
A TRANSIENT SOLVER FOR CURRENT DENSITY IN THIN

CONDUCTORS FOR MAGNETQUASIOSTATIC CONDITIONS

by

TODD H. PETERSEN

B.S., Kansas State University, 2000

M.S., Kansas State University, 2003

AN ABSTRACT OF A DISSERTATION

submitted in partial fulfillment of the

requirements for the degree

DOCTOR OF PHILOSOPHY

Department of Electical and Computer Engineering

College of Engineering

KANSAS STATE UNIVERSITY

Manhattan, Kansas

2009



Abstract

A computer simulation of transient current density distributions in thin conductors was

developed using a time-stepped implementation of the integral equation method on a finite

element mesh. A study of current distributions in thin conductors was carried out using AC

analysis methods. The study of the AC current density distributions was used to develop

a circuit theory model for the thin conductor which was then used to determine the nature

of its transient response. This model was used to support the design and evaluation of the

transient current density solver.

A circuit model for strip lines was made using the Partial Inductance Method to allow

for simulations with the SPICE circuit solver. Magnetic probes were designed and tested

that allow for physical measurements of voltages induced by the magnetic field generated

by the current distributions in the strip line. A comparison of the measured voltages to

simulated values from SPICE was done to validate the SPICE model. This model was used

to validate the finite-integration model for the same strip line.

Formulation of the transient current density distribution problem is accomplished by

the superposition of a source current and an eddy current distribution on the same space.

The mathematical derivation and implementation of the time-stepping algorithm to the

finite element model is explicitly shown for a surface mesh with triangular elements. A C++

computer program was written to solve for the total current density in a thin conductor by

implementing the time-stepping integral formulation.

Evaluation of the finite element implementation was made regarding mesh size. Finite

element meshes of increasing node density were simulated for the same structure until a

smooth current density distribution profile was observed. The transient current density

solver was validated by comparing simulations with AC conduction and transient response

simulations of the SPICE model. Transient responses are compared for inputs at different

frequencies and for varying time steps. This program is applied to thin conductors of

irregular shape.



A TRANSIENT SOLVER FOR CURRENT DENSITY IN THIN

CONDUCTORS FOR MAGNETOQUASISTATIC CONDITIONS

by

TODD H. PETERSEN

B.S., Kansas State University, 2000

M.S., Kansas State University, 2003

A DISSERTATION

submitted in partial fulfillment of the

requirements for the degree

DOCTOR OF PHILOSOPHY

Department of Electrical and Computer Engineering

College of Engineering

KANSAS STATE UNIVERSITY

Manhattan, Kansas

2009

Approved by:

Major Professor
Kenneth H. Carpenter



Copyright

Todd H. Petersen

2009



Abstract

A computer simulation of transient current density distributions in thin conductors was

developed using a time-stepped implementation of the integral equation method on a finite

element mesh. A study of current distributions in thin conductors was carried out using AC

analysis methods. The study of the AC current density distributions was used to develop

a circuit theory model for the thin conductor which was then used to determine the nature

of its transient response. This model was used to support the design and evaluation of the

transient current density solver.

A circuit model for strip lines was made using the Partial Inductance Method to allow

for simulations with the SPICE circuit solver. Magnetic probes were designed and tested

that allow for physical measurements of voltages induced by the magnetic field generated

by the current distributions in the strip line. A comparison of the measured voltages to

simulated values from SPICE was done to validate the SPICE model. This model was used

to validate the finite-integration model for the same strip line.

Formulation of the transient current density distribution problem is accomplished by

the superposition of a source current and an eddy current distribution on the same space.

The mathematical derivation and implementation of the time-stepping algorithm to the

finite element model is explicitly shown for a surface mesh with triangular elements. A C++

computer program was written to solve for the total current density in a thin conductor by

implementing the time-stepping integral formulation.

Evaluation of the finite element implementation was made regarding mesh size. Finite

element meshes of increasing node density were simulated for the same structure until a

smooth current density distribution profile was observed. The transient current density

solver was validated by comparing simulations with AC conduction and transient response

simulations of the SPICE model. Transient responses are compared for inputs at different

frequencies and for varying time steps. This program is applied to thin conductors of

irregular shape.



Table of Contents

Table of Contents vi

List of Figures ix

List of Tables xii

List of Symbols xiv

Acknowledgements xvii

1 Introduction 1
1.1 Preliminary investigation of current density . . . . . . . . . . . . . . . . . . 2

1.1.1 Partial differential equation for current density . . . . . . . . . . . . . 2
1.1.2 Vector Laplacian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1.3 Skin depth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2 Existing electromagnetic solvers . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.2.1 Quickfield . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.2.2 Maxwell 3D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.2.3 MAFIA 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.2.4 GetDP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.3 Survey of other transient methods . . . . . . . . . . . . . . . . . . . . . . . . 22

2 Partial Inductance skin effect studies utilizing SPICE 24
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.2 Partial inductance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2.1 Partial inductance for finite length conductors . . . . . . . . . . . . . 26
2.3 Numerical confirmation of experimental values for current distributions . . . 28

2.3.1 Calculation of partial inductances . . . . . . . . . . . . . . . . . . . . 28
2.3.2 SPICE simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.3.3 Experimental observation . . . . . . . . . . . . . . . . . . . . . . . . 32
2.3.4 Comparison of observations and simulations . . . . . . . . . . . . . . 38
2.3.5 Modifying the net list for pulse excitation . . . . . . . . . . . . . . . 42

2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3 Theoretical basis for transient time-stepping solution 43
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.2 Derivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.3 Discretization in time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

vi



3.4 Finite element implementation of the transient eddy current problem . . . . 52
3.5 Basis functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.5.1 Linear nodal basis function . . . . . . . . . . . . . . . . . . . . . . . . 60
3.5.2 Gradient of the linear nodal basis function . . . . . . . . . . . . . . . 62
3.5.3 Coordinate transformations for integration . . . . . . . . . . . . . . . 62
3.5.4 Linear edge element shape function . . . . . . . . . . . . . . . . . . . 63
3.5.5 Example of linear edge element shape function for canonical triangle . 65

3.6 Constructing the coefficient matrices . . . . . . . . . . . . . . . . . . . . . . 66
3.6.1 The [S] matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.6.2 The [G] matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
3.6.3 The [D] matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
3.6.4 The [P ] matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4 Implementation of transient current density solver in C++ 83
4.1 Using GMSH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.2 Parsing mesh files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.2.1 Reading mesh data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.2.2 Extracting edge data from triangle data . . . . . . . . . . . . . . . . 88

4.3 Reading time–voltage data for time stepping . . . . . . . . . . . . . . . . . . 91
4.4 Construction of coefficient matrices . . . . . . . . . . . . . . . . . . . . . . . 92

4.4.1 Building the [C] matrix . . . . . . . . . . . . . . . . . . . . . . . . . . 93
4.4.2 Building the [S] matrices . . . . . . . . . . . . . . . . . . . . . . . . . 94
4.4.3 Building the [G] matrices . . . . . . . . . . . . . . . . . . . . . . . . . 95
4.4.4 Building the [D] matrix . . . . . . . . . . . . . . . . . . . . . . . . . . 96
4.4.5 Building the [P] matrices . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.5 Solution of Laplace’s equation . . . . . . . . . . . . . . . . . . . . . . . . . . 97
4.5.1 The addition of Successive Overrelaxation (SOR) to the solution of

Laplace’s equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
4.6 Time-stepping solution for eddy current . . . . . . . . . . . . . . . . . . . . . 101
4.7 Generating output files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
4.8 Coding scheme for changing conductivity as a function of specific action . . . 106
4.9 Command-line entry operation . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5 Testing and validation of Transient current conduction code 110
5.1 Simple conducting square . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
5.2 Test cases of one inch strip lines of variable lengths . . . . . . . . . . . . . . 123

5.2.1 Mesh size requirements . . . . . . . . . . . . . . . . . . . . . . . . . . 123
5.2.2 Time step size constraints . . . . . . . . . . . . . . . . . . . . . . . . 138
5.2.3 Comparison of transient responses . . . . . . . . . . . . . . . . . . . . 141

6 Application and future work 144
6.1 Thin conductors of irregular shape . . . . . . . . . . . . . . . . . . . . . . . 144

6.1.1 Conductor with a hole . . . . . . . . . . . . . . . . . . . . . . . . . . 144

vii



6.1.2 Conductor with constricted entry points . . . . . . . . . . . . . . . . 148
6.1.3 Conductor with constriction point . . . . . . . . . . . . . . . . . . . . 149
6.1.4 Conductor with multiple holes and constriction points . . . . . . . . . 151
6.1.5 Flat, spiral wound inductors . . . . . . . . . . . . . . . . . . . . . . . 155

6.2 Future work: Implementation of conductivity dependencies . . . . . . . . . . 156
6.3 Future work: User-interface . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
6.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

Bibliography 162

viii



List of Figures

1.1 Illustration of the vector Laplacian . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Addition of an eddy current to the vector Laplacian solution . . . . . . . . . 6
1.3 Output of skin.cpp for a sinewave input . . . . . . . . . . . . . . . . . . . . . 8
1.4 Output of skin.cpp for a Squarewave input with five-harmonic reconstruction 9
1.5 Output of skin.cpp for a Squarewave input with 50-harmonic reconstruction 10
1.6 Selected edge and center current density . . . . . . . . . . . . . . . . . . . . 11
1.7 Finite element mesh of a long conducting strip made in Maxwell 3D . . . . . 14
1.8 AC current conduction solution of a long conducting strip made in Maxwell 3D 15
1.9 Trace of the current in a long conducting strip for an eddy current solution

made in Maxwell 3D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.10 Magnetic field produced by the transient current density solution in a long

conducting strip by Maxwell 3D. . . . . . . . . . . . . . . . . . . . . . . . . 17
1.11 Top side mesh for a conductor with voids made in Maxwell 3D . . . . . . . . 18
1.12 Transient current solution of a multiply-connedted thin conductor with voids

in Maxwell 3D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.1 Simplified view of filament representation of strip lines and probe loops. . . . 27
2.2 Circuit representation of strip line assembly with probe loops. . . . . . . . . 30
2.3 SPICE simulation for current density distribution on a strip line at multiple

frequencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.4 Photograph of the magnetic probe boards. . . . . . . . . . . . . . . . . . . . 33
2.5 Exploded view of the test strip line and probe assembly. . . . . . . . . . . . 34
2.6 Photograph of the strip line and probe assembly. . . . . . . . . . . . . . . . . 35
2.7 Test bench setup for low frequency measurements . . . . . . . . . . . . . . . 37
2.8 Comparison of SPICE and experimental results- low frequency . . . . . . . . 39
2.9 Comparison of SPICE and experimental results - high frequency . . . . . . . 40

3.1 Example of a traditional eddy current problem . . . . . . . . . . . . . . . . . 44
3.2 Total current density example with superposition of eddy and source current

densities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.3 Basis function for a triangular element . . . . . . . . . . . . . . . . . . . . . 60
3.4 Edge element shape function for a triangular element . . . . . . . . . . . . . 61
3.5 Example of triangular element mesh . . . . . . . . . . . . . . . . . . . . . . . 67
3.6 Illustration of the domains in the Green’s function integral. . . . . . . . . . . 79

4.1 Test square geometry image . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.2 Test square mesh image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.3 Sample time-voltage file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

ix



4.4 Flowchart for time-stepping process . . . . . . . . . . . . . . . . . . . . . . . 103

5.1 GMSH display of a mesh of a unit square test case . . . . . . . . . . . . . . . . 111
5.2 Sample voltage data file for testing TRANSEDDY . . . . . . . . . . . . . . . . 112
5.3 GMSH output of Vs for a test square . . . . . . . . . . . . . . . . . . . . . . . 113
5.4 ~Js output from GMSH for test square . . . . . . . . . . . . . . . . . . . . . . . 114
5.5 Example plot of voltage as a function of length for different numbers of iterations115
5.6 Example plot of residual error versus iteration number for iterative solver . . 116
5.7 Example plot of the gradient of the voltage versus length for increasing num-

bers of iterations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
5.8 GMSH output of ~Js for the test square as edge values . . . . . . . . . . . . . . 118
5.9 GMSH output of ~Jpredict for the test square . . . . . . . . . . . . . . . . . . . . 119

5.10 GMSH output of ~Jcorrect for the test square . . . . . . . . . . . . . . . . . . . . 120
5.11 GMSH output of ~Jeddy for the test square . . . . . . . . . . . . . . . . . . . . . 121

5.12 GMSH output of ~Jtotal for the test square . . . . . . . . . . . . . . . . . . . . . 122
5.13 Meshes for the test strip line with variable refinement (1) . . . . . . . . . . . 124
5.14 Meshes for the test strip line with variable refinement (2) . . . . . . . . . . . 125
5.15 Meshes for the test strip line with variable refinement (3) . . . . . . . . . . . 126
5.16 GMSH output display for the test strip line with 100 elements across the center

line. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
5.17 Detail for GMSH output of the test strip line with 100 elements across the

center line. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
5.18 Output from test simulations of varying mesh density . . . . . . . . . . . . . 129
5.19 SPICE output of AC conduction current at 10 kHz for a strip line divided

into varying numbers of filaments . . . . . . . . . . . . . . . . . . . . . . . . 130
5.20 SPICE output of AC conduction current at 100 kHz for a strip line divided

into varying numbers of filaments . . . . . . . . . . . . . . . . . . . . . . . . 131
5.21 SPICE output of AC conduction current at 1 MHz for a strip line divided

into varying numbers of filaments . . . . . . . . . . . . . . . . . . . . . . . . 132
5.22 Mesh for a test strip with variable refinement . . . . . . . . . . . . . . . . . 135
5.23 GMSH output for the test strip at peak current . . . . . . . . . . . . . . . . . 136
5.24 GMSH output for the centerline sampled current density in the test strip . . . 137
5.25 Sample time-voltage data files for a 10 kHz signal . . . . . . . . . . . . . . . 138
5.26 Comparison plot of TRANSEDDY simulations with different time step sizes. . . 139
5.27 Comparison plot of TRANSEDDY simulations with different fractional step schemes.140
5.28 Comparison of transient conduction for the test strip line for SPICE and

TRANSEDDY simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
5.29 Comparison of transient conduction for the test strip line for SPICE and

TRANSEDDY simulations-4 periods. . . . . . . . . . . . . . . . . . . . . . . . . 142
5.30 Comparison of transient conduction for the test strip line for SPICE and

TRANSEDDY for edge and center conduction. . . . . . . . . . . . . . . . . . . . 143

6.1 Test geometry for a square conductor with a hole . . . . . . . . . . . . . . . 145

x



6.2 Test mesh for a square conductor with a hole . . . . . . . . . . . . . . . . . . 146
6.3 Current density distribution on a test square with a central hole. . . . . . . . 147
6.4 Test mesh and current density for a square conductor with tab ‘entries’ . . . 148
6.5 Test mesh for a conductor with constricted center and return path . . . . . . 149
6.6 Current density distribution for the center constricted test mesh with return

path. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
6.7 Mesh for a conductor with multiple evenly spaced holes, with return path. . 152
6.8 Current density distribution for the top plane of the test conductor with

multiple holes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
6.9 Current density distribution for the bottom plane of the test conductor with

multiple holes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
6.10 Spiral inductor example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

xi



List of Tables

1 Definition of terms and symbols: Alphanumeric Symbols . . . . . . . . . . . xiv
2 Definition of terms and symbols: Greek Symbols . . . . . . . . . . . . . . . . xiv
3 Definition of terms and symbols: Abbreviations . . . . . . . . . . . . . . . . xv
4 Definition of terms and symbols: Operators . . . . . . . . . . . . . . . . . . xv
5 Definition of terms and symbols: Time-stepping solution terms . . . . . . . . xvi

3.1 Definition of terms found in the construction of the Coefficient Matrices . . . 52
3.2 Polynomial Coefficients for shape function combinations in the formulation

of the [S] Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
3.3 Polynomial Coefficients for shape function combinations in the formulation

of the [G] Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
3.4 Polynomial Coefficients for basis function combinations in the formulation of

the [D] Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.1 File extensions used by GMSH . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.2 Example .geo file for a square geometry in GMSH . . . . . . . . . . . . . . . . 85
4.3 Example .msh file for a square geometry in GMSH . . . . . . . . . . . . . . . 88
4.4 General Format for a *.msh file in GMSH , adapted from the GMSH User’s Manual23 89
4.5 Node numbering for lines and triangles in GMSH , taken from the GMSH User’s

Manual23 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
4.6 Function prototypes for edge data extraction. . . . . . . . . . . . . . . . . . 90
4.7 Sample data for a half period of a 10 kHz sinewave as used for . . . . . . . 91
4.8 Function prototypes used to construct the [C] matrix in TRANSEDDY . . . . . 93
4.9 function prototypes used to construct the [S] and [ps] matrices in TRANSEDDY . 95
4.10 Function prototypes used to construct the [G] matrix and the [cG] matrix in

TRANSEDDY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
4.11 Function prototypes used to construct the [D] matrix in TRANSEDDY . . . . . 96
4.12 Function prototypes used to construct the [P ] matrix in TRANSEDDY . . . . . 97
4.13 Function prototypes for functions used in the solution of Laplace’s equation

in TRANSEDDY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
4.14 Sample C++ code for the time-stepping process. . . . . . . . . . . . . . . . . 104
4.15 Sample syntax for a formatted scalar triangle .pos output file . . . . . . . . 105
4.16 Sample syntax for vector data formatted on triangular elements in a .pos

output file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
4.17 Sample syntax for vector data formatted on line elements in a .pos output file106
4.18 Sample syntax for scalar data formatted on triangular elements in a .pos

output file. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
4.19 Function prototypes for output file formatting functions. . . . . . . . . . . . 107

xii



4.20 Example screen output from TRANSEDDY . . . . . . . . . . . . . . . . . . . . . 109

xiii



List of Symbols

Alphanumeric symbols
Symbol Definition
~A Magnetic vector potential (Wb/m)
~B Magnetic flux density (T)
~D Electric flux density (C/m2)
~E Electric field (V/m)
~H Magnetic field (A/m)
~J Current density (A/m2)
~r Position vector from origin to point x
t Time instant
E3 Three-dimensional oriented Euclidian space

Table 1: Definition of terms and symbols: Alphanumeric Symbols

Greek Symbols
Ω Bounded open set of E3

φ Electric scalar potential (V)
σ Electric conductivity (S/m)
µ Magnetic permeability (H/m)
µ0 Magnetic permeability of free space (= 4π × 10−7 H/m)
ε Electric permittivity (F/m)
ε0 Electric permittivity of free space ( ≈ 8.854× 10−12 F/m)

Table 2: Definition of terms and symbols: Greek Symbols

xiv



Abbreviations
FEM Finite Element Method
IEM Integral Equation Method
MQS Magnetoquasistatic
TLM Transmission Line Method
FDTD Finite Difference Time Domain
SOR Successive Overrelaxation
φi Linear Nodal basis function on node i
~Ni Linear Edge basis function on edge i

Table 3: Definition of terms and symbols: Abbreviations

Operators
∂ Boundary operator
∂x, ∂y, ∂z Spacial derivatives
∂t Time derivative

∇ Del operator = [∂x ∂y ∂z ]T

∇V Gradient of V
∇× A Curl of A
∇ · A Divergence of A
[X] A matrix X
{X} A column vector X

[X]T Transpose of matrix X

[X]−1 Inverse of matrix X

Table 4: Definition of terms and symbols: Operators

xv



Time-stepping eddy current solution terms
J0 Source current derived from electrostatic solution
J∗e Prediction current
δV Incremental change in electrical ‘eddy’ potential
δJ Correction current
JT Total current
X t Quantity X at time step t
X t−τ Quantity X at time step t− τ
Ψ Free Space Green’s Function = 1

4π|~r−~r′|
θ Time step parameter; 1

2
= Crank-Nicholson scheme; 1 = implicit integration

τ Time step size, (tn − tn−1)
σ(r, t) Conductivity at a specific point and time

Table 5: Definition of terms and symbols: Time-stepping solution terms

xvi



Acknowledgments

The funding for this research was provided as part of Subcontracts Number B507741,

B554637, and B543310, from Lawrence Livermore National Laboratory. Special thanks to

Dr. Ronald S. Lee, Dr. Franklin Roeske, Jr., and Chadd M. May for their support as well

as the rest of the LLNL staff for their help and hospitality during my summer internships

there.

I would also like to thank Dr. Kenneth H. Carpenter for his guidance, patience, and other

innumerable contributions as my adviser for this research, as well as my Ph.D. program. I

would like to provide specific acknowledgment of his efforts in optimization of my obtuse

computer coding, and his implementation of the SOR routine and LAPACK library in our

research project.

I wish to acknowledge Professor James DeVault for his help in setting up the power ampli-

fiers used in the magnetic probe measuring experiments and for serving on my committee.

Thanks are also due to the rest of my doctoral committee, Dr. Amitabha Chakrabarti,

Dr. Bill Kuhn, Dr. Ronald S. Lee, and Dr. Charles Moore.

Finally, I wish to thank my friends and family for their help and support during this

time in my life.

xvii



Chapter 1

Introduction

The impetus of this research is the desire to be able to simulate transient current density

distributions in thin conductors of arbitrary shape and size. Additionally, we would like a

self-consistant solver capable of calculating the current density allowing for changes in ma-

terial properties. This research is directed at pulsed power applications, and the effects of

fast current pulses to the conductors in question. To accomplish this we first investigate the

electrodynamics underpinning the current density and then implement a numerical solution

for the governing equations. There are numerous numerical methods used to solve electro-

magnetic fields problems and existing computer programs which implement these methods.

Solving any interesting problem will require significantly dense finite element meshes con-

sisting of thousands of nodes. Any implementation will be limited by available computing

resources. In order to reduce the number of computational steps and the memory require-

ments that are placed on the simulation platform, we want to solve directly for the current

density, ~J . This lessens the computational overhead of solving fields, then calculating the

current density as a secondary solution. We find that in order to satisfy our desire for

the transient current density solver which will meet our requirements, a custom program is

required.

1



1.1 Preliminary investigation of current density

It is useful to begin an investigation into transient current distribution studies by first

examining DC and AC current conduction. We examine a direct solution for the current

density from Maxwell’s equations, and look at the skin depth in flat conductors at different

frequencies.

1.1.1 Partial differential equation for current density

One approach to solving for the current density in a thin conductor is solve directly for ~J

from Maxwell’s equations. Starting with writing Maxwell’s equations1 we have

∇ · ~D = ρv (1.1)

∇ · ~B = 0 (1.2)

∇× ~E = −∂
~B

∂t
(1.3)

∇× ~H = ~J +
∂ ~D

∂t
. (1.4)

A starting assumption is that we have a constant conductivity and that we are in a

magnetoquasistatic2 case. Magnetoquasistatic ∗ (MQS) approximations can be made when

the frequencies are low enough that the time delays due to electromagnetic wave propagation

are unimportant to the solution. This means that the distances over which we want to

calculate the current distributions are much much shorter than the wavelength of the driving

source; therefore we can treat the fields as constant over the region. This approximation is

common in eddy current solutions. When we are in an isotropic medium we also have the

auxiliary material relationships

~D = ε ~E (1.5)

∗Referencing the definition by Jackson in Chapter 5.18 of Classical Electrodynamics,

“Quasi-static” refers to the regime for which the finite speed of light can be neglected and
fields treated as if they propagated instantaneously. Said in other, equivalent words, it is the
regime where the system is small compared with the electromagnetic wavelength associated
with the dominant time scale of the problem.

2



~B = µ ~H (1.6)

~J = σ ~E. (1.7)

If we are in a good conductor, ρv = 0, and we can neglect the displacement current. With

these conditions we can begin to solve Maxwell’s equations in terms of ~J alone for time

independent µ, and homogeneous σ and ε; eq.(1.3) and eq.(1.4) give

∇× (∇× ~J) = −µσ ∂
∂t

(
~J +

∂( ε
σ
~J)

∂t

)
. (1.8)

Rewriting ∇×∇× ~J

∇(∇ · ~J)−∇2 ~J = −σµ ∂
∂t
~J − εµ∂

2 ~J

∂t2
. (1.9)

From eq.(1.1) and eq.(1.7)

∇ ·
( ε
σ
~J
)

= 0. (1.10)

We can neglect the displacement current term, ∂2 ~J
∂t2

due to the MQS approximation1, 2. To

determine if we are operating at a frequency low enough where we are in the MQS state,

we can compare the conduction and displacement current terms and set them equal. If we

treat the material properties as constants (which for high frequencies we know that they are

not) we have

εµω2 ~J = σµω ~J. (1.11)

For relative permittivity of 1, permeability being µ0, and a good conductor like copper

(σ ≈ 5.8 × 107), we find that the terms will be equal when ω ≈ 6 × 1018 Hz. This limit is

actually much lower than 1018 Hz due to the plasma frequency in metals1 which is near to

the ultraviolet wavelength. We are operating at a much lower frequencies than even optical

so the above approximation holds true. Therefore eq.(1.9) reduces to

∇2 ~J = µσ
∂ ~J

∂t
, (1.12)

From the continuity equation for charge and the definition of current∮
~J · d~S = − d

dt

∫∫∫
ρvdv

∇ · ~J = − d

dt
ρv,

(1.13)

3



which is valid for nonlinear ε and σ. When ρv = 0 we have ∇ · ~J = 0.

We can add Gauss’s law and make ε and σ constant to get the relaxation equation:

∇ · σ ~E =
d

dt
ρv (1.14)

∇ · ~D =
ε

σ

d

dt
ρv = ρv (1.15)

ρv = ρvoe
−σ
ε
t (1.16)

σ

ε
≈ 10−11

107
= 10−18s. (1.17)

In actuality the frequency limit for the charge density to be considered zero is much less

than 1018Hz and closer to the optical limit (≈ 500THz) which again, is the plasma frequency

for metal. Refer to Chapter 7 in Jackson’s Classical Electrodynamics 1 for more details on

the plasma frequency. The frequencies we are operating at are well below the optical range,

so we have

∇ · ~J = 0. (1.18)

We are left with a diffusion type equation for ~J with the divergence of ~J also equal to

zero. A direct numerical solution of a vector diffusion equation is not easy to implement,

among other reasons, due to the mixed boundary conditions required. We know that there is

no current leaving the surface of the conductor except for the terminals. For each edge, that

condition only sets the boundary condition for one of the vector components. In general,

attempts to solve the vector diffusion equation, with ∇· ~J = 0 as a condition are not fruitful.

1.1.2 Vector Laplacian

Rather than to try and solve the more involved diffusion equation, we take a step back and

attempt to solve the simpler problem of the magnetostatic case where the current density

is not changing in time. The simplified problem is known as the Vector Laplacian.

∇2 ~J = 0 (1.19)

4



The method to solving the vector Laplacian3 when ~J is confined to a plane is to define a

scalar field W such that the curl of W times a unit vector in the ẑ direction is defined as

the current density vector components.

∇× ẑW =
∂W

∂y
x̂+

∂W

∂x
ŷ = ~J (1.20)

Then ∇ · ~J = 0 implies ∇ ·W = 0 and vice versa. For a two dimensional surface, we only

need to define the boundary conditions in terms of W. On edges where Jx should be zero, we

only need to guarantee that the derivative of W with respect to y is zero, and likewise for

Jy. Where we want the current entry and exit to the plate to be a constant, the associated

function for W will be linear. An illustration of this formulation for a flat plate is presented

in Figure 1.1. It doesn’t matter what the value of the function for W on the edges is as we

x

y

Jy = 0

Jx=C

Jx=0

Jx=0
Jx=0

Jx=C

Jx=0

Jy = 0

Jy = d/dx (W)
Boundary conditions

W=ay+b
W= constant

Jx = d/dy (W) 
J=Curl(W)

Figure 1.1: Illustration of the W solution of the vector Laplacian with associated boundary
conditions

can add any constant to all edges and arrive at the same solution. We could now continue to

persue the diffusion equation, but with close observation we note a problem with the scalar

5



solution to the vector Laplacian. We could add any solution that satisfies zero boundary

conditions and not invalidate the approach. An eddy current could be implemented on top

of the vector Laplacian solution since by definition, the current density leaving the surface

is zero, thus the boundary conditions are satisfied. An illustration of this superposition of

currents is presented in Figure 1.2. The implication with this finding is that any solution for

the current density in a conductor needs to include magnetic effects, such as those that would

produce eddy currents. The W method only works when ~J is not a function of time, and

hence no eddy currents exist. The W method will give the same results for a steady state

solution of the current as simply solving ∇2V = 0 and then using the material relationships

and multiplying the conductivity times the gradient of the voltage ( ~J = −σ∇V ).

x

y

Jy = 0

Jx=C

Jx=0

Jx=0
Jx=0

Jx=C

Jx=0

Jy = 0

Jy = d/dx (W)
Boundary conditions

W=ay+b
W= constant

Jx = d/dy (W) 
J=Curl(W) Superimposed Eddy Current Solution

W = 0 on all surfaces
Direct solution for J Fails

Figure 1.2: Addition of an eddy current to the vector Laplacian solution. An addition of
an eddy current to the solution surface doesn’t effect the boundary conditions for the W
solution of the vector Laplacian due to the boundary condition being met on all surfaces.
Any eddy current can be added to this solution, thus the W solution is inadequate to
describe the current density. Any solution for the dynamic current density in a conductor
needs to include magnetic effects.

6



1.1.3 Skin depth

Another avenue of investigation for solving for current distributions in conductors is to

examine skin effect in thin conductors. This has been an active area of research with regard

to the impedance of conductors4, 5, 6, 7, 8, 9. The assumption here was that we know that

magnetodynamic effects cause the skin effect in conductors. If we have a relationship for

the skin effect in a flat conductor as a function of frequency, then via Fourier synthesis we

should be able to construct a transient current distribution. This approach makes several

assumptions as with the vector Laplacian. We assume that we are in a good conductor, and

that it is has constant conductivity. To use skin effect formulas we also must require that

we have regular shaped conductors, such as strip lines.

We implemented a formula for the skin depth in a thin rectangular conductor from Ney5

in C++ code called skin.cpp. Ney’s paper is on ‘striction’ effects to the current density

in strip lines. If the conducting strip is fed from a smaller line, then the current distribu-

tion will have effects from the constriction of the current into and out of the strip. This

‘striction’ effect was examined and mathematically defined. Verification of Ney’s formulas

was conducted via comparison of total impedance of the line to calculated values. We are

uninterested in these ‘striction’ effects here, but the unaltered form for the skin effect can

be used for our purposes. In Ney’s formulation the cross section of the conductor lies in the

x-y plane, and the direction of the current flow is in the z direction. The expression for the

z directed electric field in the conductor is

Ez(x, L) =
I
√
jωµσ cosh(

√
jωµσx)

2σac sinh(
√
jωµσa)

(1.21)

where ‘a’ is half the width of the conductor, and ‘c’ is the thickness.

The code reads an input file containing time and voltage data for an input waveform,

and then performs a Fast Fourier Transform on the waveform and extracts the Fourier

series coefficients An and Bn for n harmonics of the fundamental frequency. The number of

harmonics is a user entered parameter. The code then uses those coefficients with eq.(1.21)

7



to construct the transient distribution of the current in the conductor. A single frequency

sinewave is presented in Figure 1.3. In it we see the magnitude Ez versus the distance from

the center to the edge, and versus time. For a single frequency sinewave, we see the skin

effect as expected. The magnitude of the electric field, and by extention the current density,

is larger at the edge than at the center. The transient distribution due to a step function

 0
 2.5e-07

 5e-07
 7.5e-07

 1e-06  0

 5e-05

 0.0001

 0.00015

 0.0002

-5
-4
-3
-2
-1
 0
 1
 2
 3
 4
 5

| Jz |

Half Width Conduction due to Skin Effect on a Flat Conductor

arielarielarielarielarielarielarielarielarielarielarielarielarielarielariel

time (s)

dist. from center (m)

| Jz |

Figure 1.3: Current density reconstruction for a single frequency component in a thin
conductor

was simulated next. In Figure 1.4 we see a square wave that has been reconstructed using

only 5 harmonic components. This is obviously too few harmonics to accurately represent

the nature of the square wave, but illustrates the functionality of the test code. We see

that the higher harmonic components push the electric field distribution further to the

edge of the conductor. This is congruent with what we expect to see with a square wave.

The same square wave was reconstructed using 50 harmonics. A picture of the output of

this reconstructed wave can be found in Figure 1.5. Quite clearly we can see that at the

8



 0

 0.0005

 0.001  0

 0.005

 0.01

-1
-0.8
-0.6
-0.4
-0.2

 0
 0.2
 0.4
 0.6
 0.8

 1

| Jz |

Half Width Conduction due to Skin Effect on a Flat Conductor

time (s)

dist. from center (m)

| Jz |

Figure 1.4: Current density reconstruction via Fourier Synthesis for a thin conductor with
a squarewave input using five harmonics

transition edges of the square wave the high frequency components of the wave force the

field distribution to the edge of the conductor. As the wave reaches it’s top level, the lower

harmonics become more prominent in the reconstructed wave, and the distribution relaxes

towards the middle of the conductor. In this figure we also see that the reconstruction is

anticipating the fall time. This is purely an artifact of the Fourier Series reconstruction. A

line plot for the edge and the center magnitudes of the electric field are shown in Figure 1.6.

Here we can clearly see the differences between the edge and the center. The jagged nature

in the edge plot is due to the finite number of harmonics used in the reconstruction. The

slow diffusion of the current from the edge to the center can be seen as the wave reaches a

steady state.

This test using skin effect and Fourier reconstruction to examine transient waveforms

in flat conductors is useful to gain an understanding of the general behavior of the current

9



 0

 0.005

 0.01  0

 0.005

 0.01

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

| Jz |

Half Width Conduction due to Skin Effect on a Flat Conductor

time (s)

dist. from center (m)

| Jz |

Figure 1.5: Current density reconstruction via Fourier Synthesis for a thin conductor with
a squarewave input using fifty harmonics

in the strip lines, but is less useful for actual applications as we want a robust solver not

confined to regular conductor shapes, and with the potential for inhomogeneous materials

and changing conductivities.

10



 0

 2

 4

 6

 8

 10

 12

 14

 0  5e-08  1e-07  1.5e-07  2e-07  2.5e-07  3e-07

sc
al

ed
 m

ag
ni

tu
de

time (s)

Comparison Plot of Conduction Between the Center and Edge at 1MHz

center
edge

Figure 1.6: Selected edge and center current density from Fourier Synthesis of a squarewave
input using 50 harmonics for reconstruction

11



1.2 Existing electromagnetic solvers

1.2.1 Quickfield

Quickfield10 is a commercial finite element program for solving field problems. Quickfield

contains solvers to perform many types of electromagnetic field computations, but they are

restricted to DC and AC fields. The transient solver packages are limited to a thermal

diffusion and magnetic diffusion packages. Quickfield’s market is for fast and easy EM

field calculations in electrostatic or magnetostatic cases. Their application is not suited to

performing transient current density calculations.

1.2.2 Maxwell 3D

Maxwell 3D11 is a commercial EM solver produced by Ansoft. An initial exploration of

Maxwell3D’s capabilities was performed at Lawrence Livermore National Laboratory as

part of a summer internship. Despite claims of transient simulation capability, output for

a transient current conduction in a strip line returned non physical results. An example of

a simulation run to evaluate Maxwell 3D is shown in figures 1.7 through 1.10. A simple

conducting strip was specified using Maxwell’s built-in meshing program. A series of tests

was then performed on the strip. Figure 1.8 shows the AC conduction solution for the simple

strip. Analytical solutions5 for the strip show that as the frequency increases, the current

density crowds to the outside edges of the strip. This plot clearly shows an imbalance

along an axis of symmetry. Traces along the top and bottom surfaces of the strip are in

Figure 1.9. Here we can see that the current density is almost uniform in the thickness,

as should be the case, but the asymmetry along the long axis is not a physical solution

for a strip in open space. A transient current conduction simulation was performed on

the same strip with Maxwell 3D’s numerical solver. The transient response also shows

errors. The current density in the strip was visibly uniform the entire length and width of

the strip, gradually increasing with the source driving function. A careful examination of

the magnetic field produced by the current showed that the current density was again not

12



physical. A plot of this magnetic field is in Figure 1.10. There is a random nature to the

field which can not be explained in any way as a physical phenomenon. This then is the

result of the numerical solver being used by Maxwell 3D. Since Maxwell 3D is a commercial

product, its source code is unavailable for examination. An educated guess would suggest

that the finite element solver is trying to find a minimum energy state for the current, and

will eventually iterate down to a lowest numerical error state which is only bound by the

boundary conditions. Another example was used to evaluate the suitability of Maxwell 3D

for transient current density conduction simulations. A multiply-connected thin conductor

with voids was built and simulated. The mesh for the top plane of the conductor is in Figure

1.11. A solid return path was included with the mesh, but is not present in the figure. The

transient current density solution for this mesh is in Figure 1.12. As with the case of the

simple strip, this picture shows that the transient simulation shows a non-physical solution.

The current should be flowing from the top of the figure to the bottom of the figure. We

would expect to see some symmetry present, as well as a constant magnitude from top to

bottom. Maxwell 3D was deemed ill suited to perform the transient current simulations.

13



Figure 1.7: Finite element mesh of a long conducting strip made in Maxwell 3D. The strip
is 1mm thick by 40mm wide by approximately 500mm in length.

14



Figure 1.8: AC current conduction solution of a long conducting strip made in Maxwell
3D. The strip was driven at 1 MHz. The AC current solution as provided by Maxwell 3D
is invalid as the simulation shows a non-symmetric nature which isn’t physical

15



Figure 1.9: Traces of the current density made for the long conducting strip in Figure 1.7.
This highlights the non-symmetric nature of Maxwell 3D’s solution shown in Figure 1.8.

16



Figure 1.10: This figure shows the magnetic field calculated from the current density
produced by Maxwell 3D’s transient current solution. The random nature of the B-Field is
produced by non-physical current densities from the Maxwell 3D numerical solver.

17



Figure 1.11: The top side of a mesh generated with Maxwell 3D for a thin conductor with
voids. The backplane is a solid conductor and is not shown.

18



Figure 1.12: The transient current solution for the multiply-connected thin conductor
with voids as numerically solved for with Maxwell 3D.

19



1.2.3 MAFIA 4

MAFIA12 (the solution of MAxwell’s equations by the Finite Integration Algorithm) is a

set of solver packages made by CST :Computer Simulation Technology. This company was

founded by Thomas Weiland, who has been very prolific in research with EM fields, Integral

Equation Techniques,and the Finite Integral Method. The MAFIA 4 solvers are sold with

CST’s commercial products, a few of which are CST: Design Studio, CST: EM Studio,

and CST: Microwave Studio. Their published material claims that they can solve transient

problems, thermal problems, current conduction problems (assuming both AC conduction

and transient conduction problems). The Finite Integration Technique13 (FIT) has been

applied to eddy current problems14 as well as other discrete EM problems15, 16, 17 among

many other applications associated with the solution of Maxwell’s equations18. The FIT is

a solution method where a set of dual meshes are interlaced much like the Finite Difference

Time Domain19 (FDTD) methods. The electric and magnetic fields are then discretized on

the edges of the dual meshes. For a single cube element in a mesh, the electric field would

be discretized quantities on the edges of the cube. the magnetic field would be on dual

mesh spaced a half width off in all directions such that an edge containing the discretized

magnetic field would pass through a face of an the electric field’s cube. In doing so we can

take the curl of the electric field by calculating the values as we go around one face of the

square side to the cube. The result would be the magnetic field that is quantized on an

edge passing through the center of that face. This pattern repeats throughout the entirety

of the mesh and allows for calculation of propagating EM fields on the mesh.

MAFIA and it’s associated solver utilities use a transient pulse response to simulate AC

responses of structures to EM fields. They stimulate a given structure with an impulse and

simulate the propagation of the wave. Then they perform an Inverse Fourier Transform

on the waves and can extract a full spectrum frequency response from the object. This

is a selling point of their software. It is faster to perform one transient simulation and

process the output than repeatedly simulate full field propagation for multiple independent

20



frequencies over the range required the individual problem. It is possible that this oft-

ware package can solve the problem we are interested in of transient current distributions.

However the CST family of codes was cost prohibitive so an evaluation was not able to

be performed. An observation of their published material suggests that this code would be

a full field simulation and would require more computer resources than a direct solution of ~J .

1.2.4 GetDP

GetDP20(General Environment for the Treatment of Discrete Problems) is an open source

program for solving a wide variety of partial differential equation problems. GetDP was

developed by Christophe Guezaine as part of his Ph.D. dissertation work titled “High or-

der hybrid finite element schemes for Maxwell’s equations taking thin structures and global

quantities into account”21. The code was designed with another open source and free pro-

gram called GMSH22, 23 which is a mesh generation program with a graphic user interface

(GUI), and modules for displaying data on a finite element mesh. GetDP claims that it is

capable of solving transient problems, integral equations, and coupled problems, such as

thermo-electrical problem formulations. It is a work in progress and an effort to debug and

enhance the software is an ongoing process. GetDP takes mesh files made with GMSH and uses

them as inputs to its solver package. The solver for GetDP is a text based input formated

file where the problem is specified in weak-form notation. After an extensive investigation,

GetDP failed to be capable of implementing a transient, integral equation formulated prob-

lem. We were able to implement a single step solution for an eddy current density but were

unable to loop back and use that output as an input for a next step. We were also unable to

implement a superposition solution of a source current density and an eddy current density

solution. We believe this is due to how the integral equation is implemented. It was possible

to perform an integration of a quantity produced by the finite element solver in the post

processing phase, but one could not be included in the direct formulation of the problem

21



statement. The amount of effort required to adapt GetDP to our needs was deemed better

spent creating one whereby we could implement the functionality we desired directly.

While GetDP is not directly useful to us, the bundled geometry and meshing program

GMSH is a very convenient utility for the generation of finite element meshes. The advantage

of the open format of GMSH is we have access to the mesh formatting style. It is a small task

to make use of that mesh file format when building our current density solver.

Other electromagnetic software exits. There are many commercial products and many

more open source options available, however none of these are suitable for performing the

transient current distribution calculations. Evaluation of these existing numerical solvers

has demonstrated the need to create a custom solver for the transient current distribution

in thin conductors. The major reasons that this functionality is not available in existing

packages is due to the high requirements in computational resources and the lack of interest

in this specific problem. Most current conduction problems do not require the level of detail

we wish to have. Therefore efforts were directed into the creation of this solver.

1.3 Survey of other transient methods

A survey of existing research into transient current density distributions was performed.

Transient eddy current research has been performed by a great number of people. Most of

these approaches are not suitable for application to solving for the total current density in

a thin conductor but they can give us an indication of where the research needs to look for

a total solution. The eddy current solutions generally make starting assumptions which we

wish to avoid such as uniform and homogeneous material properties. Eddy current solutions

are by definition AC and have sources external to the body of integration. Transient eddy

current research performed by Lee24 applies a finite element implementation to solving

for the magnetic field vector as the state variable then uses that to compute the eddy

current. His approach was tested on sparse meshed and with external sources. Pichon25

applies a hybrid finite element and boundary element method to solve for transient eddy

22



currents, but in axisymmetric problems. He uses a magnetic vector potential approach

to his solution. Clemens26 working with Weiland has published many papers about field

calculations with the Finite Integration Technique(FIT). Weiland has published extensively

over his FIT method for many years and it’s implementation into a family of computer

codes MAFIA12. The FIT as presented in Section 1.2 offers some insights into edge elements

in the solution. Work on the FIT has been directed toward EM field propagation, and

thus is a full field solver. Another approach by Leonard27 performs a hybrid and integral

formulations for 3-dimensional eddy current problems relies on assumptions of constant

conductivity and exterior sources. An advantage of the integral formulation is that the

solution space may be confined to the conductor. By doing this, we can omit the meshing

of the free space surrounding the conductor, which we would have to include in a full field

solution. The integral approach is also applied by K. H. Carpenter28. Research by Tsuboi29

implemented an eddy current analysis with a superposition solution of source current density

and eddy current density. This approach arrives at a total current density distribution in

a thin conductor but it is restricted to AC conditions. Many other eddy current solutions

have been presented30, 31, 32, 33, 34, 35, that offer solutions to eddy current problems with each

contributing some aspect to what we require to satisfy our demands. An integral formulation

provides computational savings by restricting the solution space to the conductor as does

performing a direct solution for ~J . We can use superposition to find the total current density

in a conductor due to source currents and an impressed eddy current.

A specific subset of these magnetic vector potential effected current density problems are

skin effect problems. Internal fields which cause skin effect can be viewed as a superposition

problem with source currents and secondary field currents caused by the magnetodynamic

actions of the sources. Skin effect studies have also been performed solving for the total

current distributions in the conductors. Most of this research has been directed to the

impedance of strip lines. More on this topic is covered in Chapter 2.

23



Chapter 2

Partial Inductance skin effect studies
utilizing SPICE

2.1 Introduction

Any transient current distribution solver will require verification of it’s accuracy and pre-

cision. We built a circuit theory model for a strip line using a partial inductance method.

With the SPICE circuit simulator, we simulate current density distributions for AC and

transient excitation. To verify the SPICE model, use was made of magnetic probes invented

at Lawrence Livermore National Laboratory36 which measure the induced voltage produced

by the magnetic field between the strip line’s conducting paths. These probes were also

simulated with SPICE providing a direct link between the simulated induced voltages in the

probes due to the current distribution, and measured values observed at different frequen-

cies.

Current distributions in flat rectangular conductors have been an area of study for some

time. Many different approaches to calculation have been used, and have been verified by

matching calculated impedance values with measured ones4, 5, 6, 7, 8, 9. We have taken a differ-

ent approach to both the calculation and verification. While impedance measurements give

a global indication of current distribution, they do not provide information on local current

density. A magnetic current probe has been invented by Lawrence Livermore National Lab-

oratory36 (LLNL) which can detect local current density, albeit in a convoluted form. The

24



testing of this probe requires a simple geometry where the current density may be simulated

for comparison. We have made measurements using these probes to find the local induced

voltages due to the magnetic field of the currents, and hence the current distribution, for

a case of a strip line separated sufficiently to accommodate the probes and long enough to

provide essentially infinite length for simulation. The simulation has been done by applying

the partial inductance method to produce a net list for a SPICE37 circuit simulator. The

SPICE results directly simulate the probe readings for comparison to measurements without

the need to deconvolute the current from the probe values.

These SPICE models can then be used with transient simulations to compare with any

transient solution by any new transient current density solver.

2.2 Partial inductance

Partial inductance methods have been used to calculate impedance and current distribu-

tions in flat conductors by Weeks, et. al.,4 and others38. They find current density as

a function of frequency and location over the cross section of straight conductors having

lengths sufficiently long compared to the cross section dimensions that they may be treated

as infinitely long. Other methods exist to model the electrical systems such as the partial

element equivalent circuits (PEEC)39 and the transmission line method (TLM)40. Because

the frequencies of operation are low for this test case, capacitive effects have little impact

on the nature of the current distribution and an expression for the partial capacitance is not

needed. Furthermore, our equivalent circuit has a short circuit load which further reduces

the effect of capacitive elements. At higher frequencies such as those where the length of the

conducting strip approaches the wavelength of the source signal, models like the PEEC or

the TLM would be necessary to accurately model the system. We have chosen to apply the

partial inductance procedure to cases of straight conductors of finite length. This method

provides values for self and mutual inductance between finite divisions of the conductor

which may then be used in a circuit theory model of the conductor. This circuit model is

25



then solved by the SPICE simulator to obtain the current distribution.

2.2.1 Partial inductance for finite length conductors

Mutual and self inductance can be found by the energy method1. The mutual inductance

between conductors i and j is

Mij =
(µ0/4π)

IiIj

∫∫∫
i

∫∫∫
j

~Ji(~r) · ~Jj(~r′)
|~r − ~r′|

d3r′d3r. (2.1)

[Note that eq.(2.1) shows that Mij = Mji.]

When i = j then Li = Mii of eq.(2.1) is the self inductance.

A conductor, formed into a closed loop, may be separated into subdivisions in which

the current can be considered uniform, and the inductance integral separated into a sum

of integrals over the geometry of these regions. The terms in the sum are the partial

inductances. One then makes a circuit model for the conducting loop, using the partial

inductances along with the resistances of the conductor subdivisions. The circuit model is

solved to find the current distribution over the conductor. A simple illustration of applying

this method to a flat conductor in a strip line configuration is shown in Figure 2.1

The partial inductance between subdivision m of conductor i and subdivision n of con-

ductor j is given by

M
(nm)
ij =

µ0

4π

∫∫∫
im

∫∫∫
jn

Ĵj(~r) · Ĵi(~r′)
Si(~r)Sj(~r′)|~r − ~r′|

d3r′d3r (2.2)

where Ĵ is a unit vector in the direction of the current density, assumed uniform over the

subdivision, Si(~r) is the local cross section area of subdivision i, and where integration is

over the volumes of the subdivisions.

26



width

height
length

thickness

KA1A2

KA1B2

KA1B1

PU1

PL1KA1B3

KA1PU1

KA1PL1

A1 A2 A3

B1 B2 B3

KA1A3

Strip conductor with interior probe loops

Mutual couplings between filaments

Figure 2.1: Not to scale representation of a strip line consisting of two thin, flat conduc-
tors in close proximity separated by a distance much smaller than their width, subdivided
into rectangular filaments. The line has a finite length, width, thickness, and a separation
height between the current paths. Probe loops are also represented as rectangular filaments
between the two planes of the conductors and having an upper and a lower section. Each
filament has an inductive coupling to each other filament, as indicated by coupling coeffi-
cients (mutual inductance divided by geometric mean of self inductances). (e.g., KA1A2
being the coefficient between filaments A1 and A2).

27



2.3 Numerical confirmation of experimental values for

current distributions

2.3.1 Calculation of partial inductances

For the geometry of Figure 2.1, the subdivisions of the conductor are all parallel, and when

chosen small enough, meet the criteria for eq.(2.2) to be used. In this case all the Ĵ have

the same direction and all the Si(~r) are constant with ~r and have the same value. There

are only two conductors, so i and j can be only 1 or 2. Use x and y as coordinates of the

cross section and z along the length. Then eq.(2.2) becomes

M
(nm)
ij =

µo/(4π)

(τδ)2

∫ ζ

0

∫ τ+h

0+h

∫ (n−m+1)δ

(n−m)δ

∫ ζ

0

∫ τ

0

∫ δ

0

1√
(x− x′)2 + (y − y′)2 + (z − z′)2

dx′dy′dz′dxdydz,

(2.3)

where the thickness of the flat conductor is τ , the total width of the conductor is Nδ, where

N is the number of subdivisions of the width, the length of the conductor is ζ, and the

vertical separation of the conductor subdivisions is h, which is zero if i = j and the “height”

in Figure 2.1 if i 6= j.

The six-dimensional integral of eq.(2.3) has an integrable singularity when the subdivi-

sions touch (or for the case of self inductance of a subdivision).When numerical integration

is used to evaluate eq.(2.3), it must be robust enough to handle the singularities. We have

combined a Monte-Carlo technique41 along with the “dcuhre” multidimensional integra-

tion function42 to obtain robust results in minimum time. (A second way to find the value

of these integrals is to use the “fasthenry” program43 for a single frequency and obtain

inductance values from the calculated impedances.)

The magnetic probes, used to detect the current distribution in the strip line simulated

by these calculations, may also be represented in a circuit model by inductances which

are mutually coupled to the subdivisions of the line conductors. The integrals for these

couplings are the same as those of eq.(2.3) except for the limits on the z integrals and the

values of h.

28



2.3.2 SPICE simulation

A circuit model for the flat cable (or strip line) of Figure 2.1 is shown in Figure 2.2. With this

circuit model for a strip line, even with as few as 10 subdivisions of each conductor, there

would be 400 inductances, not including the magnetic probe inductances and couplings.

In order to use the SPICE circuit simulator for this problem, a netlist is required for the

equivalent circuit. A computer code was written to take the calculated filament inductances,

resistances, and inductive coupling coefficients from the partial inductance method and

output a netlist suitable for input to SPICE344. Obviously, this netlist can be very long

when a large number of conductor subdivisions is used.

For the netlist, filament resistance is calculated directly from user-entered parameters for

strip thickness, width, length, and the material conductivity. The width is divided by the

number of desired segments to give the filament width. Self and mutual inductance are cal-

culated by numerical integration of eq.(2.3). Mutual inductances are converted into coupling

coefficients, as is required by SPICE . The SPICE netlist formatting program also calculates

the self and mutual inductances of the probe loops used for experimental verification.

From the SPICE results, as long as the skin depth was greater than the width of an

individual filament, adding more filaments to the model didn’t improve the performance of

the simulation. At frequencies where the skin depth was less than one filament in width,

the SPICE simulation results were non-physical. At 200 filaments, the frequency where the

skin depth approached the filament with was near 100 MHz. The physical experiments used

to test the probes were conducted at frequencies less than this limit.

When SPICE3 is run with the input generated by our program, it provides currents for

each filament, which gives us the current distribution in the conductors. The simulated volt-

ages across the resistances in the magnetic probes, labeled RP1 and RPm in Figure 2.2, are

the values we compare to measurements to verify the method. Figure 2.3 shows the results

from a SPICE simulation of current distribution in a strip line over a range of frequencies.

This simulation used 200 filaments per conductor.

29



Figure 2.2: Circuit model representation for the strip line segmented into ‘n’ filaments and
‘m’ probes. Resistances RP1 and RP2 represent the internal resistance of the test equipment
reading the loop voltage.

30



 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  0.05  0.1  0.15  0.2  0.25  0.3  0.35  0.4  0.45  0.5

cu
rr

en
t d

es
ni

ty
, n

or
m

al
iz

ed
 to

 v
al

ue
 a

t e
dg

e

position from edge (in)

Figure 2.3: Simulated current density profile for a strip line, normalized to the value at
the line edge. Only half of one conductor shown due to symmetry. The family of curves
cover frequencies 1 kHz (top curve), 5 kHz, 10 kHz, 50kHz and so forth, ending at 100 MHz
(bottom curve) This simulation used 200 filaments per conductor. This simulation shows
smooth current density profiles until 100MHz where the skin depth is less than the width
of one filament.

The currents have been normalized to one at the outside edge of the conductor. Only half

of one conductor’s current is shown, since the others may be obtained from it by symmetry.

There is a non-physical notch near the outside in the current plot at the highest frequency.

This is because at that frequency the number of subdivisions is too small.

31



2.3.3 Experimental observation

The magnetic current probes

The magnetic current probe used to measure the magnetic field inside the strip line was

invented at Lawrence Livermore National Laboratory (LLNL) by May and Petersen (patent

pending36). The probe consists of a loop made in a printed circuit board by connecting two

vias on the top and bottom of the board with traces to the edge of the board for mounting

connectors to the instrumentation. The experimental setup consists of two boards with a

centered 1 in wide strip along it’s 8 in length, and a probe board. Two versions of the probe

board were fabricated and used in testing (see Figs. 2.4, 2.5, and 2.6). The strip line boards

are connected to the driving source by coaxial cable. The other end is shorted with a full

width shunt. The center tapped connection of the coax is sufficiently far from the probe

loops that we can neglect any current density effects due to striction5

Evaluation of the magnetic current probes from a previous design showed parasitic ca-

pacitive effects from the surface traces on the probe boards were a significant source of error

at higher (RF) frequencies. The presence of the extra copper traces contributed excessive

capacitance to the system changing the nature of the current distribution rather than being

a passive monitor of the magnetic field.

Two probe board designs were used for this series of measurements. One board, used

for higher frequency measurements, has a single probe loop in the center position. The

other, used for lower frequency measurements, has an array of probe loops offset from the

center in increments of 0.1 in with the final loop at 0.5 in, which is the edge position for

the strip line. The single probe loop board design has less copper in the traces to minimize

the capacitance for higher frequency measurements. This board achieves spatial resolution

by being physically moved and mounted inside the strip boards via a series of measured

mounting holes. The mounting holes are spaced 0.125 in apart allowing for measurements

at 0.0, 0.125, 0.25, and 0.375 in offsets from center. The lower frequency probe array board

is mounted centered to the strip boards, and the spatial measurements are taken from the

32



Figure 2.4: Probe boards used in experimental measurements. The board on the top has
a single probe loop while the other board has an array of probe loops. Both are made to
be able to measure the magnetic flux inside a flat strip line at different positions along the
width.

33



Figure 2.5: Disassembled view of the entire probe and strip line assembly. Interchangeable
probe boards present for photo. The strip line feed is from a coaxial line attached to the
center of the strip end. Circuit continuity at the shorted end is achieved with clamped copper
strips the width of the strip line. The probe location is sufficiently far from the center-fed
end that the we can ignore any striction effects to the current density distribution5.

34



Figure 2.6: Final assembly of the strip line and the array probe board.

35



respective loops. This board allows for measurements at 0.1, 0.2, 0.3, 0.4, and 0.5 in offsets

from the center.

Both probe boards have their output traces connected to SMA connectors for interfacing

to a spectrum analyzer.

The instrumentation

The first set of data was sampled at 2 points per decade starting at 50 kHz and ending

at 100 MHz. This set was taken with the movable probe board to minimize the capacitive

contributions by the traces on the probe board. A HP 8656B Signal Generator was used

to drive the system. Induced voltages in the probe loop were measured with a Advantest

R3131A Spectrum Analyzer. The second set of measurements was sampled at 1 kHz, 5 kHz,

50 kHz, and 100 kHz. A PA04 power operational amplifier configured with a gain of 10

was driven by a HP 33120A Function Generator. The output of the amplifier was observed

with a HP digital storage oscilloscope (DSO). The output of the power amplifier drives the

strip line. A HP 4195A Spectrum Analyzer was used to measure the induced voltages in

the probe loops. A student-made power supply was used to power the PA04 at ±26 V and

deliver the required current to the strip line.

For the high frequency measurements, the Spectrum Analyzer was configured to read in

volts. The window was set to the center frequency of the driving signal and a window span

of 50 kHz. The resolution bandwidth was 1 kHz. The HP 8656B was set to output a 1 V

signal at the desired frequency.

The low frequency measurements were recorded from the HP4195A Spectrum Analyzer,

again, configured to read in volts. The window was centered on the driving frequency, with

a 100 Hz span and 30 Hz Resolution Bandwidth (RBW). The reference attenuation on the

input of the spectrum analyzer was reduced to 0 dB. This lowers the noise floor for the

instrument. The driving signal from the HP 33120A was adjusted such that the output of

the PA04 was 1Vp−p. The oscilloscope was used to verify the amplifier’s output voltage under

load. The DC impedance of the strip line assembly was measured to be 0.33Ω. Induced

36



Figure 2.7: Test bench setup for the low frequency measurements.

37



voltages are proportional to both the current magnitude and the frequency.

Data reduction

For each frequency and probe location, 10 to 15 discrete samples of the probe voltage were

recorded. Mean and standard deviations for the sets were recorded for data presentation.

Data for each frequency is normalized to the induced voltage at that frequency at the center

position. Standard deviation data is similarly normalized. In the case of the probe array

board, which has no center position, the normalization voltage is taken by setting the voltage

observed in the loop offset 0.254 cm from the center to match the percentage given in the

SPICE simulation at that location (99.78% at 1 kHz; 99.97% at 100 kHz). This generates a

value for the center position to divide into the values for the other locations to achieve the

normalization. (This difference between the simulated center value and the simulated value

at the first offset is less than the relative error in the measurement process.)

2.3.4 Comparison of observations and simulations

Measured voltages from the magnetic probes agree with the SPICE simulated induced volt-

ages within the margin of error for the signal noise for the lower frequency data set. This is

shown in Figure 2.8. Measurements made at 1 kHz confirm the uniform current distribution

in the strip line. As the frequency increases, the simulations show skin effect altering the

uniform nature of the current distribution and crowding the current to to the outside edges

of the strip line. This results in the ratio of the probe voltages changing. The measured

values follow this expected change in ratios; thus we can confirm that the SPICE model and

solution for the current distribution is valid for these frequencies.

Figure 2.9 gives the data from the higher frequency data set. The higher frequency

measurements show the limits of that particular measurement setup. At the low end of

the frequencies (50 kHz), the magnitude of the induced voltages is very close to the noise

floor of the Spectrum Analyzer, thus the large error. At the high end of the measurement

frequencies, the strip line begins to experience wavelength effects. Capacitive contributions

38



 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1  10  100  1000  10000  100000  1e+06  1e+07  1e+08  1e+09

cu
rr

en
t d

es
ni

ty
, n

or
m

al
iz

ed
 to

 v
al

ue
 a

t e
dg

e

Frequency [Hz]

Figure 2.8: Comparison of simulated induced voltages in probes to values observed with
the lower frequency instrumentation. Voltages have been normalized to the value at the
center probe location. The family of curves show probe voltages as generated by SPICE

with the center probe at the top and the probe location furthest from center at the bottom.
Probe loops have 1/10 inch spacing. Experimental measurements of actual probe voltages
are placed with error bars at the measured frequencies.

39



 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1  10  100  1000  10000  100000  1e+06  1e+07  1e+08  1e+09

cu
rr

en
t d

es
ni

ty
, n

or
m

al
iz

ed
 to

 v
al

ue
 a

t e
dg

e

Frequency [Hz]

Figure 2.9: Comparison of simulated induced voltages in probes to values observed with
the higher frequency instrumentation. Voltages have been normalized to the value at the
center probe location. The family of curves show probe voltages as generated by SPICE

with the center probe at the top and the probe location furthest from center at the bottom.
Probe loops have 1/8 inch spacing. Experimental measurements of actual probe voltages
are placed with error bars at the measured frequencies.

40



to the system can’t be ignored, thus our resistive and inductive model fails at these high

frequencies. The experimental setup produced good measurements between 100 kHz and

10 MHz. These measurements agree with the SPICE simulations for the induced voltages in

the probes, again validating the SPICE model and simulations.

Because we have simulated probe voltages to compare to experimentally measured volt-

ages, a current density reconstruction was not performed. To back-calculate current density

distribution from the probe voltages requires assuming a functional form for the current

density in terms of position across the conducting strip(s), and then fitting the parameters

to the probe voltages by means of magnetic field calculations. The accuracy of the fitted

curve improves with more data points from additional measurement locations. The nine

probe locations used in these experimental measurements, along with comparison to the

simulated probe voltages, are sufficient to validate the probe design and utility without

performing a full current density distribution reconstruction.

Limits on measurable frequencies

These models work for cases where the length of the strip line is much less than the wave-

length of the driving signal. Once the wavelength of the driving signal is near the length

of the test strip, capacitance and wave effects would need to be considered for a complete

simulation.

Practical limits on these measurements are bound by the amount of electrical current

available to pass through the strip line. The PA04 operational amplifier was able to drive

sufficient current at 1 kHz and 5 kHz to induce a voltage in the probe loop large enough

to exceed the noise floor of the spectrum analyzer. The power amplifier is limited to lower

frequency operation. Beyond this limit we are able to rely on the frequency term to drive

the induced voltage in the probe loops. At higher frequencies in and above the megahertz

range, a smaller current is required, eliminating the need for the power amplifier. At these

frequencies, the strip line can be driven directly by an RF signal generator. This setup is

sufficient to measure the magnetic flux through the loops until the frequency is such that

41



the wavelength of the signal in the strip is on the order of the length of the test strip.

2.3.5 Modifying the net list for pulse excitation

The magnetic probes are capable of giving signals from transient current pulses which can

be reconstructed in the same way to get transient current distribution. However the in-

strumentation for observing the probe voltages must be compatible with the signal levels

and frequency content of the pulses. The SPICE simulation is capable of simulating a pulse

excitation by replacing the AC source with a pulse of the desired shape and modifying the

analysis type from AC to Transient. These simulated probe voltages can be compared to

measured probe voltages.

2.4 Summary

The magnetic current probes designed at LLNL allow localized observation of current dis-

tribution. Comparison to SPICE simulations based on the partial inductance method show

consistency between the measurements and theory. The probe voltage measurements agree

with those produced by the SPICE simulation. This method was tested against AC skin

effect profiles. The results of the experimental verification show the induced voltages to

be within the margin of error for the instrumentation used. The same SPICE netlist could

now be expected to predict behavior of the strip line with pulse inputs and different loads,

however different instrumentation would be required to experimentally test and verify the

probe voltages. The method will now allow us a benchmark to compare with our customized

current density solver.

42



Chapter 3

Theoretical basis for transient
time-stepping solution

3.1 Introduction

In order to solve for a transient current density, the partial differential equation (1.12) is

reformulated as an integrodifferential equation based on the concept of magnetic vector

potential. This formulation for the total current density is solved by superposition of a

source current density in the conductor and solving for an eddy current solution on the

same space. The difference between the classic eddy current problem formulation and using

a superposition of the source and eddy currents to solve for the total dynamic current

density in a conductor is illustrated in figures 3.1 and 3.2. General eddy current studies

have a driving field produced by currents outside the body of integration as in Figure 3.1.

The source term is a separate and usually specified term. We wish to solve for both the

driving term and the eddy solution. This approach gives us an expression for the total

current density with the addition of the two solutions.

43



J Source

J Predict Ve 

J eddy

+
+
+
+
+
−
−
−
−
−

−
−
−
−
−
+
+
+
+
+

J correct

−   −   −   −   − − −     +  +  +  +  +  +

+  +  +  +  +  + + −  −  −  −  −  −  −  

Figure 3.1: Eddy current problem with source current loop outside the body of integration.

44



V source

J source
J Predict

J correctVe

J eddy J Total

V
t

+
+
+
+
+

+
+
+
+
+

−
−
−
−
−
−

−
−
−
−
−
−

Figure 3.2: Superposition eddy current problem with source currents and eddy current
occupying the same volume.

45



3.2 Derivation

Beginning with Maxwell’s Equations1, an integrodifferential equation system may be derived

which is capable of producing a solution for the current density ~J . Maxwell’s Equations for

electric and magnetic fields in a conductor where σ, ε are scalars and µ is constant, are

∇ · ~E(~r, t) = 0 (3.1)

∇ · ~B(~r, t) = 0 (3.2)

∇× ~E(~r, t) = −∂t ~B(~r, t) (3.3)

∇× ~B(~r, t) = µ~J(~r, t) + µ∂tε ~E(~r, t) (3.4)

with auxiliary equations and potential definitions

~J(~r, t) = σ(~r, t) ~E(~r, t) (3.5)

~E(~r, t) = −∇V (~r, t)− ∂t ~A(~r, t) (3.6)

∇× ~A(~r, t) = ~B(~r, t) (3.7)

∇ · ~A(~r, t) = 0. (3.8)

As in Chapter 1.1.1 we restrict our derivation to good conductors (σ >> 0), there ρv ≈ 0,

and ∇· ~J(~r, t) = 0. We now solve Maxwell’s equations for ~J in terms of potentials. Starting

with Ampere’s Law in differential form eq.(3.4) we substitute for the magnetic flux density

in terms of the magnetic vector potential.

∇× (∇× ~A(~r, t)) = µ~J(~r, t) + µ∂tε ~E(~r, t) (3.9)

It is standard practice in eddy current problems to neglect the displacement current term,

µε∂
~E
∂t

, at the frequencies of interest. This is the magnetoquasistatic state which we assumed

in the earlier derivation. Applying vector identities to the curl of the curl of the magnetic

vector potential we have

∇(∇ · ~A(~r, t))−∇2 ~A(~r, t) = µ~J(~r, t). (3.10)

46



With the application of the Coulomb Gauge, eq.(3.8) , we are then able to write

∇2 ~A(~r, t) = −µ~J(~r, t); (3.11)

eq.(3.11) has the solution, in unbounded space

~A(~r, t) =
µ

4π

∫ ~J(~r′, t)

|~r − ~r′|
d~r′, (3.12)

or, with the integral restricted to a finite region, ~A0 is added to account for effects of other

currents outside of the volume, which gives us a final integral form of

~A(~r, t) =
µ

4π

∫ ~J(~r′, t)

|~r − ~r′|
d~r′ + ~A0(~r, t). (3.13)

To solve for the total current density in a conductor we make use of the principle of

superposition. First define the total current density as the sum of a source current density

and that of the ‘eddy’ current density.

~J(~r, t) = ~Js(~r, t) + ~Je(~r, t) (3.14)

For our purposes the source current density will consist of the current density created by the

application of the electrical potential to the driving edges and treating the instantaneous

applied potential as if it was (DC) steady state. The eddy current density consists of all

currents created by the time changing magnetic vector potential. The electric field defined

by potentials is eq.(3.6). Rewriting eq.(3.6) in terms of ~J for both the source and eddy

portions of the total current density, we arrive at

V (~r, t) = Vs(~r, t) + Ve(~r, t) (3.15)

~A(~r, t) = ~As(~r, t) + ~Ae(~r, t) (3.16)

~J(~r, t)

σ(~r, t)
= −∇V (~r, t)− ∂t ~A(~r, t) (3.17)

~Js(~r, t) = −σ(~r, t)∇Vs(~r, t). (3.18)

47



~A0(~r, t) = 0 in the equation for the source current density because magnetic effects from

current densities outside the conductor are negligible. Collecting the terms,

~Je(~r, t) = −σ(~r, t)∇Ve(~r, t)− σ(~r, t)∂t( ~Ae(~r, t) + ~As(~r, t)) (3.19)

~Je(~r, t) = −σ(~r, t)∇Ve(~r, t)− σ(~r, t)∂t

(
µ

4π

∫ ~Je(~r′, t)

|~r − ~r′|
d~r′ +

µ

4π

∫ ~Js(~r′, t)

|~r − ~r′|
d~r′

)
(3.20)

where Ve is the potential required to ensure the boundary condition of ~Je · n̂ = 0 on the

conductor edges.

3.3 Discretization in time

To solve this equation for the electrical current density in the conductor in a transient

sense, we need a method for time stepping. We have selected the Fractional Step Method

as demonstrated by Koizumi45 and which has been used in computational fluid dynamics

problems for many years. The process separates the solution into several steps. The first

step is to calculate a ‘prediction’ current density which is due to the source current density,

previous time eddy current density, and the previous time ‘eddy potential’. This prediction

current density will not be constrained within the conductor as it knows nothing about the

boundaries. The next step is to calculate the change in the eddy potential. If the prediction

current density were trying to leave the conductor, there would be a build up of charges

on the edges of the conductor. This charge build up creates a potential, which we call

Ve(r, t). The eddy potential serves to enforce the boundary condition. The eddy potential

is then used to calculate the ‘correction current’. This current density when added to the

prediction current density ensures correct current density boundary conditions normal to

the conductor edge. The prediction combined with the correction current density becomes

the total eddy current density for the new time step. Then the quantities are advanced in

time and we repeat the process. In this specific case, to find the total current density, we

would add the source current density and the eddy solution at the end of each time step.

48



The following definitions show the relationship between the time stepping parameters:

~J te(~r) = ~J∗e (~r) + δJ(~r) (3.21)

Eddy current density at time t equals prediction plus correction current densities. Next the

eddy voltage at time t equals previous time value plus incremental change

Ve(~r, t) = V t
e (~r) = V t−τ

e (~r) + δV (~r). (3.22)

Finally, from the definition of ~J we write an expression for the differential change in current

δJ(~r) = −σ(~r)∇δV (~r). (3.23)

∇ · ~J(~r, t) = 0 and ∇ · ~Js(~r, t) = 0 lead to

∇ · (σ(~r)∇δV (~r)) = ∇ · ~J∗e (~r). (3.24)

To advance the time by one step in eq.(3.20) by the fractional step method, we make

substitutions with definitions eq.(3.21) through eq.(3.23) and arrive at expressions for the

prediction current density, the differential change in the eddy voltage, and the correction

current density. The fractional step method allows us to replace the current density term

with a mixture of current density from the new and previous time steps. The fractional

step parameter θ, can be adjusted if stability issues arise in the integrations. The Crank-

Nicholson46 scheme has a θ value of 0.5 and for a full implicit time integration scheme θ

equals unity.

~Je(~r, t) = θ ~J te(~r) + (1− θ) ~J t−τe (~r) (3.25)

We will also use a backward differencing scheme for time derivatives,

∂X

∂t
=
X t −X t−τ

τ
. (3.26)

Making the substitutions for the time derivatives in eq.(3.20), and using Ψ to represent

the Free Space Green’s Function inside the integrals, we have

~Je(~r, t) = −σ(~r)∇Ve(~r, t)−σ(~r, t)

(
µ

∫ ~J te(~r
′)− ~J t−τe (~r′)

τ
Ψd~r′ + µ

∫ ~J ts(~r
′)− ~J t−τs (~r′)

τ
Ψd~r′

)
(3.27)

49



Next we substitute the fractional stepped form of the eddy current density into eq.(3.27) on

terms outside the time derivatives, and multiply through by the time step size τ .

τθ ~J te(~r)+τ(1− θ) ~J t−τe (~r) = −τσ(~r, t)∇Ve(~r, t)

−
(
σ(~r, t)µ

∫
( ~J te(~r

′)− ~J t−τe (~r′))Ψd~r′ + σ(~r, t)µ

∫
( ~J ts(~r

′)− ~J t−τs (~r′))Ψd~r′
)

(3.28)

Now we collect the eddy current density at time t on the left hand side of the equation and

the previous time on the right hand side of the equation.

τθ ~J te(~r) + σ(~r, t)µ

∫
~J te(~r

′)Ψd~r′ =− τ(1− θ) ~J t−τe (~r)− τσ(~r, t)∇Ve(~r, t) + σ(~r, t)µ

∫
~J t−τe (~r′)Ψd~r′

− σ(~r, t)µ

∫
( ~J ts(~r

′)− ~J t−τs (~r′))Ψd~r′

(3.29)

We must now implement the prediction and correction steps to solve for ~J te. We do not yet

have a self consistant eddy voltage and eddy current density. Replacing the ∇Ve in eq.(3.29)

with the eddy voltage from the last time step will give us a prediction of what the new time

step’s eddy current density could be

τθ ~J∗e (~r) + µσ(~r, t)

∫
c

~J∗e (~r′)Ψd~r′ =µσ(~r, t)

∫
c

~J t−τe (~r′)Ψd~r′ − µσ(~r, t)

∫
s

( ~J ts(~r
′)− ~J t−τs (~r′))Ψd~r′

− τ(1− θ) ~J t−τe (~r)− τσ(~r, t)∇V t−τ
e (~r).

(3.30)

With the exception of σ(~r, t),all the known quantities are on the right hand side of the

equation, and the unknown quantity, ~J∗e is on the left. For simple cases we can assume σ(~r, t)

is known. In future versions where time changing conductivity is added, we would need to

substitute in the conductivity at the previous time step, σ(~r, t− τ) in these equations and

ensure that the change in conductivity per time iteration is small. Once we have a solution

for the prediction current density, we calculate the new eddy potential from the incremental

change in the voltage that would be produced by the charges deposited on the conductor

edge by the prediction current density and enforce

∇ · (∇δV (~r)) = ∇ · ~J∗e (~r) (3.31)

50



where the boundary conditions are ~J∗e · n̂ = 0 on ∂Ω. The total eddy voltage for the new

time step becomes

V t
e (~r) = V t−τ

e (~r) + δV (~r). (3.32)

The correction current density is generated by the incremental change in the eddy volt-

age. This correction term when added to the prediction term will guarantee the boundary

condition on the edges of the conductor, and that ∇ · ~J = 0.

δ ~J(~r) = −σ(~r, t)∇δV (~r) (3.33)

We are now able to calculate the eddy current density for the new timestep as the sum of

the prediction and correction current densities.

~J te(~r) = ~J∗e (~r) + δ ~J(~r) (3.34)

The total current density in the conductor is then the sum of the eddy current distribution

and the source current distribution for the same time step t.

~J t(~r) = ~J te(~r) + ~J ts(~r) (3.35)

51



3.4 Finite element implementation of the transient eddy

current problem

Symbol Definition∑
m Sum over all elements m.∫

∆Ωm
Integral over sub-volume m.

dΩ Volume integral over the domain Ω.
êpi Unit vector parallel to edge i

from which |~r − ~r′| is measured in
the Free Space Green’s Function

[E] Identity matrix
~Ni Edge element shape function on edge ‘i’
φi Nodal basis function on node ‘i’

Table 3.1: Definition of terms found in the construction of the Coefficient Matrices

Now that the solution for the eddy current density has been discretized in time by the

application of the fractional step method, the equations need to be rewritten for implemen-

tation with a Finite Element Method.

The Finite Element Method19 allows us to represent a continuous function on a mesh.

For the case of a 2-dimensional surface, the mesh will consist of many triangular elements

joined at nodes. Scalar values, such as voltages, are evaluated on the nodes, and the function

for the voltage anywhere within a particular element is the interpolation of the nodal values

using basis functions associated with the solution. Edges of the triangular elements then can

represent vector quantities associated with the direction of the particular edge. Different

basis functions are used to represent the vector field within a triangular element as sums of

the edge values and those edge element shape functions. The derivation of the edge element

shape functions is shown in Section 3.5 Again, a vector function can be evaluated anywhere

within a particular triangular element by the summation of the edge values of the triangular

element and its associated edge shape functions. Magnetic vector potential and current

52



density are represented by:

~A =
∑
i

~NiAi (3.36)

~J =
∑
i

~NiJi (3.37)

where ~Ni is the linear edge element shape function for a triangle. The scalar electrical

potential has the standard scalar finite element definition of

V =
∑
i

φiVi, (3.38)

where φi is the standard linear shape function.

The nodal basis functions for triangular elements and the edge element shape functions

are discussed in more detail in Section 3.5. This general form can be extended to other

mesh elements such as square, or rectilinear elements in two-dimensions, or prisms, pyra-

mids, cubes, and others in three-dimensional meshes. For our purposes of solving for the

current density in thin conductors, we are able to use two-dimensional representations for

the surfaces.

Recall that the Green’s function integrals in eq.(3.30) are the magnetic vector poten-

tial ~A due to the source and eddy current densities. Before we make the finite element

approximation substitutions we have

τθ ~J∗e (~r)+µσ(~r) ~A∗e(~r) = µσ(~r) ~At−τe (~r)− µσ(~r)( ~Ats(~r)− ~At−τs (~r))

− τ(1− θ) ~J t−τe (~r)− τσ(~r)∇V t−τ
e (~r).

, (3.39)

where

~Ate(~r) =
µ

4π

∫ ~J te(~r
′)

|~r − ~r′|
d~r′, (3.40)

etc. Dividing through by conductivity reduces the number of terms dependent on the

material property. To simplify the notation, resistivity is used rather than the inverse of

conductivity. Moving this term is useful when this formula is implemented in computer code

53



because if we allow for changing conductivity, every term with an updated conductivity will

require recalculation. This minor alteration greatly reduces computation time.

τθρ(~r, t) ~J∗e (~r)+µ ~A∗e(~r) = µ ~At−τe (~r)− µ( ~Ats(~r)− ~At−τs (~r))

− τ(1− θ)ρ(~r, t) ~J t−τe (~r)− τ∇V t−τ
e (~r)

(3.41)

To express eq.(3.30) with the finite element approximation, we substitute the relations

eq.(3.37), eq.(3.36) and eq.(3.38).

τθρ(~r, t)
E∑
i

~NiJ
∗
ei + µ

E∑
i

~NiA
∗
ei = µ

E∑
i

~NiA
t−τ
ei

− µ
E∑
i

~Ni(A
t
si − At−τsi )− τρ(~r, t)(1− θ)

E∑
i

~NiJ
t−τ
ei − τ

N∑
i

∇φiV t−τ
ei

(3.42)

Superscripts on the summations ‘E’ refers to the number of edges and ‘N’ is the number of

nodes in the finite element mesh. Next we substitute for the discrete edge quantity Ai. In

its vector form, ~A is a three component vector which is constructed by the integration of

current densities at point ~r′. We can treat each individual vector components separately.

The x component of ~A can be written as

Ax(~r) =
µ

4π

∫
Jx(~r′)

|~r − ~r′|
d~r′. (3.43)

In the finite element approximation for ~A, Ai is the discretized value on an edge of the

triangular element. It is no longer a three component vector, but is directed in a single

direction associated with the unit vector of that edge. In the finite element approximation,

this unit vector is contained within the normal linear shape function ~Ni. More details on

the nature of ~Ni are given in Section 3.5 below. To represent this single direction in the

integral of the current density, we dot product the current density vector with the unit

vector of the discrete edge, êpi. Only current densities parallel to the edge contribute to the

discrete magnetic vector potential component at that point. Furthermore, in the discrete

approximation for ~A, we set the quantity on the edge to be constant along the edge. We

choose the center point of the edge as the evaluation point ~r for the integral. A more exact

54



approximation would be to perform a six-dimensional integral evaluating the contributions

of the current at ~r′ to the line at ~r. This is the same calculation performed in the partial

inductance method in Chapter 2. Because we treat the edge value Ai as a constant on the

edge, we would have to average the calculated contributions of the integral along the edge

which is approximately equal to evaluating the integral d~r′ with ~r fixed at the center point

of the edge. Therefore we have the general form for the calculation of the magnetic vector

potential component on a discrete edge as

Ai =
µ

4π

∫ ~J(~r′) · êpi
|~rc − ~r′|

d~r′ (3.44)

where point ~rc is located at the center of edge i, which is bounded by nodes i and j.

~rc = (
xj + xi

2
x̂+

yj + yi
2

ŷ +
zj + zi

2
ẑ) (3.45)

Inserting eq.(3.44) into eq.(3.42) we have

τθρ(~r, t)
E∑
i

~NiJ
∗
ei + µ

E∑
i

~Ni

(∫
c

~J∗e · êpi
4π|~r − ~r′|

d~r′

)
= µ

E∑
i

~Ni

(∫
c

~J t−τe · êpi
4π|~r − ~r′

d~r′

)

− µ
E∑
i

~Ni

(∫
s

( ~J ts − ~J t−τs ) · êpi
4π|~r − ~r′|

d~r′

)
− τρ(~r, t)(1− θ)

E∑
i

~NiJ
t−τ
ei − τ

N∑
i

∇φiV t−τ
ei .

(3.46)

To simplify this equation, we again use the substitution Ψ = 1

4π|~r−~r′|
.

τθρ(~r, t)
E∑
i

~NiJ
∗
ei + µ

E∑
i

~Ni

(∫
c

~J∗e · êpiΨd~r′
)

= µ
E∑
i

~Ni

(∫
c

~J t−τe · êpiΨd~r′
)

− µ
E∑
i

~Ni

(∫
s

( ~J ts − ~J t−τs ) · êpiΨd~r′
)
− τρ(~r, t)(1− θ)

E∑
i

~NiJ
t−τ
ei − τ

N∑
i

∇φiV t−τ
ei

(3.47)

The current density terms inside the integrals can be replaced with their finite element

approximations. At every edge term i, we have the contribution of the magnetic vector

potential, which is generated from all the other current densities. This is represented as a

55



sum with the index of j to indicate a separate iterator from i.

τθρ(~r, t)
E∑
i

~NiJ
∗
ei + µ

E∑
i

~Ni

(∫
c

E∑
j

~NjJ
∗
ej · êpiΨd~r′

)
= µ

E∑
i

~Ni

(∫
c

E∑
j

~NjJ
t−τ
ej · êpiΨd~r′

)

− µ
E∑
i

~Ni

(∫
s

E∑
j

~Nj(J
t
sj − J t−τsj ) · êpiΨd~r′

)
− τρ(~r, t)(1− θ)

E∑
i

~NiJ
t−τ
ei − τ

N∑
i

∇φiV t−τ
ei

(3.48)

Multiply every term by every other shape function as a dot product.

τθρ(~r, t)
E∑
i

~Nk · ~NiJ
∗
ei + µ

E∑
i

~Nk · ~Ni

(∫
c

E∑
j

~NjJ
∗
ej · êpiΨd~r′

)
=

µ

E∑
i

~Nk · ~Ni

(∫
c

E∑
j

~NjJ
t−τ
ej · êpiΨd~r′

)

− µ
E∑
i

~Nk · ~Ni

(∫
s

E∑
j

~Nj(J
t
sj − J t−τsj ) · êpiΨd~r′

)

− τρ(~r, t)(1− θ)
E∑
i

~Nk · ~NiJ
t−τ
ei

− τ
N∑
i

~Nk · ∇φiV t−τ
ei

(3.49)

Integrate eq.(3.49) with respect to ~r for the entire domain Ω (but not ~r′). This leaves us

with only the non-zero terms.

τθ

∫
Ω

ρ(~r, t)
E∑
i

~Nk · ~Nid~rJ
∗
ei + µ

∫
Ω

E∑
i

~Nk · ~Nid~r

(∫
c

E∑
j

~NjJ
∗
ej · êpiΨd~r′

)
=

µ

∫
Ω

E∑
i

~Nk · ~Nid~r

(∫
c

E∑
j

~NjJ
t−τ
ej · êpiΨd~r′

)

− µ
∫

Ω

E∑
i

~Nk · ~Nid~r

(∫
s

E∑
j

~Nj(J
t
sj − J t−τsj ) · êpiΨd~r′

)

− τ(1− θ)
∫

Ω

ρ(~r, t)
E∑
i

~Nk · ~Nid~rJ
t−τ
ei

− τ
∫

Ω

N∑
i

~Nk · ∇φid~rV t−τ
ei

(3.50)

56



We are able to move the discrete variables outside the summations and integrals and rewrite

them as column vectors. The order of the integral and the sum can be reordered, so we are

taking the sum of integral quantities, which is the same as an integral of a sum. Here the

square brackets denote a matrix, [X], and the curly brackets denote a column vector, {X}.

τθ

[
E∑
i

∫
Ω

ρ(~r, t) ~Nk · ~Nid~r

]
{J∗e }+ µ

[
E∑
i

∫
Ω

~Nk · ~Nid~r

]{
E∑
j

∫
c

~Nj · êpiJ∗ejΨd~r′
}

=

µ

[
E∑
i

∫
Ω

~Nk · ~Nid~r

]{
E∑
j

∫
c

~Nj · êpiJ t−τej Ψd~r′

}

− µ

[
E∑
i

∫
Ω

~Nk · ~Nid~r

]{
E∑
j

∫
s

~Nj · êpi(J tsj − J t−τsj )Ψd~r′

}

− τ(1− θ)

[
E∑
i

∫
Ω

ρ(~r, t) ~Nk · ~Nid~r

]
{J t−τe }

− τ

[
N∑
i

∫
Ω

~Nk · ∇φid~r

]
{V t−τ

e }

(3.51)

The Green’s function finite element approximations are a column vector of values of Ai on

the edges. These column vectors are themselves formed by the matrix multiplication of their

respective current density column vectors and the matrix formed by the evaluation of the

sums of the Green’s function integrals. We next perform the same extraction of the discrete

variables from inside the Green’s function integrals and are left with the matrix equation

57



form for calculating the prediction current density.

τθ

[
E∑
i

∫
Ω

ρ(~r, t) ~Nk · ~Nid~r

]
{J∗e }+ µ

[
E∑
i

∫
Ω

~Nk · ~Nid~r

][
E∑
j

∫
c

~Nj · êpiΨd~r′
]
{J∗e } =

µ

[
E∑
i

∫
Ω

~Nk · ~Nid~r

][
E∑
j

∫
c

~Nj · êpiΨd~r′
]
{J t−τe }

− µ

[
E∑
i

∫
Ω

~Nk · ~Nid~r

][
E∑
j

∫
s

~Nj · êpiΨd~r′
]
{J ts − J t−τs }

− τ(1− θ)

[
E∑
i

∫
Ω

ρ(~r, t) ~Nk · ~Nid~r

]
{J t−τe }

− τ

[
N∑
i

∫
Ω

~Nk · ∇φid~r

]
{V t−τ

e }

(3.52)

Provided the resistivity of the solution space is constant, we can express eq.(3.52) in a

simplified matrix form45.

[S]{θτρ[E]+µ0[Pe]}{J∗e } = µ0[S]{[P0]{J t−τe }−[Pe]{J ts−J t−τs }}−(1−θ)τρ[S]{J t−τe }−τ [G]{V t−τ}.

(3.53)

Eq.(3.31) and eq.(3.23) become:

[D]{δV } = [G]T{J∗e } (3.54)

[S]{δJ} = −σ[G]{δV } (3.55)

where [X] denotes a matrix, and {X} denotes a column vector. Elements of coefficient

matrices are then defined as

[E] = identity matrix (3.56)

Sij =
∑
m

∫
∆Ωm

~Nj · ~NidΩ (3.57)

P0ij =
∑
m

∫
∆Ωm

~Nj · êpiΨdΩ0 (3.58)

Peij =
∑
m

∫
∆Ωm

~Nj · êpiΨdΩe (3.59)

58



Gij =
∑
m

∫
∆Ωm

~Ni · ∇φjdΩ (3.60)

Dij =
∑
m

∫
∆Ωm

σ(∇φj · ∇φi)dΩ (3.61)

with the free space Green’s Function being represented by

Ψ =
1

4π|~r − ~r′|
. (3.62)

Terms used in the matrix construction definitions are summarized in Table 3.1. Matrices

[P0] and [Pe] are the same form but they can have different volumes over which they operate

resulting in separate matrices, of possibly different sizes if source current density exist outside

the conductor. In the case of the self consistant current density solver, the source and the

eddy current densities are superimposed on the same geometrical mesh, resulting in the

same [P ] matrix for both terms. For the case of nonuniform resistivity, we can not extract

ρ(~r, t) from inside the integrand over each element. We rewrite eq.(3.51) as a modification

of eq.(3.53),

[θτ [pS]+µ0[S][Pe]]{J∗e } = µ0[S]{[P0]{J t−τe }−[Pe]{J ts−J t−τs }}−(1−θ)τ [pS]{J t−τe }−τ [G]{V t−τ}.

(3.63)

Alterations to eq.(3.64) are also required.

[S]{δJ} = −[cG]{δV } (3.64)

with the addition of the matrix definitions for [pS] and [cG] as

pSij =
∑
m

∫
∆Ωm

ρ(~r, t) ~Nj · ~NidΩ (3.65)

cGij =
∑
m

∫
∆Ωm

σ(~r, t) ~Ni · ∇φjdΩ (3.66)

Now that these terms are defined for general sums of general basis functions over a

non-specific region, we need to examine what the basis functions are for edge elements and

nodal elements and what is meant by the summation of the integral of these basis function

combinations and how to get eq.(3.53) from eq.(3.30).

59



3.5 Basis functions

3.5.1 Linear nodal basis function

The normal linear basis function for a node consists of a function that evaluates to one on

that node and zero on all adjacent nodes19, 47, 48. An illustration of a nodal basis function

on a triangular element is presented in Figure 3.3.

1 k

i j

(x  , y  , z  )k k k

(x  , y  , z  )i i i (x  , y  , z  )j j j

Figure 3.3: Normal linear basis function for node i

The construction for a nodal basis function on a triangle with general vertices in the x-y

plane at (xi, yi) , (xj, yj), and (xk, yk) can be constructed via the matrix expression19, 49

φi(x, y) =
1

Den

[
1 x y

] xjyk − xkyj xkyi − xiyk xiyj − xjyi
yj − yk yk − yi yi − yj
xk − xj xi − xk xj − xi

1
0
0

 (3.67)

where the denominator Den is twice the area of the triangular element.

Den = xjyk − xkyj + (yj − yk)xi − (xj − xk)yi (3.68)

The last column vector defines for which node we are evaluating the basis function. In

the case above it is i. For node j or node k, the last vector would be

0
1
0

 or

0
0
1

 respectively.

From this we get three nodal basis functions on the triangular vertices of a triangular

element with node i on the origin, node j on the x axis, and node k in the positive x-y

plane. Using an affine transformation, we can transform any triangle in three dimensional

space to be in the x-y plane.

60



1
k

i j

i j

k

edge `i’

φφ φφ
i ij j

( )N  =  L   i i
*

(x  , y  , z  )k k k

(x  , y  , z  )j j j
(x  , y  , z  )i i i

Figure 3.4: Edge element shape function for edge i (connecting nodes i-j)

61



The nodal basis functions are:

φi(x, y) =
((xjyk − xkyj) + x(yj − yk) + y(xk − xj))
xjyk − xkyj + (yj − yk)xi − (xj − xk)yi

(3.69)

φj(x, y) =
((xkyi − xiyk) + x(yk − yi) + y(xi − xk))
xjyk − xkyj + (yj − yk)xi − (xj − xk)yi

(3.70)

φk(x, y) =
((xiyj − xjyi) + x(yi − yj) + y(xj − xi))
xjyk − xkyj + (yj − yk)xi − (xj − xk)yi

(3.71)

3.5.2 Gradient of the linear nodal basis function

The gradient of the nodal basis function can be found for the same triangle by taking the

gradient of eq.(3.67) , which results in replacing the row vector
[
1 x y

]
with

[
0 x̂ ŷ

]

∇φi(x, y) =
1

Den

[
0 x̂ ŷ

] xjyk − xkyj xkyi − xiyk xiyj − xjyi
yj − yk yk − yi yi − yj
xk − xj xi − xk xj − xi

1
0
0

 (3.72)

This is the case for ∇φi. To obtain the gradient of the basis function for nodes j and k we

again replace the last column vector with the appropriate term as we did for the nodal basis

function in the previous section.

The gradient of the nodal basis functions are:

∇φi(x, y) =
(x̂(yj − yk) + ŷ(xk − xj))

xjyk − xkyj + (yj − yk)xi − (xj − xk)yi
(3.73)

∇φj(x, y) =
(x̂(yk − yi) + ŷ(xi − xk))

xjyk − xkyj + (yj − yk)xi − (xj − xk)yi
(3.74)

∇φk(x, y) =
(x̂(yi − yj) + ŷ(xj − xi))

xjyk − xkyj + (yj − yk)xi − (xj − xk)yi
(3.75)

3.5.3 Coordinate transformations for integration

In order to have only a single case for integration over triangles, the affine transformation

is also made to map xi → 0, yi → 0, yj → 0. Node k is mapped to the x-y plane. In

transformed coordinates eq.(3.67) becomes

62



φi(x, y) =
1

Den

[
1 x y

]  xjyk 0 0
−yk yk 0

xk − xj −xk xj

1
0
0

 (3.76)

with the denominator Den transformed to

Den = xjyk (3.77)

This transformation will allow integration of basis functions over a triangular element,

for any orientation of the global coordinates, as a single integral. Our integral surface can

consist of surfaces in any 3-dimensional orientation with terms in the finite element matrices

evaluated over the transformed 2-dimensional triangle.

3.5.4 Linear edge element shape function

The edge element shape function48 is defined as

~Ni = Li(φi∇φj − φj∇φi) (3.78)

where Li is the length of the edge i, and φi is the nodal basis function on node i and φj is

the nodal basis function of node j. The edge i is from nodes i to j. ~Ni, as given, is used to

interpolate vectors on a triangle along with the other edge shape functions ~Nj and ~Nk for a

triangular element with edges i, j, and k. Within triangle(i,j,k) a vector is given by

~V = ~NiVi + ~NjVj + ~NkVk (3.79)

To begin solving for general edge element shape functions ~N we make a labeling notation

change in order to ease in the solution process. We redefine the inner matrix from eq.(3.67)

and give the individual terms alphanumeric identifiers. It is useful to present this in the

generalized 2-dimensional form for a general case.

A B C
D E F
G H I

 =

xjyk − xkyj xkyi − xiyk xiyj − xjyi
yj − yk yk − yi yi − yj
xk − xj xi − xj xj − xi

 (3.80)

63



In the transformed coordinates that we use, eq.(3.80) is replaced by

A B C
D E F
G H I

 =

 xjyk 0 0
−yk yk 0

xk − xj −xk xj

 (3.81)

Evaluating eq.(3.78) can be done starting at the matrix formulation and reducing terms

until we arrive at an expression for each edge’s shape function. In the generalized notation

we have∗

~Ni = Li(φi∇φj − φj∇φi)

= Li

 1

Den
[1 x y]

A B C
D E F
G H I

1
0
0

 1

Den
[0 x̂ ŷ]

A B C
D E F
G H I

0
1
0


− 1

Den
[1 x y]

A B C
D E F
G H I

0
1
0

 1

Den
[0 x̂ ŷ]

A B C
D E F
G H I

1
0
0


=

Li
Den2

((A+Dx+Gy)(Ex̂+Hŷ)− (B + Ex+Hy)(Dx̂+Gŷ))

=
Li

Den2
(x̂(AE +DEx+GEy −BD −DEx−HDy)

+ŷ(AH +DHx+GHy −BG− EGx−HGy))

=
Li

Den2
(((AE −BD) + y(GE −HD))x̂+ ((AH −BG) + x(DH − EG))ŷ)

(3.82)

Thus evaluating the expression for

~Ni = Li(φi∇φj − φj∇φi)

and repeating for the case of edges j and k we end up with the expressions:

~Ni =
Li

Den2
(((AE −BD) + y(GE −HD))x̂+ ((AH −BG) + x(DH − EG))ŷ) (3.83)

~Nj =
Lj
Den2

(((BF − CE) + y(HF − IE))x̂+ ((BI − CH) + x(EI − FH))ŷ) (3.84)

~Nk =
Lk
Den2

(((CD − AF ) + y(ID − FG))x̂+ ((CG− AI) + x(FG−DI))ŷ) (3.85)

∗Note: In a local triangle with nodes i, j, k, the edge element ~Ni goes from node i to node j. In the
global sums in the matrix definitions, the subscript on ~Ni is a counting index and not necessarily the same
as the index of the first node of the edge.

64



3.5.5 Example of linear edge element shape function for canonical
triangle

When specialized to the case of a triangle having node i at (0, 0, 0), node j at (xj, 0, 0), node

k at (xk, yk, 0), equations (3.83), (3.84), and (3.85) become

~Ni = (1− y

yk
)x̂+

(x− xk)
yk

ŷ (3.86)

~Nj =

√
(xj − xk)2 + y2

k

xjyk
(−yx̂+ xŷ) (3.87)

~Nk =

√
x2
k + y2

k

xjyk
(−yx̂+ (x− xj)ŷ). (3.88)

Examination of ~Ni shows that the component of ~Ni parallel to edge i, between nodes i

and j is just x̂ on that edge where y = 0. Examination of ~Nj shows that it is entirely in

the ŷ direction along edge j, between nodes j and k, where y = 0. The same is true for ~Nk.

Thus the value of any vector field given in terms of linear edge elements:

~A =
∑

Ai ~Ni, (3.89)

when taken on an edge, has the component parallel to the edge equal to the ~Ni coefficients

êpi · ~A|on edge i = Ai. (3.90)

65



3.6 Constructing the coefficient matrices

3.6.1 The [S] matrix

The [S] matrix is a ‘stiffness’ matrix which relates how individual edges are linked together.

Elements of [S] are composed of the sum over the differential sub-volumes m of the shape

function for edge ‘j’ times the shape function for edge ‘i’ with the dot product of their terms

being evaluated. The integral is over all space, but the only terms that are non-zero are

where the edges share the same sub-volume ∆Ωm. This means terms are only generated for

triangular elements where both edges are members of the triangle. The notation used by

Koizumi45 can be better expressed with the knowledge that the linear edge shape functions

are vector field quantities and is thus written as

Sij =
∑
m

∫
∆Ωm

~Nj · ~NidΩ (3.91)

For a triangular mesh, which we are using in our implementation, we can see that there

will be some coupling for every edge of the triangular element. Figure 3.5 shows an example

of a section of a triangular mesh. We see that we should have a term for Sde as both edge ‘e’

and ‘f’ belong to triangle A. Coupling term Sdf = 0 due to edges ‘d’ and ‘f’ not belonging

to the same triangular element. Coupling term See would contain contributions from both

triangle ‘A’ and triangle ‘B’.

To solve for the general matrix element, we begin with the multiplication of the shape

functions for the general triangle.

Sii =

∫
triA

~Ni · ~NidΩA +

∫
triB

~Ni · ~NiΩB (3.92)

For a general triangular element, the self term, Sii could have contributions from both

triangles for which it serves as an edge. In the reference figure, edge B would have an integral

term from both triangles. As we are interested in constructing a general form to code for

these elements, we will reduce the solution to an individual triangle. This is also the case

for the general terms Sij as there will be only one triangular region to integrate over.

66



A
B

C

90°

90°

i

j

k

d e

f

Figure 3.5: Edge element shape function for edge i (connecting nodes i−j) and an example
mesh showing multiple edges. There will be coupling between edges that are part of the
same triangular element, but none for edges that have no common elements.

67



Sij =

∫
triA

~Ni · ~NjdΩA (3.93)

Expressing the shape functions in the manner previously listed and carrying out the

multiplication we arrive at

Sii =

∫
A

(
Li

Den2
(((AE −BD) + y(GE −HD))x̂+ ((AH −BG) + x(DH − EG))ŷ))

· ( Li
Den2

(((AE −BD) + y(GE −HD))x̂+ ((AH −BG) + x(DH − EG))ŷ))dΩA +

∫
B

. . .

(3.94)

Sii =

∫
triA

L2
i

Den4
{(AE −BD)(AE −BD) + 2y(GE −HD)(AE −BD)

+ y2(GE −HD)(GE −HD) + (AH −BG)(AH −BG)

+ 2x(AH −BG)(DH − EG) + x2(DH − EG)(DH − EG)}dΩA +

∫
B

. . .

(3.95)

Here we will make use of another substitution of terms. The multiplied shape function has

the form of a polynomial of x and y, so we collect the terms and define

M = (AE−BD)(AE−BD) N = 2(GE−HD)(AE−BD) P = (GE−HD)(GE−HD)

Q = (AH−BG)(AH−BG) R = 2(AH−BG)(DH−EG) S = (DH−EG)(DH−EG)

which results in a cleaner expression for the integral over the triangular element

Sii =
L2
i

Den4

∫ y3

0

∫ xr

xl

[
M + yN + y2P +Q+ xR + x2S

]
dxdy +

∫
B

. . . (3.96)

The integral which requires evaluation is

Iii =

∫ y3

0

∫ xr

xl

(
x0y0M + x0y1N + x0y2P + x0y0Q+ x1y0R + x2y0S

)
dxdy (3.97)

which we can break up as

68



Iii =

∫ y3

0

∫ xl

xl

x0y0(M +Q)dxdy

+

∫ y3

0

∫ xr

xl

x0y1Ndxdy

+

∫ y3

0

∫ xr

xl

x0y2Pdxdy

+

∫ y3

0

∫ xr

xl

x1y0Rdxdy

+

∫ y3

0

∫ xr

xl

x2y0Sdxdy

(3.98)

From Calculus we know that the integral over a triangle in the x− y plane is

I(m,n) =

∫ y3

0

∫ xr

xl

xmyndxdx (3.99)

xl = y(x3/y3) xr = x2 + y(x3 − x2)/y3 (3.100)

I(m,n) =

∫ y3

0

yn

m+ 1

{[
x2 + y

x3 − x2

y3

]m+1

−
[
y
x3

y3

]m+1
}

(3.101)

What we now have are five separate cases of this integral to combine to obtain Iii:.

Iii = (M + Q)× I(0, 0) + N × I(0, 1) + P × I(0, 2) + R× I(1, 0) + S × I(2, 0) (3.102)

Iii =
∫ y3

0

(M + Q)
y0

0 + 1

{[
x2 + y

x3 − x2

y3

]0+1

−
[
y
x3

y3

]0+1
}

dy

+
∫ y3

0

N
y1

0 + 1

{[
x2 + y

x3 − x2

y3

]0+1

−
[
y
x3

y3

]0+1
}

dy

+
∫ y3

0

P
y2

0 + 1

{[
x2 + y

x3 − x2

y3

]0+1

−
[
y
x3

y3

]0+1
}

dy

+
∫ y3

0

R
y0

1 + 1

{[
x2 + y

x3 − x2

y3

]1+1

−
[
y
x3

y3

]1+1
}

dy

+
∫ y3

0

S
y0

2 + 1

{[
x2 + y

x3 − x2

y3

]2+1

−
[
y
x3

y3

]2+1
}

dy

(3.103)

69



Iii =
∫ y3

0

(M + Q)
{[

x2 + y
x3 − x2

y3

]
−
[
y
x3

y3

]}
dy

+
∫ y3

0

Ny1

{[
x2 + y

x3 − x2

y3

]
−
[
y
x3

y3

]}
dy

+
∫ y3

0

Py2

{[
x2 + y

x3 − x2

y3

]
−
[
y
x3

y3

]}
dy

+
∫ y3

0

R
1
2

{[
x2 + y

x3 − x2

y3

]2
−
[
y
x3

y3

]2}
dy

+
∫ y3

0

S
1
3

{[
x2 + y

x3 − x2

y3

]3
−
[
y
x3

y3

]3}
dy

(3.104)

Iii =
∫ y3

0

(M + Q)
{[

x2 + y
x3 − x2

y3

]
−
[
y
x3

y3

]}
dy

+
∫ y3

0

N

{[
yx2 + y2 x3 − x2

y3

]
−
[
y2 x3

y3

]}
dy

+
∫ y3

0

P

{[
y2x2 + y3 x3 − x2

y3

]
−
[
y3 x3

y3

]}
dy

+
∫ y3

0

R
1
2

{[
x2

2 + 2x2
y

y3
(x3 − x2) +

y2

y2
3

(x3 − x2)2
]
−
[
y2

y2
3

x2
3

]}
dy

+
∫ y3

0

S
1
3

{[
x3

2 + 3x2
2

y

y3
(x3 − x2) + 3x2

y2

y2
3

(x3 − x2)2 +
y3

y3
3

(x3 − x2)3
]
−
[
y3

y3
3

x3
3

]}
dy

(3.105)

Iii =
∫ y3

0

(M + Q)
{

x2 + y
x3 − x2

y3
− y

x3

y3

}
dy

+
∫ y3

0

N

{
yx2 + y2 x3 − x2

y3
− y2 x3

y3

}
dy

+
∫ y3

0

P

{
y2x2 + y3 x3 − x2

y3
− y3 x3

y3

}
dy

+
∫ y3

0

R
1
2

{
x2

2 + 2x2
y

y3
(x3 − x2) +

y2

y2
3

(x3 − x2)2 − y2

y2
3

x2
3

}
dy

+
∫ y3

0

S
1
3

{
x3

2 + 3x2
2

y

y3
(x3 − x2) + 3x2

y2

y2
3

(x3 − x2)2 +
y3

y3
3

(x3 − x2)3 − y3

y3
3

x3
3

}
dy

(3.106)

Iii =
∫ y3

0

(M + Q)
{

x2 − y
x2

y3

}
dy

+
∫ y3

0

N

{
yx2 − y2 x2

y3

}
dy

+
∫ y3

0

P

{
y2x2 − y3 x2

y3

}
dy

+
∫ y3

0

R
1
2

{
x2

2 + 2x2
y

y3
(x3 − x2) +

y2

y2
3

((x3 − x2)2 − x2
3)
}

dy

+
∫ y3

0

S
1
3

{
x3

2 + 3x2
2

y

y3
(x3 − x2) + 3x2

y2

y2
3

(x3 − x2)2 +
y3

y3
3

((x3 − x2)3 − x3
3)
}

dy

(3.107)

70



Iii =(M + Q)
{

x2y3 −
1
2
y3x2

}
+N

{
1
2
y2
3x2 −

1
3
y2
3x2

}
+P

{
1
3
y3
3x2 −

1
4
y3
3x2

}
+R

1
2

{
y3x

2
2 + x2y3(x3 − x2) +

1
3
y3((x3 − x2)2 − x2

3)
}

+S
1
3

{
y3x

3
2 +

3
2
x2

2y3(x3 − x2) + x2y3(x3 − x2)2 +
1
4
y3((x3 − x2)3 − x3

3)
}

(3.108)

Iii =(M + Q)
{

1
2
x2y3

}
+N

{
1
6
y2
3x2

}
+P

{
1
12

y3
3x2

}
+R

{
1
6

(x2x3 + x2
2)y3

}
+S

{
1
12

(x2x
2
3 + x2

2x3 + x3
2)y3

}
(3.109)

All possible combinations of shape functions are ~Ni · ~Ni , ~Ni · ~Nj, ~Ni · ~Nk, ~Nj · ~Nk, ~Nj · ~Nj,

and ~Nk · ~Nk. It should be noted that the combinations are symmetric, so ~Ni · ~Nj = ~Nj · ~Ni.

By following the same derivation for integral terms in [S], we see that the integral of the

triangle for any combination of edges results in the same polynomial form of

M +Q+Ny + Py2 +Rx+ Sx2.

Therefore to solve these different cases we only need derive the coefficients for the polynomial

and substitute into the integral solved above. These combinations result in the collected

terms in Table 3.2

71



Table 3.2: Polynomial Coefficients for shape function combinations in the formulation of
the [S] Matrix

~Ni · ~Ni
~Nj · ~Nj

~Nk · ~Nk

M = (AE −BD)(AE −BD) M = (BF − CE)(BF − CE) M = (CD − AF )(CD − AF )

N = 2(GE −HD)(AE −BD) N = 2(BF − CE)(HF − IE) N = 2(CD − AF )(ID − FG)

P = (GE −HD)(GE −HD) P = (HF − IE)(HF − IE) P = (ID − FG)(ID − FG)

Q = (AH −BG)(AH −BG) Q = (BI − CH)(BI − CH) Q = (CG− AI)(CG− AI)

R = 2(AH −BG)(DH − EG) R = 2(BI − CH)(EI − FH) R = 2(CG− AI)(FG−DI)

S = (DH − EG)(DH − EG) S = (EI − FH)(EI − FH) S = (FG−DI)(FG−DI)

~Ni · ~Nj

M = (AE −BD)(BF − CE)

N = (AE −BD)(HF − IE) + (GE −HD)(BF − CE)

P = (GE −HD)(HF − IE)

Q = (AH −BG)(BI − CH)

R = (AH −BG)(EI − FH) + (BI − CH)(DH − EG)

S = (DH − EG)(EI − FH)

~Ni · ~Nk

M = (AE −BD)(CD − AF )

N = (AE −BD)(ID − FG) + (CD − AF )(GE −HD)

P = (GE −HD)(ID − FG)

Q = (AH −BG)(CG− AI)

R = (AH −BG)(FG−DI) + (CG− AI)(DH − EG)

S = (DH − EG)(FG−DI)

~Nj · ~Nk

M = (BF − CE)(CD − AF )

N = (BF − CE)(ID − FG) + (CD − AF )(HF − IE)

P = (HF − IE)(ID − FG)

Q = (BI − CH)(CG− AI)

R = (BI − CH)(FG−DI) + (CG− AI)(EI − FH)

S = (EI − FH)(FG−DI)

72



3.6.2 The [G] matrix

The [G] matrix is defined as

Gij =
∑
m

∫
∆Ωm

~Ni · ∇φjdΩ (3.110)

where the [G] matrix will be the number of edges by the number of nodes in size, or m

edges times n nodes. Using the same notation for the matrix in eq.(3.80), it is convenient

to rewrite the definitions of the gradients of the nodal functions as;

∇φi =
1

Den
(Dx̂+Gŷ)

∇φj =
1

Den
(Ex̂+Hŷ)

∇φk =
1

Den
(Fx̂+ Iŷ)

Possible combinations are ~Ni · ∇φi, ~Ni · ∇φj, ~Ni · ∇φk, ~Nj · ∇φi, ~Nj · ∇φj, ~Nj · ∇φk,
~Nk · ∇φi, ~Nk · ∇φj, ~Nk · ∇φk.

Solving for ~Ni · ∇φi, as an example,:

~Ni · ∇φi =

=
Li

Den2
(((AE −BD) + y(GE −HD))x̂+ ((AH −BG) + x(DH − EG))ŷ) · 1

Den
(Dx̂+Gŷ)

=
Li

Den3
(((AE −BD) + y(GE −HD))D + ((AH −BG) + x(DH − EG))(G))

=
Li

Den3
(D(AE −BD) + yD(GE −HD) +G(AH −BG) + xG(DH − EG))

(3.111)

Comparing this derivation for element Gii with the derivations for [S], we note that we

have the same polynomial form for the integrand, with the quadratic terms equal to zero.

L

Den3
(D(AE −BD) + yD(GE −HD) + 0y2 +G(AH −BG) + xG(DH − EG) + 0x2)

Furthermore we adopt the same lettering strategy as in the [S] formulation. This will cause

less confusion during code implementation.

M +Ny + Py2 +Q+Rx+ Sx2

73



With direct comparison it is easy to extract the polynomial coefficients. The polynomial

coefficients for the other cases of edge and node combinations are easily derived and the

resultant coefficients for all cases are listed in Table 3.3

74



Table 3.3: Polynomial Coefficients for shape function combinations in the formulation of
the [G] Matrix

~Ni · ∇φi
M = D(AE −BD) N = D(GE −HD) P = 0

Q = G(AH −BG) R = G(DH − EG) S = 0

~Ni · ∇φj
M = E(AE −BD) N = E(GE −HD) P = 0

Q = H(AH −BG) R = H(DH − EG) S = 0

~Ni · ∇φk
M = F (AE −BD) N = F (GE −HD) P = 0

Q = I(AH −BG) R = I(DH − EG) S = 0

~Nj · ∇φi
M = D(BF − CE) N = D(HF − IE) P = 0

Q = G(BI − CH) R = G(EI − FH) S = 0

~Nj · ∇φj
M = E(BF − CE) N = E(HF − IE) P = 0

Q = H(BI − CH) R = H(EI − FH) S = 0

~Nj · ∇φk
M = F (BF − CE) N = F (HF − IE) P = 0

Q = I(BI − CH) R = I(EI − FH) S = 0

~Nk · ∇φi
M = D(CD − AF ) N = D(ID − FG) P = 0

Q = G(CG− AI) R = G(FG−DI) S = 0

~Nk · ∇φj
M = E(CD − AF ) N = E(ID − FG) P = 0

Q = H(CG− AI) R = H(FG−DI) S = 0

~Nk · ∇φk
M = F (CD − AF ) N = F (ID − FG) P = 0

Q = I(CG− AI) R = I(FG−DI) S = 0

75



3.6.3 The [D] matrix

The [D] matrix is the global coefficient matrix19 which contains information from the con-

nection of the gradients of nodal basis functions within a triangular element.

Dij =
∑
m

∫
∆Ωm

σ∆Ωm∇φj · ∇φidΩ (3.112)

This matrix will be n nodes by n nodes and symmetric. All the possible combinations

of basis functions are ii, ij, ik, jk, jj, kk. In this case all of the combinations will have

no dependence on x or y, thus only the ‘M’ term from the integral will be solved for each

combination. The conductivity term, which can be assigned as a zero order basis function

for each triangular element can be moved outside of the integral with the ‘Den’ term. The

following are the definitions of the gradients of the nodal functions in terms of the matrix

defined by eq.(3.80).

Starting with the possible gradients of nodal basis functions

∇φi =
1

Den
(Dx̂+Gŷ)

∇φj =
1

Den
(Ex̂+Hŷ)

∇φk =
1

Den
(Fx̂+ Iŷ)

and following the format established above, node combination i-i evaluates as:

∇φi · ∇φi =(Dx̂+Gŷ) · (Dx̂+Gŷ)

∇φj · ∇φi =D2 +G2

∇φj · ∇φi =(D2 +G2)x0y0

(3.113)

M = (DD +GG)

For node combination i-j

∇φi · ∇φj =(Dx̂+Gŷ) · (Ex̂+Hŷ)

∇φi · ∇φj =(DE +GH)
(3.114)

76



M = (DE +GH)

For node combination i-k

∇φi · ∇φk =(Dx̂+Gŷ) · (Fx̂+ Iŷ)

∇φi · ∇φk =(DF +GI)
(3.115)

M = (DF +GI)

For node combination j-j

∇φj · ∇φj =(Ex̂+Hŷ) · (Ex̂+Hŷ)

∇φj · ∇φj =(E2 +H2)
(3.116)

M = (EE +HH)

For node combination j-k

∇φj · ∇φk =(Ex̂+Hŷ) · (Fx̂+ Iŷ)

∇φj · ∇φk =(EF +HI)
(3.117)

M = (EF +HI)

For node combination k-k

∇φk · ∇φk =(Fx̂+ Iŷ) · (Fx̂+ Iŷ)

∇φk · ∇φk =(FF + II)
(3.118)

M = (FF + II)

77



Table 3.4: Polynomial Coefficients for basis function combinations in the formulation of
the [D] Matrix

∇φi · ∇φi ∇φi · ∇φj ∇φi · ∇φk
M = (DD +GG) M = (DE +GH) M = (DF +GI)

N = 0 N = 0 N = 0

P = 0 P = 0 P = 0

Q = 0 Q = 0 Q = 0

R = 0 R = 0 R = 0

S = 0 S = 0 S = 0

∇φj · ∇φj ∇φj · ∇φk ∇φk · ∇φk
M = (EE +HH) M = (EF +HI) M = (FF + II)

N = 0 N = 0 N = 0

P = 0 P = 0 P = 0

Q = 0 Q = 0 Q = 0

R = 0 R = 0 R = 0

S = 0 S = 0 S = 0

78



3.6.4 The [P ] matrix

i

j

k

k j

i

A

B

~r′

~r

~r − ~r′

p(x, y, z)

~N ∗j

Pij =
∫
A

~N∗j ·êpi
4π|~r−~r′|

dΩA +
∫
B

~N∗j ·êpi
4π|~r−~r′|

dΩB

J j

Figure 3.6: Example of a construction for the [P ] matrix with observation point ‘p’ and
current density Jj edge being integrated. The contribution of the edge is contained in two

separate integrals, one for each triangular element. The shape function ~Nj for the current
density on edge ‘j’ is shown in triangle ‘A’.

Pij =
∑
m

∫
∆Ωm

~Nj · êpiΨdΩ

The [P ] matrix has a more complex construction. The integral includes the free space

Green’s function, which among other things will present us with a singularity when the

triangle of integration contains the observation point. This matrix will be edges by edges in

79



size, and dense. It will have some symmetry, but it will not necessarily be symmetric. An

illustration of the geometries and terms used in construction of terms in the [P ] matrix are

in Figure 3.6. The observation point of the edge with unit vector êpi is located at the edge’s

center of mass. This was done in accordance to an approximation made by Koizumi45.

In his formulation for calculation of eddy currents he includes magnetic materials. For

these elements he uses the center of mass on a zero order element for the observation point

when working with magnetic materials. This is an acceptable approximation provided the

triangular elements are small compared to the size of the domain Ω. A more accurate

approximation would be to perform a six-dimensional integral, like the ones performed for

the partial inductance method in Chapter 2, over the triangular differential sub-volume

m. This would integrate the observation ‘point’ along the entire edge. An unfortunate

consequence of this change is that it would greatly increase computation time, and the

resultant gain in accuracy is questionable since the representation of the current along an

edge is a constant along the entirety of the edge.

A general element Pij can be expressed as

Pij =

∫
A

~Nj · êpiΨdΩA +

∫
B

~Nj · êpiΨdΩB (3.119)

To evaluate the integral for one region in general terms we note that we have an integral

where the local edge is on location i and the observation point has a unit direction of

êpi = x̂epx + ŷepy + ẑepz (3.120)

associated with the observation point’s global edge location. The observation edge can be

on a different plane as the triangle with the edge of integration. The ẑ term will never

contribute to the integral due to the dot product with the shape function that has no ẑ

component. The integral can be expressed and solved in a similar manner as the previous

coefficient matrix solutions by reducing the shape function combinations down to a sum of

monomial terms.

80



I =

∫
triangle

~Nj · êpi
4π
√

(x− xp)2 + (y − yp)2 + (z − zp)2
dxdy|z=0

I =

∫ y3

0

∫ xl

xr

Lj
Den2

((M +Ny)x̂+ (Q+Rx)ŷ) · (x̂epx + ŷepy)

4π
√

(x− xp)2 + (y − yp)2 + z2
p

dxdy

I =

∫ y3

0

∫ xl

xr

Lj
Den2

epx(M +Ny) + epy(Q+Rx)

4π
√

(x− xp)2 + (y − yp)2 + z2
p

dxdy

I =
Lj

4πDen2

∫ y3

0

∫ xl

xr

epxM + epxNy + epyQ+ epyRx√
(x− xp)2 + (y − yp)2 + z2

p

dxdy

I =
Lj

4πDen2

∫ y3

0

∫ xl

xr

[
epxM√

(x− xp)2 + (y − yp)2 + z2
p

+
epxNy√

(x− xp)2 + (y − yp)2 + z2
p

+
epyQ√

(x− xp)2 + (y − yp)2 + z2
p

+
epyRx√

(x− xp)2 + (y − yp)2 + z2
p

]dxdy

(3.121)

where the limits of integration over the triangle are again defined as

xl = y(x3/y3)

xr = x2 + y(x3 − x2)/y3

.

We will make use of the following two integrals

I1 =

∫
dx

R
;R =

√
ax2 + bx+ c (3.122)

∫
dx

R
=

1√
a

sinh−1

{
2ax+ b√
4ac− b2

}
; a > 0, 4ac− b2 > 0 (3.123)

I2 =

∫
xdx

R
;R =

√
ax2 + bx+ c (3.124)

81



∫
xdx

R
=
R

a
− b

2a

∫
dx

R
(3.125)

The solution to the integral over x contains a hyperbolic sine term which them must

be evaluated numerically. It is more efficient to numerically integrate over both variables

with a “cubature” routine. The “cubature” routine “triex”50, 51, 52 was used to numerically

evaluate the Green’s function integral.

82



Chapter 4

Implementation of transient current
density solver in C++

To implement the algorithm presented in Chapter 3 a numerical computer code was written

in C++. This program was prototyped with the matrix library NEWMAT53 and later the

matrix operations were translated into LAPACK54 for more efficient calculation of matrix

inverses. For the description of coding algorithms and functions, general terms will be used.

It was convenient to use a prepackaged and open-source program to generate geometry

meshes for the solution spaces. For this we chose GMSH21, 22, 23. By using an already made

meshing program, it allowed us to direct more effort into the programming of the EM

solver. By being an open source code, the formats for the mesh files were available for

reading directly into the transient eddy current solver program by coding a proper file input

subroutine. The transient current density solver we coded is called TRANSEDDY (TRANSient

EDDY current solver).

4.1 Using GMSH

GMSH22 is a readily available mesh generation program that is available on many Linux

distributions as well as having versions compiled to run on most computers running the

Microsoft Windows family of operating system. Geometry files and meshes can be made

in interactive mode with the Graphic User Interface (GUI) or from direct entry with the

83



Extention Description
*.geo Geometry File
*.msh Mesh File
*.pos Parsed Output File

Table 4.1: File extensions used by GMSH

appropriate files. Types of files and their file extentions are listed in Table 4.1. GMSH also

has a built in display module for showing output files from its integrated EM solver program

GetDP20. We will also use GMSH as a means of viewing and processing the output data from

the new transient current distribution solving code.

Creating a geometry is as simple as adding points, specified by its coordinates in three

dimensions and a characteristic length term. The characteristic length term specifies how

far from the point the next nearest mesh nodes should be added by the meshing algorithm.

Lines are added by selecting points to connect. Planes are generated by creating loops of

lines. To create a mesh, physical surfaces must then be defined from the planes and lines

previously defined. This sets the parameters used by the meshing portion of GMSH .

For TRANSEDDY to function properly, both the solution surface and the edges for the

current ‘entry’ and ‘exit’ must be defined as ‘Physical Surfaces’ and ‘Physical Lines’ respec-

tively. This is to identify the boundary nodes that will be fixed in value in the iterative

solver for the impressed source voltage.

An example of a geometry file for a simple square test case is below in Table 4.2 and its

associated display from GMSH is shown in Figure 4.1

For more detailed information on functionality of the GMSH geometry creation program,

refer to the GMSH user’s manual23.

If the .geo file is loaded in GMSH , selecting the ‘mesh’ tab will bring up the meshing

interface in the GUI. We are working with two dimensional surfaces, but they can be ori-

entated in any three dimensional arrangement, so we select the ‘3D’ meshing option. This

will generate a mesh on the defined physical surface. The .msh format saves the mesh data

84



----------------------------------------------------

// Gmsh project created on Mon Apr 14 12:37:35 2008

Point(1) = {0,0,0,0.1};

Point(2) = {1,0,0,0.1};

Point(3) = {1,1,0,0.1};

Point(4) = {0,1,0,0.1};

Line(1) = {1,2};

Line(2) = {2,3};

Line(3) = {3,4};

Line(4) = {4,1};

Line Loop(5) = {1,2,3,4};

Plane Surface(6) = {5};

Physical Surface(100) = {6};

Physical Line(10) = {1};

Physical Line(11) = {2};

Physical Line(12) = {3};

Physical Line(13) = {4};

-----------------------------------------------------

Table 4.2: Example .geo file for a square geometry in GMSH

in columns of node data, followed by columns of element data. This will be explained in

further detail in Section 4.2. The meshing algorithms implemented by GMSH will generate

an unstructured triangular grid. The size of the individual elements will vary according

to the characteristic length of the nearest specified geometry point. With this we are able

to create variable sized elements within our surface. The computational savings of having

unstructured, variable sized mesh elements will be illustrated in Chapter 5. An example

of a mesh for a unit square is given in Figure 4.2 while an excerpt from the .msh file is in

Table 4.3. The general format for a .msh file consists of the general components as shown

in Table 4.4. For the element listing line in Table 4.4, Elm-number refers to the element

identifier, elm-type references the type of element. Type 1 is a line. Type 2 is a triangle23.

GMSH has 31 distinct types of finite element objects, but we only use the simplest order of

lines and triangles. number-of-tags is always 3 in this version of GMSH . This sets up the

next three numbers to follow. The first digit is the physical identifier tag assigned from the

geometry file. The second digit refers to the geometry identifier number again assigned in

the geometry file. The third tag is always zero for this version, with possible relevance if

there were volumes in the model. After the tags have been listed, the nodes are listed, two

for a line and three for a triangle. Node ordering for a triangle is a right handed coordinate

85



Figure 4.1: Screen capture from GMSH displaying a unit square geometry.

system.

Referencing the GMSH user’s manual23 again, the ordering for nodes for lines and trian-

gular elements are presented in Table 4.5.

4.2 Parsing mesh files

Once the mesh file has been saved it is ready to be read by TRANSEDDY . From the command

prompt, the user only needs to enter the file name for the mesh without the file extention.

TRANSEDDY will now use the mesh file name as the key for creating output files and folders.

86



Figure 4.2: Screen capture from GMSH showing a meshed unit square.

4.2.1 Reading mesh data

A function was written to read in the .msh file and store the data in arrays in memory. The

format for the mesh file helps us in this process as the total number of nodes and elements

are stated prior to the actual listings. The function readmesh takes a string for the file

name, and pointers to matrix data structures for locations to store the node data and the

element data as inputs.

void readmesh(string inname, Matrix& nodedata, Matrix& elemdata)

The function then begins to read the file. Following the format of the .msh file, readmesh

reads in each comment line beginning with the $ symbol, checks to see if it is proper, then

87



-------------------------------------------------

$MeshFormat

2 0 8

$EndMeshFormat

$Nodes

113

1 0 0 0

2 1 0 0

3 1 1 0

4 0 1 0

5 0.1111111111108444 0 0

...

112 0.9487268238852733 0.9377452106882056 0

113 0.07447428536744624 0.07529042718247041 0

$EndNodes

$Elements

224

1 1 3 10 1 0 1 5

2 1 3 10 1 0 5 6

...

224 2 3 100 6 0 58 113 102

$EndElements

-------------------------------------------------

Table 4.3: Example .msh file for a square geometry in GMSH

discards. When the parsing of the file reached the total number of nodes, a function call is

made to resize the node data matrix. A loop then cycles through the nodes until the final

node has been reached, then stores the node identifier number and it’s three coordinates as

doubles (doubles are double precision variables in C++).

The function then begins a similar process for storing elements beginning with resizing

the storage matrix. The data that is saved consists of the element identifier, element type,

physical object and geometry object identifiers, and finally the member nodes. At this point,

the data structure of elements contains both lines and triangles. From the line data we will

be able to extract which nodes are fixed on the lines designated as the ‘current’ entry and

exit. The triangle information will be used to construct the finite element solution space.

4.2.2 Extracting edge data from triangle data

A function was written to separate the lines and triangles from the elements data structure,

and store them in their respective data arrays.

void parseElements(const Matrix& elemdata, Matrix& triangles, Matrix& lines)

88



-------------------------------------------------

$MeshFormat //comment line to indicate GMSH version to follow

2 0 8 //GMSH version number

$EndMeshFormat //comment line to end GMSH version identifier

$Nodes //comment line to indicate start of node listing

N //total number of nodes

node_number_1 X_coord Y_coord Z_coord

...

node_number_N X_coord Y_coord Z_coord

$EndNodes //comment line to indicate end of node listing

$Elements //comment line to indicate start of element listing

M //total number of elements

//Elm-number elm-type number-of-tags < tag > ... < node-number-list >

1 1 3 10 1 0 1 5

//line 1 belongs to phys-obj 10, geo-obj 3, and is bound by nodes 1 and 5

..

37 2 3 100 6 0 40 29 30

//triangle 37 belongs to phys-obj 100, geo-obj 6,

//and is bound by nodes 40, 29 and 30

..

$EndElements //comment line to indicate end of element listing

-------------------------------------------------

Table 4.4: General Format for a *.msh file in GMSH , adapted from the GMSH User’s Manual23

The function sorts through the elements structure, keeping a running count, until the

element type identifier changes from 1 to 2. These correspond to GMSH ’s built-in element

identifier scheme as described in Section 4.1. With the number of lines extracted, the number

of triangles can be found taking the total number elements and subtracting the number of

lines. The new storage matrices for lines and triangles are now resized to their respective

length and then the element matrix is divided among them.

The storage matrix of line data is only useful as a means of identifying nodes that are

to be fixed in the numerical Poisson’s equation solver. To build the coefficient matrices

that will be used in solving Poisson’s equation and implementing the integral equation

solution for eddy currents, the edges must be extracted from the list of triangles. The

functions in Table 4.6 were written to extract the individual edges from the list of triangles.

ExtractEdges cycles through the list of triangles and checks each edge of the triangle with

the list of edges already found. This is accomplished by calling the function edgealready

which returns a certain value if the edge exists in the list of edges. If it hasn’t been found

so far, the new edge is added to list.

The edge data consists of the nodes at ends, the three component values of the unit

89



-------------------------------------------------

Line:

0----------1 --> u

Triangle:

v

^

|

2

|‘\

| ‘\

| ‘\

| ‘\

| ‘\

0----------1 --> u

-------------------------------------------------

Table 4.5: Node numbering for lines and triangles in GMSH , taken from the GMSH User’s
Manual23

-------------------------------------------------

void ExtractEdges(const Matrix& Triangles, const Matrix& Nodes, Matrix& Edges)

int edgealready(int nodea, int nodeb, const Matrix& Edges)

void edgehat(Matrix& Edges)

-------------------------------------------------

Table 4.6: Function prototypes for edge data extraction.

90



-----------------------------------------------------

0.00E+000 0.00E+000

3.00E-006 1.87E-001

6.00E-006 3.68E-001

9.00E-006 5.36E-001

1.20E-005 6.85E-001

1.50E-005 8.09E-001

1.80E-005 9.05E-001

2.10E-005 9.69E-001

2.40E-005 9.98E-001

2.70E-005 9.92E-001

3.00E-005 9.51E-001

3.30E-005 8.76E-001

3.60E-005 7.71E-001

3.90E-005 6.37E-001

4.20E-005 4.82E-001

4.50E-005 3.09E-001

4.80E-005 1.25E-001

5.10E-005 0.00E+000

-----------------------------------------------------

Table 4.7: Sample data for a half period of a 10 kHz sinewave as used for

vector of the edge, and a list of the triangles it belongs to. The unit vector of the edge is

used later in the formulation of the [P ] matrix. When stuffing the edge matrix with values,

the unit vector is first filled with the vector from the first ordered node to the second. Then

using function edgehat, the vector is scaled to unit values.

4.3 Reading time–voltage data for time stepping

To allow for the most flexibility to transient time-voltage input signals, TRANSEDDY has been

written to read from a file the two column data for the time and voltage values. The time

step size for the time-stepping solution is taken directly from the file. Additionally, this

method allows for future flexibility if non-linear time steps are desired, as well as the ability

to implement a print-step identifier.

void readVfromfile(string inname, Matrix& Vsource);

A sample data file for half a sine wave at 10 kHz is presented in Table 4.3 in the raw

data format and as a plot in Figure 4.3.

The function opens the data file for reading, then pushes the data onto the data structures

until the end of file has been reached.

91



Figure 4.3: Plot of a sample time-voltage data file ’voltage.dat’ for a half sinewave at 10
kHz

4.4 Construction of coefficient matrices

The coefficient matrices are described mathematically in Chapter 3, Section 3.4 by eq.(3.57)

through eq.(3.62). All the coefficient construction functions share a common structure.

They all have a nested for loop structure to cycle through the elements being referenced,

either edges or nodes, or both. There is an evaluation section to identify if the nodes or

edges in question belong to the same particular triangular element, and finally a function

call to an integration function that actually carries out the math to evaluate the coefficient

for each matrix location. Each function to evaluate the integrals of basis functions requires

the use of the transformation matrix.

Matrix Transformation(Matrix coordinates);

This function takes in the nine coordinates of the triangle element’s nodes and returns

a matrix containing the triangle’s coordinates transformed to the first quadrant of the x–y

plane.

92



4.4.1 Building the [C] matrix

The [C] matrix, which is used in the iterative solution to Poisson’s equation, is nodes, by

nodes in size, square, symmetric and sparse. It is constructed with the buildCmat function

call. The function cycles through three nested ‘for’ loops. The outer loops cycle through the

nodes, and the inner loops cycles through the triangles. For each element of [C], the inner

loop checks to see if i and j are both members of the current triangle. The function ismember

checks as to whether or not the node is a member of the particular triangular element. It

returns an integer identifier. This identifier corresponds to the location on the local triangle

of which the node is found, or zero if the node is not a member. If both nodes i and j return

integer values, then they belong to the same element, and a contribution to the term Cij

is produced by the integral over the triangle of the gradients of the basis functions. The

function IntGradPhiGradPhi performs the integration by inserting the relevant coordinates

of the triangle and the node locations into the formulas for the analytic integral derived in

Chapter 3 Section 3.6. While there isn’t a section for the mathematical derivation of the

[C] matrix, careful examination will show that the integration of the gradient of the nodal

basis functions is the same as for the [D] matrix formulation. The function prototypes used

to construct the [C] matrix are found in Table 4.8. Provided conductivity is constant in

the solution space, [D] and [C] can be used interchangeably. Once the conductivity changes

due to the problem specification, they are treated separately. For the simplified case of a

constant and homogeneous conductivity, only use the [D] matrix to save computation time.

-------------------------------------------------

void buildCmat(const Matrix& nodedata,const Matrix& elemdata,

SymmetricMatrix& Cmat);

int ismember(const Matrix& elementdata, int nodei, int element)

double IntGradPhiGradPhi(int T,const Matrix& tridata,

const Matrix& nodedata, int Nid1,int Nid2)

-------------------------------------------------

Table 4.8: Function prototypes used to construct the [C] matrix in TRANSEDDY .

93



4.4.2 Building the [S] matrices

The [S] matrix is of the size edges by edges and is square, symmetric and sparse. To construct

individual elements, Sij another nested ‘for’ loop structure was coded into BuildSmat. In

order to save computation time, there is no inner loop to sort through triangles and return

edge membership. The storage matrix of edges has been appended to contain membership

information. For a single element, Sij, there is no need to again sort through all the triangles

and perform comparison checks. Edge i and edge i compare membership data, and where a

commonality exists, then the integration of the shape functions over that particular triangle

is performed with the function IntShapeFunction. The reduction of three loops down to

two created a savings in operational time for this function of O(n3) down to O(n2).

The function IntShapeFunction takes as its inputs the addresses of the storage matrices,

as well as identifiers for the specific triangular element and the edges to be evaluated. An

integer identifier also is input which informs the function of what combination of edges for

the local triangle are to be evaluated. The function then performs the triangle coordinate

transformation and evaluates the integral of the shape functions over the triangular region.

There are actually two [S] matrices. The normal one does not include the resistivity in

it’s formulation, and the other does. This matrix is called the [pS] matrix in code. They are

both created in BuildSmat by simply adding a multiply statement to the inner loop for the

[pS] matrix. When the conductivity of the material is allowed to change with time, the [pS]

matrix will require reconstruction taking in to account the new material properties, while

the [S] matrix is independent of material properties and is a function of geometry only. The

same function can be used to reconstruct only the [pS] matrix by adding an argument to

the function call to selectively rebuild only [pS].The function prototypes used to construct

the [S] matrix are found in Table 4.9.

94



-------------------------------------------------

void BuildSmat(const Matrix& tridata, const Matrix& edgedata, const Matrix& nodedata,

SymmetricMatrix& Smat,SymmetricMatrix& pSmat,const Matrix& conductivity);

int edgeoftriangle(int T,const Matrix& tridata,int E, const Matrix& edgedata);

double IntShapeFunction(int T,const Matrix& tridata,int E1,int E2,

const Matrix& edgedata,const Matrix& nodedata, int Eid1,int Eid2);

-------------------------------------------------

Table 4.9: function prototypes used to construct the [S] and [ps] matrices in TRANSEDDY .

4.4.3 Building the [G] matrices

The [G] matrix is edges by nodes in size, and sparse. It links edge terms with the gradients of

nodal values, as such it is not a square matrix. The [G] matrix, like the [S] in the previous

section, also has two forms, one with the material conductivity and one independent of

material conductivity. The function BuildGmat is a nested for loop consisting of an outer

loop of the edges, with an inner loop of the nodes. A third loop is not needed for searching

through triangles when edge membership information is included with the edge storage

matrix. The inside loop only need to check to see if the current node belongs to the

triangle parent of the edge and evaluate the interior integral accordingly. The function

IntShapeGradPhi performs the integral over the triangle for the combination of edge shape

functions and nodal basis functions. The [cG] matrix is a separate matrix of the same

information, with the exception that material properties are present inside the evaluation

of the integrals for each sub-volume. In the case of constant conductivity, [cG] appears is

if we multiplied the conductivity to every term in [G]. When conductivity is not constant,

each element’s conductivity contributes to the individual terms of the matrix separately.

The function prototypes used to construct the [G] matrix and the [cG] matrix can be found

in Table 4.10. As with the case of the [pS] reconstruction in the case that conductivity is

allowed to change with time, [cG] would also need to be rebuilt. The same function can be

used, with the addition of an argument to the function call to selectively rebuild only [cG].

95



-------------------------------------------------

double IntShapeGradPhi(int T,int M, const Matrix& tridata,

const Matrix& edgedata,const Matrix& nodedata, int Eid1,int Nid2);

void BuildGmat(const Matrix& tridata, const Matrix& edgedata,

const Matrix& nodedata, Matrix& Gmat,Matrix& cGmat,const Matrix& conductivity);

-------------------------------------------------

Table 4.10: Function prototypes used to construct the [G] matrix and the [cG] matrix in
TRANSEDDY .

4.4.4 Building the [D] matrix

The [D] matrix is nodes by nodes in size and is square, symmetric, and sparse. This matrix

is used when calculating the “eddy voltage”. It contains material conductivity information.

For the case of constant conductivity, this matrix is the same as the [C] matrix discussed

earlier. buildDmat has the now familiar nested ‘for’ loop structure with the outside loops

cycling through nodes and the inner loop through triangles. This function multiplies the

result of the integral over the triangle of the nodal basis functions by the material conduc-

tivity of each respective element. Function prototypes used to construct the [D] matrix can

be found in Table 4.11.

-------------------------------------------------

double IntGradPhiGradPhi(int T,const Matrix& tridata,

const Matrix& nodedata, int Nid1,int Nid2);

void BuildDmat(const Matrix& tridata, const Matrix& nodedata,

SymmetricMatrix& Dmat, const Matrix& conductivity);

-------------------------------------------------

Table 4.11: Function prototypes used to construct the [D] matrix in TRANSEDDY .

4.4.5 Building the [P] matrices

The [P ] matrix is edges by edges in size, square, but not necessarily symmetric. It is a

dense matrix with a non-zero term in every location. The [P ] matrix represents the physical

interaction of currents in the solution surface with the observation edges electrical current.

There could be separate [P ] matrices for the source current and the eddy current densities

if they are contained in separate bodies. For the cases of self-consistent current density

96



in a thin conductor, these bodies are the same, therefore we only need one matrix for

the conductor geometry. As for the case of the [S] matrix, the [P ] matrix consists of a

nested ‘for’ loop structure, looping through every edge in each loop. Each edge in the inner

loop adds to each individual term of Pij for every triangular element to which it belongs.

This integral has the potential to have a singularity when the observation edge and the

target edge share the same element. A function to evaluate the monomial over a triangular

region, as described in Chapter 3 Section 3.6.4 was adapted from the numerical quadrature

algorithm TOM61250, 51, 52 by K. H. Carpenter and implemented in C++. A wrapper function

was written to generate the proper input form required by the greenint2dtri function.

Function prototypes used to construct the [P ] matrix are listed in Table 4.12.

-------------------------------------------------

void BuildPmat(const Matrix& tridata, const Matrix& edgedata,

const Matrix& nodedata, Matrix& PMat);

double IntShapeGreen(int T,const Matrix& tridata,int P,int Edge,

const Matrix& edgedata,const Matrix& nodedata,int edgeid);

double greenint2dtri_wrapper(const Matrix& vertex,const Matrix& field,int xp, int yp );

-------------------------------------------------

Table 4.12: Function prototypes used to construct the [P ] matrix in TRANSEDDY .

4.5 Solution of Laplace’s equation

The Laplace Equation is solved by means of the iteration method19. This makes use of the

[C] matrix, which we note is the same as the [D] matrix for cases of constant and uniform

conductivity.

To solve Laplace’s equation,

∇2V = 0 (4.1)

with finite elements, we again start with the basic definitions from the finite element ap-

proximation of the function. We can write the value of the voltage V (~r) with in a particular

triangular element on the finite element mesh as a sum of the value of V and the nodal basis

functions evaluated at the point ~r.

97



V (~r) =
3∑
i=1

Viφi(~r) (4.2)

Sadiku19 states that the energy functional for the Laplace equation is

F (V ) =
1

2

∫
s

[
ε|∇V |2

]
dS (4.3)

where F (V ) represents the total per energy per unit area within an element. The terms under

the integral correspond to the energy density in the electrostatic system, 1
2
D ·E = 1

2
ε|∇V|2.

The functional in eq.(4.3) can be written in terms of the finite element approximations

for V as

F (V ) =
1

2

3∑
i=1

3∑
j=1

εVi

[∫
∇φi · ∇φjdS

]
Vj (4.4)

and in matrix form is expressed as

F (V ) =
1

2
ε[V ]t[C(e)][V ] (4.5)

where, similarly to the definition of the [D] matrix from eq.(3.61) and described in Sec-

tion 4.4.1 the individual elements of the [C] are defined as

C
(e)
ij =

∫
∇φi · ∇φjdS (4.6)

.

A term for the energy functional across all ‘N’ elements ‘e’ in a finite element solution

region can be expressed as the sum of the individual energy functionals.

F (V ) =
N∑
e=1

F (Ve) =
1

2
ε[V ]t[C][V ] (4.7)

[V ] is a column matrix of values of Vi. The functional is now minimized by differentiating

by φi and setting the result equal to zero.

In order to solve this minimization process, we chose the iterative method. The advantage

of the iterative method over the band matrix method19 is that for sufficiently large matrices

98



of [C], there are less computer operations in the iterative method due to the necessity to

invert the matrices in the band matrix method. Matrix inversion for large matrices can be

a lengthy process19.

The general form of the functional in matrix notation appears as

F =
1

2
ε
[
V1 V2 V3 . . . Vn

]

C11 C12 C13 · · · C1n

C21 C22 C23 · · · C2n
...

...
. . .

...
Cn1 Cn2 Cn3 · · · Cnn



V1

V2

V3
...
Vn

 . (4.8)

We can easily see we can minimize the energy by taking the partial derivative of F by

the individual electric potentials and setting that equal to zero,

∂F

∂Vi
, i = 1, 2, . . . , n. (4.9)

What we have left is a general expression for solving the electrical potential at all the

nodes based on its neighbors. For a general free node voltage Vk we have

Vk = − 1

Ckk

n∑
i=1;16=k

ViCki (4.10)

The iterative solution can be implemented by assigning the fixed node voltages, making

initial guesses for the free node values, and calculating the energy functional. Then the

free nodes are replaced by the summation in eq.(4.10). At this point the energy functional

is calculated again by eq.(4.7). A comparison is made between the two energies, and if

the change in energy is less than a prescribed error tolerance, then we say that we have

converged to a minimum energy state and have the solution to ∇2V = 0 on the solution

surface. The tolerance is set by the user to the desired accuracy. If the change in energy is

not less than the error tolerance, then the free nodes are again calculated from the previous

results and the fixed nodes. This cycle repeats until the error is less than the set tolerance.

99



4.5.1 The addition of Successive Overrelaxation (SOR) to the so-
lution of Laplace’s equation

For large meshes, the number of iterations required to reach the minimized error limit can

be vary large, requiring a lot of computational time. In an effort to reduce the number of

iterations, Successive Overrelaxation55 (SOR) was implemented in the iterative solver. SOR

increases the speed of convergence for the iterative process by the addition of an acceleration

term α to eq.(4.10), which then becomes

φnk(t) = −α 1

Ckk

e∑
i=1;16=k

φn−1
i Cki + (1− α)φ

(n−1)
k (4.11)

where ‘n’ is the iteration step and ‘e’ is is the number of nodal elements. To accelerate the

convergence of the solution the value of the acceleration term should be 1 < α < 2. A value

of α larger than 2 can cause the successive iterations to become unstable. The larger the

mesh size, the more SOR improves computation time to convergence.

It is possible that α is too large and causes a fluctuation in the convergence rate where

the value of the residual increases rather than decreases between steps. For a mesh with

‘n’ nodes, there will be an optimum value for α where the residual steadily drops to it’s

minimum value (or the error tolerance limit we set). Without being able to solve for the

optimum value for any possible mesh which could be used as an input to the program, we

implemented a test for the proper sizing of α and a SOR reduction percentage. This test

compares the residual from the last iteration to the newest iteration. If the residual has

increased, α is multiplied by a percentage to reduce it’s value for the next iteration.

In this way, we do not need to know the optimum value for α to accelerate the iterative

solutions convergence. We can overestimate α to begin with, and allow it to be reduced to

the approximately the proper size.

To implement the solution of Laplace’s equation in TRANSEDDY several functions were

written, the prototypes for which can be found in Table 4.13.

InitVT takes as its inputs the storage matrices of the node data, line data, node voltages,

and the numerical value for the voltage at the fixed nodes, and the identifiers of which lines

100



-------------------------------------------------

void InitVT(const Matrix& nodedata,const Matrix& lines,

Matrix& V,double voltage,int fixed, int ground);

void SolveV(const Matrix& Cmat, Matrix& V, double error);

double CalcW(const Matrix& Cmat,const Matrix& V);

void iterateV(const Matrix& C, Matrix& V);

-------------------------------------------------

Table 4.13: Function prototypes for functions used in the solution of Laplace’s equation
in TRANSEDDY .

are the fixed voltage and ground potentials. The function then sorts through the nodes and

assigns an identifier whether it is a fixed or free node. If it is a fixed node, the voltage is

then assigned from the source file.

SolveV performs the iterative solution to the minimization of the energy functional in

eq.(4.7) via the spatial averaging represented by eq.(4.10). First a base line value for the

energy is required. An initial value is found via the CalcW function. Next it performs the

averaging. CalcW is called on the processed voltage data, and a comparison of the values

from the previous state is made. If this is found to be greater than the prescribed error, the

process will repeat until such a time as the change in the energy states is less than the error

term. Appended to this function is the process of reducing the SOR factor if the residual

has not decreased from the previous step.

CalcW performs the calculation of the energy functional in eq.(4.7) via matrix multipli-

cation and returns the result.

iterateV implements the averaging of the nodal voltage values according to the [C]

matrix coefficients. Successive Overrelaxation is implemented here to accelerate the rate of

convergence for the iterative Laplace solver.

4.6 Time-stepping solution for eddy current

After the coefficient matrices have been built we are ready to begin the time-stepping solu-

tion for the total current density. The length of the input time/voltage data storage matrix

determines the number of steps. Figure 4.4 presents the flow of the time stepping process

101



graphically, including what steps would be required to add in order to perform conductivity

changes due to Ohmic heating of the conductor.

The process begins by initializing the storage vector of source voltages to the new im-

pressed value for the fixed nodes as specified by the source file. Next the iterative solution

for the Poisson Equation is performed by the function SolveV. To solve for the source

current from the source voltage we need to take the gradient of the voltage multiplied by

negative one and the conductivity. This step is accomplished via matrix manipulation with

the stiffness and the gradient matrices.

Jsource=Smat.i()*(-1.0*cGmat*V.column(1));

With the new source current provided, and previous time quantities either initialized

to zero, or existing from previous steps, we solve for the prediction current. We see that

eq.(3.53) reduces to a linear system, Ax = b, with x being the vector of edge values of the

prediction current, [A] is from the combination the [S] matrices;

(θτ [pS]) + (µ[S][P ]).

The right hand side of eq.(3.53),

µ0[S]{[P0]{it−1
e } − [Pe]{it0 − it−1

0 }} − (1− ω)τρ[S]{it−1
e } − τ [G]{V t−1}

reduces to a column vector, ‘b′. To solve Ax = b, we perform a LU decomposition56 on

this matrix. The LU Decomposition is accomplished in NEWMAT by the declaration of a

Croutmatrix A. When A is initialized, a LU decomposition is performed automatically. In

an optimization revision, the LU decomposition was performed with the LAPACK Library.

The stepped change in the eddy voltage is solved with a similar matrix algebra. In this

case the [D] matrix has the LU decomposition performed on it. The correction current also

requires LU decomposition for solution. Now that we have the prediction and correction

currents, they are simply added together to arrive at the eddy current for the current time

102



Solve (σV0) = 0

Solve for Jsource

Solve for Jpredict

Solve for Ve-step

Solve for Jcorrect

Jeddy =Jpredict +Jcorrect 

Jtotal =Jeddy +Jsource 

Update time stepped quantities
            Veddy =Veddy+Ve-step

               Jsource_0 =Jsource

                 Jeddy_0 =Jeddy

Final Time-Step?

Yes
No

time = time + ∆t

Exit

Print Outputfiles
Calculate conductivity 
dependencies

Update Conductivity as 
a function of dependencies

Rebuild Material Dependent 
Coefficient Matrices

Begin Time-Stepping

To add changing conductivity
due to ohmic heating of material
these additional steps need to be
added to the time-loop.

Figure 4.4: Flowchart for the time-stepping solution of the total current density. To
implement time changing conductivity due to ohmic heating, additional steps for calculating
the conductivity dependencies and then the conductivity as a function of those dependencies
would be required.

103



-----------------------------------------------------

for(i=1;i<=Vsource.Nrows();i++){//------Solve given current from SS voltage

InitVT(nodes,lines,V,Vsource(i,2),fixed,ground);

cout<<"|----------time step "<<i<<" -----------|"<<endl;

cout<<"|-----Solving V_0 for t="<<Vsource(i,1) <<endl;

SolveV(Dmat,V,error);

cout<<"|-----Solving for Jsource---------|"<<endl;

Jsource=Smat.i()*(-1.0*cGmat*V.column(1));

//------build and solve for Jpredict Ax=b x=A.i()*b

cout<<"|-----Solving for Jpredict--------|"<<endl;

CroutMatrix A = (Theta*timestep*pSmat)+(MU*Smat*Pmat);

b=MU*Smat*( (Pmat*Jeddy_0) - (Pmat*(Jsource-Jsource_0)) );

b = b - (1.0-Theta)*timestep*(pSmat*Jeddy_0);

b = b - timestep*(Gmat*Veddy);

Jpredict=A.i()*b;

cout<<"|-----Solving for Vestep----------|"<<endl;

Vestep = Dmat_test.i()*(Gmat.t()*Jpredict);

cout<<"|-----Solving for Jcorrect--------|"<<endl;

Jcorrect=-1.0*Smat.i()*cGmat*Vestep.column(1);

cout<<"|-------Jeddy = Jp + Jc-----------|"<<endl;

Jeddy=Jpredict+Jcorrect;

cout<<"|-----Adding total current--------|"<<endl;

Jtotal=Jsource+Jeddy;

cout<<"|------updating variables---------|"<<endl;

Veddy=Veddy+Vestep;

Jsource_0=Jsource;

Jeddy_0=Jeddy;

outname=innameroot+"/Jtotal_t_"+int2string(i)+".pos";

WritePosVTJ(Jtotal,nodes,triangles,edges,outname);

cout<<" file "<<outname<<" saved"<<endl;

} //End time stepping loop

-----------------------------------------------------

Table 4.14: Sample C++ code for the time-stepping process.

step. The total current density then is the addition of the eddy and source currents.

The next procedures in the time-stepping process are to update the eddy voltage, and

promote the source and eddy currents to the previous time step label and write any output

files for this time step. A reduced sample of C++ code for the time-stepping process is

shown in Table 4.14.

4.7 Generating output files

To get data out of TRANSEDDY suitable for plotting with GMSH , several file formatting func-

tions were formulated. GMSH has a native output file format, *.pos. This file format consists

of several key words and then series of data in appropriate order. The two formats which

104



we make use of are scalar triangle, ‘ST’, and vector triangle, ‘VT’.

GMSH recognizes triangular elements and nodal interpolation of functions across the tri-

angular elements. For a scalar function to be plotted on the triangular mesh, all that needs

to be generated is a listing of triangles by nodes and values at those nodes. The first line

contains the name for the view title in GMSH in quotes. within brackets the triangle listings

start with the keyword first. For a scalar triangle, the key is ‘ST’. Following this, in paren-

thesis separated by commas are the x, y, and z coordinates of the nodes in right handed

orientation. Finally, in brackets, separated by commas are the scalar values on the nodes,

listed in right hand numbering order. A sample section of a formatted scalar triangle .pos

can be found in Table 4.15.

-----------------------------------------------------

View " Vsource.pos " {

ST(0.04099557342,0.9590680501,0,0,1,0,0,0.9473684211,0)

{0.03371601599,0,0.04376288132};

ST(0.05263157895,1,0,0,1,0,0.04099557342,0.9590680501,0)

{0,0,0.03371601599};

...

ST(x1, y1, z1, x2, y2, z2, x3, y3, z3){V1, V2, V3};

}

-----------------------------------------------------

Table 4.15: Sample syntax for a formatted scalar triangle .pos output file

To plot vector data on a triangular mesh, we use the keyword, ‘VT’, for vector triangle.

The same format is followed, with the exception that we now have three vector components

for each node on the triangular element. GMSH does not have the functionality to plot edge

values on a triangular mesh and have the program interpolate the data correctly. To solve

this limitation, for each triangle, we evaluate the vector values at the nodes based on the

edge values, and report those values to GMSH . A sample listing for vector data can be found

in Table 4.16. As the raw information from the solver is actually values associated with the

edges of the triangular elements, it may be useful to view the actual edge values. For this

a formatting function was written to output the data on the edges alone. GMSH uses the

keyword ‘VL’, or Vector Line to plot the data on the lines of the mesh. This is accomplished

by writing out a line for each edge, with the value of the vector component on each node of

105



-----------------------------------------------------

View " Jtotal_t.pos" {

VT(0.08305545794,0.8408118784,0,0,0.8888888889,0,0,0.7777777778,0)

{0.05030431094,2573.657425,0,0.1578674736,2573.843246,0,-0.09072249495,2573.843246,0};

VT(0.0740327381,0.3206248163,0,0,0.3333333333,0,0,0.2222222222,0)

{-0.03880048271,2573.883753,0,-0.007712838458,2574.064852,0,-0.2795134492,2574.064852,0};

...

VT(x1, y1, z1, x2, y2, z2, x3, y3, z3){Ex1, Ey1, Ez1, Ex2, Ey2, Ez2, Ex3, Ey3, Ez3};

}

-----------------------------------------------------

Table 4.16: Sample syntax for vector data formatted on triangular elements in a .pos

output file

the line. A sample section of a Vector line formatted .pos file can be found in Table 4.17.

-----------------------------------------------------

View " Jsource_e.pos " {

VL(0.08305545794,0.8408118784,0,0,0.8888888889,0)

{-1115.787348,645.8783242,0,-1115.787348,645.8783242,0}

VL(0,0.8888888889,0,0,0.7777777778,0)

{-0,2573.451938,-0,-0,2573.451938,-0};

...

VL(x1, y1, z1, x2, y2, z2){Ex1, Ey1, Ez1, Ex2, Ey2, Ez2};

}

-----------------------------------------------------

Table 4.17: Sample syntax for vector data formatted on line elements in a .pos output
file

The last information formatting function that we could make use of would be to plot

the value of the conductivity (or resistivity) on the triangular mesh. As the conductivity is

treated as a zero-order element (constant on the surface of an individual triangular element)

we can use the Scalar Triangle keyword for plotting, and assign the value for the triangle to

each node. A sample section of the .pos file can be found in Table 4.18.

Function prototypes for output file formatting functions can be found in Table 4.19.

4.8 Coding scheme for changing conductivity as a func-

tion of specific action

Conductivity is currently implemented as a constant for the entire mesh. However a few

simple changes can be made to allow for inhomogeneous conductivity on the solution surface.

106



-----------------------------------------------------

View " Conductivity.pos " {

ST(0.08305545794,0.8408118784,0,0,0.8888888889,0,0,0.7777777778,0)

{1000000,1000000,1000000};

ST(0.0740327381,0.3206248163,0,0,0.3333333333,0,0,0.2222222222,0)

{1000000,1000000,1000000};

...

ST(x1, y1, z1, x2, y2, z2, x3, y3, z3){c,c,c};

}

-----------------------------------------------------

Table 4.18: Sample syntax for scalar data formatted on triangular elements in a .pos

output file.

-----------------------------------------------------

void WritePosST(const Matrix& V,const Matrix& nodedata,

const Matrix& triangledata, string outname );

void WritePosSTZ(const Matrix& conductivity,const Matrix& nodedata,

const Matrix& triangledata, string outname );

void WritePosVL(const Matrix& E,const Matrix& nodedata,

const Matrix& edgedata, string outname );

void WritePosVT(const Matrix& V,const Matrix& nodedata,

const Matrix& Tridata, string outname );

void WritePosVTJ(const Matrix& J,const Matrix& nodedata,

const Matrix& Tridata,const Matrix& edges, string outname );

-----------------------------------------------------

Table 4.19: Function prototypes for output file formatting functions.

Conductivity is stored in a storage vector with reference locations corresponding to the list

of triangles. Various models exist for describing the resistivity of a metal as a function of

temperature, power dissipation, or specific action57, 58 Depending on the particular solution

method, a function can be written to calculate the electrical power in each element. We

have to total current at each time step, therefore it would be a short step to evaluate the

integral of the square of the currents for each triangle. Power is the square of the current

times the resistance. With power per element, we could calculate a thermal rise, and then

a new conductivity. Similarly, specific action links the time integral of the square of the

currents directly to resistivity57, 58. If changes in material properties are added, then several

of the coefficient matrices require reformulation due to the conductivity falling under the

integral for individual elements. This would greatly add to the time required to solve any

time-stepped simulation.

107



4.9 Command-line entry operation

TRANSEDDY has been implemented with a command-line entry mode. When the program is

executed, the program prompts the user for the name of the target mesh filename without

the file extention. The user is then prompted for the name of the voltage data file. Successive

overrelaxation (SOR) has been implemented within the iterative Laplace equation solver,

and the user is prompted for a value for the SOR value (between 1 and 2). The final user

prompt is to identify which lines from the geometry file correspond to the current entry and

exit. After this, the program is running without any more user interaction. Time stamp

data is printed to the screen for user gratification. Selected output from a test of TRANSEDDY

is shown in Table 4.20.

108



-----------------------------------------------------

todd@todd-linux:~/transedd/test$ ../transeddy

|-----------Data Entry------------|

Input mesh file name without extension: (of type *.msh)

> test1

Mesh file test1.msh read successfully.

Enter voltage source data file name with extention of text

file type two column data | time voltage |

>voltage.dat

Data file voltage.dat read successfully

Enter SOR value (=>1, < 2):1

Using SOR value = 1

|----Label Dirichlet boundaries---|

Enter integer number identifier for physical line with fixed potential

>1

Enter integer number identifier for physical line with ground reference potential

>3

|---------------------------------|

| Processing mesh file |

| ..Parsing elements.. |

| ..Extracting edges.. |

|---------------------------------|

|--Building coefficient matrices--|

|---------------------------------|

| |

| Building [S] matrix |

progress time 2 seconds

| Building [G] matrix |

progress time 3 seconds

| Building [D] matrix |

progress time 3 seconds

| Building [P] matrix |

progress time 7 seconds

|---------------------------------|

|----------time step 1 -----------|

|-----Solving V_0 for t=0

solution took 0 iterations

progress time 7 seconds

|-----Solving for Jsource---------|

progress time 7 seconds

|-----Solving for Jpredict--------|

progress time 7 seconds

|-----Solving for Vestep----------|

progress time 7 seconds

|-----Solving for Jcorrect--------|

progress time 7 seconds

|-------Jeddy = Jp + Jc-----------|

|-----Adding total current--------|

|------updating variables---------|

file test1_outputfiles/Jtotal_t_1.pos saved

...

...

|------updating variables---------|

file test1_outputfiles/Jtotal_t_2.pos saved

Transeddy completed, program took 7 seconds

-----------------------------------------------------

Table 4.20: Example screen output from TRANSEDDY .

109



Chapter 5

Testing and validation of Transient
current conduction code

A series of test cases were run to validate the transient current density solver. Validation is

done by verification of adherence to electromagnetic theory and to similar performance with

other solvers for simple cases. The test strip line from Chapter 2 was been recreated with

GMSH and simulated with TRANSEDDY . Comparisons of ‘AC’ conduction skin effects, and of

transient performance have been performed and the results are presented below.

5.1 Simple conducting square

The first test to verify proper execution of the time stepping methodology was to apply the

program to a unit square with a voltage input signal or a ramp. A coarse mesh for the test

can be found in Figure 5.1. This test mesh is fine enough to be able to evaluate the eddy

current density solution, yet coarse enough that the program will complete quickly.

The initial test case for the evaluation of the time-stepping functions was a ramp of

voltage from zero to one, in one time step. A graphical representation for the input file is

presented in Figure 5.2

The source voltage distribution on a square with opposite ends held to zero and one

volts respectively, has a trivial analytic solution. The voltage has a constant gradient with

respect to the y direction and zero gradient along the x axis. The iterative solver used in

110



Figure 5.1: Screenshot from GMSH of a meshed square used in testing

TRANSEDDY produces this result with some residual error which will be more noticeable in

the plot of the source current density once the gradient of the voltage has been calculated.

A plot of the voltage on the test square mesh can be found in Figure 5.3.

With the application of the matrix algebra which implements the gradient of voltage,

we arrive at the source current density, ~Js on the surface mesh. A plot of ~Js is presented in

Figure 5.4 The current density everywhere should be a constant if this solution is to match

the analytic solution of the constant gradient for a square. Here, we can see that the current

density has a small ( < 0.1%) error though it should be a constant value.

This error is a byproduct of the iterative solution method. An illustration of an iterative

solution for Laplace’s equation on a one dimensional, ten segment line is shown in Figure

111



Figure 5.2: Plot of a ramp function used to test performance of solution steps in TRANSEDDY

5.5. At several levels of iterations performed we can see the progression of the voltage

distribution. We know that the analytic solution is a straight line, and with the successive

iterations of the averaging process, we see the voltage distribution approach that limit. The

iterative solution will terminate when the relative error between steps drops below some

tolerance threshold which we set. In this simple case of a ten segment one dimensional line,

after 300 iterations the relative error is less than 1 × 10−8. This example was performed

without SOR. Had SOR been implemented, the number of iterations required to reach the

desired threshold in relative error would have been reduced, however the nature of the error

will be exactly the same as if we had not used SOR.

A plot of the relative error for this example case can be found in Figure 5.6. For a

general solution, the number of iterations required to converge to a solution will increase

with the number of nodes along the length. This behavior will show up again when we are

observing the simulations of long strip lines like the ones examined in Chapter 2. If we take

the gradient of the voltage from the example solution, we see the same type of error present.

112



Figure 5.3: GMSH output of the Voltage on a test square with opposing edges fixed at one
volt and zero.

Figure 5.7 shows the gradient of the one-dimensional voltage from the example problem for

several high iteration steps. We see the increase in accuracy for increased iterations. This

shows us that when a similar error appears in the ~Js solution from transeddy that we can

reduce this error by decreasing the tolerance error limit in the iterative solver.

The data for the current density is associated with the edges. A plot of how these values

are actually represented by the code is presented in Figure 5.8. The magnitude of the edge

value is stored, along with the direction of the edge. GMSH does not have implemented

functionality to display and interpolate edge values with the edge shape functions, so for

display and data processing, we use the nodal representation.

113



Figure 5.4: ~Js plot from GMSH for the test square mesh. The source current density is
derived from the gradient of the source voltage. Residual error in the iterative solution
process for Vs produces the error in the magnitude of the current density. Lowering the
tolerance error in the iterative solution will reduce this error.

To verify proper performance of the first step in the time-stepping process, we need to

view the prediction current density. We know that the prediction current is produced by

the magnetic vector potential. The magnetic vector potential is due to the change in the

source and the eddy current densities from the present and previous time steps. It behaves

according to eq.(3.12), or as 1
distance

in general. for a square we would expect to see a

concentration of more of the prediction current density in the center of the square where

the average distance to every other part of the square is the smallest. In Figure 5.9 we see

the GMSH output for the prediction current density stage of the time stepping process. As

114



 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

V
ol

ta
ge

Distance

Voltage vs Length for Selected Iterations

0
1
2
4
6
8

10
50

100
200
250
300

Figure 5.5: This graph represents a sample iterative solution of the Laplace Equation via
the Iterative Method for a one-dimensional problem. Each line represents the solution at
a number of steps into the solution. By 300 iterations, the ten steps of the voltage can
be assumed to be the analytical solution for the voltage. This example was implemented
without SOR

expected, it has a maximum at the center and has symmetry in both length and width.

The correction current density for the test square is presented in Figure 5.10. It should

guarantee that the eddy current density does not leave the surface of the conductor. We

would then expect the correction current density to oppose the direction of the prediction

current density. Indeed we see this behavior.

With the addition of the prediction and correction current densities we are able to see the

eddy current solution. Figure 5.11 shows the eddy current density. The boundary conditions

are preserved (within the margin of error for the coarse mesh) and we see that the majority

of the central path of the eddy current flows to oppose the change in the source current,

which obeys Lenz’s Law59

115



 1e-10

 1e-09

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 1  10  100  1000

R
es

id
ua

l E
rr

or

Number of Iterations

Residual Error vs. Iterations

Figure 5.6: This graph represents the residual error in an iterative solution of Laplace’s
Equation for a one-dimensional sample problem presented in Figure 5.5. We can see that
by 300 iterations for the sample problem the change in the relative error is less than 10−8.
This example was implemented without SOR.

We must now take one more step to arrive at the total current density for this test

square case. The source current density added to the eddy current solution gives us this

total current density. The total current density for the test square can be viewed in Figure

5.12. This figure for an example ramp in the source voltage meets expectations of exhibiting

a skin effect, or current crowding at the edges of the square. This test case was performed

with numbers chosen for convenience in analysis; the square having unit size, the voltage

differential of 1 Volt, and the input time step of 1 second. This allowed examination of each

stage, and verification of the coefficient matrices.

With evaluation of the basic performance of the time-stepping solution, we turn to

solving actual physical problems that can be verified. To do this we will revisit the one inch

116



 0.9997

 0.9998

 0.9999

 1

 1.0001

 1.0002

 1.0003

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

G
ra

d(
V

)

Length

Gradient of V vs. Length

175
200
225
250
300

Figure 5.7: Example plot of the gradient of the voltage for the sample one-dimensional
Laplace Equation. Higher number of iterations reduces the residual error in the voltage and
thus the error in the pseudo-current represented by the gradient. The plot of the gradient
for 175 iterations shows the largest error with a 0.03% error. The plot of the gradient of the
voltage for 300 iterations shows a constant gradient. The error is less the resolution of the
graph. This example was implemented without SOR.

wide strip lines examined in Chapter 2 with the magnetic loop probes, and with SPICE via

the Partial Inductance Method.

117



Figure 5.8: GMSH output of ~Js for the test square displayed as the edge values as they are
represented in memory. These values are confined to the edges of the mesh which appear
to cross as the magnitude of the edge values are displayed with arrows proportional in size
to their value. GMSH lacks the functionality to display and interpolate edge shape functions,
so for normal display of functions on the mesh, we translate the vector quantities to nodal
values for the three components. This view is useful for determining the how the edge values
are represented in memory.

118



Figure 5.9: GMSH output of the prediction current density for the test square case. This is
the current density as it would be generated by the magnetic vector potential produced by
the source currents. It has no knowledge of the boundaries of the surface.

119



Figure 5.10: GMSH output of the correction current density for the test square case. The
correction current density is added to the prediction current density to ensure the boundary
condition for the eddy current solution as zero perpendicular current at the surfaces.

120



Figure 5.11: GMSH output of the eddy current for the test square. The addition of the
prediction and correction current densities produce the eddy current density. The boundary
conditions of zero current perpendicular to the surface is met.

121



Figure 5.12: GMSH output of the total current density in the test square case. The total
current density in this test case exhibits the characteristics of skin effect.

122



5.2 Test cases of one inch strip lines of variable lengths

To evaluate the performance of the TRANSEDDY code for accuracy and precision, we will

compare its transient output to transient output from SPICE using the circuit models of the

strip lines as derived in Chapter 2 with the partial inductance method.

5.2.1 Mesh size requirements

In Chapter 2 we implemented a partial inductance method of solving for the skin effect in

flat conductors by segmenting the flat conductor into many identically sized filaments. A

convergence test was performed, the results of which verified that the the number of filament

segments required to represent the total line depended on the frequency of operation of the

line. In general, the width of the filaments needed to be less than the skin depth. If the skin

depth were shallower than a single filament, the numerical solution was invalid. SPICE will

perform its assigned task of balancing the currents in the individual filaments, and adjust

the magnitude and phase in each filament until a lowest energy state is reached. If the

skin depth is less than one filament, then too much current will be represented in the edge

element, requiring the inner filaments to have greater phase errors. With the knowledge

of the skin depth for a given frequency, we set the number of filaments such that their the

skin depth is greater than several filaments. For the finite element implementation of the

transient current solver, we must choose the size of our elements with similar requirements.

The size of the elements should be smaller than skin depth.

Figures 5.13 through 5.15 are pictures of the mesh for the top plane of a strip line. The

line is one inch wide, and four inches in length. The vertical spacing between the top and

return path is the same as for the physical boards used in simulations and testing in Chapter

2, which is approximately 1.75 mm. The mesh density is increased gradually between the

different test cases from four elements across the lateral center line to 100 elements. Test

meshes are presented for the cases of 4 , 10, 20, 30, 40 ,50 ,60 ,and 100 elements. A half

cycle of a 100 kHz sinewave was set as the input signal to the line and a sample of 400 points

123



Figure 5.13: Meshes for the test strip line. The line is 4 inches in length, 1 inch wide, and
has a return path. A variable mesh has been implemented. The sample tolerances for node
spacing across the center of the line for these strip lines are the all referenced to the width.
They are the width divided by 4, 10 , and 20 respectively.

was taken at the peak current, across the center line of the top plane.

The total current density for the strip line with 100 elements across the center line at

the peak current is in Figure 5.16. A detailed view of the center section of the line is in

Figure 5.17.

A comparison of the current distribution between these different mesh sizes was made and

can be found in Figure 5.18. In it we can clearly see how the finite element approximation

linearly interpolates the function between element edges. This is most evident in the line for

the 4 element cross section. By the time the number of segments increases to greater than

124



Figure 5.14: Meshes for the test strip line. The line is 4 inches in length, 1 inch wide, and
has a return path. A variable mesh has been implemented. The sample tolerances for node
spacing across the center of the line for these strip lines are the all referenced to the width.
They are the width divided by 30, 40 , and 50 respectively.

50 elements, the curves are almost on top of each other and we see little improvement with

increasing elements. For a simulation of a higher frequency source input, the mesh density

would need to be increased.

Similar performance was observed with the SPICE simulations in Chapter 2 , where

the number of filaments used limited the frequency range at which the simulations were

valid. Figures 5.19 through 5.21 show the effect of increasing the number of filaments to

the current density distributions. By plotting the current density distributions we can see

the effect of a coarse filament refinement at higher frequencies where the skin depth is less

125



Figure 5.15: Meshes for the test strip line. The line is 4 inches in length, 1 inch wide, and
has a return path. A variable mesh has been implemented. The sample tolerances for node
spacing across the center of the line for these strip lines are the all referenced to the width.
They are the width divided by 60, and 100 respectively.

than that of a single filament width. In Figure 5.19 we see the different distributions in the

one inch strip line at 10 kHz. The minor differences in the magnitudes, visible as a vertical

shift in the distributions is due to machine precision is solving for the circuit theory model

parameters for each filament. The curves are smooth, signifying that at 10 kHz, the skin

depth is greater than the width of a single filament. This behavior is also visible in Figure

5.20. The skin effect is more pronounced, but the distributions are still smooth curves. In

Figure 5.21 we can see the change in the smooth current density distribution when the skin

depth is less than one filament width. the plots for the 15 filament and 20 filament show a

126



Figure 5.16: GMSH output display for the test strip line with 100 elements across the center
line. Total current density taken at peak current.

bump at the edges, and an elevated current density in the center of the distribution. The

more dense filament models continue to show the smooth distribution we expect to see when

viewing the skin effect in a strip line. This bump in the distributions is caused by SPICE as

it numerically solves for the current in each filament.

127



Figure 5.17: Detail view of GMSH output display for the test strip line with 100 elements
across the center line. Total current density taken at peak current.

128



 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0  0.005  0.01  0.015  0.02  0.025  0.03

no
rm

al
iz

ed
 c

ur
re

nt
 d

en
si

ty

position along cross-section (in)

4 segments
10 segments
20 segments
30 segments
40 segments
50 segments
60 segments

100 segments

Figure 5.18: Plots of the current density across the centerline of the top plane of the test
stripline for different mesh densities. The strip lines were simulating the current flow for
a 100 kHz sinewave input. Data was taken a the peak value of the input current. Linear
interpolation of data between element edges is apparent in the 4 element line. Current
Density distributions converge when the the number of elements across the strip is greater
than 50. For higher frequency simulations, greater density in the mesh is required for
improvements in distribution accuracy and precision.

129



 30

 30.5

 31

 31.5

 32

-0.6 -0.4 -0.2  0  0.2  0.4  0.6

no
rm

al
iz

ed
 c

ur
re

nt
 d

en
si

ty

position along cross-section (in)

SPICE3 filaments

15 filaments 10kHz
20 filaments 10kHz
30 filaments 10kHz
50 filaments 10kHz

Figure 5.19: Current density distributions for a SPICE simulation of a 1-inch strip line.
The strip line was divided into different numbers of segments and an AC simulation was
conducted. Presented plots are for a 10 kHz input. Very little skin effect is present. Slight
differences in the magnitudes are due to machine precision in solving each individual fila-
ments circuit theory model parameters. This results in a vertical shift in the current density
distribution between the different runs.

130



 14

 15

 16

 17

 18

 19

 20

 21

-0.6 -0.4 -0.2  0  0.2  0.4  0.6

no
rm

al
iz

ed
 c

ur
re

nt
 d

en
si

ty

position along cross-section (in)

SPICE3 filaments

15 filaments 100kHz
20 filaments 100kHz
30 filaments 100kHz
50 filaments 100kHz

Figure 5.20: Current density distributions for a SPICE simulation of a 1-inch strip line.
The strip line was divided into different numbers of segments and an AC simulation was
conducted. Presented plots are for a 100 kHz input. Slight differences in the magnitudes are
due to machine precision in solving each individual filaments circuit theory model parame-
ters. This results in a vertical shift in the current density distribution between the different
runs.

131



 1.5

 2

 2.5

 3

 3.5

 4

-0.6 -0.4 -0.2  0  0.2  0.4  0.6

no
rm

al
iz

ed
 c

ur
re

nt
 d

en
si

ty

position along cross-section (in)

SPICE3 filaments

15 filaments 1MHz
20 filaments 1MHz
30 filaments 1MHz
50 filaments 1MHz

Figure 5.21: Current density distributions for a SPICE simulation of a 1-inch strip line.
The strip line was divided into different numbers of segments and an AC simulation was
conducted. Presented plots are for a 1 MHz input. From these plots, the effect of the skin
depth being less than the width of a filament can be observed. Slight differences in the
magnitudes are due to machine precision in solving each individual filaments circuit theory
model parameters. This results in a vertical shift in the current density distribution between
the different runs. The plots for 15 and 20 filaments show the effect of the skin depth being
less than the width of a single filament, resulting in the non physical distribution of the
current density. Plots for 30 and 50 filaments show the smooth curve we expect to see
for the skin effect. This signifies that the skin depth is greater than the width of a single
filament.

132



A limitation on TRANSEDDY is that it required a large amount of memory to run. This

keeps the size of mesh files we are able to simulate to less than approximately 12,000 edges.

Through testing, this number of edges will result in almost 8GB of RAM being used. In

order to increase the mesh density, and still be able to be executed on available machines,

further testing was performed on a single plane rather than a full strip line, and the length

was kept short. With use of the variable meshing available in GMSH we constructed a dense

mesh for a one inch wide, two inch long plate. A spice model was made of this geometry

using the partial inductance method as described in Chapter 2.

The implementation of a single strip versus a full line with return path means that we

can simulate at a lower frequency and still observe the skin effect. Without the return path,

we are able to use all the available memory size to mesh a single plane, thus increasing

our mesh density on the remaining plane, and increasing spatial resolution of the result. A

sample output showing the achieved density and the relatively smooth density distribution

across the center line can be found in figures 5.23 and 5.24. At this frequency and mesh

size, the distribution is a smooth function.

Discrepancies between the SPICE filament model and the FEM model can be seen from

the plot of the peak current on the test strip. The filament model guarantees that there is

no lateral current flow, that the current can only be contained in one of the long filaments.

The only connection is at the ends of the strip, where they are all equally connected to the

source node. This model is appropriate for cases where the filaments are very long. Indeed,

from Chapter 2 we see that the formulas to derive the partial inductances were originally

derived by assuming all currents in the z direction only.

The finite element approximation is superpositioning an eddy current on top of the

source current. By Maxwell’s equations this is a valid formulation, but we see that the eddy

current is completely contained within the conductor. Magnetic effects, or an induced back

emf will not be seen by the source. A physical representation of this method is that a source

current is being fed to the test conductor, and the resultant current density distribution is

133



due to that current. Therefore, what we have with the initial solution of the source voltage

by the Laplace equation, is actually solving for the source current that is flowing through

the sample. For comparison with SPICE , we will use a current source to drive the signals.

To solve for the voltage required to give the desired current in the simulation, one

simply needs to back calculate using Ohm’s Law. We can calculate the total resistance

of the conductor from it’s spatial parameters, and the conductivity. Then we choose the

voltage appropriately to give the total source current desired.

For data processing and comparison to SPICE simulations, the current distribution was

sampled across the center of the strip with 400 samples taken. At this distance from the

ends, the current distribution is almost constant in the y direction. Effects from the ends

have dissipated and we are seeing all transverse currents. This is as close to the SPICE

approximation of filaments with only y directed currents as we have available.

134



Figure 5.22: Mesh for the test strip. The line is 2 inches in length, 1 inch wide, and has
no return path. A variable mesh has been implemented. This mesh has been sized to give a
fine spacing along the corners and edges, where the expected skin effects will be large, and
coarser near the center, where the current distribution is expected to be regular and well
behaved.

135



Figure 5.23: GMSH output for the simulation of a 10 kHz input current to the test strip
with variable mesh density

136



Figure 5.24: GMSH output for the centerline sampled current density in the test strip. 400
samples were extracted across the center of the strip. The mesh on which the data was
extracted is presented in the background.

137



 0

 5e-06

 1e-05

 1.5e-05

 2e-05

 2.5e-05

 0  1e-05  2e-05  3e-05  4e-05  5e-05

S
ou

rc
e 

V
ol

ta
ge

 (
V

)

time (s)

10kHz -- 2.5us step size
10kHz -- 0.1us step size

Figure 5.25: Sample time-voltage data files for a 10 kHz signal. Both a full half period

with 20 samples and 100 samples taken within 1
10

th
of the period are presented.

5.2.2 Time step size constraints

To evaluate the effect of the time step size on performance a series of simulations were

performed. First a baseline was run for a 10 kHz input signal with a stepsize of 2.5µs for

50µs. A second simulation was run for the same 10 kHz signal, but with a step size of 100

ns for 10µs. The example source signals are represented in Figure 5.25.

The simulation results for the test strip are presented in Figure 5.26. Four hundred

discrete samples were taken across the centerline of the strip at each time step. The first

ten samples of the 100ns step size simulation are plotted, after which every tenth sample is

displayed. The graphs are almost identical with deviations well within the margin of error

for the machine.

The code was written utilizing the fractional step method. This method is used to

138



Figure 5.26: Comparison plot of TRANSEDDY simulations with different time step sizes.
Time step sizes are 100ns and 2.5µs. The magnitudes of the current density at the edge
and center of the strip are shown. The small time step size graph shows the first 10 samples,
followed by every tenth sample there after.

guarantee stability in integrations. For these simulations we used a fractional step parameter

of 1, which means we were implementing implicit integration. To test for stability, the 10

kHz signal was also integrated with the fractional step parameter set to 0.5, which is the

Crank-Nicholson scheme45. A graph comparing the two simulations is in Figure 5.27. From

these simulations we see little difference between the Crank-Nicholson scheme and implicit

integration. Minor differences in the magnitudes are within the limits of numerical error of

the machine.

139



Figure 5.27: Comparison plot of TRANSEDDY simulations with different fractional step
schemes. Plots for the magnitude of the current density at the edge and at the center of the
strip are presented for the Crank-Nicholson Scheme and Implicit Integration.

140



5.2.3 Comparison of transient responses

Once we have established that TRANSEDDY is performing the time stepping correctly with

regard to spacial and temporal step sizes, we need to compare the results of a transient

simulation to ones calculated with SPICE . Figure 5.28 shows the transient response to a 10

kHz input current pulse for a single conducting strip two inches in length, one inch wide and

approximately 0.0017 inches thick. The magnitude of the response is close to agreement be-

tween the SPICE filament model and the TRANSEDDY finite element implementation. Obvious

disagreements are in the phase of the current density between the center and the edge of the

strip. This is due to the limitations in the models. The SPICE filament model is accurate

Figure 5.28: Comparison of AC conduction for the test strip line for SPICE and TRANSEDDY

simulations

for very long conductors where the current will all be directed in the forward direction and

parallel. The SPICE model forces the all the currents parallel the entire length of the strip

line while the finite element implementation allows current flow in any direction along the

surface. There is a phase delay between the center and the edge of the TRANSEDDY model;

141



it is not as pronounced at 10 kHz. At higher frequency we see the phase shift, but it is still

not to the magnitude that SPICE produces. From this comparison we must conclude that

the SPICE model’s limitations are producing a phase shift that is not physical in nature, but

due to the numerical constraints of its implementation. The magnitude of the responses are

in close relative agreement.

Figure 5.29: Comparison of transient conduction for the test strip line for SPICE and
TRANSEDDY simulations over 4 periods of an input sinewave. AC steady state is reached by
the first cycle for both simulations. Plots for the center and the edge of the strip line are
presented for each simulation.

142



Figure 5.30: Comparison of transient conduction for the test strip line for SPICE and
TRANSEDDY simulations over 4 periods of an input sinewave. AC steady state is reached by
the first cycle for both simulations. Plots for the center and the edge of the strip line are
presented with comparison between individual selections for SPICE and TRANSEDDY .

143



Chapter 6

Application and future work

This method of calculating transient current density in thin conductors has many applica-

tions. It serves as a foundation on which to build for cases where a transient solution is

required for cases where the conductive surfaces are either irregular or have the potential

to alter material properties. With minor additions, functions could be written to calculate

Ohmic heating due to the current density. A model for conductivity of the material can

them be read in to adjust the properties due to the thermal rise in temperature. Following

this step, several of the coefficient matrices would require recalculation due to changes in the

material. The time-stepping algorithm is already suitable for the addition of inhomogeneous

conductivity.

6.1 Thin conductors of irregular shape

One example of this application is for thin conductors with voids. If the distribution of the

current density is important to the devices’ performance, a transient analysis can be used

to predict the device behavior.

6.1.1 Conductor with a hole

The first example problem is a simple square conductor with a central square hole. Figures

6.1, 6.2, and 6.3 show the geometry model as implemented with GMSH , the meshed surface,

and the current density from an instant in time. This example was simulated with a ramp

144



input signal. It demonstrates the ability of the finite element implementation to operate on

structures with holes in the mesh. We can see the symmetric flow of current, and see where

the current is crowding.

Figure 6.1: Test geometry file for a square conductor with a central square hole.

145



Figure 6.2: Test mesh for a square conductor with a hole.

146



Figure 6.3: Current density distribution produced by TRANSEDDY for a test square con-
ductor with a centralized square hole. Conduction is shown for the peak current with a
sinusoidal input.

147



6.1.2 Conductor with constricted entry points

Another example refers to the paper by Ney5 where he was interested in finding an expres-

sion for the effect of ‘striction’ on strip line impedance. Figure 6.4 shows a simple square

conductor, but with narrow entry points for the current. This example was also simulated

with a ramp input signal. The effective frequency is too low and the conductor too short to

be able to see any skin effect in the current density distribution, but the ‘striction’ effect is

very noticeable.

Figure 6.4: The current density is shown for a square test conductor with constricted
current entry due to a small tab entry and exit. The ‘striction’ effect as noted by Ney5 is
visible in the current density distribution.

148



6.1.3 Conductor with constriction point

The example in figures 6.5 and 6.6 is slightly more complex than the previous two. In it

we have a square conductor with a constricted center, and the addition of a return path for

the current as a backplane. This example was simulated with a sinusoidal current. This

example shows that constricting the current density will produce local “hot spots”. This

behavior was also predicted and observed by Logan57 et.al.. The current density on the

bottom plane also images the path of the upper conductor.

Figure 6.5: Test mesh for a conductor with a constricted center region with a solid return
path.

149



Figure 6.6: The current density distribution for the center constricted test mesh with
return path. The current density is crowded on the inside corners of the constricted points
as demonstrated by Logan, et.al 57

150



6.1.4 Conductor with multiple holes and constriction points

Figures 6.7, 6.8, and 6.9 show an example problem consisting of a large conducting plane

with multiple holes, and constriction points. The model also includes a backplace. This

simulation shows the current distribution due to a sinusoidal pulse in current. The distribu-

tion shows the effects of constricting the current as well as skin effect. The center path has

a lower current density than the outside paths. The element sizes in the mesh are not suffi-

ciently fine enough to provide much detail in the distribution, however we can see that the

current density on the exterior edges are larger than the interior of the conducting paths.

The backplane mesh is not sufficiently fine enough to display much detail in the current

distribution. By setting the scale for the current density on the back plane to only consider

that plane, we can see the effect of the current path on the top plane magnetically coupling

to the currents in the back plane. This rough example displays some of the functionality of

TRANSEDDY for simulating current density distributions in irregular conductors.

151



Figure 6.7: Mesh for a conductor with multiple evenly spaced holes with return path.

152



Figure 6.8: Current density distribution for the top plane of the test conductor with
multiple holes.

153



Figure 6.9: Current density distribution for the bottom plane of the test conductor with
multiple holes.

154



6.1.5 Flat, spiral wound inductors

Another application is a spiral inductor60, 61. An example spiral wound inductor is shown

in Figure 6.10. This example was simulated for an overly large inductor subjected to a

sinusoidal pulse in current. The simulation shows the current crowding to the interior walls

of the inductor and at the interior corners.

Figure 6.10: Example of the current density distribution in a flat spiral wound inductor.

155



6.2 Future work: Implementation of conductivity de-

pendencies

To implement conductivity dependencies to TRANSEDDY a few minor modifications are re-

quired. A model for the conductivity is required. The simplest way to add this functionality

is to make the conductor model a separate file to be read in. The file would contain values

for conductivity versus whatever parametric the specific model requires. The user then has

greater control of the simulation. The addition of a look-up-table would not significantly

increase the memory demands of the program.

Once a model has been entered, the dependencies of the conductor would require cal-

culation. Whether it be a thermal model or more complex specific action58 form, the total

current density in each element would have to be calculated. A function to integrate the

total current density on each triangular element would have to be added. The integrals over

the triangles have already been solved, and a summation of integrals for the edge element

basis function and the discrete edge elements is a trivial addition to make.

After calculation of the dependency is done and the conductivity updated from the

look-up-table, several of the coefficient matrices would have to be recalculated. The time-

stepping loop then continues as usual. The source current density is calculated with the

new material properties. The integral formulation for the eddy current density is performed

with the updated coefficient matrices.

The conductivity model is limited to the cases where the material maintains it’s spa-

tial parameters. Thermal expansion is not covered with this formulation, nor are moving

conductors.

6.3 Future work: User-interface

Implementation of TRANSEDDY was done primarily as a proof of concept prototype. Robust

user friendly interaction was an item with a low priority, proper operation and validation of

the time stepping algorithm being the area of paramount importance. A graphic user inter-

156



face could be created, or additions could be made to GMSH ’s GUI, allowing for specification

of mesh files, matrix storage files, output file locations, etc. Features of this GUI would be

identified upon further use of TRANSEDDY and from feedback from other users.

6.4 Conclusions

What we have accomplished with this research is the creation of a transient current density

solver for use with thin conductors of arbitrary shape. The solver is restricted to magneto-

quasistatic approximations for size and frequency. This solver does not make assumptions of

constant or homogeneous conductivity, and has allowances for the addition of time changing

conductivity. We accomplished this task by using the principle of superposition to add a

source current density and an eddy current density on the same conductor. The solutions

are implemented with a fractional step time stepping algorithm of an integral formulation

for the eddy current density and a finite element solution to Laplace’s equation for the

source current density.

A circuit theory model for a strip line was implemented using the partial inductance

method, and SPICE was used to generate both AC and transient solutions for the current

density in the strip. This model was verified by the use of custom magnetic pickup probes

designed at LLNL. The circuit theory model was used to verify the transient finite element

model for the current distribution. The code, TRANSEDDY , was written to accomplish the

implementation of the time-stepped finite element model. Testing of TRANSEDDY was per-

formed by comparison of transient current density distributions with the results from the

SPICE model.

This method can solve for the transient current density distributions in conductors of

irregular shape. Thus we have developed a tool for analyzing current density flow and

distributions in conductors which can’t be modeled by analytical means.

157



Bibliography

[1] J. D. Jackson, Classical Electrodynamics, 3rd ed. New Jersey: John Wiley and Sons,
Inc, 1999.

[2] H. A. Haus and J. R. Melcher, Electromagnetic Fields and Energy. New Jersey:
Prentice-Hall, 1989.

[3] W. R. Smythe, Static and Dynamic Electricity, 3rd ed. McGraw-Hill, 1968.

[4] W. T. Weeks, L. L. Wu, M. F. McAllister, and A. Singh, “Resistive and inductive skin
effect in rectangular conductors,” IBM J. Res. Develop, vol. 23, no. 6, pp. 652–660,
November 1979.

[5] M. M. Ney, “Striction and skin effects on the internal impedance value of flat con-
ductors,” IEEE Trans. Electromagn. Compat., vol. 33, no. 4, pp. 321–327, November
1991.

[6] D. M. Sheen, S. M. Ali, D. E. Oates, R. S. Withers, and J. A. Kong, “Current distri-
bution, resistance, and inductance for superconducting strip transmission lines,” IEEE
Trans. Appl. Supercond., vol. 1, no. 2, pp. 108–115, 1991.

[7] G. Antonini, A. Orlandi, and C. R. Paul, “Internal impedance of conductors of rectan-
gular cross section,” IEEE Trans. Micro. Theory Techn., vol. 47, no. 7, pp. 979–985,
July 1999.

[8] L. J. Giacoletto, “Frequency and time-domain analysis of skin-effects,” IEEE Trans.
Mag., vol. 32, pp. 220–229, January 1996.

[9] Z. Zhihua and M. Weiming, “Ac impedance of an isolated flat conductor,” IEEE Trans.
Electromagn. Compat., vol. 44, no. 3, pp. 482–486, August 2002.

[10] “Quickfield,” http://www.quickfield.com/, Tera Analysis Ltd.

[11] “Maxwell 3d,” http://www.ansoft.com/maxwell/, Ansoft L.L.C.

[12] “Mafia 4,” http://www.cst.com/, CST:Computer Simulation Technologies.

[13] T. Weiland, “A discretization method for the solution of maxwell’s equations for six
component fields,” Electronics and Communications AEU, vol. 31, no. 3, pp. 116–120,
1977.

[14] M. Clemens, M. Wilke, and T. Weiland, “Advanced FI2TD algorithms for transient
eddy current problems,” COMPEL:The International Journal for Computation and
Mathematics in Electrical and Electrinic Engineering, vol. 20, no. 2, pp. 365–379, 2001.

158



[15] M. Clemens and T. Weiland, “Discrete electromagnetism with the finite integration
technique,” Progress in Electromagnetic Research, vol. 32, pp. 65–87, 2001.

[16] R. Schuhmann and T. Weiland, “Conservation of discrete energy and related laws in
the finite integration technique,” Progress in Electromagnetic Research, vol. 32, pp.
301–316, 2001.

[17] T. Weiland, “Time domain electromagnetic field computation with finite difference
methods,” International Journal of Numerical Modelling: Electronic Networks, Devices
and Fields, vol. 9, pp. 295–319, 1996.

[18] M. Bartsch and et.al., “Solution of maxwell’s equations,” Computer Physics Commu-
nications, vol. 72, pp. 22–39, 1992.

[19] M. N. O. Sadiku, Numerical Techniques in Electromagnetics, 2nd ed. Florida: CRC
Press, 2001.

[20] P. Dular and C. Geuzaine, “Getdp: a general environment for the treatment of discrete
problems,” http://geuz.org/getdp/

[21] C. Geuzaine, “High order hybrid finite element schemes for maxwell’s equations taking
thin structures and global quantities into account,” Ph.D. dissertation, University of
Lige, Belgium, December 2001.

[22] C. Geuzaine and J. F. Remacle, http://geuz.org/gmsh/

[23] C. Geuzaine and J. F. Remacle, “Gmsh: a three-dimensional finite element mesh gen-
erator with built-in pre- and post-processing facilities,”
http://geuz.org/gmsh/doc/texinfo/gmsh.html

[24] J. S. Lee, “A direct field formulation for transient eddy current calculations in thin
conductors,” IEEE Transactions on Magnetics, vol. 27, no. 5, September 1991.

[25] L. Pinchon, “Hybrid finite-element method and boundary-element method using time-
stepping for eddy-current calculation in axisymmetric problems,” IEEE Proceedings,
vol. 136, no. 4, July 1989.

[26] M. Clemens and T. Weiland, “Transient eddy-current calculation with the FI-Method,”
IEEE Transactions on Magnetics, vol. 35, no. 3, pp. 1163–1166, May 1999.

[27] P. J. Leonard and D. Rodger, “Some aspects of two- and three-dimensional transient-
eddy-current nodeling using finite elements and single-step time-marching algorithms,”
IEE Proceedings, vol. 135, no. 3, pp. 159–166, March 1998.

[28] K. H. Carpenter and H. T. Yeh, “Eddy current calculations for thin cylinders of finite
length with driving fields of ramp time dependence,” IEEE Transactions on Magnetics,
vol. 12, no. 6, pp. 1059–1061, November 1976.

159



[29] H. Tsuboi and K. Kunisue, “Eddy current analysis of thin plates taking account of the
source current distributions and it’s experimental verifications,” IEEE Transactions on
Magnetics, vol. 27, no. 5, pp. 4020–4023, September 1991.

[30] P. Robert, M. Ito, and T. Takahashi, “Numerical solution of three dimensional transient
eddy current problems by the A-Φ Method,” IEEE Transactions on Magnetics, vol. 28,
no. 2, pp. 1166–1169, March 1992.

[31] Z. Badics, “Transient eddy current field of current forced three-dimensional conduc-
tors,” IEEE Transactions on Magnetics, vol. 28, no. 2, pp. 1232–1234, March 1992.

[32] C. J. Carpenter and M. Djurović, “Three-dimensional numerical solution of eddy cur-
rents in thin plates,” PROC. IEE, vol. 122, no. 6, pp. 681–688, June 1975.

[33] C. J. Carpenter, “Finite-element network models and their applications to eddy-current
problems,” PROC. IEE, vol. 122, no. 4, pp. 455–462, April 1975.

[34] ——, “Computation of magnetic fields and eddy currents,” in Proceedings of the Fifth
Int. Conf. on Magnetic Technology, Rome, 1975, pp. 147–158.

[35] J. H. McWhirter, “Computation of three-dimensional eddy currents in thin conduc-
tors,” IEEE Transactions on Magnetics, vol. 18, no. 2, pp. 456–460, March 1982.

[36] T. H. Petersen and C. M. May, patent disclosure by May and Petersen being processed
by LLNL.

[37] T. L. Quarles, “Analysis of performance and convergence issues for circuit simulation,”
Ph.D. dissertation, Electronics Research Laboratory, College of Engineering, University
of California, Berkeley, April 1989, a Ph.D. dissertation, with Appendices, UCB/ERL
Memoranda M89/42, M89/43, M89/44, M89/45, M89/46, M89/47.

[38] M. W. Beattie and L. T. Pileggi, “Inductance 101: Modeling and extraction,” in DAC
2001. Los Vegas, NV, USA: Design Automation Conference, June 18-22 2001, pp.
323–328, section IV.

[39] A. E. Ruehli, “Equivalent circuit models for three-dimensional multiconductor sys-
tems,” IEEE Trans. Micro. Theory Tech., vol. 22, no. 3, pp. 216–221, March 1974.

[40] C. Christopoulos, The Transmission-Line Modeling Method: TLM. IEEE Press, 1995.

[41] M. T. Heath, Scientific Computing, An Introductory Survey, 2nd ed. McGraw-Hill,
2002, section 8.4.4.

[42] J. Berntsen, T. O. Espelid, and A. Genz, “Algorithm 698: DCUHRE: An Adaptive
Multidimensional Integration Routine for a Vector of Integrals,” ACM Transactions on
Mathematical Software, vol. 17, no. 4, pp. 452–456, 1991.

160



[43] M. Kamon, M. J. Tsuk, and J. White, “FastHenry: A multipole accelerated 3-D in-
ductance extraction program,” IEEE Trans. Micro. Theory Techn., vol. 42, no. 9, pp.
1750–1758, September 1994.

[44] T. L. Quarles, information on various versions of SPICE, and links to sites where they
can be obtain, can be found at //bwrc.eecs.berkeley.edu/Classes/IcBook/SPICE/.

[45] M. Koizumi and M. Onizawa, “Computational method of three dimensional eddy cur-
rent by using volume integral equation method,” IEEE Transactons on Magnetics,
vol. 27, no. 5, pp. 4077–4080, 1991.

[46] M. N. O. Sadiku, Numerical Techniques in Electromagnetics, 2nd ed. Florida: CRC
Press, 2001.

[47] J. C. Nedelec, “Mixed Finite Elements in E3,” Numerische Mathematik, vol. 35, pp.
315–341, 1980.

[48] A. Bossavit, “Whitney forms: A class of finite elements for three-dimensional compu-
tations in electromagnetim,” IEE Proc., vol. 135, pp. 493–499, 1988.

[49] S. C. Brenner and L. R. Scott, The Mathematical Theory of Finite Element Methods,
2nd ed. New York:Springer-Verlag, Inc., 2002.

[50] K. H. Carpenter, “On efficient computation of integrals of the free space green’s func-
tion for laplace’s equation over triangular finite elements,” in Proceedings of the 2007
International Conference on Scientific Computing, H. R. Arabnia, J. Y. Yang, and
M. Q. Yang, Eds. CSREA Press, 2007, pp. 76–80.

[51] I. Robinson, “An algorithm for automatic integration over a triangle using nonlinear
extrapolation,” ACM Transactions on Mathematical Software (TOMS), vol. 10, no. 1,
pp. 1–16, March 1984.

[52] E. de Doncker and I. Robinson, “Algorithm 612: Triex: Integration over a triangle
using nonlinear extrapolation,” ACM Transactions on Mathematical Software (TOMS),
vol. 10, no. 1, pp. 17–22, March 1984.

[53] R. Davies, “Newmat c++ matrix library,” (1990-2006) Newmat C++ matrix library
http://www.robertnz.com/ol_doc.htm

[54] E. Anderson, Z. Bai, J. Dongarra, A. Greenbaum, A. McKenney, J. Du Croz, S. Ham-
merling, J. Demmel, C. Bischof, and D. Sorensen, “Lapack: a portable linear algebra
library for high-performance computers,” in Supercomputing ’90: Proceedings of the
1990 conference on Supercomputing. Los Alamitos, CA, USA: IEEE Computer Soci-
ety Press, 1990, pp. 2–11.

[55] D. M. Young Jr, “Iterative Method for Solving Partial Difference Equations of Elliptic
Type,” Ph.D. dissertation, Harvard University, Cambridge, MA, May 1950.

161



[56] M. T. Heath, Scientific Computing: An Introductory Survey, 2nd ed. McGraw-Hill,
2002.

[57] J. D. Logan, R. S. Lee, R. C. Weingart, and K. S. Yee, “Calculation of heating and
burst phenomena in electrically exploded foils,” Journal of Applied Physics, vol. 48,
no. 2, pp. 621–628, February 1977.

[58] V. S. Sedoi, G. A. Mesyats, V. I. Oreshkin, V. V. Valevich, and L. I. Chemezova,
“The current density and the specific energy input in fast electrical explosion,” IEEE
Transactions on Plasma Science, vol. 27, no. 4, pp. 845–850, August 1999.

[59] D. A. DeWolf, Essentials of Electromagnetics for Engineering. Cambridge University
Press, 2001.

[60] W. B. Kuhn and N. M. Ibrahim, “Analytical modeling of current crowding effects in
multi-turn spiral inductors,” IEEE Transactions on Microwave Theory and Techniques,
vol. 49, pp. 31–38, January 2001.

[61] N. M. Ibrahim and W. B. Kuhn, “An approach for the calculation of magnetic field
within square spiral inductors at low frequency,” International Journal of Numerical
Modeling: Electronic Networks, Devices and Fields, vol. 15, pp. 339–354, July 2002.

162


	Abstract Title Page
	Abstract
	Title Page
	Abstract
	Table of Contents
	List of Figures
	List of Tables
	List of Symbols
	Acknowledgements
	Introduction
	Preliminary investigation of current density
	Partial differential equation for current density
	Vector Laplacian
	Skin depth

	Existing electromagnetic solvers
	Quickfield
	Maxwell 3D
	MAFIA 4
	GetDP

	Survey of other transient methods

	Partial Inductance skin effect studies utilizing SPICE 
	Introduction
	Partial inductance
	Partial inductance for finite length conductors

	Numerical confirmation of experimental values for current distributions 
	Calculation of partial inductances
	SPICE simulation
	Experimental observation
	Comparison of observations and simulations
	Modifying the net list for pulse excitation

	Summary

	Theoretical basis for transient time-stepping solution
	Introduction
	Derivation
	Discretization in time
	Finite element implementation of the transient eddy current problem
	Basis functions
	Linear nodal basis function
	Gradient of the linear nodal basis function
	Coordinate transformations for integration
	Linear edge element shape function
	Example of linear edge element shape function for canonical triangle

	Constructing the coefficient matrices
	The [S] matrix
	The [G] matrix
	The [D] matrix
	The [P] matrix


	Implementation of transient current density solver in C++
	Using GMSH 
	Parsing mesh files
	Reading mesh data
	Extracting edge data from triangle data

	Reading time--voltage data for time stepping
	Construction of coefficient matrices
	Building the [C] matrix
	Building the [S] matrices
	Building the [G] matrices
	Building the [D] matrix
	Building the [P] matrices

	Solution of Laplace's equation
	The addition of Successive Overrelaxation (SOR) to the solution of Laplace's equation

	Time-stepping solution for eddy current
	Generating output files
	Coding scheme for changing conductivity as a function of specific action
	Command-line entry operation

	Testing and validation of Transient current conduction code
	Simple conducting square
	Test cases of one inch strip lines of variable lengths
	Mesh size requirements
	Time step size constraints
	Comparison of transient responses


	Application and future work
	Thin conductors of irregular shape 
	Conductor with a hole
	Conductor with constricted entry points
	Conductor with constriction point
	Conductor with multiple holes and constriction points
	Flat, spiral wound inductors

	Future work: Implementation of conductivity dependencies
	Future work: User-interface
	Conclusions

	Bibliography

