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Abstract 

The scaling approach for determining the orientationally averaged light scattering in the 

3d Rayleigh-Debye-Gans diffraction limit is reviewed and extended, and applied to spheroids, 

cylinders, hexagonal prisms, rectangular prisms, Gaussian random spheres, and droxtals. It will 

be shown that the scaling approach is not only able to predict the power laws that describe the 

diffractive light scattering by a variety of shapes, but also the coefficients to the power laws. It 

will also be demonstrated that the scaling approach is able to identify the crossover points 

between distinct scattering regimes with different power laws, due extreme aspect ratios. 

Application of the scaling approach to inhomogeneous spheres, and the effects on the scattering 

will also be demonstrated. The internal coupling parameter 𝜌! for any arbitrary shape will be 

derived and a numerical approach for calculating 𝜌! and the proper Rayleigh normalization for 

any arbitrary shape will be presented.  The Rayleigh normalized orientationally averaged light 

scattered by spheroids, cylinders, hexagonal prisms, rectangular prisms, Gaussian random 

spheres, and droxtals was systematically studied. It will be shown that despite having different 

shapes, aspect ratios, refractive indexes, and sizes, there is an overall description of how particles 

scatter light. The internal coupling parameter 𝜌! will be shown to describe the region that the 

light scattering is in from the 3d Rayleigh-Debye-Gans diffraction limit to the 2d Rayleigh-

Debye-Gans diffraction limit.  It will also be shown that when the light scattering is in the 2d 

Rayleigh-Debye-Gans diffraction limit,  𝜌! describes the separation between the diffraction 

dominated region and the refraction dominated region of the scattering in 𝑞-space. Finally, it will 

be shown that the absorption parameter 𝜅𝑘𝑅, where 𝜅 is the imaginary part of the refractive 

index, and kR is the size parameter, is a universal parameter that describes the reduction in the 



  

refractive effects, such as the refraction hump, generalized rainbows, and glories in the scattered 

light as the absorption increases. 
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Abstract 

The scaling approach for determining the orientationally averaged light scattering in the 

3d Rayleigh-Debye-Gans diffraction limit is reviewed and extended, and applied to spheroids, 

cylinders, hexagonal prisms, rectangular prisms, Gaussian random spheres, and droxtals. It will 

be shown that the scaling approach is not only able to predict the power laws that describe the 

light scattering by a variety of shapes, but also the coefficients to the power laws. It will also be 

demonstrated that the scaling approach is able to the crossover point between distinct scattering 

regimes with different power laws due to shapes with extreme aspect ratios. Application of the 

scaling approach to inhomogeneous spheres, and the effects on the scattering will also be 

demonstrated. The internal coupling parameter 𝜌! for any arbitrary shape will be derived and a 

numerical approach for calculating 𝜌! and the proper Rayleigh normalization for any arbitrary 

shape will be presented.  The Rayleigh normalized orientationally averaged light scattered by 

spheroids, cylinders, hexagonal prisms, rectangular prisms, Gaussian random spheres, and 

droxtals was systematically studied. It will be shown that despite having different shapes, aspect 

ratios, refractive indexes, and sizes, there is an overall description of how particles scatter light. 

The internal coupling parameter 𝜌! will be shown to describe the region that the light scattering 

is in from the 3d Rayleigh-Debye-Gans diffraction limit to the 2d Rayleigh-Debye-Gans 

diffraction limit.  It will also be shown that when the light scattering is in the 2d Rayleigh-

Debye-Gans diffraction limit,  𝜌! describes the separation between the diffraction dominated 

region and the refraction dominated region of the scattering in 𝑞-space. Finally, it will be shown 

that the absorption parameter 𝜅𝑘𝑅, where 𝜅 is the imaginary part of the refractive index, and kR 

is the size parameter, is a universal parameter that describes the reduction in the refractive 



  

effects, such as the refraction hump, generalized rainbows, and glories in the scattered light as 

the absorption increases. 
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Chapter 1 - Introduction 

The study of how particles scatter light has been a subject of interest for many years. 

Lord Rayleigh published his work on light from the sky and its polarization and color in 1871 

[1], and Mie published his work on the scattering by spheres in 1908 [2].  van de Hulst published 

one of the most well-known books on light scattering in 1957 [3], followed by the more modern 

works of Bohren and Huffman [4].  Some of the most recent widely known works on light 

scattering have come from Mishchenko and others [5–7]. Q-space analysis has also been around 

for many years, it has primarily been used in the fields of small angle x-ray (SAXS) and neutron 

scattering. Much of the SAXS formalism was produced in the 1940’s and 1950’s by names like 

Guinier and Fournet [8] and Kratky and Porod [9], while more modern works on the subject can 

be found by Feigin and Svergun (1987) [10].  Though the study of light scattering and SAXS 

have both been around for many years the application of q-space analysis in light scattering has 

not been widely adopted.  

The distinction between typical light scattering techniques and 𝑞-space analysis comes 

from whether the scattering is plotted on a log-linear plot vs the scattering angle 𝜃, or on a log-

log plot vs the scattering wave vector 𝑞. When plotting on a log-log plot vs 𝑞, the scattering in 

the forward direction (small angles) is emphasized, which is why it is used in SAXS 

formulations.  Even though 𝑞-space analysis emphasizes the forward directions of scattering, it 

also reveals quasi-universal descriptions of the scattered light with the internal coupling 

parameter 𝜌! [11–15]. It should be stressed that 𝑞-space analysis is not meant to be taken as a 

replacement of the analysis of light scattering vs 𝜃.  Q-space analysis provides another method to 

analyze the light scattering that can uncover additional information and descriptions that may not 
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be readily found when plotting vs 𝜃. However, as will be shown in this work, the inverse 

statement is also true and in some cases 𝜃-space provides a better picture.  

Under the envelope of what is referred to as Q-space analysis is also the systematic study 

of light scattering. In this work the relative refractive index, size, and aspect ratio of particles 

with different shapes will be systematically varied.  The focus will be looking for the similarities 

in the scattering as the parameters are varied to put together an overview of how particles scatter 

light. It will be shown that the forward scattering for any particle is described by the single 

internal coupling parameter 𝜌! and that the effects of absorption on the scattering can also be 

described by a single absorption parameter 𝜅𝑘𝑅"#$.   

 

1.1 Principles of Scattering 

Light is a transverse electromagnetic wave that self-propagates in a direction 

perpendicular to the plane that the electric and magnetic waves oscillate in, or the plane of 

vibration. A beam of light propagating through a vacuum will do so unaffected.  When a particle 

(or particles) are placed into the path of the beam the electromagnetic wave will interact with the 

charges within the particle (or particles) causing them to oscillate [4,16].  The oscillating charges 

are continuously accelerating and thus are radiating.  Not only the field from the incident beam 

of light causes the charges to oscillate, but it is also the radiated fields from all of the other 

charges within the particle that cause the oscillation. The sum of the radiated fields from all of 

the charges within the particle (or particles) gives the scattered field. The oscillating charges may 

also transform some of the energy from the incident beam into other forms i.e. (thermal energy), 

this is referred to as absorption.  The total amount of energy removed from the beam by either 

scattering or absorption is known as extinction [4,16]. 
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To begin to describe scattering in more quantitative terms, take the beam of light, with a 

cross sectional area 𝐴%#&', and with power 𝑃()* directed along the positive 𝑧 axis as shown in 

Fig. 1.1. The intensity of this beam of light will be given by the power per unit area or 𝐼()* =

𝑃()* 𝐴%#&'⁄ .  Now imagine that there is an arbitrary particle in the path of the beam of light as 

shown in Fig. 1.1. When the beam of light interacts with the particle, some of the incident power 

will be scattered by the particle, and some could be absorbed.  Some of the power in the beam of 

light will not even interact with the particle and continues on unaffected.  

 

Fig. 1.1 An arbitrary particle in a beam of light will scatter in all directions. The particle can also absorb energy 

from the light, typically in the form of heat. The differential cross section is directly related to the amount of light 

scattered through the area 𝑑𝐴. 

  

At first glance one may think that the amount of power scattered by the particle is related 

to the particle’s geometric cross section. If we considered the light as solely consisting of 
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photons that were being scattered by the particle, this may well be the case, but the dual wave 

and particle nature of light cannot be ignored. We can, however, define an “effective” scattering 

cross section. The total power scattered by the particle will be given by the product of this 

“effective” scattering cross section and the power per unit area of the incident beam of light 

𝑃+*& = 𝐼()*𝐶+*&. (1.1) 

𝐶+*& is the total scattering cross section, as it tells us the total power scattered by a given particle. 

When a different particle is placed in the same beam of light, it will have a different 𝐶+*&, and a 

different amount of the incident power will be scattered.   

Just as with the scattering if the particle absorbs some of the incident power, we can 

define an “effective” absorption cross section.   The product of this “effective” absorption cross 

section and the incident power per unit area of the incident beam of light tells us the total power 

absorbed by the particle  

𝑃&%+ = 𝐼()*𝐶&%+. (1.2) 

𝐶&%+ is the total absorption cross section, and it tells us the total power absorbed by the particle.  

The total power removed from the beam of light due to either scattering or absorption will be 

given by 

𝑃#-. = 𝐼()*(𝐶&%+ + 𝐶+*&) = 𝐼()*𝐶#-. (1.3) 

𝐶#-. is the total extinction cross section and tell us how much total power has been removed 

from the beam of light.  

The total cross sections describe how much total power has been removed with no 

consideration of direction, and indeed with absorption and extinction there are no directions to 

consider.  The total scattering cross section, as the name implies, is the sum of the scattering over 

all 4𝜋 steradians. What is of particular interest is the intensity scattered into a specific direction, 
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or how much of the scattered power is scattered into an area 𝑑𝐴 about the angles 𝜃 and 𝜙 as 

shown in Fig. 1.1. The scattered intensity into the direction 𝜃 and 𝜙 will be given by  

𝐼+*&(𝜃, 𝜙) =
𝑑𝑃+*&
𝑑𝐴  (1.4) 

where 𝑑𝑃+*& is the amount of the total scattered power 𝑃+*& that is scattered through the area 𝑑𝐴.   

The differential area 𝑑𝐴 can be expressed in terms of a solid angle as 𝑑𝐴 = 𝑟/ sin(𝜃)𝑑𝜃𝑑𝜙 =

𝑟/𝑑Ω [17] with 𝑟 being the distance from the particle. Combining Eq. (1.1) and Eq. (1.4) and 

writing the differential area in terms of a solid angle leads to 

𝐼+*&(𝜃, 𝜙) =
𝐼()*
𝑟/

𝑑𝐶+*&
𝑑Ω

(𝜃, 𝜙). (1.5) 

 The term 01!"#
02

(𝜃, 𝜙) in Eq. (1.5) is called the differential scattering cross section and is related 

to the total scattering cross section by [4]  

𝐶+*& = f
𝑑𝐶+*&
𝑑𝛺

(𝜃, 𝜙)𝑑𝛺
	

45

. (1.6) 

 Typically, it is the differential scattering cross section that is of interest to study as it describes 

the angle dependent scattering in the direction described by 𝜃 and 𝜙.  When the differential 

scattering cross section is known it can be used to calculate the scattered intensity from the 

particle, at any distance and with any incident intensity.  

Throughout this work, what will be considered is orientationally averaged scattering. 

Orientational averaging can be used to give the approximate behavior of many similar particles 

randomly oriented in a scattering volume. The incident field will always be considered as 

propagating in the 𝑧 direction and the incident wave will be described by the wave vector 𝑘h⃗ ()*. 

Only elastic scattering will be considered, and so the scattered wave vector 𝑘h⃗ +*& will have the 

same magnitude as the incident wave vector j𝑘h⃗ ()*j = j𝑘h⃗ +*&j = 𝑘 = 2𝜋 𝜆⁄  where 𝜆  is the 

wavelength.  The particle will scatter light in all directions, but what is measured is the light 
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scattered to the detector in the 𝑘h⃗ +*& direction.  The plane formed by the incident and scattering 

wave vectors is known as the scattering plane, this is shown in Fig. 1.2. The scattering plane will  

be taken to be the 𝑧 − 𝑦 plane described by the scattering angle 𝜃, with 𝜙 = 𝜋 2⁄  as shown in 

Fig. 1.2 unless noted otherwise.   

 

Fig. 1.2 The scattering plane is defined by the incident and scattering wave vectors, taken to be the y-z plane in 
this work.  The scattering angle 𝜃 is measured from the z axis.   

 

  

1.2 Polarization 

As mentioned in the previous section, we must consider the wave nature of light, or more 

precisely, we must consider that light is a vector wave.  We can describe an electromagnetic 

wave (light) propagating in the positive 𝑧 direction with [18,19] 

𝐸h⃗ = 𝑅𝑒(𝐸n-)𝑥o + 𝑅𝑒(𝐸n6)𝑦o (1.7) 

	𝐸n- and 𝐸n6are the complex electric field components and are given by  

𝐸n- = 𝐸7,-𝑒((:;<=.),	 (1.8) 

 and  
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𝐸n6 = 𝐸7,6𝑒((:;<=.?∆A).	 (1.9) 

In Eq. (1.8) and Eq. (1.9) 𝐸7,- and 𝐸7,6 are the field amplitudes, 𝑘 is the wave vector 

magnitude given by 2𝜋 𝜆⁄ , with 𝜆 being the wavelength, 𝜔 is the angular frequency, and ∆𝜑 is 

the phase difference between the 𝑥 and 𝑦 complex field components. Rewriting Eq. (1.7) using 

the real parts of Eq. (1.8) and Eq. (1.9) we get 

𝐸%⃗ = 𝐸$,&cos(𝑘𝑧 − 𝜔𝑡) 𝑥3 + 𝐸$,'cos(𝑘𝑧 − 𝜔𝑡 + ∆𝜑)𝑦3.	 (1.10) 

 In general, an electric field described by Eq. (1.10) will be elliptically polarized.   

To understand this, imagine an observer looking down the 𝑧 axis so that the observer is viewing 

the electric field vector described by Eq. (1.10) traveling toward them. The electric field vector 

has components in only the 𝑥-𝑦 plane, as it travels in the 𝑧 direction toward the observer.  What 

the observer would see is the electric field rotating in the 𝑥-𝑦 plane, and the tip of the electric 

field vector would trace out an ellipse.  There are some special cases of the elliptical polarization 

that arise with specific values of the phase difference ∆𝜑,  and the field amplitudes [18].  

 

1) If 𝐸7,6 = 0 and 𝐸7,- ≠ 0, the tip of the electric field vector will oscillate along the 𝑥-axis, 

and the field is said to be linearly polarized in the 𝑥-direction, vertically polarized, or 

polarized perpendicular to the scattering plane.    

2) If 𝐸7,- = 0 and 𝐸7,6 ≠ 0, the tip of the electric field vector will oscillate along the 𝑦-axis, 

and the field is said to be linearly polarized in the y-direction,  horizontally polarized, or 

polarized parallel to the scattering plane.   

3) If 𝐸7,- = 𝐸7,6 = 𝐸7 and ∆𝜑 = 0,  the tip of the electric field vector will oscillate along 

the 𝑦 = 𝑥 direction, and the field is said to be linearly polarized at an angle of +45° with 

respect to the x-axis.  
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4) If 𝐸7,- = 𝐸7,6 = 𝐸7 and ∆𝜑 = 𝜋 , the tip of the electric field vector will oscillate along 

the 𝑦 = −𝑥 axis, and the field is said to be linearly polarized at an angle of −45° with 

respect to the x-axis.  

5) If 𝐸7,- = 𝐸7,6 = 𝐸7 and ∆𝜑 = −𝜋 2⁄ + 2𝑚𝜋	𝑚 = 0,±1,±2…,  the tip of the electric 

field vector will rotate clockwise tracing out a circle of radius 𝐸7, and is said to be right 

circularly polarized. 

6) If 𝐸7,- = 𝐸7,6 = 𝐸7 and ∆𝜑 = 𝜋 2⁄ + 2𝑚𝜋	𝑚 = 0,±1,±2…,  the tip of the electric field 

vector will rotate counter-clockwise tracing out a circle of radius 𝐸7, and is said to be left 

circularly polarized. 

 

In this work the focus will be mainly on the scattering of light that is linearly polarized either 

perpendicular or parallel to the scattering plane.  

To see how the polarization of the incident electric field can affect the scattering, 

consider an electric field incident upon a small dielectric sphere. The field will induce a force on 

the charged particles within the sphere and start them oscillating. In the electrostatics 

approximation, the field can be approximated as being uniform across the diameter of the sphere 

[20]. There are two conditions that must be met before being able to apply the electrostatics 

approximation.  One condition is that the size parameter 𝑅"#$ ≪ 1 , where 𝑅"#$ is the radius of a 

sphere with the equivalent volume, which would be 𝑅  in the case of a sphere. Another condition 

is that |𝑚|𝑘𝑅"#$ ≪ 1 where 𝑚 = 𝑛 + 𝑖𝜅 is the complex relative index of refraction, or the ratio 

of the index of the scattering particle to the index of the surrounding medium [3,4]. Scattering 

particles, whether they are spheres or not, that meet these conditions are commonly referred to as 

being in the Rayleigh scattering limit. 
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The first condition 𝑘𝑅 ≪ 1 is a direct comparison wavelength of the incident light and 

the size of the particle, as 𝑘 is inversely proportional to the wavelength.  When the wavelength is 

comparably large compared to the sphere the phase of the incident field can be taken to be 

relatively constant across the diameter of the sphere. When the incident field is in phase across 

the sphere, so will be the scattered fields, and the scattered fields will sum up constructively.  

The second condition considers the effects of the relative index, more precisely the imaginary 

part of the relative index 𝜅 on the field within the sphere. When 𝜅𝑘𝑅 ≪ 1, the field will fully 

penetrate the sphere, but if it is not, the field will be absorbed before doing so and will no longer 

be uniform across the diameter of the sphere.  Later in this work, it will be shown that 𝜅𝑘𝑅 is a 

universal parameter describing the effects of absorption on the scattering from particles.  

When the incident field is uniform across the sphere, the charged particles will oscillate in phase. 

The direction along which the particles oscillate will be the same direction that the incident 

electric field is polarized.  The oscillating particles will radiate, and if the sphere is optically 

small, only the dipole terms will contribute significantly to the scattering [20].  The scattered 

field will have a polarization associated with it as well, which in general may be different than 

incident polarization. The differential scattering cross section for a small dielectric sphere, which 

has an incident field polarization described by 𝑝̂, and a scattered field polarization described by 

𝜖̂	 is equal to [20]  

𝑑𝐶+*&,B&6
𝑑Ω

(𝜃) = 𝑘4𝑅C z
𝑚/ − 1
𝑚/ + 2z

/

{𝜖̂∗ ∙ }~𝑘�+ × 𝑝̂� × 𝑘�+��
/

. (1.11) 

 In Eq. (1.11), both 𝑝̂ and 𝜖̂	 can be complex quantities when circularly polarized light is 

considered, and 𝑘�+ is the unit vector pointing in the direction of the detector.  The complex 

conjugate of 𝜖̂ is used to correctly handle circular polarizations  [20]. Using the vector identity 

[21] 
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𝐴 × ~𝐵h⃗ × 𝐶� = 𝐵h⃗ ~𝐴 ∙ 𝐶� − 𝐶~𝐴 ∙ 𝐵h⃗ � (1.12) 

 Eq. (1.11) can be expressed as  

𝑑𝐶+*&,B&6
𝑑Ω

(𝜃) = 𝑘4𝑅C z
𝑚/ − 1
𝑚/ + 2z

/

[𝜖̂∗ ∙ 𝑝̂]/	.				 (1.13) 

 

  
 In Fig. 1.3 both the perpendicular (blue) and parallel (purple) polarizations are shown 

(double arrows) for incident (solid) and scattered (dashed) fields. In Fig. 1.3 it is clear that if the 

scattered field is polarized perpendicular to the scattering plane it will be polarized along the 𝑥 

direction and 𝜖Ê#FE = 𝑥o.  However, for scattered fields that are parallel to the scattering plane the 

polarization will have a mix of both 𝑧 and 𝑦 components.  The unit vector for parallel 

polarization of the scattered field will be perpendicular to 𝑘�+, which in cartesian coordinates is 

given by 

𝑘�+ = sin(𝜃) 𝑦o + cos(𝜃) 𝑧̂. (1.14) 

Rotating 𝑘�+ by 90° in the scattering plane gives 

𝜖Ê&F = {0 −1
1 0 � �

sin(𝜃)
cos(𝜃)� = − cos(𝜃) 𝑦o + sin(𝜃) 𝑧̂		. (1.15) 

Examining the dot product in Eq. (1.13), if the incident polarization is perpendicular (parallel) to 

the scattering plane, then the amount of the field scattered parallel (perpendicular) to the 

scattering plane will be zero as 𝜖̂∗ and 𝑝̂ would be perpendicular to each other by definition.   

𝑑𝐶+*&,B&6,∥H
𝑑Ω

(𝜃) =
𝑑𝐶+*&,B&6,H∥	

𝑑Ω
(𝜃) = 0			 (1.16) 

where the notation system used in the subscripts gives the incident polarization with the first 

symbol and the scattered polarization with the second.  The subscript example, ∥⊥ would be 

incident light that is polarized in a direction parallel to the scattering plane, and only considering 

the component of the scattered light that is polarized perpendicular to the scattering plane. 
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Experimentally this would be analogous to sending the scattered field through a linear polarizer 

that only allows light polarized perpendicular to the scattering plane to be transmitted.   

 

Fig. 1.3 Polarization directions with respect to the scattering plane. Purple arrows represent parallel polarization 
while the blue arrows represent perpendicular polarization. 

 

When the incident field is polarized perpendicular to the scattering plane, 𝑝̂ = 𝑥o and from 

Eq. (1.16) we know that the parallel component of the scattered field is zero, and so the only 

non-zero component of the scattered field is perpendicular to the scattering plane, 𝜖	̂ = 𝑥o.  The 

incident and scattered polarizations are parallel to each other and so the dot product will be equal 

to unity and the differential cross section will be given by 

𝑑𝐶+*&,B&6,HH
𝑑Ω

(𝜃) = 𝑘4𝑅C z
𝑚/ − 1
𝑚/ + 2z

/

. (1.17) 

 When the incident field is polarized parallel to the scattering plane, 𝑝̂ = 𝑦o and from Eq. (1.16) 

we know that the perpendicular component is zero, and so the only non-zero component of the 

scattered field is parallel to the scattering plane,  𝜖	̂ = −cos(𝜃) 𝑦o + sin(𝜃) 𝑧̂.  The dot product of 

the incident and scattered fields will be equal to −cos(𝜃), and the differential scattering cross 

section will be proportional to cos/(𝜃) and go as  
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𝑑𝐶+*&,B&6,∥∥
𝑑Ω

(𝜃) = 𝑘4𝑅C z
𝑚/ − 1
𝑚/ + 2z

/

cos/(𝜃). (1.18) 

 When the incident light is unpolarized, the differential scattering cross section of the scattered 

field that is polarized perpendicular (parallel) to the scattering plane will be given by an average 

of the parallel and perpendicular incident polarizations 

𝑑𝐶+*&,B&6,IH
𝑑Ω

(𝜃) =
1
2�

𝑑𝐶+*&,∥H
𝑑Ω

(𝜃) +
𝑑𝐶+*&,HH
𝑑Ω

(𝜃)� =
𝑘4𝑅C

2 z
𝑚/ − 1
𝑚/ + 2z

/

, (1.19) 

 and 

𝑑𝐶+*&,B&6,I∥
𝑑Ω

(𝜃) =
1
2�

𝑑𝐶+*&,∥∥
𝑑Ω

(𝜃) +
𝑑𝐶+*&,H∥
𝑑Ω

(𝜃)� =
𝑘4𝑅C

2 z
𝑚/ − 1
𝑚/ + 2z

/

cos/(𝜃), (1.20) 

where the 𝑈 stands for unpolarized light. Finally, if both the incident and scattered light are 

unpolarized the result is the sum of Eq. (1.19) and Eq. (1.20) 

𝑑𝐶+*&,B&6,II
𝑑Ω

(𝜃) =
𝑘4𝑅C

2 z
𝑚/ − 1
𝑚/ + 2z

/

~1 + cos/(𝜃)�.		 (1.21) 

 In general, Eq. (1.11)-Eq. (1.21) hold for particles of any shape as long as the electrostatic 

conditions are met, with the replacement of [3] 

𝑘4𝑅C z
𝑚/ − 1
𝑚/ + 2z

/

→ 𝑘4𝑉/|𝛼(𝑚)|/,									j𝛼+EJ(𝑚)j =
3
4𝜋 z

𝑚/ − 1
𝑚/ + 2z				 

(1.22) 

  

 where 𝑉 is the volume of the particle and 𝛼(𝑚) is the average volume polarizability. Fig. 1.4 

shows the classic dipole pattern given by the angular behavior of Eq. (1.19)-Eq. (1.21).  
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Fig. 1.4 Classic dipole pattern represented in the scattering plane. The circular dot dashed line represents the 
perpendicular scattering, while the dashed line is the parallel scattering. 

 

It is clear that the polarization of the fields whether it be the incident or scattered field 

plays an integral role in scattering.  Typically, it is the scalar intensity of the vector field that is 

measured by a detector and thus the information about the polarization is lost.  Indeed, by 

examination of Eq. (1.16)-Eq. (1.21) it is apparent that the differential scattering cross sections, 

which are related to intensities by Eq. (1.5), have no information about the polarization state of 

the fields.  More than one parameter will be needed to keep track of the intensities and 

polarization information.  

 

 1.3 Stokes Vector 

As we have seen, having different polarizations of the incident field results in different 

angular behavior of the scattered intensity. Yet the measured intensity alone does not carry the 

polarization information with it. The Stokes vector, named after G. G. Stokes [18,22], is a four 

dimensional vector that describes not only the intensity of a wave but also the polarization state 
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in terms of measurable quantities. For an ideal beam of monochromatic light the elements of the 

Stokes vector are defined as [4,18] 

𝐼 = 	𝐼∥ + 𝐼H ∝ 𝐸∥𝐸∥∗ + 𝐸H𝐸H∗ , (1.23) 

𝑄 = 𝐼∥ − 𝐼H ∝ 𝐸∥𝐸∥∗ − 𝐸H𝐸H∗ ,			 (1.24) 

𝑈 = 𝐼? − 𝐼< ∝ 𝐸∥𝐸H∗ + 𝐸H𝐸∥∗ (1.25) 

𝑉 = 𝐼B − 𝐼K ∝ 𝑖~𝐸∥𝐸H∗ − 𝐸H𝐸∥∗�	. (1.26) 

 Where 𝐼∥(	𝐼H) is the intensity of a beam of light after passing through a linear polarizer with its 

transmission axis parallel (perpendicular) to the scattering plane,  𝐼?(	𝐼<) is the intensity of a 

beam of light after passing through a linear polarizer with its transmission axis at a +45°(−45°) 

to the scattering plane. Finally, 𝐼B(	𝐼K) is the intensity of a beam of light after passing through a 

right (left) circular polarizer. In a real world experiment, the beam will not be perfectly 

monochromatic, but only quasi monochromatic and the stokes vectors will be given by [4,18] 

𝐼 = 𝐼∥ + 𝐼H ∝ 〈	𝐸∥𝐸∥∗ + 𝐸H𝐸H∗〉 = 〈𝐸7,-/ 〉 + 〈𝐸7,6/ 〉 (1.27) 

𝑄 = 𝐼∥ − 𝐼H ∝ 〈	𝐸∥𝐸∥∗ − 𝐸H𝐸H∗ 〉 = 〈𝐸7,6/ 〉 − 〈𝐸7,-/ 〉 (1.28) 

𝑈 = 𝐼? − 𝐼< ∝ 〈𝐸∥𝐸H∗ + 𝐸H𝐸∥∗〉 = 〈2𝐸7,-𝐸7,6 cos(∆𝜑)〉 (1.29) 

𝑉 = 𝐼B − 𝐼K ∝ 〈𝑖~𝐸∥𝐸H∗ − 𝐸H𝐸∥∗�〉 = 〈2𝐸7,-𝐸7,6 sin(∆𝜑)〉 (1.30) 

Where 〈				〉 represents time averaging over a time interval that is long compared to the period.  

The last term in Eq. (1.27)-Eq. (1.30) comes from combining Eq. (1.10) with them and the fact 

that in this work the 𝑥 direction has been denoted at perpendicular to the scattering plane while 

the 𝑦 direction is parallel to it. All four of the Stokes vector elements 𝐼, 𝑄, 𝑈, and 𝑉 will have 

units of intensity, and all four elements can be measured using polarizers. 

To see how the four elements of the Stokes vector provide information about the 

polarization state of a beam of light, Eq. (1.27)-Eq. (1.30) can be applied to beams of light with 

different polarizations.  For an unpolarized beam of light there will be an equal amount of the 

light that is polarized perpendicular and parallel to the scattering plane so Eq. (1.27) gives 𝐼 = 𝐼7 
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where 𝐼7 is the intensity of the incident beam.  Eq. (1.28) will lead to 𝑄 = 0 for unpolarized 

light. The unpolarized light will be incoherent and so the phase difference in Eq. (1.29) and Eq. 

(1.30) will be random with time, and the time average of cos(∆𝜑) and sin(∆𝜑) will be zero, and 

thus 𝑈 = 𝑉 = 0.  When the light is linearly polarized perpendicular to the scattering plane 𝐸∥ =

0, and so 𝐼 = −𝑄,  and 𝑈 = 𝑉 = 0.  If instead the light is linearly polarized parallel to the 

scattering plane 𝐸H = 0, which causes 𝐼 = 𝑄,  and 𝑈 = 𝑉 = 0.  When the light is linearly 

polarized at a +45° angle with respect to the scattering plane, 𝐸∥ = 𝐸H and the phase difference 

∆𝜑=0, thus 𝑈 = 𝐼, and 𝑄 = 𝑉 = 0. Instead if the light is linearly polarized at a −45° angle with 

respect to the scattering plane, 𝐸∥ = 𝐸H and the phase difference ∆𝜑=𝜋, resulting in 𝑈 = −𝐼, and 

𝑄 = 𝑉 = 0. When the light is right circularly polarized, 𝐸∥ = 𝐸H and the phase difference ∆𝜑 =

−𝜋 2⁄ + 2𝑚𝜋			𝑚 = 0,±1,±2…, thus 𝑉 = 𝐼 and 𝑄 = 𝑈 = 0. Instead if the light is left 

circularly polarized, 𝐸∥ = 𝐸H and the phase difference ∆𝜑 = 𝜋 2⁄ + 2𝑚𝜋			𝑚 = 0,±1,±2…, 

thus 𝑉 = −𝐼 and 𝑄 = 𝑈 = 0. The matrix representation of normalized Stokes vectors for all of 

these cases are shown in Fig. 1.5. In the normalized Stokes vector all of the elements are 

normalized by the first element 𝐼 [18]. 

 

Fig. 1.5 Normalized stokes vectors for unpolarized, parallel, perpendicular, +45°,−45°, right and left circularly 
polarized light. 
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It can be worked out from Eq. (1.27)-Eq. (1.30) that 𝐼/ ≤ 𝑄/ + 𝑈/ + 𝑉/.  The amount of 

the scattered light that is polarized in some fashion is given by the degree of polarization 

𝑃 =
�𝑄/ + 𝑈/ + 𝑉/

𝐼 	. (1.31) 

When 𝑃 = 1 the light is fully polarized, and if 𝑃 < 1 it is partially polarized. Similarly, the 

amount of light that is linearly polarized, whether it be perpendicular, parallel, +45°, or −45° is 

denoted as the degree of linear polarization 

𝑃M =
�𝑄/ + 𝑈/

𝐼 	.	 (1.32) 

 When 𝑃M = 1 the light is fully polarized and only has linearly polarized field components. 

Finally, the amount of light that is either right or left circularly polarized is given by the degree 

of circular polarization 

𝑃* =
√𝑉/

𝐼 	.			 (1.33) 

 Just as with P and  𝑃M if 𝑃* = 1, it will be fully polarized and only composed of right or left 

circularly polarized light. The Stokes vector for a beam of light describes the polarization state of 

the light in terms of readily measurable intensities. The scattering process, however, tends to 

change the polarization state and so a mechanism to transform the Stokes vector of the incident 

light into a Stokes vector for the scattered light is needed.   

 

 1.4 Mueller Matrices 

When a beam of light interacts with an optical object of some form, the intensity and 

polarization of the light is in general transformed.  How the incident light is transformed upon 

interaction with an optical object depends on what the object is and what direction the interaction 

is being viewed from.  The Mueller matrix is an angle dependent, unitless 4 × 4 matrix that 
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describes the transformation of an incident intensity and polarization upon interaction with an 

optical object. Mathematically, the interaction is represented by a matrix multiplication, the 

Stokes vector representing the incident beam of light is multiplied by the Mueller matrix 

representing how the optical object transforms the light.  The result of the matrix multiplication 

is a new Stokes vector representing the intensity and polarization state of the light after the 

interaction.    

Some of the simpler optical objects that can be considered are polarizers. Fig. 1.6 shows 

the Muller matrices for linear polarizers with transmission axes that are parallel, perpendicular, 

+45°, and −45° with respect to the scattering plane and right and left circular polarizers.  As an 

example, consider an arbitrary beam of light incident upon a perpendicular polarizer, the 

resulting Stokes vector would be given by [18] 

�

𝐼+*&
𝑄+*&
𝑈+*&
𝑉+*&

� =
1
2�

1 −1 0 0
−1 1 0 0
0
0

0
0

0 0
0 0

��

𝐼()*
𝑄()*
𝑈()*
𝑉()*

� =
1
2�

𝐼()* − 𝑄()*
−(𝐼()* − 𝑄()*)

0
0

�			 (1.34) 

In Eq. (1.34) it can be seen that the scattered intensity 𝐼+*& is equal in magnitude but opposite in 

sign to 𝑄+*&, which was the condition given for light polarized perpendicular to the scattering 

plane.  

 

Fig. 1.6 Mueller matrices for parallel, perpendicular, +45°,−45°, right and left circular polarizers. 
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For more complex optical objects like a scattering volume of particles, the most general 

Mueller matrix has 16 independent elements and is represented as 

�

𝑠NN 𝑠N/ 𝑠NO 𝑠N4
𝑠/N 𝑠// 𝑠/O 𝑠/4
𝑠ON
𝑠4N

𝑠O/
𝑠4/

𝑠OO 𝑠O4
𝑠4O 𝑠44

�	. (1.35) 

By making certain assumptions about the symmetries of the particles within a scattering volume 

the number of independent elements can be reduced.  van de Hulst [3] gives a series of sets of 

different assumptions, the most common of which is used as follows. The scattering volume 

contains particles and their mirror images in equal number and in random orientations, or, the 

particles in the scattering volume have a plane of symmetry and are randomly oriented.  These 

assumptions reduce the number of independent elements of the Mueller matrix to six and the 

Mueller matrix is given by 

�

𝑠NN 𝑠N/ 0 0
𝑠N/ 𝑠// 0 0
0
0

0
0

𝑠OO 𝑠O4
−𝑠O4 𝑠44

�	.			 (1.36) 

In this work the orientationally averaged scattering from single particles will be studied, 

and the assumption will be made that orientationally averaging a single particle meets the 

assumptions that lead to Eq. (1.36).  Orientationally averaging a particle also removes the 

angular dependence with the azimuthal angle 𝜙.  When the particles are spheres the number of 

independent elements is reduced yet again and the Muller matrix will be given by [4] 

�

𝑠NN 𝑠N/ 0 0
𝑠N/ 𝑠NN 0 0
0
0

0
0

𝑠OO 𝑠O4
−𝑠O4 𝑠OO

�	.			 (1.37) 

The scattering Stokes vector of an orientationally averaged particle in terms of the Mueller 

matrix and incident Stokes vector is given by  
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�

𝐼+*&
𝑄+*&
𝑈+*&
𝑉+*&

� =
1

𝑘/𝑟/�

𝑠NN 𝑠N/ 0 0
𝑠N/ 𝑠// 0 0
0
0

0
0

𝑠OO 𝑠O4
−𝑠O4 𝑠44

��

𝐼()*
𝑄()*
𝑈()*
𝑉()*

�	, (1.38) 

where the 1 𝑘/𝑟/⁄  in Eq. (1.38) comes from relating the incident and scattered fields, which are 

related by 𝑒(:F 𝑖𝑘𝑟⁄  and which has a magnitude squared given by 1 𝑘/𝑟/⁄ .   The inverse 

relationship with 𝑟/ ensures that the amount of energy flowing through a spherical surface 

described by 𝑟 is the same as the amount of energy flowing through a spherical surface described 

by 𝑟 + 𝑑𝑟.  Comparing Eq. (1.38) and Eq. (1.5) it can be shown that the differential scattering 

cross sections can be written in terms of the Mueller matrix elements. When the incident field is 

unpolarized, Eq. (1.38) can be written as  

�

𝐼+*&
𝑄+*&
𝑈+*&
𝑉+*&

� =
𝐼()*
𝑘/𝑟/�

𝑠NN 𝑠N/ 0 0
𝑠N/ 𝑠// 0 0
0
0

0
0

𝑠OO 𝑠O4
−𝑠O4 𝑠44

��
1
0
0
0

� =
𝐼()*
𝑘/𝑟/ �

𝑠NN
0
0
0
�	. (1.39) 

  

The scattered intensity will be given by  

𝐼+*& =
𝐼()*𝑠NN
𝑘/𝑟/ =

𝐼()*
𝑟/

𝑑𝐶+*&
𝑑Ω

(𝜃)	,				 (1.40) 

leading to the differential scattering cross section for unpolarized indecent light in terms of 

Mueller matrix elements being given by 

𝑑𝐶+*&,II
𝑑Ω

(𝜃) =
𝑠NN
𝑘/ . 

(1.41) 

Similar calculations can be done for incident light perpendicular to and parallel to the scattering 

plane, leading to  

𝑑𝐶+*&,HI
𝑑Ω

(𝜃) =
𝑠NN − 𝑠N/

𝑘/ ,	 (1.42) 

𝑑𝐶+*&,∥I
𝑑Ω

(𝜃) =
𝑠NN + 𝑠N/

𝑘/ . (1.43) 
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 One of the simplest Mueller matrices for a scattering particle is for Rayleigh scatters. 

The shape of the particle does not affect the Rayleigh Mueller matrix as long as the particle is in 

the Rayleigh scattering limit conditions.  The general Rayleigh Mueller matrix is given by [3,4] 

𝑘C𝑉/|𝛼(𝑚)|/

⎝

⎜
⎛

(
)*(+",!

)(.)0
(
)1",!

)(.)2(3 0 											0
(
)
1",!)(.)2(3

(
)
*(+",!)(.)0 0 											0

0
0

0
0

𝑐𝑜𝑠(𝜃) 0
										0 									𝑐𝑜𝑠(𝜃)⎠

⎟
⎞
	. (1.44) 

Putting Eq. (1.44) to the test, suppose we have an incident beam of light that is polarized 

perpendicular to the scattering plane, that is incident about an arbitrary Rayleigh particle. The 

relationship between the incident and scattered Stokes vectors would be given by 

		�

𝐼+*&
𝑄+*&
𝑈+*&
𝑉+*&

�

B&6

=
𝑘C𝑉/|𝛼(𝑚)|/

𝑘/𝑟/

⎝

⎜
⎛

(
)*(+456

)(.)0
(
)1456

)(.)2(3 0 											0
(
)
1456)(.)2(3

(
)
*(+456)(.)0 0 											0

0
0

0
0

cos(𝜃) 0
										0 									cos(𝜃)⎠

⎟
⎞
�

𝐼()*
−𝐼()*
0
0

�

=
𝐼()*𝑘C𝑉/|𝛼(𝑚)|/

𝑘/𝑟/ �
1
−1
0
0

�.	 

 

(1.45) 

The scattered intensity will be given by  

𝐼+*&,B&6,HI =
𝐼()*
𝑟/ 𝑘

4𝑉/|𝛼(𝑚)|/	, (1.46) 

and the differential scattering cross-section will be  

𝑑𝐶+*&,B&6,HI
𝑑Ω

(𝜃) = 𝑘4𝑉/|𝛼(𝑚)|/. (1.47) 

Eq. (1.47) is consistent with Eq. (1.17) if the specific details of the spherical result in Eq. (1.17) 

are replaced with the general result by Eq. (1.22). Further on in this work, much of the scattering 

results will be Rayleigh normalized, which is the normalization of the differential scattering 

cross section of a particle by Eq. (1.47). Now that much of the groundwork for a discussion on 
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scattering has been covered, we can begin to look at the scattering in more detail beginning with 

the structure factor and diffraction. 
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Chapter 2 - Q-space Analysis of Diffraction  

To begin the 𝑞-space analysis of the scattering by particles in general, a logical first step 

is the analysis of diffraction. As will be shown in the following chapters, when the internal 

coupling parameter 𝜌! < 1, the scattering will be in 3d diffraction limit. As the internal coupling 

parameter increases toward and above unity, the scattering will leave the 3d diffraction limit. 

When the internal coupling parameter reaches 𝜌!~30, the scattering in the forward direction will 

again begin to follow a diffraction limit, but it will be the 2d diffraction limit. Thus, the 

understanding of diffraction is of critical importance.  

 

 2.1 Structure Factor 

To begin a more detailed look at how shapes scatter light we will begin in the |𝑚 − 1|,

𝜌 = 2𝑘𝑅"#$|𝑚 − 1| < 1 limit, where 𝜌 is known as the phase shift parameter.  This limit is 

commonly referred to as the Rayleigh-Gans limit or Rayleigh-Debye-Gans (RDG), the latter of 

which will be used here [3,4].  In the 3d RDG limit, we consider the particle to be discretized 

into scattering elements 𝑑𝑣.	 With the |𝑚 − 1| condition, the scattering elements can be 

considered to be weakly scattering so in a first approximation they are considered to scatter 

independently.  The 𝜌 < 1 condition allows for the field at each element to be taken as the 

incident field, as the phase shift is small within the particle[4]. It will be shown in the following 

chapters that when the internal coupling parameter 𝜌! < 1, the scattering will be in this limit.  

Beginning a discussion of the structure factor, we will describe the scattering wave vector 

𝑞⃗.  We will follow closely the descriptions given in [23,24], and the description of the scattering 
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wave vector will naturally lead into a description of the structure factor.  Consider a small, point-

like scattering element at a position described by 𝑟 , with a volume 𝑑𝑣 as shown in Fig. 2.1.  

Also consider a mono-chromatic plane wave incident upon this scattering element and described 

by an incident wave vector 𝑘h⃗ ()*, which for our purposes will be taken to be pointing in the 

positive 𝑧 direction as shown in Fig. 2.1. Only elastic scattering will be considered in this work. 

When the scattering is elastic, the magnitude of the incident wave vector will be equal to the 

magnitude of the scattered wave vector. The incident wave at the scattering element will be 

given by  

𝐸()*(𝑟⃗) = 𝐸7𝑒(:
P⃗ 78"∙F⃗ (2.1) 

where 𝐸7 is the incident wave amplitude and may be a complex quantity.  

 

Fig. 2.1 Diagram of light scattering from a volume element, with incident wave vector 𝑘%⃗ 9:; and scattered wave 
vector 𝑘%⃗ <;=. The volume element at 𝑟 , black dot, scatters in all directions but what is measured is the light 
scattered in the direction 𝜃 to the detector. 
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The scattering element will scatter the field isotopically. What is measured in this 

instance will be the field that is scattered in the direction of the scattered wave vector 𝑘h⃗ +*&, out to 

the detector located at 𝐷hh⃗ ≫ 𝑟 as shown in Fig. 2.1. The scattered field at 𝐷hh⃗  will then be given by 

[3,20]  

𝐸+*&~𝑅h⃗ � = 𝐸7𝑘/𝑑𝑣|𝛼(𝑚)|
𝑒(:P⃗ !"#∙SPP⃗

j𝐷hh⃗ − 𝑟j
𝑒(T:P⃗ 78"<:P⃗ !"#U∙F⃗ 

 

(2.2) 

the term j𝐷hh⃗ − 𝑟j is the distance from the scattering volume to the detector.  Since 𝐷hh⃗ ≫ 𝑟 the 

distance from the scattering volume to the detector can be approximated as 𝐷.  The scattering 

wave vector 𝑞⃗ is defined as the difference between the incident and scattered wave vector and 

has a magnitude of 𝑞 = 2𝑘 sin(𝜃 2⁄ ) as shown in Fig. 2.1.  To simplify Eq. (2.2) we can 

substitute  𝑞⃗ for  𝑘h⃗ ()* − 𝑘h⃗ +*& and 𝐷 in for j𝐷hh⃗ − 𝑟⃗j, also realizing that because 𝐷hh⃗ ≫ 𝑟 , 𝐷hh⃗  and 𝑘h⃗ + 

can be taken to be pointing in the same direction. Thus, their dot product is equal to the product 

of their magnitudes.  With these simplifications Eq. (2.2) can be expressed as  

𝐸+*&(𝑞⃗) = 𝐸7𝑘/𝑑𝑣|𝛼(𝑚)|
𝑒(:S

𝐷 𝑒($P⃗ ∙F⃗ .	 (2.3) 

Now consider 𝑁 scattering elements making up a particle. The total field from the 𝑁 

scattering elements will be given by the sum of the individual fields from each scattering 

element. The total field at 𝐷hh⃗  due to 𝑁 scattering elements will be given by 

𝐸V7.,+*&(𝑞⃗) = 𝐸7𝑘/𝑑𝑣|𝛼(𝑚)|
𝑒(:S

𝐷 ¤𝑒($P⃗ ∙F⃗>
W

XYN

	, (2.4) 

where 𝑟⃗X is the position of the 𝑗𝑡ℎ scattering element. The scattered intensity will then be given 

by the magnitude squared of Eq. (2.4) leading to 

𝐼+*&,BSZ(𝑞⃗) =
𝐼7
𝐷/ 𝑘

4𝑑𝑣/|𝛼(𝑚)|/ ¨¤𝑒($P⃗ ∙F⃗>
W

XYN

¨

/

. (2.5) 
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The last term in Eq. (2.5) is the structure factor[20] 

𝑆(𝑞⃗) = ¨¤𝑒($P⃗ ∙F⃗>
W

XYN

¨

𝟐

. (2.6) 

 Comments must be made here on the normalization of the structure factor in Eq. (2.6). 

Both Bohren and Huffman and van de Hulst [3,4] only define the structure factor as a continuous 

integral which they normalize by the volume squared.  Normalization by the volume squared 

would be akin to normalization by 𝑁/.  Jackson [20], however, defines the structure as it has 

been in Eq. (2.6) which is the definition that will be used in this work. Ultimately which 

normalization to use is a matter of choice as long as it is used consistently. Eq. (2.6) can also be 

expressed as a double summation[20] 

𝑆(𝑞⃗) =¤¤𝑒($P⃗ ∙TF⃗><F⃗?U
W

M

W

X

. (2.7) 

In Eq. (2.7) it can be seen that the structure factor depends solely on the physical 

distribution of scattering elements, or the structure of the scatterer[20], hence the name.  The 

structure factor can be converted into an integral, which are generally easier to work with than 

summations, by using the fact that  

𝑁 =¤ 	
W

X
= f𝑛(𝑟)𝑑 𝑟 (2.8) 

where 𝑛(𝑟) is a number density function defined by  

𝑛(𝑟) =¤𝛿~𝑟⃗ − 𝑟X�
W

X

	. (2.9) 

Combining Eq. (2.6), Eq. (2.8), and Eq. (2.9) leads to  

𝑆(𝑞⃗) = ¨¤𝑒($P⃗ ∙F⃗>
W

X

¨

/

= ªf𝑛(𝑟)𝑒($P⃗ ∙F⃗ 𝑑𝑟ª
/
. (2.10) 
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In Eq. (2.10) it can be seen that the structure factor is the normalized Fourier transform squared 

of the density distribution of the particle. The Fourier transform takes the density function from a 

real space function to a reciprocal inverse space function of 𝑞.  

So far, polarization effects of the fields have not been considered. Each of the scattering 

elements can be considered to be Rayleigh scatterers. Each of the Rayleigh scattering elements 

will have the same polarization dependence, and angular dependence is described for Rayleigh 

scatterers in chapter 1. The scattered Stokes vector for a three-dimensional particle in the RDG 

limit can be related to the incident Stokes vector by 

		�
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(2.11) 

Comparing Eq. (2.11) and Eq. (1.45) it can be seen that the distinction is the introduction 

of the structure factor 𝑆(𝑞).  In Eq. (2.11) the vector dependence on 𝑞 has been dropped in 

consideration that Eq. (2.11) represents orientationally averaged scattering.  If the incident 

polarization is unpolarized the scattered intensity in the RDG limit is given by  

𝐼+*&,BSZ,II =
𝐼()*
𝑟/

1
2 ~1 + cos

/(𝜃)�𝑘4𝑑𝑣/|𝛼(𝑚)|/	𝑆(𝑞).				 (2.12) 

Eq. (2.12) is the same result found in van de Hulst section 7.1, with the exception of an 

approximation used for |𝛼(𝑚)|/, and some different notation. The differential scattering cross 

section is then given by  

𝑑𝐶+*&,BSZ,II
𝑑Ω

(𝜃) =
1
2 ~1 + cos

/(𝜃)�𝑘4𝑑𝑣/|𝛼(𝑚)|/	𝑆(𝑞). 
(2.13) 
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When the incident light is polarized parallel to the scattering plane the differential scattering 

cross section will be  

𝑑𝐶+*&,BSZ,∥I
𝑑Ω

(𝜃) = cos/(𝜃)𝑘4𝑑𝑣/|𝛼(𝑚)|/	𝑆(𝑞). (2.14) 

Finally, when the incident light is polarized perpendicular to the scattering plane the differential 

scattering cross section will be  

𝑑𝐶+*&,BSZ,HI
𝑑Ω

(𝜃) = 𝑘4𝑑𝑣/|𝛼(𝑚)|/	𝑆(𝑞). (2.15) 

and when Eq. (2.11) is Rayleigh normalized it will be equal to the structure factor   

𝑑𝐶+*&,BSZ,HI
𝑑Ω

(𝜃)
𝑑𝐶+*&,B&6,HI

𝑑Ω
(𝜃)« = 	

1
𝑁/ 𝑆(𝑞). (2.16) 

The primary focus of this work will be on the scattering due to incident light that is 

polarized perpendicular to the scattering plane. Doing so removes the angular dependences due 

to polarization and leaves those due to changes in structure. 

 

 2.2 Diffraction 

Diffraction generally considers just the wave aspect of an electromagnetic wave incident 

upon a particle or screen, i.e. the structure factor. All of the scattered waves from scattering 

elements at the detector are summed up as in Eq. (2.10).   Most students are introduced to it in 

their first year of physics and are taught to find the minima of the single slit diffraction pattern.  

Further on in more advanced classes they begin to study Fraunhofer diffraction as presented in 

Hecht[25]. Instead of approaching diffraction as most texts, Eq. (2.10) can be applied, and the 

square of the Fourier transform of the number density can be evaluated.  Ultimately it will be 

shown that evaluating the Fourier transform in Eq. (2.10) to find the structure factor is the 

equivalent of Fraunhofer diffraction.  
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Consider an opaque screen with a small slit of length 𝑤 and height ℎ ≫ 𝑤, or a thin wire 

with the same dimensions. Either a slit or wire will produce equivalent intensity patterns 

according to Babinet’s principle of complementary screens [20,25].  Also consider a 

monochromatic plane wave incident upon the slit (wire) and propagating in positive 𝑧 direction 

and perpendicular to the slit (wire) which is located at 𝑧 = 0, 𝑥 = 0.  The slit (wire) will be taken 

to lie directly along the 𝑦 − 𝑎𝑥𝑖𝑠 from −𝑤 2⁄ ≤ 𝑦 ≤ 𝑤 2⁄ .  The density function in Eq. (2.10),  

𝑛(𝑟) will then be a simple step function 

𝑛(𝑟) = ­𝑛 =
W
\ 				 													𝑥 = 0, −𝑤 2⁄ ≤ 𝑦 ≤ 𝑤 2⁄ , 𝑧 = 0	

0																			𝑥 ≠ 0, 𝑦 < −𝑤 2	,				𝑦 > 𝑤 2⁄ 	, 𝑧 ≠ 0	⁄
.									 (2.17) 

The 𝑞⃗ ∙ 𝑟 in Eq. (2.10) can be simplified as well due to the position vector only pointing 

along the 𝑦 − 𝑎𝑥𝑖𝑠, and so 𝑟⃗ = 𝑦𝑦o.  With the position vector only pointing along the y-axis, only 

the y component of the dot product will survive and 𝑞⃗ ∙ 𝑟 = 𝑞6𝑦.  Eq. (2.10) can now be 

expressed in terms of Eq. (2.17) and 𝑞6𝑦 as  

𝑆+M(.(𝑞⃗) = ® f 𝑛𝑒($@6

A
)

<A)

𝑑𝑦®

/

= ®
𝑁
𝑤 f 𝑒($@6

A
)

<A)

𝑑𝑦®

/

= 𝑁/sinc/ }
𝑤
2 𝑞6�, 

(2.18) 

where the sinc(𝑥) = sin(𝑥) 𝑥⁄ .  As for 𝑞6, we can go back to the original definition of the 

scattering wave vector  

𝑞⃗ 	= 𝑘h⃗ ()* − 𝑘h⃗ +*& = 𝑘𝑧̂ − 𝑘 cos(𝜃) 𝑧̂ − 𝑘 sin(𝜃)𝑦o (2.19) 

𝑞6 = −𝑘 sin(𝜃)𝑦o. (2.20) 

Inserting Eq. (2.20) into Eq. (2.18) and using the fact that sin(−𝑥) = −sin(𝑥) leads to 

𝑆+M(.(𝑞⃗) = 𝑁/sinc/ }
𝑤
2 𝑘 sin

(𝜃)� = 𝑁/sinc/ }
𝑤
2 𝑞6�. 

(2.21) 

The steps leading up to Eq. (2.21) are essentially Fraunhofer diffraction, and even if the approach 

is different than what is taken in most texts [19,25] the result is the same.  The first minimum of 

Eq. (2.21) is found when  
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𝜃 ≃
𝜆
𝑤. 

(2.22) 

The same approach can be taken for a circular aperture (thin disk).  Consider a circular 

aperture (thin disk) described by a radius 𝑎. Take the aperture (thin disk) to be oriented in the 

𝑥 − 𝑦 plane so that the position vector 𝑟 = 𝑟 cos(𝜙) 𝑥o + 𝑟 sin(𝜙)𝑦o.  The scattering wave vector 

will still be given by Eq. (2.19), and the dot product will again be given by 𝑞⃗ ∙ 𝑟⃗ = 𝑞6𝑦 sin(𝜙) =

−𝑘 sin(𝜃)𝑟 sin(𝜙) 𝑦.°  The density function can be defined as 

𝑛(𝑟) = ±
𝑛 = W

5&)
								𝑟 = �𝑥/ + 𝑦/ ≤ 𝑎, 𝑧 = 0	

0																			𝑟 = �𝑥/ + 𝑦/ > 𝑎, 𝑧 ≠ 0		
. (2.23) 

The structure factor for a circular aperture (thin disk) can be expressed as 

𝑆0(+:(𝑞⃗) = ¨ff 𝑛𝑒($@F ]^_(`)
/5

a

𝑟𝑑𝑟𝑑𝜙
#

a

¨

/

= ¨
𝑁
𝜋𝑎/ff 𝑒($@F ]^_(`)

/5

a

𝑟𝑑𝑟𝑑𝜙
#

a

¨

/

 (2.24) 

where 𝜋𝑎/ is the area of the aperture or disk. The integral over the azimuthal angle 𝜙 can be 

related to the zeroth order Bessel function by [21] 

2𝜋𝐽a(𝑥) = f 𝑒(- ]^_(`)
/5

a

𝑑𝜙. (2.25) 

Using the relationship in Eq. (2.25) to evaluate the inner integral in Eq. (2.24) leads to 

𝑆0(+:(𝑞⃗) = ³
𝑁
𝜋𝑎/f2𝜋𝑟𝐽a~𝑞6𝑟�𝑑𝑟

#

a

³

/

. (2.26) 

Making substitution into Eq. (2.26) of 𝑢′ = 𝑞6𝑟, 𝑢 = 𝑞6𝑎	, 𝑑𝑢′ = 𝑞6𝑑𝑟  

𝑆0(+:(𝑞⃗) = ³
2𝑁
𝑎/𝑞6/

f𝑢′𝐽a(𝑢!)𝑑𝑢′
B

a

³

/

	. (2.27) 

The integration in Eq. (2.27) is given by the relationship [21] 

f𝑢′𝐽a(𝑢!)𝑑𝑢′
B

a

= 𝑢𝐽N(𝑢). (2.28) 
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Finally, the structure factor of a circular aperture (thin disk) is given by  

𝑆0(+:(𝑞⃗) = 𝑁/ z
2𝐽N~𝑞6𝑎�
𝑞6𝑎

z
/

= 𝑁/ z
2𝐽N(𝑎𝑘 sin(𝜃))
𝑎𝑘 sin(𝜃) z

/

	. (2.29) 

Eq. (2.29) is a well-known result for circular aperture (thin disk) diffraction and can be found in 

many places, [19,21,25] are but a few.  Again, we have arrived at the Fraunhofer diffraction 

result though we started differently than in most texts. The first minimum of Eq. (2.29) will be 

when  

𝜃 ≃ 1.22
𝜆
2𝑎. 

(2.30) 

Next Eq. (2.10) can be evaluated for the diffraction from a sphere of radius R. The 

density function will be given by  

𝑛(𝑟) = ±
𝑛 = W

b
								𝑟 = �𝑥/ + 𝑦/ + 𝑧/ ≤ 𝑅

0																𝑟 = �𝑥/ + 𝑦/ + 𝑧/ > 𝑅	
. (2.31) 

Eq. (2.10) will become  

𝑆+EJ#F#(𝑞⃗) = ¨ff f𝑛𝑒($P⃗ ∙F⃗
5

a

/5

a

𝑟/ sin(𝜃)𝑑𝜃 𝑑𝜙𝑑𝑟
C

a

¨

/

 (2.32) 

and taking advantage of the symmetry of a sphere, we can orient the coordinate system such that 

𝑞⃗ is pointing in the 𝑧 direction. Arranging the coordinate means that the angle between 𝑞⃗ and 

every position vector within the sphere is the polar angle 𝜃.  The dot product 𝑞⃗ ∙ 𝑟 = 𝑞𝑟 cos(𝜃), 

also to ease integration sin(𝜃)𝑑𝜃 = 𝑑(cos(𝜃)) and Eq. (2.32) becomes 

𝑆+EJ#F#(𝑞) = ¨
2𝜋𝑁
𝑉 f f𝑒($F cd](e)

N

<N

𝑟/𝑑(cos(𝜃))𝑑𝑟
C

a

¨

/

	. (2.33) 

The vector dependence on 𝑞 has been dropped as we can take this to be orientationally average 

when we could not for single slit and circular aperture.  Integration over 𝑑(cos(𝜃)) leads to  
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𝑆+EJ#F#(𝑞) = ¨
4𝜋𝑁
𝑉 f

𝑟/ sin(𝑞𝑟)
𝑞𝑟 𝑑𝑟

C

a

¨

/

	, (2.34) 

and finally, evaluating the integral over 𝑑𝑟  

𝑆+EJ#F#(𝑞) = z3𝑁
(𝑠𝑖𝑛(𝑞𝑅) − 𝑞𝑅 𝑐𝑜𝑠(𝑞𝑅))

(𝑞𝑅)O z
/

=
9𝑁/

(𝑞𝑅)C
(𝑠𝑖𝑛(𝑞𝑅) − 𝑞𝑅 𝑐𝑜𝑠(𝑞𝑅))/ (2.35) 

or in terms of the scattering angle 𝜃 

𝑆+EJ#F#(𝑞) =
9𝑁/

~/: ]^_T().U𝑅�
C }sin }2𝑘 sin }

N
/
e� 𝑅�

− 2𝑘 sin }N
/
e�𝑅 cos }2𝑘 sin }N

/
e� 𝑅��

/
 

(2.36) 

The first minimum of Eq. (2.36) is found when 

𝜃 ≃ 1.43
𝜆
2𝑅.			 

(2.37) 

In Fig. 2.2, Eq. (2.21), Eq. (2.29), and Eq. (2.35) have been plotted vs the scattering angle 

𝜃 on a log-linear plot and also plotted vs 𝑞𝑅#$ on a log-log plot, where 𝑅#$ is an equivalent 

radius i.e. 𝑤 2⁄  for a wire, 𝑎 for a disk, 𝑅 for a sphere. Fig. 2.2 demonstrates the benefits of 

plotting the scattering vs the unitless 𝑞𝑅#$ on a log-log plot. In Fig. 2.2(a) a series of ripples is 

seen with no readily quantifiable features to identify. In Fig. 2.2(b), however, quantifiable 

features are shown in the scattering. First, in the forward scattering lobe when 𝑞𝑅#$ < 1, the 

scattering is constant with 𝑞𝑅#$.  Second, in the Guinier regime when 𝑞𝑅#$~1, 𝑞<N~𝑅#$ which 

allows for the retrieval of particle sizes from the scattering using Guinier analysis [8,26].  

After the Guinier regime is the Porod, or power law, regime. The ripples in the scattering 

follow a power law in this regime. The slope of the power law follows Porod’s law which says 

that the slope will go as −(2𝐷' − 𝐷+) [27], where  𝐷' is the mass scaling dimension and 𝐷+ is 

the surface scaling dimension.  For a thin wire  𝐷' = 1 and 𝐷+ = 0 leading to a slope of -2, 

while a thin disk would have 𝐷' = 2 and 𝐷+ = 1 giving a slope of -3. A sphere would have a 
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𝐷' = 3 and 𝐷+ = 2 and a slope of -4. When examining Fig. 2.2(b) in the power law regime for 

the thin wire and disk, there is a distinct spike in the structure factor at large 𝑞𝑅#$.  Fig. 2.2(a) 

shows that the structure factor is symmetric about 𝜃 = 90° for the thin wire and disk, this is what 

leads to the spike in Fig. 2.2(b). This insight is not readily available from Fig. 2.2(b), 

demonstrating that while plotting log-log vs 𝑞𝑅#$ reveals insights into the scattering behavior, 

plotting vs the scattering angle provides insights as well and neither view should be ignored.  

 

Fig. 2.2 The structure factor of a wire, disk and sphere vs the scattering angle 𝜃 in (a) and 𝑞𝑅DE in (b). 

 

  At the beginning of these diffraction derivations for the slit (thin wire), circular aperture 

(thin disk), and a sphere, it was stated that generally with diffraction only the wave nature is 

considered.  To fold the diffraction into the overall picture of light scattering though, the 

polarization cannot be ignored. For a sphere, the inclusion of polarizations is already taken care 

of with Eq. (2.11), but for 1D and 2D diffraction changes to Eq. (2.11) must be made. To 

understand why, consider that Eq. (2.26) is dependent on 𝑞, where Eq. (2.21) and Eq. (2.29) are 

dependent on 𝑞6 .  𝑞6 is symmetric about 𝜃 = 90°, and so the structure factor will increase past  

𝜃 = 90° and will be equal in the forward and backward directions. Yang and Liou [28,29] have 

derived an what they refer to as an “improved scattering amplitude matrix” that addresses this 
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issue for 2D diffraction with the addition of a ~1 + cos(𝜃)�/ 4⁄ 	term, this term is similar to the 

square of the “obliquity factor” arrived at through Kirchhoff’s scalar diffraction theory in Hecht , 

but Yan and Liou use a full vector analysis instead of scalar. The addition of the a 

~1 + cos(𝜃)�/ 4⁄ 	term leads to [3,30] 
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(2.38) 

where 𝑑𝐴 is the area element of the projected area in the direction of the incident field. Eq. 

(2.38) describes what will be referred to as the 2d diffraction or 2d RDG limit. Fig. 2.3 shows the  

forward normalized scattered intensity for a slit (thin wire), circular aperture (thin disk), and a 

sphere in the diffraction or RDG limit plotted using Eq. (2.38). The curves in Fig. 2.3 

demonstrate the behavior of the scattering from a thin wire and thin disk at angles 𝜃 > 90°, 

when Eq. (2.38) is used. Also notice in Fig. 2.3 that the angles below < 90° , and the slopes in 

the power law regime remain unaffected. 

 The importance of 2D diffraction in the light scattering from 3D particles comes in when 

the particles have size parameters 𝑘𝑅"#$ ≫ 1 and 𝜌 = 2𝑘𝑅"#$|𝑚 − 1| ≫ 1 [3].  Under these 

conditions geometric optics approximation can be applied to calculate scattering by the particles 

[3,31]. In the forward most directions the scattering in the geometric optics approximation goes 

as the 2D diffraction of the projection of the particle in the direction of the incident field. It will 

be shown later in this work that by looking at the ratio of the Rayleigh scattering limit, and the 
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geometric limit, a single parameter can be derived that describes the behavior of the scattering in 

the forward directions from the Rayleigh limit to the geometric limit. 

 

Fig. 2.3 The structure factor of a wire, disk and sphere times @1 + cos(𝜃)BF 4⁄ 	vs the scattering angle 𝜃 in (a) and 
𝑞𝑅DE in (b). 

 

 The analytical evaluation of Eq. (2.10) has been demonstrated for a single slit (thin wire), 

circular aperture (thin disk), and a sphere. Eq. (2.10) is valid for particles of any shape but can  

become extremely complicated to evaluate analytically. When more complicated particle shapes 

need to be evaluated, Eq. (2.7) can be employed to calculate the structure factor numerically. The 

exponential term Eq. (2.7) can be expressed in terms of sines and cosines leading to 

𝑆(𝑞⃗) = ¨¤cos~𝑞⃗ ∙ 𝑟X� + 𝑖 sin~𝑞⃗ ∙ 𝑟X�
W

XYN

¨

/

. (2.39) 

Taking the complex magnitude squared of Eq. (2.39) it becomes  

𝑆(𝑞⃗) = �¤cos~𝑞⃗ ∙ 𝑟X�
W

XYN

�

/

+ �¤sin~𝑞⃗ ∙ 𝑟X�
W

XYN

�

/

. (2.40) 

While Eq. (2.40) is not the most convenient expression of the structure factor analytically, 

numerically it is ideal.  Numerically a particle can be discretized onto a cubic lattice and Eq. 

(2.40) can easily be calculated. To numerically calculate the orientationally averaged structure 
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factor it is more numerically advantageous to hold the particle in specific orientation and rotate 

𝑞⃗. This is done simply by stepping through magnitudes of 𝑞, for each magnitude a large number 

or random directions can be considered and averaged.  Fig. 2.4 shows the numerical comparison 

of the structure factor of a sphere of radius 𝑅 = 10𝜇𝑚, calculated using the analytical expression 

Eq. (2.35) and calculated numerically using Eq. (2.40). When analysis of the structure factor of a 

particle is needed and neither the numerical or analytical solution is readily available, 

approximations can be made using scaling arguments and comparison of the particle’s length 

scales and the length scales of 𝑞<N which has units of length.   

 

Fig. 2.4 Comparison of the analytical and numerical calculations of the structure factor of a sphere.   

 

 

 2.3 Scaling Approach  

The scaling approach is a simple method for determining the structure factor of a single 

particle or a system of scatterers, first presented by Oh and Sorensen [32], and later expanded 
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upon by Maughan and Sorensen [33]. Much of what follows was presented in these works.  

There are many inherent length scales that describe a system of scatterers, whether that system 

be a scattering volume, aggregate of monomers, or a single particle discretized into volume 

elements.  By comparing these inherent length scales with the length scale of 𝑞<N, the structure 

factor can be approximated. The comparison of the length scales allows for the determination of 

whether the phases in the summation of Eq. (2.7) are in or out of phase, and thus whether they 

sum constructively or destructively. For a system of N scatterers there are two limiting cases 

when considering the phase given by 𝑞⃗ ∙ ~𝑟X − 𝑟M� [24,32].  

 

1. If the 𝑁 scattering elements are within 𝑞<N of each other, then 𝑞<N ≥ j𝑟X − 𝑟⃗Mj, which 

leads to 1 ≥ 𝑞j𝑟X − 𝑟Mj, and therefore, the dot product is 1 ≥ 𝑞⃗ ∙ ~𝑟⃗X − 𝑟M�.  The phases 

of the N scattering elements will essentially be the same and the double summation in 

Eq. (2.7) will equal to 𝑁/.  

2. In the other extreme if the 𝑁 scattering elements are separated by more than 𝑞<N from 

each other, then 𝑞<N < j𝑟X − 𝑟⃗Mj, which leads to 1 < 𝑞j𝑟X − 𝑟Mj, and therefore the dot 

product is 1 < 𝑞⃗ ∙ ~𝑟X − 𝑟M�. The phases of the 𝑁 scattering elements will be random, 

and so the waves will sum up randomly. The inner summation of Eq. (2.7) will sum 

up randomly to √𝑁, and the structure factor will go as 𝑁. 

3. While not a limiting case, one more important point must be considered. Only 

fluctuations in the density of the scattering elements contribute to the scattering at 

nonzero scattering angles. If the particle is homogenous, then the scattering will come 

entirely from the discontinuity at the surface. On the other hand, if the particle is 

inhomogeneous, then both the discontinuity at the surface and fluctuations within the 
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particle will both contribute to the scattering. This is a consequence of the Ewald-

Oseen extinction theorem [25,30].  

 

To calculate the orientationally average structure factor for an arbitrary set of scattering 

elements, consider that instead of rotating the scattering volume, the 𝑞 vector is rotated, similar 

to doing the numerical averaging. The 𝑞-vector will be rotated through all possible orientations,  

such that it forms spherical 𝑞-regions of radius 𝑞<N.  If 𝑞 is small, then 𝑞<N will be large, and all 

of the scattering elements will lie within a single 𝑞-region as shown in Fig. 2.5(a).  As 𝑞 begins 

to increase, the spherical 𝑞-region will decrease in size, and it will take multiple 𝑞-regions to 

encompass all of the scattering elements.  If the particle is homogenous, the only fluctuations 

will be at the surface, and so only the 𝑞-regions on the surface as shown in Fig. 2.5(b) will 

contribute to the scattering. Instead, if the particle is inhomogeneous, 𝑞-regions throughout the 

particle will contribute.  

 

Fig. 2.5 A particle discretized into N point scatterers. (a) The entire particle fits within a single q-region. (b) 
Several q-regions cover the surface of the particle. 
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The number of scattering elements in a single 𝑞-region will be denoted by 𝑁$. The 

number of 𝑞-regions that have density fluctuations within them will be referred to as 𝑛$.  All of 

the 𝑁$ scattering elements within a 𝑞-region will be within 𝑞<N of each other, and thus, by 

condition 1, above they will sum up constructively and contribute a factor of 𝑁$/ to the structure 

factor.  The 𝑛$ 𝑞-regions will all be separated by more than 𝑞<N as a result of being spherical 

regions of radius 𝑞<N.  The 𝑛$ will thus sum up randomly and contribute a factor of 𝑛$, and the 

structure factor will go as 

𝑆(𝑞) = 𝑛$𝑁$/. (2.41) 

Assessing what 𝑛$ and 𝑁$/ are can be done by comparing the length scales of the geometric 

parameters of the particle and the length scales of the 𝑞-regions over a wide range of 𝑞 values. 

 

 2.4 Application of the scaling approach 

Consider a homogenous sphere of radius 𝑅 that has been discretized onto a cubic lattice, 

with lattice spacing 2Δ with 𝑁 lattice points, each one representing a scattering element.  When 

𝑞 is small, 𝑞<N will be large, and while 𝑞<N > 𝑅 there will only be one q-region, so 𝑛$ = 1.  All 

of the N scattering elements will be within the single q-region, and so they will all scatter 

relatively in phase with each and 𝑁$/ = 𝑁/.  The structure factor will then be given by  

𝑆(𝑞) = 𝑁/				𝑞<N > 𝑅 > ∆	. (2.42) 

As 𝑞 increases in size, 𝑞<N will decrease and the 𝑞-regions will become smaller.  Once 

𝑞<N crosses through and becomes smaller than > 𝑞<N > Δ ,  and yet is still larger than a, there 

will be multiple q-regions covering the sphere.  By condition 3 above only the 𝑞-regions on the 

surface will contribute to the structure factor. The number of scattering elements in a single 𝑞-

region will be given by the product of number density, and the volume of a 𝑞-region 𝑁$ =
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𝑁 𝑉⁄ (4𝜋 3⁄ )𝑞<O. The number of 𝑞-regions can be approximated by the ratio of the surface area 

of the sphere and the cross-sectional area of a 𝑞-region 𝑛$ = 𝑆 𝜋𝑞</⁄ , where S is the surface 

area.  The structure factor in this range of 𝑞 will be given by  

𝑆(𝑞) =
16𝜋𝑁/𝑆
9𝑉/ 𝑞<4 = 4𝑁/(𝑞𝑅)<4		(𝑠𝑝ℎ𝑒𝑟𝑒)									𝑅 > 𝑞<N > Δ. (2.43) 

Guinier and Fournet arrived at similar result for the average behavior of an arbitrary homogenous 

three-dimensional particle given by 

𝑆(𝑞) =
2𝜋𝑁/𝑆
𝑉/ 𝑞<4 =

9
2𝑁

/(𝑞𝑅)<4		(𝑠𝑝ℎ𝑒𝑟𝑒),							𝑅 > 𝑞<N (2.44) 

using a completely different semi-quantitative approach [8]. The ratio of Eq. (2.43) and Eq. 

(2.44) is ~0.88 showing just how close these distinct semi-quantitative approximations are to 

each other. 

When 𝑞 has grown large enough that the 𝑞-regions are equal to the lattice separations 

𝑞<N ≤ Δ, the 𝑞-regions will be so small they will contain only a single scatterer. In this case 

𝑁$ = 1, and 𝑛$ = 𝑆 𝜋𝑞</⁄ 	and the structure factor will be given  

𝑆(𝑞) = 𝑆𝑞/ 𝜋⁄ 													𝑅 > Δ > 𝑞<N.	 (2.45) 

The scattering will begin to transition and go as ~𝑞/ until the scattering is equal to the number of 

scattering elements on the surface 𝑁+ = 𝑆 𝜋∆/⁄ . The scattering will continue to go as 𝑁+ unless 

there are length scales smaller than ∆, which will be discussed below.   

   Although Eq. (2.42), Eq. (2.43), and Eq. (2.45) were arrived at by considering a sphere, 

the equations hold for any three-dimensional shape with aspect ratio 𝜀~1. Shapes with very large 

or small aspect ratios, however, will require more consideration. In most cases it is beneficial to 

plot the structure factor vs the unitless 𝑞𝑅"#$, where 𝑅"#$ is the radius of a sphere with the 

equivalent volume. Eq. (2.42) and Eq. (2.45) are both independent of 𝑞 and are thus unaffected 



40 

when plotting vs 𝑞𝑅"#$. As for Eq. (2.43), all that is needed is to multiply and divide by 𝑅"#$4  

leading to  

𝑆(𝑞) =
16𝜋𝑁/𝑆𝑅"#$4

9𝑉/ ~𝑞𝑅"#$�
<4															𝑅 > 𝑞<N > Δ. (2.46) 

Similarly, Eq. (2.45) can be multiplied and divided by 𝑅"#$/  leading to 

𝑆(𝑞) =
𝑆

𝜋𝑅"#$/ ~𝑞𝑅"#$�
/													𝑅 > Δ > 𝑞<N.	 (2.47) 

Fig. 2.6 shows Eq. (2.42), Eq. (2.43), and Eq. (2.47) plotted vs 𝑞𝑅"#$ in their respective 𝑞 

range, compared to the numerical calculations of Eq. (2.7) for several shapes with aspect ratios 

of unity, including spheroids, cylinders, rectangular prisms, hexagonal prisms, droxtals [34], and  

Gaussian random spheres (GRS)[35] (see the appendix for more detailed shape descriptions).  In 

Fig. 2.6 it can be seen that despite being different shapes, the scattering from all of the shapes 

considered exhibit the same quantitative features. As already described and seen in Fig. 2.2-Fig. 

2.4, there is the forward scattering lobe that goes as 𝑁/. When 𝑞<N = 𝐷 2⁄  where 𝐷 is the 

dimension describing the particle, as an example, for a cylinder with an aspect ratio of unity 𝐷 =

2𝑅 = 𝐿, the size of the 𝑞-regions are comparable to the size of the particle. As 𝑞 increases so that 

𝑞<N begins to become smaller than 𝐷 2⁄  and the scattering crosses through the Guinier regime, 

the scattering then begins its turn down into the power law regime, where the scattering follows 

Porod’s law with a slope of −4, and the coefficient given in Eq. (2.46).  When 𝑞<N crosses 

through Δ the scattering begins to transition to go as Eq. (2.47), having a positive slope ~2, until 

𝑆(𝑞) = 𝑆 𝜋∆/⁄ , which is the number of scatterers on the surface. After reaching the number of  

scatterers on the surface, there is nothing that will change as q increases, because there are no 

other length scales in the particle.    
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Fig. 2.6 also shows the effects of the orientational averaging, and how surface roughness 

and lack of symmetry effects the rippling of the scattering. The scattering for the spheroids with  

 an aspect ratio of unity or a sphere shows large regular rippling, while the GRS will show 

almost no ripples. The shapes with more symmetry produce more ripples in the orientationally 

averaged scattering, this is because distinct orientations produce ripples at different values of 

𝑞𝑅"#$.  The more symmetry there is, the larger number of orientations with ripples at the same 

𝑞𝑅"#$ values. The less symmetry, and the maximums and minimums of the rippling are 

distributed over a larger range of 𝑞𝑅"#$ values, and thus the average washes out more of the 

rippling.   

 

Fig. 2.6 The structure factor for a rectangular prism (a), cylinder (b), droxtal (c), GRS (d), hexagonal prism (e), 
spheroid (f) all with ε = 1. The solid blue curve shows the Fourier transform numerically calculated using Eq. 
(2.40). The dashed lines are computed using the scaling approach. 

 
  As will be shown below, the aspect ratio plays a significant role in the scattering in the 

RDG limit, in fact much of the scattering can be described solely in terms of the aspect ratio as 
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shown in Fig. 2.7 [33].  If the aspect ratio is much greater than or smaller than unity, there will 

be two Guinier regimes and two power law regimes. The first Guinier regime will occur when 

the size of the 𝑞-regions become comparable to the largest dimension describing the shape 

𝑞<N = 𝐷N 2⁄ . The forward scattering lobe will transition into the first power law regime after the 

first Guinier regime, then when the size of the 𝑞-regions becomes comparable to the smaller 

dimension describing the shape 𝑞<N = 𝐷/ 2⁄ , there will be a second Guinier regime.  The second 

Guinier regime marks the transition into the second power law regime. Just as when the aspect 

ratio was close to unity calculating the behavior of the scattering in the first power law regimes 

can be done by determining what 𝑁$ 	and 𝑛$ are.  

 

Fig. 2.7 The structure factor for a rectangular prism (a), cylinder (b), hexagonal prism (c), spheroid (d) all with ε 
= 1. The solid blue curve shows the Fourier transform numerically calculated using Eq (2.40). The dashed lines 
are computed using the scaling approach. The coefficients to the scattering in the power law regime, and the 
Guinier regime cross over points are described in terms of the aspect ratio 𝜀. 
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2.5 Large aspect ratios 

Consider a long cylinder with a large aspect ratio 𝜀 = 𝐿 2𝑅⁄ ≫ 1, as shown in Fig. 2.8. In 

this case, the largest dimension would be the length 𝐷N = 𝐿, and the smaller dimension would be 

diameter 𝐷/ = 2𝑅. When 𝑞 is very small a single 𝑞-region will be larger than the entire particle 

𝑞<N > 𝐷N 2⁄ > 𝐷/ 2⁄  and just as in Eq. (2.42) the scattering will go as 𝑁/.  As 𝑞 increases, the 𝑞-

region becomes smaller and will cross through the largest dimension, 𝐷N, and 𝑞<N = 𝐷N 2⁄  i.e. 

𝐿 2⁄  for a long cylinder, at the first Guinier regime.  

 

Fig. 2.8 A cylinder with 𝜀	 = 	𝐿/2𝑅	 = 	10. A finite number of 𝑞-regions fit within 𝐿, while all the q-regions 
overlap in 𝑅. The volume of a q-region can be approximated as smaller cylinders, as drawn below. 
 

  As the 𝑞-regions become smaller than 𝐷N, and yet remain larger than 𝐷/ so that 𝐷N 2⁄ >

𝑞<N > 𝐷/ 2⁄  i.e. (𝐿 2⁄ > 𝑞<N > 𝑅) for a long cylinder, the scattering will be in the first power 

law regime. In the first power law regime the 𝑞-regions will overlap the particle in the 𝐷/ 

direction i.e. 2𝑅 for a long cylinder and as shown in Fig. 2.8 there will be a finite number of 𝑞-
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regions that can fit within 𝐷N direction i.e. 𝐿 for a long cylinder. The number of q-regions will be 

determined by the finite number that can fit within the 𝐷N direction i.e. 𝐿 for a long cylinder, and 

will be given by 𝐷N divided by the length of a 𝑞-region leading to [33] 

𝑛$ =
𝐷N
2𝑞<N 			𝜀 ≫ 1			

𝐷N
2 > 𝑞<N >

𝐷/
2 .			 

(2.48) 

The number of points in a q-region will be determined by 𝐷/ i.e. 2𝑅 for a cylinder. The 

volume of a q-region in this regime can be estimated to be that of a cylinder with length 2𝑞<N 

and cross section 𝐶S) i.e. 𝜋𝑅/ for a long cylinder as shown in Fig. 2.8.  The number density of 

points within the particle and the volume of a q-region will determine the number of points 

within a q-region  

𝑁$ =
𝑁
𝑉 𝐶S)2𝑞

<N					𝜀 ≫ 1								
𝐷N
2 > 𝑞<N >

𝐷/
2 . 

(2.49) 

Putting together Eq. (2.41), Eq. (2.48) and Eq. (2.49) the structure factor in the first power law 

region will be given by 

𝑆(𝑞) = 2
𝑁/

𝑉/ 𝐶S)
/ 𝐷N𝑞<N	. (2.50) 

Again, if plotting vs the unitless 𝑞𝑅"#$ Eq. (2.50) can be multiplied and divided by 𝑅"#$ leading 

to 

𝑆(𝑞) = 2
𝑁/

𝑉/ 𝐶S)
/ 𝐷N𝑅"#$~𝑞𝑅"#$�

<N 						
𝐷N
2 > 𝑞<N >

𝐷/
2 . 

(2.51) 

It can be seen in Eq. (2.51) that the scattering follows a power law of -1 in the first power 

law regime. As q continues to increase through the first power law regime, the size of the q-

regions will become comparable to 𝐷/, and the scattering will cross through the second Guinier 

regime and enter the second power law regime.  In the second power law regime the q-regions 

will be smaller than either dimension and only the surface will contribute to the scattering and 
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the scattering will be given by Eq. (2.44).  Finally, once the q-regions become comparable to the 

size of the individual scatterer, the scattering will be given by Eq. (2.45). 

 Fig. 2.9 shows Eq. (2.42), Eq. (2.50), Eq. (2.46), and Eq. (2.47) plotted vs 𝑞𝑅"#$ 

in their respective 𝑞 range, compared to the numerical calculations of Eq. (2.7) for several shapes 

with aspect ratios of 𝜀 = 10, including spheroids, cylinders, rectangular prisms, and hexagonal 

prisms. As in Fig. 2.6 the scattering by all of the particles follows the same quantitative features 

despite being different shapes. There is the forward scattering lobe that goes as 𝑁/, followed by 

the first Guinier regime when  𝑞<N = 𝐷N 2⁄ .  

 

Fig. 2.9 The structure factor for a rectangular prism (a), cylinder (b), hexagonal prism (c), spheroid (d) all with 
𝜀	 = 	10. The solid blue curve shows the Fourier transform numerically calculated using Eq. (2.40). The dashed 
lines are computed using the scaling approach. 
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At the first Guinier regime, the scattering transitions into the first power law regime that follows 

Eq. (2.51), with a power law of -1. The second Guinier regime is seen when 𝑞<N = 𝐷/ 2⁄ , and is 

followed by the second power law regime that follows Eq. (2.46), with a slope of -4. Finally, 

when 𝑞<N crosses through Δ, the scattering begins to transition to go as 𝑆 𝜋Δ/⁄ .  In Fig. 2.10 the 

scattering quantiles in Fig. 2.9 have been expressed in terms of the aspect ratio 𝜀 [33]. 

 

Fig. 2.10 The structure factor for a rectangular prism (a), cylinder (b), hexagonal prism (c), spheroid (d) all with 
𝜀	 = 	10. The solid blue curve shows the Fourier transform numerically calculated using Eq. (2.40). The dashed 
lines are computed using the scaling approach. The coefficients to the scattering in the power law regime, and the 
Guinier regime cross over points are described in terms of the aspect ratio 𝜀. 
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 2.6 Small aspect ratios 

Going to the other limit consider a thin disk with a small aspect ratio 𝜀 = 𝐿 2𝑅⁄ ≪ 1, as 

shown in Fig. 2.11. In this case the largest dimension would be the length 𝐷N = 2𝑅 and the  

smaller dimension would be diameter 𝐷/ = 𝐿. When 𝑞 is very small a single 𝑞-region will be 

larger than the entire particle 𝑞<N > 𝐷N 2⁄ > 𝐷/ 2⁄  and just as in Eq. (2.42) the scattering will go 

as 𝑁/.  As 𝑞 increases the 𝑞-region becomes smaller and will cross through the largest dimension 

𝐷N, and 𝑞<N = 𝐷N 2⁄  i.e. 𝑅 for a thin disk, at the first Guinier regime.  

 

Fig. 2.11 A circular disk with 𝜀	 = 	𝐿/2𝑅	 = 	0.1. A finite number of 𝑞-regions fit within 𝑅, while all the q-
regions overlap in 𝐿. The volume of a q-region can be approximated as smaller disks. 
 

 

  As the 𝑞-regions become smaller than 𝐷N, and yet remain larger than 𝐷/ so that 𝐷N 2⁄ >

𝑞<N > 𝐷/ 2⁄  i.e. (𝑅 > 𝑞<N > 𝐿 2⁄ ) for a thin disk, the scattering will be in the first power law 

regime. In the first power law regime the 𝑞-regions will overlap the particle in the 𝐷/ direction  
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i.e. 𝐿 for a long cylinder and as shown in Fig. 2.11 there will be a finite number of 𝑞-regions that 

can fit within 𝐷N direction i.e. 2𝑅 for a thin disk . The number of q-regions will be  

determined by the finite number that can fit within the 𝐷N direction i.e. 2𝑅 for a thin disk, and 

will be given by the ratio of the cross section of the disk 𝐶S( i.e. 𝜋𝑅/ for a thin disk, and the 

cross section of a q-region [33]   

𝑛$ =
𝐶S(
𝜋𝑞</ 			𝜀 ≪ 1			

𝐷N
2 > 𝑞<N >

𝐷/
2 . 

(2.52) 

The number of points in a 𝑞-region will be determined by 𝐷/ i.e. 𝐿 for a cylinder. The 

volume of a 𝑞-region in this regime can be estimated to be that of a cylinder with length 𝐷/ i.e. L 

for a thin disk, and cross section 𝜋𝑞</, as shown in Fig. 2.11.  The product of the number density 

of points within the particle and the volume of a 𝑞-region will determine the number of points 

within a q-region. Putting together Eq. (2.41), Eq. (2.52) and Eq. (2.53) the structure factor in the 

first power law region will be given by 

𝑆(𝑞) = 𝜋
𝑁/

𝑉/ 𝐶S( 	𝐷/
/𝑞</				𝜀 ≪ 1								

𝐷N
2 > 𝑞<N >

𝐷/
2 . 

(2.53) 

Again, if plotting vs the unitless 𝑞𝑅"#$ Eq. (2.53) can be multiplied and divided by 𝑅"#$/  leading 

to  

𝑆(𝑞) = 𝜋
𝑁/

𝑉/ 𝐶S( 	𝐷/
/𝑅"#$/ ~𝑞𝑅"#$�

</				𝜀 ≪ 1								
𝐷N
2 > 𝑞<N >

𝐷/
2 . 

(2.54) 

 

It can be seen in Eq. (2.54) that the scattering follows a power law of -2 in the first power 

law regime. As 𝑞 continues to increase through the first power law regime, the size of the q-

regions will become comparable to 𝐷/ i.e. L for a thin disk, and the scattering will cross through  

the second Guinier regime and enter the second power law regime.  In the second power law 

regime the q-regions will be smaller than either dimension, only the surface will contribute to the 
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scattering, and the scattering will be given by Eq. (2.45).  Finally, once the q-regions become 

comparable to the size of the individual scatterer the scattering will be given by Eq. (2.46). 

Fig. 2.12 shows Eq. (2.42), Eq. (2.54), Eq. (2.46), and Eq. (2.47) plotted vs 𝑞𝑅"#$ in their 

respective 𝑞 range, compared to the numerical calculations of Eq. (2.7) for several shapes with 

aspect ratios of 𝜀 = 0.1, including spheroids, cylinders, rectangular prisms, and hexagonal 

prisms. As in Fig. 2.6 and Fig. 2.9, the scattering by all of the particles follow the same 

quantitative features despite being different shapes.  

 

Fig. 2.12 The structure factor for a rectangular prism (a), cylinder (b), hexagonal prism (c), spheroid (d) all with 
𝜀	 = 	0.1. The solid blue curve shows the Fourier transform numerically calculated using Eq. (2.40). The dashed 
lines are computed using the scaling approach. 
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There is the forward scattering lobe that goes as 𝑁/, followed by the first Guinier regime when  

𝑞<N = 𝐷N 2⁄ . At the first Guinier regime, the scattering transitions into the first power law 

regime that follows Eq. (2.54), with a power law of -2. The second Guinier regime is seen when 

𝑞<N = 𝐷/ 2⁄ , and is followed by the second power law regime that follows Eq. (2.46), with a 

slope of -4. Finally, when 𝑞<N crosses through Δ, the scattering begins to transition to go as Eq. 

(2.47)  𝑆 𝜋Δ/⁄ .  In Fig. 2.13 the scattering quantities in Fig. 2.12 have been expressed in terms of 

the aspect ratio 𝜀 [33]. 

 

Fig. 2.13 The structure factor for a rectangular prism (a), cylinder (b), hexagonal prism (c), spheroid (d) all with 
𝜀	 = 	0.1. The solid blue curve shows the Fourier transform numerically calculated using Eq. (2.40). The dashed 
lines are computed using the scaling approach. The coefficients to the scattering in the power law regime, and the 
Guinier regime cross over points are described in terms of the aspect ratio 𝜀. 
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  2.7 Volume fluctuations 

Considering once again a sphere of radius 𝑅, only this time after discretizing the sphere 

into 𝑁 scattering elements, each of the 𝑁 scattering elements has been randomly perturbed by  

𝛿𝑥 = 𝑟𝛾∆,	 (2.55) 

𝛿𝑦 = 𝑟𝛾∆,	 (2.56) 

𝛿𝑧 = 𝑟𝛾∆,	 (2.57) 

where r is a random number between -1 and 1 as was previously done for the two-dimensional 

case in [32].  The average displacement of the scattering elements is given by 𝛾∆, where 𝛾 is a 

positive number. Fig. 2.14 shows a two-dimensional representation of a sphere i.e. (a circle of 

radius R), on the left side the scattering elements are unperturbed, while on the right they have 

been randomly perturbed by Eq. (2.55) and Eq. (2.56) with a 𝛾 = 0.5. In the bottom center of 

Fig. 2.14 an enlarged red square shows three different lengths 𝛾, Δ, and	γΔ.  

 

Fig. 2.14 On the left the uniform distribution of scattering elements, on the right the scattering elements have 
been randomly perturbed. 
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On the right of Fig. 2.14 it can be seen that due to the random perturbation of several 

scattering elements structures have formed within the circle. These structures can be seen as gaps 

between the scattering elements of various sizes but all ~2γ, thus when 𝑞<N = 𝛾 the scattering  

will cross a length scale. The lattice spacing itself is equal to 2Δ, and so when 𝑞<N = ∆ another 

length scale will be crossed. Finally, the smallest of the length scales will be crossed when 𝑞<N =

𝛾∆ 2⁄ . The size of 𝛾, Δ, and	γΔ relative to each other is dependent of the values of 𝛾	and		Δ, for  

example if Δ = 0.25µm, and 𝛾 = 0.05, then Δ > γ > 𝛾∆ 2⁄ . On the other hand, if 𝛾 = 5 then 

γ > 𝛾∆ 2⁄ > ∆ and the scattering will reflect the differences in relative size as will be 

demonstrated.   

When q is small and thus 𝑞<N is large, the fluctuations within the sphere will not affect 

the scattering as the length scales of the scattering are larger than that of the fluctuations. Eq. 

(2.42) and Eq. (2.43) will still apply in their respective 𝑞 ranges. When 𝑞 becomes large enough 

that 𝑞<N becomes comparable to the size of 𝛾, Δ, or	 𝛾∆ 2⁄ , then scattering becomes effected by 

the fluctuations. Once 𝑞<N = 𝛾∆ 2⁄   is reached whether it is smaller or larger than 𝛾, or		Δ the 

entire volume of the sphere will have fluctuations in density that are of the same order as the 

scattering. All of the N scattering element will now contribute to the scattering, instead of just 

the elements on the surface. N scattering elements summing up with random phases will lead to 

the scattering going as N.  

To investigate how the relative sizes of 𝛾, Δ, or	 𝛾∆ 2⁄  can affect the scattering, Fig. 2.15 

shows the structure factor numerically calculated for 𝛾 = 0, 0.05 , with ∆= 0.25𝜇𝑚. When 𝛾 =

	0.05,  𝛾∆ 2⁄ = 	0.00625	𝜇𝑚 and so ∆> 𝛾 > 𝛾∆ 2⁄ .  Fig. 2.15 has been plotted vs ∆ , so when 

𝑞<N = ∆, 𝑞∆= 1 , when  𝑞<N = 𝛾, 𝑞∆= ∆ 𝛾⁄ , and 𝑞<N = 𝛾∆ 2⁄ 		 , 𝑞∆= 2 𝛾⁄ .  It can be seen in 

Fig. 2.15 that when 𝛾 = 0 the scattering follows the same behavior as seen in Fig. 2.6(f), there is 
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a forward scattering lobe that goes as Eq. (2.42), followed by a power law regime that follows 

Eq. (2.46) with the replacement of 𝑅"#$ with ∆ as the structure factor is being plotted vs 𝑞∆.  

 

Fig. 2.15 Structure factor of a sphere with uniformly distributed volume elements (blue), and with the volume 
elements randomly perturbed, with 𝛾 = 0.05 (orange). 

 

 Once 𝑞<N = ∆, the scattering transitions and starts to increase going as ~𝑞/ until the scattering is 

equal to 𝑁+, which it continues to follow as there are not any other length scales to cross.  When  

𝛾 = 0.05, however, the scattering goes at 𝑁+ until 𝑞<N = 𝛾, 𝑞∆= ∆ 𝛾⁄ , here the larger structures 

created by the perturbations become comparable to the scattering length scale and the scattering 

begins to increase toward N.  The increase toward N again goes as ~𝑞/. This can be understood 

by considering that there are now regions that have internal surface area, and so the total surface 

area 𝑆. will be the sum of the outer surface area 𝑆 and the internal surface area. The number of 
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scatterers in a q-region will be unity, and number of q-regions 𝑛$ would be the ratio of 𝑆. and the 

cross section of a q-region given by 𝜋𝑞</, leading to the structure factor going as   

𝑆(𝑞) = 𝑁F𝑛E =
𝑆G
𝜋𝑞HF =

𝑆G𝑞F

𝜋 . (2.58) 

 

It can be seen in Eq. (2.57) the scattering will still go as ~𝑞/.  Finally, when 𝑞<N = 𝛾∆ 2⁄ 		 , 𝑞∆=

2 𝛾⁄  the scattering has reached 𝑁, and continues to follow 𝑁.  

  Fig. 2.16 shows the case when 𝛾 = 0, 0.5. The behavior for 𝛾 = 0 has already been 

discussed, as for 𝛾 = 	0.5, with ∆= 0.25𝜇𝑚 then  𝛾∆ 2⁄ = 	0.0625	𝜇𝑚 and so now 𝛾 > Δ >

𝛾∆ 2⁄ .  Fig. 2.16 has been plotted vs ∆ , so when 𝑞<N = 𝛾, 𝑞∆= ∆ 𝛾⁄ , when 𝑞<N = ∆, 𝑞∆= 1 , 

and when	𝑞<N = 𝛾∆ 2⁄ 		 , 𝑞∆= 2 𝛾⁄ .  In this situation 𝑞<N = 𝛾 is reached first and the scattering 

length scales become comparable to the larger structure created by the perturbations.  

 

Fig. 2.16 Structure factor of a sphere with uniformly distributed volume elements (blue), and with the volume 
elements randomly perturbed, with 𝛾 = 0.5 (purple). 
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When 𝑞<N = ∆, the scattering is already going as ~𝑞/, and the internal fluctuations are adding to 

the surface area, so the scattering is unaffected and continues to go as ~𝑞/.  Finally, as before 

when 𝑞<N = 𝛾∆ 2⁄ 		 , 𝑞∆= 2 𝛾⁄  the scattering has reached N, and continues to follow N. In Fig. 

2.17 𝛾 = 0, 5 and so when 𝑞∆= ∆ 𝛾⁄ = 0.05 the scattering is still in the power law regime, and 

so once 𝑞<N = 𝛾∆ 2⁄ 		 , 𝑞∆= 2 𝛾⁄  the scattering transitions straight into going as N, and 

continues to follow N. 

 

Fig. 2.17 Structure factor of a sphere with uniformly distributed volume elements (blue), and with the volume 
elements randomly perturbed, with 𝛾 = 5 (brown). 

 

 Fig. 2.18 shows a combined graph with 𝛾 = 0,0.0005, 0.005, 0.05, 0.5, 5 to demonstrate how 

the scattering responds to the changing relative length scales.  



56 

  

Fig. 2.18 Structure factor of a sphere with uniformly distributed volume elements (blue), and with the volume 
elements randomly perturbed. 

 

 

 2.8 Multiple spheres  

Instead of a single particle let us now consider how the scaling approach can be applied 

to a scattering volume consisting of multiple particles. Consider taking an imaginary three-

dimensional volume of radius 𝑅b, and filling it in randomly with spherical monomers of radius 

𝑎.  The spherical monomers will all be discretized onto a cubic lattice with lattice spacing 2Δ just 

as before.  𝑁 will be denoted as the total number of scattering elements in scattering volume, 𝑁' 

as the number of scattering elements in a monomer, and 𝑁" as the total number of monomers in 

the scattering volume, such that 𝑁 = 𝑁b𝑁'. Going back to Eq. (2.7) the scattering element 

positions can be described relative to the centers of the individual monomers as 𝑟( = 𝑟" + 𝑟' 

leading to [36] 
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(2.59) 

which can be expressed as   

𝑆(𝑞) = 𝑆b(𝑞)𝑆'(𝑞),	 (2.60) 

where 𝑆b(𝑞) is the structure factor of the scattering volume treating the monomers as points, 

located at their centers, and 𝑆'(𝑞) is the structure factor of a single monomer.  

 Fig. 2.19 shows the calculation of four structure factors for a spherical volume of 𝑅b =

1𝜇𝑚 that has been randomly filled with spherical monomers. The first 𝑆'	is that of a single 

monomer of radius 𝑎 = 0.02𝜇𝑚.  The next 𝑆b is the numerical structure factor of the scattering 

volume, which is calculated by treating the monomers as points located at the center of the 

monomers.   

 

Fig. 2.19 The structure factor of a spherical volume randomly filled with monomers. The total structure factor is 
equal to the product of the volume and monomer structure factors. The blue curve for 𝑆 almost entirely covers the 
red for 𝑆L𝑆M. 
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Eq. (2.60) is also plotted along with the structure factor calculated using the entire system 𝑆. The 

first note of Fig. 2.19 is that the product of 𝑆' and 𝑆b does match well with 𝑆, only a small 

amount of the red curve for the product 𝑆' and 𝑆b can be seen, giving validity to Eq. (2.60).  

In Fig. 2.19 it can be seen that the 𝑆' behaves just as the previous uniform spheres that 

have been studied see Fig. 2.6(f), it has a forward scattering lobe that goes as 𝑁'/ . There is a 

Guinier regime when 𝑞<N = 𝑎 that marks the transition from the forward scattering lobe to a 

power law regime. In the power law regime, the scattering follows Eq. (2.44) with the number of 

scattering elements, surface area and volume being that of the monomer, 𝑁', 𝑆', and 𝑉' 

respectively.  Once 𝑞<N = ∆, the scattering turns up and increases until each reaches the number 

of scattering elements on the surface of a monomer 𝑁+,'. 

𝑆b in Fig. 2.19 follows the same behavior as a uniform sphere, a forward scattering lobe 

that goes as the number of monomers squared 𝑁b/. When 𝑞<N is equal to the radius of the 

scattering volume 𝑅" there is a Guinier regime, which is followed by a power law regime in 

which the scattering follows Eq. (2.44) with the number of scattering elements, surface area and 

volume being that of the scattering volume, 𝑁b, 𝑆, and V, respectively. The scattering follows 

the power law until 𝑞~20𝜇𝑚<N		or	𝑞<N~0.05𝜇𝑚, at which time it levels off and then begins 

increasing toward the number of monomers 𝑁b. To understand this behavior, refer to spheres 

with internal fluctuations. There were two length scales introduced with internal fluctuations. 

One of the length scales comes from larger structures due to the random shifting of several 

volume elements away from a uniform system, which is reached first, and the second is the 

average random displacement away from a uniform system.  When the length scale of the larger 
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structures is reached, the scattering begins to increase as there are more scatterers contributing to 

the scattering, until 𝑁b is reached which is the most that it could possibly contribute.  

When the product of 𝑆' and 𝑆b is considered as shown in Fig. 2.19 some of the 

individual behaviors remain while some are lost.  This puts an emphasis on how looking at the 

individual structure factors leads to insights that may not be readily apparent from the total 

structure factor. The total structure factor has two scattering lobes, two Guinier regimes and two 

power law regimes.  There is a scattering lobe that goes as the square of the total number of 

scattering elements 𝑁/, then at the first Guinier regimes when 𝑞<N = 𝑅b.  The first Guinier 

regime is followed by a power law regime that follows Eq. (2.44), and then transitions into a 

second scattering lobe for the monomer.  Just before the monomer Guinier regime, 𝑆b begins to 

increase at around 𝑞 = 40(𝜇𝑚<N), but at the same time 𝑆' starts to decrease and so the product 

remains the same as can be seen in 𝑆.  The monomer scattering lobe lies below 𝑁'/𝑁b because 

just as 𝑆' reaches its Guinier regime, 𝑆b has just reached 𝑁b, so there is never the exact product 

of 𝑁'/  and 𝑁b. This again demonstrates the insight that can be gained by looking at the 

individual structure factors along with the total. The monomer Guinier regime leads into the 

monomer power law regime which goes as Eq. (2.44) with the monomer parameters 𝑁', 𝑆', and 

𝑉', times the total number of monomers in the volume 𝑁b. Finally, the scattering at large 𝑞 goes 

as the number of scattering elements on the surface of a monomer times the number of 

monomers in the volume 𝑁b𝑁+,'.   

 

 2.9 Fractals Aggregates 

So far, the scaling approach has been applied to three-dimensional single particles with 

more regular shape descriptions. Taking a more arbitrary approach to the description of the shape 
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can be taken by using a general mass, and surface scaling dimension 𝐷' and 𝐷+, respectively. As 

always when the 𝑞-region is larger than any dimension describing the particle, the structure 

factor will go as 𝑁/.  In the power law regime for an arbitrary case, the number of scatterers in a 

𝑞-region is found by taking the product of the density of scatterers and the volume of a 𝑞-region 

just as before but using arbitrary expression for the volumes.  As the volumes are being treated as 

arbitrary, the number of scatterers in a 𝑞-region will be expressed as a proportionality rather than 

an equality and is given by [32]  

𝑁$ ∝ 𝑁 µ
𝑞<N

𝐷 2⁄ ¶
SJ

		 (2.61) 

where 𝐷 is the dimension describing the system of scatters, i.e. 2𝑅 for a sphere discretized onto a 

cubic lattice.  Similarly, the number of q-regions that are on the surface can be expressed as a 

ratio of the total generalized surface area of the arbitrary system and the generalized cross 

section of a 𝑞-region.  As with 𝑁$ because we are dealing with an arbitrary system the number of 

q-regions will be expressed as a proportionality and is given by  

𝑛$ ∝ µ
𝐷 2⁄
𝑞<N ¶

S!

	.	 (2.62) 

Putting together Eq. (2.41), Eq. (2.61) and Eq. (2.62) the structure factor can be 

expressed as being proportional to 

𝑆(𝑞) ∝ 𝑁/(𝑞 𝐷 2⁄ )</SJ?S! 								𝐷 2¾ > 𝑞<N > Δ. (2.63) 

The proportionality in Eq. (2.63) can be expressed as an equality by inserting a constant, so that 

the structure factor is equal to  

𝑆(𝑞) = 𝐶𝑁/(𝑞 𝐷 2⁄ )</SJ?S! 										𝐷 2¾ > 𝑞<N > Δ (2.64) 
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where 𝐶 is a unitless constant that is dependent on the specifics of the scattering particle(s). As 

an example, consider a sphere of radius R, in this case  𝐷 2⁄ = 𝑅, 	𝐷' = 3,𝐷+ = 2 and the 

coefficient 𝐶 = 4, and the structure factor in the power law regime will go as  

𝑆(𝑞) = 4𝑁/(𝑞𝑅)<4											𝑅 > 𝑞<N > Δ.	 (2.65) 

Eq. (2.64) can be also expressed in terms of the size of a single scatterer ∆, and the number of 

scatterers that are on the surface by defining [32] 

𝑁 = 𝑘' }
𝐷 2⁄

∆¾ �
SJ
	, (2.66) 

𝑁+ = 𝑘+ }
𝐷 2⁄

∆¾ �
S!
	,	 (2.67) 

where 𝑁+ is the number of scatterers on the surface and 𝑘' and 𝑘+ are constants of the order 

unity, that depend on how the lattice is used to discretize the particle(s). Combing Eq. (2.64), Eq. 

(2.66), and Eq. (2.67) leads to  

𝑆(𝑞) = 𝐶𝑘a𝑁+(𝑞∆)</SJ?S! ,										𝐷 2¾ > 𝑞<N > Δ	 (2.68) 

where 𝑘a = 𝑘'/ 𝑘+⁄ .  When 𝑞<N ≤ ∆ as before the q-regions will only encompass a single 

scattering element and only the scattering elements where there is non-uniformity in the density 

will contribute to the scattering. For a homogenous particle this means on the surface, elements 

scatter, and the scattering will go as 𝑁+. 

A fractal is a geometric system that is scale invariant. Some common occurrences of 

scale invariance in nature are fern fronds, of which a single frond is formed of smaller duplicates 

of the larger frond. This attribute of the smaller parts being identical to the whole is also referred 

to as being self-similar. Another excellent example is presented by Richardson [37], and 

illuminated further by Mandelbrot [38] in which they use the measuring of coast lines on 

increasing smaller scales to describe fractals. A fractal aggregate is an aggregation of monomers 

that has a self-similar structure. Ideal fractals are considered to be made up of identical spherical 



62 

monomers, or radius 𝑎, in point contact with each other.  Fractal aggregates can be described by 

a relatively simple yet important relationship [24] 

𝑁h = 𝑘7 ¿
𝑅i

𝑎¾ À
SN
, (2.69) 

where 𝑁h is the number of monomers in the aggregate, 𝑅i is the root mean square radius, 

referred to as the radius of gyration, 𝐷j = 𝐷' = 𝐷+ is the fractal dimension, 𝑘7 is the scaling 

prefactor and is the same 𝑘7 in Eq. (2.68). In nature, fractal aggregates can be found in aerosols  

and colloids, and form by clusters hitting and sticking together. They commonly yield diffusion 

limited cluster-cluster aggregation (DLCA) [39]. We will use values of 𝑘7 = 1.35 and 𝐷j = 1.8 

in this work, which is around the values found for DLCA simulations in [40–43]. 

Just as was done with a spherical volume filled with monomers, a fractal aggregate can 

be treated as a product of two systems, see Fig. 2.20. In the first system for the aggregate itself, 

all of the monomers are treated as points.  The second system is a monomer that has been 

discretized onto a cubic lattice. The total structure factor for the fractal aggregate and its 

monomers will then be given by 

𝑆(𝑞) = 𝑆h(𝑞)𝑆'(𝑞).	 (2.70) 

The structure factor of the spherical monomers will exhibit the exact same behavior as the 

monomers presented in the previous section on multiple spheres as seen in Fig. 2.20.  

The fractal aggregate structure factor will have a forward scattering lobe as all particles 

do, that will go as the number of monomers in the aggregate squared 𝑁h/.  There will then be a 

Guinier regime when the characteristic length scale of the aggregate 𝐷 2⁄ = 𝑅i is comparable to 

𝑞<N.  The scattering will transition into the power law regime, in which the scattering will follow 

Eq. (2.64) using the number of monomers in the aggregate 𝑁 → 𝑁h,  the dimension describing 
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the aggregate is 𝐷 2⁄ = 𝑅i, and the mass and surface scaling dimensions are given by the fractal 

dimension −2𝐷' + 𝐷+ = −2𝐷j + 𝐷j = −𝐷j leading to  

𝑆h(𝑞) = 𝐶𝑁h/~𝑞𝑅i�
<SN .	 (2.71) 

The coefficient in Eq. (2.61) has been found empirically to be approximately unity [24], this can 

also be seen in Fig. 2.20. After the power law regime, the scattering transitions, and goes as 𝑁h 

(the number of monomers that make up the aggregate).  

 

Fig. 2.20 The structure factor of a fractal aggregate. The total structure factor is equal to the product of the 
aggregate and monomer structure factors. The blue curve for 𝑆 almost entirely covers the red for 𝑆O𝑆M. 

 

 

When looking at the total structure factor in Fig. 2.20, it can be seen that the forward 

scattering lobe goes as the total number of scattering elements 𝑁/,  and the first power law 

regime goes as 𝑁/~𝑞𝑅i�
<SN.  Following the first power law regime, there is a transition at the 

monomer Guinier regime into a second power law regime for the monomer. In the second power 
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law regime the scattering goes as Eq. (2.46) times 𝑁h,	with the number of scattering elements, 

volume, and surface area being that of a monomer 𝑁',	𝑉', and	𝑆'  and the equivalent radius 𝑅i.  

After the second power law regime the scattering transitions up to go as the total number of 

scattering elements on the surface of all the monomers 𝑁+,', 𝑁h. 

The concept of looking at the total structure factor as a product of the structure factor of 

its parts is not limited to the two examples described here.  Fractal aggregates can come together 

to form super-aggregates through cluster-cluster aggregation [44]. In this case, there would be 

the overall scattering volume, the super-aggregates, the individual aggregates, and the monomers 

each with a distinct structure factor.  The product of the four individual parts would be the total 

structure factor of the system [36]. It is also important to note that in many scattering 

experiments only a specific range of the structure factor is retrieved. This is due to the fact that 

the range is limited by the wavelength of the scattering experiment. As an example, a scattering 

experiment that uses a wavelength of 𝜆 = 532𝑛𝑚, that can collect the data from 0.1° < 𝜃 <

170°, would be limited to a 𝑞 range of 0.02𝜇𝑚<N <q< 23.5𝜇𝑚<N. If instead x-ray scattering is 

used with a wavelength of 𝜆 = 10𝑛𝑚, the experiment would have a 𝑞 range of 1.1𝜇𝑚<N ≲ 𝑞 ≲

1251𝜇𝑚<N. 

 

  



65 

 

Chapter 3 - Q-space Analysis of the Light Scattered by Spheres 

As the scattering begins to leave the 3d RDG diffraction limit, or in terms of the internal 

coupling parameter when 𝜌′ ≳ 1, there is not a single analytical or numerical method that can be 

used for all shapes, sizes, and refractive indices. The natural starting point for shapes with 𝜌′ ≳ 1 

is spheres. The symmetry of spheres allows for an exact analytical solution for the light 

scattering and absorption by spheres of arbitrary size and refractive index [4].  Solutions for the 

scattering and absorption were developed independently in various forms by Debye, Lorenz, and 

Mie, but the most commonly used nomenclature and citation is Mie theory, and [2], respectively.  

In our modern era of computers, the analytical Mie theory can readily be calculated 

computationally in a relatively quick amount of time even for large spheres with extreme 

refractive indexes. The relatively quick calculation of scattering and absorption by spheres not 

only allows the understanding of how spheres scatter light but also provides a first order 

approximation to what may be expected from the scattering by other shapes.  

 

 3.1 Mie theory 

The mathematical formulation of Mie theory has been covered by many sources, [3,4,45] 

are but three examples. The derivation of the Mie equations involves the expansion of a plane 

electromagnetic wave in vector spherical harmonics, and the matching of spherical boundary 

conditions. In this work the main result of the derivation will be presented as well as the 

calculation of the scattering quantities. The main quantities derived in Mie theory are the 

complex scattering coefficients [4,46] 
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𝑎) =
𝑚𝜓)(𝑚𝑘𝑅)𝜓)! (𝑘𝑅) − 𝜓)(𝑘𝑅)𝜓)! (𝑚𝑘𝑅)
𝑚𝜓)(𝑚𝑘𝑅)𝜉)! (𝑘𝑅) − 𝜉)(𝑥𝑘𝑅)𝜓)! (𝑚𝑘𝑅)

 (3.1) 

𝑏) =
𝜓)(𝑚𝑘𝑅)𝜓)! (𝑘𝑅) − 𝑚𝜓)(𝑘𝑅)𝜓)! (𝑚𝑘𝑅)
𝜓)(𝑚𝑘𝑅)𝜉)! (𝑘𝑅) − 𝑚𝜉)(𝑘𝑅)𝜓)! (𝑚𝑘𝑅)

 (3.2) 

 where 𝜓) and 𝜉) are the Riccati-Bessel functions [3,4].  𝜓) and 𝜉) are related to the 

spherical Bessel function of the first and second kind,  𝑗)(𝑥) and 𝑦)(𝑥) respectively by [21] 

𝜓)(𝑥) = 𝑥𝑗)(𝑥),			 (3.3) 

𝜉)(𝑥) = 𝑥𝑗)(𝑥) + 𝑖𝑥𝑦)(𝑥).	 (3.4) 

 The complex scattering coefficients 𝑎) and 𝑏) are coefficients in four different infinite 

sums.  These sums are used for calculating the two, scattering angle dependent, non-zero 

complex elements of the scattering amplitude matrix [4] and the total extinction and scattering 

cross sections, 𝑆N(𝜃), 𝑆/(𝜃), 𝐶#-. , and 𝐶+*& respectively. The amplitude matrix elements are 

given by  

𝑆N(𝜃) =¤
2𝑛 + 1
𝑛(𝑛 + 1) ~𝑎)𝜋)

(𝜃) + 𝑏)𝜏)(𝜃)�
	

)

,		 (3.5) 

𝑆/(𝜃) =¤
2𝑛 + 1
𝑛(𝑛 + 1) ~𝑎)𝜏)

(𝜃) + 𝑏)𝜋)(𝜃)�
	

)

. (3.6) 

 𝜏)(𝜃) and 𝜋)(𝜃) in Eq. (3.5) and Eq. (3.6) are angle dependent functions defined as [3,4] 

𝜋)(𝜃) =
𝑃)N(cos(𝜃))
sin(𝜃) , (3.7) 

𝜏)(𝜃) =
𝑑𝑃)N(cos(𝜃))

𝑑𝜃 	, (3.8) 

where 𝑃)'(cos(𝜃)) is the associated Legendre polynomials [21]. The total extinction and 

scattering cross-sections are given by  

𝐶#-. =
2𝜋
𝑘/¤

(2𝑛 + 1)Re(𝑎) + 𝑏))
	

)

, (3.9) 

𝐶+*& =
2𝜋
𝑘/¤

(2𝑛 + 1)(|𝑎)|/ + |𝑏)|/)
	

)

.			 (3.10) 
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Once the total extinction and scattering cross-sections are known, the total absorption cross-

section can be found by taking the difference 

𝐶&%+ = 𝐶#-. − 𝐶+*& . (3.11) 

 The amplitude matrix is a 2x2 complex matrix that is very similar to the Mueller matrix except 

the amplitude matrix relates the incident and scattered fields instead of intensities. All 16 of the 

Mueller matrix elements can be related to the amplitude matrix elements, but as a sphere only 

has four independent Mueller matrix elements only the four following relationships are needed 

[4], 

𝑆NN =
1
2
(|𝑆/|/ + |𝑆N|/), (3.12) 

𝑆N/ =
1
2
(|𝑆/|/ − |𝑆N|/), (3.13) 

𝑆OO =
1
2
(𝑆/∗𝑆N + 𝑆/𝑆N∗), (3.14) 

𝑆O4 =
𝑖
2
(𝑆N𝑆/∗ − 𝑆/𝑆/∗). (3.15) 

 Once Muller matrix elements are known the differential cross sections can be calculated as 

outlined in chapter 1.  

 

 3.2 The Internal Coupling Parameter of a Sphere  

So far reference has been made to the internal coupling parameter 𝜌! without any 

specifics given. The origin of 𝜌! is fairly straight forward and is found by considering the two 

limits of Mie scattering as was first presented in[11].  First consider a weakly refractive sphere of 

arbitrary size, the scattering by the sphere will be in the 3d RDG diffraction limit. In the forward 

direction the differential scattering cross section in the 3d RDG diffraction limit is given by Eq. 

(2.17) with 𝜃 = 0 
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𝑑𝐶+*&,BSZ,OS
𝑑Ω

(0) = 𝑘4𝑅C z
𝑚/ − 1
𝑚/ + 2z

/

. (3.16) 

Eq. (3.16) is valid for any polarization in the exact forward direction. Now, consider a 

strongly refractive sphere of arbitrary size with a sufficiently large refractive index (how large is 

sufficiently large will be addressed in the next section). In this limit the sphere will behave like a 

two-dimensional obstacle, and scattering from the sphere at 𝜃 = 0 will be in the 2d RDG limit 

[11,47].  The differential scattering cross section when 𝜃 = 0, in the 2d RDG limit can be found 

by combining Eq. (2.38) and Eq. (1.40)  

𝑑𝐶+*&,BSZ,/S
𝑑Ω

(0) =
𝑘/𝑅4

4 	. (3.17) 

The internal coupling parameter is then given by the square root of the ratio of Eq. (3.16) and Eq. 

(3.17) [11] 

𝜌! = É
𝑘4𝑅C ª𝑚

/ − 1
𝑚/ + 2ª

/

𝑘/𝑅4
4

Ê = 2𝑘𝑅 z
𝑚/ − 1
𝑚/ + 2z	. 

(3.18) 

 Imagine dividing a particle into small scattering elements just as was done in chapter 2.  

When 𝜌! < 1 all of the scattering elements can be treated as being independent and only 

interacting with the incident field, and the formulations presented in chapter 2 apply. Even if the 

size parameter 𝑘𝑅 of the sphere becomes large, if 𝑚 remains small enough that 𝜌! < 1, the 

scattering remains in the 3d RDG limit. Fig. 3.1 shows the Rayleigh normalized perpendicularly 

polarized Mie scattering of spheres with the same 𝜌! = 0.1 but different size parameters 𝑘𝑅 and 

indexes of refraction 𝑚 plotted vs the scattering angle 𝜃 in Fig. 3.1(a) and vs 𝑞𝑅 in Fig. 3.1(b). 

In Fig. 3.1(a) all that can be discerned from the plot is that there is a series of ripples, the spheres  
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with larger size parameters have more ripples and the ripple spacing goes as 𝛿𝜃 =

𝜋 𝑘𝑅 = 𝜆 2𝑅⁄⁄  [48]. Examining Fig. 3.1(a) would not intuitively lead to the idea that there is a 

similarity between the curves at all.  

 

Fig. 3.1 Mie scattering for spheres with a 𝜌P = 0.1, plotted vs the scattering angle 𝜃 (a) ,  vs 𝑞𝑅 (b). 

 

  In Fig. 3.1(b), however, it can be seen that despite having different sizes all of the 

scattering from the spheres follows the Rayleigh normalized 3d RDG scattering given by 

combining Eq. (2.16) and Eq. (2.35), with the only distinction being the maximum 𝑞𝑅 = 2𝑘𝑅.  

The ripple spacing in 𝑞𝑅 of 𝛿(𝑞𝑅) = 𝜋 is the same for all of the curves despite being different 

sizes and having different indexes of refraction 𝑚 [48]. When 𝑘𝑅 = 0.1 there is only the forward 

scattering lobe going as unity, in which the scattering is constant with 𝑞𝑅, this is Rayleigh 

scattering.  As the size parameters increase the scattering begins to follow 3d RDG scattering and 

exhibits the expected Guinier regime when 𝑞𝑅 = 1, followed by a power law regime which 

follows Porod’s law with a slope of -4. Also seen Fig. 3.1(a) or Fig. 3.1(b) is that the Rayleigh  

normalization when 𝜌! < 1 causes the forward scattering to go as unity, which is as expected 

from a Rayleigh scatterer. 
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As 𝜌! approaches unity, the scattering elements begin to interact, and each scattering 

element begins to see not only the incident field but the scattered field from all of the other 

scattering elements, hence the name internal coupling parameter. As 𝜌! increases the scattering 

in the forward directions begin to develop away from the 3d RDG scattering toward the 2d RDG 

scattering (circular aperture diffraction). Fig. 3.2 shows the Mie scattering from two spheres, one 

with a 𝜌! = 0.1 and the other with a 𝜌! = 1000, representing the two limits of scattering.  In Fig. 

3.2 it can be seen that the curve with 𝜌! = 0.1 follows the 3d RDG as described above, when 

𝜌! = 1000 the scattering has developed in the 2d RDG limit for the forward scattering, given by 

inserting Eq. (2.29) into Eq. (2.38) and taking the Rayleigh normalized perpendicular scattering.  

The 𝜌! = 1000	curve in Fig. 3.2 has a forward scattering lobe but instead of being at unity the 

Rayleigh normalized forward scattering goes as 1 𝜌!)⁄ ,  which is to be expected as the ratio of 

Eq. (3.17) divided by Eq. (3.16) gives 1 𝜌!)⁄ .  

The forward scattering lobe leads into the Guinier regime at 𝑞𝑅 = 1, which is followed 

by a power law regime that has a power law of -3 up to about  𝑞𝑅~𝜌! 10⁄ , which is the 2d RDG 

component of the forward scattering. To see this in more detail, begin with the asymptotic 

behavior of the Bessel function given by [21,47]  

𝐽N(𝑥) ≈ Ë 2
𝜋𝑥 cos �𝑥 − ¿

3𝜋
4 À� 

(3.19) 

combining Eq. (3.19), Eq. (2.29), and Eq. (2.38) and Rayleigh normalizing leads to  

𝐼H,BW(𝑞) ≈
8

𝜋𝜌!)
(𝑞𝑅)<O				1 ≲ 𝑞𝑅 ≲

𝜌!

10, 
(3.20) 

where the subscript RN denotes Rayleigh normalized. After the 2d RDG behavior in the forward 

directions, refraction effects as opposed to diffraction effects begin to dominate the scattering.  

The Mie scattering develops into a refraction “hump” that reaches over and meets up with the 3d 
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RDG scattering when 𝑞𝑅 is roughly equal to 𝜌!. The refraction “hump” turns down and begins to 

transition into other refractive effects such as the “generalized” rainbows and glories that 

collectively appear as a spike at large 𝑞𝑅 and are referred to as the enhanced backscattering 

[48,49]. The term “generalized” is used as rainbows are associated with water and the refractive 

index of 𝑛 = 1.33 yet the refractive effect that leads to them is not limited to an index of 𝑛 =

1.33. 

 

Fig. 3.2 RDG scattering curve for a sphere calculated using Eq. (2.35) (green).  Rayleigh normalized Mie 

scattering for a sphere with a 𝜌P = 0.1 (red) and 𝜌P = 1000 (blue). 
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 3.3 Q-space Analysis 

As stated in the introduction, under the umbrella of what is referred to as q-space analysis 

is the systematic study of the light scattering plotted in q-space.  The natural place to begin a  

 systematic study of the light scattering from spheres is when 𝜌! < 1, which has already been 

covered in chapter 2.  The 𝜌! < 1 results of the Rayleigh normalized light scattering by a sphere 

can be summarized as follows, the forward scattering lobe goes as 

𝐼H,BW(0 ≤ 𝑞𝑅 ≲ 1) = 1. (3.21) 

The scattering then reaches the Guinier regime when 𝑞𝑅 ≈ 1 and then transitions into the power 

law regime 𝑤here the average scattering in the power law regime goes as 

𝐼H,BW(1 ≲ 𝑞𝑅) =
9
2
(𝑞𝑅)<4. (3.22) 

 To examine the behavior of  the Rayleigh normalized Mie scattering as the scattering 

begins to leave the 3d RDG limit, Fig. 3.3 shows the scattering of spheres with an index of 

refraction 𝑚 = 1.3 + 𝑖0.0, and size parameters 𝑘𝑅 such that 𝜌! = 0.3, 1, 3, 10	,30. The scattering 

has been calculated using a small log-normal size distribution with deviation of 𝜎 = 1.05 [45] to 

wash out the ripples but leave the overall behavior.  When 𝜌! = 0.3 the Rayleigh normalized Mie 

scattering in the forward direction goes at slightly above unity, instead of at or below the 3d 

RDG limit, there is a Guinier regime around 𝑞𝑅 ≈ 1 at which point the scattering has reached its 

maximum 𝑞𝑅 of 2𝑘𝑅. When 𝜌! = 1, the forward scattering again goes at a value above the 3d 

RDG limit and then turns down at the Guinier regime and begins to follow the 3d RDG 

scattering.   

As 𝜌! increases, the Rayleigh normalized forward scattering begins to decrease but does 

not go at exactly 1 𝜌!)⁄  yet. Fig. 3.3 shows that when 𝜌! = 10 the forward scattering has started 

to approach 1 𝜌!)⁄  and by 𝜌!~30 it is almost equal to 1 𝜌!)⁄ . Now we can answer the question 
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“how large is a sufficiently large refractive index,” the answer being large enough that 𝜌! ≳ 30 

[50].  When 𝜌! = 3	and	10	 the power law regime begins to develop away from the 3d RDG 

limit with a slope of -4 and develops a region with a quasi-power law of over the refraction 

ripples ~-2. The slope of -2 was found when plotted vs the phase shift parameter 𝜌 [51,52], 

which is closely related to 𝜌! and was used before the development of 𝜌! [11].  The quasi-power 

law of ~-2 is followed before the scattering meets up and begins to follow the 3d RDG slope of -

4, finally at large 𝑞𝑅 it reaches the enhanced backscattering. 

 

Fig. 3.3 Rayleigh normalized Mie scattering curves for spheres with a relative refractive index of 𝑚 = 1.3 + 𝑖0.0, 
and 𝜌P = 0.3, 1.0, 3.0, 10, 30. The scattering is calculated with a small log-normal size distribution with 𝜎 =
1.05. 

 

  When 𝜌! = 10 the development of the refractive hump begins, with the center of the 

hump located at approximately 𝑞𝑅~𝜌!, which is just before the scattering meets back up with the 

3d RDG slope of -4. Once 𝜌! = 30 the 2d RDG limit in the forward scattering has been reached, 
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and there is a power law regime that follows Eq. (3.22). The power law of ~-2 remains as a 

tangential line connecting the Guinier regime and the refraction “hump” at around 𝑞𝑅~𝜌! [50], 

whether there is any physical significance to this has not yet been determined.  The hump for 

𝜌! = 30 if fully developed and is centered around 𝜌!, after which there is the enhanced 

backscattering at large 𝑞𝑅.  

The region of scattering with 0.3 < 𝜌! < 30 is a transitional region, developing from the 

3d RDG limit to the 2d RDG limit, and as such has a transitioning description.  Starting with the 

forward scattering lobe the Rayleigh normalized scattering goes as 

𝐼H,BW(𝑞𝑅 < 1) ≥ 1	,													0.3 < 𝜌! < 3. (3.23) 

 When 3 < 𝜌! < 10, it can be seen in Fig. 3.3 that the forward scattering does not go at exactly 

1 𝜌!)⁄  yet, but is approaching 1 𝜌!)⁄  as 𝜌! increases.  By 𝜌! = 10, the Rayleigh normalized 

forward scattering is approximately going as 1 𝜌!)⁄  leading to  

𝐼H,BW(𝑞𝑅 < 1)~1 𝜌!)⁄ 	,												10 < 𝜌! < 30. (3.24) 

The scattering then reaches the Guinier regime when 𝑞𝑅 ≈ 1 and then transitions into the power 

law regime 𝑤here the average scattering in the power law regime goes as 

𝐼H,BW(𝑞𝑅 > 1) ≈
9
2
(𝑞𝑅)<4	,															0.3 < 𝜌! < 3	 (3.25) 

𝐼H,BW(𝜌! > 𝑞𝑅 > 1) ∝ (𝑞𝑅)</,												3 < 𝜌! < 30		 (3.26) 

𝐼H,BW(𝑞𝑅 > 𝜌!) ∝ (𝑞𝑅)<4.												3 < 𝜌! < 30 (3.27) 

At large 𝑞𝑅, the Rayleigh normalized scattering transitions into the enhanced backscattering.  

To examine the large 𝜌! behavior Fig. 3.4 shows the scattering of spheres with an index 

of refraction 𝑚 = 1.3 + 𝑖0.0, and size parameters 𝑘𝑅 such that 𝜌! = 30, 100, 300, 1000. The 

scattering has been calculated using a small log-normal size distribution with deviation of 𝜎 =

1.05 [45] to wash out the ripples but leave the overall behavior.  In Fig. 3.4 there are four 

different shaded regions. The first is a green region that represents the 3d RDG scattering which 
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is described by Eq. (3.21) and Eq. (3.22). The second region in Fig. 3.4 is the 3d RDG to 2d 

RDG transition region, this is the region shown in Fig. 3.3 and described by Eq. (3.23)-Eq. 

(3.27).  The third region is light blue, within this region the scattering is dominated by 2d 

diffraction.  The fourth region is a light tan area in which the scattering is dominated by 

refraction effects, such as the refraction hump, generalized rainbows, and glories. The latter two 

are part of what is referred to as the enhanced back scattering.   

 

Fig. 3.4 Rayleigh normalized Mie scattering curves for spheres with a relative refractive index of 𝑚 = 1.3 + 𝑖0.0, 
and 𝜌P = 30, 100, 300, 1000 plotted vs 𝑞𝑅. The scattering is calculated with a small log-normal size distribution 
with 𝜎 = 1.05. 
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In the 2d RDG region the Rayleigh normalized forward scattering goes as  

𝐼H,BW(𝑞𝑅 < 1) = 1 𝜌!) ,⁄ 								30 ≤ 𝜌!. (3.28) 

There is a Guinier regime when 𝑞𝑅 ≈ 1 that marks the transition into the power law regime. In 

the power law regime, the scattering follows  

𝐼H,BW µ1 ≲ 𝑞𝑅 ≲
𝜌!

10¶ ≈
8

𝜋𝜌!)
(𝑞𝑅)<O,											30 ≤ 𝜌!. (3.29) 

After the scattering follows Eq. (3.29), it transitions into the refraction dominated region.  The 

dividing line of these two regions is given by ≈ (8 100𝜋⁄ )(𝑞𝑅)<k. Once the scattering enters the 

refraction dominated region, the scattering develops into the refraction hump that is centered  

around 𝑞𝑅 ≈ 𝜌!.  The tangential line with a slope of -2 between the Guinier regime and the 

center of the refraction hump remains. After 𝑞𝑅 ≈ 𝜌! the scattering turns down as it touches up 

with the 3d RDG line and finally at larger 𝑞𝑅 develops into the enhanced back scattering.  

   We have seen through Fig. 3.3 and Fig. 3.4 that the Rayleigh normalized scattering from 

spheres appears to show a quasi-universality with the internal coupling parameter 𝜌!.  So far only 

a single refractive index has been used, for the prescribed behavior of the Rayleigh normalized 

scattering to truly be quasi-universal with 𝜌! any combination of size and index that lead to a 

specific 𝜌! should have approximately the same description.  To investigate this further Fig. 

3.5(a) shows the Rayleigh normalized forward scattering vs 𝜌! for the real part of the index of 

refraction 𝑛 = 1.3, 1.5, 2.0, 2.5 and thus have different sizes when they have the same 𝜌!. In Fig. 

3.5(a) it can be seen that the Rayleigh normalized scattering in the forward direction goes as 

unity when 𝜌! ≲ 0.3 for all of the distinct refractive indexes, as was demonstrated in [11,50].  

  As the Rayleigh normalized forward scattering approaches unity, it begins to increase and 

there is a distinct separation with index. This region is the transitional region between the 3d  
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Fig. 3.5 Rayleigh normalized forward scattering vs 𝜌P (a).  Rayleigh normalized forward scattering times 𝜌PF (b). 

  

RDG and the 2d RDG. The quasi-universality breaks down some in this region, why this occurs 

is not clear and would be a worthy subject for further investigation in the future.  Nevertheless, 

𝜌! still describes the range in which the 3d to 2d transition takes place, and as the forward 

scattering approaches 𝜌!~10 all of the curves for different indexes have begun to settle down 

and approach 1 𝜌!)⁄ .   Fig. 3.5(a) shows that at approximately 𝜌!~30 the scattering goes at or 

just slightly above 1 𝜌!)⁄  and only improves as 𝜌! increases.  Fig. 3.5(b) displays the same data 

as Fig. 3.5(a) only it has been multiplied by 𝜌!) [11,50].  Finally, Fig. 3.6 shows the Rayleigh 

normalized scattering from spheres with real parts of the refractive index of 𝑛 = 1.3, 1.5, 2.0, 2.5, 

and for each index a 𝜌! = 3, 10, 30, 100, 300, and	1000. It can be seen that even though there 

are a range of indexes and sizes, the curves of the Rayleigh normalized scattering with the same 

𝜌! follow the same overall behavior that has been previously described.  Fig. 3.6 demonstrates 

the quasi-universal nature of the Rayleigh normalized light scattering by a sphere of arbitrary 

index and size, with the parameter 𝜌!.	 
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Fig. 3.6 Rayleigh normalized Mie scattering curves for spheres with real part of the relative refractive index of 
n= 1.05, 1.3, 1.5 and for each index a 𝑅 such that 𝜌P = 3, 10, 30, 100, 300, 1000 plotted vs 𝑞𝑅. The scattering is 
calculated with a small log-normal size distribution with 𝜎 = 1.05. 

 

3.4 Effects of Absorption  

While the main focus of this work is on scattering, absorption effects the scattering and 

thus cannot be ignored.  Much like 𝜌! is a quasi-universal parameter to describe the scattered 

light, the product of the imaginary part of refractive index 𝜅 and the size parameter 𝑘𝑅 provides 

a universal parameter 𝜅𝑘𝑅 to describe the effects on the scattering due to absorption 

[49,50,53,54]. Specifically, 𝜅𝑘𝑅 describes the effects of absorption on the refraction components 
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of the scattering, as diffraction is unaffected by absorption and reflection is only significantly 

affected when 𝜅 ≳ 1 [54].  Most of what follows in this section has been presented in whole or 

part in (Maughan and Sorensen) [49].  

To understand 𝜅𝑘𝑅 consider a plane mono-chromatic electromagnetic wave that is 

incident upon a homogenous sphere of radius 𝑅. When the sphere has a non-zero imaginary part 

of the refractive index, the electromagnetic wave will be attenuated as it travels through the 

sphere. The distance that the wave has penetrated into the sphere when the amplitude of the wave 

has been attenuated by a factor of 1 𝑒⁄  is known as the skin depth and is given by [25]   

𝛿 =
𝜆
2𝜋𝜅.		 

(3.30) 

The relative skin depth can then be expressed as a ratio of Eq. (3.30) and the radius of the sphere  

𝛿
𝑅 =

𝜆
2𝜋𝜅𝑅 =

1
𝜅𝑘𝑅	. 

(3.31) 

Eq. (3.31) tells us that the when 𝜅𝑘𝑅 ≪ 1 the skin depth will be much larger than the radius of 

the sphere 𝑅 and the refraction aspects of the scattering will show only a slight (if any) effect. As  

𝜅𝑘𝑅 increases, the relative skin depth will become smaller, and when 𝜅𝑘𝑅 approaches unity the 

skin depth will become comparable to the size of the sphere and the refraction effects will start to 

become significantly reduced. When 𝜅𝑘𝑅 ≳ 1 the refractive effects of the scattering will be 

almost completely diminished and only the diffraction and reflection components of the 

scattering will be left [49,53]. Once 𝜅𝑘𝑅 = 10 the relative skin depth will only be one tenth of 

the radius and only a “cap” of the sphere on the side that the wave is incident upon will be 

illuminated.  

Fig. 3.7 shows the Rayleigh normalized scattered intensity vs 𝑞 for two spheres with a 

real part of the refractive index 𝑛 = 1.33, and size parameters of 𝑘𝑅 = 300, and 1000, giving 

𝜌! ≈ 122, 408. The imaginary part of the refractive index has been set so that the absorption 
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parameter of the spheres is given by 𝜅𝑘𝑅 = 0.0, 0.1, 0.3, 1.0, 3.0, 10.0.  In Fig. 3.7 it can be seen 

that the changing of 𝜅𝑘𝑅 does not affect the 2d RDG region of the scattering, as this is a 

diffraction dominated region and by the formulation presented in chapter 2 is independent of 𝜅. 

Also shown in Fig. 3.7 are the orange and brown dashed lines that are the diffraction and 

reflection components of the scattering, respectively, and the solid black curve that is the sum of 

the diffraction and reflection components of the scattering calculated based on [55]. In the 

refraction dominated region shown in Fig. 3.7 there is a clear impact on the refraction hump and 

the enhanced backscattering.  

 

Fig. 3.7 Rayleigh normalized Mie scattering curves for spheres with real part of the relative refractive index of 
n= 1.33 and  𝑘𝑅 = 300, 1000 plotted vs 𝑞𝑅. The imaginary part of the refractive index 𝜅 has been chosen so 
that 𝜅𝑘𝑅 = 0.0, 0.1, 0.3, 1.0, 3.0, 10.0.  The scattering is calculated with a small log-normal size distribution with 
𝜎 = 1.05. 
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  When 𝜅𝑘𝑅 = 0.1, the skin depth is ten times the radius of the sphere, and there is only a 

minimal reduction in the refraction hump and enhanced backscattering as seen in Fig. 3.7.  The 

reduction in these refraction effects continues as 𝜅𝑘𝑅 passes through 0.3, when 𝜅𝑘𝑅 = 1 the skin 

depth is equal to the radius of the spheres and the refraction hump and enhanced backscattering 

are almost completely gone.  Finally, once 𝜅𝑘𝑅 = 10 the refraction effects are nearly gone and 

the scattering in the refraction dominated region in Fig. 3.7 has been reduced till only the 

reflection component is left.  The tail of the scattering, when 𝑞𝑅 = 2𝑘𝑅 and 𝜅𝑘𝑅 is large enough 

that the refraction effects have been totally diminished, reaches out and touches the power law of 

9 4⁄ (𝑞𝑅)<4 as found in [53]. 

Although the focus of this work is on the 𝑞-space analysis of the light scattered by 

particles, it is important not to ignore 𝜃 space. Plotting the scattering vs 𝑞 on a log-log plot 

uncovers many quantifiable behaviors in 𝑞-space, but 𝜃 space is no less important and scattering 

phenomenon can in some cases be more readily apparent in 𝜃 space. Fig. 3.6 shows the same 

data plotted in Fig. 3.7, forward normalized and plotted vs 𝜃 on a log-normal plot, with the 

addition of radii of 𝑅 = 300𝜇𝑚, and	1000𝜇𝑚. In 𝜃 space the reduction of the refraction effects 

with increasing 𝜅𝑘𝑅 is more readily visible as can be seen in Fig. 3.8.  In Fig. 3.8(a-d) various 

refraction effects can be seen. First for 𝜆 2𝑅 < 𝜃 < 90°⁄  there is the refraction hump, that is 

followed by spikes in scattering at around 130° and 137.5°; these are the secondary and primary 

rainbow peaks, respectively. Between the secondary and primary rainbows is a dark region 

known as “Alexanders band”[56].  Finally, in the back direction as 𝜃 approaches 180° there is 

the “Glory”[56]. In Fig. 3.8the reduction in these refraction effects as 𝜅𝑘𝑅 increases can be seen 

more clearly than in Fig. 3.7, also when comparing the reduction in the refractive effects of each 
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radius there is a striking similarity in the reduction in the refraction effects with similar 𝜅𝑘𝑅 [56]. 

It is important to take a moment and stress that 𝜅𝑘𝑅 does not describe the refraction effects  

themselves but the reduction in them, the similarity in the reduction suggests that 𝜅𝑘𝑅 is a 

universal parameter. 

 

Fig. 3.8 Forward normalized scatted intensity versus the scattering angle (a). The Mie scattering for a sphere with 
a radius of 30𝜇𝑚, and index of 𝑚 = 1.33 + 𝑖𝜅.  𝜅 is varied so that 𝜅𝑘𝑅 = 0.0, 0.1, 0.3, 1.0, 3.0, 10.0 (b), (c), and 
(d) are the same as (a) but with radii of 100𝜇𝑚, 300𝜇𝑚, 100𝜇𝑚,	respectively. 

 

To demonstrate the universality of 𝜅𝑘𝑅 the scattering intensities from spheres with the 

same radii considered in Fig. 3.8 have been plotted together in Fig. 3.9 and Fig. 3.10. The full  

range of angles is shown in Fig. 3.9 and smaller ranges showing the individual refraction effects 

are shown in Fig. 3.10.  As with Fig. 3.8, the imaginary part of the refractive index has been 

chosen such that there is a 𝜅𝑘𝑅 = 0.0, 0.1, 0.3, 1.0, 3.0 for each radius. The different radii have 
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different 𝜌! values and so plotting the Rayleigh normalized scattering would cause a separation 

in the curves.  Forward normalizing the data would also cause a separation in the curves as the 

forward scattering is in the 2d RDG regime and which is solely dependent on the size parameter 

𝑘𝑅 and is independent from 𝜅. Instead, for a common point of reference the curves have been 

normalized by the Mie scattering of a sphere at 90°, with the same size parameter 𝑘𝑅 and real 

part of refractive index and an imaginary part of the refractive index such that 𝜅𝑘𝑅 = 10 [49]. 

Fig. 3.10 (a) shows the normalized scattering vs 𝜃 on a log-log plot up to a scattering 

angle of 30°, the curves in Fig. 3.10(a) are separated according to 𝑘𝑅, demonstrating the 𝑘𝑅 

dependance of the forward scattering.  The first minimums are given by ~𝜆 2𝑅⁄ , following the 

first minimums the curves of equal 𝑘𝑅 can be seen to separate and regroup as curves of similar  

𝜅𝑘𝑅.  Fig. 3.10(b) shows the refraction hump when 𝜆 2𝑅⁄ < 𝜃 < 90°, it can be seen that the 

reduction from the maximum when 𝜅𝑘𝑅 = 0 to when 𝜅𝑘𝑅 = 3 is described well by 𝜅𝑘𝑅 despite 

having different 𝜅 and 𝑘𝑅. In Fig. 3.10(c) the refraction rainbows are systematically reduced 

with 𝜅𝑘𝑅, and Fig. 3.10(d) shows a similar reduction in the glories with 𝜅𝑘𝑅. However, the 

larger scattering shows a more sensitive reduction in scattering effect with 𝜅𝑘𝑅 than the forward  

angles, in the refraction hump a distinction can be made between 𝜅𝑘𝑅 = 1 and 𝜅𝑘𝑅 = 3, but in 

the backward directions 170° ≤ 𝜃 ≤ 178.5° there is no distinction. As the scattering approaches 

180° there is some separation in the curves of similar 𝜅𝑘𝑅, as the back directions are extremely 

sensitive to kR, and the real 𝑛 and imaginary 𝜅 refractive indexes [57], yet 𝜅𝑘𝑅 still does an 

excellent job of describing the reduction in the refractive effects, demonstrating its universal 

nature [49]. 
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Fig. 3.9 Mie scattered intensity for spheres with radii of 30𝜇𝑚, 100𝜇𝑚, 300𝜇𝑚, 1000𝜇𝑚 and index of 𝑚 =
1.33 + 𝑖𝜅. 𝜅 is varied so that 𝜅𝑘𝑅 = 0.0, 0.1, 0.3, 1.0, 3.0 all are normalized by the scattered intensity of a sphere 
of the same size and with 𝜅𝑘𝑅 = 10, at 𝜃 = 90°, with the entire scattering angle range shown. 

  

Fig. 3.10 Forward normalized scatted intensity versus the scattering angle 𝜃 (a). The Mie scattering for a sphere 
with a radius of 30𝜇𝑚, and index of 𝑚 = 1.33 + 𝑖𝜅.  𝜅 is varied so that 𝜅𝑘𝑅 = 0.0, 0.1, 0.3, 1.0, 3.0, 10.0 (b), (c), 
and (d) are the same as (a) but with radii of 100𝜇𝑚, 300𝜇𝑚, 100𝜇𝑚	respectively. 
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Similar behavior that was demonstrated in Fig. 3.9 and Fig. 3.10, is shown using the same 

size spheres but with real parts of the refractive index given by 𝑛 = 1.5 in Fig. 3.11 and Fig. 3.12 

and 𝑛 = 2.0 in Fig. 3.13 and Fig. 3.14.  Fig. 3.12(a) and Fig. 3.14(a) both show the dependence 

of the scattering in the forward directions on 𝑘𝑅, Fig. 3.12(b) and Fig. 3.14(b) shows the 

systematic reduction in the refraction hump from the maximum when 𝜅𝑘𝑅 = 0 to no hump when 

𝜅𝑘𝑅 = 3.  Fig. 3.12(c) shows a similar reduction in the generalized rainbows with 𝜅𝑘𝑅, one can 

see that the primary rainbow has pushed toward higher angles while the secondary has shifted 

toward smaller angles. While not obvious, Fig. 3.14(c) also shows the generalized rainbows due 

to the fact that the primary rainbow has shifted to the same angles as the glory, still the 

systematic reduction with 𝜅𝑘𝑅 can be seen. 

 

Fig. 3.11 Mie scattered intensity for spheres with radii of 30𝜇𝑚, 100𝜇𝑚, 300𝜇𝑚, 1000𝜇𝑚 and index of 𝑚 =
1.5 + 𝑖𝜅. 𝜅 is varied so that 𝜅𝑘𝑅 = 0.0, 0.1, 0.3, 1.0, 3.0 all are normalized by the scattered intensity of a sphere 
of the same size and with 𝜅𝑘𝑅 = 10, at 𝜃 = 90°, with the entire scattering angle range shown. 
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Fig. 3.12 Mie scattered intensity for spheres with radii of 30𝜇𝑚, 100𝜇𝑚, 300𝜇𝑚, 1000𝜇𝑚 and index of 𝑚 =
1.5 + 𝑖𝜅. 𝜅 is varied so that 𝜅𝑘𝑅 = 0.0, 0.1, 0.3, 1.0, 3.0 all are normalized by the scattered intensity of a sphere 
of the same size and with 𝜅𝑘𝑅 = 10, at 𝜃 = 90°, in four regions: (a) the forward scattering which is dependent 
on , (b) the refraction hump, (c) the rainbows, and (d) the glory. 

 

  

 In Fig. 3.12(d) and Fig. 3.14(d) the glories are shown once again with systematic 

reduction with 𝜅𝑘𝑅, however there can be seen a separation between curves of 𝜅𝑘𝑅 = 1 and 

𝜅𝑘𝑅 = 3	during the last ~2.0° of scattering, that was not seen for 𝑛 = 1.33 [49]. The distinction 

in the last ~2.0° of scattering comes from the fact that there are distinct refractive effects leading 

to the glories when the index is 𝑛 = 1.33, as opposed to when the index is 𝑛 = 1.5	 and 𝑛 = 2.0. 

Details on the distinctions will be discussed in the following section. Although the refractive 

mechanics for the glories seen in Fig. 3.10(d) differ from those of Fig. 3.12(d), and Fig. 3.14(d) 

the absorption parameter 𝜅𝑘𝑅 still describes the systematic reduction in these refraction effects 

[49]. 

kR
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Fig. 3.13 Mie scattered intensity for spheres with radii of 30𝜇𝑚, 100𝜇𝑚, 300𝜇𝑚, 1000𝜇𝑚 and index of 𝑚 =
2.0 + 𝑖𝜅. 𝜅 is varied so that 𝜅𝑘𝑅 = 0.0, 0.1, 0.3, 1.0, 3.0 all are normalized by the scattered intensity of a sphere 
of the same size and with 𝜅𝑘𝑅 = 10, at 𝜃 = 90°, with the entire scattering angle range shown. 

  

Fig. 3.14 Mie scattered intensity for spheres with radii of 30𝜇𝑚, 100𝜇𝑚, 300𝜇𝑚, 1000𝜇𝑚 and index of 𝑚 =
2.0 + 𝑖𝜅. 𝜅 is varied so that 𝜅𝑘𝑅 = 0.0, 0.1, 0.3, 1.0, 3.0 all are normalized by the scattered intensity of a sphere 
of the same size and with 𝜅𝑘𝑅 = 10, at 𝜃 = 90°, in four regions: (a) the forward scattering which is dependent 
on , (b) the refraction hump, (c) the rainbows, and (d) the glory. 

 

kR
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  Fig. 3.15 thru Fig. 3.19 show the magnitude of the internal fields and the field near the 

surface of the spheres, relative to the magnitude of the incident field.  The four radii that have 

been studied so far are shown in each figure. The figures show a two-dimensional slice through 

the sphere in the scattering plane (𝑥 = 0), with the 𝑥 and 𝑦 axis scaled by the radius of the 

spheres 𝑅. There is a white dashed line in each plot that represents the radius of the sphere in the 

plane, the incident field propagation direction is given by 𝑘h⃗ ()* , which lies along the positive 𝑧 

direction. Fig. 3.15 shows the case where 𝜅𝑘𝑅 = 0, it can be seen that the relative fields are 

fairly similar to each other despite the spheres being different sizes.  There are bright areas both  

within and outside the sphere in the forward directions along the z/R axis, on either side of these 

bright areas are dark regions where the relative fields are less than 0.1.  The remainder of the 

sphere is close to or below the incident field [49]. 

 

Fig. 3.15 (a) The relative internal and near field amplitudes for a slice of the sphere at 𝑥 = 0 and with a radius of 
30𝜇𝑚 and index of 𝑚 = 1.33 + 𝑖0.0 with a 𝜅𝑘𝑅 = 0.0.  (b), (c), and (d) are the same as (a) but with radii of 
100𝜇𝑚, 300𝜇𝑚, 1000𝜇𝑚 respectively. 
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In Fig. 3.16 𝜅𝑘𝑅 = 0.3, the skin depth is still larger than the entire sphere, but the 

absorption is starting to affect the internal fields.  There is a very slight dimming in all of the 

internal fields, the bright spots along the z/R axis are not as bright and some of the faint purple 

lines across the dark areas to the left and right of the bright spots have gone. What is most 

important to note though is the similarity of the change from Fig. 3.15 to Fig. 3.16 even though 

the spheres are different sizes.   

 

Fig. 3.16 (a) The relative internal and near field amplitudes for a slice of the sphere at 𝑥 = 0 and with a radius of 
30𝜇𝑚 and index of 𝑚 = 1.33 + 𝑖0.0 with a 𝜅𝑘𝑅 = 0.3.  (b), (c), and (d) are the same as (a) but with radii of 
100𝜇𝑚, 300𝜇𝑚, 1000𝜇𝑚 respectively. 

 

In Fig. 3.17 𝜅𝑘𝑅 = 1, and now the relative skin depth is equal to unity, which is displayed as a 

white line in the figure. As before there is a continued overall dimming of the fields and only a 

small sliver of the bright spots remains. Again, the change in the relative internal fields when 

𝜅𝑘𝑅 = 0.3 compared to 𝜅𝑘𝑅 = 1 is similar for all four radii. 
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Fig. 3.17 (a) The relative internal and near field amplitudes for a slice of the sphere at 𝑥 = 0 and with a radius of 
30𝜇𝑚 and index of 𝑚 = 1.33 + 𝑖0.0 with a 𝜅𝑘𝑅 = 1.0.  (b), (c), and (d) are the same as (a) but with radii of 
100𝜇𝑚, 300𝜇𝑚, 1000𝜇𝑚 respectively. 

 

In Fig. 3.18 𝜅𝑘𝑅 = 3 and the relative skin depth 𝛿 𝑅⁄ = 1 3⁄ , and now it can be seen that 

there is significant darkening of the relative internal fields within the spheres. The bright spots 

have been totally eliminated; it can be seen that the relative skin depth describes well the 1 𝑒⁄ ≈

0.368 point. Again, the change from Fig. 3.17 to Fig. 3.18 is strikingly similar despite the sizes 

of the spheres being different. Finally, in Fig. 3.19 𝜅𝑘𝑅 = 10 and only a small “cap” on the 

incident side of the sphere remains. The striking similarity in the reduction of the relative internal 

fields with increasing 𝜅𝑘𝑅 serves to demonstrate the universality of 𝜅𝑘𝑅. 
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Fig. 3.18 (a) The relative internal and near field amplitudes for a slice of the sphere at 𝑥 = 0 and with a radius of 
30𝜇𝑚 and index of 𝑚 = 1.33 + 𝑖0.0 with a 𝜅𝑘𝑅 = 3.0.  (b), (c), and (d) are the same as (a) but with radii of 
100𝜇𝑚, 300𝜇𝑚, 1000𝜇𝑚 respectively. 

 

Fig. 3.19 (a) The relative internal and near field amplitudes for a slice of the sphere at 𝑥 = 0 and with a radius 
of 30𝜇𝑚 and index of 𝑚 = 1.33 + 𝑖0.0 with a 𝜅𝑘𝑅 = 10.  (b), (c), and (d) are the same as (a) but with radii of 
100𝜇𝑚, 300𝜇𝑚, 1000𝜇𝑚 respectively. 
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3.5 Generalized Rainbows and Glories 

In this section I will briefly touch on generalized rainbows and glories.  While 

generalized rainbows are a fairly straightforward topic, glories are not. Glories are caused by 

different refractive effects depending on the refractive index and size of the sphere.  Indeed, an 

entire PhD project could probably be found within the complexity of the glories, and so I will 

only touch on them enough to describe why there is a distinction in the last 2° of Fig. 3.9, when 

compared to Fig. 3.11 and Fig. 3.13.  The Debye series [56] can be used to gain some physical 

insight into generalized rainbows and glories. The physical insight is gained as parts of the series 

can be expressed independently, each part representing a ray that has experienced a distinct 

number or internal reflections within the sphere.  

Generalized rainbows are predominately caused by the 𝑝 = 2 (primary rainbow) term of 

the Debye series and 𝑝 = 3 (secondary rainbow) term of the Debye series, where 𝑝 − 1 is the 

number of enter reflections that the ray has experienced. The ray tracing scattering angle 𝜃 can 

be related to the incident angle 𝜃( by [58] 

𝜃 − (𝑝 − 1)180° + 2𝜃( − 2𝑝 sin<N }
sin(𝜃() 𝑛¾ �, (3.32) 

and incident angle can be related to the impact parameter 𝑏 by  

𝑏 = sin(𝜃(). (3.33) 

Fig. 3.20 shows the scattering angle 𝜃 vs the impact parameter 𝑏 for the 𝑝 = 2 and 𝑝 = 3 rays at 

indexes of refraction = 1.33, √2, 1.5, 1.7, 2.0.  In Fig. 3.20 when the curves pass through a 

region of zero slope there will be a range of impact parameters that all scatter at the same 

scattering angle. The grouping of a range of impact parameters into a single scattering angle 

causes an intensity spike in the scattering, these spikes are the generalized rainbows.  In Fig. 3.20 

it can be seen that as 𝑛 increases from 𝑛 = 1.33, the location of the primary rainbows caused by 
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the 𝑝 = 2 rays (solid lines) shifts to larger angles, reaching 180° by 𝑛 = 2. The secondary 

rainbows are caused by the 𝑝 = 3 rays (dashed lines) and their location moves to smaller angles 

as the refractive index increases. Comparing Fig. 3.9, Fig. 3.11 and Fig. 3.13, it can be seen that 

the generalized primary and secondary rainbow locations move away from each other with 

increasing n.There are additional spikes in the scattering that appear, which are most likely 

caused by higher order terms in the Debye series.  

 

Fig. 3.20 Shows the scattering angles vs the impact parameter b for 𝑝 = 2 rays (solid lines) which have one 
internal reflection, and 𝑝 = 3 rays (dashed lines) which have two internal reflections. The curves shown are for a 
real part of the refractive index 𝑛 = 1.33, 1.414, 1.5, 1.7, 2.0. The regions that have a slope of zero are circled.  
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 When the real part of the index or refraction is 𝑛 = 1.33, the glories are primarily the 

result of the 𝑝 = 2 term in the Debye series when the size parameter  𝑘𝑅 ≲ 100 [58] . Looking 

at Fig. 3.21, however, the only 𝑝 = 2 rays that can scatter in the backward direction are those for 

very small impact parameters.  All of the 𝑝 terms in the Debye series will have rays that scatter 

in the backward direction for very small impact parameters, so there must be another 

phenomenon that causes the 𝑝 = 2 rays to be the driving force in the glories for 𝑛 = 1.33. The 

phenomenon that causes the p=2 rays to play a dominant role in the formation of the glories is 

the interference of surface waves that are produced by the 𝑝 = 2 rays. These surface waves 

travel along the circumference of the sphere continuously shedding light, this allows for the 

constructive interference of the scattering surface wave in the backward directions [58].  Another 

consequence of the surface waves continuously shedding light is that as the size of their sphere 

increases, there is more circumference to travel and so less of the field is able to reach the 

backward directions leading to the 𝑝 = 2 term becoming less dominant[58]. When the sphere 

size parameter becomes larger 𝑘𝑅 > 100, it is not the 𝑝 = 2 but the 𝑝 = 11 term in the Debye 

series that dominates [59–61].  

Once 𝑛 ≈ √2 ≈ 1.414 there are 𝑝 = 2 rays other than those for when b is small that can 

constructively interfere in the backward directions without surface waves. For example, when 

𝑛 = √2  the rays that have an impact parameter of -1 and 1 both scatter at 𝜃 = 180°, and will 

constructively interfere.  When n=2 there is an entire range of impact parameters from 𝑏~ −

0.25 to 𝑏~0.25 that will scatter at 180°.  Not only will all of the rays scatter at 180°, but the 

rays with equal but opposite impact parameters will constructively interfere. Indeed, upon 

examination of Fig. 3.13 there is a dramatic increase in the scattering at 180°.  It is the 
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distinction in the refractive mechanisms that cause the glories that lead to the difference in the 

behavior of the last 2° when comparing Fig. 3.9 to Fig. 3.11 and Fig. 3.13.   

 

Fig. 3.21 Shows the scattering angles vs the impact parameter b for 𝑝 = 2 rays. The curves shown are for a real 
part of the refractive index 𝑛 = 1.33, 1.414, 1.5, 1.7, 2.0. When 𝑛 = 1.33 the only impact parameters that scatter 
in the backward direction are those with small b, so surface waves are necessary for substantial scattering in 
backward directions. When n=1.414, 1.5, 1.7, 2.0 there are at least two impact parameters that will constructively 
interfere and lead to substantial scattering in the backward directions without surface waves.   
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Chapter 4 - Q-space Analysis of the Light Scattered by Non-

Spherical Particles 

Now that Q-space analysis has been applied to the light scattered by spheres, the same 

analysis can be applied to the light scattered by non-spherical particles as well. Undoubtedly 

there will be a great amount of variation in the scattering from particles of different shapes, sizes, 

aspect ratios and relative indexes of refraction. As mentioned before, however, the goal of this 

work is to take a big picture approach and look at the similarities in the scattered light.  It will be 

demonstrated in the following, that just like with spheres, the internal coupling parameter 𝜌! 

provides a single parameter for classifying the regime the scattering is in. Also, as with spheres, 

it will be shown that the refraction dominated region of the scattering is where most of the 

variations in the scattered light are found, but even in this region some general quantitative 

descriptions can be made.  Furthermore, it is in the refraction dominated region that the 

absorption parameter 𝜅𝑘𝑅 provides a single parameter to describe the reduction in the variety of 

refraction effects to the base line of reflection. So, to study the scattered light from non-spherical 

particles we not only will need to be able to calculate the scattering by non-spherical shapes, but 

also the internal coupling parameter and the proper Rayleigh normalization for them.  

There are a several different methods for calculating the light scattering by non-spherical 

particles.  Different methods are deployed for different shapes, sizes, and refractive indexes.  In 

this work to calculate the light scattering from various non-spherical shapes, four distinct 

computational programs and methods will be used.  For fractal aggregates and spherical 

scattering volumes filled randomly with monomers the Multiple Sphere T Matrix (MSTM) 

program developed by Mackowski [62] will be used for all sizes and refractive indexes 

presented.  The Invariant Imbedded T Matrix (IITM) developed by Ping Yang  [63–66] is used 
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for cylinders, spheroids, rectangular prisms, hexagonal prisms, Gaussian random spheres (GRS), 

and droxtals for 𝜌! values up to 𝜌! = 30, when the real part of the refractive index 𝑛 ≥ 2.0, and 

up to 𝜌! = 10, when 𝑛 < 2.0.  The Physical Geometric Optics Method (PGOM) also developed 

by the Yang group [67] has been utilized for hexagonal prisms, rectangular prisms, and droxtals 

when 𝜌! ≥ 100 when 𝑛 ≥ 2.0, and 𝜌! ≥ 30 when 𝑛 < 2.0. A ray optics program developed by 

Muinonen et al [35] named SIRIS was used for the calculation of the scattering by GRS with 

𝜌! ≥ 100 when 𝑛 ≥ 2.0, and 𝜌! ≥ 30 when 𝑛 < 2.0.  Unfortunately, 𝜌! > 30 for spheroids and 

cylinders were not able to be reached in this current work.  

 

 4.1 The Non-Spherical Internal Coupling Parameter  

Just as with a sphere the internal coupling parameter for an arbitrary shape can be derived 

by looking at the two limits of scattering. First consider a weakly refractive particle of arbitrary 

size, the scattering from the particle will be in the 3d RDG diffraction limit and the scattering in 

the exact forward direction 𝜃 = 0 will be given by  

𝑑𝐶+*&,BSZ,OS
𝑑Ω

(0) = 𝑘4𝑉/|𝛼(𝑚)|/. (4.1) 

Now, considering a strongly refractive particle or arbitrary size with a sufficiently large 

refractive index.  The scattering will be in the 2d RDG limit in the forward direction, and in this 

limit the scattering in the forward direction will be given by given by [30]  

𝑑𝐶+*&,BSZ,/S
𝑑Ω

(0) =
𝑘/𝐴/

4𝜋/ , 
(4.2) 

where 𝐴 is the average projected area in the direction of the incident field. As with spheres we 

take the square root of the ratio of Eq. (4.1) and Eq. (4.2) which leads to  

𝜌! = 2𝜋𝑘
𝑉
𝐴
|𝛼(𝑚)|. (4.3) 
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Eq. (4.3) holds for any shape and reduces to Eq. (3.18) when the average volume polarizability 

of a sphere is used.  

  The question now is how one calculates the average volume polarizability for non-

spherical particles, not only to calculate the proper 𝜌!, but also so that the proper Rayleigh 

normalization given by Eq. (4.1) can be found. For spheroids there is an analytical solution the 

details of which can be found in [3,4] and is given by  

|𝛼(𝑚)|+EJ#F7(0+/ =
3
4𝜋 Ì2 z

(𝑚/ − 1)
3 + 3𝐿&(𝑚/ − 1)z

/

+ z
(𝑚/ − 1)

3 + 3𝐿*(𝑚/ − 1)z
/

Í. (4.4) 

𝐿& and  𝐿* are geometric parameters given by the integrals 

𝐿- =
𝑎/𝑐
2 f

𝑑𝑞
(𝑞 + 𝑥/)(𝑞 + 𝑎/)�(𝑞 + 𝑐/)

,
l

a
 (4.5) 

with x being either a or c, where a and c are the semi principle axes of the spheroid, two of which 

are described by c (see the appendix for examples).  The geometric parameters 𝐿& and 𝐿* are 

restricted so that 2𝐿& + 𝐿* = 1 [4]. Other than Eq. (4.4) there are no other analytical solutions to 

the average volume polarizability for different shapes. 

  Although analytical solutions don’t exist, computational calculations can be used to get a 

numerical value for |𝛼(𝑚)|.  Numerical programs such as IITM can be used to calculate the 

scattering properties of particles using a large wavelength and small size such that the particle in 

within the Rayleigh regime. The total scattering cross section in this regime is given by van de 

Hulst [3] as  

𝐶+*&,B&6 =
8
3𝜋𝑘

4𝑉/|𝛼(𝑚)|/. (4.6) 

Once the total scattering cross section in the Rayleigh regime has been solved for numerically, 

the average volume polarizability can be solved for as 𝑘 and 𝑉 are predetermined when running 

the scattering calculations. The average volume polarizability is a complex number and although 
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the magnitude is all that is required in this work theoretically it would also be possible to use the 

total absorption cross section to retrieve the imaginary component of polarizability.  van de Hulst 

gives the total absorption cross section in the Rayleigh regime as  

𝐶&%+,B&6 = 4𝜋𝑘𝑉𝑅𝑒~𝑖𝛼(𝑚)�, (4.7) 

again, 𝑘 and 𝑉 are known quantities and so the imaginary part of 𝛼(𝑚) can at least be estimated.  

Once the magnitude and imaginary part of 𝛼(𝑚) are known, the real part could also be 

determined.  Only the retrieval of the magnitude numerically has been studied and was presented 

in Maughan et al. [68].  

 

 4.2 Q-space Analysis   

Fig. 4.1(a) – Fig. 4.4(a) show the Rayleigh normalized scattering from cylinders, 

spheroids, hexagonal prisms and rectangular prisms, with aspect ratios 𝜀 = 1 3⁄ , 1 2⁄ , 1, 2, 3, 

and real parts of refractive index of 𝑛 = 1.3, 1.5, 2.0, 2.5, 3.0.  The only exception is for 

spheroids with 𝜀 = 1, which are spheres and have already been covered.  The sizes of the 

particles in Fig. 4.1 – Fig. 4.4 are such that 𝜌! = 5, 10, 30 for cylinders and spheres, while 

hexagonal, and rectangular particles have 𝜌! = 5, 10, 30, 100, 300, 1000. Fig. 4.1(b) – Fig. 

4.4(b) show the Rayleigh normalized forward scattering vs 𝜌! for the same shapes, aspect ratios, 

and indexes as Fig. 4.1(a) – Fig. 4.4(a), with the addition of 𝜌! = 0.1, 0.2, 0.5, 1, 2.  Fig. 4.5(a) 

shows the Rayleigh normalized scattering from GRS with relative standard deviations away from 

the mean radius 𝜎 = 0.05, 0.1, 0.2, power law indexes of 𝜈=2, 3, 4, and real parts of the relative 

refractive indexes of 𝑚 = 1.3, 1.5, 2.0, 2.5, 3.0, and mean radii 𝑎 such that they have 𝜌!=5, 10, 

30, 100, 300, 1000. Fig. 4.5(b) shows the Rayleigh normalized forward scattering vs 𝜌! for the 

same variations found in Fig. 4.5(a), with the addition of 𝜌! = 0.1, 0.2, 0.5, 1, 2.  Fig. 4.6(a) 
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shows the Rayleigh normalized scattering from droxtals with 𝜃N = 35.35°,  𝜃/ = 71.81°, and 

𝜃N = 1.5°,  𝜃/ = 85°, each with a real part of the refractive index of 𝑚 = 1.3, 1.5, 2.0, 2.5, 3.0, 

and a circumscribing sphere radius 𝑅 such that they have 𝜌!=5, 10, 30, 100, 300, 1000. Fig. 

4.6(b) shows the Rayleigh normalized forward scattering vs 𝜌! for the same variations found in 

Fig. 4.6(a), with the addition of 𝜌! = 0.1, 0.2, 0.5, 1, 2.   

In Fig. 4.1(b)-Fig. 4.6 (b) when 𝜌! ≲ 0.3 no matter what the shape, aspect ratio, or 

refractive index the light scattering is in the 3d RDG region and the Rayleigh normalized 

scattering in the forward direction will go as unity  

𝐼Q,RS@0 ≤ 𝑞𝑅LDE ≲ 1B = 1. (4.8) 

In the 3d RDG region the formulations of chapter 2 apply, as 𝑞𝑅"#$ increases away from the 

forward scattering directions the scattering passes through the Guinier regime and enters the 

power law regime. The scattering in the power law regime when the scattering is in the 3d RDG 

region, according to Eq. (2.46) will go as 

𝐼Q,RS@1 ≲ 𝑞𝑅LDEB =
16𝜋𝑆𝑅𝑣𝑒𝑞4

9𝑉2
@𝑞𝑅LDEB

HT. (4.9) 

It can also be seen in Fig. 4.1(b)-Fig. 4.6(b) that for all of the shape and index variations, as 𝜌! 

approaches unity, the Rayleigh normalized scattering in the forward direction begins to increase 

above unity. This is the 3d to 2d transition region, and there is some dispersion with shape and 

refractive index, but for all cases the Rayleigh normalized forward scattering goes as  

𝐼H,BW~𝑞𝑅"#$ < 1� ≥ 1	.												0.3 < 𝜌! < 3 (4.10) 

When 3 < 𝜌! < 10 it can be seen in Fig. 4.1(a)-Fig. 4.6 (a) and Fig. 4.1(b)-Fig. 4.6 (b) that the 

forward scattering does not go at exactly 1 𝜌!)⁄  yet, and there is still a large amount of dispersion 

due to both shape and refractive index. The Rayleigh normalized forward scattering, however,  
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Fig. 4.1 (a) The Rayleigh normalized light scattered by cylinders with aspect ratios 𝜀 = 1 3⁄ , 1 2⁄ , 1, 2, 3, and 
real parts of refractive index of 𝑛 = 1.3, 1.5, 2.0, 2.5, 3.0, and sizes such that 𝜌P = 5, 10, 30 in every possible 
combination of 𝜀, 𝑛, and	𝜌P.  (b) The Rayleigh normalized scattering by cylinders in the forward direction for all 
curves shown in (a), and with the addition of 𝜌P = 0.1, 0.2, 0.5, 1, 2. In (b) the color of the point represents the 
relative refractive index and the point shape represents the aspect ratio. 
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Fig. 4.2 (a) The Rayleigh normalized light scattered by spheroids with aspect ratios 𝜀 = 1 3⁄ , 1 2⁄ , 2, 3, and real 
parts of refractive index of 𝑛 = 1.3, 1.5, 2.0, 2.5, 3.0, and sizes such that 𝜌P = 5, 10, 30 in every possible 
combination of 𝜀, 𝑛, and	𝜌P.  (b) The Rayleigh normalized scattering by spheroids in the forward direction for all 
curves shown in (a), and with the addition of 𝜌P = 0.1, 0.2, 0.5, 1, 2. In (b) the color of the point represents the 
relative refractive index and the point shape represents the aspect ratio. 
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Fig. 4.3 (a) The Rayleigh normalized light scattered by hexagonal prisms with aspect ratios 𝜀 = 1 3⁄ , 1 2⁄ , 1, 2, 3, 
and real parts of refractive index of 𝑛 = 1.3, 1.5, 2.0, 2.5, 3.0, and sizes such that 𝜌P = 5, 10, 30, 100, 300, 1000 
in every possible combination of 𝜀, 𝑛, and	𝜌P.  (b) The Rayleigh normalized scattering by hexagonal prisms in the 
forward direction for all curves shown in (a), and with the addition of 𝜌P = 0.1, 0.2, 0.5, 1, 2. In (b) the color of 
the point represents the relative refractive index and the point shape represents the aspect ratio. 

 



104 

  

Fig. 4.4 (a) The Rayleigh normalized light scattered by rectangular prisms with 𝜀 = 1 3⁄ , 1 2⁄ , 1, 2, 3, and real 
parts of refractive index of 𝑛 = 1.3, 1.5, 2.0, 2.5, 3.0, and sizes such that 𝜌P = 5, 10, 30, 100, 300, 1000 in every 
possible combination of 𝜀, 𝑛, and	𝜌P.  (b) The Rayleigh normalized scattering by rectangular prisms in the 
forward direction for all curves shown in (a), and with the addition of 𝜌P = 0.1, 0.2, 0.5, 1, 2. In (b) the color of 
the point represents the relative refractive index and the point shape represents the aspect ratio. 
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Fig. 4.5 (a) The Rayleigh normalized light scattered by GRS with 𝜎 = 0.05, 0.1, 0.2, 𝜈 = 2, 3, 4, and real parts of 
refractive index of 𝑛 = 1.3, 1.5, 2.0, 2.5, 3.0, and sizes such that 𝜌P = 5, 10, 30, 100, 300, 1000 in every possible 
combination of 𝜎, 𝜈, 𝑛, and	𝜌P.  (b) The Rayleigh normalized scattering by GRS in the forward direction for all 
curves shown in (a), and with the addition of 𝜌P = 0.1, 0.2, 0.5, 1, 2. In (b) the color of the point represents the 
relative refractive index and the point shape represents the different combination of 𝜎, and 𝜈. 
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Fig. 4.6 The Rayleigh normalized light scattered by droxtals with 𝜃U = 32.35° ,𝜃F = 71.81° and  𝜃U = 1.5° ,𝜃F =
85° and real parts of refractive index of 𝑛 = 1.3, 1.5, 2.0, 2.5, 3.0, and sizes such that 𝜌P = 5, 10, 30, 100, 
300, 1000 in every possible combination of 𝑛, and	𝜌P with the two pairs of angles.  (b) The Rayleigh normalized 
scattering by the same droxtals in the forward direction for all curves shown in (a), and with the addition of 𝜌P =
0.1, 0.2, 0.5, 1, 2. 
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has fallen below unity and is approaching 1 𝜌!)⁄  as 𝜌! increases.  By 𝜌! = 10 the Rayleigh 

normalized forward scattering is approximately going as 1 𝜌!)⁄  , with in a factor of about 2 and 

𝐼H,BW~𝑞𝑅"#$ < 1�~1 𝜌!)⁄ .												10 < 𝜌! < 30 (4.11) 

As 𝑞𝑅"#$ increases away from the forward scattering directions, the scattering passes through 

the Guinier regime and enters the power law regime. The power law regime when the forward 

scattering is in the 2d to 3d region is dominated by refractive effects and there are a lot of bumps 

and wiggles with no clear description yet.  This is similar to what was seen with spheres, a rough 

quasi power-law of -2 remains over the group of curves, after which there is the enhanced 

backscattering in the back directions.  

 Once 30 ≤ 𝜌!, the Rayleigh normalized scattering in the forward direction has primarily 

settled down and started to go as 1 𝜌!)⁄   for all of the many variations being considered.  This 

can be seen in both Fig. 4.1(a)-Fig. 4.6 (a), and Fig. 4.1(b)-Fig. 4.6 (b), though it should be noted 

that the GRS seems to take a bit longer than the other shapes. The Rayleigh normalized 

scattering has entered the 2d RDG region, and when 𝑞𝑅"#$ < 1,  

𝐼H,BW~𝑞𝑅"#$ < 1� = 1 𝜌!) .⁄ 								30 ≲ 𝜌! (4.12) 

As 𝑞𝑅"#$ increases away from the forward scattering directions the scattering passes through the 

Guinier regime and enters the power law regime.  In the power law regime, the scattering follows 

a power law of -3, this is caused by the 2d diffraction of the 2d projection of the particle.  The 

scattering follows the power law of -3 up until 𝑞𝑅"#$~
rV

Na
, and so  

𝐼H,BW µ1 ≲ 𝑞𝑅 ≲
𝜌!

10¶ ∝
(𝑞𝑅)<O.											30 ≤ 𝜌! (4.13) 

After 𝑞𝑅"#$~
rV

Na
, the scattering enters the refraction dominated region, which is separated from 

the 2d RDG region along the line denoted by 8 100𝜋~𝑞𝑅"#$�
<k⁄ . As might be expected, it is in 
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this region that most of the uniqueness in the scattering is found. There is not a clear refraction 

hump as was seen with spheres for all of the shapes, and variations being considered in Fig. 4.1-

Fig. 4.6, but there remains a tangential quasi power law of -2 between the Guinier regime and 

where the scattering meets back up with the 3d RDG line. The refraction dominated region ends 

as 𝑞𝑅"#$ approaches 2𝑘𝑅"#$, and almost all of the scattering from the shapes and variations 

being considered show enhanced backscattering.  Though most of the scattering shows enhanced 

backscattering there is a wide range in the magnitude of the enhancement.  

 Although the focus of this work is on the similarities in the scattering and putting 

together an overall picture of how particles scatter light in general, it would be negligent not to 

make comments on some of the uniqueness in the light scattering.  The differences in the 

scattering in the refraction dominated region come from two main sources. First, a lack of 

symmetry. Consider a sphere, for example. Each orientation of a sphere is exactly the same as 

any other and so the behavior of the scattering is very similar for all spheres.  On the other hand, 

if we consider a cube, although there are many symmetries in a cube not every orientation is 

identical, and each distinct orientation will lead to distinct refractive behavior in the scattering.  

The second source is the variation in the real part of the index of refraction, this can be 

understood by considering spheres, which have distinct refractive effects such as the rainbows 

and glories that are directly affected by the real part of the refractive index, even though there is 

only a single orientation. Varying the real part of the refractive index gives rise to even more 

distinction in the scattering within the refraction dominated region. The combination of a 

changing refractive index and the many unique orientations of non-spherical shapes lead to the 

uniqueness seen in the light scattering in the refraction dominated regions.  
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One of the most notable of the unique refraction effects can be seen in the light scattered 

by hexagonal columns with a real part of the refractive index 𝑛 = 1.3, shown in Fig. 4.3(a).  It 

can be seen in Fig. 4.7 that some of the curves with 𝜌! = 30, 100, 300, 𝑎𝑛𝑑	1000 have a 

triangular spike in the scattering around 𝑞𝑅"#$~𝜌!.  Less noticeable is a second triangular peak 

shortly after the first, these are referred to as “sun dogs” [69,70] and are formed by ice crystals at 

a scattering angle of 𝜃~20° away from the sun, this is when 𝑞~3.5(𝜇𝑚<N).   

 

Fig. 4.7 Same as Fig. 4.3(a) expect with the triangular “Sun dogs” indicated.  

 

 There are similar formations that can be seen in the light scattered by droxtals in Fig. 4.6.  The 

GRS demonstrate a wide variety of behavior in the refraction dominated region, when they are 
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nearly spherical, they have a strong refraction hump, and a large enhanced backscattering peak.  

As the GRS become less spherical, there are no symmetries left and each orientation is unique, 

this washes out much of the refraction effects, and the refraction hump as well as the enhanced 

backscattering are diminished.  

 

 4.4 Effects of absorption  

Just as with spheres when there is a non-zero imaginary part of the refractive index, and 

𝜅𝑘𝑅"#$ ≳ 0.1 the scattering will be affected. Fig. 4.8(a) shows the scattering by a hexagonal 

column with 𝜌! = 1000, an aspect ratio 𝜀 = 1, size parameter 𝑘𝑅"#$ ≈ 3160 and relative index 

of refraction 𝑚 = 1.3 + 𝑖𝜅, with 𝜅 values such that 𝜅𝑘𝑅"#$ = 0.0, 0.1, 0.3, 1.0, 3.0.  It can be 

seen in Fig. 4.8(a) that just as with spheres as 𝜅𝑘𝑅"#$ increases there is systematic reduction in 

the refractive effects, most notably the disappearance of the sun dogs by 𝜅𝑘𝑅"#$ = 3, and the 

reduction in the enhanced backscattering. Fig. 4.8(b) is similar to Fig. 4.8(a) but with rectangular 

columns, and a size parameter of 𝑘𝑅"#$ ≈ 3300,  again the systematic reduction in refraction 

effects can be seen.   

Fig. 4.9(a) shows GRS with 𝜎 = 2, 𝜈 = 4, with a 𝜌! = 1000,  size parameter 𝑘𝑅"#$ ≈

1060 and relative index of refraction 𝑚 = 2.0 + 𝑖𝜅, with 𝜅 values such that 𝜅𝑘𝑅"#$ =

0.0, 0.1, 0.3, 1.0, 3.0.  Fig. 4.9(b) shows the light scattered by cylinders with a 𝜌! = 30, a size 

parameter 𝑘𝑅"#$ ≈ 33.7 and relative index of refraction 𝑚 = 2.0 + 𝑖𝜅, with 𝜅 values such that 

𝜅𝑘𝑅"#$ = 0.0, 0.1, 0.3, 1.0, 3.0.  In Fig. 4.9(a) and Fig. 4.9(b) it can be seen that as 𝜅𝑘𝑅"#$ 

increases the refraction effects in the refraction dominated region are systematically reduced with 

𝜅𝑘𝑅"#$.  Finally, Fig. 4.10 shows the light scattered by droxtals with a 𝜌! = 1000, a size 

parameter 𝑘𝑅"#$ ≈ 3300 and relative index of refraction 𝑚 = 1.3 + 𝑖𝜅, with 𝜅 values such that  
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Fig. 4.8 (a) The Rayleigh normalized light scattered by hexagonal prisms with a size parameter 𝑘𝑅LDE ≈ 3160, 
and a relative refractive index of 𝑚 = 1.3 + 𝑖𝜅.  The imaginary part of the refractive index is set such that 
𝜅𝑘𝑅LDE = 0.0, 0.1, 0.3, 1.0, 3.0. (b) The Rayleigh normalized light scattered by hexagonal prisms with a size 
parameter 𝑘𝑅LDE ≈ 3300, and a relative refractive index of 𝑚 = 1.3 + 𝑖𝜅.  The imaginary part of the refractive 
index is set such that 𝜅𝑘𝑅LDE = 0.0, 0.1, 0.3, 1.0, 3.0. 
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Fig. 4.9 The Rayleigh normalized light scattered by GRS with a size parameter 𝑘𝑅LDE ≈ 1060, and a relative 
refractive index of 𝑚 = 2.0 + 𝑖𝜅.  The imaginary part of the refractive index is set such that 𝜅𝑘𝑅LDE =
0.0, 0.1, 0.3, 1.0, 3.0. (b) The Rayleigh normalized light scattered by cylinders with a size parameter 𝑘𝑅LDE ≈
33.7, and a relative refractive index of 𝑚 = 1.3 + 𝑖𝜅.  The imaginary part of the refractive index is set such that 
𝜅𝑘𝑅LDE = 0.0, 0.1, 0.3, 1.0, 3.0. 
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Fig. 4.10 The Rayleigh normalized light scattered by droxtals with a size parameter 𝑘𝑅LDE ≈ 3300, and a relative 
refractive index of 𝑚 = 1.3 + 𝑖𝜅.  The imaginary part of the refractive index is set such that 𝜅𝑘𝑅LDE =
0.0, 0.1, 0.3, 1.0, 3.0. 

 

𝜅𝑘𝑅"#$ = 0.0, 0.1, 0.3, 1.0, 3.0. As with all the previous shapes, 𝜅𝑘𝑅"#$ describes the reduction 

in the refraction effects. As should be expected, absorption effects the refraction effects of the 

scattered light while leaving the diffraction and reflection components, and 𝜅𝑘𝑅"#$ provides a 

single parameter to describe how much the refraction effects have been reduced.  

 

 4.5 Aggregates  

As a final demonstration of the quasi-universality of 𝜌!, and particularly how 𝜌! describes 

which region the light scattered by a particle is in, we will compare fractal and 3d aggregates.  

The light scattered by fractal aggregates has been described in the past by what is called the 

Rayleigh-Debye-Gans fractal aggregate (RDGFA) theory, which was reviewed in [24] and more 
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recently in [71].  One of the most predominate uses of fractal aggregates is to model the light 

scattered by soot; [24,71] list extensive references to some of the large body of work with 

fractals aggregates being used in this manner. Typically, the refractive index of the monomers is 

such the condition for RDG scattering is not met i.e. |𝑚 − 1| is close to unity. However, the 

monomers are usually much smaller than the wavelength of light and thus the condition, so they 

are Rayleigh scatterers. As more monomers are added to the aggregate eventually the aggregate 

as a whole will no longer be a Rayleigh scatterer, and yet RDGFA theory has still been found to 

be applicable [71].  It will be demonstrated in the following that due to the fractal nature of the 

aggregates, the internal coupling parameter of the aggregate describes the aggregate as being 

within 3d RDG regime as a monomer and remaining within the 3d RDG regime as more 

monomers are added.   

We must now discus what happens to 𝜌! as more monomers are added to the aggregate. 

Consider the ratio of the volume to the projected area in the definition of 𝜌! given by Eq. (4.3). 

Each time a monomer is added to the aggregate the volume will increase by the volume of a 

monomer, but how the projected area increases depends on the dimension of the aggregate. For  

DLCA fractal aggregates the projected area has been found through transmission electron 

microscopy (TEM) and mobility considerations to be given by [72–76] 

𝐴 = 𝑁W.YF𝐴M$:, (4.14) 

where 𝐴𝑚𝑜𝑛 = 𝜋𝑎F is the projected area of a single monomer.  Because the projected area 𝐴 of the 

fractal aggregate grows nearly proportional to 𝑁, and the volume 𝑉 grows at a rate directly 

proportional to 𝑁 the ratio of the volume and the projected area 𝑉/𝐴 changes very little. Eq. 

(4.14) can be used to approximate the internal coupling parameter for a fractal aggregate 𝜌jF&*! , 

in terms of the internal coupling parameter for a single monomer 𝜌'7)!    
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𝜌Z[=;P = 𝑁W.W\𝜌M$:P . (4.15) 

Eq. (4.15) tells us that as each monomer is added there is very little change in 𝜌jF&*! , and so if the 

monomers are Rayleigh scatterers the aggregate will be as well.  

On the other hand, consider a 3d aggregate made up of monomers placed on a cubic 

lattice. The first monomer is placed at the origin and then one of the six nearest neighbor sites is 

randomly selected and filled. After that, another one of the nearest neighbor sites of all of the 

monomers is randomly selected and filled, this continues until a desired number of monomers 

has been added. In this case there will be a large amount of shadowing of monomers by other 

monomers as the aggregate grows. The shadowing of monomers by other monomers will cause 

𝑉 to grow at a greater rate than 𝐴 and so the ratio 𝑉/𝐴 will grow much faster than it does for 

fractal aggregates.  The “shading” of particles by other particles, and the effects this has on the 

scattering in the forward direction, is discussed in terms of multiple-scattering by Mishchenko et 

al [77], and as will be shown is inherently built into the definition of the internal coupling 

parameter.  

Fig. 4.11 shows 𝜌jF&*!  vs 𝑁 for fractal aggregates with 𝑘7 = 1.35, 𝐷j = 1.8, and 𝑎 =

20𝑛𝑚. 𝜌jF&*!  has been calculated using Eq. (4.3), and also using Eq. (4.15).  Also, in Fig. 4.11   

𝜌O0!  vs 𝑁 for 3d aggregates calculated by the techniques of section 4.1 is shown. In Fig. 4.11 it 

can be seen that the calculated values of 𝜌jF&*!  compares well with Eq. (4.15).  Also, in Fig. 4.11 

it can be seen that the 𝜌jF&*!  with a refractive index of 𝑚 = 1.6 + 𝑖0.6 has only increased to  

𝜌jF&*! ≈ 0.34 by N=1000, while the 3d aggregate has reached 𝜌O0! ≈ 0.95.  The non-absorbing 

case 𝑚 = 1.5 + 𝑖0.0,	has a similar behavior with, 𝜌jF&*! ≈ 0.2 by N=1000, while the 3d 

aggregate has reached 𝜌O0! ≈ 0.57.  Also, it should be noted in Fig. 4.11 the curves for the fractal 

aggregates have almost leveled off, when the curves for the 3d aggregates are still increasing at a 
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significant rate. Using Eq. (4.15) to estimate, a fractal aggregate with an index of 𝑚 = 1.6 +

𝑖0.6, and a monomer size of 20nm would have to have ~5 hundred million monomers to reach a 

𝜌jF&*! ≈ 1. 

 

Fig. 4.11 The internal coupling parameter 𝜌Pvs the number of monomer in the aggregate 𝑁. Plotted are the results 
calculated using Eq. (4.3) for fractal aggregates with 𝑘$ = 1.35, 𝐷Z = 1.8, and 3d aggregates with indexes of 
refraction 𝑚 = 1.6 + 𝑖0.6	, 1.5 + 𝑖0.0, also shown is the result using Eq. (4.15). 

  

Fig. 4.12 shows the Rayleigh normalized scattering from fractal aggregates and 3d 

aggregates. The light scattering curves for the fractal aggregates which have 𝜌jF&*! <

0.34	behave similarly despite having an increasing number of monomers. Because the 𝜌jF&*!  is 
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barely changing, the curves for the 3d aggregates show a significant amount of change as 𝜌O0!  

approaches unity and the scattering leaves the 3d RDG region and begins to enter the 3d to 2d  

transition region. This demonstrates the effectiveness of the internal coupling parameter at 

determining what region the light scattering is in and reiterates the universality of the internal 

coupling parameter.  

 

Fig. 4.12 (a) The Rayleigh normalized light scattered by fractal aggregates with 𝑘$ = 1.35, 𝐷Z = 1.8, and 𝑚 =
1.6 + 𝑖0.6. (b) The Rayleigh normalized light scattered by 3d aggregates with 𝑚 = 1.6 + 𝑖0.6. 
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Chapter 5 - Conclusions and Future work  

When the Rayleigh normalized scattering from any three dimensional particle, no matter 

the shape, size, aspect ratio, relative index of refraction, or fractal dimension, is plotted vs 𝑞𝑅"#$ 

the same behaviors are found with the internal coupling parameter 𝜌!. When 𝜌! ≲ 0.3, the 

scattering is in the 3d RDG limit, there will be the forward scattering that goes as unity, followed 

by the Guinier regime at 𝑞𝑅"#$~1.  After the Guinier regime, the scattering enters the power law 

regimes and follow Porod’s law that states the scattering will follow a power law of -

(2𝐷' − 𝐷+).  When 0.3 ≲ 𝜌! ≲ 3 the scattering has begun to leave the 3d RDG limit and 

transition toward the 2d RDG, the Rayleigh normalized scattering in the forward direction 

increases above unity in this range of 𝜌!.  The scattering still passes through the Guinier regime 

at 𝑞𝑅"#$~1, and then enters the power law regime. In the power law regime at this range of 𝜌! 

values, the scattering is dominated by refraction, but the ripples do begin to develop a quasi 

power law of -2 until 𝑞𝑅"#$ begins to approach 2𝑘𝑅"#$, when there is a spike in the scattering 

referred to as the enhanced backscattering.  

When 3 ≲ 𝜌! < 30, the scattering is in the 3d to 2d transition region, the Rayleigh 

normalized scattering in the forward direction has fluctuations, but has started to settle down to 

going toward following 1 𝜌!)⁄ .  The scattering passes through the Guinier regime and then the 

envelope of the ripples of the scattering follow a quasi-power law of -2 in the refraction 

dominated region, until reaching the enhanced backscattering. Finally, once 𝜌! ≳ 30 the 

Rayleigh normalized forward scattering has settled down and goes as 1 𝜌!)⁄ .  After the Guinier 

regime, the scattering enters the power law regime and goes as ~𝑞𝑅"#$�
<O.  The power law of -3 

comes from the 2d diffraction of the projected area of the 3d particle, the power law remains 
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until 𝑞𝑅"#$~𝜌! 10⁄  when the scattering enters the refraction dominated region. When 𝜌! ≳ 30 

the 2d RDG region and the refraction dominated region are separated by the line denoted by 

8 100𝜋~𝑞𝑅"#$�
<k⁄ . 

In the refraction dominated region when 𝜌! ≳ 30, there is a large amount of variation in 

the behavior of the scattering depending on the shape and refractive index. However, all of the 

scattering in the refraction dominated area is greatly affected by absorption, and the parameter 

𝜅𝑘𝑅"#$ provides a universal parameter that describes the reduction in the refraction effects. 

When 𝜅𝑘𝑅"#$ < 0.1, there is little to no effect on the scattering, but as 𝜅𝑘𝑅"#$ approaches 0.1 

the reduction in the scattering becomes clearly visible.  As 𝜅𝑘𝑅"#$~1, the skin depth is 

comparable to the size of the particle and almost all of the refraction effects are gone, and 

certainly once 𝜅𝑘𝑅"#$ = 3, they are almost all gone and only the diffraction and reflection 

component of the scattering remains.  

 A future goal would be to reach larger 𝜌! values for spheroids and cylinders, either by the 

use/development of different numerical programs or access to more computational resources. 

Also, there is much work that can be done with regards to both 𝜌! and  𝜅𝑘𝑅"#$.  All of the 

scattering in this work was orientationally averaged, but what about single fixed orientations?  

Will the same formulations and concepts work with single fixed orientations, or is there some 

aspect to the orientational averaging that allows 𝜌! to work?  With 𝜅𝑘𝑅"#$ , how well does 

𝜅𝑘𝑅"#$ work for particles with extreme aspect ratios and what would the definition of 𝜅𝑘𝑅"#$ be 

in the case of extreme aspect ratios?  
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Appendix A - Shape Definitions 

Spheroids are formed by rotating an ellipse around one of its principle axes and are 

defined by 

𝑥F + 𝑦F

𝑎F +
𝑧F

𝑐F = 1. (A.1) 

By the definition of Eq. (A.1) the ellipse would be rotated around 𝑐, and the other principle axis 

is 𝑎. The aspect ratio of a spheroid is defined by  

𝜀 =
𝑐
𝑎. (A.2) 

When the aspect ratio is less than one the spheroid is said to be oblate, and when the aspect ratio 

is greater than one it is prolate. The volume of a spheroid is given by  

𝑉 =
4
3𝜋𝑎

F𝑐, (A.3) 

and the surface area can be approximated by  

𝑆 ≈ 4𝜋 g
(𝑎F)] + 2(𝑎𝑐)]

3 h

U
]
, (A.4) 
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with 𝑝~1.6075. Fig. A.1 shows spheroids with aspect ratios less than, greater than, and equal to 

unity.  

 

Fig. A.1 Examples of spheroids with aspect ratios 𝜀 < 1, 𝜀 = 1,	and 𝜀 > 1.  

 

 

Fig. A.2 Examples of cylinders with aspect ratios 𝜀 < 1, 𝜀 = 1,	and 𝜀 > 1. 
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Cylinders are defined by a radius 𝑅 and height 𝐿, and have an aspect ratio defined by 

𝜀 =
𝐿
2𝑅. 

(A.5) 

The volume of a cylinder is given by  

𝑉 = 𝜋𝑅F𝐿, (A.6) 

 and the surface area is given by  

𝑆 = 2𝜋𝑅F + 2𝜋𝑅𝐿. (A.7) 

Fig. A.2 shows cylinders with aspect ratios less than, greater than, and equal to unity.  

 Hexagonal columns are defined by a side length a and height h, and have an aspect ratio 

defined by 

𝜀 =
ℎ
2𝑎. 

(A.8) 

The volume of a hexagonal column is given by  

𝑉 =
3√3
2 𝑎Fℎ (A.9) 

and the surface area is given by  

𝑆 = 6𝑎ℎ + 3√3𝑎F (A.10) 

 

Fig. A.3 shows hexagonal columns with aspect ratios less than, greater than, and equal to unity. 

 Rectangular columns are defined by a side length 𝑏 and height 𝑎, and have an aspect ratio 

defined by 

𝜀 =
𝑎
𝑏. (A.11) 

The volume of a rectangular column is given by  

𝑉 = 𝑏2𝑎 (A.12) 

and the surface area is given by  

𝑆 = 2𝑏F + 4𝑎𝑏 (A.13) 
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Fig. A.4 shows rectangular columns with aspect ratios less than, greater than, and equal to unity. 

 

 

Fig. A.3 Examples of hexagonal prisms with aspect ratios 𝜀 < 1, 𝜀 = 1,	and 𝜀 > 1. 
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Fig. A.4 Examples of rectangular prisms with aspect ratios 𝜀 < 1, 𝜀 = 1,	and 𝜀 > 1. 

 

Gaussian random spheres (GRS) are defined by a mean radius a, a relative standard 

deviation 𝜎, and a power law index 𝜈 [78–80]. There is not a clear definition of the aspect ratio 

as GRS are randomly perturbed spheres.  The ensemble-averaged volume is given by 

〈𝑉〉 =
4𝜋
3
[𝑎(1 + 𝜎F)]^, (A.14) 

and the volume equivalent surface area of a sphere will be used.  The relative standard deviation 

𝜎 effects the size of the random fluctuations away from the mean radius, the larger 𝜎 is the less 

spherical the shape will be.  The power law index effects the number of random fluctuations in a 

direction tangential to the radius, the smaller 𝜈 is the less spherical the shape will be.  Fig. A.5 

shows several examples of shapes with variations of 𝜈 and 𝜎.  
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Droxtals are defined by the circumscribing sphere radius 𝑅, and two angles 𝜃N, and 𝜃/ 

[34].  Further parameters that describe the sphere and are dependent on 𝑅, 𝜃N, and 𝜃/, are shown 

in Fig. A.6 and are given by  

𝑎U = 𝑅 sin(𝜃U), (A.15) 

𝑎F = 𝑅 sin(𝜃F), (A.16) 

𝐿U = 𝑅 cos(𝜃U), (A.17) 

𝐿F = 𝑅 cos(𝜃F), (A.18) 

and  

ℎ =
𝑎U

(𝑎F − 𝑎U)
(𝐿U − 𝐿F). (A.19) 

The volume of a droxtal is given by 

𝑉 = √3[(ℎ + 𝐿U + 2𝐿F)𝑎FF − ℎ𝑎UF], (A.20) 

and the surface area is given by  

𝑆 = 3√3𝑎UF + 12𝐿F𝑎F + 6(𝑎U + 𝑎F)s
3
4
(𝑎F − 𝑎U)F + (𝐿F − 𝐿U)F. (A.21) 
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Fig. A.5 Examples of Gaussian random spheres with relative standard deviations of 𝜎 = 0.05, 0.1, 0.2, power law 
indexes of 𝜈 = 2, 3, 4 and mean radius of 𝑎. 

 

Fig. A.6 Examples of droxtals with circumscribing sphere radius of R, and angle 𝜃U = 32.35°, 1.5° and  𝜃F =
71.81°, 85°.	
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Examples of droxtals with 𝜃N = 32.35°, 𝜃/ = 32.35°, 𝜃N = 1.5°, and with 𝜃/ = 85° are shown 

in Fig. A.6. The other extreme with 𝜃N~𝜃/ leads to a hexagonal column which has already been 

described.  


