω′ = α− θ(α) . (4.14)

In the triangle defined as XY Z in Fig. 4.15 with the dimensions given in Fig. 4.12, θ(α)

can be written as,

θ(α) = arctan

[
b+ a

L+ h(α)

]
. (4.15)

By applying the fundamental theorem of similar triangles to XY Z and XSW in Fig. 4.15,

where SW
XW

= Y Z
XZ

, h(α) can be found by solving the following equation,

r sin(α) + b/2

h(α) + c/2 + r cos(α)
=

b+ a

L+ h(α)
, (4.16)

as,

h(α) =
L [r sin(α) + b/2]− (b+ a) [r cos(α) + c/2]

(b+ a)− (r sin(α) + b/2)
, (4.17)

where L is the length of the collimator (Fig. 4.12). Given the above expressions, the nor-

malized total counts, N(α), in the second region are described by,

N(α) = η ε(α) [ω1(α) + exp [−σW t(α)] ω2(α)] for αc1 ≤ α ≤ αc2 . (4.18)

Over the range of source-detector angles, Equations 4.8, 4.9, and 4.18 are the main expres-

sions for predicting the behavior of the normalized total number of counts with respect to

source-detector angle variations.
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4.4.2 Setup arrangement for directional sensitivity of the colli-
mated CdZnTe Frisch collar device

This section details CdZnTe device preparation, collimator alignment, gold sample prepa-

ration, and data collection for directional sensitivity of collimated Frisch collar device.

4.4.2.1 Device preparations

The CdZnTe Frisch collar detector preparation for this experiment is similar to that de-

scribed in Section 4.1. A 3.4 × 3.4 × 5.8 mm3 Frisch collar detector was fabricated from

bulk CdZnTe material acquired from eV Products. Later, thin Au wires were attached to

the anode and cathode using conductive silver epoxy. To make a strong connection between

the Au wires and the contacts, the device was baked in an oven at 50◦C for 11 hours.

4.4.2.2 Device collimator alignment

Two different lengths of tungsten collimators were selected to help determine the spatial

resolution of collimated Frisch collar detectors. The first collimator type was 4 cm long with

a 4.8 mm inside width and a 1 mm wall thickness. The second was 8 cm long with a 4.7 mm

inside width and a 0.5 mm wall thickness. Both collimators were fabricated by Tungsten Co.

using Electrical Discharge Machining (EDM) techniques. Since the angular dependency

experiment was conducted for both 4 cm and 8 cm long collimators, the experimental

arrangement described below was performed for both collimators individually.

To investigate the directional-sensitivity of gamma-ray detection with respect to the

source-detector angle, it was important to perform the experiment with the detector-source

distance considerably larger than the dimensions of the detector. In this manner, the expo-

sure angle, ω(α), could be kept small to reduce any measurement error of the source-detector

angle. Therefore, an aluminum test stage, shown in Fig. 4.18, was designed and built such

that the detector-source distance was constant (50 cm) for a variety of source-detector an-

gles. A laser pointer (Fig. 4.18) facilitated accurate source positioning with respect to the

collimator center line.
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Figure 4.18: The aluminum test stage inside the Faraday cage and the source holder and
laser pointer for source positioning.

Once the collimator was aligned, its position was fixed inside the aluminum test box as

illustrated in Figs. 4.19 and 4.20. To reduce the effect of shielding from the aluminum box,

a window was cut and covered with thin aluminum foil, thereby reducing the aluminum

thickness between the source and detector while retaining electro-magnetic shielding. Next,

the fabricated CdZnTe detector with a Frisch collar and Au connecting wires was placed

inside the tungsten collimator such that the cathode faced the gamma-ray point source

(Fig. 4.20). Then, the CdZnTe detector sides were covered with plastic wrapping before

positioning inside the collimator to insulate the device and center the detector. Once in

place, the CdZnTe detector was ready for spectral data collection.

4.4.2.3 Gold sample preparation

Activated 198Au gamma-ray sources were prepared through neutron activation by irradiating

13± 2 mg samples of Au foils in the Kansas State University TRIGA Mk II nuclear reactor

core. Activation was conducted for five minutes under a measured fast neutron flux of

3.5×1012 cm−2 s−1 and thermal neutron flux of 4.3×1012 cm−2 s−1. The Au samples were
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Figure 4.19: The aluminum test box with the 4 cm long W-collimated CdZnTe detector.

Figure 4.20: The 4 cm long tungsten collimator and the CdZnTe detector with the gold
wires. The cathode faces in the direction of radiation.
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sliced from commercially available (Alpha Aesar), 99.95% purified, 0.025 mm thick Au foil.

To avoid contamination, the Au foils were sliced and weighed in a class 1000 clean room.

4.4.2.4 Collecting data for directional sensitivity of collimated CdZnTe Frisch
collar devices

The detector was connected to an ORTEC model 142A preamplifier. To minimize electronic

noise, the aluminum test stage and preamplifier were placed inside a copper Faraday cage.

The measurement system consisted of an amplifier, an oscilloscope, a multichannel analyzer

(MCA), a high voltage supply, and a personal computer, all positioned outside the Faraday

cage. The temperature and the relative humidity were recorded as 27◦C and 60%, respec-

tively. Also, operating parameters were held constant at a voltage bias of 1000 V, amplifier

gain of 700X, and shaping time of 1 µs.

All data collected in this study were taken with the same CdZnTe Frisch collar detector.

The gamma-ray calibration sources have low activity and hence were unable to provide

adequate counts in a reasonable time period to investigate the device spatial resolution.

Thus, pulse height spectra were collected from the activated Au foils (see Section 4.4.2.3)

at a variety of source-detector angles, each for 60 minutes using the two different tungsten

collimators. The 198Au sample was placed in the sample holder shown in Fig. 4.18 for each

angular measurement. Then, all Au foils were corrected for mass differences by normalizing

the observed counts to a 13 mg Au sample with the accuracy of the mass scale being limited

to ±0.5 mg. Error propagation was used to determine the error contributions from the

radiation counting and Au foil mass measurement error. The results are in Section 5.5.
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4.5 Array of CdZnTe Frisch Collar Detectors and the

Corresponding Readout Electronics

The details of electronic fabrication and setup for an array of 4x4 CdZnTe Frisch collar

detectors (total of sixteen devices) have been published previously in [67]. The primary

purpose of developing an array of CdZnTe detectors is to increase the detecting area and the

detection efficiency. The readout electronics for testing the array of CdZnTe detectors were

developed and built at Brookhaven National Laboratory (BNL). This readout electronics are

capable of testing two arrays of 4x4 CdZnTe detectors. Two arrays of 4x4 CdZnTe Frisch

collar detectors (thirty two CdZnTe detectors) were tested with the readout electronics

developed at BNL. Similar electronics are still under development at Kansas State University

(KSU) at the Electronics Design Laboratory (EDL). Specifically, sixteen of the CdZnTe

Frisch collar detectors have been fabricated and tested individually at the S.M.A.R.T. lab

at KSU in the same fashion as described in Sections 4.1 and 4.2. One of these detectors is

shown in Fig. 4.21. The sixteen detectors fabricated at S.M.A.R.T. lab KSU have average

dimensions of (4.7±0.2) × (4.7±0.2) × (9.5±0.05) mm3.

Figure 4.21: CdZnTe Frisch collar detector fabricated at S.M.A.R.T. laboratory at KSU.
The picture is taken at Brookhaven National laboratory (BNL) after delivery of the devices.

The sixteen Frisch collar detectors fabricated at KSU along with sixteen other Frisch

collar detectors were later assembled into two arrays of 4x4 detectors at BNL. The module

of 16-detectors is shown in Figs. 4.22 and 4.23. A low dielectric material (Roger 4003) was

used for the printed circuit board (PCB) substrate to keep noise level low (Figs. 4.22).
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Figure 4.22: An array of 16-CdZnTe Frisch collar detectors. The detectors were mounted
on the printed circuit board (PCB) at Brookhaven National laboratory (BNL).

Figure 4.23: An array of 16-CdZnTe Frisch collar detectors, before and after gluing the
cathode connections. Courtesy of Aleksey Bolotnikov at BNL.

The Data Acquisition (DAQ) system designed for the radiation detection consists of

two Application Specific Integrated Circuits (ASICs). Both ASICs were developed at BNL;

the first one was a 16-channel low noise preamplifier for CdZnTe detector readout, and

the second one was a Peak Detector/Derandomizer (PDD). The preamplifier board and its

components are shown in Fig. 4.24. The test box including preamplifier board, PDD board,

two detector modules, and controller board is shown in Fig.4.25.
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Figure 4.24: The preamplifier board for the array of 16 CdZnTe Frisch collar detectors.

Figure 4.25: Close view of preamplifier board with two CdZnTe detector modules. Sixteen
of the individual detectors were fabricated and tested at S.M.A.R.T. laboratory at KSU.
The two modules of 16-detectors were mounted at Brookhaven National laboratory (BNL).
Courtesy of Aleksey Bolotnikov at BNL.

The preamplifier ASIC keeps the output stable to a maximum of 150 nA leakage current

from the CdZnTe detectors (due to its continuous reset system). Also the preamplifier ASIC

input transistor and the shaping circuit are optimized for the CdZnTe detector application

to keep the noise level low. The preamplifier ASIC used a programmable gain (33 mV/fC

to 200 mV/fC) and peaking time (0.6 µs to 4.0 µs) to amplify and shape the signals from

each 16-channel detector module [67].
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The output signals from the two preamplifier ASICs are processed and buffered in a

PDD (Peak Detector/Derandomizer) ASIC. The PDD ASIC, a 32:1 multiplexer, uses analog

techniques to concentrate the data before digitization; thus, for signals arriving at any of its

32 channel inputs, the PDD ASIC provides amplitude and timing signals in analog format

and a channel number in digital format. The amplitude and timing from the PDD ASIC are

digitized by two 12-bit analog-to-digital converters (ADC) mounted on the controller board

(see Fig. 4.25). Then, a Field-Programmable Gate Array (FPGA) on the controller board

collects and sends all the digitized information to a computer through a universal serial bus

(USB), which is controlled by a microcontroller. The computer has DAQ software to control

the system and process the data [67]. The final electronic readout package within the test

box is presented in Fig. 4.26.

Figure 4.26: The two detector modules with the preamplifier board in a test box. Courtesy
of Aleksey Bolotnikov at BNL.

The results of the primary spectral test on the sixteen CdZnTe Frisch collar detectors

with 137Cs are shown in Appendix B (the setups are explained on the figures). These primary

spectral test were performed at S.M.A.R.T. lab at KSU. As explained in this section, the

detector arrays were later tested at BNL. The detector arrays were biased at -1800 V, and

the peaking time of the preamplifiers was set to 2.4 µs. The results of the uncollimated

137Cs, 241Am, and 133Ba gamma-ray sources are presented in Section 5.6 [67].

97



Chapter 5

RESULTS AND DISCUSSION

5.1 Primary Results of Gamma-Ray Spectroscopy with

CdZnTe Detectors

The primary results of gamma-ray spectroscopy with a 3.4mm × 3.4mm × 5.7mm CdZnTe

semiconductor Frisch collar detector are published [25]. For this study, pulse height spectra

were collected from gamma-rays sources of 241Am, 57Co, 133Ba, 198Au, 137Cs and 235U, and

the 241Am, 57Co, 133Ba, and 137Cs samples were standard commercially available, calibration

sources. The 198Au was prepared through an (n,γ) reaction by activating a 13 mg sample of

gold foil in the Kansas State University TRIGA Mk II nuclear reactor core. The 235U source

was a 93 % enriched 235U-nitride solution. As explained in Section 4.2.2, the electronic

settings were consistent for all measurements, and energy resolutions reported for gamma-

ray photopeaks are without any electronic corrections.

An energy resolution of 9.1 % (5.41 keV) FWHM for the 59.5 keV spectral line of 241Am

was obtained, which is shown in Fig. 5.1 and does not consider any contributions from elec-

tronic noise. Thus, the low noise floor and the high resolution of the device allow the discern-

ment of Cd and Te X-ray escape peaks, as labeled near 35 keV. Next, Fig. 5.2 shows 57Co

spectrum where the energy resolution at the 122 keV photopeak is 4.9 % (5.99 keV) FWHM,

and the 136 keV photopeak is clearly observed as a small peak on the right side of the 122

keV photopeak. The Cd and Te X-ray escape peaks are also visible.
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Figure 5.1: Room temperature spectra of a 241Am source from the 3.4mm × 3.4mm ×
5.7mm CdZnTe semiconductor detector.

Figure 5.2: Room temperature spectra of a 57Co source from the 3.4mm × 3.4mm × 5.7mm
CdZnTe semiconductor detector.
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Figs. 5.3 through 5.6 display the energy spectra for 133Ba, 198Au and 137Cs, respectively.

First, an energy resolution of 7.6% (6.04 keV) FWHM was achieved for the 80 keV photopeak

of 133Ba as shown in Fig. 5.3. Then, the 356 keV photopeak of 133Ba exhibited an energy

resolution of 2.3% (8.29 keV) FWHM (see Fig. 5.4). The full energy peaks corresponding

to the 276 keV, 302 keV, and 382 keV emission energies of 133Ba are also clearly present in

Fig. 5.4. Additionally, the 20 keV low noise cut-off makes the device capable of detecting

the cesium (Cs) X-rays seen in Fig. 5.3. Next, the 198Au spectrum is illustrated in Fig. 5.5

where the 412 keV full energy peak resolution is 2.3% (9.31 keV) FWHM. Again, the Cd

and Te X-ray escapes are observable as is the 662 keV photopeak of 137Cs with 1.4% (9.6

keV) FWHM energy resolution. The Compton continuum and backscatter peak are clearly

seen in Fig. 5.6. Due to low noise, barium X-rays are also easily identified.

Figure 5.3: Room temperature spectra of a 133Ba source from the 3.4mm × 3.4mm × 5.7mm
CdZnTe semiconductor detector at low energies.
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Figure 5.4: Room temperature spectra of a 133Ba source from the 3.4mm × 3.4mm × 5.7mm
CdZnTe semiconductor detector at high energies.

Figure 5.5: Room temperature spectra of a 198Au source from the 3.4mm × 3.4mm × 5.7mm
CdZnTe semiconductor detector at high energies.
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Figure 5.6: Room temperature spectra of a 137Cs source from the 3.4mm × 3.4mm × 5.7mm
CdZnTe semiconductor detector at high energies.

Fig. 5.7 shows the energy spectrum of 235U obtained from a low-activity 93% enriched

235U-nitride solution. The distance between the detector and the source was approximately

5 cm, and the exposure time was 20 hours. All expected energy emissions along with their

branching ratios are illustrated in Fig. 5.7. The clearly distinguishable spectral lines of 235U

(Fig. 5.7) confirm that the insulated Frisch collar design incorporating bar-shaped CdZnTe

material is fully capable of radioactive material identification.

Given that the energy resolution presented for the photopeaks is without any electronic

correction. The pulser energy resolution (2.9% FWHM at 191 keV) in Fig. 5.2 represents

noise contributions to the detector resolution. The standard deviation, SD (FWHM=2.3

SD), corresponding to the resolution of a full energy peak, is the quadrature sum of the

standard deviation values for the detector and the value due to the noise,

SD2 = SD2
detector + SD2

noise , (5.1)

in which the standard deviation, SD, has the units of energy. Clearly, in the present
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Figure 5.7: Room temperature spectra of a 235U source from the 3.4mm × 3.4mm × 5.7mm
CdZnTe semiconductor detector at high energies.

case, electronic noise contributes significantly to the resolution degradation; hence, reducing

electronic noise in the present system significantly improved energy resolution.

5.2 Charge Collection Efficiency Measurement Results

and the Effect of High Voltage on CCE

The primary results of characterizing a 4.7mm × 4.7mm × 9.5mm CdZnTe Frisch collar de-

tector with a highly collimated 662 keV gamma-ray have been submitted for publishing [68],

and the experimental setup and procedure are in Section 4.2.3. Subsequently, collected spec-

tra (Figs. 5.8 through 5.15) from the collimated 137Cs gamma-ray source with the 4.7 × 4.7

× 9.5 mm3 CdZnTe Frisch collar device (see sections 4.2.3 and 4.3.3) prove the uniformity

of device response to gamma-rays, which is further confirmed by plotting the peak channel

number of each spectrum versus the irradiated points as in Figs. 5.16 and 5.17.
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Figure 5.8: Pulse height spectra collected from a collimated 137Cs gamma-ray source with
the 4.7 × 4.7 × 9.5 mm3 CdZnTe Frisch collar device. The Frisch collar device was probed
with a highly collimated gamma-ray source along row-r at 1200V for two hours real time.

Figure 5.9: Pulse height spectra collected from a collimated 137Cs gamma-ray source with
the 4.7 × 4.7 × 9.5 mm3 CdZnTe Frisch collar device. The Frisch collar device was probed
with a highly collimated gamma-ray source along row-v at 1200V for two hours real time.
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Figure 5.10: Pulse height spectra collected from a collimated 137Cs gamma-ray source with
the 4.7 × 4.7 × 9.5 mm3 CdZnTe Frisch collar device. The Frisch collar device was probed
with a highly collimated gamma-ray source along row-t at 1200V for two hours real time.

Figure 5.11: Pulse height spectra collected from a collimated 137Cs gamma-ray source with
the 4.7 × 4.7 × 9.5 mm3 CdZnTe Frisch collar device along row-t at 1200V. The Frisch
collar device was probed with a highly collimated gamma-ray source along row-t at 1200V
for two hours real time. The measurement setup and equipment are on the figure.
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Figure 5.12: Pulse height spectra collected from a collimated 137Cs gamma-ray source with
the 4.7 × 4.7 × 9.5 mm3 CdZnTe Frisch collar device. The Frisch collar device was probed
with a highly collimated gamma-ray source along row-t at 1000V for one hour real time.

Figure 5.13: Pulse height spectra collected from a collimated 137Cs gamma-ray source with
the 4.7 × 4.7 × 9.5 mm3 CdZnTe Frisch collar device. The Frisch collar device was probed
with a highly collimated gamma-ray source along row-t at 800V for one hour real time.
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Figure 5.14: Pulse height spectra collected from a collimated 137Cs gamma-ray source with
the 4.7 × 4.7 × 9.5 mm3 CdZnTe Frisch collar device. The Frisch collar device was probed
with a highly collimated gamma-ray source along row-t at 600V for one hour real time.

Figure 5.15: Pulse height spectra collected from a collimated 137Cs gamma-ray source with
the 4.7 × 4.7 × 9.5 mm3 CdZnTe Frisch collar device. The Frisch collar device was probed
with a highly collimated gamma-ray source along row-t at 400V for one hour real time.
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Figure 5.16: The peak channel of photopeak for the irradiated points of the 4.7 × 4.7 ×
9.5 mm3 CdZnTe Frisch collar device. The Frisch collar device was probed with a highly
collimated gamma-ray source of 137Cs along row-r, row-t (central line) and row-v at 1200V.
The error bars represent the photopeak FWHM in channel.

Figure 5.17: The peak channel of photopeak for the irradiated points of the 4.7 × 4.7 ×
9.5 mm3 CdZnTe Frisch collar device. The Frisch collar device was probed with a highly
collimated gamma-ray source of 137Cs along row-t (central line) at different voltages of
1200V, 1000V, 800V, 600V and 400V applied to anode (collecting electrode). The error bars
represent the photopeak FWHM in channel and are for the data points collected at 1200V.
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As plotted in Fig. 5.16, the peak channel of the photo peak remained unchanged as the

collimated gamma-ray source probed almost two-thirds of the device length (from column 1

to column 5) and for the entire device width (columns r, t and v). This consistency in peak

channel number on each collected spectrum with respect to irradiated points along the device

width and length is clearly visible from the spectra presented in Figs. 5.8 through 5.11, as

well.

The peak channel number on each collected spectrum along the device central line (row

t) at different applied voltages (Section 4.3.3) is presented in Fig. 5.17, where the peak

channel of the photo peak remained unchanged as the collimated gamma-ray source probed

almost two-thirds of the device length (from column 1 to column 5) even at the low ap-

plied voltage of 400V. This uniform response is also observed from the spectra presented in

Figs. 5.10 through 5.15. Comparing the experimental results presented in Fig. 5.17 and the

theoretical prediction of the CCE for the same device in Fig. 3.29 reveals that the device

response follows the prediction for a variety of applied voltages. Indeed, the comparison

between the theoretical prediction of CCE (explained in Section 3.1.3) and the experimen-

tal results (normalized peak channel number) is well illustrated in Figs. 5.18 through 5.22.

The experimental results together with the theoretical confirmation on the 4.7 × 4.7 × 9.5

mm3 CdZnTe Frisch collar device clearly prove that in spite of non-uniform electric field

distribution within the device as well as relatively low electric field distribution near the

cathode region [69], the Frisch collar device responds very uniformly to gamma-rays. Even

though the electric field distribution is relatively low near the cathode region, device per-

formance is actually enhanced in that region. In other words, the overall enhancement on

device spectral performance is so remarkable that sub-0.9% FWHM energy resolution at

662 keV is achieved without any electronic correction (Fig. 3.8) for the 4.7 × 4.7 × 9.5 mm3

CdZnTe Frisch collar device used in this study.
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Figure 5.18: The CCE profile at 1200V applied to the anode (collecting electrode) along
the central line of the 4.7 × 4.7 × 9.5 mm3 CdZnTe Frisch collar device. The experimental
data points are the normalized peak channel of photopeak for the irradiated points (row-t)
of the Frisch collar device. The error bars represent the photopeak FWHM at 662 keV.

Figure 5.19: The CCE profile at 1000V applied to the anode (collecting electrode) along
the central line of the 4.7 × 4.7 × 9.5 mm3 CdZnTe Frisch collar device. The experimental
data points are the normalized peak channel of photopeak for the irradiated points (row-t)
of the Frisch collar device. The error bars represent the photopeak FWHM at 662 keV.
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Figure 5.20: The CCE profile at 800V applied to the anode (collecting electrode) along the
central line of the 4.7 × 4.7 × 9.5 mm3 CdZnTe Frisch collar device. The experimental data
points are the normalized peak channel of photopeak for the irradiated points (row-t) of the
Frisch collar device. The error bars represent the photopeak FWHM at 662 keV.

Figure 5.21: The CCE profile at 600V applied to the anode (collecting electrode) along the
central line of the 4.7 × 4.7 × 9.5 mm3 CdZnTe Frisch collar device. The experimental data
points are the normalized peak channel of photopeak for the irradiated points (row-t) of the
Frisch collar device. The error bars represent the photopeak FWHM at 662 keV.
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Figure 5.22: The CCE profile at 400V applied to the anode (collecting electrode) along the
central line of the 4.7 × 4.7 × 9.5 mm3 CdZnTe Frisch collar device. The experimental data
points are the normalized peak channel of photopeak for the irradiated points (row-t) of the
Frisch collar device. The error bars represent the photopeak FWHM at 662 keV.

Nonetheless, a feature on all spectra (Figs. 5.8 through 5.15), especially near the anode

radiated data points (columns 5, 6 and 7), needs to be addressed. On all spectra collected

from irradiating the device near the anode a little hump representing the 662 keV remains

unchanged. The feature appears due to the non-collided 662 keV gamma-rays, which screen

through the lead collimator edges and interact within regions of the device outside the

probed area. These low flux un-collided 662 keV gamma-rays interact in other regions of

the device with better CCE profile (regions between columns 1 to 5) causing a secondary

spectrum, clearly seen as a new feature at column 6 of all spectra (Figs. 5.8 through 5.15).
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5.3 Investigating Parameters Affecting Device Perfor-

mance

This section addresses the results of the studies (experiments and the theoretical confir-

mations) on parameters with significant impact on performance of CdZnTe Frisch collar

device. Among those are the effects of crystal geometry (device aspect ratio), insulator

layer thickness, device length and surface treatment.

5.3.1 Frisch Collar Geometry Effect Results

The results of crystal geometry and the aspect ratio on the performance of the CdZnTe Frisch

collar detector were published previously in [70]. The theoretical considerations for this

study are in Section 3.2.1.1, and the experimental procedure and setup are in Section 4.3.1,

while the results follow in this section.

5.3.1.1 Spectral testing results for the Frisch collar geometry effect

Fig. 5.23 through Fig. 5.28 display the energy spectra for the devices mentioned in Sec-

tion 4.3.1 and shown in Fig. 3.9 with standard gamma-ray sources of 241Am and 137Cs.

Fig. 5.27 shows that the Frisch collar effect begins to occur for the devices with a minimum

aspect ratio near 1.0 for the 662 keV gamma-rays. Furthermore, the Frisch collar enhances

the device performance further when the device aspect ratio (AR) is greater than 1.5. The

energy spectra collected from 137Cs for the devices with the smallest and greatest aspect

ratios (CZT1 and CZT11, respectively) are also shown in Figs. 5.23 and 5.25. Clearly, the

Frisch collar offers no appreciable energy resolution enhancement for 662 keV gamma-rays

for CZT1 with AR=0.26 (Figs. 5.23 and 5.27); however, the energy resolution enhance-

ment is significant (2.3% FWHM at 662 keV) for the Frisch collar CZT11 with AR=1.92

(Figs. 5.25 and 5.27).
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Figure 5.23: Pulse height spectra collected from CZT1 using a 137Cs source for both planar
and Frisch collar configurations.

Figure 5.24: Pulse height spectra collected from CZT1 using a 241Am source for both planar
and Frisch collar configurations.
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Figure 5.25: Pulse height spectra collected from CZT11 using a 137Cs source for both planar
and Frisch collar configurations.

Figure 5.26: Pulse height spectra collected from CZT11 using a 241Am source for both planar
and Frisch collar configurations.
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Figure 5.27: Normalized pulse height spectra collected from devices labeled as follows:
CZT1, CZT5, CZT6, CZT7, CZT8, CZT9, CZT10 and CZT11 in both planar and Frisch
collar configuration using an 137Cs source.

Figure 5.28: Normalized pulse height spectra collected from devices labeled as follows:
CZT1, CZT5, CZT6, CZT7, CZT8, CZT9, CZT10 and CZT11 in both planar and Frisch
collar configuration using an 241Am source.
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Energy resolution enhancement by the Frisch collar for the 59.5 keV gamma-rays is not

as noticeable for the devices mentioned in Section 4.3.1 and shown in Fig. 3.9 (see Fig. 5.28).

The photoelectric linear absorption coefficient for CdZnTe is approximately 40 cm−1 for 59.5

keV emitted by 241Am [66]; therefore, 90% of the photons were absorbed in the first 575

microns of material, which limits the variance in the electronically induced signal, thereby

having an effect similar to that of a single carrier device. This finding is experimentally

verified by collecting the 241Am energy spectra, which are demonstrated in Figs. 5.24, 5.26,

and 5.28 (for CZT1 through CZT11, respectively).

This effect can be predicted from the weighting potential profiles illustrated in Figs. 3.10

through 3.17. Specifically, the Frisch collar effect improves energy resolution by negating

the severe trapping effects of holes, primarily due to the nonlinear weighting potential near

the anode region. Hence, the Frisch collar device performs as a single carrier device for

which maintaining a sharp, nonlinear weighting potential near the anode region (collecting

electrode) is vital. This becomes essential for high energy gamma-rays, where more uniform

gamma-ray interactions occur throughout the entire device volume. Such interactions create

an average uniform distribution of electron-hole pair excitation through the detector. A

numerical solution of the weighting potential for the Frisch collar devices exhibits that the

nonlinearity effect does not penetrate the bulk of the device with the AR ≤ 1.0 (Figs. 3.10

through 3.12). Figs. 3.10 through 3.12 (devices with AR ≤ 1.0) show that the weighting

potential is nearly linear, except near the lateral surfaces, which show a distribution similar

to that of a planar configuration. For that reason, the Frisch collar has little effect for AR

≤ 1.0.
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5.3.2 Results of insulator layer thickness effect on performance of
the CdZnTe Frisch collar devices

The results of the study on insulator layer thickness effect on performance of the CdZnTe

Frisch collar detector were published previously in [69]. The theoretical considerations for

this part are in Section 3.2.1.4, and the experimental procedure and setup are in Sec-

tion 4.3.2, which the results are in this section.

5.3.2.1 Current-voltage characteristic measurement results for devices used for
the insulator layer thickness effect

As mentioned in Section 4.3.2, six CdZnTe devices were fabricated and used for this study.

The devices’ size and insulator thickness along with the setup are presented in Tables 4.2, 4.3,

and 4.4. The current-voltage (IV) characteristic curves obtained for planar devices listed in

Table 4.2 are in Fig. 5.29.

Figure 5.29: The current-voltage (IV) characteristic curve of Device 1 through Device 6 in
planar configurations for the insulator layer thickness effect.
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5.3.2.2 Spectral testing results for devices with different insulator layer thick-
nesses

Figs. 5.30 through 5.38 display the energy spectra for the devices listed in Table 4.2 with

dielectric layer thicknesses presented in Table 4.3 with standard 137Cs gamma-ray sources.

Figs. 5.30 through 5.32 show the energy spectra for Device 1 to Device 3, respectively. The

results show device improvement for the thinnest dielectric layer for Device 1 to Device 3.

Notably, Device 1 and Device 2, registered little enhancement as a result of the Frisch collar

effect, even with a thin dielectric layer, because the aspect ratios of the planar devices

are smaller than 1.5 and do not meet the minimum required aspect ratio (as presented in

Section 5.3.1).

Figure 5.30: The pulse height spectra of Device 1 (4.95 × 4.76 × L=4.87 mm3) taken with
standard gamma-ray source of 137Cs. The applied bias, amplifier gain, and the spectral
testing time are presented in Section 4.3.2 and Table 4.4. The dielectric thickness t is
presented in Table 4.3 for Frisch collar Device 1 #1 to Device 1 #4,. The best spectral
performance is for Device 1 #4 which has the thinnest dielectric layer (t=0.05 mm).
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Figure 5.31: The pulse height spectra of Device 2 (4.70 × 4.56 × L=6.03 mm3) taken with a
standard 137Cs gamma-ray source. The applied bias, amplifier gain, and the spectral testing
time are in Section 4.3.2 and Table 4.4. The dielectric thickness t is in Table 4.3 for Frisch
collar Device 2 #1 to Device 2 #4. The best spectral performance is for Device 2 #4, which
has the thinnest dielectric layer (t=0.05 mm)

Figure 5.32: The pulse height spectra of Device 3 (3.36 × 3.34 × L=5.68 mm3) taken with a
standard 137Cs gamma-ray source. The applied bias, amplifier gain, and the spectral testing
time are in Section 4.3.2 and Table 4.4. The dielectric thickness t is in Table 4.3 for Frisch
collar Device 3 #1 to Device 3 #6. The best spectral performance is for Device 3 #6, which
has the thinnest dielectric layer (t=0.10 mm). Device 3 #6 shows 2.1%±0.1% FWHM
energy resolution at 662 keV.
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Figs. 5.33 through 5.36 present the energy spectra for Device 4 and Device 5, in both

planar and Frisch collar configuration with standard gamma-ray sources of 137Cs. The

results indicate an optimum dielectric layer thickness at which both Device 4 and Device 5

reach their best spectral performance. The optimum dielectric layer thickness for Device 4

is around 0.27 mm and for Device 5 around 0.39 mm. The dielectric layer thicknesses

for Device 4 and Device 5 in Frisch collar configurations, the full width half maximum

(FWHM) energy resolution at 662 keV, and the peak-to-valley ratio (P:V) of the full energy

peak (FEP) are also summarized in Table 5.1.

Table 5.1: The FWHM and peak-to-valley of collected spectra with Device 4 and Device 5.
The dielectric thickness t is in mm with the standard deviation of ±0.005 mm. The full
width half maximum (FWHM) energy resolution is at 662 keV with the standard deviation
of ±0.1%. P:V is the peak-to-valley ratio of the full energy peak (FEP) and has standard
deviation of 0.1 for the lowest values and 0.7 for the highest values. The best performance
of Device 5 was for Frisch collar Device 5 #8 with the optimum dielectric thickness of 0.39
mm, while the best performance of Device 4 was for Frisch collar Device 4 #10 with the
optimum dielectric thickness of 0.27 mm.

Device 4 Device 5
Frisch collar # t (mm) FWHM P:V t (mm) FWHM P:V

#1 1.54 N/A 3.0 1.36 N/A 4.0
#2 1.34 4.6% 3.0 1.16 4.9% 4.1
#3 1.14 3.8% 4.2 0.95 3.4% 7.0
#4 0.94 3.0% 5.1 0.81 2.6% 8.5
#5 0.80 2.8% 6.7 0.70 2.0% 8.4
#6 0.70 2.5% 6.9 0.60 1.7% 10.7
#7 0.59 2.0% 8.3 0.50 1.5% 13.0
#8 0.50 1.9% 10.9 0.39 1.3% 14.3
#9 0.38 1.7% 11.2 0.27 1.4% 14.1
#10 0.27 1.4% 13.9 0.16 1.7% 12.1
#11 0.22 1.7% 10.7 0.08 2.0% 10.1
#12 0.16 1.9% 7.8 N/A N/A N/A
#13 0.08 2.2% 7.2 N/A N/A N/A
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Figure 5.33: The pulse height spectra of Device 4 (3.96 × 4.01 × L=11.60 mm3) taken with
standard 137Cs gamma-ray source. The applied bias, amplifier gain, and the spectral testing
time are in Section 4.3.2 and Table 4.4. The dielectric thickness t, the energy resolution, and
the peak-to-valley are in Table 5.1 for Frisch collar Device 4 #1 to Device 4 #13. The best
spectral performance is for Device 4 #10, which has the optimum dielectric layer thickness
of 0.27 mm. Device 4 #10 shows 1.4%±0.1% FWHM energy resolution at 662 keV.

Figure 5.34: The pulse height spectra of Device 4 taken with a standard 137Cs gamma-ray
source. The best spectral performance is for Device 4 #10, which has the optimum dielectric
layer thickness of 0.27 mm. Device 4 #10 shows 1.4%±0.1% FWHM energy resolution at
662 keV and peak-to-valley of 13.9±0.5
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Figure 5.35: The pulse height spectra of Device 5 (3.92 × 3.89 × L=10.82 mm3) taken with a
standard 137Cs gamma-ray source. The applied bias, amplifier gain, and the spectral testing
time are in Section 4.3.2 and Table 4.4. The dielectric thickness t, the energy resolution and
the peak-to-valley are in Table 5.1 for Frisch collar Device 5 #1 to Device 5 #11. The best
spectral performance is for Device 5 #8, which has the optimum dielectric layer thickness
of 0.39 mm. Device 5 #8 shows 1.3%±0.1% FWHM energy resolution at 662 keV.

Figure 5.36: The pulse height spectra of Device 5, taken with a standard 137Cs gamma-ray
source, for specific dielectric thicknesses. The best spectral performance is for Device 5 #8,
which has the optimum dielectric layer thickness of 0.39 mm. Device 5 #8 shows 1.3%±0.1%
FWHM energy resolution at 662 keV and peak-to-valley of 14.3±0.7
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A similar effect occurs for Device 6 with the different dielectric layer thicknesses in

Table 4.3 as in Fig. 5.37 and Fig. 5.38 showing the energy spectra with standard 137Cs

gamma-ray sources. Here, the optimum dielectric layer thickness for Device 6 is around

1.10 mm. The summary of the dielectric layer thicknesses for Frisch collar Device 6, the

FWHM energy resolution at 662 keV, and the P:V of the FEP are in Table 5.2.

Table 5.2: The FWHM and P:V of collected spectra with Device 6. The standard deviation
for dielectric thicknesst is ±0.005 mm, and for the FWHM energy resolution is ±0.1%. P:V
has the standard deviation of 0.1 for the lowest values and 0.4 for the highest values. The
best performance of Device 6 was for Frisch collar Device 6 #5.

Device 6
Frisch collar # t (mm) FWHM P:V

#1 2.50 N/A 2.2
#2 1.60 3.5% 10.5
#3 1.40 1.6% 9.1
#4 1.25 1.6% 11.0
#5 1.10 1.6% 15.1
#6 0.95 2.2% 8.4
#7 0.45 4.0% 5.5

Figure 5.37: The pulse height spectra of Device 6 (5.01×4.73×L=19.63mm3) taken with
a standard 137Cs gamma-ray source. The experimental setups are in Table 4.4. The best
performance is for Device 6 #5 with the optimum t of 1.10 mm, which shows 1.6%±0.2%
FWHM energy resolution at 662 keV.
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Figure 5.38: The pulse height spectra of Device 6, taken with a standard 137Cs gamma-ray
source, for specific dielectric thicknesses. The best spectral performance is for Device 6 #5,
which has the optimum dielectric layer thickness of 1.10 mm. Device 6 #5 shows 1.6%±0.2%
FWHM energy resolution at 662 keV and peak-to-valley of 15.1±0.4.

Clearly, the experimental results of the six Frisch collar devices show that for those

devices with the aspect ratio greater than 2.5 (Device 4 to Device 6) optimum dielectric

thickness yields best performance. For the Frisch collar devices with aspect ratios smaller

than 2.0, the thinnest possible dielectric thickness appears to generate better performance;

however, the dielectric layer should be thick enough to stop extra leakage current from the

conductive collar to the anode. Therefore, the main role of the dielectric layer in Frisch collar

devices with an aspect ratio smaller than 2.0 is to prevent extra leakage current between

the conductive collar and the anode.

For Frisch collar devices with an aspect ratio greater than 2.5 (Device 4 to Device 6) and

very thin dielectric layers about 0.10 mm (thick enough to stop the extra leakage current),

the relatively low performance of the device is due to a low electric field region in a large

portion of the device. This low electric field region results in electron trapping, which

degrades the device performance, an effect that becomes more important for the Frisch

collar device with an aspect ratio greater than 3.0 (Frisch collar Device 6 #7). The effect
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can be predicted by modeling the weighting/operating potential, the electric field, and the

CCE for specific device and configuration. The Frisch collar devices in this study were

modeled in three-dimensional geometry, and the weighting/operating potential and electric

field distributions were determined using Integrated Engineering Software, LORENTZ. The

weighting/operating potential and electric field distribution along the device central axis for

Device 4 (which has dimensions close to Device 5) is in Figs. 5.39 and 5.40.

Figure 5.39: The electric field distribution for Device 4 in Frisch collar configurations along
the central axis. The plot shows the electric field distribution for the maximum and min-
imum dielectric thickness t and in the vicinity of the optimum dielectric thickness, where
the Frisch collar Device 4 #10 shows the best performance.

For a very thin dielectric layer, more than half the volume of Frisch collar Device 4 (and

Device 5) suffers from extremely low electric field (close to zero as shown in Fig. 5.39). Next,

Device 6 is fully modeled in Chapter 3, Section 3.2.1.4, and the results of the modeling are

in Figs. 3.24, 3.25 and 3.26. The very low electric field region occurs in two-thirds of Frisch

collar Device 6 with a very thin dielectric layer as shown in Fig 3.25 (note that the wighting

field and electric field mimic each other for a two-terminal device). The effect makes the

CCE of Device 6 clearly none-uniform for very thin dielectric thickness (Fig. 3.26), but when

approaching optimum thickness (around 1.10 mm), the CCE starts to flatten, resulting in
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Figure 5.40: The operating and weighting potential distributions for Device 4 in Frisch
collar configurations along the central axis. The plot shows the potential distributions
for the maximum and minimum dielectric thickness t and in the vicinity of the optimum
dielectric thickness, where the Frisch collar Device 4 #10 shows the best performance.

better performance (Device 6 #5 in Figs. 5.37 and 5.38 with more flat CCE profile in

Fig. 3.26). This explains the low performance of Frisch collar Device 6 #7 with a very thin

dielectric layer in Figs. 5.37 and 5.38.

As the dielectric layer thickness of the Frisch collar device further increases, a more uni-

form electric field distribution is achieved (Figs. 3.25 and 5.39), but the weighting potential

distribution becomes more linear (Figs. 3.24 and 5.40) approaching the weighting potential

of a planar device and reducing the single carrier charge induction effect for electrons. Hence,

the device no longer performs as a single carrier device (Device 1 #1 through Device 6 #1),

and the CCE profile of the device also approaches that of a planar device (Fig. 3.26).
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5.3.3 Results of crystal length on performance of the CdZnTe
Frisch collar devices

As mentioned in Section 3.2.4, crystal length has a dual impact on device performance,

since it affects both device aspect ratio and the probability of charge carriers being trapped.

Hence, to exclusively study the impact of length on Frisch collar device performance, the

desired devices are considered to have identical aspect ratios of 1.8. Accordingly, four differ-

ent Frisch collar devices are simulated and presented in Section 3.2.4. Due to a lack of large

volume single crystal CdZnTe material, only three of the Frisch collar devices are fabricated

and tested, labeled as Device i, Device ii and Device iii (Section 4.3.4 in Table 4.5). Two

devices (Device ii to Device iii), however, were from the same ingot, since Device iii was

fabricated from resizing/reshaping Device ii, and Device i was fabricated from a separate

ingot. Figs. 5.41 and 5.42 display the energy spectra for the devices listed in Table 4.5 with

standard 137Cs gamma-ray sources.

Figure 5.41: The normalized pulse height spectra of Frisch collar Device i, Device ii and
Device iii (with the same aspect ratio of 1.8 and different lengths) taken with a standard
137Cs gamma-ray source. The applied bias, amplifier gain, and the spectral testing time are
in Table 4.5. The best spectral performance is for Device iii, which has the shortest length
presenting 1.8%±0.2% FWHM energy resolution at 662 keV.
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Figure 5.42: The pulse height spectra of Frisch collar Device ii and Device iii (with the
same aspect ratio of 1.8 and different lengths) taken with a standard 137Cs gamma-ray
source. The applied bias, amplifier gain, and the spectral testing time are in Table 4.5. The
best spectral performance is for Device iii, which has the shortest length with 1.8%±0.2%
FWHM energy resolution at 662 keV.

As Fig. 5.41 shows, Device i with longer drift length (L = 23.00 mm) has the worst

performance. This lower performance for Device i is predicted in Chapter 3, Section 3.2.4

and in Fig. 3.31. Most importantly, in spite of their almost identical weighting potential

profile (Fig. 3.30) due to equal aspect ratios, the shortest device performs better.

5.3.4 Post fabrication surface treatment results

The following section presents the results of the impact of final surface treatments on the

energy resolution and the peak-to-valley ratio of the full energy peak, as well as the total

leakage current. The results of this work were published previously [71].

Bulk leakage current and surface leakage current are the two parameters that contribute

to total leakage current of the semiconductor spectrometer. Obviously, bulk leakage current

is affected by material resistivity ξ (Ω.cm) while the surface morphology and stoichiometry

of the device affects surface leakage current. It has been measured and reported [54] that

total leakage current for unpassivated CdZnTe radiation detectors is dominated by surface
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leakage rather than the bulk leakage. This implies that surface passivation can potentially

enhance the radiation detector’s spectroscopic performance. The bulk resistance RDB (Ω)

for a planar bar shape device is given by,

RDB = ξ
L

A
, (5.2)

where L (cm) is the device length, and A (cm2) is the device cross section area. Fig. 5.43

shows the simplified model of the detector-preamplifier circuit, where RC is the detector

contact resistance (normally negligible compared to the bulk resistance RDB of CdZnTe

detectors, if an ohmic contact is formed [72]), and RS is the detector surface resistance. The

detector total resistance RD is given by,

1

RD

=
1

RDB + 2RC

+
1

RS

. (5.3)

Figure 5.43: The detector-preamplifier circuit. The preamplifier has a load resistor RL. The
CdZnTe bar detector is modeled as three resistors: surface resistance RS, bulk resistance
RBD and contact resistance RC .
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5.3.4.1 Mechanical treatment results

Figs. 5.44 and 5.45 display the I-V characteristic curves and also the pulse height spectra

with a standard gamma-ray check source of 137Cs for Detector 1 as in Section 4.3.5. The

results show that the performances of Detector 1 #2 to Detector 1 #4 have deteriorated

(SiC grinding treatment in Table 4.7) in both energy spectra and leakage current. However,

since the lateral sides of the degraded device (Detector 1 #4) were polished with 1.0 micron

alumina powders, device performance is enhanced (Detector 1 #5 in Fig. 5.45). Continued

polishing of the device’s lateral sides with 0.05 micron alumina powders enhanced detec-

tor performance further (Detector 1 #6 in Fig. 5.45). A summary of the full width half

maximum (FWHM) energy resolution at 662 keV, the peak-to-valley ratio (P:V) of the full

energy peak (FEP), and the maximum leakage current at operating bias for Detector 1 is

in Table 5.3.

Figure 5.44: Results collected from Detector 1 (4.75 × 4.78 × 9.22 mm3) showing the
current-voltage (I-V) characteristic curves for planar configurations. The maximum leakage
current is in Table 5.3.
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Figure 5.45: Results collected from Detector 1 (4.75 × 4.78 × 9.22 mm3) showing the pulse
height spectra using a 137Cs source. The applied bias was set to +1000 V, and the amplifier
gain was set to 100X for the 900 s collecting real time. All the settings were kept the same
for the entire experiment. The energy resolution and the peak-to-valley ratio are in Table 5.3
for Frisch collar Detector 1 #1 through Detector 1 #6. The best spectral performance is
for Detector 1 #6, which had a final surface treatment of mechanical polishing with 0.05
micron Al2O3 powders. Detector 1 #6 shows a full width half maximum (FWHM) energy
resolution of 1.3%±0.1% at 662 keV and a peak-to-valley ratio (P:V) of 38.8.

Table 5.3: Summary of energy resolution, peak-to-valley, and maximum leakage current for
Detector 2 after each surface treatment (Figs. 5.44 and 5.45). The full width half maximum
(FWHM) energy resolution in % at 662 keV with the standard deviation of ±0.1% for each
Frisch collar detector. P:V is the peak-to-valley ratio of the full energy peak (FEP) for
each detector in Frisch collar configuration. The maximum leakage current is in nA and is
reported at +1000 V for each detector in planar configuration.

Max leakage
Detector 1 # Treatment Method FWHM P:V current (nA)
Detector 1 #1 Etching 2%Br/Meth 1.7% 10.4 12
Detector 1 #2 Grinding SiC/1200 Grit 2.6% 6.7 24
Detector 1 #3 Grinding SiC/2400 Grit 2.6% 7.3 22
Detector 1 #4 Grinding SiC/2400 Grit 2.6% 6.1 23
Detector 1 #5 Polishing 1 micron/Alumina 1.8% 17.9 8
Detector 1 #6 Polishing 0.05 micron/Alumina 1.3% 38.8 3
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5.3.4.2 Chemical treatment results

The energy spectra taken with a standard 137Cs gamma-ray check source and the I-V char-

acteristic curves for Detector 2 through Detector 5 presented in Chapter 4 and Table 4.6

are in Figs. 5.46 through 5.53. The results indicate enhanced energy spectra and reduced

leakage current for the passivated Frisch collar Detector 2 through Detector 5. A summary

of the FWHM energy resolution at 662 keV, the P:V of FEP, and the maximum leakage

current at forward bias for Frisch collar Detector 2 through Detector 5 is in Table 5.4.

Table 5.4: Summary of FWHM energy resolution, peak-to-valley, and maximum leakage
current for Detector 2 through Detector 5 (see Fig. 5.46 through Fig. 5.53). The full width
half maximum (FWHM) energy resolution in % at 662 keV with the standard deviation of
±0.1% for each Frisch collar detector. P:V is the peak-to-valley ratio of the full energy peak
(FEP) for each detector in Frisch collar configuration. The maximum leakage current is in
nA and is reported at +1000 V for each detector in planar configuration.

Method applied Maximum leakage
for passivation FWHM P:V current (nA)

Before passivation 1.5% 6.1 42
Detector 2

NH4F/H2O2 1.2% 10.5 8
Before passivation 1.9% 9.4 39

Detector 3
H2O2 1.6% 14.4 5

Before passivation 1.5% 5.8 30
Detector 4

NaClO3/H2O2 1.4% 11.6 3
Before passivation 1.3% 13.2 35

Detector 5
KClO3/H2O2 1.1% 16.8 6
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Figure 5.46: Results collected from Detector 2 (5.00 × 4.55 × 9.21 mm3) showing the
current-voltage (I-V) characteristic curves for planar configurations. The maximum leakage
current is in Table 5.4.

Figure 5.47: Results collected from Detector 2 (5.00 × 4.55 × 9.21 mm3) showing the pulse
height spectra using a 137Cs source. The applied bias was set to +1000 V, and the amplifier
gain was set to 70X for the 3600 s collecting real time. All the settings were kept the
same for the entire experiment. The energy resolution and the peak-to-valley ratio are in
Table 5.4 for Frisch collar Detector 2 before and after the NH4F/H2O2 surface treatment.
The passivation enhances the detector performance.
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Figure 5.48: Results collected from Detector 3 (4.95 × 4.54 × 9.22 mm3) showing the
current-voltage (I-V) characteristic curves for planar configurations. The maximum leakage
current is in Table 5.4.

Figure 5.49: Results collected from Detector 3 (4.95 × 4.54 × 9.22 mm3) showing the pulse
height spectra using a 137Cs source. The applied bias was set to +1000 V, and the amplifier
gain was set to 70X for the 3600 s collecting real time. All the settings were kept the same
for the entire experiment. The energy resolution and the peak-to-valley ratio are in Table 5.4
for Frisch collar Detector 3 before and after the H2O2 surface treatment. The passivation
enhances the detector performance.
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Figure 5.50: Results collected from Detector 4 (4.97 × 4.50 × 9.24 mm3) showing the
current-voltage (I-V) characteristic curves for planar configurations. The maximum leakage
current is in Table 5.4.

Figure 5.51: Results collected from Detector 4 (4.97 × 4.50 × 9.24 mm3) showing the pulse
height spectra using a 137Cs source. The applied bias was set to +1000 V, and the amplifier
gain was set to 70X for the 3600 s collecting real time. All the settings were kept the
same for the entire experiment. The energy resolution and the peak-to-valley ratio are in
Table 5.4 for Frisch collar Detector 4 before and after the NaClO3/H2O2 surface treatment.
The passivation enhances the detector performance.
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Figure 5.52: Results collected from Detector 5 (5.00 × 4.56 × 9.23 mm3) showing the
current-voltage (I-V) characteristic curves for planar configurations. The maximum leakage
current is in Table 5.4.

Figure 5.53: Results collected from Detector 5 (5.00 × 4.56 × 9.23 mm3) showing the pulse
height spectra using a 137Cs source. The applied bias was set to +1000 V, and the amplifier
gain was set to 70X for the 3600 s collecting real time. All the settings were kept the
same for the entire experiment. The energy resolution and the peak-to-valley ratio are in
Table 5.4 for Frisch collar Detector 5 before and after the KClO3/H2O2 surface treatment.
The passivation enhances the detector performance.
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5.3.4.3 Ion milling results

The energy spectra taken with a standard 137Cs gamma-ray check source and the I-V curves

for Detector 6 in Table 4.6 in Chapter 4 are in Figs. 5.54 and 5.55. The results indicate

deterioration in energy spectra and an increase in leakage current for the passivated Frisch

collar Detector 6 with ion milling. Specifically, the FWHM energy resolution at 662 keV

deteriorates from 2.0% for the non-passivated detector to 3.4% for the passivated detector

with ion milling. The P:V of FEP and the maximum leakage current at forward bias also

deteriorate (Fig. 5.55). However, after the lateral surface was polished with 1.0 micron

alumina powder, detector performance improved.

Figure 5.54: Results collected from Detector 6 (4.92 × 4.98 × 9.82 mm3) showing the
current-voltage (I-V) characteristic curves for planar configurations.

It seems that since the leakage current increased for the passivated detector with ion

milling, and later deacreased as the process is followed by polishing (Fig. 5.54), there should

be surface damages/contaminations due to ion milling with Xenon gas. The contamintion

can possibly come from the Al-jig that the detector is mounted on while ion milling, although
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Figure 5.55: Results collected from Detector 6 (4.92 × 4.98 × 9.82 mm3) showing the pulse
height spectra using a 137Cs source. The applied bias was set to +1000 V, and the amplifier
gain was set to 70X for the 3600 s collecting real time. All the settings were kept the same
for the entire experiment. The ion milling passivation on Detector 6 does not enhance the
detector performance, but that treatment followed by polishing (1.0 micron Al2O3 powder)
recovers the spectral performance and reduces the leakage current. The P:V deteriorates
from 12.8 to 9.9 after the ion milling passivation, and improves to 11.0 after the polishing.

no aluminum compounds or elemental aluminum werer obsereved using Energy Dispersive

Spectroscopy (EDS). It should be noted that no Au contact damages were observed, since

polishing the ion milled detector recovered the spectral performance (Fig. 5.55). Other gases

to be investigated such as Neon and Argon are suggested as a substitute for Xenon.

5.3.4.4 Surface characterization results

Spectral lines from three elements (Cd, Zn, and Te) were identified as part of the EDS scan

to characterize the surface and analyze relative atomic concentrations. The results appear

in Table 5.5 for Detector 1 through Detector 6. An attempt was made to identify oxygen

or oxides on the surfaces before and after each treatment; however, there was no observable

peak in the correct range. Oxygen only has one X-ray energy (Kα 505 eV), which is similar
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in energy to the Cadmium M-shell (505 eV), and a very large Tellurium peak from its M-

shell (450 eV), which makes low levels of oxygen difficult to discriminate using EDS. Thus,

no oxygen or oxygen containing compounds were observed using EDS, although the depth

profile of the electron beam (about 1.0 µm) [73] could also account for the apparent lack of

elemental oxygen.

Table 5.5: EDS results of the atomic concentration from EMP technique. The results are
for the maximum 1.0 µm depth from the surface.

Atomic concentration (%)
Zn Cd Te

Detector 1 4.01 46.40 49.59
Detector 2 2.94 43.95 53.10

After surface Detector 3 4.31 47.29 48.40
treatment Detector 4 4.46 48.23 47.31

Detector 5 3.62 49.98 46.40
Detector 6 3.92 48.11 47.97

Before
surface All detectors 4.14 46.57 49.29

treatment

5.3.4.5 Post fabrication surface treatment discussions

Clearly, a direct relation exists between the decrease in device leakage current and the

improvement in spectroscopic performance. First, the increase in leakage current causes

a voltage drop across the load resistor RL (see Fig. 5.43), which can diminish the actual

voltage applied to the detector. The effect becomes substantial when the leakage current is

large enough. The load resistor RL for the two preamplifiers ORTEC 142A and eV-550 used

in this study are 101.5 MΩ and 110 MΩ, respectively. Therefore, with the relatively low

leakage current measured for all devices, the voltage drop across the load resistor is less than

10V for the maximum reported leakage current. Therefore, the voltage drop contribution to

device spectral degradation is not significant in this case. Second, the contribution of leakage

current to the electronic noise is mainly due to fluctuations in leakage current, which is a

component of parallel noise [65]. Therefore, higher leakage current results in more statistical
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fluctuation, which causes an increase in electronic noise.

The results presented for Detector 1 with mechanical treatment indicates that highly pol-

ishing the lateral surface with fine powders results in the best improvement (Detector 1 #6

in Figs. 5.44 and 5.45). On the other hand, rough grinding of the lateral surface degrades

the device causing an increase in leakage current (Detector 1 #2 through Detector 1 #4

in Figs. 5.44 and 5.45) due to an increase in the density of surface states and unbounded

electrons at the surface caused by grinding. Also, Detector 1 #2 through Detector 1 #4

in Fig. 5.44 show some rectifying behaviors, which affect the uniformity of the electric field

within the device, degrading the energy spectrum (Fig. 5.45). Further improvement of the

devices (Detector 1 #5 and Detector 1 #6) is mainly due to reducing the mechanical dam-

age and using fine powders, which results in removal of the highly conductive Te-rich layer

from the native etched surface [53–60]. Unfortunately, due to limitations in depth profiling

with the Electron Microprobe (EMP) technique, characterizing this Te-rich layer was not

achieved with Energy Dispersive Spectroscopy (EDS). Note that although the grinding pro-

cess (Detector 1 #2 through Detector 1 #4) removes the Te-rich layer as well, the resulting

mechanical damage causes further device deterioration.

The chemical surface treatment on the lateral sides of Detector 2 through Detector 5 en-

hances the device performance by reducing leakage current, which results in better detector

spectroscopic performance as explained. The main cause of the leakage current reduction is

oxidizing the Te-rich layer [58–60]. In this study, NaClO3 and KClO3 were used along with

H2O2 as the oxidizing agents, while in the previously reported study [59], only DI water was

used as the solvent. For the surface characterization of Detector 2 to Detector 5, the atomic

concentration of oxygen was not at a detectable level; therefore, no oxygen concentrations

were reported.

Detector 6 is the only device using the ion milling surface treatment for the first doc-

umented time as a surface passivation method. Although the initial results do not show

enhancement in detector performance (Figs. 5.54 and 5.55), the method seems to have po-
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tential for the final surface passivation. The method is readily automatable and can be

easily applied for detector fabrication in batch processing. However, the ion milling method

is still under development and needs more work and characterization to advance the process

as a final surface treatment. It should be noted that neither the contacts nor the bulk of the

Detector 6 were degraded after the ion milling treatment, since detector performance was

improved through further polishing. In addition, ion milling with Xe should theoretically

allow preferential elimination of surface Cd and Te, producing a Zn rich surface [74].

In summary, the best spectroscopic enhancement was achieved through mechanical pol-

ishing with 0.05 micron alumina powders (Detector 1). The FWHM energy resolution at

662 keV improved from 1.7% to 1.3%, while the P:V improved from 10.4 to 38.8. The

greatest leakage current reduction was for NaClO3/H2O2 surface passivation (Detector 4

with 10 times reduction in leakage current). The surface resistance improvement for all

detectors due to each treatment is summarized in Table 5.6, which shows the greatest in-

crease in surface resistance is reported for Detector 4 with NaClO3/H2O2 surface passivation.

Table 5.6: Devices’ total resistance and surface resistance for Detector 1 through Detector 6.
Bulk resistance RDB is based on the resistivity of 1.0×1011 Ω.cm for Redlen Technology
CdZnTe material, using Equation 5.2. Detector total resistance RD is evaluated based
on the I-V characteristic curves. Detector surface resistance RS is calculated applying
Equation 5.3, and neglecting the contact resistance RC . All the resistance are reported in
GΩ.

RDB RD RS

Before After Before After
Detector 1 406 83 333 105 1861
Detector 2 405 24 125 25 181
Detector 3 410 26 200 27 390
Detector 4 413 33 333 36 1725
Detector 5 405 29 167 31 283
Detector 6 401 23 111 25 154
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5.4 CdZnTe Device Efficiency Calculations

The intrinsic efficiency of a detector is defined as the ratio of the number of pulses produced

by the detector to the number of gamma-ray quanta incident on the detector. Clearly, in

gamma-ray detection, a high-quality detector must be capable of absorbing a large fraction of

incident gamma-rays. Since high Z number materials result in higher attenuation coefficients

for gamma-ray absorption, good gamma-ray absorption is accomplished by using materials

of suitably high Z number [64, 65].

The intrinsic efficiency of the CdZnTe detector, εint, at a specific energy of the emitted

gamma-ray can be defined as [64],

εint =
CTS

Ωave BR [A0 exp(−λ t)]
, (5.4)

where CTS is the total number of counts due to full energy absorption per unit time (this

value was evaluated for standard sources of 133Ba,57Co, 137Cs, and 241Am by taking the net

area under the full energy peak of the corresponding spectrum over the counting time).

A0 exp(−λ t) is the activity of the source during the measurement, BR is the branching

ratio for the specific energy of gamma-ray emitted by the source, and Ωave is the average

fractional solid angle for the entire volume of CdZnTe bar detector exposed to the point

source (Fig. 5.56).

To evaluate the average fractional solid angle, Ωave, requires the definition for the average

of a function over an interval,

Ωave =
1

L

∫ d+L

x=d

Ω(x) dx . (5.5)

In this equation, Ω(x) is the solid angle for the cross sectional area of the CdZnTe detector

exposed to the point source at distance x in Fig. 5.56. The dimensions of the bar shaped
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x

L

W

dx
W 
L 
d 

d

Figure 5.56: The solid angle between a point isotropic source and a CdZnTe bar detector
with a rectangular aperture with the source aligned along the center of the detector.
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CdZnTe detector are illustrated in Fig. 5.56 as L and W , while the point isotropic source is

located at distance d away from the center of the detector. For the schematic in Fig. 5.56,

one can write [64],

Ω(x) = 4 Ω1(x) , (5.6)

where Ω1(x) is the solid angle of the rectangular Aperture #1 shown on Fig. 5.56, while the

point isotropic source is located at distance x away from Aperture #1 and aligned with its

corner located in the center of the device. Then, Ω1(x) can be evaluated from [64],

Ω1(x) =
1

4π
arctan

[
(W/2)2

x
√

2(W/2)2 + x2

]
. (5.7)

Hence, Ωave can be evaluated by applying equations 5.5 through 5.7 for the any given setup in

Fig. 5.56. Since the 3.4mm × 3.4mm × 5.7mm CdZnTe Frisch collar detector in Section 5.1

was used for the intrinsic efficiency investigation with the setup in Fig. 5.56, the average

fractional solid angle Ωave was numerically determined to be 0.00132.

To be consistent with detector-source geometry, a new set of pulse height spectra were

collected with standard radionuclides. These energy spectra for 133Ba,57Co, 137Cs, and

241Am are displayed in Figs. 5.57 through 5.60, while the intrinsic efficiency of the detector

is summarized in Table 5.7. The uncertainty calculations are also shown in Table 5.7,

assuming that the uncertainty is due to counting statistics alone. The results for intrinsic

efficiencies are plotted for different gamma-ray energies in Fig. 5.61, showing as expected,

the intrinsic efficiency decreases with energy.
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Figure 5.57: Room temperature spectrum from standard radiation source of 137Cs taken
with the 3.4 × 3.4 × 5.7 mm3 CdZnTe semiconductor Frisch collar detector.

Figure 5.58: Room temperature spectrum from standard radiation source of 133Ba taken
with the 3.4 × 3.4 × 5.7 mm3 CdZnTe semiconductor Frisch collar detector.
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Figure 5.59: Room temperature spectrum from standard radiation source of 57Co taken
with the 3.4 × 3.4 × 5.7 mm3 CdZnTe semiconductor Frisch collar detector.

Figure 5.60: Room temperature spectrum from standard radiation source of 241Am taken
with the 3.4 × 3.4 × 5.7 mm3 CdZnTe semiconductor Frisch collar detector.

147



Table 5.7: Summary of the values to determine the intrinsic full energy peak efficiency. The
experiment was performed in June, 2005

Gamma Source 241Am 133Ba 57Co 133Ba 137Cs

Energy (keV) 59.5 80 122 356 662
Total counts 710165 192231 159753 23803 41137
Background 137726 43180 29738 6300 9590
Counting time (s) 1800 27000 3600 27000 7200
Activity, A0 (kBq) 1000 37 380.36 37 358.16
Assay date 9/2002 11/1998 10/2003 11/1998 10/2003
Intrinsic efficiency, εint 0.6743 0.5196 0.5153 0.0335 0.0114
Std. error-efficiency 0.0011 0.0017 0.0017 0.0003 0.0001

Figure 5.61: The measured CdZnTe Frisch collar detector full energy peak intrinsic efficiency
at different gamma-ray energies.

148



5.5 Angular Response of W-Collimated CdZnTe Frisch

Collar Device Results

The results of assessing angular response of a W-Collimated CdZnTe Frisch collar device to

a point gamma source have been published previously in [75]. The experimental setup and

procedure is presented in Section 4.4. As mentioned in Section 4.4, pulse height spectra

were collected from the activated Au foils at a variety of source-detector angles, using the

two different tungsten collimators. Three 198Au spectra are illustrated in Fig. 5.62 for three

different source-detector angles, those being 0◦, 2◦, and 3◦using the 8 cm collimator.

Figure 5.62: Room-temperature spectra of 198Au gamma-ray emissions from the 3.4 × 3.4 ×
5.8 mm3 CdZnTe semiconductor detector inside the 8 cm long tungsten collimator at three
different sourcedetector angles, showing the photopeaks and the Compton edges. Different
Au foil samples were used for each measurement.

5.5.1 Angular Response Results

The total number of counts collected for a certain source-detector angle can be evaluated

by finding the net counts within the full energy peak of the pulse height spectrum (minus

background). Accordingly, a complete set of source-detector angles with the evaluated net
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photopeak counts are presented in Tables 5.8 and 5.9 for the 8 cm and 4 cm collimators, re-

spectively. The collected data for both 4 cm and 8 cm collimators are plotted in Fig. 5.63 to

compare the directional sensitivity of the two collimators. As expected, the longer collima-

tor is more sensitive to changes in the source-detector angle. Between the source-detector

angles of ±1◦, the detected counts from both collimators are nearly the same. However,

once the gamma-ray source was moved past the respective critical angle of each collimator,

the shielding began to reduce the counts significantly. The second critical angle αc2 for

each collimator was experimentally observed to be at ±3◦and ±7◦for the 4 cm and 8 cm

collimators, respectively.

Table 5.8: The net counts in the full energy peak obtained from 198Au sources at different
source-detector angles. Also shown in the table are the actual measured Au foil sample
masses. As explained, the counts from the irradiated Au foils were all normalized to that
of a 13 mg sample. The CdZnTe detector used had dimensions of 3.4 × 3.4 × 5.8 mm3 and
was placed inside the 8 cm long tungsten collimator.

Angle Counts per Standard counting Gold foil
(degrees) 13 mg 198Au Error (±) mass (mg)

-15 3792 148 14
-10 3083 131 13
-5 1278 61 13
-4 987 53 12
-3 493 31 12
-2 3783 158 13
-1 6170 250 13
0 6897 300 12
1 6123 231 14
2 2961 118 14
3 612 34 13
4 1058 52 13
5 1453 64 14
10 3558 149 13
15 3979 166 13
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Table 5.9: The net counts in the full energy peak obtained from 198Au sources at different
source-detector angles. Also shown in the table are the actual measured Au foil sample
masses. As explained, the counts from the irradiated Au foils were all normalized to that
of a 13 mg sample. The CdZnTe detector used had dimensions of 3.4 × 3.4 × 5.8 mm3 and
was placed inside the 4 cm long tungsten collimator.

Angle Counts per Standard counting Gold foil
(degrees) 13 mg 198Au Error (±) mass (mg)

-17 2796 53 12
-13 2444 49 14
-12 1864 43 12
-10 1498 39 12
-9 1400 37 11
-8 1323 36 15
-7 1202 35 14
-6 1883 43 14
-5 3296 57 14
-4 4030 63 13
-3 5468 74 13
-2 6152 78 13
-1 6349 80 12
0 6927 83 13
1 6543 81 12
2 6195 79 13
3 4736 69 14
4 4418 66 14
5 3291 57 14
6 1138 34 13
7 1057 33 14
8 1153 34 12
9 1273 36 12
10 1373 37 13
12 1957 44 14
13 1715 41 13
17 2773 53 14
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Figure 5.63: The experimental angular dependency of net photopeak counts from 198Au
gamma-ray sources with the 3.4mm×3.4mm×5.8mm CdZnTe Frisch collar detector for the
4 and 8 cm long tungsten collimators.

The normalized counts from the experiment were compared to the analytical solutions,

predicted by using equations 4.8, 4.9, and 4.18, which are shown in Figs. 5.64 and 5.65 for the

4 cm and 8 cm collimators, respectively. The figures show that the two-dimensional, simple

model is successful in predicting the directional sensitivity of each collimator. Therefore,

based on the model, the second critical angle occurs at ±6.6◦and ±2.9◦for the 4 cm and 8

cm collimators, respectively. By comparison, the values of αc2 were experimentally verified

as being ±7◦for the 4 cm collimator and ±3◦for the 8 cm collimator (Figs. 5.63 to 5.65). The

slight disagreement between theoretical and experimental data in Figs. 5.64 and 5.65 can be

explained by a few factors. The predicted small plateau in counts in the analytical model

for region 1 was not experimentally observed, which suggests not to include the exposure

angle and the efficiency of the CdZnTe detector, and the effects of the copper, plastic, and

Teflon tape, thereby explaining, at least in part, the slight discrepancy. Subsequently, for the

shielding effect of the tungsten collimator, the edge effect were not taken into consideration.

In other words, it was assumed that as the source passed the critical angles, the effective

thickness of the collimator was t(α) (Fig. 4.16). Overall, the simple analytical model predicts

the performance of the collimated CdZnTe Frisch collar device quite well.
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Figure 5.64: The experimental and theoretical angular dependency of net photopeak counts
from 198Au gamma-ray sources with the 3.4mm×3.4mm×5.8mm CdZnTe Frisch collar de-
tector using the 4 cm long tungsten collimators.

Figure 5.65: The experimental and theoretical angular dependency of net photopeak counts
from 198Au gamma-ray sources with the 3.4mm×3.4mm×5.8mm CdZnTe Frisch collar de-
tector using the 8 cm long tungsten collimators.
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5.6 Spectral Results of Array of CdZnTe Detectors

The results of the pulse height spectra taken with the array of 16 CdZnTe Frisch collar

devices with a gamma-ray source have been published previously in [67]. Here, the gamma-

ray responses of the array of 32 CdZnTe Frisch collar devices (two modules of 16 CdZnTe

Frisch collar devices) are presented. The electronic readouts were developed at Brookhaven

National Laboratory (BNL) [67] and are detailed in Section 4.5.

5.6.1 Gamma-Ray Response of Array of 16 CdZnTe Detectors

Pulse height spectra were collected with gamma-rays source of 137Cs from individual CdZnTe

Frisch collar detectors. The spectral responses of the individual detectors with commercial

preamplifier (ORTEC 142A) and Nuclear Instrument Modules (NIM) bins equipped with

amplifier and high voltage supply are presented in Appendix B. These sixteen detectors

(labeled as BNL1 through BNL16) were designed, fabricated, and tested individually at

the S.M.A.R.T. laboratory at KSU. Clearly, eleven of the fabricated CdZnTe Frisch collar

detectors show sub-1.8% full width half maximum (FWHM) energy resolution at 662 keV

with no electronic correction using commercial ORTEC 142A preamplifiers.

This section presents the results of the spectral response of the array of thirty two

CdZnTe Frisch collar detectors using the electronics readouts developed at BNL (Sec-

tion 4.5). The pulse height spectra collected with gamma-rays sources of 137Cs, 241Am,

and 133Ba from individual detectors using BNL electronics readouts are shown in Figs. 5.66

through 5.68.
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Figure 5.66: Individual responses of 32 CdZnTe Frisch collar detectors (two arrays of 4×4
device) to an uncollimated 137Cs source. Courtesy of Aleksey Bolotnikov at BNL.
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Figure 5.67: Individual responses of 32 CdZnTe Frisch collar detectors (two arrays of 4×4
device) to an uncollimated 241Am source. Courtesy of Aleksey Bolotnikov at BNL.
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Figure 5.68: Individual responses of 32 CdZnTe Frisch collar detectors (two arrays of 4×4
device) to an uncollimated 133Ba source. Courtesy of Aleksey Bolotnikov at BNL.
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Figure 5.69: Overall responses of 16 detectors (one array of 4×4 device) to 137Cs source,
with no correction for gain variation and no recovery for scatter events among the detectors.
Courtesy of Aleksey Bolotnikov at BNL.
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Figure 5.70: Overall responses of 16 detectors (one array of 4×4 device) to 133Ba source, with
no correction for gain variation and no recovery for scatter events among the detectors. The
x-axis is the Energy in keV and the y-axis is the counts. Courtesy of Aleksey Bolotnikov
at BNL.
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Figure 5.71: Overall responses of 16 detectors (one array of 4×4 device) to 241Am source,
with no correction for gain variation and no recovery for scatter events among the detec-
tors. The x-axis is the Energy in keV and the y-axis is the counts. Courtesy of Aleksey
Bolotnikov at BNL.

Figs. 5.69, 5.70 and 5.71 show the overall response of the array of 16 detectors to 137Cs,

133Ba and 241Am gamma-ray sources. An energy resolution of 1.4% full width half maximum

(FWHM) at 662 keV is achieved by combining the 16 spectra of one array of a 4x4 device,

without correcting for variation in gain among the detectors (due to different CCE profiles

for each device) and before recovering the scatter events among the detectors.
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Chapter 6

SUMMARY AND CONCLUSIONS

This chapter summarizes all the studies in this thesis and concludes that Frisch collar

technology is one of the most powerful techniques to turn a position sensitive semiconductor

gamma-ray detector into a single carrier device. This chapter also provides some useful

suggestions for future work on CdZnTe Frisch collar detectors and arrays of such devices.

6.1 Summary

Many bar shaped Frisch collar CdZnTe detectors were successfully fabricated and tested for

gamma-ray spectroscopy, and sub-1% FWHM energy resolution at 662 keV was obtained

without electronic correction (See Fig. 3.8 on Page 31). Clearly, these simple CdZnTe

semiconductor detectors have excellent energy resolution at room temperature, which is

useful in many applications such as remote field operations. The simple configuration of

the Frisch collar device, which converts a simple planar device into a high-energy-resolution

gamma-ray spectrometer, makes the devices less expensive to manufacture than other single

carrier design. Further, due to CdZnTe material growth issues and problems, it is far easier

to extract small samples similar to those used in the present work from a commercial ingot

than to use large pieces typically used in other single carrier configurations, hence further

reducing overall cost. Finally, the devices can be arranged in an array to produce gamma-ray

detection devices for medical, astrophysics, and isotope identification purposes.

The summary in this section is presented in terms of optimizing the design of two-
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terminal CdZnTe Frisch collar spectrometers to enhance induced charge/current, as well as

improving the device fabrication process. The summary of optimization is presented in the

following Sections 6.1.1 and 6.1.2.

6.1.1 Optimizing the Two-Terminal CdZnTe Frisch Collar Device
to Enhance Induced Charge

Research shows that despite the beneficial energy resolution enhancement due to the Frisch

collar effect, the effect depends heavily on the crystal geometry and aspect ratio (length over

width) [70]. For instance, for the bar shape CdZnTe planar device with the aspect ratio

of less than 1.0, the Frisch collar does not improve the energy resolution at 662 keV (see

Sections 3.2.1.1 and 5.3.1). However, great energy resolution enhancement is achieved for

aspect ratios exceeding 1.5 and close to 2.0 (Fig. 3.8 on Page 31). A numerical calculation

for the weighting potential for the Frisch collar devices shows that the nonlinearity effect

does not penetrate the bulk of the device with an aspect ratio of less than 1.0. Instead, the

weighting potential for such a device shows a nearly linear profile, except near the lateral

surfaces, a distribution similar to that of a planar configuration. For that reason, the Frisch

collar has little effect for devices with an aspect ratio of less than 1.0. This nonlinearity in

weighting potential uniformly penetrates the bulk of the device with an aspect ratio of 1.5

to 2.0, allowing a better charge induction as a single carrier device (Figs. 3.10 through 3.17

in Section 3.2.1.1 on Pages 35 through 38). This dependency on aspect ratio should be

noted by the detector designer, and so the recommended aspect ratio of the two-terminal

Frisch collar device is 1.5 to 2.0. However, if the device aspect ratio has to be smaller than

1.5 or greater than 2.5 due to other considerations, then, advanced techniques need to be

applied to the device design to obtain a good single carrier spectrometer. These advanced

techniques are summarized in the following paragraphs.

For Frisch collar devices with an aspect ratio smaller than 1.5 (and especially less than

1.0), the proposed method is to benefit from both the small pixel effect and the Frisch collar

effect (see Section 3.2.1.3 for details). The model shows that for such a device, where the
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Frisch collar effect is not strong enough, further benefiting from the small pixel effect can

potentially turn the device into a single carrier device (due to enhancement in the device

charge collection efficiency profile as shown in Fig. 3.23). In other words, for Frisch collar

devices with an aspect ratio of less than 1.5, neither the thicker dielectric nor the shorter

conductive length produces appreciable changes to improve performance. Therefore, the

only other option is to take advantage of both the Frisch collar and small pixel effect and

make the Frisch collar device with the anode to cathode area smaller than unity.

A Frisch collar device of aspect ratio greater than 2.5 [69] with the conductive collar

covering the entire length of the device has compromised spectral performance, if too thin

or thick dielectric layer is applied. Hence, the challenge is to alter parameters affecting the

charge collection efficiency (CCE) profile to enhance spectral performance. Among those

are the dielectric layer thickness and the Frisch collar length (or combination of both). The

impact of dielectric layer thickness on the CCE profile of such a device with an aspect ratio

greater than 2.5 is investigated in Sections 3.2.1.4 and 5.3.2. Such a two-terminal Frisch

collar device offers a balance between improved induced charge (more nonlinear weighting

potential distribution) and a more uniform electric field (more linear operating potential

distribution), that ultimately results in the most uniform CCE profile. Thus, for such a

device with large aspect ratio, the device needs to be optimized for this region of optimum

dielectric layer thickness. This optimum dielectric layer thickness was experimentally de-

termined for three devices with aspect ratios greater than 2.5 (Section 5.3.2). However,

reaching the optimum distribution of weighting potential for such a device can be achieved

by shortening the conductive collar length or with an optimal combination of both dielec-

tric thickness and conductive collar length. These techniques allow enhanced electric field

distribution, resulting in more uniform CCE profile. For the bar shape CdZnTe devices

with an aspect ratio greater than 2.5, this optimum region of potential distribution was

experimentally determined by changing the dielectric layer thickness.

Next, the uniformity of gamma response for a 4.7 × 4.7 × 9.5 mm3 CdZnTe Frisch
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collar device was investigated by probing the device from the lateral side along the length

and width with a collimated 662 keV gamma-ray [68] (Section 5.2). The experimental

results of this device show uniform charge collection efficiency (CCE) for about two-thirds

of the device volume (Figs. 5.16 and 5.17 on Page 108), which is expected given CCE

simulations (Fig. 3.29 on Page 50). This uniform response was investigated experimentally

and theoretically for a wide range of applied voltages. The non-uniformity near the anode

region is mainly due to the low mobility-lifetime product of holes. Notably, the Frisch collar

configuration is designed to negate the effects of severe hole trapping and low mobility.

Hence, long drift CdZnTe Frisch collar device performance can be limited by the electrons’

transport properties only. As reported previously, a planar CdZnTe device shows a non-

uniform response along device length [29]. Hence, planar CdZnTe detector designs can not

be used for a high energy gamma-ray spectrometer (since a thick, highly efficient device is

desired). Instead, poor hole transport necessitates advanced device design, for which the

Frisch collar technique is one of the most inexpensive and robust methods.

6.1.2 Fabrication Enhancement

Six different techniques were applied on lateral sides of six bar shape CdZnTe detectors

as the final surface treatment (passivation) [71]. The current-voltage (I-V) characteristic

curves and the 137Cs pulse height spectra are reported for each device before and after the

surface treatment (See Sections 4.3.5 and 5.3.4 for details). The surface characterization

results with the Electron Microprobe (EMP) technique are also reported for the atomic

concentration of the elements using an Energy Dispersive Spectroscopy (EDS) before and

after each treatment. Mechanical polishing with 0.05 µm alumina powder and NaClO3/H2O2

treatment enhance the device performance the most, while other methods still produce

acceptable results (Section 5.3.4). Notably, ion milling as a surface treatment for CdZnTe

detectors is reported here for the first time and is still under development.
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6.2 Conclusions

CdZnTe is one of the most promising materials for room-temperature operated gamma-ray

spectroscopy. The high resistivity of the material lets the CdZnTe devices be operated at

high voltage bias, which reduces the effect of trapping. In Frisch collar CdZnTe devices,

using small single crystals rather than large single crystals, means less stringent material

requirements since small portions of high quality CdZnTe materials are much easier to

extract from an ingot than large pieces. Further, the simple Frisch collar device structure,

along with less demanding materials requirements, reduces overall device cost.

In terms of directional sensitivity, bar shaped CdZnTe Frisch collar detectors can be easily

collimated [75]; however, the angular resolution of a collimated CdZnTe Frisch collar gamma-

ray spectrometer depends strongly on the collimator length. Also, arrays of detectors with

individual collimated (or uncollimated [67]) detectors have some advantages over common

pixelated devices. In the proposed array of collimated (or uncollimated) detectors, each

pixel (detector) is isolated from its neighbor, resulting in little to no cross talk among

the pixels from the scatter events (collimated design), with no charge sharing, unlike for

current pixelated devices sharing a single crystal. A prototype of a hand-held gamma-ray

spectrometer [67] using an array of uncollimated Frisch collar CdZnTe detectors is discussed

in Sections 4.5 and 5.6.1. The study proves that the array of CdZnTe Frisch collar detectors

can easily serve a large detecting area, maintaining relatively simple electronic readout and

lower cost compared to common pixelated devices.

6.3 Future Work

Multi-terminal Frisch collar devices need to be investigated in a variety of configurations

and designs, since the improvement of the two-terminal Frisch collar device performance is

due to electric field enhancement near the cathode region. This enhancement in electric field

can potentially be achieved by using the third (or fourth) terminal as another non-reading

electrode with an optimum bias. For this type of multi-terminal device, the weighting poten-
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tial and the normalized operating potential are no longer the same, and they are decoupled,

which can potentially improve the device charge collection efficiency. This approach is im-

portant for Frisch collar devices with an aspect ratio greater than 3.0. Accordingly, taking

pulse height spectra and gamma-ray probing of such a long device with different dielectric

material properties and different Frisch collar length is proposed as future work. For Frisch

collar devices with aspect ratios of less than 1.5, a combination of small pixel effect and

Frisch collar effect is proposed (Section 3.2.1.3), which also requires further experimental

investigation.

Future work on post-fabrication surface treatment should include multiple surface anal-

ysis methods. For example, combining EDS with Auger Electron Spectroscopy (AES) pro-

vides better information about the composition of the surface atomic layers. Using AES

allows depth profiling at the surface, while EDS would provide composition data at a slightly

lower depth. Additionally, the X-ray Photoelectron Spectroscopy (XPS) technique may pro-

vide better surface stoichiometry information. Finally, ion milling as a surface treatment

for CdZnTe detectors is reported here for the first time and needs further development.

Regarding the device fabrication, a systematic study is required on contact deposition,

including the surface treatment and etching prior to contact deposition. Such a study

could detail the impact of several parameters prior to contact deposition on device spectral

performance, such as surface roughness, type and concentration of etchant, and etching

time. Other parameters that may have great impact on quality of detector contact could

be concentration of gold chemical solution (AuCl3 in this case) and duration of exposure,

alternative methodes of contact deposition (sputtering or evaporating), alternative metals

other than gold (such as indium), and finally temperature treatment after contact deposition.

Finally, arrays of collimated detectors could potentially remedy the scattering effect from

one detector (pixel) to the other, reducing the cross talk among the detectors. This requires

a more advanced design for detector configuration with the electronics and circuit board,

such as that shown in Fig. 1.1 on Page 4.
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[2] G. Jaffé, “Effect of α-rays on the passage of electricity through crystals,” Physikalische

Zeitschrift, vol. 33, pp. 393 – 399, 1932.

[3] W. Harding, C. Hilsum, M. Moncaster, D. Northrop, and O. Simpson, “Gallium ar-

senide for gamm-ray spectroscopy,” Nature, vol. 187, p. 405, 1960.

[4] W. Akutagawa, K. Zanio, and J. Mayer, “CdTe as a gamma detector,” Nuclear Instru-

ments and Methods, vol. 55, no. 2, pp. 383 – 385, 1967.

[5] F. Doty, J. Butler, J. Schetzina, and K. Bowers, “Properties of CdZnTe crystals grown

by a high pressure Bridgman method,” Journal of Vacuum Science & Technology B:

Microelectronics Processing and Phenomena, vol. 10, no. 4, pp. 1418 – 22, 1992.

[6] T. Prettyman, T. Reilly, M. Miller, C. Hollas, M. Pickrell, J. Prommel, and J. Dreicer,

“Advances in nuclear instrumentation for safeguards,” in Proceedings of Workshop on

Science and Modern Technology for Safeguards, (Ispra, Italy), pp. 97 – 104, 1997.

[7] P. Russo, R. Strittmatter, E. Sandford, I. Jeter, E. McCullough, and G. Bowers, “Op-

eration of automated NDA instruments for in-line HEU accounting at Y-12,” in Con-

ference on Safeguards Technology: The Process-Safeguards Interface, vol. 45, (USA),

pp. 14 – 15, 1983.

[8] P. Russo, H. Smith, J. Sprinkle, C. Bjork, G. Sheppard, N. Ensslin, and S. Smith,

“Evaluation of an integrated holdup measurement system using the GGH formalism

166



with the M3CA,” in 5th International Conference on Facility Operations-Safeguards

Interface, vol. 72, (USA), pp. 29 – 30, 1995.

[9] H. Barrett, J. Eskin, and H. Barber, “Charge transport in arrays of semiconductor

gamma-ray detectors,” Physical Review Letters, vol. 75, no. 1, pp. 156 – 9, 1995.

[10] P. Luke, “Unipolar charge sensing with coplanar electrodes - application to semicon-

ductor detectors,” IEEE Transactions on Nuclear Science, vol. 42, no. 4 pt 1, pp. 207

– 213, 1995.

[11] D. McGregor and R. Rojeski, “Performance of CdZnTe geometrically weighted semicon-

ductor Frisch grid radiation detectors,” IEEE Transactions on Nuclear Science, vol. 46,

no. 3 I, pp. 250 – 259, 1999.

[12] D. McGregor, Z. He, H. Seifert, R. Rojeski, and D. Wehe, “CdZnTe semiconductor

parallel strip Frisch grid radiation detectors,” IEEE Transactions on Nuclear Science,

vol. 45, no. 3 pt 1, pp. 443 – 449, 1998.

[13] H. Malm, C. Canali, J. Mayer, M. Nicolet, K. Zanio, and W. Akutagawa, “Gamma-ray

spectroscopy with single-carrier collection in high-resistivity semiconductors,” Applied

Physics Letters, vol. 26, no. 6, pp. 344 – 6, 1975.

[14] D. McGregor, Z. He, H. Seifert, D. Wehe, and R. Rojeski, “Single charge carrier type

sensing with a parallel strip pseudo-Frisch-grid CdZnTe semiconductor radiation detec-

tor,” Applied Physics Letters, vol. 72, no. 7, pp. 792 – 794, 1998.

[15] D. McGregor, R. Rojeski, Z. He, D. Wehe, M. Driver, and M. Blakely, “Geometrically

weighted semiconductor Frisch grid radiation spectrometers,” Nuclear Instruments and

Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and

Associated Equipment, vol. 422,, no. 1-3, pp. 164–8, 1999.

167



[16] D. McGregor, J. Nishanth, and D. Wehe, “Design considerations for trapezoid-shaped

Frisch-grid semiconductor radiation detectors,” in Proceedings of the SPIE - The In-

ternational Society for Optical Engineering, vol. 4141, (USA), pp. 281 – 90, 2000.

[17] K. Parnham, J. Glick, C. Szeles, and K. Lynn, “Performance improvement of CdZnTe

detectors using modified two-terminal electrode geometry,” Journal of Crystal Growth,

vol. 214, pp. 1152 – 1154, 2000.

[18] D. McGregor, J. Nishanth, and D. Wehe, “Low-energy gamma-ray characterization of

a trapezoidal-shaped geometrically weighted Frisch grid CdZnTe gamma-ray spectrom-

eter,” Nuclear Instruments and Methods in Physics Research, Section A: Accelerators,

Spectrometers, Detectors and Associated Equipment, vol. 457, no. 1-2, pp. 230 – 244,

2001.

[19] D. McGregor and R. Rojeski, “High-resolution ionization detector and array of such

detectors,” US Patent No. 6,175,120, January 2001.

[20] G. Montemont, M. Arques, L. Verger, and J. Rustique, “A capacitive Frisch grid struc-

ture for CdZnTe detectors,” IEEE Transactions on Nuclear Science, vol. 48, no. 3 I,

pp. 278 – 281, 2001. Frisch grid structures;.

[21] L. Cirignano, H. Kim, K. Shah, M. Klugerman, P. Wong, M. Squillante, and L. Li,

“Evaluation of CZT detectors with capacitive Frisch grid structure,” in Proceedings of

SPIE - The International Society for Optical Engineering, vol. 5198, (Bellingham, WA

98227-0010, United States), pp. 1 – 8, 2004.

[22] D. McGregor, “Collimated radiation detector assembly, array of collimated radiation

detectors and collimated radiation detector module,” US Patent No. 6,781,132, August

2004.

[23] W. McNeil, D. McGregor, A. Bolotnikov, G. Wright, and R. James, “Single-charge-

168



carrier-type sensing with an insulated Frisch ring CdZnTe semiconductor radiation

detector,” Applied Physics Letters, vol. 84, no. 11, pp. 1988 – 1990, 2004.

[24] A. Bolotnikov, G. Camarda, G. Carini, G. Wright, L. Li, A. Burger, M. Groza, and

R. James, “Large area/volume CZT nuclear detectors,” Physica Status Solidi C:, vol. 2,

no. 5, pp. 1495 – 1503, 2005.

[25] A. Kargar, A. M. Jones, W. J. McNeil, M. J. Harrison, and D. S. McGregor, “CdZnTe

Frisch collar detectors for γ-ray spectroscopy,” Nuclear Instruments and Methods in

Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated

Equipment, vol. 558, no. 2, pp. 497 – 503, 2006.

[26] O. Frisch , British atomic energy report, BR-49, (unpublished) 1944.

[27] A. Bolotnikov, G. Camarda, G. Wright, and R. James, “Factors limiting the perfor-

mance of CdZnTe detectors,” IEEE Transactions on Nuclear Science, vol. 52, no. 3,

pp. 589 – 98, 2005.

[28] A. Bolotnikov, G. Camarda, G. Carini, M. Fiederle, L. Li, D. Mcgregor, W. Mcneil,

G. Wright, and R. James, “Performance characteristics of Frisch-ring CdZnTe detec-

tors,” IEEE Transactions on Nuclear Science, vol. 53, no. 2, pp. 607 – 614, 2006.

[29] M. J. Harrison, A. Kargar, and D. S. McGregor, “Charge collection characteristics of

Frisch collar CdZnTe gamma-ray spectrometers,” Nuclear Instruments and Methods

in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated

Equipment, vol. 579, no. 1, pp. 134 – 137, 2007.

[30] M. Schwartz, Principles of Electrodynamics. McGraw-Hill, New York, 1972.

[31] J. D. Jackson, Classical Electrodynamics. 3rd ed., Wiley, New York, 1999.

169



[32] G. Cavalleri, E. Gatti, G. Fabri, and V. Svelto, “Extension of ramo’s theorem as ap-

plied to induced charge in semiconductor detectors,” Nuclear Instruments and Methods,

vol. 92, no. 1, pp. 137 – 40, 1971.

[33] V. Radeka, “Low-noise techniques in detectors,” Annual review of nuclear and particle

science, vol. 38, pp. 217 – 77, 1988.

[34] Integrated Engineering Software, LORENTZ, “www.integratedsoft.com.”

[35] W. Shockley, “Currents to conductors induced by a moving point charge,” Journal of

Applied Physics, vol. 9, pp. 635 – 636, 1938.

[36] S. Ramo, “Currents induced by electron motion,” IRE Proceedings, vol. 27, pp. 584 –

585, 1939.

[37] G. Cavalleri, G. Fabri, E. Gatti, and V. Svelto, “On the induced charge in semicon-

ductor detectors,” Nuclear Instruments and Methods, vol. 21, no. 1, pp. 177 – 178,

1963.

[38] J. Gunn, “A general expression for electrostatic induction and its application to semi-

conductor devices,” Solid-State Electronics, vol. 7, no. 10, pp. 739 – 742, 1964.

[39] P. Tove and K. Falk, “Pulse formation and transit time of charge carriers in semicon-

ductor junction detectors,” Nuclear Instruments and Methods, vol. 29, no. 1, pp. 66 –

68, 1964.

[40] M. Martini and G. Ottaviani, “Ramo’s theorem and the energy balance equations in

evaluating the current pulse from semiconductor detectors,” Nuclear Instruments and

Methods, vol. 67, no. 1, pp. 177 – 8, 1969.

[41] G. Knoll and D. McGregor, “Fundamentals of semiconductor detectors for ionizing

radiation,” in Proceedings of MRS - Materials Research Society, vol. 302, pp. 3 – 17,

1993.

170



[42] R. Day, G. Dearnaley, and J. Palms, “Noise, trapping and energy resolution in semi-

conductor gamma-ray spectrometers,” vol. NS-14, pp. 487 – 491, 1967.

[43] W. Akutagawa and K. Zanio, “Gamma response of semi-insulating material in the pres-

ence of trapping and detrapping,” Journal of Applied Physics, vol. 40, no. 9, pp. 3838

–53, 1969.

[44] N. Stroken, V. Yeryomin, S. Lomashevich, and N. Tisnek, “Final results on the nature

of the pulse-height spectrum from semiconductor detectors,” vol. S-19, (USA), pp. 365

– 79, 1972.

[45] T. H. Prettyman, M. K. Smith, and S. E. Soldner, “Design and characterization of cylin-

drical CdZnTe detectors with coplanar grids,” Proceedings of SPIE - The International

Society for Optical Engineering, vol. 3768, pp. 339 – 347, 1999.

[46] F. Mathy, A. Gliere, E. Gros d’Aillon, P. Masse, M. Picone, J. Tabary, and L. Verger,

“3D model of CZT gamma-ray spectrometer detector: validation on a monolithic pix-

elated detector and on a high energy spectrometric probe,” in IEEE Nuclear Science

Symposium Conference Record, vol. Vol.5, pp. 3351 – 3355, 2004.

[47] F. Mathy, A. Gliere, E. G. D’Aillon, P. Masse, M. Picone, J. Tabary, and L. Verger,

“A Three-Dimensional Model of CdZnTe Gamma-Ray Detector and Its Experimental

Validation,” IEEE Transactions on Nuclear Science, vol. 51, no. 5 I, pp. 2419 – 2426,

2004.

[48] P. S. Ho, J. Leu, and W. W. Lee, Low dielectric constant materials for IC applications.

Springer, New York, 2003.

[49] H. Chen, J. Tong, Z. Hu, D. Shi, G. Wu, K. Chen, M. George, W. Collins, A. Burger,

R. James, C. Stahle, and L. Bartlett, “Low-temperature photoluminescence of detec-

tor grade CdZnTe crystal treated by different chemical etchants,” Journal of Applied

Physics, vol. 80, no. 6, pp. 3509 – 12, 1996.

171



[50] J. Ponpon, “A review of ohmic and rectifying contacts on cadmium telluride,” Solid-

State Electronics, vol. 28, no. 7, pp. 689 – 706, 1985.

[51] W. Akutagawa, D. Turnbull, W. Chu, and J. Mayer, “Solubility and lattice location

of Au in CdTe by backscattering techniques,” Journal of the Physics and Chemistry of

Solids, vol. 36, no. 6, pp. 521 – 8, 1975.

[52] M. J. Harrison, A. Kargar, A. C. Brooks, and D. McGregor, “Improved techniques for

the fabrication of Frisch collar CdZnTe gamma ray spectrometers,” in IEEE Nuclear

Science Symposium Conference Record, vol. 3, (Honolulu, HI, United states), pp. 1816

– 1821, 2007.

[53] M. Mescher, M. Reed, and T. Schlesinger, “Stress control in sputtered silicon nitride

films,” in Materials Research Society Symposium - Proceedings, vol. 472, (Warrendale,

PA, USA), pp. 239 – 244, 1997.

[54] Y. Nemirovsky, “Passivation with II-VI compounds,” in Proceedings of the SPIE - The

International Society for Optical Engineering, vol. 8, (USA), pp. 1185 – 7, 1990.

[55] K.-T. Chen, D. Shi, H. Chen, B. Granderson, M. George, W. Collins, A. Burger, and

R. James, “Study of oxidized cadmium zinc telluride surfaces,” in Proceedings of the

SPIE - The International Society for Optical Engineering, vol. 15, (USA), pp. 850 – 3,

1997.

[56] J. Haring, J. Werther, R. Bube, L. Gulbrandsen, W. Jansen, and P. Luscher, “Study

of cleaved, oxidized, and heat-treated CdTe surfaces,” Journal of Vacuum Science and

Technology A (Vacuum, Surfaces, and Films), vol. 1, no. 3, pp. 1469 – 72, 1983.

[57] A. Burger, K. Chen, D. Shi, W. Collins, and R. James, “Recent CdZnTe detector

fabrication developments,” in Proceedings of the SPIE - The International Society for

Optical Engineering, vol. 3115, (USA), pp. 70 – 5, 1997.

172



[58] G. Wright, R. James, D. Chinn, B. Brunett, R. Olsen, I. van Scyoc, J., M. Clift,

A. Burger, K. Chattopadhyay, D. Shi, and R. Wingfield, “Evaluation of NH4F/H2O2

effectiveness as a surface passivation agent for CdZnTe crystals,” in Proceedings of the

SPIE - The International Society for Optical Engineering, vol. 4141, (USA), pp. 324 –

35, 2000.

[59] G. Wright, D. Chinn, B. Brunett, M. Mescher, J. Lund, R. Olsen, F. Doty,

T. Schlesinger, R. James, K. Chattopadhyay, R. Wingfield, and A. Burger, “Ex-

ploratory search for improved oxidizing agents used in the reduction of surface leakage

currents of CdZnTe detectors,” in Proceedings of the SPIE - The International Society

for Optical Engineering, vol. 3768, (USA), pp. 481 – 5, 1999.

[60] G. Wright, G. Camarda, E. Kakuno, L. Li, F. Lu, C. Lee, A. Burger, J. Trombka,

P. Siddons, and R. James, “Effects of surface roughness on large-volume CdZnTe nu-

clear radiation detectors and removal of surface damage by chemical etching,” in Pro-

ceedings of the SPIE - The International Society for Optical Engineering, vol. 5198,

pp. 306 – 313, 2004.

[61] H. Chen, K. Chattopadhyay, K.-T. Chen, A. Burger, M. George, J. Gregory, P. Nag,

J. Weimer, and R. James, “Passivation of CdZnTe surfaces by oxidation in low energy

atomic oxygen,” Journal of Vacuum Science and Technology A (Vacuum, Surfaces, and

Films), vol. 17, no. 1, pp. 97 – 101, 1999.

[62] H. Chen, M. Hayes, K. Chattopadhyay, K.-T. Chen, A. Burger, J. Heffelfinger, and

R. James, “Photoluminescence investigation of surface oxidation of CdZnTe detec-

tors,” in Semiconductors for Room-Temperature Radiation Detector Applications II,

Symposium, (Warrendale, PA, USA), pp. 65 – 70, 1997.

[63] A. Burger, H. Chen, K. Chattopadhyay, D. Shi, S. Morgan, W. Collins, and R. James,

“Characterization of metal contacts on and surfaces of cadmium zinc telluride,” Nuclear

173



Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers,

Detectors and Associated Equipment, vol. 428, no. 1, pp. 8 – 13, 1999.

[64] N. Tsoulfanidis, Measurement and detection of radiation. 2nd ed., Taylor & Francis,

Washington, DC, 1995.

[65] G. F. Knoll, Radiation detection and measurement. 3rd ed., Wiley, New York, 2000.

[66] A. Abyzov, L. Davydov, V. Kutny, A. Rybka, M. Rowland, and C. Smith, “Correlation

between spectrometric ability and physical properties of semiconductor detectors,” in

Conf. Rec. 11th International Workshop of Room Temperature Semiconductor X-and

Gamma Ray Detectors and Associated Electronics, (Vienna), pp. 11–15, 1999.

[67] Y. Cui, A. Bolotnikov, G. Camarda, A. Hossain, R. James, G. De Geronimo, J. Fried,

P. O’Connor, A. Kargar, M. Harrison, and D. McGregor, “Hand-held gamma-ray spec-

trometer based on high-efficiency frisch-ring cdznte detectors,” IEEE Transactions on

Nuclear Science, vol. 55, no. 5, pp. 2765 – 9, 2008.

[68] A. Kargar, M. J. Harrison, and D. S. McGregor, “Charge collection efficiency char-

acterizing of CdZnTe Frisch collar spectrometer with collimated high energy gamma

ray,” Nuclear Instruments and Methods in Physics Research, Section A: Accelerators,

Spectrometers, Detectors and Associated Equipment, Submitted.

[69] A. Kargar, A. Brooks, M. J. Harrison, K. Kohman, R. Lowell, R. Keyes, H. Chen,

G. Bindley, and D. McGregor, “The effect of the dielectric layer thickness on spectral

performance of CdZnTe Frisch collar gamma ray spectrometers,” IEEE Transactions

on Nuclear Science, vol. 56, pp. 824–831, 2009.

[70] A. Kargar, R. B. Lowell, M. J. Harrison, and D. S. McGregor, “The crystal geometry

and the aspect ratio effects on spectral performance of CdZnTe Frisch collar device,”

in Proceedings of SPIE - The International Society for Optical Engineering, vol. 6706,

(San Diego, CA, United States), p. 67061J, 2007.

174



[71] A. Kargar, A. Brooks, K. Kohman, R. Lowell, R. Keyes, H. Chen, S. Awadalla, G. Bind-

ley, and D. McGregor, “Final surface treatment effect on performance of CdZnTe Frisch

collar gamma-ray detectors,” in Proceedings of SPIE - The International Society for

Optical Engineering, vol. 7079, (USA), p. 70790B (12 pp.), 2008.

[72] P. Capper, Properties of Narrow Gap Cadmium-based Compounds. IEE : INSPEC,

London, 1994.

[73] D. K. Schroder, Semiconductor material and device characterization. Wiley, New York,

1990.

[74] H. Kaufman and R. Robinson, Operation of broad-beam sources. Commonwealth Sci-

entific Corp., Alexandria, 1987.

[75] A. Kargar, A. M. Jones, W. J. McNeil, M. J. Harrison, and D. S. McGregor, “Angular

response of a W-collimated room-temperature-operated CdZnTe Frisch collar spectrom-

eter,” Nuclear Instruments and Methods in Physics Research, Section A: Accelerators,

Spectrometers, Detectors and Associated Equipment, vol. 562, no. 1, pp. 262 – 271,

2006.

175



Appendix A

Source of the FORTRAN code for
charge collection efficiency simulation

!generate the Q/Qo (or CCE) of the CZT (FRISCH collar) detector

!with certain values of mobility life time product for the e and holes.

!This one consider the weighting field and electric field as two vectors

!Now 1-D problem along central axis of ~1 cm long device

!--------------------------------------------------------------------

program EEwFrischHetchCZT

implicit none

!VARIABLES

!-------------------------------------------------------------------------

real, dimension(1003) :: CCE, CCE_h, CCE_e, x, E, WF, Ve

!NOTE: the dim of the vectors is the same as "n"

!x is the gamma interaction distance from cathode in planar device in cm

!WF is the "Weighting field" DIM(1/cm)

!CCE_h, CCE_e are the CCE of electrons and holes-not necessary.

integer :: i, n, j, k, t

real :: meu_tau_e, meu_tau_h, L, F_h, F_e, deltaX, m, p, e_trap, Hole_trap

!--------INPUT-----------------------INPUT-------------INPUT-----
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meu_tau_e=0.045 !cm2/V

meu_tau_h=0.0001 !cm2/V

L=0.95 !cm

n=1000 !# of nodes in x-axis which is the increment of x depends

!on the number of nods in the output file of LORENTZ

!--------INPUT-----------------------INPUT--------------INPUT----

!Constants CALCULATION

!--------calculate the coefficient of the exponential terms-------

F_h=-L/(real(n)*meu_tau_h)

F_e=-L/(real(n)*meu_tau_e)

!----------------------------------------------------------------

deltaX=L/real(n) !Now the device is divided into "n" segments

!----------------------------------------------------------------

!OPEN two file to read from and write to

!------------------------------------------------------------------------

open(unit=1,file=’inputfile.txt’,status=’old’) !read E&WF from input file

open(unit=3,file=’output.txt’,status=’unknown’) !write CCE(x) into output

!------------------------------------------------------------------------

!INPUT files: READ vectors E and WF from LORENTZ OUTPUT file

!--------------------------------------------------------------------------

x(0)=0.

DO t=1, n

read(1,*) E(t), WF(t)

end DO

!-----------------------------------------------------------------------

!CALCULATE the CCE(x) which is CCE at x(i) and then write CCE(i)

!------------------------------------------------------------------------
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DO i=1, n

!ELECTRONS

CCE_e(i)=WF(i+1)*deltaX !the (i+1)th segments, gamma interact

!Calculate the sum of ELECTRONS induction from x(i+1)interaction to x(n)=L

DO k=i+2, n !++++++++++++++++++++++++ELECTRONS++++++++++++++++++++++

e_trap=0.

!Calculate the summation of ELECTRONS trapping

DO j=i+1, k-1 !********* k-1<------>i+1

e_trap=e_trap+1.0/E(j)

end DO !*********

CCE_e(i)=CCE_e(i)+WF(k)*deltaX*exp(F_e*e_trap) !i+1--->j

end DO !++++++++++++++++++++++++ELECTRONS+++++++++++++++++++++++++

!HOLES

CCE_h(i)=WF(i)*deltaX !HOLE the i-th segment, gamma interact

!Calculate the sum of HOLES induction from x(i)interaction to x(0)=0

DO k=1, i-1 !++++++++++++++++++++++++++HOLES+++++++++++++++

Ve(k)=k*1.0

Hole_trap=0.0

m=0.

!Calculate the summation of HOLES trapping

DO j=k+1, i !******************************

Hole_trap=Hole_trap+1.0/E(j)

m=m+1.0

end DO !******************************

x(i)=Hole_trap

CCE_h(i)=CCE_h(i)+WF(k)*deltaX*exp(F_h*Hole_trap)!i->j

end DO !++++++++++++++++++++++++++HOLES+++++++++++++++++
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!BOTH ELECTRONS&HOLES

CCE(i)=CCE_e(i)+CCE_h(i) !double check the CCE of electrons

write(3,"(’’,1e12.4)") CCE(i)

end DO

!---------------------------------------------------------------------

end program EEwFrischHetchCZT
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Appendix B

The CdZnTe Frisch Collar Detectors
Fabricated at Kansas State University
and Used in the Array of Detectors at
Brookhaven National Laboratory

This Appendix contains the spectral results taken from a 137Cs of the fabricated detectors

at S.M.A.R.T. laboratory for the array of Frisch collar detectors. The array of detectors

was assembled and tested at BNL as described in Section 4.5, and the results of the detector

array tested with 137Cs are presented in Section 5.6.
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