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Inverse problem for an inhomogeneous
Schro dinger equation
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Department of Mathematics, Kansas State University, Manhattan, Kansas 66506-2602

(Received 8 March 1999; accepted for publication 27 April 2999

Let (I—k?®)u=—u"+q(x)u—k?u=48(x), xe R, du/d|x|—iku—0, |x|—o=. As-
sume that the potentiaf(x) is real valued and compactly supporteqi(x)
=q(x), q(x)=0 for |x|=1, [1,|gldx<e, and thatq(x) produces no bound
states. Letu(—1k) andu(1lk), Yk>0 be the data. It is shown that under the
above assumptions these data deterngjif®® uniquely. © 1999 American Insti-
tute of Physics[S0022-24889)02108-9

[. INTRODUCTION

For several decades, the following inverse problems of practical interest are open. Let
Vau+k?u+kv(x)u=—8(x), in RS (1.1

u satisfies the radiation condition at infinity, an¢x) is a compactly supported piecewise-smooth
function, supy CR? :={x:x3<0}.

The data are the valuegx; ,x,,0k) for all X:=(x;,X,) € R? andk>0.

(IP1) The inverse problem is the following.

Given the data, find/(x).

Uniqueness of the solution to this problem is not proved. IP1 is not overdetermined: the data
is a function of three variables, am{x) is also.

A similar inverse problem can be formulated: Let

V2u+k2u—q(x)u=0, in RS (1.2
. elkr 1 X
u:e'k“'x—i-A(a',a,k)T-l—O F)’ ri=|x|—o, a’:F, (1.3

where aeS? is a given unit vector,q(x) is a real-valued piecewise-smooth function,
suppq(x) CB,:={x:|x|<a}, andS? is the unit sphere.

(IP2) Given Aa',aq,k) for all o’ € S, all k>0 and a fixeda=aye S, find q(x).

The uniqueness of the solution t#°2) is not proved.

The third problem is the following.

Let

V2u+k2u—q(x)u=—48(x), in R3; (1.4

u satisfies the radiation condition, angx) is the same as ifiP2).

The data are the valuegx,k)|y -

(IP3) Given the data (x,k)|x-, for all k>0 and all x on the sphere $={x:|x|=a}, find
a(x).

Uniqueness of the solution {®P3) is not proved.

An overview of inverse problems and references one can find in Refs. 1-3.
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Our purpose in this paper is to study the one-dimensional analdg®fand to prove for this
analog a uniqueness theorem. The one-dimensional analdtP®f corresponds to a plasma
equation in a layer.

Let
lu—k?u:==—u"+q(x)u—k?u=6(x), xelR?, (1.5
o ik 0 1.6
X iku—0, [x|—c. (1.6

Assume thag(x) is a real-valued function,
q(x)=0, for [x|>1, qelL*[—1,1]. (1.7
Suppose that the data,
{u(=1k),u(1k)}, Vk>0, (1.9

are given.

The inverse problem analogous ({®3) is the following.

(IP) Given the datg1.8), find q(x).

This problem, as well adP1)—(IP3), is of practical interest. One can think about finding the
properties of an inhomogeneous sléhe governing equation is a plasma equatifnom the
boundary measurements of the field, generated by a point source inside the slab.

In the literature there are many results concerning various inverse problems for the homoge-
neous version of Eq.1.5), but it seems that no results concerniitig) are known.

Assume that the self-adjoint operater —d?/dx?+ q(x) in L?(R) has no negative eigenval-
ues[this is the case wheq(x)=0, for examplé. The operatot is the closure inL2(R) of the
symmetric operatot, defined onCg(R!) by the formulal,u=—u"+q(x)u. Our result is the
following.

Theorem 1: Under the above assumptions IP has, at most, one solution

Il. PROOF OF THEOREM 1
The solution to(1.5—(1.6) is

g(k)
mf(x,k), x>0,
mg(X,k), x<0.

Here f(x,k) andg(x,k) solve homogeneous version of EG.5 and have the following asymp-
totics:

f(x,k)~e**  x—o+w, gx,k)~e K x——oo, (2.2)
f(k):=f(0k), g(k):=g(0k), 2.3
[f,g]:=fg’ —f'g=—2ika(k), (2.9

where the prime denotes differentiation with respect toxtlvariable, anda(k) is defined by the
equation

f(x,k)=b(k)g(x,k)+a(k)g(x,— k). (2.9
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It is known (see, for example, Ref.)4hat

g(x,k)y=—=b(=k)f(x,k)+a(k)f(x,—k), (2.6
a(—k)=a(k), b(—k)=b(k), l|a(k)[>=1+|b(k)[?>, keR, 2.7

1 ) 1
a(k)=1+0 E)’ k—o, keC,; b(k)=0 E)’ k|-, keR, 2.7)
[f(x,k),g(x,—k)]=2ikb(k), [f(x,k),g(x,k)]=—_2ika(k), (2.9

a(k) is analytic inC_ , b(k), in general, does not admit analytic continuation frénbut if q(x)
is compactly supported, thea(k) andb(k) are analytic functions ok e C\O.
The functions

oSO S0t0
are the data; they are known for &i>0. Therefore one can assume the functions
hl(k)==%, hz(@ﬁ%, (2.10
to be known for allkk>0, because
f(lk)=e*, g(-1k=e*, (2.11)
as follows from the assumptiofl.7) and from(2.2).
From (2.10), (2.6), and(2.5), it follows that
a(k)hy(k)= —b(—k)f(k)+a(k)f(—k)=—b(—k)hz(k)a(k)+h2(—k)a(—k)a(k),(2.12)
a(k)h,(k)=b(k)a(k)h(k)+a(k)h,(—k)a(—k). (2.13
From (2.12 and(2.13), it follows that
—b(—k)hy(K)+hy(—k)a(—k)=h4(k), (2.149
b(k)hi(k)+a(—k)hy(—k)=hy(k). (2.19

Eliminating b(—k) from (2.14) and(2.15, one gets

a(k)hy(k)hy(k) +a(—k)hy(=k)hy(—k)=hy(K)hi(—k) +ha(—k)hy(k), (2.16

or
a(k)=m(k)a(—k)+n(k), keR, 2.17)
where
ha(—K)ha(—K) ha(—k)  ho(~K)
M) ==~ on® "R T o (2.18
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Problem(2.17) is a Riemann problertsee Ref. 5 for the theory of this probleror the pair
{a(k),a(—k)}, the functiona(k) is analytic inC, :={k:k e C,Imk>0} anda(—Kk) is analytic in
C_. The functionsa(k) anda(—k) tend to one a& tends to infinity inC, and, respectively, in
C_; see Eq(2.7).

The functiona(k) has finitely many simple zeros at the poinks, 1<j<J, k;>0, where
—ka are the negative eigenvalues of the operdtaefined by the differential expressidn
=—u"+q(x)u in L%(R).

The zerosk; are the only zeros dadi(k) in the upper half-plan&.

Define

. 1 (=
|nda(k)::2—7Ti f_wdlna(k). (2.19

One has
inda=1J, (2.20

where J is the number of negative eigenvalues of the operbtand, using(2.10, (2.20 and
(2.18), one gets

indm(k) = — 2[ind h; (k) +ind h,(k)]= — 2[ind g(K) + ind f (k) — 2J]. (2.21)

Sincel has no negative eigenvalues, it follows tlat 0.

In this case ind(k)=indg(k)=0 (see Lemma 1 below so indm(k)=0, and a(k) is
uniquely recovered from the data as the solutiori2o17), which tends to one at infinity; see Eq.
(2.7). If a(k) is found, thenb(k) is uniquely determined by Eq2.15, and so the reflection
coefficientr (k) :=b(k)/a(k) is found. The reflection coefficient determines a compactly supported
q(x) uniquely(see Ref. 2

To make this paper self-contained, let us outline a proof of the last claim using an argument
different from the one given in Ref. 2.

If g(x) is compactly supported, then the reflection coefficigik) :=b(k)/a(k) is meromor-
phic. Therefore, its values for &ii>0 determine uniquely(k) in the whole complex plane as
a meromorphic function. The poles of this function in the upper half-plane are the nurkpers
j=1,2,...J. They determine uniquely the numbéss 1<j<J, which are a part of the standard
scattering datdr (k),k; ,s;,1=<j=<J}, wheres; are the norming constants.

Note that if a(ik;)=0 thenb(ik;)#0: otherwise Eq.2.5 would imply f(x,ik;)=0, in
contradiction to the first relatiof2.2).

If r(k) is meromorphic, then the norming constants can be calculated by the fosnula
=—i[b(ikj)/a(ik;)]=—i Re$<:ikj r(k), where the dot denotes differentiation with respeck,to
and Res denotes the residue. So, for compactly supported potential, the vaff&} fufr all k
>0 determine uniquely the standard scattering data, that is, the reflection coefficient, the bound
states— ka, and the norming constanss, 1<j=<J. These data determine the potential uniquely.

Theorem 1 is proved. O

Lemma L1:f J=0 then indf=indg=0.

Proof: We prove indf = 0. The proof of the equation irg= 0 is similar. Since ind (k) equals
the number of zeros df(k) in C, , we have to prove thait(k) does not vanish i, . If f(2)
=0, ze(C, , thenz=ik, k>0, and—k? is an eigenvalue of the operatbin L?(0,), with the
boundary conditioru(0)=0.

From the variational principle one can find the negative eigenvalues of the opérator
L?(IR,) with the Dirichlet condition ak=0 as consecutive minima of the quadratic functional.
The minimal eigenvalue is

—k2=ian’0 [u'2+q(x)u?]dx:=ky, ueHY(R.), lullzr,)=1, (2.22
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whereﬁl(R+) is the Sobolev space ¢1'(R.) functions, satisfying the condition(0)=0.
On the other hand, #=0, then

OSinff [u2+g(x)u?ldx:=ky, ueHY(R), [uf.zm=1. (2.23

Since any element of I:|1(R+) can be considered as an elemenHd{R) if one extendsi to the
whole axis by settingi=0 for x<<0, it follows from the variational definition&.22) and(2.23
that k1< «ky. Therefore, ifJ=0, thenx,=0, and thereforec;=0. This means that operatbon
L?(IR,) with the Dirichlet condition akk=0 has no negative eigenvalues. This means ttiat
does not have zeros i, , if J=0. ThusJ=0 implies indf (k) =0.
Lemma 1 is proved. O
Remark 2:The above argument shows that, in general,

indf<J and indg<J, (2.29
so that(2.21) implies
indm(k)=0. (2.25
Therefore the Riemann proble(8.17) is always solvable.
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