
  

 
DEVELOPMENT OF A PORTABLE OPTICAL STRAIN SENSOR WITH APPLICATIONS 

TO DIAGNOSTIC TESTING OF PRESTRESSED CONCRETE 
 
 

by 
 
 

WEIXIN ZHAO 
 
 
 

B.S., Huazhong University of Science and Technology, 1998 
M.S., Kansas State University, 2006 

 
 
 

AN ABSTRACT OF A DISSERTATION 
 
 

submitted in partial fulfillment of the requirements for the degree 
 
 
 

DOCTOR OF PHILOSOPHY 
 
 
 

Department of Mechanical and Nuclear Engineering 
College of Engineering  

 
 
 

KANSAS STATE UNIVERSITY 
Manhattan, Kansas 

 
 

2011 
 
 
 
 
 



  

Abstract 

The current experimental method to determine the transfer length in prestressed concrete 

members consists of measuring concrete surface strains before and after de-tensioning with a 

mechanical strain gage. The method is prone to significant human errors and inaccuracies. In 

addition,  since  it  is  a  time-consuming  and  tedious  process,  transfer  lengths  are  seldom  if  ever  

measured on a production basis.   

A rapid, non-contact method for determining transfer lengths in prestressed concrete 

members has been developed.  The new method utilizes laser-speckle patterns that are generated 

and digitally recorded at various points along the prestressed concrete member. User-friendly 

software incorporating robust and fast digital image processing algorithms was developed by the 

author to extract the surface strain information from the captured speckle patterns. Based on the 

laser speckle measurement technique, four (4) successively improved generations of designs 

have been made. A prototype was fabricated for each design either on an optical breadboard for 

concept validation, or in a portable self-contained unit for field testing. For each design, 

improvements  were  made  based  on  the  knowledge  learned  through  the  testing  of  the  previous  

version prototype. The most recent generation prototype, incorporating a unique modular design 

concept and self-calibration function, has several preferable features. These include flexible 

adjustment of the gauge length, easy expansion to two-axis strain measurement, robustness and 

higher accuracy.  

Extensive testing has been conducted in the laboratory environment for validation of the 

sensor’s capability in concrete surface strain measurement. The experimental results from the 

laboratory testing have shown that the measurement precision of this new laser speckle strain 

measurement technique can easily achieve 20 microstrain. Comparison of the new sensor 

measurement results with those obtained using traditional strain gauges (Whittemore gauge and 

the electrical resistance strain gauge) showed excellent agreement.  Furthermore, the laser 

speckle strain sensor was applied to transfer length measurement of typical prestressed concrete 

beams for both short term and long term monitoring. The measurement of transfer length by the 

sensor was unprecedented since it appears that it was the first time that laser speckle technique 

was applied to prestressed concrete inspection, and particularly for use in transfer length 

measurement. In the subsequent field application of the laser speckle strain sensor in a CXT 



  

railroad cross-tie plant, the technique reached 50 microstrain resolution, comparable to what 

could be obtained using mechanical gauge technology. It was also demonstrated that the 

technique was able to withstand extremely harsh manufacturing environments, making possible 

transfer length measurement on a production basis for the first time. 
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Chapter 1 - Introduction 

  

 1.1 Background of strain measurement for civil infrastructure 
Civil engineering infrastructure comprises some of the most massively built assets in the 

world. For centuries, engineers have been trying to build more reliable and long-lasting 

infrastructure,  from  the  Great  Wall  in  China  to  the  modern  Interstate  Highway  System  in  the  

USA. Many new materials and design concepts have been proposed aimed at reducing weight, 

increasing spans, achieving longer infrastructure life and lower cost. However the civil 

engineering field has been conservative in adopting the new materials and technologies due to 

concern for compromising safety standards (S C Liu, 1995)(Faber & Stewartb, 2003). This 

resulted in a relatively slow evolution of technologies in the field of civil engineering compared 

to those of other disciplines such as computer science and electronic engineering. The barrier in 

adopting the new materials and technologies lies partly in the lack of convenient and reliable 

methods to evaluate their performance and implement safety control.(S C Liu, 1995) 

 In addition, civil infrastructure is usually designed with a large margin of safety, with the 

nominal load 2 or 3 times of the actual load (A.A. Mufti, 2008). However, the aging of the 

structure and excessive usage always lead to a reduced factor of safety. For instance, it is 

reported that more than 200,000 bridges in United States and 30,000 bridges in Canada are 

operating at a deficient condition due to the inadequate maintenance and excessive loading. 

(Mufti, 2003). It is risky to keep the aged civil infrastructures in service without reliable 

information of them. 

Either to design and build civil infrastructures of extended lifetime without 

compromising the safety or increased cost, or to effectively qualify their performance in the term 

of safety, it is important to find a convenient way to collect the information about the structure 

performance, either at time of the construction or at the time of service. One of the factors that 

are always used to evaluate the performance of concrete member is the stress or strain 

information in the member. For example, the evaluation of the bridge health is usually done by 

measuring the in situ strain responding to traffic flow. (Ceravolo, 2005).  
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Of particular importance to civil infrastructure is prestressed concrete, which is usually 

fabricated by casting concrete mix around already tensioned steel strands. After the casting 

process is complete and the concrete has hardened, a detensioning procedure is undertaken by 

cutting the reinforcing strands at both ends of the concrete beam to release the tension.  The 

stress transferred from the strands to the concrete is developed gradually from each end of the 

beam, where the stress is zero, and to the location far away from the end, where the stress is at its 

full value. The distance required to develop this stress is defined as “The transfer length”, which 

is used to evaluate the quality and performance of concrete members. To estimate the transfer 

length, the surface strain profile of the prestressed concrete beam must be measured.  

Many methods are available to measure strain either on the surface or in the body of the 

concrete structures. The strain measurement under laboratory conditions is usually 

straightforward, but it is much more difficult when applied in the field due to the fact that most 

of the strain measurements of structure materials must be done in a harsh environment, or require 

long term monitoring. In addition, it is recognized that a measurement technique that aimed to 

make  its  way  to  the  diagnostic  testing  of  large  concrete  structures,  must  be  easy  to  use.  Most  

civil engineers, particularly field engineers, are not experts in sophisticated sensor technology. 

Therefore, it is important to provide them with a practical solution instead of just a laboratory 

device with nanometer level resolution but could not be readily used in the field with minimum 

training. To be incorporated into the diagnostic testing of modern concrete structures seamlessly, 

the sensor must be able to provide rapid working speed and not require any special training of 

the workers.  

The characteristics desired for a strain sensor suitable for diagnostic testing of prestressed 

concrete members in the field include: 

 Robustness 

 Portability 

 Adequate sensitivity and dynamic range 

 No contact to the surface  

 Insensitivity to out-of-plane motion of the surface 

 Insensitivity to environmental temperature fluctuation 

 Removable from the surface during downtime 
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 1.2 Literature review of strain measurement techniques 
 

In this section, several available strain measurement techniques are discussed.  

 1.2.1 The Whittemore gauge 

 
Figure 1-1 Whittemore gauge 

The Whittemore gauge as shown in Figure 1-1 is a mechanical strain gauge that has been 

widely used for measuring surface strain of concrete structures for decades. Before a strain 

reading can be made, small steel circular buttons with a precision pinhole at the center, called 

“points”, are bonded on the concrete surface by using epoxy as shown in Figure 1-2. The 

Whittemore gauge measures the distance between the pinholes of successive pairs of points. 

Prior to the surface deformation, a set of reference length measurement are made, representing 

the unstrained positions of the points. Then a second measurement is taken after the surface 

deformation. The difference between the second measurement and the reference length is divided 

by the gauge length 203.2mm (8”), giving the strains on the concrete surface. When a reasonable 

strain profile is required, tens of points must be bonded onto the concrete surface, which is very 

time-consuming and labor-intensive. Furthermore, the measurement results are heavily 

influenced by the users’ habits and skills. Experience shows that different users can produce 

readings that are greatly different. It requires a considerable amount of training and experience to 

achieve consistent and repeatable results.  
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Figure 1-2 Prestressed concrete with metal points mounted on the surface 

 

 1.2.2 Electrical resistance strain gauge 
Another traditional gauge used to measurement concrete surface strain is the electrical 

resistance strain gauge (MUSPRATT, 1969). It employs the principle that metallic conductors 

subjected to mechanical strain exhibit a change in their electrical resistance. By converting 

mechanical strain into an electronic signal, the electrical resistance strain gauge can measure 

strain to quite high resolution.  

 
Figure 1-3 Electrical resistance strain gauge 

In general, the electrical resistance strain gauge is precise, reliable and easy to use. 

However, the technique has several disadvantages. 
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 The technique requires gluing the gauge on the specimen surface. Since the gauge 

has contact with the specimen surface, it may influence the surface strain and cause 

measurement error.  

 It is difficult to bond the gauge to the rough surface such as concrete. 

 Temperature, material properties and the adhesive that bonds the metallic 

conductors to the surface all affect the detected resistance, and hence can interfere 

with the accuracy of the strain measurement. (A. L. Window, 1982) 

 The electrical resistance strain gauge is sensitive to electromagnetic interference 

(EMI), which could cause measurement error when used in the industrial 

environment where many types of EMI inducing equipment are present, such as 

motors or electrical heaters.   

 In a harsh environment, the glue may debond and the gauge may break off from the 

specimen surface, making the measurement impossible. 

 In the case of large and suddenly changing surface strain, the gauge may suffer 

from “creep effect”. Experiments have shown that the reading of the electrical 

resistance strain gauge tends to decrease from an initial value if the specimen 

surface is subjected to a suddenly large load. The creep effect is caused by the 

partial debonding of the glue that bonds the gauge to the surface, which results in 

measurement error (Brinson, 1984). 
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 1.2.3 Vibrating wire strain gauge 
 

The vibrating wire strain gauge operates on the principle that the natural frequency of a 

pretensioned wire is affected by the stress applied to it. The relationship between the natural 

frequency f and the stress  is described by (A. L. Window, 1982) 

  

 1
2

f
l

 (1.1) 

where  is the wire material density and l  the length of the wire. 

The vibrating wire gauge is very simple in design. Two anchors are installed on the 

specimen surface and the two ends of the wire are attached to the anchors. Once the stress of 

the wire is known using Equation (1.1) , the strain of the surface can be found too, assuming the 

wire deformation faithfully follows the surface deformation. The advantage of the wire vibration 

gauge is that the gauge (wire) can be removed from the specimen, which makes it a suitable tools 

for long-term monitoring of strain change in the concrete structure. The major drawback of the 

wire vibration gauge is its sensitivity to ambient temperature. It is reported that a 1 degree 

temperature change causes a 20 change in the strain measurement (Neild, 2005). In some 

situations the specimen temperature changes rapidly, either due to ambient temperature change, 

or due to active heating to the concrete mix to expedite the cure process.  Unless the thermal 

expansion  factor  of  the  specimen  is  the  same  of  that  of  the  wire,  measurement  error  is  

introduced. It is possible to compensate the error caused by the temperature change, but doing so 

greatly complicates the system.  

   

 1.2.4 Fiber optics strain sensor 
 

Fiber optics based measurement techniques are very versatile. As many as 60 different 

quantities, including temperature, pressure and strain can be measured by fiber optics. (Fuhr, 

2000). For strain measurement, Fiber Bragg Grating is one of the most popular methods in recent 

years.  The  optical  fiber  used  in  this  method  is  fabricated  in  a  way  that  there  is  a  periodic  
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variation of the refractive index in the fiber core, called a “Bragg grating”. Suppose the grating 

interval is G , as shown in Figure 1-4, The Bragg wavelength is calculated by 

 2 n G  (1.2) 

where n is the average refractive index.  

When incident light passes through the Bragg grating, only the light of the wavelength 

equal to the Bragg wavelength will be reflected and the light of the wavelength other than the 

Bragg wavelength transfers through. Since the Bragg wavelength  is dependent on the Bragg 

grating interval G , which is in turn directly related to the applied strain, the applied strain can be 

determined by measuring the Bragg wavelength, i.e. the wavelength of the reflected light.  

 
Figure 1-4 Fiber Bragg Gratings (Merzbacher, 1996) 

 
Figure 1-5 Transmission and reflection of Fiber Bragg Grating (Merzbacher, 1996) 

Fiber Bragg Grating method has several advantages over the traditional eletrical 

resistance strain sensor. First, it is immune to electromagnetic interference from the industrial 

enviroment (Merzbacher, 1996). In addition, it does not suffer from any light intensity 

fluctuation in that it measures the strain based on the change of the reflected light wavelength, 

which  is  an  absolute  quantity.  However,  there  are  several  drawbacks  associated  with  the  Fiber  

Bragg Grating method.  
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 To measure the specimen strain, the optical fiber can be either be mounted onto the 

surface or embedded in the body of the specimen. When the fiber is embedded in the 

concrete mix, the alkaline chemical environment starts to erode the thin coating that 

protects the fiber core. For long term strain measurement, the aging of the fiber might be 

a problem or even cause the loss of the measurement. The protection of the leads of the 

fiber that exit from the concrete surface is also a concern in field applications of the 

method.  

 It is questionable how faithfully the strain of the fiber follows the change of the strain of 

the specimen. The loss of grip (debond) between the fiber and the concrete mix might 

happen, causing a difference of the strain between them.  

 It is reported that when the FBG fiber is not aligned to the principal stress direction of the 

host material, the strain detected by the FBG sensor will be much different than that of 

the host material. (Hong-Nan Li, 2007) 

  

 1.2.5 Video extensometer 
 

 A video extensometer measures the surface strain by tracking the coordinates of 

contrasting marks placed on the specimen. The gauge marks can be in the form of grid of dots or 

lines as shown in Figure 1-6, with the dot diameter or line thickness ranging from half millimeter 

to a couple of millimeters. The video image captured by the digital camera is analyzed by the 

image processing algorithms to locate the centers of the dots or the edges of the lines. During the 

test, the centers of the dots or the edges of the lines are followed automatically by the software. 

Their coordinate changes are used to extract the specimen strain information (Malo, 2008).  
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Figure 1-6 Video extensometer configuration (Malo, 2008) 

Since the surface strain is measured by tracking a center of the mark, fine marks must be 

applied to the surface, such as a 7x7 grid of 0.5 mm diameter dots as described in wood surface 

strain measurement (Malo, 2008). For a material with irregular or soft surface, the application of 

marks may not be practical.  

Some  other  Video  extensometers,  such  as  the  MTS  LX  Laser  Extensometer  (MTS  LX  

laser extensometer, 2009), use tapes instead of marks to tag the surface displacement. The tape 

that attaches to the specimen surface has strip spacing on it. The extensometer determines the 

surface strain by measuring the extension of the strip spacing.  The technique is not a real non-

contact measurement method since the tape contacts the specimen surface. It is possible that the 

strip and the specimen extend or shrink by different amounts due to a creep effect, so that the 

strain  measured  from  the  tape  does  not  faithfully  represent  the  actual  specimen  strain.  The  

resolution is limited by tape strip spacing and usually low. 

 

 1.2.6 Laser speckle strain measurement   
 

Speckle is generated by illuminating a rough surface with coherent light as shown in 

Figure 1-7. The random reflected waves interfere with each other, resulting in a grainy image, as 

shown Figure 1-8.  The speckle pattern could be thought of as a “fingerprint” of the illuminated 

area in the sense that the speckle pattern produced by every surface area is unique. Furthermore, 

when the surface area undergoes movement or deformation, the speckle pattern in the image 

plane will also move or deform accordingly.  

Most optical speckle methods for in-plane displacement or deformation measurements 

are based on the same principle. That is, the grainy speckle pattern image is recorded before the 
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surface is deformed and after the surface deformation. The deformation or displacement 

components can then be extracted by comparing the speckle patterns before and after a surface 

deformation.  This  is  typically  done  statistically  using  a  cross-correlation  technique  to  measure  

the speckle displacement.  (See Section 2.4 for detailed discussion of cross-correlation 

technique) 

 
Figure 1-7 Speckle Generation Principle 

 

 
Figure 1-8 Speckle Pattern 

There exist two basic categories of speckle technique for surface strain measurement: 

electronic speckle pattern interferometry (ESPI) and digital speckle photography (DSP). They 

relate to different methods of producing and processing the speckle image. The ESPI technique 

measures the object surface displacement or deformation by detecting the corresponding phase 

change of the light wavefronts reflected from the surface, just as a conventional Michelson 

interferometer does. The image taken in an ESPI system, called a “speckle interferogram”, is 

produced by interfering the speckle radiation reflected from an object surface with a reference 
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light field, either a uniform coherent light beam or another speckle field (Dainty, 1975). In 

practice, the speckle interferograms are taken both before and after the object displacement or 

deformation. A characteristic fringe pattern can be obtained by subtracting the two speckle 

interferograms. The fringe spacing corresponds to a 2  phase change of the wavefronts resulted 

from the object surface deformation, as is the case with a Michelson interferometer with a mirror 

displacement. Thus the surface deformation and displacement can be readily determined by 

counting the number of fringe changes. As an interferometry method, the ESPI technique has 

high resolution on the order of a fraction of a light wavelength, and the resolution is not limited 

by the resolving power of the imaging system (Samala, 2005) (Helena (Huiqing) Jin, 2006). As 

fringe counting is involved, this method has a 2  ambiguity limitation; that is, the periodical 

fringe pattern resembles itself whenever it shifts by an integer multiple of  2  phase. There is no 

easy way to determine the phase change uniquely. Another limitation is in the upper bound of the 

deformation that can be measured, due to the limited number of visible fringes on the detector 

(typically a CCD array) (C. Joenathan, 1998). 

 

 
Figure 1-9 Microstar® Strain gauge 

Fig 1-9 shows a commercial full field strain sensor named Microstar® based on ESPI 

technique.  It  has  the  ability  to  automatically  analyze  the  geometry  and  the  deformation  of  the  

surface  area  of  interest  within  100nm  resolution.   Due  to  its  miniature  size,  the  sensor  can  be  

easily attached to the components during testing and has received a wide acceptance in 
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automobile and aerospace industries.(L.X. Yang, 1999)(R.Wegner, 1999). The Microstar® strain 

sensor requires stringent alignment with the specimen surface and must be fixed onto the 

specimen surface throughout the measurement process to prevent rigid relative movement. This 

drawback makes it impractical to be used for strain measurement for civil engineering structure, 

where either long term monitoring of the surface strain is required, or enormous shock happens 

to the subject such that the sensor must be removed to avoid damage.  For instance, a prestressed 

concrete beam is subjected to a nominal 30,000lb sudden force during the detensioning of the 

steel strands and this may damage the sensor if left on the concrete surface.  

The DSP technique, on the other hand, is based on intensity correlation.  By comparing 

two speckle images, taken before and after surface deformation, the in-plane displacement vector 

resulting from the loading can be determined. Once the complete displacement field is obtained, 

it can be differentiated to obtain an in-plane strain map. DSP generally has lower resolution than 

ESPI, but larger dynamic range. The resolution is limited by the speckle size, which typically 

ranges at the micrometer level, and the resolving power of the imaging system.  There exists 

some strain measurement devices in the market utilizing DSP technique. One of them is ME-53 

extensometer (ME-53 Laser speckle extensometer manual)(Eduard Schenuit, 2008) from 

Messphysik  company.  It  has  two  variations.  One  version  consists  of  two  cameras  and  a  servo  

drive that controls the motion of the cameras for a large gauge length setup, as shown in Figure 

1-10;  the  other  version  consists  of  a  single  camera  for  small  area  surface  strain  measurement.  

The ME-53 laser speckle extensometer makes non-contact strain measurement based on the DSP 

technique and does not require any surface marking.  However it is mainly designed for 

laboratory use. The sensors must be mounted on a vertical track and the specimen must be 

installed on a laboratory bench.  This is  to prevent the relative rigid motion between the sensor 

and the specimen. Although the DSP technique is designed to measure in-plane movement, it is 

also  commonly  sensitive  to  surface  tilt  (yaw  and  pitch),  which  brings  error  into  the  strain  

measurement.    The  bulky  size  of  the  system also  makes  the  system impractical  for  use  in  the  

field. Furthermore, a calibration procedure involving displacement of the camera by a certain 

known distance using the servo system that comes with the system must be conducted by the end 

user prior to the measurement. In addition, whenever the distance between the sensor and the 

specimen surface changes, the system must be re-calibrated.  
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Figure 1-10 ME-53 laser speckle extensometer 

 

 1.3 Overview of dissertation 
The importance of having a reliable and robust strain measurement technique for either 

factory monitoring or “field testing” of concrete structural members has been described above. 

The current available methods are either more opted for laboratory testing or are too slow to 

allow online monitoring.  

The work presented in this dissertation illustrates the development of a general strain 

measurement technique based on the laser speckle principle that is able to rapidly and accurately 

determine concrete surface strains. An understanding of the relationship between the multi-

degree motion of the subject surface and the induced motion of the speckle pattern is required in 

order to make the laser speckle measurement technique applicable to the typically harsh 

industrial environment. A portable prototype incorporating unique modular design concept and 

self-calibration feature has been fabricated. The portable design enables flexible adjustment of 

the gauge length and easy expansion to a rosette strain measurement configuration.  

 Extensive testing has been conducted in the laboratory environment to validate the 

sensor. Furthermore, the laser speckle strain sensor was applied to transfer length measurement 

of common prestressed concrete beams, and prestressed concrete cross-ties in the field. The 

sensor yielded unprecedented measurements of transfer length in just a few minutes, compared to 

the hours that are needed if using the current accepted method of measurement.  
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Through this testing with different applications, it has been shown that the newly 

developed portable laser speckle strain sensor can not only serve as an accurate instrument in the 

civil engineering laboratory where the deflection characteristics of a concrete member are 

needed, but also can be readily used in the harsh environment of the prestress concrete industry, 

with minimum surface preparation and staff training. It also has the potential to rapidly process a 

large quantity of data points in an industrial setting. 

It should be noted that, as far as the author is aware, the new developed sensor is the first 

device to successfully employ speckle method to determine transfer length of prestressed 

concrete. Furthermore, this development represents the first time that such a method has been 

demonstrated successfully in a harsh industrial environment with sufficient resolution and 

accuracy, to make automated transfer length measurement possible in the concrete railroad cross-

tie manufactory industry. 

The chapters in this dissertation are arranged as follows: 

 

 Chapter 2: Theoretical background of the laser speckle strain measurement 

Theoretical modeling of the speckle will be presented, using Fourier optics. The 

principle behind the 5-axis motion measurement, which serves as the foundation 

of  the  design  of  the  laser  speckle  strain  sensor,  will  be  discussed.   The  digital  

image correlation technique, which is the crucial part of the data analysis, will 

also be presented. 

 Chapter 3: Hardware design of the optical strain sensor 

Various  different  hardware  designs  of  the  laser  speckle  strain  sensor  will  be  

described in detail. Their advantages and drawbacks will be compared. Technical 

detail of the individual components including laser head, CCD camera, lens and 

the alignment mechanism used by the sensor will be presented. 

 Chapter 4: Software development of the optical strain sensor 

The preprocessing of the captured speckle images will be presented.  A detailed 

explanation of how the digital correlation procedure is conducted to extract the 

relative shifting of the speckle patterns in sub pixel resolution will be presented, 

along with the various techniques that are implemented to speed up the correlation 

computation.  
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 Chapter 5: Calibration 

The general procedure for the calibration of the laser speckle strain sensor will be 

presented. Then the effect of the sensor misalignment will be investigated. An 

improved calibration method that is able to correct the error caused by the 

orientation difference of the two camera coordinates will be presented.  

 Chapter 6: Conclusion 

The work that has been done for the development of the laser speckle strain 

sensor  will  be  summarized.   The  recommendation  of  future  work  based  on  the  

efforts presented here will be discussed. 

 

The appendices at the end of the dissertation contain the references cited in the text. The 

hardware components list and the specifications for the sensor, along with the uncertainty 

analysis, are also included.  An operation manual for the laser speckle strain sensor and the 

software source code are attached to the end of the dissertation.    
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Chapter 2 - Theoretical background of laser speckle strain 

measurement technique 

Speckle is generated by illuminating a rough surface by coherent light. The reflected light 

interferes constructively and destructively, creating a grainy pattern at the observation plane. In 

this chapter, Fourier optics, statistical tools and imaging theory are used to explore the various 

characteristics of the speckle. The characteristics of the speckle are described mathematically 

and the optimal spatial sampling resolution is obtained.  Furthermore, the theory of 5-axis motion 

measurement technique will be described. The 5-axis motion measurement was developed at the 

early  stage  of  the  optical  strain  sensor  development.  It  is  important  to  the  strain  sensor  

development in that the object surface during deformation is usually subjected to 6 degrees of 

freedom movement. However, only the in-plane displacement information is used to calculate 

the  strain.  The  motion  of  other  axis,  especially  the  out-of-plane  rotations  act  as  error  source  to  

the strain measurement. The 5-axis motion measurement system is able to separate the 5-axis 

movement so that the movement of each axis can be measured independently, thus the effect of 

the out-of-plane rotations can be eliminated for the strain measurement.  To the end, the digital 

image correlation technique is discussed. It is an image process technique that estimates the 

relative shift of the speckle image pairs taken before and after the surface deformation, such that 

the displacement or strain information can be extracted.  

 

 2.1 Mathematical description of the speckle phenomenon 
Speckle is generated by illuminating a rough surface with coherent light, as shown in 

Figure 1-7. The random reflected waves interfere with each other, resulting in a grainy image, as 

shown Figure 1-8.   

Figure 2-1 shows an imaging system of recording the subjective speckle filed by a CCD 

camera. The object plane XY  is illuminated by a laser light beam. The reflected laser lights from 

the rough object surface is collected by the lens and then imaged onto the camera plane xy  from 

the object. The distance between the lens and the object plane is od  and the distance between the 
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camera plane and the lens is id .  For surface deformation measurement, the speckle images are 

recorded twice by the camera, before and after the surface deformation.  

 
Figure 2-1 Imaging system of recording the speckle pattern 

 

The amplitude response of a point source at  coordinate (0,0) on the object plane XY  , 

which  is  also  the  impluse  response  function  of  the  optical  imaging  system,   is  defined  as  

(Goodman, 1996) 

 ( , ) ( ', ') exp[ 2 ( ' ')] ' 'i ih x y P d x d y j xx yy dx dy  (2.1)  

where ( ', ')i iP d x d y  is the pupil function 

 
2 21 ' '

2( ', ')
0 otherwise

ii i

Dx y
dP d x d y  (2.2) 

where D is the diameter of the lens pupil and ( ', ')x y  is the coordinate on the lens plane. 

Denoting 2 2' 'x y , we have  

 ' cos ' sinx y  (2.3) 

Further define 2 2r x y  

 cos sinx r y r  (2.4) 
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Substituting Equation (2.3) and Equation (2.4) into Equation (2.1), and implementing the 

polar integral, 

 
2 2

0 0

( , ) exp[ 2 cos( )]
i

D
d

h x y j r d d  (2.5) 

Since the Bessel function of the first kind is defined as 

 

 
2

0
0

1( ) exp[ cos( )]
2

J u ju d  (2.6) 

we have, 

 
2

0
0

( , ) 2 (2 )
i

D
d

h x y J r d  (2.7) 

Further using the integral identity of the Bessel function of the first kind, 

 0 1
0

' ( ') ' ( )
u

u J u du uJ u  (2.8) 

Equation  (2.7) can be simplified to be 

 1(2 / )( , )
/

i

i

J Dr dh x y
Dr d

 (2.9) 

 

 Since the optical imaging system is shift-invariant, meaning that the shifting of the input 

in some direction shifts the output by the same distance and direction, for a point source location 

at the coordinate ( , )X Y  on the object plane, the amplitude response at coordinate ( , )x y  on the 

camera plane is   

    

 ( , ; , ) ( , )h x y X Y h x X y Y  (2.10) 

Since the optical imaging system is a linear system, the complex amplitude at coordinate 

( , )x y  on the camera plane is the superposition of amplitude response of all the point light 

sources ( , )X Y where X  Y . 

Assuming 

 ( , ) ( , )exp[ 2 ( , )]ou X Y f X Y j X Y  (2.11) 
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The convolution of the object intensity with the point spread function is 

 ( , ) ( , ) ( , )i ou x y h x X y Y u X Y dXdY  (2.12) 

Denoting the Fourier transform of ( , )ou x y , ( , )iu x y
 
and ( , )h x y   

 ( , ) ( , )o x y oU F u X Y  (2.13) 

 ( , ) ( , )i x y iU F u x y  (2.14)  

 ( , ) ( , ) ( , )x y i x i yH F h x y P d d  (2.15) 

where  

   

 
2 2 21 ( )

2( , )
0 otherwise

x y
ii x i y

D
dP d d  (2.16) 

The convolution form in Equation (2.12) can be expressed in frequency domain as, 

 ( , ) ( , ) ( , )i x y x y o x yU H U  (2.17) 

The intensity at point coordinate ( , )x y  on the camera plane is, 

 2 *( , ) ( , ) ( , ) ( , )i i is x y u x y u x y u x y  (2.18) 

where *( , )iu x y   is the conjugate of ( , )iu x y . 

Therefore, the Fourier transform of ( , )s x y  can be represented as the convolution of 

( , )iU x y  and *( , )iU x y  

 
*

*

( , ) ( , )

( , ) ( , )

( , )* ( , )

x y

i i

i x y i x y

S F s x y

F u x y u x y

U U
 (2.19) 

 Substituting Equation (2.17) into Equation (2.19), 

 * *( , ) ( , ) ( , ) * ( , ) ( , )x y x y o x y x y o x yS H U H U  (2.20) 
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Observing that ( , )ou X Y is the reflected laser light beam intensity from the rough object 

surface, due to the random feature of the surface profile, both the amplitude term and phase term 

are modulated randomly. Therefore ( , )ou X Y can be regarded as a random function.    

Therefore Equation (2.20) is simplified as  

 *( , ) ( , )* ( , )x y x y x yS H H  (2.21) 

Since ( , )h x y  is symmetric, we have * *( , ) ( , )x y x yH H  

 *( , ) ( , )* ( , )x y x y x yS H H  (2.22) 

Thus  

 2( , ) ( , )s x y h x y  (2.23) 

Substituting Equation (2.9) into Equation (2.23), we get the intensity distribution of the 

subjective speckle pattern, 

 
2

1(2 / )( , ) ( )
/

i

i

J Dr ds x y s r
Dr d

 (2.24) 

where 2 2r x y , and ,x y are the coordinates at the image plane, 1J  is the standard Bessel 

function of the first kind, D is the lens pupil diameter, id  is the image distance,   is the light 

wavelength. The intensity distribution function of the subjective speckle pattern is plotted in 

Figure 2-2. According to the Rayleigh criterion (Hecht, 1998), the average speckle size is 

determined as the value of r  where the value of the function ( )s r drops to its first local 

minimum. By setting 1
2( ) 0

i

DrJ
d

 , the solution is found to be  

 2 3.83
i

Dr
d

 (2.25) 

which in turn gives  

 1.22 idr
D

 (2.26) 

 This is the average size of the speckle on the camera plane. 
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Figure 2-2 Plot of speckle intensity distribution function 

 

 2.2 Review of the 5-Axis motion measurement system 
 

Axial strain measurement is accomplished by taking the differential of the relative 

displacements between two points on the object surface.  A typical speckle measurement is 

fulfilled by first illuminating the associated specimen surface with coherent light (laser). The 

random reflections from the surface features (roughness) generate a grainy speckle pattern image 

at the camera plane. This speckle pattern could be thought of as a “fingerprint” of the illuminated 

area, in the sense that the speckle pattern produced by a given surface region is unique. 

Furthermore, when the surface undergoes movement or deformation, the speckle pattern in the 

image  plane  will  also  move  or  deform  accordingly.  This  tracking  feature  is  the  basis  of  the  

displacement measurement of the laser speckle technology.  

However, the speckle displacement at the camera plane usually is not only sensitive to 

the object surface displacement, but also to other axis movements of the object surface; 

especially  the  out-of-plane  rotations  (tilt  and  yaw),  which  result  in  error  in  the  strain  

measurement. To extract the displacements accurately without being affected by other axis 

movements, a 5-axis motion measurement technique was developed that is able to separate the 5-
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axis movement so that the movement of each axis can be measured independently, thus the effect 

of the out-of-plane rotations are mostly eliminated.  

The 5-axis measurement principle is based on the fact that for subjective speckle there 

exist two characteristic planes behind the lens, a ‘tilt-only plane’ and a ‘translation-only plane’, 

such that the speckle image at the tilt-only plane is only sensitive to the tilt of the specimen, and 

the speckle image at the “translation-only” plane is only sensitive to the translation of the 

specimen. (D.A.Gregory, 1976). These planes are shown in Figure 2-3.  

The 5-axis motion measurement technique was developed during the early stage of the 

laser speckle strain sensor development (Zhao, 2006). The principle of the 5-axis motion 

measurement was later applied to the design of the optical strain sensor in which the camera is 

positioned  at  the  ‘translation-only  plane’  of  the  optical  system  to  eliminate  the  effect  of  the  

surface motion other than the in-plane displacement. A detailed discussion of the 5-axis motion 

measurement technique can be found in author’s M.S. thesis (Zhao, 2006). 
 

 
Figure 2-3 Tilt-Only Plane and Translation-Only Plane 

 2.3 Insensitivity of system sensitivity to out-of-plane movement 
 

During the operation of the optical strain sensor in the field, in some situations the sensor 

does not work in a stationary manner. For example, for the prestressed concrete beam strain 

measurement, the sensor is required to be removed from the concrete beam surface before the 
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detensioning, and then be put back on the surface after the detensioning, due to the fact that the 

detensioning process involves a release of a 30000lbs (13607 kg) traction force, which could 

damage the sensor if left on the concrete surface. Thus the repositioning of the laser speckle 

sensor will cause the distance between the lens of the optical system to the concrete surface to 

vary inevitably. This arises a problem that the change of the object distance will affect the 

system sensitivity.  

Figure 2-4 shows the measured systematic sensitivity to object translation at different 

object-sensor distances.  It shows that the system sensitivity varies significantly when the sensor 

is at different depth positions relative to the object plane. This is obviously an undesired 

characteristic for a sensor. 

 
Figure 2-4 System sensitivity changes due to the object distance change (Zhao, 2006) 

 

However, it is proved that under the condition of collimated and normal illumination, the 

system sensitivity becomes insensitive to the out-of-plane object movement (Zhao, 2006). 

Experiments, as shown in Figure 2-5, have confirmed this behaviour. In the range of 6mm 

variation of object distance, the systematic sensitivity has no significant variation. 
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Figure 2-5 Invariance of system Sensitivity (Zhao, 2006) 

 

 2.4 Digital correlation technique 
 

As discussed previously, the shift of speckle image captured by the camera is 

proportional to the translation of the object surface under a specific imaging setup. The issue of 

detecting  the  surface  motion  is  thus  actually  one  of  evaluating  the  relative  shift  of  the  speckle  

image pairs taken before and after the surface deformation. This is done by using the digital 

correlation technique.  

Suppose we have two speckle images 1 2,I I  of the object surface taken before and after the 

surface deformation. The traditional cross-correlation function is defined by  
       

 1 2
1 1

( , ) ( , ) ( , )
N N

i j
Corr x y I i j I x i y j  (2.27) 

 

By varying the values of x  and y , the maximum value of the correlation function 

( , )Corr x y  can be found, and its coordinates give the relative components of the image 

displacement. The disadvantage of the function above is that it is subjective to changes in image 

intensity amplitude, generally caused by change in lighting conditions across the image 

recording sequence, which are very likely to happen during a typical concrete beam strain test 
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measurement period that might last for months.  To overcome the shortcomings associated to the 

traditional correlation method, adapted digital correlation algorithms are more often used. 

 2.4.1 Normalized correlation  
This method calculates the mean of the speckle image I1 and I2, then determines their 

normalized version I1’ and I2’. The correlation coefficient is then obtained similar to Equation 

(2.27). The result is normalized again to obtain the normalized cross-correlation coefficient. 

 
1 2

1 1

2 2
1 2

1 1 1 1

'( , ) '( , )
( , )

'( , ) '( , )

N N

i j

N N N N

i j i j

I i j I x i y j
R x y

I i j I x i y j
 (2.28) 

where 

 
1

' 1 ' 1
1 1

( ', ')
'( , ) ( , )

*

N N

i j
I i j

I i j I i j
N N

 (2.29) 

  

 
2

' 1 ' 1
2 2

( ', ')
'( , ) ( , )

*

N N

i j
I x i y j

I x i y j I x i y j
N N

 (2.30) 

A perfect match will give a peak equal to 1 and a complete no match will give a peak of 

0.  The normalization operation used by this method helps reduce effects of the image intensity 

variation to the matching of the image pairs. 

 2.4.2 Phase correlation 
Although the normalized correlation algorithm works quite well on the regular images, it 

was observed that it works poorly on the speckle image. This is due to the unique characteristics 

of the speckle pattern, which is a grainy pattern without any repeated feature. If the speckle 

pattern is transformed to the frequency domain, it can be observed that considerable information 

of the image is stored in the high spatial frequency domain, contrary to the regular image for 

which most information is stored in the low spatial frequency domain. The intensity of every 

speckle element in the pattern does not carry much information due to the fact that its intensity 

tends to fluctuate continuously and randomly when the object surface moves. The fluctuation of 
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the intensity of individual speckle is in fact noise and should not be taken into account when 

matching the speckle image pairs. Instead, it is the relative location of the speckles between the 

speckle image pairs that determines if the image pairs are correlated, and the amount of relative 

shifting. This explains why the normalized correlation algorithm, functioning well on the regular 

images by matching the image pairs pixel by pixel according to their intensity level, does not 

work well on the speckle image pairs. 

Alternatively, a phase correlation algorithm based on the Fourier Transform is able to 

discard the intensity information and reply primarily on the phase information for matching the 

image pairs. The overall procedure using a phase correlation technique for speckle image shift 

detection is described below.  

Suppose a pair of speckle patterns is given, corresponding to deformed and un-deformed 

states. The two speckle images can be represented as ),( yxf for the un-deformed one and 

),( vyuxf  for the deformed one, where ),( vu  denotes the components of the local 

displacement vector which are regarded as constants here (Zhao, 2006) 

In the first step, two complex spectrums of the image pair are obtained as follow, 

   

 1 22 ( )
1 1 2( , ) ( , ) j x yF f x y e dxdy  (2.31) 

        

 1 22 ( )
2 1 2( , ) ( , ) j x yF f x u y v e dxdy  (2.32) 

A basic property of Fourier Transform yields (Bracewell, 1978),   

   

 1 22 ( )
2 1 2 1 1 2( , ) ( , )j u vF e F  (2.33) 

   

 The normalized cross-power spectrum of the two images is then calculated as 

   

 1 2

*
2 ( )1 1 2 2 1 2

1 1 2 2 1 2

( , ) ( , )
( , ) ( , )

j u vF F e
F F

 (2.34) 

By applying a second-step FFT to the resulting spectrum, ),()( )(2 21 vueF vuj , a 

pulse signal appears in the second FFT spectrum image at (u,v), which represents the 
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displacement vector between the image pairs. In this approach, the FFT spectrums 

1 1 2 2 1 2( , ), ( , )F F consist of both magnitude information and the phase information. After the 

normalization, the magnitude information is removed and only the phase information is retained.  

For verification purposes, a pair of speckle images with relative shifting were cross-

correlated using both the normalized correlation algorithm and the phase correlation algorithm. 

The resulting correlation images were very different. In the correlation image produced by the 

normalized correlation algorithm, as shown in Figure 2-6, the peak is suppressed by the high 

intensity of background noise. While for the phase correlation, as shown in Figure 2-7, the peak 

is very clear.  

 
Figure 2-6 Normalized correlation results for a typical speckle image pairs 

 
Figure 2-7 Phase correlation results for a typical speckle image pairs 



28 

 

Chapter 3 - Hardware design for the optical strain sensor 

 

This chapter discusses the hardware design of the strain sensor. Multiple factors must be 

brought into the consideration during this design stage. The main objectives of the design are 

listed in the following.  

 

 To develop a portable surface strain sensor capable of measuring surface strain. The 

sensor dimension should be as small as possible and the weight should be light for the 

portability of the sensor.  

 Measurement uncertainty to be on the order of 25-50 microstrain in  

order to have capability similar to the Whittemore gauge whose uncertainty is about 50 

microstrain. 

 Nominal range of measurement should be large enough to facility easy positioning and 

alignment of the sensor in handheld work mode. 

 The sensor is aimed for a commercial product to replace the industrial standard 

Whittemore gauge. Thus it should be easy to manufacture and assemble. 

 The sensor is to be for use in harsh environment where various condition including 

extreme temperature, humid, vibration and dust pose challenge to the sensor’s function.  

For example, one of the field application that the sensor has been applied to is the transfer 

length measurement of railroad cross-tie in a manufacturing plant. The temperature in the 

plant varies as much as 60 ºF through the year, with max temperature more than 100 ºF in 

the summer. The sensor must be able to withstand harsh environments and maintain high 

functional performance in operation.  

 Minimal training required 

 

The digital speckle photography (DSP) technique that has been reviewed in Chapter 1 

was chosen to be used for the development of the optical strain sensor. DSP technique has large 

dynamic range, e.g. the maximum deformation or displacement that the technique can measure, 

which makes it more robust than other optical strain measurement techniques based on laser 

speckle. DSP technique generally has relatively lower resolution, which is limited by the speckle 



29 

 

size that typically ranges at the micrometer level. But the resolution is high enough for the 

concrete beam strain measurement application.  

During the development of the current laser speckle strain sensor, four (4) generations of 

successively improved designs have been manufactured and tested. A prototype was fabricated 

for each design either on an optical breadboard for concept validation or in a portable form for 

use in field testing. For each design, improvements were made based on the knowledge learned 

through the testing and analysis of the prototype based on the previous generation design. The 

four (4) generations of designs and their prototypes are described below in chronological order of 

their development.   

 

 3.1 5-axis motion measurement system  
 

An optical system capable of measuring the desired 5-axis (five degree of freedom) 

object movement was constructed during the early stage of the current laser speckle strain sensor 

development, and resulted in the author’s Master thesis.(Zhao, 2006). The 5-axis motion 

measurement technique, employed in this optical breadboard layout was important to the strain 

sensor development in that the object surface during deformation is usually subjected to full 6 

degrees of freedom movement. The traditional optical speckle methods, though designed to 

measure in-plane movement, are also sensitive to surface tilt and other rotational modes that are 

very likely to happen during the concrete surface strain measurement. These rotation effects will 

introduce severe error to the surface displacement or strain measurement if properly taken into 

account..  

The characteristics of the previously developed 5-axis motion measurement system are 

described below (Zhao, 2006). The system employed the concepts of “translation-only” plane 

and “tilt-only” plane to separate the surface in-plane displacement and out-of-plane tilt; thereby, 

eliminating or greatly reducing rotation-induced error. The 5th axis movement (in-plane rotation) 

was detected by using a polar-correlation technique. The 6th axis movement (out-of-plane 

translation) of the specimen surface is shown both theoretically and experimentally to have no 

contribution to the in-plane surface strain, and is therefore not measured by the sensor.  
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A  schematic  of  the  5-axis  motion  measurement  system  is  shown  in  Figure  3-1.  A  

prototype of this optical system was also built on breadboard, as shown Figure 3-2. Experiments 

were conducted to confirm that the system is able to separately and accurately resolve 5 axis 

motion: X, Y, tilt, yaw, and roll of the specimen, with the expected insensitivity to out-of-plane 

displacement (Zhao, 2006). 

 
Figure 3-1 5-Axis Measurement Imaging System 

 
Figure 3-2 Breadboard prototype for the 5-Axis motion measurement system 
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 3.2 Single module design 
 

Based on the 5-axis breadboard motion measurement system, a portable laser speckle 

strain sensor was designed and fabricated utilizing one laser head and one camera  

Since only the in-plane displacement components (X, Y displacements) are of interest in 

the measurement of surface strain, an optical strain sensor was built to measure the in-plane 

displacement components of two nearby surface points on the object surface by detecting the 

speckle  shifts  at  the  corresponding  “translation-only”  planes  only.  The  configuration  of  the  

imaging system makes the sensor insensitive to any surface motion other than the in-plane 

displacement. A schematic diagram of the sensor is shown in Figure 3-3. The sensor is an 

integration of two identical displacement measurement systems that measure the displacements 

at point A and point B, respectively.  

A laser is collimated by lens L1, L2 and then directed to the specimen surface at point A 

and point B respectively using polarization beam-splitter B1. The reflected waves from the 

diffusive surface are directed through the beam-splitter B1 and the lens L3. Right in front of lens 

L3 is a non-polarizing beam-splitter B2 that sends the reflected laser beams to Mirror M4.  The 

light beams then go back through the beam-splitter B2 and are finally captured by the CCD 

camera. Mirror M4 is used to make the sensor more compact by folding (doubling) the optical 

path length.  Since there are two laser beams, reflected from point A and point B on object 

surface and sent to a CCD camera, the CCD camera actually captures two speckle patterns at the 

same time.  The analysis of the speckle images would be more complicated if the two speckle 

patterns overlapped each other. There are two approaches to  prevent this from happening. One 

approach involves manually blocking one laser beam at a time and taking the speckle image 

twice. When the laser beam that illuminates point A is blocked, the speckle image captured by 

the camera is generated by point B only. Likewise when the laser beam that illuminates point B 

is blocked, the speckle image captured by the camera is generated by point A only. The other 

approach is to block half of each of the laser beams with Stop 1 and Stop 2, as shown in Figure 

3-3, such that only half of the areas around point A and point B are illuminated.  This results in 

two simultaneous side-by-side speckle patterns (Figure 3-4) on the CCD camera, generated by 

point A and point B, respectively.  
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Figure 3-3 Single module design 

 
Figure 3-4 Image splitting 

 

The prototype of single module design and its interior view (dust cover removed) are 

shown in Figure 3-5 and Figure 3-6 respectively. The optical system was built using the Cage 

System®  components  from  Thorlabs  company  for  rapid  fabrication.  The  camera  is  a  Marlin  
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F145B CCD camera with a resolution of 1392 by 1040 pixels. All the optics components, the 

camera and the laser head are mounted on a single piece of 8”x2” steel base. The sensor were 

enclosured in a metal box with the dimension of 11”x7”x4”.  The mass of the sensor is 7 lbs.  

  
Figure 3-5 Prototype based on single module design 

 
Figure 3-6 Interior view of the prototype based on the single module design 

 

During the measurement, the optical strain sensor is first positioned onto the concrete 

surface before the detensioning.  The CCD camera then captures a speckle image of the two side-
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by-side speckle patterns as shown in Figure 3-4, which are generated by point A and point B, 

respectively.   These two patterns are denoted as A1 and B1.  The sensor is  then removed from 

the concrete surfaces.  After the detensioning, the optical sensor is positioned (mounted) back 

onto the surface.  The camera captures another speckle image with two speckle patterns, which 

are denoted as A2 and B2.  By applying a cross-correlation technique to the pair of speckle 

patterns A1 and A2 (before and after the detensioning processes), the displacement A can be 

extracted.  The displacement B can be extracted from pattern B1 and pattern B2 in a similar 

fashion. 

As shown in Figure 3-7, the axial surface strain, , between point A and point B can thus 

be determined from 
B A

L
, where L is the gauge length 203.2 mm (8 inches) for the 

current setup. 

 

Figure 3-7 Strain Measurement 

 

The single module strain sensor was extensively tested in a laboratory environment as 

well as on actual prestressed concrete beams in the field. The measurement results were 

compared with those obtained using traditional gauges (Whittemore gauge and the electrical 

resistance strain gauge) and showed good consistency. The experiments and applications are 

discussed in detail in Chapter 6. A provisional patent was also granted for the design. 



35 

 

The laser speckle strain sensor based on the single module design, although proved to be 

a working unit, suffered from the following drawbacks:  

 Assembly 

The  single  module  design  made  use  of  one  set  of  optical  system component  to  capture  

the images of two areas on the object surface. To achieve this, three mirrors (M1, M2, 

M3) in Figure 3-3 are used in the system. The laser light had to be spilt and directed to 

the two surface areas to be measured using these three mirrors. At the same time the 

three mirrors were also used to direct the reflected light from the two separate areas on 

the object surface onto the single camera, whose size was only 6.4mm by 4.8mm. The 

two-folded adjustment of the three mirrors proved to be a very difficult task.  

  Gauge length 

With the single module design, the gauge length was fixed after the sensor was 

assembled. To change the gauge length, the whole system would have to be redesigned 

and rebuilt.   

 Measurement range 

The single module design integrated two identical displacement measurement systems 

into one system by sharing the lens and camera.  To prevent the images of the two surface 

areas from overlapping each other on the single camera, a mechanism was taken to 

separate the two speckle images. One of the approaches involved manually blocking one 

of the two laser beam at a time. This required additional manual operation by the user and 

significantly reduced the measurement pace.  The other approach was to block half of 

each of the laser beams, which resulted in two side-by-side speckle patterns on the CCD 

camera. Each speckle pattern used only half area of the CCD chip, as shown in Figure 3-

4. However, this approach causes the measurement range of the sensor be halved. 

 Weight 

The prototype sensor weighed 7lbs. It makes the user fatigue quickly when the sensor 

was operated in manual mode and was handheld by the user.   
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 3.3 Dual module design 
In observing the drawbacks associated with the single module design, the next generation 

of  the  sensor  took  the  form  of  modular  design,  which  consisted  of  two  identical  modules  that  

were attached to each other rigidly side by side. The new sensor detects the displacement at two 

points (usually 8 inches apart, but adjustable) on the specimen surface, which is converted into 

the  surface  strain  by  dividing  the  net  displacement  by  the  gauge  length.  The  displacement  

measurement is based on the Digital Speckle Photography (DSP) technique. The principle of the 

measurement technique is as follows: A typical measurement is fulfilled by recording the speckle 

images before and after the object displacement or deformation. The two images are then cross-

correlated and the peak position of the correlation image indicates the displacement of each ends.  

 A schematic of the dual module design is shown in Figure 3-8.  The two individual 

modules are identical, except that one is a “right handed module” and the other is a mirror-

arranged  (or  left-handed)  copy  of  the  right-handed  module.  Each  of  the  modules  consists  of  a  

5mW  diode  laser  head  that  emits  laser  light  of  635  nanometers  wavelength,  which  is  then  

expanded by lens L1 (12.7mm focal length) and lens L2  (35mm focal length) into a collimated 

laser light of 10mm diameter.  The expanded laser light is then directed to the specimen surface 

by a beam-splitter B1. The reflected waves are imaged at a magnification of unity by the lens L2 

onto a CCD image sensor of 1392x1024 pixels whose output signal is then sent to a PC for data 

processing. The image sensor is a monochrome Lu130M CCD camera powered by 5v DC with 4 

Watts power consumption.  The whole optical system for individual module was rigidly mounted 

on single metal base to keep the relative position of the optics components fixed. The two 

modules were then rigidly attached together to keep the gauge length of the sensor constant.  
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Figure 3-8 Dual module design 

It  is  notable  that  the  lens  L2  serves  two  purposes  in  the  system.  It  collimates  the  laser  

light and also images the reflected speckle pattern to the camera. Since the imaging system is a 

conjugate configuration, a double convex lens is required. However, regular convex lenses with 

spherical surface suffer spherical aberration, which distorts the speckle image and introduces 

measurement error.  The lens actually used in the optical strain sensor is a triplet lens that 

consists of three single lenses, one convex lens and two concave lenses. The positive aberration 

from the convex lens and the negative aberration from the concave lens are cancelled out. This 

setup dramatically reduces the distortion of the imaging system. 

A schematic of the dual module design with current nominal dimensions labeled is shown 

in Figure 3-9.  
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Figure 3-9 Schematic of the dual module design with dimensions labeled 

  
Since the basic methodology of single module design and dual module design are similar 

,it would appear that strain sensors based on either design should be able to measure the strain 

with comparable resolution. However, in terms of the practical functionality and performance, 

the dual module design is more preferable for the following reasonings:  

 Assembly 

Unlike the single module design that requires tedious adjustment of multiple mirrors 

during the assembly process, the dual module design does not require any mirrors, so it is 

almost adjustment free.  

  Gauge length 

With the dual module design the adjustment of the gauge length is very easy. All the user 

needs  to  do  is  to  unscrew  the  two  modules  from  the  rods  or  bars  that  connect  the  two  

modules together, adjust the distance between the two modules to achieve the desired 

gauge length, and then re-tighten the screws to fix the locations of the two modules.  

With the auto calibration feature that will be discussed in Chapter 5, the calibration of 

the system parameters takes less than five minutes and can be done in the field without 

the need for special additional calibration equipment.   
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 Measurement range 

Unlike the single module design that requires mechanisms to prevent the speckle images 

of the two inspected area from being overlapped with each other, the dual module design 

is free of this problem since each of the speckle images is captured by a separate CCD 

camera.  The measurement range is also doubled, compared to that of the single module 

design that adopts the splitting image approach, because the entire CCD array is devoted 

to measure the separate end-point displacement. 

 

The dual module design also has its drawbacks: 

  Since the dual module design consists of two sets of nearly identical optical systems, the 

total cost is doubled compared to the single module design.  

 As an electronic component, the image captured by the CCD camera is subject to drift 

due to various noises. In the dual module design, the two cameras each suffer their own 

image  drift.  The  sum of  the  independent  drifts  of  the  two speckle  images  from left  and  

right modules is  reflected as a distance change in the measurement,  causing error in the 

strain reading. The single module design does not suffer from this problem due to the fact 

that both speckle images are captured by the same camera such that the camera drift 

affects both speckle images, which in turn is canceled out in the measurement results. 

 In practice, the two cameras in the dual design will have a minor orientation difference no 

matter how well the sensor is assembled. The analysis in Chapter 5 shows that even a 0.4 

degree orientation difference can cause an error comparable to the nominal resolution of 

the sensor if not taken into account. To deal with the problem caused by the orientation 

difference of the two cameras, a more complicated calibration algorithm has to be 

implemented.  

  

Overall the traits of the dual module design overweigh its disadvantages. Efforts were 

subsequently expended on its implementation and perfection of the dual module design. Both the 

third and the fourth generation prototypes are fabricated based on the dual module deign. They 

are discussed below. 
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 3.3.1 The third generation prototype 
 

Figure 3-10 shows the third generation prototype that is based on dual module design. 

The two modules (left and right-handed) shown are attached rigidly to each other using two “L 

shaped” cross-section steel channels (1” flange length, 7” long) and eight ¼”-20 mounting 

screws. Figure 3-11 shows the interior view of an individual module. A “L shaped” bracket was 

used as the base for the module. The optics are mounted on one edge of the bracket and the 

camera are on the other edge.  The module was covered with a plastic enclosure made from 

rapid-prototyped ABS-Plastics. The dimensions of the individual module were 5”x4”x2” and the 

total weight of the prototype was 5.2 lbs.   

 
Figure 3-10 The third generation prototype based on dual module design 

 
Figure 3-11  Interior view of the individual module of the third generation  
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This third generation prototype based on dual module design was extensively tested in 

laboratory environment. Severe errors were observed in the measurement of surface 

displacement and strain. Through investigation, it was found that the significant errors were from 

a thermal expansion effect primarily related to the camera heating. As an electrical device, the 

speckle strain sensor has an inherent thermal expansion effect, which resulted in an enormous 

displacement or strain. The moment the sensor is turned on, the electrical components, mainly 

the camera running at 4 Watts, starts to dissipate heat and causes the continuous thermal 

expansion on the hardware. The effect of the thermal expansion on the strain sensor is two-fold. 

First, there is a possible change of the sensor gauge length, and second, there is possible an 

accompanying change in the optical imaging system configuration.  

 Change of the sensor gauge length 

Since the channel bars used in this third generation prototype that connect the two 

modules are steel, whose thermal expansion coefficient nominally is 7.3 10-6 in/in oF, 

every degree Fahrenheit increase in temperature will cause the steel bar or the sensor 

gauge length to expand as much as 7.3 microstrain, which will in turn be falsely recorded 

by the sensor as the specimen deformation. Although it is possible to compensate for the 

error by recording an appropriate temperature change of the connection bar during the 

operation of the strain sensor, the compensation may not be accurate and may make the 

system far more complicated.  

 Change of the optical imaging system 

In the optical imaging system, the relative positions of various components are supposed 

to be fixed. However, since the optics were mounted on one edge of the “L” shaped steel 

bracket and the camera were on the other edge, the deformation of the bracket could 

change  the   relative  positions  of  the  optics  and  the  camera,  and  in  turn  cause  

measurement error by the sensor. More importantly, it is difficult to predict how much 

error will be introduced by the deformation of the bracket, since this will depend on the 

temperature distribution of the steel bracket, thus the compensation of this error could be 

difficult to implement in practice. 
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 3.3.2 The fourth generation prototype  
The fourth generation prototype was also based on dual module design, and was 

developed  with  multiple  measures  to  minimize  the  effects  of  thermal  expansion  on  the  sensor  

strain measurement. 

 
Figure 3-12 The fourth generation prototype based on dual module design 

 

Figure 3-12 shows the fourth generation prototype. For this design, the two modules were 

attached rigidly to each other using two carbon fiber rods whose thermal expansion coefficient is 

1/10 of that of steel. This significantly reduces the sensor gauge length change caused by 

temperature change. Figure 3-13 shows the interior view of an individual module. The optics and 

the camera’s CCD chip were attached together as one piece. The whole imaging system of each 

individual module is mounted rigidly on an aluminum base. This prevented the relative positions 

of the imaging system components from change. In addition, the main heat generation 

component, which is the camera circuit board, was positioned far away from the rest of the 

imaging system. Air vent slits were made at the top of the enclosure to facility heat dissipation to 

outside by free convection.   
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 The module was enclosured in a box fabricated from ABS plastic using a Rapid-

prototyping system. The dimension of an individual module is 4”x3”x2” and the total weight of 

the prototype is 2.6 lbs.   

 
Figure 3-13 Interior view of the fourth generation prototype  

 

 An experiment was conducted to quantitatively evaluate the effect of  thermal expansion 

on the strain measurement. This was accomplished by measuring strain on a non-deforming 

surface using the third generation prototype and the fourth generation prototype. Tests started 

from a state initially in equilibrium with the ambient temperature. Ideally both sensor prototypes 

should  report  zero  since  the  specimen  surface  undergoes  no  deformation.   However  as  the  

camera dissipates heat and the temperature of the sensor starts to climb, the effect of the thermal 

expansion will be reflected by the non-zero readings of both prototypes. Figure 3-14 shows the 

measured deflection reading from the third generation prototype in pink curve and that from the 

fourth generation prototype in blue curve. It can be seen that the deflection reported by the third 

generation prototype keeps increasing until it stabilizes at 12 microns. Considering the system’s 

nominal resolution of 20 microstrain (see Appendix C) with an 8” (203.2mm) gauge length 

which corresponds to 4 microns, the error from thermal expansion is three times of the nominal 
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resolution of the sensor and must be reduced to make the sensor usable in real application. In 

contrast, the fourth generation prototype reported less than 2 microns throughout the experiment, 

showing that the measures that were taken in the design of the fourth generation prototype 

successfully reduced the effect of the thermal expansion on the strain sensor performance.    

 
Figure 3-14 Experiment to evaluate thermal expansion effect 

  

 3.4 Components of the optics system 

 3.4.1 Laser Head 
The laser head used in the optical strain sensor is a compact laser diode module. It 

consists of a laser diode circuit, collimating lens and the drive circuit, packaged in a metal or 

plastic housing.  

In choosing the laser head for the sensor, there are several factors to consider. Ideally the 

laser beam intensity profile is a Gaussian shape due to several beneficial properties that come 

with it.  A Gaussian profile beam always remains Gaussian along its path of propagation through 

the optical system (Hecht, 1998). Thus the propagation of Gaussian beams through an optical 

system can  be  treated  almost  as  simply  as  geometric  optics.  However  a  low quality  laser  head  
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might produce a saw-tooth type of laser beam profile (Figure 3-15). It is hard to predict the 

behavior of a non-Gaussian shape laser beam when it goes through the lens. In addition, the 

inconsistency of the laser beam profile will introduce artificial noise to the speckle image 

captured by the camera and this interferes with repeatability of the strain measurement. Figure 3-

16 shows the beam profile from the high quality laser module used in the strain sensor,  whose 

beam profile is close to Gaussian shape. 

 
Figure 3-15 Saw-tooth laser beam profile 

 
Figure 3-16 Gaussian laser beam profile 
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The other important issue of the laser head is the collimating lens it uses. Since the laser 

light emitting from the laser diode exhibits high divergence and astigmatism, a collimating lens, 

usually aspherical, is used to circularize the beam and remove astigmatism. Many laser heads in 

the market use acrylic lens because it is much easier to manufacture aspherical lens in plastic 

than in glass. However, since the optical sensor is supposed to be used in harsh environment 

where the ambient temperature can fluctuate tens of degree, the thermal properties of the 

collimating lens have to be taken into consideration.  It is known that the thermal expansion of 

acrylic (315 ppm/°C) is several hundred times  larger than that of the BK7 glass (0.98 ppm/°C) 

(Herzig, 1997). To minimize the effect of the temperature change on the sensor performance, a 

laser head with a glass collimating lens was preferred. 

Another performance parameter of the laser module that is affected by the temperature is 

the  beam  pointing  stability.  Laser  pointing  stability,  whose  unit  is  typically /rad C ,  is  a  

measure of how much the beam axis angle drifts over time as the temperature changes. When the 

laser beam drifts, the distance between the laser beams of the two modules will change too, 

inadvertently affecting the accuracy of the strain sensor. The laser heads used in the sensor are 

two “high performance diode laser modules 1112A2-0001” from Diode Laser Concept company. 

It is claimed by the company that the pointing stability is 10 /rad C  .  Using a laser profiler 

(Beamstar-V-PCI, PHIR company), an attempt was made to verify the pointing stability rating of 

the laser module. The laser profiler was positioned 0.7m distance from the sensor. After the 

sensor  was  turned  on,  the  temperature  inside  the  sensor  and  the  laser  pointing  location  on  the  

laser profiler were monitored for 80 minutes.  Figure 3-17 shows the laser pointing drift to be as 

high as 40 microns, as the temperature increased by 5 C  due to the heat dissipated from the 

camera. 

Thus the pointing stability can be calculated as 40 / 0.7 / 5 11.4 /m m C rad C . The 

result is quite close to the claimed rating of the laser head.  
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Figure 3-17 Laser pointing stability test 

 

 3.4.2 CCD Camera 
 

Besides the compactness, low power usage and low noise, there are other critical features 

that must be taken into consideration with the camera selection for the optical strain sensor. 

 Synchronous acquisition and global shutter 

The  two cameras  of  the  optical  strain  sensor  must  be  able  to  take  synchronous  

shots, otherwise any rigid motion between the sensor and the object, within the time of 

the two shots, will be reflected in the strain measurement and cause significant error. It 

is the same reason that a global shutter feature is necessary. A CCD has millions of 

opto-detectors, with each one corresponding to a pixel. With a global shutter, all the 

opte-detectors start and stop exposing at the same time, eliminating the potential error 

associated with surface motion during the exposure period of the camera.   

 Fast image capturing speed 

The optical strain sensor is designed for both manual operation and on-track 

operation. For both operation configurations, it is inevitable that the sensor undergoes 

movement or suffers vibration during operation. A fast image capturing speed will help 

minimize the blur of the image. 
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 Adjustable shutter 

A versatile strain sensor should be able to measure strain on various material 

surfaces from concrete and metal, to fiber glass. In addition, the sensor should also 

function in different ambient light environments including daylight, indoor and night 

condition. The adjustable shutter feature enables the sensor to adjust the intensity of the 

captured image according to surface reflectivity and illumination condition. 

 Expansibility 

Although the current sensor design consists of two modules, it should be 

possible to build a multiple module system to capture the strain in multiple locations at 

the same time, as suggested in Figure 3-18. Furthermore, instead of only measuring the 

strain in one direction, a rosette setup could be implemented using four individual 

modules to measure the three independent components of surface strain (Figure 3-19). 

The  expansion  of  the  system  in  this  manner  could  require  that  multiple  cameras  be  

attached to one computer and capture the images at the same time.  

 
Figure 3-18 Multiple modules setup 
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Figure 3-19 Rosette setup for two dimensional strain measurement 

 

 3.4.3 Alignment mechanism 
 

The measurement procedure generally consists of two steps: 1. Take speckle images from 

the  undeformed  surface  as  an  initial  or  baseline  reading;  2.  Take  speckle  images  from  the  

deformed object surface. Since the dynamic range of the optical strain sensor is 2mm, to 

conduct step 2 of the measurement procedure, a mechanism must be introduced to help the user 

align the sensor onto the position on the object surface within 2mm of where the initial reading 

takes  place.  If  the  sensor  is  mounted  on  a  track,  the  alignment  would  be  ensured  by  the  track  

itself.  However, in the case of manual operation, there have to be some markings left on the 

object surface to guide the alignment. This is needed to ensure correlation between the displaced 

image and the baseline image. 

 Such kind of markings must satisfy the following requirements 

 Inexpensive 
 Good use on concrete and metals. 
 Must not fade or rub off. . 

 

Several possible marking mechanisms were evaluated for practicality. 

 Fluorescent marking 

The idea is to use a fluorescent material to serve as the marker. When the marker 

is illuminated by an ultraviolet (UV-light) emitter that is mounted on the sensor, it would 



50 

 

absorbs ultraviolet light and emits visible light, signaling the user that the sensor is in 

alignment. This kind of marking mechanism does not leave visible markings on the 

object surface, which might be appealing to some applications.  However, the UV-lasers 

are expensive.  Too expensive to the point where only making an alignment point is not 

worth it. In addition, since there is no visible light be emitted when the alignment is not 

close,  the  user  might  lack  the  guidance  to  show  where  the  target  location  is,  or  what  

direction to move for alignment. 

 Visible marking tracked by crosshair laser light 

With this solution a crosshair laser is attached to the optical strain sensor. The 

object surface is marked with a cross sign using a paint marker. The user positions the 

sensor by aligning the crosshair beam of the laser to the cross sign on the object surface. 

This solution has the advantage of easy application of the marking. However, one 

drawback is that the user’s eyes become fatigue after several minutes of watching the 

laser light. In addition, the crosshair laser light becomes less visible under the sunlight. 

 Visible marking and supporting legs 

In this approach, the sensor is equipped with three or four supporting legs as 

shown in Figure 3-20. Two dots are marked on the object surface. The user positions the 

sensor by aligning two tips of the supporting legs with the two dots.  In practice this 

solution was found to work quite well.  It is also quite simple to implement. 

 
Figure 3-20 Visible markings and supporting legs used as the alignment mechanism 
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Chapter 4 - Software development for the optical strain sensor 

 

The software of the optical strain sensor was coded using Visual C++ for flexible 

hardware control and high speed computation. A user-friendly interface was developed that is 

described in detail in the software manual in Appendix D. This chapter mainly discusses the data 

processing of the raw speckle image pairs captured by the cameras of the optical sensor to extract 

the strain information from the object surface.  The data processing for each separate camera 

module consists of several steps as shown in the Figure 4-1.  

 
Figure 4-1 Image processing diagram 

\ 

 4.1 Preprocessing 
 

The raw speckle image usually suffers blur, noise and imbalance of intensity. The direct 

application of a digital correlation algorithm at this early stage could result in loss of correlation 

and broad correlation peak that gives low accuracy in the prediction of image shifting from 

surface strain. The goal of preprocessing is to make the raw images more suitable for analysis by 

a digital correlation algorithm.  
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 Blur detection 

The acquisition of an image by the CCD camera is done by accumulation of 

photoelectrons  on  the  CCD  chip  for  a  certain  time  period,  usually  several  milliseconds.  If  the  

sensor moves during the integration period, the captured images will suffer a blur effect.  The 

blurred images lose most of the high frequency information and this can cause the correlation 

algorithm to report a fake match of the speckle image pairs. An algorithm is employed to detect 

blur in the captured image by transforming the image into the spatial frequency domain using a 

2D Fourier transform, and calculating the ratio of the low frequency power to the high frequency 

power. If the ratio exceeds a predefined threshold, it means the there is significant blur effect in 

the image. The blurred image will then be discarded and the software will command the camera 

to capture another frame of the speckle pattern until a non-blurred one is obtained. 

 

 Histogram equalization 

The  intensity  of  the  image  captured  by  the  camera  is  usually  unbalanced,  i.e.  the  grey  

level of the pixel concentrates to a limited range of the full grey range 0-255. For example, the 

histogram of a typical raw speckle image is shown Figure 4-2 (a), in which the grey levels of the 

pixel concentrates to the range lower than 100. Histogram equalization increases the dynamic 

range of the grey level by making the histogram a uniform profile. The histogram of the same 

speckle image after being equalized is shown in Figure 4-2 (b).  

 
Figure 4-2 Histogram equalization 
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 Reduction of FFT spectral leakage using hanning window 

The phase correlation technique relies heavily on the Fourier transform to transform the 

image to the frequency domain. However, Fourier transform inherently is supposed to be applied 

to infinite periodic signals instead of the finite non-periodic signals like a digitalized image. 

When the Fourier transform of a finite non-periodic signal is computed, the resulted complex 

spectrum suffers from artifacts.  Figure 4-3 shows a speckle image and its frequency spectrum.  

It shows a horizontal line and a vertical line across the frequency spectrum. The two artifact lines 

are from the abrupt intensity change at the vertical boundary and horizontal boundary 

respectively of the speckle image. This phenomenon is also called spectral leakage. These 

artifacts will cause the software to report a false positive matching of the speckle image pairs if it 

is not removed. These artifacts can be reduced by elementwise multiplication of the original 

image by a window that tapers the intensity value at the image boundary to zero. Many types of 

windows have been proposed to reduce the effect of spectral leakage. Their performances vary 

depending on if the signal is random or sinusoidal. For a random signal like speckle, hanning 

window has been shown to provide better frequency resolution than other windows. (Harris, 

1978). 

 
Figure 4-3 A typical speckle image and its frequency spectrum 

The hanning window is defined as   

 ( ) 0.5 1 cos(2 ) 0xhann x x M
M

 (4.1) 

where M is the window size. 
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A 2D hanning window is defined as 

( , ) 0.25 1 cos(2 ) 1 cos(2 ) 0 ,0x yhann x y x M y N
M N

 (4.2) 

where M,N are the 2d window size. 

 
Figure 4-4 Hanning window 

 

Figure 4-4 shows the profile of the hanning window, which is applied to the raw speckle 

image before it is transformed to the frequency domain. The filtered speckle image, whose 

boundary abruption is greatly tapered, and the Fourier transform pattern of the filtered speckle 

image are shown in Figure 4-5. It is notable that the artifacts are not visible any more.    

 
Figure 4-5 Filtered speckle image and its frequency spectrum 
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 4.2 Digital correlation procedure 
 

The theory of digital correlation has been described in Chapter 3. This section will focus 

on how it is implemented. 

 

 Pyramid scheme 

The correlation procedure is very computationally expensive. Since most of the 

calculation cost is on the Fourier Transform, the software makes use of 

FFTW(http://www.fftw.org/),  a  free  C subroutine  library  from MIT that  is  known for  its  speed  

and  performance.  However,  even  with  FFTW,  it  takes  about  2  seconds  to  compute  the  

correlation on an image pairs of 1392x1040 pixels using a P4 computer. To speed up the 

correlation procedure between the image pairs, a pyramid scheme is employed in the optical 

strain software. 

The two images that are to be correlated are both scaled down to half size n time, creating 

two image trees with each consisting of n+1 images, where n is the downsampling depth, as 

shown in Figure 4-6.  

The downsampling technique is implemented by convolving the image with a two 

dimensional Gaussian filter, defined as 

 
2 2

2
( )

2
2

1( , )
2

x y

f x y e  (4.3) 

because it provides better performance for the downsampling task compared to other types of 

filters (Shapiro, 2001). 

The images of the same image tree are similar to each other but with different size and 

resolution. The parent image is twice the size and higher resolution of the child image. The idea 

of the pyramid is that the lower resolution image pairs can be correlated first, in order to estimate 

the possible start positions for the correlation computation for their parent image pairs. The 

parent image pairs can then be correlated in a small area around the estimated start position to 

find the actual displacement. The procedure is described as follows: 

Suppose the original image size is M by N, and the image trees have n levels. The image 

pairs at the bottom of the tree have the size of M/n by N/n pixels and the correlation between 
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them gives the relative displacement ( , )n nu v .Since there is a 2:1 parent-child relations between 

the pixels at the level k-1 image and level k image in the image trees, a pixel displacement in 

level k corresponds to a two pixel displacement in level k-1. Thus, by multiplying the relative 

pixel displacement ( , )n nu v at level n by two, the relative displacement between the image pairs at 

the  n-1  level  can  be  estimated  to  be  (2 ,2 )n nu v . When conducting the correlation on the image 

pairs  of  level  n-1,  the  two  images  are  compared  over  the  small  area  of  M/n  by  N/n  size  with  

relative position displacement (2 ,2 )n nu v and produce the new relative displacement 1 1( , )n nu v

.The operation is repeated upward along the image tree till the root of the image tree is reached, 

where the correlation between the two small areas of M/n by N/n size gives relative displacement 

0 0( , )u v ,  which is also the relative displacement between the original image pairs.  

 
Figure 4-6 Pyramid scheme 

 

 

 Subimage scheme 

Given image pairs I1 (initial image) and I2 (post-deformation image), instead of 

correlating the two full images, a small patch of I2, usually at the center of the image, is used as 

a template. The software slides the template from the top left to the bottom right of the image I1, 
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trying to find the best match. The reason that the correlation is conducted using multiple 

subimage  pairs  instead  of  the  full  image  pairs  is  due  to  the  fact  that  correlation  on  small  size  

images are more robust to image rotation. Correlation inherently is suitable for tracking the 

translation of the image but not the rotation. (Weixin Zhao, 2004). For a large image, the 

disruption of the image rotation on the correlation is more severe because a small rotation can 

cause large translations on the image boundary. For a small size image, the effect of image 

rotation is less severe. However too small template will consist of limited size of speckle pattern 

and this makes it hard for the searching process to identify a match. In the software, a template of 

256x256 size was used, which provided robustness against the image rotation and enough 

resolution. The detailed procedure is described below: 

The captured reference (baseline) image I1 is split into many sub-window areas of 256 

pixels by 256 pixels size, denoted as Refblocki , 0 1i N , where i  is the block index and N 

is the total subimage number. A sub-window of 256 pixels by 256 pixels size is also extracted 

from the center area in the after-deformation image I2, denoted as Defblock .  Since the sizes of 

the subimages are small, it can be assumed that there is no change within the sub-image, and the 

shift between the sub-image pairs is uniform at every point. Thus, using the phase correlation 

procedure described in Chapter 3, The N subimages Refblocki  and the subimage Defblock 

produce n peaks and n displacement vector, which are denoted as ip  and ( , )iu v .  The sub 

window pair with the maximum peak indicates the best match and is used further to extract the 

subpixel displacement information. 

 
Figure 4-7  Sub-image scheme 
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 4.3 Sub-pixel interpolation 
 

The  displacement  vector  of  the  correlation  has  an  integer  pixel  resolution,  with  an  

uncertainty of ± 1/2 pixel. Two approaches have been identified to achieve sub-pixel resolution 

for image correlation process. 

One possible approach is to upsample both images, then conduct the correlation on the 

upsampled image pairs. For example, to achieve 1/20 pixel subpixel resolution for the correlation 

on two sub-images of 256x256 pixels, both sub-images have to be upsampled to 20 times larger 

images with the size of 5120x5120 pixel. The correlation computation required on the image 

pairs of 5120x5120 is enormous and very time consuming. 

The  other  approach  is  to  compute  the  correlation  on  the  image  pairs  without  being  

upsampled and then interpolate in the region near the peak location to extract the peak location in 

sub-pixel resolution. At first, it may look like try to extract unmeasured information. However, 

the interpolation procedure can be justified by the reasoning that the correlation image is 

generated by matching thousands of individual speckles in the image pairs.  Each pair of speckle 

image element gives an integer pixel displacement. The actual peak location is determined by 

averaging the large quantity of displacement vectors provided by these speckle pair matching. 

Thus,  the  information  that  is  used  to  extract  the  sub-pixel  location  of  the  peak  is  already  

embedded in the correlation image.  

There are many interpolation methods available to extract sub-pixel peak location, 

including parabolic peak fitting, Gaussian peak fitting, etc. These peak fitting methods only use 

the neighboring points’ information for the interpolation and suffer from the ‘peak-locking’ 

effect; i.e. the sub-pixel peak detected tends to be close to the integer pixel location (Sung, 

2004). A more advanced interpolation, called zero padding fitting, is used in the image analysis 

for the optical strain sensor software. First, the correlation image is transformed to the frequency 

domain  by  means  of  a  Fourier  transform.  Suppose  the  Fourier  transform  pattern  of  the  

correlation image has a size of 256 by 256 pixels. To achieve 1/20 pixel peak location resolution, 

zero-valued pixels are appended to the high frequency end so that we have a Fourier pattern of 

20*256 by 20*256 pixel as shown in Figure 4-8.  After padding zeroes in the high frequency 

area, there is no change in the real and imaginary parts of the Fourier spectrum, nor in the phase 

spectrum. The only change is in the densified spatial sampling frequency. If an inverse Fourier 
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transform is applied to the zero-padded spectrum pattern, the result will be an interpolated 

correlation image with 20 times higher resolution than the original correlation image.  

However, the inverse Fourier transform of the full zero padded pattern calculates the 

interpolation value at every location, while we are only interested in the upsampled information 

in  the  proximity  of  the  peak.  Furthermore,  computation  of  the  inverse  Fourier  transform of  the  

full zero padded pattern is not practical due to the extremely large size of the padded pattern. 

Alternatively, the software calculates the upsampled information around the peak area only by 

employing a matrix implementation of the inverted Digital Fourier Transform. 

 
Figure 4-8 Zero padding interpolation 

 

The Digital Fourier Transform is defined as, (Deng, 2008) 

 1 1 2 2

1 2

1 1

1 2 1 2 1 2
0 0

( , ) ( , ) , , 0,1,..., 1
N N

k i k i

i i
x k k X i i w k k N  (4.4) 

where 2 /j Nw e . 

If 1 2( , )X i i  is the zero padded spectrum pattern, then 1 2( , )x k k   represent the interpolated 

correlation image matrix that is being calculated. 

The matrix form of Equation (4.4)  can be written as 

 N N N N N N N Nx W X W  (4.5) 
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where N NX  is the matrix form of the zero padded spectrum pattern;  N Nx  is  matrix form of the 

interpolated correlation image matrix that we are trying to obtain; and N NW  is a N by N matrix 

whose ( , )k i entry is 2 /j ki Nw e ,i.e. 

 

 

2 1

2 4 2( 1)

1 2( 1) ( 1)( 1)

1 1 1 ... 1
1 ...
1 ...

1 ...

N

N
N N

N N N N

w w w
W w w w

w w w

 (4.6) 

Using the matrix form of the Fourier transform implementation, the value of any single 

point on the interpolation image can be calculated. For example, the value of the entry ( , )i k  in 

the interpolation image is calculated by 

 ith row kth column( , ) N Nx i k W X W  (4.7) 

Thus the area near the peak location can be interpolated using Equation (4.7), to yield the 

desired peak location to sub-pixel resolution. It is notable that the zero padding interpolation 

method makes use of the information from all the pixels value in the correlation image; thus it is 

more accurate and suffers no ‘peak locking’ error problem.   

 

 4.4 Refreshing reference 
 

It is possible to have the camera take multiple speckle images as the object continuously 

undergoes displacement, and then use an incremental method to increase the measurement range. 

Initially the first speckle image would serve as a reference (baseline) image, and every newly 

taken image would be correlated with it to extract the object surface motion information. As the 

object surface displaces further from the initial position, the correlation coefficient decreases due 

to the de-correlation effect that happens when the two images share less similarity. Before the 

correlation coefficient drops to a predefined threshold indicating significant de-correlation, the 

reference image would be replaced by the newest speckle image. Following this procedure, it 

should be possible to recover a well-defined correlation peak. Further speckle displacement 
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could then be determined by adding up the speckle displacements before the replacement of the 

reference pattern. Theoretically, the measurement range is indefinite as long as every pair of 

consecutive speckle images does not exceed the threshold of significant de-correlation.    
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Chapter 5 - Calibration 

This chapter discusses measurement error sources associated with the laser speckle strain 

sensor, including distortion of the lens, misalignment between the initial baseline reading and the 

second reading  and  misalignment  between the  two modules  of  the  sensor.  Their  effects  on  the  

strain measurement accuracy of the sensor are investigated. Two calibration methods are 

proposed to correct these errors using the homography projection technique, the mathematical 

instrument that describes the relationship between the physical scene and the image captured by 

the camera.  

 

 5.1 Measurement error sources of the laser speckle strain sensor  

 5.1.1 Distortion due to the lens 
No lens is perfect. There are several kinds of aberrations associated with lens. The most 

common one is spherical aberration. Many simple lenses are made into the spherical profile for 

lower manufacturing cost. There do exist “parabolic” lenses which have a more mathematically 

ideal profile with minimum aberration, but they are is expensive and the lens selection is limited. 

Spherical aberration causes the parallel light rays distant from the lens axis to be focused in a 

slightly different place than the light rays close to the axis. When using a spherical lens for 

imaging an object surface to the camera plane, the images obtained exhibit radial distortion, as 

shown in Figure 5-1. The light beams farther from the lens axis bend more than the beams close 

to the lens axis. Thus the distortion increases from 0 at the center of the image to higher level at 

the edge of the image. 
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Figure 5-1 Camera image distortion 

Obviously the image distortion introduces measurement error to the strain sensor since 

the image shift is not linear to the surface movement if the image is distorted. To reduce this 

effect and keep the cost low at the same time, triplet lenses were chosen as the imaging lenses of 

the sensor. The triplets lenses consists of one concave lens and two convex lenses, whose 

aberration effect cancels out, producing an almost aberration-free image.   

To evaluate the scale of the error that is caused by the image distortion, an experiment 

was conducted which is described: 

Image pairs (initial baseline reading and post-movement reading) were taken by the 

camera using the triplet lens as the imaging lens. The object surface under observation undergoes 

primarily only linear motion. Thus, the pixel shift of the image pairs at any location of the 

images should be identical if without image distortion. The pixel shifts were calculated at 3 

regions in each of 5 image pairs. One of the image pairs are shown in Figure 5-2. 

The  pixel  shifts  of  these  3  regions  are  listed  in  Table  5-1.  It  is  shown  that  maximum  

standard deviation of the pixel displacement among the 5 image pairs is 0.06 pixel, 

corresponding to 1.4 microstrain for the 8 inches gauge length configuration. Thus it can be 

concluded that the image distortion has an insignificant effect on the measurement of the optical 

strain sensor. Observing this, the distortion effect is neglected in the camera calibration model 

used in the later analysis associated with this chapter.                  
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Figure 5-2 Image pairs for the camera distortion experiment 

 

Table 5-1 Data of the camera distortion experiment 

object displacement(mm) 
0.20 0.20 0.20 0.20 0.20 

x1(pixel) 
5.92 5.96 5.96 5.92 5.96 

x2(pixel) 
5.96 6.00 5.96 6.00 5.92 

x3(pixel) 
6.04 5.96 5.92 5.92 5.96 

standard deviation= 
.06 .02 .02 .05 .02 
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5.1.2 Error due to misalignment  
 

As shown in Figure 3-5, the surface strain, , between point A and point B was measured 

by 
B A

L
, where L is the gauge length 203.2 mm (8 inches) for the current setup and A, 

B are the surface displacements at point A and point B.  The strain calculation scheme 

described above is suitable for the ideal situation that the sensor is aligned perfectly.  However, 

in the real situation, significant errors could occur, either due to the sensor misalignment between 

before and after deformation readings, or due to the misalignment between the two cameras in 

the sensor.  

 

 5.1.2.1 Misalignment between the initial reading and the second reading 

During the operation of the sensor, when taking the second reading, it is inevitable that 

the sensor will be misaligned to some extent with respect to the sensor position during the initial 

reading. This is mainly represented by a rotation about Z-axis (the axis perpendicular to the 

object surface), as shown in Figure 5-3. 

 
Figure 5-3 Misalignment between the initial reading and the second reading 

Suppose point A and point B represent the measurement locations for the two modules of 

the sensor for during initial reading. Assume the specimen surface does not undergo any 

deformation and assume the sensor is misaligned by an angle of  relative to the initial reading 
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setup. When taking the second reading, the measurement locations of the two modules of the 

sensor  will  move  to  point  A’  and  point  B’.  The  sensor  will  report  a  non-zero  strain  reading

(1 cos ) 1 cosB A L
L L

, which is actually an error introduced by the misalignment 

of  the  sensor  between  the  initial  reading  and  the  second  reading.   The  error  is  essentially  

independent of the gauge length and primarily dependent on the misalignment angle. 

Table 5-2 shows the measurement error caused by the misalignment angle from angle 0.1 

degree to 1 degree. It is shown that at a misalignment angle of 0.4 degree, the error is 24.34 

microstrain, or about the same order as the nominal resolution of the strain sensor. At a 

mislaignment  angle  of  1  degree,  the  error  increases  to  152  microstrain.  Thus  the  effect  of  the  

rotation with respect to Z-axis should not be overlooked and must be controlled or corrected. 

 

Table 5-2 Error caused by the sensor misalignment 
Misalignment angle (degree) Error caused by misalignment  (microstrain) 

0.1 1.52 

0.2 6.08 

0.3 13.69 

0.4 24.34 

0.5 38.03 

0.6 54.77 

0.7 74.55 

0.8 97.37 

0.9 123.24 

1.0 152.15 

 

 

 5.1.2.2 Misalignment between the two modules of the sensor 

The modular design of the sensor provides the advantages of easy fabrication and flexible 

gauge length adjustment, but an important issue must be taken care during the calibration. Since 

the sensor consists of two cameras, ideally the x and y axis of the two cameras’ coordinate 

systems should be parallel with each other and have no orientation difference. It is important 

because the distance change (or strain) can be calculated only when all the displacement vectors 
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are with respect to the same coordinate system. However in practice, the orientation of the two 

cameras in the two modules can hardly perfectly parallel due to the nature of the assembling of 

the device. The actual relationship between the two cameras coordinate is shown in Figure 5-4. 

Even if it is possible to conduct the installation of the cameras carefully and achieve a minimum 

orientation difference between the two coordinate systems, considering the fact that a 0.4 degree 

misalignment angle introduces as much as 24 microstrain error as described in the previous 

analysis, the coordinate orientation difference between the two cameras of the sensor causes 

about the same order of error that should not be overlooked.  Therefore, to be able to calculate 

the displacement change or the strain accurately, the orientation difference between the two 

camera coordinate systems must be taken care of, in other word, the surface displacements 

detected by the two cameras must be converted into the same coordinate. 

  
Figure 5-4 Misalignment between the two modules of the sensor 

 5.2 Homography projection 
To correct the misalignment errors that were discussed above, various information related 

to the camera orientation must be collected during the calibration procedure. For this purpose, 

the homography projection technique is used. 

For an image of the object surface that is taken by the camera, the pose of the object 

relative to the camera coordinate system can be described using rotation and translation matrix. 
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Figure 5-5 Transformation from object coordinates to camera coordinates 

 

A rotation of a vector is equivalent to giving the vector a new description in a different 

coordinate system, which is implemented by multiplying the vector by a square matrix of the 

appropriate size. A two dimensional rotation of angle  is represented as a multiplication of the 

vector by a 3x3 matrix as shown in Equation (4.8). Rotation in the three dimensional space is 

equivalent to three two-dimensional rotations on the X,Y,Z axes respectively. Rotating on the 

X,Y,Z axis respectively with angles , ,  is given by the product of the three matrices ( )xR ,

( )yR , ( )zR : 

 
1 0 0

( ) 0 cos( ) sin( )
0 sin( ) cos( )

xR  (4.8) 

 

 
cos( ) 0 sin( )

( ) 0 1 0
sin( ) 0 cos( )

yR  (4.9) 

 
cos( ) sin( ) 0

( ) sin( ) cos( ) 0
0 0 1

zR  (4.10) 

And 
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 ( ) ( ) ( )x y zR R R R  (4.11) 

 

The translation vector is the offset from the origin of the object coordinate to the origin of 

the camera coordinate system,that is,  

 object camerat O O  (4.12) 

 Given a point ( , , )Q X Y Z  in the object coordinate system, its coordinate ( , , )q x y z  in the 

camera coordinate can be expressed as ( , , ) ( , , )q x y z RQ X Y Z t . 

Homography is a special case of the coordinates transformation (Faugeras, 1993). It is 

used to describe the projection from a two-dimentional surface (object surface) to another two-

dimentional surface(Camera surface) as shown in Figure 5-6.   

 
Figure 5-6 Homography Projection from objection coordinate to camera coordinate 

 

 In the homography projection model, the homnogeneous coordinates are defined as  

 
1

1

X
x

Y
Q q y

Z
 (4.13) 

where  Q  is a point in the object coordinate and q  is the projection point of Q  on the image 

plane. Their relationship can be expressed as  
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 ( ) ( ) ( )
1

1 1

x y z

X X
Y Y

y R R R
Z Z

x
M R t M t  (4.14) 

where M is the magnification factor. 

Since the camera plane is at the imaging plane, the image shift is not sensitive to the 

object tilt (rotation about the x-axis) and yaw(rotation about the y-axis), the rotation angles about 

the x-axis and the y-axis of the object surface do not change the projection matrix between the 

object coordinate and the camera coordinate. Therefore, we can assume the  and  are zero and 

Equation (4.14) becomes, 

 
cos( ) sin( ) 0
sin( ) cos( ) 0

1 0 0 1
1

x

y

z

X
Y

x t
M t

t
y

Z
 (4.15) 

Since the out-of-plane movement of the object surface is very small, we can assume that 

the  entry  Z  of  the  object  position  vector  Q  is  zero.  Furthermore,  we  are  only  interested  in  the  

relative movement of the objection surface point Q, instead of its absolute projection position on 

the camera plane, the translation entry xt , yt  can also be assumed to be zero. Equation (4.15) can 

then be simplified to be 

 

 
cos( ) sin( )
sin( ) cos( )

x X
y Y

M  (4.16) 

or, 

 
cos( ) sin( )
sin( ) cos( )

M Mx X
My YM

 (4.17) 
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 5.3 Two calibration methods for the strain sensor 
 

In this section two calibration methods are proposed to correct the misalignment errors 

that are discussed in Section 5.1.  The first method translates the displacement vectors from the 

two different camera coordinates to the same coordinate systems by using the rotation matrix 

described in section 5.3. The calibration setup is shown in Figure 5-7.  

The sensor is mounted on a traverse stage that does horizontal movement. The 

displacement is accurately measured by a dial gauge. A piece of specimen, for example a piece 

of concrete block, is kept stationary in front of the sensor so that both observation points of the 

two cameras are on the specimen surface.  Furthermore, throughout the experiment, the specimen 

is not subjected to any load. This ensures that the surfaces seen by the two cameras always 

displace at the same direction by an equal distance. 

 
Figure 5-7 Setup of the first calibration method 

 The next step is to displace the traverse stage from 0 to 1mm with increments of 0.1mm. 

At every increment, the images are recorded by both camera and are then analyzed by the cross-

correlation algorithm described in Chapter 4. The displacement of the traverse stage and the 

corresponding image shift of the cameras in the unit of pixel are shown in the Table 5-3. Since 

there is always an angle between the x-axis of the camera coordinate system and the transverse 

stage displacement direction, the speckle image taken by the camera has both x and y 

component. At the last row of the tables, the average incremental displacements of the speckle 

image corresponding to 0.1 mm surface displacement are calculated.  
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Table 5-3 Calibration data from camera A and camera B 

Camera A Cumulative x1 

displacement 

(pixel) 

Cumulative y1 

displacement 

(pixel) 

Incremental x1 

displacement 

(pixel) 

Incremental y1 

displacement 

(pixel) Surface 

movement(mm) 

0 0 0     

0.1 -23.08 0.12 -23.08 0.12 

0.2 -45.72 0.60 -22.64 0.48 

0.3 -68.16 0.84 -22.44 0.24 

0.4 -90.72 1.00 -22.56 0.16 

0.5 -112.44 1.16 -21.72 0.16 

0.6 -134.84 1.48 -22.40 0.32 

0.7 -157.00 1.60 -22.16 0.12 

0.8 -179.56 1.80 -22.56 0.20 

0.9 -201.20 1.96 -21.64 0.16 

1.0 -223.24 2.04 -22.04 0.08 

    Average= -22.324 0.204 

Camera B Cumulative x2 

displacement 

(pixel) 

Cumulative x2 

displacement 

(pixel) 

Incremental x2 

displacement 

(pixel) 

Incremental x2 

displacement 

(pixel) Surface 

movement(mm) 

0 0 0     

0.1 -23.12 -0.40 -23.12 -0.40 

0.2 -45.92 -0.88 -22.80 -0.48 

0.3 -68.20 -0.96 -22.28 -0.08 

0.4 -90.16 -1.00 -21.96 -0.04 

0.5 -112.56 -1.24 -22.40 -0.24 

0.6 -134.88 -1.48 -22.32 -0.24 

0.7 -157.36 -1.52 -22.48 -0.04 

0.8 -179.76 -1.60 -22.40 -0.08 

0.9 -202.28 -1.84 -22.52 -0.24 

1.0 -224.56 -2.06 -22.28 -0.22 

    Average= -22.456 -0.206 
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By Equation (4.17), we have 

 1 1 1 11 1

1 11 1 1 1

cos( ) sin( )
sin( ) cos( )

M M
M M

x X
y Y

 (4.18) 

and 

 2 2 2 22 2

2 22 2 2 2

cos( ) sin( )
sin( ) cos( )

M M
M M

x X
y Y

 (4.19) 

Alternatively, Equation (4.18) and Equation (4.19) can be written as, 

   

 1 1

1 1

1 1

1 1

X x
Y y

 (4.20) 

and  

 2 2

2 2

2 2

2 2

X x
Y y

 (4.21) 

Using the data in Table 5-3, 

 

 1 1

1 1

0.1 22.324
0 0.204

 (4.22) 

 

and  

 2 2

2 2

0.1 22.456
0 0.206

 (4.23) 

solving Equation (4.22) and Equation (4.23), we obtain the value of parameters 1 1 2 2, , ,  

Thus the displacement vectors 1 1( , )x y  and 2 2( , )x y detected by the two cameras can be 

converted to the displacement vectors 1 1( , )X Y  and 2 2( , )X Y on the object plane by using 

Equation (4.20) and Equation (4.21). As shown in Figure 5-8, since the vectors 1 1( , )X Y and

2 2( , )X Y  are with respect to the same coordinate, the surface strain can be readily calculated by  

  



74 

 

 

2 2
2 1 2 1( ) ( )a b

a b

pq O O L X X Y Y L
LO O  (4.24) 

where a bO O L is the distance between the two observation points on the object surface, which 

is also defined as the gauge length of the sensor. 

 
Figure 5-8 Strain calculation with orientation difference of the two camera coordinate 

systems 

The drawback of this method is that it is time consuming and requires addition 

equipments (a traverse system and the dial gauge). The calibration can usually be only done in 

the lab. Considering the fact that every time when the user needs to adjust the gauge length, it is 

necessary unattach and reattach the two modules, causing the orientation difference of the two 

cameras change. Therefore the sensor must be recalibrated every time when the gauge length is 

adjusted,  which  is  not  convenient  for  the  user.  In  fact,  most  commercial  strain  sensors  require  

specific equipment for calibration. For example the Messphysk company’s laser speckle 

extensometer ME53-33 incorporates a calibration system into the sensor system as shown in 

Figure 5-9, which enables the end users to calibrate the sensor by themselves (ME-53 Laser 

speckle  extensometer  manual).  However  it  makes  the  system  bulky,  and  the  calibration  

procedure is still time-consuming. 
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Figure 5-9 Messphysk company’s laser speckle extensometer ME53-33 

 

A new calibration method, called Auto Calibration, is proposed. It does not require any 

specific equipment and can be done very fast by the end user.  

Suppose the coordinate system OXY  in Figure 5-8 is an arbitrary coordinate system 

attached to the sensor. Now the orientation differences of the two camera coordinates with 

respect to this arbitrary coordinate are 1  and 2 , whose values are unknown. Assume that 

camera A detects a displacement vector 1 1( , )x y  between the reference image and the post-

deformation image. Similarly, suppose camera B detects a displacement vector of 2 2( , )x y .  Note 

that 1 1 2 2, , ,x y x y  are  in  the  unit  of  pixels.  The  displacement  vectors  1 1( , )x y  and 2 2( , )x y  can be 

converted to the displacement vectors in physical unit with respect to the arbitrary coordinate 

system OXY  using Equations  (4.20) and Equation (4.21), as described below. 

 

Expanding Equation (4.20) and Equation (4.21) into the algebra form, yield, 

 

1 1 1 1 1

1 1 1 1 1

2 2 2 2 2

2 2 2 2 2

X x y
Y x y

X x y
Y x y

 (4.25) 

The distance change of the two observation spots on the object surface can be expressed 

as 
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Now, by Taylor expansion, 
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 (4.28) 

 

Expanding this equation by using the equation system (4.25),  will result in be a very 

complicated expression, and the unknown variables will be difficult to determine. Observing that

2 1( )X X  and 2 1( )Y Y  are of the same scale and | | , ( ) | | , yield 

 2 1d X X  (4.29) 

Therefore, 
2

2 1( )
2

Y X
L

, which is the second order term in Equation (4.28),  is temporarily 

ignored and will be calculated later. 

Thus by equation system (4.25) 

 1 1 1 1 2 2 2 2d x y x y  (4.30) 

 

To determine the distance change by the image motion detected by the two cameras, the 

four unknown parameters 1 1 2 2, , ,  must  be  determined.  This  can  be  done  by  the  following  

procedure: 
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1. Position the sensor on a flat specimen surface such that each camera observes a point on 

the surface. The specimen surface should not have any deformation throughout the 

experiment. 

2. Take the reference or baseline images 

3. Remove the sensor and then put it back. Try to align the sensor to the position where the 

reference images are taken. 

4. Take the images and calculate their relative displacement with respect to the reference 

image using the cross-correlation method described in Chapter 4. The results are two 

displacement vectors 1 1( , )x y and 2 2( , )x y  in units of pixels. 

5. Repeat step 3 and step 4 for N times. N is recommended to be larger than 10 for enough a 

sample size. The demo experiment results are shown in Table 5-4.       

Table 5-4 Experimental data of the Auto Calibration method demonstration 

  Image displacement of camera A Image displacement of 
camera B 

Reading # x1(pixel) y1(pixel) x2(pixel) y2(pixel) 
1 -31.08 -63.16 -31.96 23.92 
2 2.68 -39.20 2.52 -5.00 
3 -85.12 -134.80 -87.00 -185.68 
4 29.00 -32.92 28.08 -65.36 
5 -66.72 -19.16 -66.20 -106.04 
6 19.08 -58.28 17.20 -134.84 
7 -14.04 -125.92 -15.88 -36.36 
8 -37.92 -128.44 -39.08 26.96 
9 -87.04 -44.16 -87.60 -24.00 

10 215.84 -97.44 213.92 38.24 
11 18.00 -110.40 18.36 153.08 
12 46.88 -86.72 45.88 -5.96 
13 -42.04 -55.92 -42.32 -45.96 
14 -63.72 -139.00 -64.88 7.00 

 

The N displacement vectors obtained by the above procedure are denoted as 

11 11 21 21x y x y , 12 12 22 22x y x y …, 1 1 2 2N N N Nx y x y . 

Since throughout the experiment, the specimen surface is free of deformation, the relative 

distance change d are all zero for all the N observations. Therefore by Equation (4.30) we have  
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Denoting 

11 11 21 21

12 12 22 22

1 1 2 2N N N N

X Y X Y
X Y X Y

A

X Y X Y

 and 

1

1

2

2

h  

gives, 

 0Ah  (4.32) 

 

 The trivial solution of the homogenous system of linear equations (4.32) is zero, which is 

useless. And since the row number N is larger than the column number 4, there is no exact non-

zero solution. Instead, the approach is to find the least square solution for the homogenous 

system of linear equations. That is, to find h that minimize Ah  subject to 1h . 

 Using Singular Value Decomposition (SVD), matrix A can be written in the form: 

 
4

0

T T
i i i

i
A U V u v  (4.33) 

The “right singular vector” of the matrix A corresponding to the smallest i  is the 

solution h , whose entries are the value of the four parameters 1 1 2 2, , , .   

Now given the image displacements 1 1( , )x y  and 2 2( , )x y  that are detected by the two 

camera of the sensor, we can calculate the distance change between the two observed points on 

the object surface using Equation  (4.28) and Equation (4.25). 

    

 

2
2 1

2 1

2
2 2 2 2 1 1 1 1

1 1 1 1 2 2 2 2

( )
2

( )
2

d
Y YX X

L
x y x yx y x y

L

 (4.34) 

And the surface strain can be then calculated by d

L .
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The calibration method described above makes the sensor very flexible and easy to use. 

The calibration procedure does not require any additional equipment except a flat surface, thus it 

can be done in the field or even when the sensor is mounted on the rail system. The computation 

for solving the 4 parameters 1 1 2 2, , ,  has been incorporated into the current software and 

most of the time that the procedure takes is to collect the N displacement vectors, which needs 

less than 1 minutes. This is significant less than the time required by the previous method, which 

usually takes a couple of hours. With the Auto Calibration method, the adjustment of the gauge 

length becomes a trivial issue. All the user needs to do is to unattach the two modules, reattach 

the two modules with the desired gauge length, and take less than 1 minute to calibrate the 

parameters. 
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Chapter 6 - Validation and application of the laser speckle strain 

sensor 

 

The purpose this chapter is to demonstrate that the new developed optical strain sensor is 

a general strain measurement device that can be readily used not only in the laboratory, but also 

in the harsh environment of the prestressed concrete industry. Furthermore, it requires with 

minimum surface preparation. 

A series of laboratory setups were fabricated and used to conduct direct comparisons with 

various conventional measurement techniques, including Whittemore gauge and the electrical 

resistance strain sensor. These experiments were conducted both indoors (laboratory), and 

outdoors  (field)  in  order  to  validate  the  ability  of  the  optical  strain  sensor  to  measure  concrete  

surface strain with high resolution and consistency. After the validation, the sensor was further 

applied to the real field measurement for the diagnostic testing of prestressed concrete members 

and, in particular, prestressed railroad cross-ties. 

 6.1 Validation using a two concrete block system 
 

Shown in Figure 6-1 is the manual motion system used for verifying the performance of 

the optical strain sensor in a concrete surface measurement.  Two small pieces of concrete block 

were positioned side by side with approximately 8 inches apart. The concrete block shown on the 

left was attached to a manual traverse system whose displacement was measured by a digital dial 

gauge of resolution of 0.001mm (Shars 303-3506).  The concrete block on the right was held 

stationary.  

The system was used to create a relative linear displacement between the two concrete 

blocks by displacing the concrete block on the left while the concrete block on the right remained 

stationary. The relative displacement between the two concrete blocks was increased from 0mm 

to 2mm, with 0.1mm increments, and was measured by both the digital dial gauge and the laser 

speckle strain sensor. The results are shown in Figure 6-2. The readings by the two devices 

(optical strain sensor and dial gauge) have excellent agreement.  The differences between the two 
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sensor’s readings are below 4 microns over the entire measurement range, as shown in Figure 6-

3. 

 

 

 
Figure 6-1 A two concrete block system 

 

 
Figure 6-2 Comparison of laser speckle strain sensor and Digital dial gauge 
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Figure 6-3 Difference between optical strain sensor and digital dial gauge measurements 

 6.2 Comparison with a Whittemore gauge during compressed concrete beam 

strain measurement 
An experiment was conducted to measure the surface strain of a small concrete beam 

under  different  compressional  loads  by  using  both  the  optical  strain  sensor  (the  second  

generation prototype) and the Whittemore gauge for direct comparison. 

A concrete beam of length 300mm and 90mm by 90mm square cross-section was 

mounted on the compression test setup as shown in Figure 6-4. The concrete beam was loaded 

with two different compressional loads at 2,000lbs and 4,000lbs. At each load level, the 

deflections between two fixed points mounted on the beam surface was measured by the 

Whittemore gauge. The laser speckle strain sensor was also used in handheld mode to measure 

the surface deformation at the same time for comparison purposes.  

The  results  from the  optical  strain  sensor  and  the  Whittemore  gauge  are  both  shown in  

Figure 6-5.    It  can be seen that the readings by the two sensors have excellent agreement with 

differences between the results below 6 microns. The repeatability of the 5 measurements shown 

using the laser speckle strain sensor at the same load level are excellent too.  
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Figure 6-4 A concrete beam under compression 

 

 

 
Figure 6-5 Surface deflection measurement obtained by Whittemore gauge and laser 

speckle strain sensor 
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 6.3 Comparison with an electrical resistance strain gauge during compressed 

concrete beam strain measurement 
 

An  experiment  was  conducted  to  measure  the  surface  strain  of  a  concrete  beam  under  

different compressional loads by using the optical strain sensor (the second generation 

prototype), and using the electrical resistance strain gauge (ESG) for direct comparison. 

An experimental setup used was that shown in Figure 6-6.  A concrete beam of length 

300mm and 90mm by 90mm square cross-section was mounted on the compression test setup, 

and the optical strain sensor was positioned alongside the tested concrete beam.  The beam was 

loaded with compressional loads ranging from 3,000lbs to 21,000lbs in 2,000lbs increments. 

This setup was successfully used to assist in isolating the longitudinal (axial) strain component 

from the other distortions that are inherently present due to varying degrees of bending and 

torsion, 

 At each load level, the strain between two fixed points on the beam surface was 

measured  by  the  optical  strain  sensor.   An  electrical  resistance  strain  sensor  was  also  used  to  

measure the surface strain at the same time for comparison purposes.  

 
Figure 6-6 Experiment setup of the comparison of laser speckle strain sensor and electrical 

resistance strain gauge (ESG) sensor 
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The  results  from  the  optical  strain  sensor  and  the  electrical  resistance  strain  gauge  are  

shown  in  Figure  6-7  and  the  differences  between  these  two  different  sensor  measurements  are  

shown in Figure 6-8. It can be seen that the readings by the two sensors have excellent 

agreement, with differences between the results falling below 6 microstrain. 

 
Figure 6-7 Measurement results of surface strain 

 
Figure 6-8 Difference of the measurements between optical strain sensor and electrical 

resistance strain sensor  

 6.4 Application of the optical strain sensor to a prestressed concrete member  
Currently prestressed concrete is widely used in civil engineering infrastructure, 

especially in applications that require extra length, like bridges, skyscrapers, foundations, pipes 

and piles, pavements, and water tanks, due to its great advantage over traditional concrete in 
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sustaining tension (Naaman, 1982). Prestressed concrete is manufactured by casting around 

already tensioned steel strands. After the casting process is complete and the concrete has 

hardened, a detensioning procedure is undertaken by cutting the strands at both ends of the 

concrete beam to release the tension. The shrinking strands grip the concrete and keep it in a 

compressed state. The tension force that the concrete beam will experience during service will be 

offset by this pre-established compression; thus producing a minimum chance of crack as long as 

loads are such that the concrete remains in compression state (Naaman, 1982). 

Typically, the transfer length, defined as the distance required to transfer the fully 

effective prestress force in the reinforcing-strand to the concrete, is used to evaluate the quality 

and performance of concrete members. The method that is most commonly used by industry for 

the transfer length measurement is accomplished manually using a Whittemore gauge that has 

been discussed in Section 1.2.1. To measure the transfer length, “points” are typically mounted 

using epoxy onto the concrete beam, as shown in Figure 6-9. The Whittemore gauge is used to 

measure the distance change between the points, which in turn gives the surface strain profile of 

the concrete beam. A typical strain profile is a curve that varies approximately linearly from zero 

at  the member end to a constant value at  a distance from the end of the beam. This distance is 

equal to the transfer length.   

 
Figure 6-9 Metal points bonded onto the concrete surface 

 To evaluate the optical strain sensor’s ability to measure transfer length, several 

pretensioned concrete members were fabricated using different concrete mixtures, and the strain 
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profile was measured on one side of each member, using both the traditional Whittemore gage 

and the non-contact laser speckle method. 
 

 6.4.1 Surface strain measurement using the second generation prototype  
 

The laser speckle strain sensor used in this experiment was the second generation 

prototype based on single module design that has been discussed in Chapter 3. The mixtures used 

in this experiment corresponded to SCC mixtures that were part of another prestressed concrete 

study and previously reported (Peterman, 2007).   The pretensioned members were each 9'-6" 

long with a trapezoidal cross-section as shown in Figure 6-10.  Surface strain measurements for 

the trapezoidal specimens were obtained using both the standard (Whittemore) technique and the 

laser speckle (optical) technique.   

 
Figure 6-10 Cross-section of the pretensioned concrete member 

 In order to facilitate the laser speckle measurements, an aluminum rail was mounted to 

the side of the member as shown in Figure 6-11.  The rail was attached to the members using 

small ¼-inch-diameter inserts that were cast into the sides of the pre-tensioned concrete 

members. Because of the insensitivity of the sensor to undesirable degrees of freedom, no high 

precision traverse setup was required, and simple visual manual positioning was adequate.  This 

is very important for the measurement of prestress concrete strain in the field.  Since the laser 

speckle method utilizes the concrete surface characteristics to measure displacements, the surface 

strains can be quickly determined without the time-consuming process of adhering gage points to 

the concrete surface.  
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In addition to using the laser speckle strain sensor, “gage points” were also bonded to the 

concrete beam surface in order to provide a direct comparison between the two methods of strain 

measurement.  
 

 
Figure 6-11 Experiment setup for transfer length measurement of prestressed concrete 

member using the second generation prototype 

 

 
Figure 6-12 Comparison of strain measurements immediately after de-tensioning of a pre-

tensioned specimen 
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The  results  from  this  beam  test  are  shown  in  Figure  6-12.  It  can  be  seen  that  the  laser  

speckle strain sensor results in much smoother data with less scatter than that generated from the 

existing surface strain measurement technique using the Wittemore gauge.  The laser speckle 

technique has been validated on members cast in both indoor and outdoor operations.   

 

Figure 6-13  Optical surface-strain measurements during the first 28-days after de-

tensioning 

The surface strain of the prestressed concrete member was further monitored for 28 days 

after the detensioning. This is to investigate the capability of the laser-speckle for long term 

strain measurement. As shown in Figure 6-13, the laser speckle method works very well during 

the first month after de-tensioning.  Note in this figure that the peak strains vary along the length 

of the member, producing an asymmetric shape.  This was due to a slight horizontal eccentricity 

of the strand in the small trapezoidal cross-section, which produced bi-axial bending in the 

member. 
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 6.4.2 Surface strain measurement using the fourth generation prototype  
 

A prestressed concrete beam strain measurement experiment that is similar to that 

described in section 6.2.1 was conducted using the fourth generation prototype of the laser 

speckle strain sensor. The fourth generation prototype, as discussed in Chapter 3, is based on the 

same laser speckle technology as the second generation prototype, but has different hardware 

design (dual module design vs. single module design) and is more accurate and flexible. 

The pretensioned members were each 9'-6" long with a rectangular cross-section as 

shown in Figure 6-14. In order to facilitate the laser-speckle measurements, three small ¼-inch-

diameter inserts were cast into the pre-tensioned concrete members to allow an aluminum rail to 

sit  on the top of the member surface.  The sensor was then installed on the rail  and was able to 

traverse freely on it. 
 

 
Figure 6-14 Experiment setup for the transfer length measurement of  prestress concrete 

member using fourth generation prototype 

 

Surface strain measurements were obtained using the fourth generation laser speckle 

strain device.  The results from this beam test are shown graphically in Figure 6-15. It is clear 
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that the Laser Speckle Strain sensor results show scatter below 10 microstrain, much less than 

that of the similar experiment described in Section 6.4.1 in which the second generation laser 

speckle strain device was used. This is realized because of several improvements in the design of 

the fourth prototype over the previous versions, including the dual module design, less sensitivity 

to thermal expansion effect and better camera hardware, as discussed in Chapter 3.  
 

 
Figure 6-15 Concrete surface strain measurements immediately after de-tensioning of a 

pre-tensioned specimen using laser speckle strain sensor 

 

 6.5 Transfer length measurement of prestressed railroad cross-tie  

 
Prestressed concrete railroad cross-ties are becoming increasingly popular in the United 

States, and are an essential component for high speed railway lines. Currently, the production of 

the prestress concrete rail cross-ties is a highly automatic process in the USA. For instance, in the 

CXT concrete cross-tie production plant in Grand Island, NE, the production of the cross-tie 

involves pouring concrete mix on a grid of strands of 386 feet length that are tensioned at 300 

thousand lbs force in a heated bed.  The headed bed expedites the curing process of the concrete 

mix that typically takes days to a period as short as 8 hours. After the concrete mix is cured, the 
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386 feet long prestressed beam goes through a saw cut machine continuously and is cut into 8’-

6”  long  cross-ties.  The  plant  is  capable  of  producing  several  thousand  cross-ties  each  day.   In  

order for these prestress concrete ties to function adequately over their expected service life, the 

prestressing force must be fully introduced into the railroad tie at a location well before the rail 

load is applied.  Once again, the length required to transfer the prestressing force into the 

concrete cross-tie member is the “Transfer Length”.  However, currently the concrete rail cross-

tie industry does not conduct transfer length measurements except occasionally for research 

purposes. This due to the fact that there does not exist a transfer length measurement method that 

is robust enough for the harsh environment of the plant and capable of keeping up with the 

working speed of the production line.   

To evaluate the feasibility of the in-plant transfer length measurements using the laser 

speckle strain sensor, two trips have been made to the CXT concrete cross-tie production plant in 

Grand Island, NE. One trip was on October 22nd in 2010, and the other trip was on February 8th 

in 2011. 

In order to facilitate the laser-speckle measurements, three small ¼-inch-diameter inserts 

were cast into each of the cross-tie immediately after the pouring of the concrete mix. The inserts 

allow an aluminum rail to sit on the top of the member surface conveniently. The sensor was that 

was installed on the rail was able to traverse freely on it, as shown in Figure 6-16. 

 
Figure 6-16 Laser speckle strain sensor mounted on a rail at CXT concrete cross-tie plant 
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Before the detensioning of the cross-tie, initial laser speckle readings were taken every 

0.5 inch for the first 10 points, counting from the end of the tie, and every 1 inch thereafter along 

the beam; by traversing the laser speckle strain sensor on the rail manually. A total of 70 data 

points were obtained for each tie, with 35 data points for either side. 

After the cross-tie was detesioned (i.e., the tensioned reinforcing strands were cut and 

prestressing force was transferred to the concrete member), post-dententioning readings were 

taken.  The two sets of readings were compared, correspondingly, to extract the strain 

information at each location, which in turn was used to plot the strain profile of the cross-tie for 

the “transfer length” determination.  

The application of the laser speckle strain sensor to the cross-tie transfer length 

measurement was not successful in our first trip to CXT concrete cross-tie production plant. The 

software failed to find correlation between the corresponding speckle image pairs. Thus it could 

not extract the surface strain information along the cross-ties. This was due to a de-correlation 

effect that was caused by the dramatic physical change of the cross-tie surface when the ties went 

through the saw-cutting machine. Here the cross-tie surface undergoes severe abrasions 

including washing, scrubbing, wiping and vacuuming, as shown in Figure 6-17.  The change of 

the concrete surface’s microscopic profile causes significant de-correlation to the speckle image 

pairs. To reduce the de-correlation effect, microscopic reflective particles were bonded to the 

cross-ties to serve as artificial speckle before the initial readings were taken, as shown in Figure 

6-18. The particles were much less vulnerable to the severe abrasions than the concrete surface 

itself  and  helped  keep  the  correlation  that  was  critical  for  the  laser  speckle  strain  sensor  to  be  

functional in the this extreme situation.   
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Figure 6-17 Severe abrasions to the cross-tie surface at the saw-cutting machine 

 
Figure 6-18 Cross-tie surface bonded with microscopic reflective particles 

With  the  microscopic  particles  applied  to  the  surface  of  the  cross-tie,  the  laser  speckle  

strain sensor was able to find the correlation between the corresponding speckle image pairs and 

extract the surface strain information of the cross-ties. The total time for measuring each tie was 

about 3 minutes. This was made possible because no high precision traverse setup was required 

and  simple  visual  manual  positioning  was  adequate.  The  results  from  the  in-plant  cross-tie  

measurement are shown in Figure 6-19,6-20,6-21. To evaluate the capability of the laser speckle 

strain sensor to monitor the long-term surface strain trend, another set of readings were taken for 
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each cross-tie ten days after the pouring.  It can be seen in that the laser speckle strain sensor has 

successful extracted the surface strain information both for short term and long term effect. 

 
Figure 6-19 Cross-tie surface strain measurement (Tie 1 Side A) 

 
Figure 6-20 Cross-tie surface strain measurement (Tie 2 Side B) 
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Figure 6-21 Cross-tie surface strain measurement (Tie 3 Side A) 
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Chapter 7 - Conclusion 

 

This dissertation presented the development of a general non-contact surface strain 

measurement technique based on the laser speckle principle that is able to rapidly and accurately 

determine concrete surface strains. The characteristics and behavior of the speckle were 

investigated. The relationship between the multi-degree of motion of the subject surface and the 

induced motion of the speckle pattern was also addressed. Based on the laser speckle 

measurement technique, four (4) generations of designs have been made. A prototype was 

fabricated for each design either on an optical breadboard for concept validation, or in a portable 

form for  field  test  operation.  For  each  generation  design,  improvement  was  made  based  on  the  

knowledge learned through the test of the previous generation prototype. The fourth generation 

prototype, incorporating a unique modular design concept and unique self-calibration function, 

exhibits several preferable features such as flexible adjustment of the gauge length, easy 

expansion to rosette 2D strain measurement and high accuracy.  

Extensive testing has been conducted in the laboratory environment for validation of the 

sensor’s  capability  for  concrete  surface  strain  measurement.  The  experimental  results  from  the  

laboratory testing have shown that the measurement precision of this new laser speckle strain 

measurement technique can easily achieve 20 microstrain. Furthermore, the laser speckle strain 

sensor was applied to the transfer length measurement of typical prestressed concrete beams for 

both short term and long term monitoring. The measurement of transfer length by the sensor was 

unprecedented since it appears that it was the first time that laser speckle technique was applied 

to prestressed concrete inspection, and particularly for use in transfer length measurement.  In the 

following field application of the laser speckle strain sensor in the CXT rail cross-tie plant, the 

technique reached 50 microstrain resolution, comparable to what could be obtained using 

mechanical gauge technology. It was also demonstrated that the technique was able to withstand 

extremely harsh manufacturing environment.  

The accuracy and robustness of the device presents great potential for various civil 

engineering applications, such as crack propagation monitoring and bridge health monitoring.  It 

can also be used to measure the surface strain of materials other than concrete. These include any 

materials with rough surface, such as steel, aluminum and fiber glass. 
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The sensor has shown its capability of rapidly obtaining the surface strain profile for the 

transfer length determination. The procedure has the potential to be further expedited by 

mounting the sensor on an automatic traverse instead of manually moving it. In contrast to the 

conventional transfer length measurement methods that interrupt the daily casting and de-

tensioning sequence, the automation of the transfer length measurement could be incorporated 

into the manufacturing production line for prestressed concrete member, such as the railroad 

cross-tie application, thus bringing the real-time online diagnostics and monitoring of the 

prestressed concrete production into reality.   
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Appendix A - Hardware Components List (the fourth generation 

prototype)  

Part name 
Manufacturer or 
retailer part# 

15mm Dia. Unmounted Linear Glass Polarizing Filter Edmund optics NT54-925 
C-MOUNT 15MM THIN LENS MT. Edmund optics NT54-616 
C-Mount Plate Beamsplitter 50R/50T VIS Edmund optics NT49-685 
 C-MOUNT 12.5MM THICK LENS MT Edmund optics NT54-623 
C-MOUNT 12.5MM THIN LENS MT Edmund optics NT55-246   
C-MOUNT 20MM THICK LENS MT. Edmund optics NT54-626 
Plano-Convex Lens 12.7  x 12.7  VIS 0 Coating Edmund optics NT62-561 
TECHSPEC® High Efficiency Anti-Reflection Coated 
Windows Edmund optics NT48-924 
C-Mount Double Male Rotating Barrel Edmund optics NT53-865 
Triplets lens Rolyn optics 23.0600 
Mono CCD camera Lumenera Corp Lu130M 

High Performance Laser Module 
Diode Laser 
Concept 

1112A2-
0001 
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Appendix B - Specifications and SolidWorks model of the laser 

speckle strain sensor (the fourth generation prototype) 

 Resolution: 20 microstrain 

 Positioning tolerance: 2mm    

 Response time: 0.2 second 

 Transfer length measurement time for a typical 10 feet prestressed concrete member:  3 

minutes  

 Mass: 2.6 lbs (2 modules combined) 

 Dimensions: 4”x3”x2” (one module) 

 
Figure B-1 3D SolidWorks model of the fourth generation prototype

 
Figure B-2 3D SolidWorks model of an individual model with interior view 
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Appendix C - Uncertainty Analysis 

This section evaluates the uncertainty of the strain measurement by the laser speckle 

strain sensor. The optical strain sensor measures the surface strain by detecting the in-plane 

displacements A and B  of the two nearby surface points A and B, as discussed in Section 3.1, 

and the surface strain, ,  between  point  A  and  point  B  is  determined  by  the  equation  
E
L

, 

where E B A  is  the  relative  deflection  between  point  A  and  point  B  and  L is the gauge 

length of 203.2 mm (8 inches) for the current setup. The uncertainty comes from three sources: 

(1) uncertainty of surface displacement measurement, (2) uncertainty of digital dial gauge used 

to calibrate the optical sensor and (3) uncertainty of gauge length L measurement. The three 

uncertainties are estimated individually below, and the total (or combined) uncertainty is 

obtained by using error propagation methods. 

The manual motion system as shown in Figure 6-1 was used to estimate the uncertainty 

of the surface displacement measurement of the optical sensor. The concrete block on the right 

was stationary. The concrete block on the left was attached to a manual traverse system, whose 

displacement was indicated by a digital dial gauge of resolution of 0.001mm (Shars 303-3506).  

The displacement of the concrete block was also measured by the laser speckle strain sensor. The 

experiment was conducted by displacing the concrete block from 0mm to 1.000mm with 

increments of 0.100mm.  The data is listed in Table C-1 and  plotted in Figure C-1. The residual 

plot is shown in Figure B-2, which shows the deviation of the measured displacement from the 

laser speckle strain sensor as a function of the displacement (mm) measured by the digital dial 

gauge.  
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Table C-1 Experiment data for uncertainty analysis 

Dial gauge(mm) Laser speckle sensor(mm) Deviation(mm) 
0.000 0.000 0.000 
0.100 0.100 0.000 
0.200 0.202 0.002 
0.300 0.300 0.000 
0.400 0.400 0.000 
0.500 0.499 -0.001 
0.600 0.598 -0.002 
0.700 0.700 0.000 
0.800 0.797 -0.003 
0.900 0.902 0.002 
1.000 0.999 -0.001 

 

 
Figure C-1 Uncertainty analysis experiment data 
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Figure C-2 Deviation between optical sensor and digital dial gauge 

Figure C-2 also shows the uncertainty band covering all the residual points to within 

about 0.003 mm, which is denoted as 0.003Displacementu mm . The uncertainty of the digital dial 

gauge is 0.001gaugeu mm .  Using the propagation of errors method, assuming these errors are 

independent, the total uncertainty of the deflection measurement is given as, 

2 2 2 2 2 20.003 0.003 0.001 0.004E displacement displacement gaugeu u u u mm    

Since the strain is calculated by 
E
L , 

the uncertainty of the strain measurement is  

2 2 2 2

2
E

E L L
u Eu u u u

E L L L  

Since the surface strain of the prestressed concrete beam is usually less than 1000 

microstrain. This means that the deflection E between two surface points 8” apart is less than 

0.2mm. Substituting 0.2E mm , 203.2L mm , and assuming the uncertainty of measuring the 

gauge length is 1Lu mm ,
 

2 2

2

0.004 0.21 20
203.2 203.2

u microstrain
 

Thus the estimated uncertainty of the optical strain sensor is about 20 microstrain. 



108 

 

Appendix D - Strain Sensor User’s Manual 

 

 D.1 Introduction 

D.1.1 Background Information of the Optical Strain Sensor 
 

The Optical Strain Sensor utilizes the principle of speckle correlation to measure the 

subject surface strain. The major components of the system are two identical modules rigidly 

attached side by side by steel channels. Each of the modules emits a laser beam to the subject 

surface, and the reflected speckle images are captured by the cameras in the sensor. The system 

automatically analyzes the speckle images that are taken before and after the surface deformation 

to extract the strain information, and present the results to the user in real time. The sensor can 

operates either in hand-held or stationary state depending on the application.  

D.1.2 Laser Safety 
 

The Laser Head emits visible red light beams.  The laser intensity is low and can not 

damage human skin. However, looking directly into the laser beam can cause injury. 

 

•  Laser medium: Diode  

•  Radiant Power: <5 milliwatt  

•  Wavelength: 632.8 nanometers 

 

D.1.3 System and Power Requirement 
 

•  120V/60HZ AC or 5V DC 

•   Windows 2000 or  Windows XP  

•   450 MHz Pentium III or higher  
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•   512 MB RAM  

•   USB 2.0 Port   

 

D.1.4 System Limitation 
 

•  Dynamic range: 2mm 

•  Scanning rate: 5hz 

•  Maximum ambient temperature: 130 F 

 

 D. 2 Installation 
 

D.2.1 Components Checklist 
 

•   Sensor body  

•   USB Hub and power adapter 

•   USB cables 
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Figure D-1 Sensor body 

D.2.2  Hardware Assembly  

 

1.  Cable connection 

 

Connect the two USB cables to the two USB sockets of the sensor. The match of the USB 

cable and the socket is random. The connection diagram is shown in Figure 2. 

 

Important: Do NOT plug the unconnected USB cable to the computer before installing 

the software. 
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Figure D-2 Cable Connection Diagram 

 

2. Gauge length adjustment 

 

The gauge length of the strain sensor is equal to the distance of the two illuminated 

points.  

The default gauge length of the strain sensor is 8 inches. The user can adjust the gauge 

length to meet the requirement of various applications. To change the gauge length, unscrew the 

8 set screws at the bottom of the sensor, slide the sensor modules along the carbon fiber rods till 

the desired gauge length is achieved, tighten the 8 set screws to lock the gauge length. 
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Figure D-3 Adjust gauge length 

D.2.3 Installing the Software 
 

1. Close all application software that is running and then insert the Installation CD into your 
CD/DVD-ROM drive. 

2. Double-click on “setup.exe”. 
3. Follow the onscreen prompts to install the software drivers and user application.   
4. After  the  software  has  been  installed,  plug  the  power  cable  of  the  USB hub to  the  power  

supply and plug the unconnected USB cable into a free USB 2.0 High-Speed port on the 
computer. 

5. The Window’s New Hardware Wizard will pop-up two “Lumenera Unconfigured Device” 
dialogs.  Select  “Install  the  software  automatically”  from the  options  that  are  presented  to  
you and click Next. A warning may appear notifying you that the drivers have not been 
digitally signed by Microsoft. Click Continue Anyway to continue with the driver 
installation. Then click Finish to install the drivers.  You must have administrator 
privileges to finish the above task. 

6. Restart your computer. 
7. Run the “Strain” application software from your Start\All Programs\Optical Strain Sensor 

menu to start the program.   
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 D.3 Software Operation and Making Measurement 
 

The “Strain” application is a program that incorporates a user-friendly interface to help 

users make strain measurement with the sensor, as well as manage the measurement data from 

multiple projects or subjects. The software’s main screen is divided into 3 sections: Camera 

Control, Measurement Settings and Measurement 

 

 
Figure D-4 Strain Application Main Window 

 

D.3.1 Camera Control   
 

Before measuring with the sensor, the user must configure parameters for the camera in 

the sensor, so that the camera can capture valid speckle images for the analysis. 

 

The  “Connect” button is used to initialize the strain sensor and prepare the 

communication between the strain sensor module and the computer.  
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The “Preview” button is used to let user see the images being captured in real- time.  The 

two images that pop up are captured by the two modules respectively. If the images are either too 

dark or too bright, the user can use the controls (Gain and Exposure) that are described next to 

adjust accordingly. Stopping the preview can be achieved by clicking the same button. 

The “Gain” textbox is used to set the gain value for the cameras in the strain sensor. The 

range of the accepted gain value is 1 to 23 in integer.  

The “Exposure” textbox is used to set the time between the start of image capture and  

the data read-out for a snapshot. The unit of the value is millisecond. If the sensor can’t 

obtain bright enough speckle image with the maximum available gain value, the user can 

increase the brightness further by increasing the Exposure time. 

The  “Concrete” radio button is used to load predefined camera settings for the subject 

with concrete surface. 

The  “Steel” radio button is used to load predefined camera settings for the subject with 

steel surface. 

The “Apply” button is used to apply the gain value and exposure time set by the user to 

the strain sensor. 

 

D.3.2 Measurement Settings 

 

In this section, the user can configure the output unit, delay time for the initial reading, 

gauge length and the desired accuracy. 

 

The  “Output Unit” dropdown listbox is used to choose the unit of the output. The 

available options include “mm”, “inch”, and “micro strain”. If “mm” or “inch” is selected, the 

measurement output is the absolute distance change of the two illuminated points on the subject 

surface.  If  “micro  strain”  is  selected,  the  output  is  the  strain  that  is  obtained  by  dividing  the  

measured distance change by the “Gauge Length”. 

The “Reference Delay” textbox is used to set the delay time during which the user can 

position the sensor appropriately for the initial readings. The purpose of this item will be 

discussed in detail in Section 3.3 of this manual. 
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The  “Gauge Length”  textbox  is  used  to  set  the  gauge  length  of  the  sensor,  i.e.  the  

distance between the two illuminated points on the subject surface. 

 

D.3.3 Measurement  
 

This section consists of the controls that are used to manage the application profile and 

conduct the measurement. 

 

1. Clicking “Create New Data Set” will pop up a dialog (Figure 5) that allows the user 

to define new data set. There are three input fields in the dialog: “Data Set Name”, “Data Point 

Number”  and  “Description”. Alternatively the user can choose the existed data set from the 

dropdown list. The information of the data set created or chosen will be displayed in the “Data 

Point #” and “Description” textboxes in the main screen of the software. 

 
Figure C-5 Data Set Definition Dialog 

 

2. Clicking “Create New Measurement” button will pop up a dialog (Figure 6) where 

the user can input the name of the new measurement. For example, a concrete beam might need 

to be inspected several times during a month. Before starting each round of the inspection, a new 

measurement needs to be created. 
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Figure D-6 Define the Name of New Measurement 

 

3.  Position  the  sensor  on  the  subject  surface  where  the  user  desires  to  make  strain  

measurement, as shown in Figure 7. Mark a half circle around the edges of the top contact points. 

 
Figure D-7 Making Measurement 

 

4. Click the “Measure” button to start making the readings.  

 

For the initial readings, the programs will wait a period before making the actual reading. 

The duration of the waiting time is defined in the “Reference Delay” in “Measurement 

Settings” section.  During  this  period,  the  user  can  align  the  sensor  to  the  marks  that  the  user  
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makes in Step 3. When the delay time is over, the initial reading will be made and the sound of 

“ding” is played.  

For the readings other than the initial readings, try to align the sensor to the same marks 

while the program continuously scans the subject surface. Wiggle the sensor to facilitate the 

scanning process. When the program detects a correlation, the measurement will be made 

automatically. A “ding” sound will be played and the measurement result will be displayed on 

the screen.  

After the measurement on the current point is made, the spin button “Point #” will 

increment automatically, proceeding to the measurement of the next point. Repeat step 4. 
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Appendix E - Source code 

 

Strain.cpp 

 

#include "stdafx.h" 

#include "Strain.h" 

#include "StrainDlg.h" 

 

#ifdef _DEBUG 

#define new DEBUG_NEW 

#undef THIS_FILE 

static char THIS_FILE[] = __FILE__; 

#endif 

 

 

BEGIN_MESSAGE_MAP(CStrainApp, CWinApp) 

 //{{AFX_MSG_MAP(CStrainApp) 

 //}}AFX_MSG 

 ON_COMMAND(ID_HELP, CWinApp::OnHelp) 

END_MESSAGE_MAP() 

CStrainApp::CStrainApp() 

{ 

} 

CStrainApp theApp; 

BOOL CStrainApp::InitInstance() 

{ 

 AfxEnableControlContainer(); 

 // Standard initialization 

#ifdef _AFXDLL 

 Enable3dControls();   // Call this when using MFC in a shared DLL 

#else 

 Enable3dControlsStatic(); // Call this when linking to MFC statically 

#endif 

 CStrainDlg dlg; 

 m_pMainWnd = &dlg; 
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 int nResponse = dlg.DoModal(); 

 if (nResponse == IDOK) 

 { 

 } 

 else if (nResponse == IDCANCEL) 

 { 

 } 

 // Since the dialog has been closed, return FALSE so that we exit the 

 //  application, rather than start the application's message pump. 

 return FALSE; 

} 

 

StrainDlg.h 

 

#if !defined(AFX_STRAINDLG_H__235F11AA_4538_4BD7_88AA_66E784050B55__INCLUDED_) 

#define AFX_STRAINDLG_H__235F11AA_4538_4BD7_88AA_66E784050B55__INCLUDED_ 

 

#if _MSC_VER > 1000 

#pragma once 

#endif // _MSC_VER > 1000 

 

#include "lucamapi.h" 

#include "lucamsci.h" 

#include "SnapPreviewDlg.h" 

#include <stdio.h> 

#include <stdlib.h> 

#include "cv.h" 

#include "highgui.h" 

#include "fftw3.h" 

#include "math.h" 

#include <iostream> 

#include <windows.h> 

#include <mmsystem.h> 

#include <direct.h> 

#include <io.h> 

#include <afxtempl.h> 

#include "UIDialog.h" 
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#pragma comment(lib,"Winmm.lib") 

#define CAMNUM 2 

  

#define bs 384 

#define cutoff 60 

#define MatchTempType CV_TM_CCOEFF_NORMED 

 

class CStrainDlg : public CDialog 

{ 

// Construction 

public: 

BOOL CalibrationReadingSpeckle(double *subxL,double *subyL,double *subxR,double *subyR); 

BOOL TakeInitialReading(); 

void MultipleMinLoc( IplImage *image, CvPoint location[]); 

void MultipleMaxLoc( IplImage *image, CvPoint location[] ); 

void MinLoc( IplImage *image, double &min, CvPoint &location ); 

void MaxLoc( IplImage *image, double &max, CvPoint &location ); 

BOOL Blurcheck(IplImage *img1, IplImage *img2); 

BOOL oldsensor; 

void AdaptiveHist(IplImage *input, IplImage *output); 

void PreProcess(IplImage *input, IplImage *output); 

void Subpixel(IplImage *in, double *x, double *y, int factor); 

void ShowImage(IplImage *img); 

 

void filterproduct(IplImage* img, CvMat* filter,IplImage* productimg); 

void INTfilter(IplImage* img, CvMat* filter,IplImage* productimg, int shiftx,int shifty); 

void converttofloat(IplImage* img, CvMat* filter,IplImage* productimg, int shiftx,int shifty); 

 

BOOL Measure(); 

CString measurementname; 

CString datasetname; 

CStdioFile File; 

int datapointnumber; 

CStrainDlg(CWnd* pParent = NULL); // standard constructor 

CSnapPreviewDlg *m_dlgSnap; 
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// Dialog Data 

//{{AFX_DATA(CStrainDlg) 

enum { IDD = IDD_STRAIN_DIALOG }; 

CStatic m_refname; 

CColorListBox m_measurementlist; 

CButton m_CalibrateIntensity; 

CSpinButtonCtrl m_Spin; 

CButton m_cbRound; 

CStatic m_path; 

CButton m_cbLock; 

CButton m_cbApply; 

float m_exposure; 

float   m_exposureA; 

float   m_exposureB; 

float m_gain; 

CButton m_cbConnect; 

CButton m_cbPreview; 

CButton m_cbMeasure; 

int  m_round; 

CString m_DataSetList; 

int  m_accuracy; 

int  m_delay; 

double m_gl; 

int  m_surfacetype; 

BOOL m_invert; 

int  m_configurationtype; 

int  m_duration; 

//}}AFX_DATA 

 

// ClassWizard generated virtual function overrides 

//{{AFX_VIRTUAL(CStrainDlg) 

protected: 

virtual void DoDataExchange(CDataExchange* pDX); // DDX/DDV support 

virtual void PostNcDestroy(); 

//}}AFX_VIRTUAL 

 

// Implementation 
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protected: 

int ref_index; 

void CreateLargeHanning(int M,int N,CvMat* filter); 

void phase_correlation_block(fftwf_complex *fft1, fftwf_complex *fft2, IplImage *poc); 

double thresholdhalf; 

double THRESHOLD; 

double concrete_threshold1,concrete_threshold2,steel_threshold1,steel_threshold2; 

int start_x,start_y; 

float deflection; 

CWinThread *pThread; 

void fftwcopy(fftwf_complex* source ,fftwf_complex* target , int size); 

BOOL m_bStop; 

void cvShiftDFT(CvArr * src_arr, CvArr * dst_arr ); 

int height,half_height; 

int width,half_width; 

fftwf_plan ifft_res; 

fftwf_plan fft_img2; 

fftwf_plan fft_img1; 

fftwf_plan ifft_res_halfsize; 

fftwf_plan fft_img2_halfsize; 

fftwf_plan fft_img1_halfsize; 

fftwf_complex *res_fft; 

fftwf_complex *img2_fft; 

fftwf_complex *img1_fft; 

fftwf_complex  *res; 

fftwf_complex  *img2; 

fftwf_complex *img1; 

double p1,p2,p3,p4; 

double g1,g2,g3,g4,g5; 

double gbb1,gbb2,gbb3,gbb4,gbb5; 

fftwf_complex *res_fft_half; 

fftwf_complex *img2_fft_half; 

fftwf_complex *img1_fft_half,*img1_fft_halfL,*img1_fft_halfR; 

float *res_half; 

float *img2_half; 

float *img1_half; 

void phase_correlation( IplImage *ref, IplImage *tpl, IplImage *poc ); 
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void phase_correlation_halfsize( IplImage *ref, IplImage *tpl, IplImage *poc ); 

void upsampling(CvArr* in, int factor, int roff, int coff,CvArr* out,int N ); 

CString m_strPath; 

LUCAM_SNAPSHOT lsSettings; 

BOOL m_bLocked; 

void CleanUp(); 

HICON m_hIcon; 

BOOL CreateHanning(int M, int N,CvMat* filter,BOOL flag, int d); 

CvMat* hanningfilter; 

CvMat* blockfilter; 

HANDLE hCameras[CAMNUM]; 

LUCAM_SNAPSHOT *pParams[CAMNUM];  // Array of ptrs to the param struct 

LUCAM_SNAPSHOT params[CAMNUM]; 

UCHAR *ppFrames[CAMNUM];  // Array of pointers to frames; 

UCHAR *pAllFrames; 

BYTE *pBmpBuffer; 

HANDLE hSynchronousSnapshots; 

HANDLE m_hCameraA,m_hCameraB; 

BOOL m_bConnected; 

BOOL m_bPreviewing; 

BOOL m_bSnapping; 

LUCAM_FRAME_FORMAT m_lffFormat; 

CFileFind f; 

CString cRefFilenameL,cRefFilenameR; 

float m_fFrameRate; 

clock_t m_tStartTime; 

clock_t m_tEndTime; 

clock_t dElapsed; 

 

// Generated message map functions 

//{{AFX_MSG(CStrainDlg) 

virtual BOOL OnInitDialog(); 

afx_msg void OnPaint(); 

afx_msg HCURSOR OnQueryDragIcon(); 

afx_msg void OnButtonConnect(); 

afx_msg void OnButtonPreview(); 

afx_msg void OnClose(); 
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afx_msg void OnButtonApply(); 

afx_msg void OnButtonSetfolder(); 

afx_msg void OnButtonMeasure(); 

afx_msg void OnButtonLock(); 

afx_msg void OnButtonStop(); 

afx_msg void OnCreateDataSet(); 

afx_msg void OnEditchangeDataSetList(); 

afx_msg void OnSelchangeDataSetList(); 

afx_msg void OnNewMeasurement(); 

afx_msg void OnDeleteMeasurement(); 

afx_msg void OnSelchangeMeasurementList(); 

afx_msg void OnConcrete(); 

afx_msg void OnSteel(); 

afx_msg void OnOpendatafile(); 

afx_msg void OnCalibrateIntensity(); 

afx_msg void OnSetreference(); 

afx_msg void OnCalibration(); 

//}}AFX_MSG 

DECLARE_MESSAGE_MAP() 

 

private: 

void UpdateMeasurementList(); 

CString defaultfolder; 

CMessageDialog MessageDlg; 

}; 

 

#endif // !defined(AFX_STRAINDLG_H__235F11AA_4538_4BD7_88AA_66E784050B55__INCLUDED_) 

 

 

StrainDlg.cpp 
 

#include "stdafx.h" 

#include "Strain.h" 

#include "StrainDlg.h" 

 

#ifdef _DEBUG 

#define new DEBUG_NEW 



125 

 

#undef THIS_FILE 

static char THIS_FILE[] = __FILE__; 

#endif 

 

CStrainDlg::CStrainDlg(CWnd* pParent /*=NULL*/) 

: CDialog(CStrainDlg::IDD, pParent) 

{ 

//{{AFX_DATA_INIT(CStrainDlg) 

m_exposure = 1.0f; 

m_gain = 23.0f; 

m_round = -1; 

m_DataSetList = _T(""); 

m_accuracy = -1; 

m_delay = 0; 

m_gl = 0.0; 

m_duration=3; 

m_surfacetype = 0; 

m_invert = FALSE; 

m_configurationtype=0; 

m_pointnumber = 0; 

m_configurationtype = -1; 

m_duration = 0; 

//}}AFX_DATA_INIT 

m_hIcon = AfxGetApp()->LoadIcon(IDR_MAINFRAME); 

} 

 

void CStrainDlg::DoDataExchange(CDataExchange* pDX) 

{ 

CDialog::DoDataExchange(pDX); 

//{{AFX_DATA_MAP(CStrainDlg) 

DDX_Control(pDX, IDC_REFNAME, m_refname); 

DDX_Control(pDX, IDC_MeasurementList, m_measurementlist); 

DDX_Control(pDX, IDC_CalibrateIntensity, m_CalibrateIntensity); 

DDX_Control(pDX, IDC_SPIN, m_Spin); 

DDX_Control(pDX, IDC_ROUND1, m_cbRound); 

DDX_Control(pDX, IDC_PATH, m_path); 

DDX_Control(pDX, IDC_LOCK, m_cbLock); 

DDX_Control(pDX, IDC_APPLY, m_cbApply); 
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DDX_Text(pDX, IDC_EXPOSURE, m_exposure); 

DDX_Text(pDX, IDC_GAIN, m_gain); 

DDX_Control(pDX, IDC_CONNECT, m_cbConnect); 

DDX_Control(pDX, IDC_PREVIEW, m_cbPreview); 

DDX_Control(pDX, IDC_MEASURE, m_cbMeasure); 

DDX_Radio(pDX, IDC_ROUND1, m_round); 

DDX_CBString(pDX, IDC_DataSetList, m_DataSetList); 

DDX_Radio(pDX, IDC_ACCURACY, m_accuracy); 

DDX_Text(pDX, IDC_DELAY, m_delay); 

DDX_Text(pDX, IDC_GL, m_gl); 

DDX_Radio(pDX, IDC_Speckle, m_surfacetype); 

DDX_Check(pDX, IDC_INVERT, m_invert); 

DDX_Radio(pDX, IDC_NORMCONFIG, m_configurationtype); 

DDX_Text(pDX, IDC_POINTNUMBER, m_pointnumber); 

DDX_Text(pDX, IDC_Duration, m_duration); 

//}}AFX_DATA_MAP 

} 

 

BEGIN_MESSAGE_MAP(CStrainDlg, CDialog) 

//{{AFX_MSG_MAP(CStrainDlg) 

ON_WM_PAINT() 

ON_WM_QUERYDRAGICON() 

ON_BN_CLICKED(IDC_CONNECT, OnButtonConnect) 

ON_BN_CLICKED(IDC_PREVIEW, OnButtonPreview) 

ON_WM_CLOSE() 

ON_BN_CLICKED(IDC_APPLY, OnButtonApply) 

ON_BN_CLICKED(IDC_SETFOLDER, OnButtonSetfolder) 

ON_BN_CLICKED(IDC_MEASURE, OnButtonMeasure) 

ON_BN_CLICKED(IDC_LOCK, OnButtonLock) 

ON_BN_CLICKED(IDC_STOP, OnButtonStop) 

ON_BN_CLICKED(IDC_CreateDataSet, OnCreateDataSet) 

ON_CBN_EDITCHANGE(IDC_DataSetList, OnEditchangeDataSetList) 

ON_CBN_SELCHANGE(IDC_DataSetList, OnSelchangeDataSetList) 

ON_BN_CLICKED(IDC_BUTTON2, OnNewMeasurement) 

ON_BN_CLICKED(IDC_DeleteMeasurement, OnDeleteMeasurement) 

ON_LBN_SELCHANGE(IDC_MeasurementList, OnSelchangeMeasurementList) 

ON_BN_CLICKED(IDC_Concrete, OnConcrete) 

ON_BN_CLICKED(IDC_STEEL, OnSteel) 
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ON_BN_CLICKED(IDC_OPENDATAFILE, OnOpendatafile) 

ON_BN_CLICKED(IDC_CalibrateIntensity, OnCalibrateIntensity) 

ON_BN_CLICKED(IDC_SETREFERENCE, OnSetreference) 

ON_BN_CLICKED(IDC_Calibration, OnCalibration) 

//}}AFX_MSG_MAP 

END_MESSAGE_MAP() 

 

///////////////////////////////////////////////////////////////////////////// 

// CStrainDlg message handlers 

 

BOOL CStrainDlg::OnInitDialog() 

{ 

CDialog::OnInitDialog(); 

 

 

m_surfacetype=0; 

m_configurationtype=0; 

 

SetIcon(m_hIcon, TRUE); 

SetIcon(m_hIcon, FALSE); 

 

CButton* pRB = (CButton*) GetDlgItem(IDC_ACCURACY); 

pRB->SetWindowText("5 ¦ÌStrain"); 

pRB = (CButton*) GetDlgItem(IDC_ACCURACY2); 

pRB->SetWindowText("10 ¦ÌStrain"); 

pRB = (CButton*) GetDlgItem(IDC_ACCURACY3); 

pRB->SetWindowText("25 ¦ÌStrain"); 

pRB->SetCheck(BST_CHECKED); 

CButton* pCBmode = (CButton*) GetDlgItem(IDC_HANDHOLD); 

pCBmode->SetCheck(BST_CHECKED); 

pRB = (CButton*) GetDlgItem(IDC_Concrete); 

pRB->SetCheck(BST_CHECKED); 

CStrainDlg::OnConcrete(); 

 

CComboBox* pCBunit = (CComboBox*) GetDlgItem(IDC_UNIT); 

pCBunit->SetCurSel(1); 

m_gl=7.125; 

m_duration=3; 
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CEdit* pEgl = (CEdit*) GetDlgItem(IDC_GL); 

pEgl->SetWindowText("8"); 

m_bStop=0; 

m_Spin.SetRange(1, 50); 

m_Spin.SetPos(1); 

 

m_hCameraA = NULL; 

m_hCameraB = NULL; 

m_bConnected = FALSE; 

m_bPreviewing = FALSE; 

m_bSnapping = FALSE; 

m_cbPreview.EnableWindow(FALSE); 

m_cbMeasure.EnableWindow(FALSE); 

m_CalibrateIntensity.EnableWindow(FALSE); 

m_cbApply.EnableWindow(FALSE); 

m_cbLock.EnableWindow(FALSE); 

TCHAR szDirectory[MAX_PATH] = ""; 

GetCurrentDirectory(sizeof(szDirectory) - 1, szDirectory); 

m_strPath=szDirectory; 

m_path.SetWindowText(szDirectory); 

m_dlgSnap = new CSnapPreviewDlg; 

m_dlgSnap->Create(IDD_DIALOG_SNAP_PREVIEW); 

defaultfolder="C:\\Program Files\\Strain\\Data"; 

if (_access(defaultfolder,0)==-1) 

{ 

CreateDirectory(defaultfolder, 0); 

} 

SetCurrentDirectory(defaultfolder); 

CComboBox* pCB = (CComboBox*) GetDlgItem(IDC_DataSetList 

); 

CStringArray folders; 

CFileFind finder; 

BOOL bWorking = finder.FindFile(defaultfolder+"\\*.*"); 

while (bWorking) 

{ 

bWorking = finder.FindNextFile(); 

if (finder.IsDirectory() && !finder.IsDots()) 
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folders.Add(finder.GetFilePath()); 

} 

// now cycle through the array 

for (int i=0; i<folders.GetSize(); i++) 

{ 

 

pCB->InsertString(-1, folders[i].Right(folders[i].GetLength()-defaultfolder.GetLength()-1)); 

} 

int nCount = pCB->GetCount(); 

if (nCount > 0) 

{ 

pCB->SetCurSel(nCount-1); 

OnSelchangeDataSetList(); 

} 

UpdateData(FALSE); 

return TRUE;  // return TRUE  unless you set the focus to a control 

} 

void CStrainDlg::OnPaint() 

{ 

if (IsIconic()) 

{ 

CPaintDC dc(this); // device context for painting 

SendMessage(WM_ICONERASEBKGND, (WPARAM) dc.GetSafeHdc(), 0); 

// Center icon in client rectangle 

int cxIcon = GetSystemMetrics(SM_CXICON); 

int cyIcon = GetSystemMetrics(SM_CYICON); 

CRect rect; 

GetClientRect(&rect); 

int x = (rect.Width() - cxIcon + 1) / 2; 

int y = (rect.Height() - cyIcon + 1) / 2; 

// Draw the icon 

dc.DrawIcon(x, y, m_hIcon); 

} 

else 

{ 

CDialog::OnPaint(); 

} 
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} 

 

HCURSOR CStrainDlg::OnQueryDragIcon() 

{ 

return (HCURSOR) m_hIcon; 

} 

void CStrainDlg::OnButtonConnect() 

{ 

CString csTemp; 

int iCamera; 

if (!m_bConnected) 

{ 

iCamera=1; 

m_hCameraA = LucamCameraOpen(iCamera); 

m_hCameraB = LucamCameraOpen(iCamera+1); 

LONG numCameras = LucamNumCameras(); 

LUCAM_VERSION pVersionsArray[20]; 

ULONG tt = LucamEnumCameras(pVersionsArray, numCameras); 

if (pVersionsArray[0].serialnumber>pVersionsArray[1].serialnumber) 

{ 

HANDLE swap; 

swap=m_hCameraA; 

m_hCameraA=m_hCameraB; 

m_hCameraB=swap; 

} 

if ((m_hCameraA != NULL) && (m_hCameraB != NULL)) 

{ 

// Now connected to the camera 

if (!LucamSetProperty(m_hCameraA, LUCAM_PROP_EXPOSURE, m_exposure, 0)) AfxMessageBox("Unable to 

set exposure value."); 

if (!LucamSetProperty(m_hCameraA, LUCAM_PROP_GAIN, m_gain, 0))  AfxMessageBox("Unable to set gain 

value."); 

 

 

if (!LucamSetProperty(m_hCameraB, LUCAM_PROP_EXPOSURE, m_exposure, 0)) AfxMessageBox("Unable to 

set exposure value."); 
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if (!LucamSetProperty(m_hCameraB, LUCAM_PROP_GAIN, m_gain, 0))  AfxMessageBox("Unable to set gain 

value."); 

m_bConnected = TRUE; 

m_cbConnect.SetWindowText(_T("Disconnect")); 

m_cbPreview.EnableWindow(TRUE); 

m_cbPreview.SetWindowText(_T("Preview")); 

m_cbMeasure.EnableWindow(TRUE); 

m_cbApply.EnableWindow(TRUE); 

m_CalibrateIntensity.EnableWindow(TRUE); 

if (!LucamGetFormat(m_hCameraA, &m_lffFormat, &m_fFrameRate)) 

{ 

MessageBox("Unable to get camera video format. Capture frames may not work properly.", "Get Fromat", MB_OK); 

} 

height=m_lffFormat.height; 

width=m_lffFormat.width; 

half_height=height/2; 

half_width=width/2; 

start_y=height/2-bs/2; 

start_x=width/2-bs/2; 

blockfilter = cvCreateMat(bs,bs,CV_32FC1); 

CreateHanning(bs,bs,blockfilter,1,bs); 

float fvar; 

CStdioFile ppFile; 

if ((pVersionsArray[0].serialnumber==30052108) &&  (pVersionsArray[1].serialnumber==30052152)) 

{ 

oldsensor=0; 

if (ppFile.Open("C:\\Program Files\\Strain\\parameter_new sensor.txt", CFile::modeRead) != TRUE) 

{ 

 

AfxMessageBox("Failed to load parameter file"); 

} 

} 

if ((pVersionsArray[0].serialnumber==30052090) &&  (pVersionsArray[1].serialnumber==30052184)) 

{ 

oldsensor=1; 

if (ppFile.Open("C:\\Program Files\\Strain\\parameter_old sensor.txt", CFile::modeRead) != TRUE) 

{ 
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AfxMessageBox("Failed to load parameter file"); 

} 

} 

ppFile.SeekToBegin(); 

int cc=0; 

CString tempString; 

while(ppFile.ReadString(tempString) != FALSE) 

{ 

fvar = (float) atof(tempString); 

cc++; 

 

switch(cc){ 

case 1: THRESHOLD=fvar;break; 

case 2:thresholdhalf=fvar;break; 

case 3:THRESHOLD_glass=fvar;break; 

case 4: p1=fvar   ;break; 

case 5: p2=fvar    ;break; 

case 6: p3=fvar   ;break; 

case 7: p4=fvar ; break; 

case 8: g1=fvar   ;break; 

case 9: g2=fvar    ;break; 

case 10: g3=fvar   ;break; 

case 11: g4=fvar ; break; 

case 12: g5=fvar ; break; 

 

} 

 

} 

ppFile.Close(); 

img1_fft = ( fftwf_complex* )fftwf_malloc ( sizeof ( fftwf_complex ) * bs * 

bs ); 

img2_fft =( fftwf_complex* ) fftwf_malloc ( sizeof ( fftwf_complex ) * bs * 

bs ); 

res_fft =( fftwf_complex* ) fftwf_malloc ( sizeof ( fftwf_complex ) * bs * 

bs); 

img1 = ( fftwf_complex* )fftwf_malloc( sizeof( fftwf_complex ) * bs * bs ); 

img2 = ( fftwf_complex* )fftwf_malloc( sizeof( fftwf_complex ) * bs * bs ); 

res = ( fftwf_complex* )fftwf_malloc( sizeof( fftwf_complex ) * bs * bs ); 
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img1_half=(float*) malloc ( sizeof ( float ) * bs * bs ); 

img1_fft_half = ( fftwf_complex* )fftwf_malloc ( sizeof ( fftwf_complex ) * 

bs * (bs/2+1) ); 

img1_fft_halfL = ( fftwf_complex* )fftwf_malloc ( sizeof ( fftwf_complex ) * 

bs * (bs/2+1) ); 

img1_fft_halfR = ( fftwf_complex* )fftwf_malloc ( sizeof ( fftwf_complex ) * 

bs * (bs/2+1) ); 

img2_half =(float*) malloc ( sizeof ( float ) * bs * bs ); 

img2_fft_half =( fftwf_complex* ) fftwf_malloc ( sizeof ( fftwf_complex ) * 

bs * (bs/2+1) ); 

res_half =(float*) malloc ( sizeof ( float ) * bs*bs ); 

res_fft_half =( fftwf_complex* ) fftwf_malloc ( sizeof ( fftwf_complex ) * bs 

* (bs/2+1) ); 

FILE *planfile; 

planfile= fopen( "plan.wisdom", "r" ) ; 

if (planfile!=NULL) 

{ 

fftwf_import_wisdom_from_file(planfile); 

fclose(planfile); 

} 

fft_img1_halfsize = fftwf_plan_dft_r2c_2d( bs, bs, img1_half, img1_fft_half,   

FFTW_ESTIMATE); 

fft_img2_halfsize = fftwf_plan_dft_r2c_2d( bs, bs, img2_half, img2_fft_half,   

FFTW_ESTIMATE); 

ifft_res_halfsize = fftwf_plan_dft_c2r_2d( bs, bs, res_fft_half,res_half, 

FFTW_ESTIMATE); 

 

fft_img1 = fftwf_plan_dft_2d( bs, bs, img1, img1_fft,  FFTW_FORWARD, 

FFTW_ESTIMATE); 

fft_img2 = fftwf_plan_dft_2d( bs, bs, img2, img2_fft,  FFTW_FORWARD, 

FFTW_ESTIMATE ); 

ifft_res = fftwf_plan_dft_2d( bs, bs, res_fft,res, 

FFTW_BACKWARD,FFTW_ESTIMATE); 

planfile= fopen( "plan.wisdom", "w" ) ; 

if (planfile!=NULL) 

{ 

fftwf_export_wisdom_to_file(planfile); 

fclose(planfile); 
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} 

} 

else 

{ 

MessageBox("Unable to connect to the camera.", "Connect", MB_OK); 

} 

} 

else 

{ 

if (m_bSnapping) 

{ 

if (IDYES == AfxMessageBox("Currently running snapshot captures. Do you wish 

to stop?", MB_YESNOCANCEL)) 

{ 

Sleep(1000); 

} 

else return; 

} 

if (m_bPreviewing) 

{ 

} 

if (!LucamCameraClose(m_hCameraA) && !LucamCameraClose(m_hCameraB)) 

{ 

MessageBox("Unable to disconnect to the camera. Closing application.", 

"Disconnect", MB_OK); 

} 

else 

{ 

m_bConnected = FALSE; 

m_hCameraA = NULL; 

m_hCameraB = NULL; 

m_lffFormat.height = 0; 

m_lffFormat.width = 0; 

m_cbConnect.SetWindowText(_T("Connect")); 

m_cbPreview.EnableWindow(FALSE); 

m_cbPreview.SetWindowText(_T("Preview")); 

m_cbMeasure.EnableWindow(FALSE); 

m_cbApply.EnableWindow(FALSE); 
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} 

} 

OnEditchangeDataSetList() ; 

} 

void CStrainDlg::OnButtonPreview() 

{ 

if (!m_bPreviewing) 

{ 

FLOAT m_Lum; 

LONG flags; 

BOOL rt; 

FLOAT m_Exp=2.0f; 

m_Lum=60.0f; 

flags = LUCAM_PROP_FLAG_AUTO; 

 

rt = LucamSetProperty(m_hCameraA, LUCAM_PROP_EXPOSURE, m_Exp, flags); 

if (!LucamSetProperty(m_hCameraA, LUCAM_PROP_AUTO_EXP_TARGET, m_Lum, flags)) 

{ 

MessageBox("Failed to set exposure target."); 

} 

flags = LUCAM_PROP_FLAG_AUTO; 

 

rt = LucamSetProperty(m_hCameraB, LUCAM_PROP_EXPOSURE, m_Exp, flags); 

if (!LucamSetProperty(m_hCameraB, LUCAM_PROP_AUTO_EXP_TARGET, m_Lum, flags)) 

{ 

MessageBox("Failed to set exposure target."); 

} 

 

if (LucamCreateDisplayWindow(m_hCameraA, "Preview A", 

WS_OVERLAPPEDWINDOW|WS_VISIBLE, 0, 200, 640, 480, NULL, NULL)  && 

LucamCreateDisplayWindow(m_hCameraB, "Preview B", 

WS_OVERLAPPEDWINDOW|WS_VISIBLE, 500, 300, 640, 480, NULL, NULL)) 

{ 

if (LucamStreamVideoControl(m_hCameraA, START_DISPLAY, NULL) && 

LucamStreamVideoControl(m_hCameraB, START_DISPLAY, NULL)) 

{ 

m_bPreviewing = TRUE; 

m_cbPreview.EnableWindow(TRUE); 
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m_cbPreview.SetWindowText(_T("Stop")); 

m_cbMeasure.EnableWindow(FALSE); 

} 

else 

{ 

MessageBox("Unable start previewing video.", "Start Preview", MB_OK); 

LucamDestroyDisplayWindow(m_hCameraA); 

LucamDestroyDisplayWindow(m_hCameraB); 

} 

} 

else 

MessageBox("Unable create preview window.", "Start Preview", MB_OK); 

} 

else 

{ 

// Stop the preview 

if (LucamStreamVideoControl(m_hCameraA, STOP_STREAMING, NULL) && 

LucamStreamVideoControl(m_hCameraB, STOP_STREAMING, NULL)) 

{ 

m_cbPreview.EnableWindow(TRUE); 

m_cbPreview.SetWindowText(_T("Preview")); 

m_cbMeasure.EnableWindow(TRUE); 

} 

else 

MessageBox("Unable STOP previewing video.", "Stop Preview", MB_OK); 

LucamDestroyDisplayWindow(m_hCameraA); 

LucamDestroyDisplayWindow(m_hCameraB); 

m_bPreviewing = FALSE; 

} 

} 

void CStrainDlg::CleanUp() 

{ 

cvReleaseMat(&blockfilter); 

if (m_bPreviewing) 

{ 

if (IDYES == AfxMessageBox("Currently previewing. Do you wish to stop?", 

MB_YESNOCANCEL)) OnButtonPreview(); 

else return; 
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} 

if (m_hCameraA != NULL) 

LucamCameraClose(m_hCameraA); 

if (m_hCameraB != NULL) 

LucamCameraClose(m_hCameraB); 

if (img1_half != NULL) 

{ 

fffwf_destroy_plan( fft_img1 ); 

fftwf_destroy_plan( fft_img2 ); 

fftwf_destroy_plan( ifft_res ); 

fftwf_destroy_plan( fft_img1_halfsize ); 

fftwf_destroy_plan( fft_img2_halfsize ); 

fftwf_destroy_plan( ifft_res_halfsize ); 

fftwf_free(img1); 

fftwf_free(img2); 

fftwf_free(res); 

fftwf_free( img1_fft ); 

fftwf_free( img2_fft ); 

fftwf_free( res_fft ); 

fftwf_free(img1_fft_halfL); 

fftwf_free(img1_fft_halfR); 

free(img1_half); 

free(img2_half); 

free(res_half); 

fftwf_free( img1_fft_half ); 

fftwf_free( img2_fft_half ); 

fftwf_free( res_fft_half ); 

} 

if (File.m_hFile == CFile::hFileNull) 

File.Close(); 

} 

void CStrainDlg::OnClose() 

{ 

CDialog::OnClose(); 

} 

 

void CStrainDlg::OnButtonApply() 

{ 
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UpdateData(TRUE); 

if (m_gain > 23 || m_gain < 0.1 || m_exposure < 0.001 )  return; 

 

if (m_bPreviewing) 

{ 

if (!LucamStreamVideoControl(m_hCameraA, STOP_STREAMING, NULL) 

&& !LucamStreamVideoControl(m_hCameraB, STOP_STREAMING, NULL)) 

{ 

MessageBox("Unable to Apply.", "Update", MB_OK); 

return; 

} 

LucamDestroyDisplayWindow(m_hCameraA); 

LucamDestroyDisplayWindow(m_hCameraB); 

} 

 

if (!LucamSetProperty(m_hCameraA, LUCAM_PROP_EXPOSURE, m_exposure, 0)) 

AfxMessageBox("Unable to set exposure value."); 

 

if (!LucamSetProperty(m_hCameraA, LUCAM_PROP_GAIN, m_gain, 0))  

AfxMessageBox("Unable to set gain value."); 

 

if (!LucamSetProperty(m_hCameraB, LUCAM_PROP_EXPOSURE, m_exposure, 0)) 

AfxMessageBox("Unable to set exposure value."); 

 

if (!LucamSetProperty(m_hCameraB, LUCAM_PROP_GAIN, m_gain, 0))  

AfxMessageBox("Unable to set gain value."); 

 

 

} 

void CStrainDlg::OnButtonSetfolder() 

{ 

BROWSEINFO   browse; 

ZeroMemory(&browse,sizeof(browse)); 

browse.hwndOwner   =   NULL; 

browse.pszDisplayName   =   m_strPath.GetBuffer(MAX_PATH); 

browse.lpszTitle   =   "Please select a folder"; 

LPITEMIDLIST   lpItem   =   SHBrowseForFolder(&browse); 

if(lpItem   ==   NULL)   return   ; 
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m_strPath.ReleaseBuffer(); 

if(SHGetPathFromIDList(lpItem,m_strPath.GetBuffer(MAX_PATH))   ==   false)   

return; 

m_path.SetWindowText(m_strPath); 

m_strPath.ReleaseBuffer(); 

} 

void CStrainDlg::OnButtonMeasure() 

{ 

UpdateData(TRUE); 

b_keepgoing=TRUE; 

if ((m_measurementlist.GetSel(0)>0) && (m_measurementlist.GetCount()>1)) 

{ 

if (IDNO==AfxMessageBox("You are going to resume or retake the reference 

image shots. Proceed?", MB_YESNO)) 

return; 

} 

pThread=AfxBeginThread(RUNTIME_CLASS(CUIThread)); 

while(b_keepgoing==TRUE) 

{ 

b_redo=FALSE; 

m_Spin.SetPos(m_pointnumber); 

UpdateData(TRUE); 

Measure(); 

pThread->PostThreadMessage(WM_CLOSEDIALOG,NULL,NULL); 

Sleep(100); 

if (m_pointnumber==datapointnumber && b_redo==FALSE) 

{ 

break; 

} 

if (b_redo==FALSE && b_keepgoing==TRUE) 

m_pointnumber++; 

} 

} 

void CStrainDlg::OnButtonLock() 

{ 

UpdateData(TRUE); 

if (m_bLocked==1) 

{ 
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m_bLocked=0; 

m_cbLock.SetWindowText(_T("Lock")); 

GetDlgItem(IDC_ROUND1)->EnableWindow(TRUE); 

GetDlgItem(IDC_ROUND2)->EnableWindow(TRUE); 

GetDlgItem(IDC_ROUND3)->EnableWindow(TRUE); 

GetDlgItem(IDC_ROUND4)->EnableWindow(TRUE); 

GetDlgItem(IDC_ROUND5)->EnableWindow(TRUE); 

GetDlgItem(IDC_ROUND6)->EnableWindow(TRUE); 

 

} 

else if (m_round>=0 && m_round<=5) 

{ 

m_bLocked=1; 

//m_cbRound.EnableWindow(FALSE); 

m_cbLock.SetWindowText(_T("Unlock")); 

GetDlgItem(IDC_ROUND1)->EnableWindow(FALSE); 

GetDlgItem(IDC_ROUND2)->EnableWindow(FALSE); 

GetDlgItem(IDC_ROUND3)->EnableWindow(FALSE); 

GetDlgItem(IDC_ROUND4)->EnableWindow(FALSE); 

GetDlgItem(IDC_ROUND5)->EnableWindow(FALSE); 

GetDlgItem(IDC_ROUND6)->EnableWindow(FALSE); 

switch(m_round) 

{ 

case 0: 

GetDlgItem(IDC_ROUND1)->EnableWindow(TRUE); 

break; 

case 1: 

GetDlgItem(IDC_ROUND2)->EnableWindow(TRUE); 

break; 

case 2: 

GetDlgItem(IDC_ROUND3)->EnableWindow(TRUE); 

break; 

case 3: 

GetDlgItem(IDC_ROUND4)->EnableWindow(TRUE); 

break; 

case 4: 

GetDlgItem(IDC_ROUND5)->EnableWindow(TRUE); 

break; 
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case 5: 

GetDlgItem(IDC_ROUND6)->EnableWindow(TRUE); 

break; 

} 

 

} 

} 

void CStrainDlg::phase_correlation(IplImage *ref, IplImage *tpl, IplImage 

*poc) 

{ 

int  i, j, k; 

float tmp; 

int width    = ref->width; 

int height   = ref->height; 

int step     = ref->widthStep; 

int fft_size = width * height; 

float  *ref_data = ( float* ) ref->imageData; 

float  *tpl_data = ( float* ) tpl->imageData; 

float  *poc_data = ( float* )poc->imageData; 

for( i = 0, k = 0 ; i < height ; i++ ) { 

for( j = 0 ; j < width ; j++, k++ ) { 

img1[k][0]= ref_data[k]; 

img1[k][1]=0; 

img2[k][0] = tpl_data[k]; 

img2[k][1]=0; 

} 

} 

 

fftwf_execute( fft_img1 ); 

fftwf_execute( fft_img2 ); 

// obtain the cross power spectrum 

for( i = 0; i < height * width ; i++ ) { 

res_fft[i][0] = ( img2_fft[i][0] * img1_fft[i][0] ) - ( img2_fft[i][1] * ( -

img1_fft[i][1] ) ); 

res_fft[i][1] = ( img2_fft[i][0] * ( -img1_fft[i][1] ) ) + ( img2_fft[i][1] * 

img1_fft[i][0] ); 

tmp = sqrt(  pow(res_fft[i][0],2) + pow(res_fft[i][1],2)); 

res_fft[i][0] /= tmp; 
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res_fft[i][1] /= tmp; 

} 

fftwf_execute(ifft_res); 

for( i = 0 ; i < fft_size ; i++ ) 

{ 

poc_data[i] = (res[i][0] / ( float )fft_size); 

} 

} 

 

void CStrainDlg::phase_correlation_halfsize(IplImage *ref, IplImage *tpl, 

IplImage *poc) 

{ 

int  i, j, k; 

float tmp; 

 

int step     = ref->widthStep; 

int fft_size = bs * bs; 

uchar  *tpl_data = ( uchar* ) tpl->imageData; 

float  *poc_data = ( float* )poc->imageData; 

//load images' data to FFTW input 

for( i = 0, k = 0 ; i < bs ; i++ ) { 

for( j = 0 ; j < bs ; j++, k++ ) { 

img2_half[k] = ( float )(( uchar* ) tpl_data)[(start_y+i) * step +(start_x+ 

j)]; 

} 

} 

 

// obtain the FFT of img2 

fftwf_execute( fft_img2_halfsize ); 

for( i = 0; i < bs * (bs/2+1) ; i++ ) { 

res_fft_half[i][0] = ( img2_fft_half[i][0] * img1_fft_half[i][0] ) - 

( img2_fft_half[i][1] * ( -img1_fft_half[i][1] ) ); 

res_fft_half[i][1] = ( img2_fft_half[i][0] * ( -img1_fft_half[i][1] ) ) + 

( img2_fft_half[i][1] * img1_fft_half[i][0] ); 

tmp = sqrt(  pow(res_fft_half[i][0],2) + pow(res_fft_half[i][1],2)); 

res_fft_half[i][0] /= tmp; 

res_fft_half[i][1] /= tmp; 

} 
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fftwf_execute(ifft_res_halfsize); 

//normalize and copy to result image 

for( i = 0 ; i < fft_size ; i++ ) 

{ 

poc_data[i] = (res_half[i] / ( float )fft_size); 

} 

} 

void CStrainDlg::cvShiftDFT(CvArr *src_arr, CvArr *dst_arr) 

{ 

CvMat * tmp; 

CvMat q1stub, q2stub; 

CvMat q3stub, q4stub; 

CvMat d1stub, d2stub; 

CvMat d3stub, d4stub; 

CvMat * q1, * q2, * q3, * q4; 

CvMat * d1, * d2, * d3, * d4; 

CvSize size = cvGetSize(src_arr); 

CvSize dst_size = cvGetSize(dst_arr); 

Int cx, cy; 

if(dst_size.width != size.width || 

dst_size.height != size.height){ 

cvError( CV_StsUnmatchedSizes, "cvShiftDFT", "Source and Destination arrays 

must have equal sizes", __FILE__, __LINE__ ); 

} 

if(src_arr==dst_arr){ 

tmp = cvCreateMat(size.height/2, size.width/2, cvGetElemType(src_arr)); 

} 

 

cx = size.width/2; 

cy = size.height/2; // image center 

q1 = cvGetSubRect( src_arr, &q1stub, cvRect(0,0,cx, cy) ); 

q2 = cvGetSubRect( src_arr, &q2stub, cvRect(cx,0,cx,cy) ); 

q3 = cvGetSubRect( src_arr, &q3stub, cvRect(cx,cy,cx,cy) ); 

q4 = cvGetSubRect( src_arr, &q4stub, cvRect(0,cy,cx,cy) ); 

d1 = cvGetSubRect( src_arr, &d1stub, cvRect(0,0,cx,cy) ); 

d2 = cvGetSubRect( src_arr, &d2stub, cvRect(cx,0,cx,cy) ); 

d3 = cvGetSubRect( src_arr, &d3stub, cvRect(cx,cy,cx,cy) ); 

d4 = cvGetSubRect( src_arr, &d4stub, cvRect(0,cy,cx,cy) ); 
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if(src_arr!=dst_arr){ 

if( !CV_ARE_TYPES_EQ( q1, d1 )){ 

cvError( CV_StsUnmatchedFormats, "cvShiftDFT", "Source and Destination arrays 

must have the same format", __FILE__, __LINE__ ); 

} 

cvCopy(q3, d1, 0); 

cvCopy(q4, d2, 0); 

cvCopy(q1, d3, 0); 

cvCopy(q2, d4, 0); 

} 

else{ 

cvCopy(q3, tmp, 0); 

cvCopy(q1, q3, 0); 

cvCopy(tmp, q1, 0); 

cvCopy(q4, tmp, 0); 

cvCopy(q2, q4, 0); 

cvCopy(tmp, q2, 0); 

} 

} 

void CStrainDlg::OnButtonStop() 

{ 

m_bStop=1; 

} 

void CStrainDlg::upsampling(CvArr* in, int factor, int roff, int coff,CvArr* 

out ,int N) 

{ 

 

 

// in:  input FT complex spetrum , 2 channels 

//factor: upsampling factor 

int i,j; 

CvMat *Ma, *Mb, *Mc,*realtemp,*imaginarytemp,*temp; 

float pi=3.14159f; 

int nor=factor*N,noc=factor*N; //upsampled output matrix size 

CvSize size; 

size=cvGetSize(in); 

int nr=size.height,nc=size.width;  //input matrix size 

//int nr=4,nc=4; 
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CvMat* kr= cvCreateMat(nor,nr,CV_32FC2); 

CvMat* kc= cvCreateMat(nc,noc,CV_32FC2); 

cvZero(kc);cvZero(kr); 

Ma= cvCreateMat(nor,1,CV_32FC1); 

for(i=0;i<nor;i++) 

cvmSet(Ma,i,0,(i+roff)*2*pi/(nr*factor)); 

Mb= cvCreateMat(1,nr,CV_32FC1); 

for(i=0;i<nr;i++) 

cvmSet(Ma,i+nr/2,0,((i+nr) % nr)-nr/2); 

Mc= cvCreateMat(nor,nr,CV_32FC1); 

cvMatMul(Ma, Mb, Mc); 

realtemp= cvCreateMat(nor,nr,CV_32FC1); 

imaginarytemp= cvCreateMat(nor,nr,CV_32FC1); 

for(i=0;i<nor;i++) 

{ 

for(j=0;j<nr;j++) 

{ 

cvmSet(realtemp,i,j,cos(cvmGet(Mc,i,j))); 

cvmSet(imaginarytemp,i,j,sin(cvmGet(Mc,i,j))); 

} 

} 

cvReleaseMat(&Ma); 

cvReleaseMat(&Mb); 

cvReleaseMat(&Mc); 

cvReleaseMat(&realtemp); 

cvReleaseMat(&imaginarytemp); 

 

Ma= cvCreateMat(nc,1,CV_32FC1); 

for(i=0;i<nr;i++) 

cvmSet(Ma,i+nr/2,0,((i+nr) % nr)-nr/2); 

Mb= cvCreateMat(1,noc,CV_32FC1); 

for(i=0;i<noc;i++) 

cvmSet(Mb,0,i,(i+coff)*2*pi/(nc*factor)); 

Mc= cvCreateMat(nc,noc,CV_32FC1); 

cvMatMul(Ma, Mb, Mc); 

realtemp= cvCreateMat(nc,noc,CV_32FC1); 

imaginarytemp= cvCreateMat(nc,noc,CV_32FC1); 

for(i=0;i<nc;i++) 
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{ 

for(j=0;j<noc;j++) 

{ 

cvmSet(realtemp,i,j,cos(cvmGet(Mc,i,j))); 

cvmSet(imaginarytemp,i,j,sin(cvmGet(Mc,i,j))); 

} 

} 

temp= cvCreateMat(nor,nc,CV_32FC2); 

cvMatMul(kr, in, temp); 

cvMatMul(temp, kc, out); 

cvReleaseMat(&Ma); 

cvReleaseMat(&Mb); 

cvReleaseMat(&Mc); 

cvReleaseMat(&realtemp); 

cvReleaseMat(&imaginarytemp); 

cvReleaseMat(&temp); 

} 

void CStrainDlg::fftwcopy(fftwf_complex* source, fftwf_complex* target, int 

size) 

{ 

int i; 

for( i = 0; i < size ; i++ ) { 

target[i][0] = source[i][0]; 

target[i][1] = source[i][1]; 

 

} 

 

} 

void CStrainDlg::OnCreateDataSet() 

{ 

CNameInputDialog Dlg; 

Dlg.m_DataPointNum=1; 

Dlg.defaultfolder=defaultfolder; 

if (Dlg.DoModal()==IDOK) 

{ 

datapointnumber=Dlg.m_DataPointNum; 

CComboBox* pCB = (CComboBox*) GetDlgItem(IDC_DataSetList); 

pCB->ResetContent(); 
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CStringArray files; 

CFileFind finder; 

BOOL bWorking = finder.FindFile(defaultfolder+"\\*.*"); 

while (bWorking) 

{ 

bWorking = finder.FindNextFile(); 

if (finder.IsDirectory() && !finder.IsDots()) 

files.Add(finder.GetFilePath()); 

} 

// now cycle through the array 

for (int i=0; i<files.GetSize(); i++) 

{ 

pCB->InsertString(-1, files[i].Right(files[i].GetLength()-

defaultfolder.GetLength()-1)); 

} 

int nIndex = 0; 

if ((nIndex=pCB->FindString(nIndex,Dlg.m_DataSetName )) != CB_ERR) 

{ 

pCB->SetCurSel(nIndex ); 

} 

if (File.m_hFile != CFile::hFileNull) 

File.Close(); 

datapointnumber=Dlg.m_DataPointNum; 

File.Open(defaultfolder+"\\"+Dlg.m_DataSetName 

+"\\index.txt",CFile::modeCreate | CFile::modeWrite); 

CString temp; 

temp.Format("%d",datapointnumber); 

File.WriteString(temp); 

File.WriteString("\n"); 

File.Close(); 

OnSelchangeDataSetList() ; 

} 

} 

void CStrainDlg::UpdateMeasurementList() 

{ 

CString texttemp; 

CString ReadMeasurementString; 

while(m_measurementlist.GetCount()>0) 
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m_measurementlist.DeleteString( 0 ); 

int i=0; 

if (File.m_hFile != CFile::hFileNull) 

File.Close(); 

if (File.Open(defaultfolder+"\\"+datasetname+"\\index.txt", CFile::modeRead) 

== TRUE) 

{ 

File.SeekToBegin(); 

File.ReadString(ReadMeasurementString); 

while(File.ReadString(ReadMeasurementString) != FALSE) 

{ 

if (i==ref_index) 

{ 

m_measurementlist.InsertString( i, ReadMeasurementString,RGB(255, 0, 0) ); 

texttemp= "Reference is  " +ReadMeasurementString; 

m_refname.SetWindowText( texttemp ); 

} 

else 

m_measurementlist.InsertString( i, ReadMeasurementString ); 

i++; 

measurementname=ReadMeasurementString ; 

} 

m_strPath=defaultfolder+"\\"+datasetname+"\\"+measurementname; 

int n=m_measurementlist.GetCount(); 

m_measurementlist.SetCurSel(n-1); 

} 

 

 

OnSelchangeMeasurementList() ; 

} 

void CStrainDlg::OnEditchangeDataSetList() 

{ 

} 

void CStrainDlg::OnSelchangeDataSetList() 

{ 

if (File.m_hFile != CFile::hFileNull) 

File.Close(); 

CEdit* pED = (CEdit*) GetDlgItem(IDC_Description); 
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pED->Clear(); 

CComboBox* pCB = (CComboBox*) GetDlgItem(IDC_DataSetList); 

pCB->UpdateData(TRUE); 

int nIndex = pCB->GetCurSel(); 

pCB->GetLBText(nIndex, datasetname); 

if (_access(defaultfolder+"\\"+datasetname +"\\index.txt",0) != -1) 

{ 

if (File.Open(defaultfolder+"\\"+datasetname +"\\index.txt",  

CFile::modeRead)==TRUE) 

{ 

File.SeekToBegin(); 

CString temp; 

File.ReadString(temp); 

datapointnumber=_ttoi(temp); 

CEdit* pED=(CEdit*)GetDlgItem(IDC_DataPointNumber); 

CString pointnumber; 

pointnumber.Format("%d",datapointnumber); 

pED->SetWindowText(pointnumber); 

m_Spin.SetRange(1, datapointnumber); 

m_Spin.SetPos(1); 

ref_index=0; 

UpdateMeasurementList(); 

} 

} 

if (_access(defaultfolder+"\\"+datasetname +"\\description.txt",0) != -1) 

{ 

 

CString temp2; 

CString Description; 

Description.Empty(); 

CStdioFile DescriptionFile; 

DescriptionFile.Open(defaultfolder+"\\"+datasetname+"\\description.txt",CFile

::modeRead); 

while(DescriptionFile.ReadString(temp2) != FALSE) 

{ 

Description=Description+temp2+"\r\n"; 

} 

pED->SetWindowText(Description); 
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DescriptionFile.Close(); 

} 

CSpreadSheet SS(defaultfolder+"\\"+datasetname+".xls", "Sheet1"); 

SS.BeginTransaction(); 

CStringArray sampleArray; 

sampleArray.RemoveAll(); 

CString ctemp; 

sampleArray.Add("Point"); 

for(int i=1;i<datapointnumber+1;i++) 

{ 

ctemp.Format("%d", i); 

sampleArray.Add(ctemp); 

} 

SS.AddHeaders(sampleArray); 

SS.Commit(); 

} 

void CStrainDlg::OnNewMeasurement() 

{ 

CMeasurementNameDialog Dlg; 

if (Dlg.DoModal()==IDOK) 

{ 

measurementname=Dlg.m_MeasurementName; 

if (File.m_hFile != CFile::hFileNull) 

File.Close(); 

if(File.Open(defaultfolder+"\\"+datasetname+"\\index.txt", CFile::modeWrite) 

== TRUE) 

{ 

File.SeekToEnd(); 

File.WriteString(measurementname); 

File.WriteString("\n"); 

File.Close(); 

m_pointnumber=1; 

m_Spin.SetPos(m_pointnumber); 

UpdateMeasurementList(); 

} 

} 

} 

void CStrainDlg::OnDeleteMeasurement() 
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{ 

CString ReadMeasurementString; 

if (File.m_hFile != CFile::hFileNull) 

File.Close(); 

CStdioFile temp; 

if ((File.Open(defaultfolder+"\\"+datasetname+"\\index.txt", 

CFile::modeReadWrite) == TRUE) && 

(temp.Open(defaultfolder+"\\"+datasetname+"\\temp.txt",CFile::modeCreate | 

CFile::modeWrite)==TRUE)) 

{ 

File.SeekToBegin(); 

File.ReadString(ReadMeasurementString); 

temp.WriteString(ReadMeasurementString); 

temp.WriteString("\n"); 

while(File.ReadString(ReadMeasurementString) != FALSE) 

{ 

if (ReadMeasurementString!=measurementname) 

{ 

temp.WriteString(ReadMeasurementString); 

temp.WriteString("\n"); 

} 

} 

File.Close(); 

temp.Close(); 

CFile::Remove(defaultfolder+"\\"+datasetname+"\\index.txt"); 

 

CFile::Rename(defaultfolder+"\\"+datasetname+"\\temp.txt",defaultfolder+"\\"+

datasetname+"\\index.txt"); 

} 

UpdateMeasurementList(); 

} 

BOOL CStrainDlg::Measure() 

{ 

long lPixelSize=1;  //8 bits 

int i,j,k; 

CString cstemp; 

UpdateData(TRUE); 

m_Spin.SetPos(m_pointnumber); 
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CFileFind f; 

CString cfilenameL,cfilenameR; 

cfilenameL.Empty(); 

cfilenameL.Format("%s_%dL.bmp",m_strPath,m_pointnumber); 

cfilenameR.Empty(); 

cfilenameR.Format("%s_%dR.bmp",m_strPath,m_pointnumber); 

hCameras[0]=m_hCameraA; 

hCameras[1]=m_hCameraB; 

if (m_measurementlist.GetSel(0)>0) 

{ 

for (i = 0 ; i < CAMNUM ; i++) 

{ 

params[i].format.height = height; 

params[i].format.pixelFormat = LUCAM_PF_8; 

params[i].format.subSampleX = 1; 

params[i].format.subSampleY = 1; 

params[i].format.width = width; 

params[i].format.xOffset = 0; 

params[i].format.yOffset = 0; 

params[i].exposure = m_exposure;    // 50 ms exposure 

params[i].gain =  23; 

// params[i].gainGrn1 = 1.0; 

// params[i].gainGrn2 = 1.0; 

// params[i].gainRed = 1.0; 

params[i].strobeDelay = 0.0;  // unused 

params[i].timeout = 3000.0;   // 3000 ms 

params[i].useHwTrigger = FALSE;   // Set this to true for hardware triggered setup with daisy chaining 

params[i].useStrobe = FALSE;      // Set this to true if daisy-chaining cameras 

params[i].exposureDelay = 0; 

params[i].shutterType = LUCAM_SHUTTER_TYPE_GLOBAL; 

pParams[i] = &params[i]; 

} 

params[0].exposure = m_exposureA; 

params[1].exposure = m_exposureB; 

pAllFrames = (UCHAR *)malloc((CAMNUM ) * width * height); 

if (pAllFrames == NULL) 

{ 
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MessageBox("No memory for frames"); 

} 

for (i = 0 ; i < CAMNUM ; i++) 

{ 

ppFrames[i] = pAllFrames + i * width * height; 

} 

hSynchronousSnapshots = LucamEnableSynchronousSnapshots(CAMNUM, hCameras, pParams); 

m_cbPreview.EnableWindow(FALSE); 

m_cbPreview.SetWindowText(_T("Preview")); 

m_cbApply.EnableWindow(FALSE); 

UpdateWindow(); 

pThread->PostThreadMessage(WM_SHOWDIALOG,NULL,NULL); 

CEdit* pEB = (CEdit*) GetDlgItem(IDC_DELAY); 

pEB->UpdateData(TRUE); 

if (m_delay<0) m_delay=0; 

for(int k=0;k<m_delay;k++) 

{ 

Sleep(1000); 

if(b_keepgoing==FALSE || b_redo==TRUE) break; 

} 

if(b_keepgoing==TRUE && b_redo==FALSE) 

{ 

LucamTakeSynchronousSnapshots(hSynchronousSnapshots, ppFrames); 

PlaySound(MAKEINTRESOURCE(IDR_WAVE1),AfxGetResourceHandle(),SND_ASYNC|SND_RESOURCE|S

ND_NODEFAULT); 

pThread->PostThreadMessage(WM_CLOSEDIALOG,NULL,NULL); 

LucamSaveImage(width, height, LUCAM_PF_8, ppFrames[0], cfilenameL); 

LucamSaveImage(width, height, LUCAM_PF_8, ppFrames[1], cfilenameR); 

Sleep(100); 

} 

if (!LucamDisableSynchronousSnapshots(hSynchronousSnapshots)) 

{ 

MessageBox("Failed to unsetup synchronous snapshots"); 

} 

if (pAllFrames) 

{ 

free(pAllFrames); 
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} 

} 

else 

{ 

for (i = 0 ; i < CAMNUM ; i++) 

{ 

params[i].format.pixelFormat = LUCAM_PF_8; 

params[i].format.subSampleX = 1; 

params[i].format.subSampleY = 1; 

params[i].format.height = height; 

params[i].format.width = width; 

 

 

params[i].format.xOffset = 0; 

params[i].format.yOffset =0; 

params[i].exposure = m_exposure;    // 50 ms exposure 

params[i].gain = 23; 

// params[i].gainBlue = 1.0; 

// params[i].gainGrn1 = 1.0; 

// params[i].gainGrn2 = 1.0; 

// params[i].gainRed = 1.0; 

params[i].strobeDelay = 0.0;  // unused 

params[i].timeout = 3000.0;   // 3000 ms 

params[i].useHwTrigger = FALSE;   // Set this to true for hardware triggered setup with daisy chaining 

params[i].useStrobe = FALSE;      // Set this to true if daisy-chaining cameras 

params[i].exposureDelay = 0; 

params[i].shutterType = LUCAM_SHUTTER_TYPE_GLOBAL; 

pParams[i] = &params[i]; 

} 

params[0].exposure = m_exposureA; 

params[1].exposure = m_exposureB; 

pAllFrames = (UCHAR *)malloc((CAMNUM ) * width * height); 

if (pAllFrames == NULL) 

{ 

MessageBox("No memory for frames"); 

} 

for (i = 0 ; i < CAMNUM ; i++) 
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{ 

ppFrames[i] = pAllFrames + i * width * height; 

} 

hSynchronousSnapshots = LucamEnableSynchronousSnapshots(CAMNUM, hCameras, pParams); 

m_cbPreview.EnableWindow(FALSE); 

m_cbPreview.SetWindowText(_T("Preview")); 

m_cbApply.EnableWindow(FALSE); 

CString refmeasurementname; 

 

int n; 

n = m_measurementlist.GetTextLen( ref_index ); 

m_measurementlist.GetText( ref_index, refmeasurementname.GetBuffer(n) ); 

refmeasurementname.ReleaseBuffer(); 

cRefFilenameL.Empty(); 

cRefFilenameL.Format("%s_%dL.bmp",defaultfolder+"\\"+datasetname+"\\"+refmeasurementname,m_pointnumbe

r); 

cRefFilenameR.Empty(); 

cRefFilenameR.Format("%s_%dR.bmp",defaultfolder+"\\"+datasetname+"\\"+refmeasurementname,m_pointnumbe

r); 

if(!f.FindFile(cRefFilenameL)) 

{ 

AfxMessageBox("Left Reference image doesn't exist. Can't do correlation."); 

LucamDisableSynchronousSnapshots(hSynchronousSnapshots); 

free(pAllFrames); 

b_keepgoing=FALSE; 

return FALSE; 

} 

if(!f.FindFile(cRefFilenameR)) 

{ 

AfxMessageBox("Right Reference image doesn't exist. Can't do correlation."); 

LucamDisableSynchronousSnapshots(hSynchronousSnapshots); 

free(pAllFrames); 

b_keepgoing=FALSE; 

return FALSE; 

} 

int colindex,rowindex; 

IplImage *poc_halfL = 0; 
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IplImage *tplL = 0; 

IplImage *refL = 0; 

IplImage *poc_halfR = 0; 

IplImage *tplR = 0; 

IplImage *refR = 0; 

IplImage *poc = 0; 

IplImage *refblockL=0; 

IplImage *refblockR=0 ; 

IplImage *reffiltered=0; 

IplImage *tplfiltered=0; 

IplImage *tplLtemp = 0; 

IplImage *tplRtemp = 0; 

IplImage *tplL_backup = 0; 

IplImage *tplR_backup = 0; 

tplLtemp=cvCreateImage( cvSize( bs, bs ), IPL_DEPTH_8U, 1 ) ; 

tplRtemp=cvCreateImage( cvSize( bs, bs ), IPL_DEPTH_8U, 1 ) ; 

poc = cvCreateImage( cvSize( bs, bs ), IPL_DEPTH_32F, 1 ); 

refblockL=cvCreateImage( cvSize( bs, bs ), IPL_DEPTH_8U, 1 ); 

refblockR=cvCreateImage( cvSize( bs, bs ), IPL_DEPTH_8U, 1 ) ; 

reffiltered=cvCreateImage( cvSize( bs, bs ), IPL_DEPTH_32F, 1 ); 

tplfiltered=cvCreateImage( cvSize( bs, bs ), IPL_DEPTH_32F, 1 ); 

tplL_backup=cvCreateImage( cvSize( bs, bs ), IPL_DEPTH_8U, 1 ); 

tplR_backup =cvCreateImage( cvSize( bs, bs ), IPL_DEPTH_8U, 1 ); 

pThread->PostThreadMessage(WM_SHOWDIALOG,NULL,NULL); 

/* load reference image */ 

refL = cvLoadImage( cRefFilenameL, CV_LOAD_IMAGE_GRAYSCALE ); 

poc_halfL = cvCreateImage( cvSize( bs, bs ), IPL_DEPTH_32F, 1 ); 

refR = cvLoadImage( cRefFilenameR, CV_LOAD_IMAGE_GRAYSCALE ); 

poc_halfR = cvCreateImage( cvSize( bs, bs ), IPL_DEPTH_32F, 1 ); 

tplL = cvCreateImage( cvSize( width, height ), IPL_DEPTH_8U, 1 ); 

tplR = cvCreateImage( cvSize( width, height ), IPL_DEPTH_8U, 1 ); 

int stepsize=192; 

int colnum=(width-bs)/stepsize+1; 

int rownum=(height-bs)/stepsize+1; 

CvRect rect ; 

for( colindex=0;colindex<colnum;colindex++) 

{ 
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for(rowindex=0;rowindex<rownum;rowindex++) 

{ 

rect= cvRect(colindex*stepsize, rowindex*stepsize,bs,bs ); 

cvSetImageROI(refL , rect); 

cvCopy(refL , refblockL, NULL); 

filterproduct(refblockL,blockfilter,reffiltered); 

memcpy (img1_half,( float* )reffiltered->imageData,bs*bs*sizeof ( float )); 

fftwf_execute( fft_img1_halfsize ); 

fft_halfL[colindex][rowindex] = ( fftwf_complex* )fftwf_malloc ( sizeof ( fftwf_complex ) * bs * (bs/2+1) ); 

fftwcopy(img1_fft_half,fft_halfL[colindex][rowindex],bs* (bs/2+1) ); 

cvSetImageROI(refR , rect); 

cvCopy(refR , refblockR, NULL); 

filterproduct(refblockR,blockfilter,reffiltered); 

memcpy (img1_half,( float* )reffiltered->imageData,bs*bs*sizeof ( float )); 

fftwf_execute( fft_img1_halfsize ); 

fft_halfR[colindex][rowindex] = ( fftwf_complex* )fftwf_malloc ( sizeof ( fftwf_complex ) * bs * (bs/2+1) ); 

fftwcopy(img1_fft_half,fft_halfR[colindex][rowindex],bs* (bs/2+1) ); 

}} 

CvPoint minlocL, maxlocL,minlocR, maxlocR, maxlocLhalf,maxlocRhalf; 

CvPoint minlocLtemp, minlocRtemp, maxlocLhalftemp,maxlocRhalftemp; 

double  minvalL, maxvalL,minvalR, maxvalR, maxvalLhalf, maxvalRhalf; 

double  minvalLtemp, minvalRtemp, maxvalLhalftemp, maxvalRhalftemp; 

int colL, rowL,colR,rowR; 

int colindex_store,rowindex_store; 

CvPoint oldstartL,oldstartR,startL,startR; 

oldstartL=cvPoint(0,0); 

oldstartR=cvPoint(0,0); 

startL=cvPoint(0,0); 

startR=cvPoint(0,0); 

BOOL peakflag,workmode; 

peakflag=FALSE; 

double oldLpeak,oldRpeak; 

oldLpeak=0;oldRpeak=0; 

maxvalLhalf=0;maxvalRhalf=0; 

colL=0;rowL=0;colR=0;rowR=0; 

CButton* pCBmode = (CButton*) GetDlgItem(IDC_HANDHOLD); 

pCBmode->UpdateData(TRUE); 
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if (pCBmode->GetCheck()==BST_CHECKED) 

workmode=0; 

else workmode=1; 

m_tStartTime = GetTickCount();//clock(); 

while(b_keepgoing==1 && b_redo==FALSE) 

{ 

m_tEndTime = GetTickCount();//clock(); 

dElapsed =  (m_tEndTime - m_tStartTime); 

if (   ((peakflag==TRUE) && (dElapsed>0)) ||   ( (peakflag==TRUE) &&  ((maxvalLhalf>thresholdhalf) && 

(maxvalRhalf>thresholdhalf) ) ) ) 

{ 

pThread->PostThreadMessage(WM_CLOSEDIALOG,NULL,NULL); 

PlaySound(MAKEINTRESOURCE(IDR_WAVE1),AfxGetResourceHandle(),SND_ASYNC|SND_RESOURCE|S

ND_NODEFAULT); 

break; 

} 

LucamTakeSynchronousSnapshots(hSynchronousSnapshots, ppFrames); 

tplL->imageData=(char*)ppFrames[0]; 

rect= cvRect(width/2-bs/2, height/2-bs/2,bs,bs ); 

cvSetImageROI(tplL , rect); 

cvCopy(tplL, tplLtemp, NULL); 

filterproduct(tplLtemp,blockfilter,tplfiltered); 

memcpy (img1_half,( float* )tplfiltered->imageData,bs*bs*sizeof ( float )); 

fftwf_execute( fft_img1_halfsize ); 

maxvalLhalf=0; 

colindex_store=0; 

rowindex_store=0; 

for(colindex=0;colindex<colnum;colindex++) 

{ 

for(rowindex=0;rowindex<rownum;rowindex++) 

{ 

fftwcopy (img1_fft_halfL,img1_fft_half,bs * (bs/2+1) ); 

phase_correlation_block( fft_halfL[colindex][rowindex], img1_fft_half, poc_halfL ); 

cvMinMaxLoc( poc_halfL, &minvalLtemp, &maxvalLhalftemp, &minlocLtemp, &maxlocLhalftemp, 0 ); 

if (maxvalLhalftemp>maxvalLhalf) 

{ 

maxvalLhalf=maxvalLhalftemp; 



159 

 

maxlocLhalf=maxlocLhalftemp; 

colindex_store=colindex; 

rowindex_store=rowindex; 

} 

} 

} 

if (maxlocLhalf.x>bs/2) 

startL.x=colindex_store*stepsize+bs-maxlocLhalf.x; 

else 

startL.x=colindex_store*stepsize-maxlocLhalf.x; 

if (maxlocLhalf.y>bs/2) 

startL.y=rowindex_store*stepsize+bs-maxlocLhalf.y; 

else 

startL.y=rowindex_store*stepsize-maxlocLhalf.y; 

if(  (maxvalLhalf>THRESHOLD) )   { 

tplR->imageData=(char*)ppFrames[1]; 

rect= cvRect(width/2-bs/2, height/2-bs/2,bs,bs ); 

cvSetImageROI(tplR , rect); 

cvCopy(tplR, tplRtemp, NULL); 

filterproduct(tplRtemp,blockfilter,tplfiltered); 

memcpy (img1_half,( float* )tplfiltered->imageData,bs*bs*sizeof ( float )); 

fftwf_execute( fft_img1_halfsize ); 

maxvalRhalf=0; 

colindex_store=0; 

rowindex_store=0; 

for( colindex=0;colindex<colnum;colindex++) 

{ 

for(rowindex=0;rowindex<rownum;rowindex++) 

{ 

phase_correlation_block( fft_halfR[colindex][rowindex], img1_fft_half, 

poc_halfR ); 

cvMinMaxLoc( poc_halfR, &minvalRtemp, &maxvalRhalftemp, &minlocRtemp, 

&maxlocRhalftemp, 0 ); 

if (maxvalRhalftemp>maxvalRhalf) 

{ 

maxvalRhalf=maxvalRhalftemp; 

maxlocRhalf=maxlocRhalftemp; 
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colindex_store=colindex; 

rowindex_store=rowindex; 

} 

} 

} 

if (maxlocRhalf.x>bs/2) 

startR.x=colindex_store*stepsize+bs-maxlocRhalf.x; 

else 

startR.x=colindex_store*stepsize-maxlocRhalf.x; 

if (maxlocRhalf.y>bs/2) 

startR.y=rowindex_store*stepsize+bs-maxlocRhalf.y; 

else 

startR.y=rowindex_store*stepsize-maxlocRhalf.y; 

if  (maxvalRhalf>THRESHOLD)  { 

if ( (  (maxvalLhalf>oldLpeak) && (maxvalRhalf>oldRpeak) ) ||  

((maxvalLhalf>thresholdhalf) && (maxvalRhalf>thresholdhalf) )  ) 

{ 

peakflag=TRUE; 

oldLpeak=maxvalLhalf; 

oldRpeak=maxvalRhalf; 

oldstartL=startL; 

oldstartR=startR; 

cvCopy( tplRtemp, tplR_backup, NULL ); 

cvCopy( tplLtemp, tplL_backup, NULL ); 

m_tStartTime = GetTickCount();//clock(); 

} 

} 

} 

} 

if(b_keepgoing==TRUE && b_redo==FALSE) 

{ 

if (oldstartL.x<0) 

oldstartL.x=0; 

if (oldstartL.y<0) 

oldstartL.y=0; 

if (oldstartR.x<0) 

oldstartR.x=0; 

if (oldstartR.y<0) 
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oldstartR.y=0; 

if (oldstartL.x+bs>width) 

oldstartL.x=width-bs-1; 

if (oldstartL.y+bs>height) 

oldstartL.y=height-bs-1; 

oldstartR.x=width-bs-1; 

if (oldstartR.y+bs>height) 

oldstartR.y=height-bs-1; 

rect= cvRect(oldstartL.x, oldstartL.y,bs,bs ); 

cvSetImageROI(refL , rect); 

cvCopy(refL , refblockL, NULL); 

filterproduct(refblockL,blockfilter,reffiltered); 

filterproduct(tplL_backup,blockfilter,tplfiltered); 

phase_correlation( reffiltered, tplfiltered, poc_halfL ); 

cvMinMaxLoc( poc_halfL, &minvalL, &maxvalL, &minlocL, &maxlocL, 0 ); 

int xx,yy; 

if (maxlocL.x>bs/2) 

xx=oldstartL.x+bs-maxlocL.x; 

else 

xx=oldstartL.x-maxlocL.x; 

if (maxlocL.y>bs/2) 

yy=oldstartL.y+bs-maxlocL.y; 

else 

yy=oldstartL.y-maxlocL.y; 

 

int  x=maxlocL.x; 

int  y=maxlocL.y; 

CvMat* real=cvCreateMat(bs, bs, CV_32FC1); 

CvMat* im=cvCreateMat(bs, bs, CV_32FC1); 

for( i = 0, k = 0 ; i < bs ; i++ ) { 

for( j = 0 ; j < bs ; j++, k++ ) { 

cvmSet(real,i,j,(float)res_fft[k][0]); 

cvmSet(im,  i,j,(float)res_fft[k][1]); 

} 

} 

CvMat* in= cvCreateMat(bs,bs,CV_32FC2); 

int factor=25; 

CvMat* out= cvCreateMat(2*factor,2*factor,CV_32FC2); 
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upsampling(in, factor,(y-1)*factor, (x-1)*factor,out,2); 

cvReleaseMat(&real); 

cvReleaseMat(&im); 

real=cvCreateMat(factor*2, factor*2, CV_32FC1); 

im=cvCreateMat(factor*2, factor*2, CV_32FC1); 

cvSplit( out, real, im, 0, 0 ); 

// Compute the magnitude of the spectrum Mag = sqrt(Re^2 + Im^2) 

cvPow( real, real, 2.0); 

cvPow( im, im, 2.0); 

cvAdd( real, im , real, NULL); 

cvPow( real, real, 0.5 ); 

cvMinMaxLoc( real, &minvalL, &maxvalL, &minlocL, &maxlocL, 0 ); 

cvReleaseMat(&real); 

cvReleaseMat(&im); 

float subxL, subyL; 

subxL=width/2-bs/2-xx-1+(float)maxlocL.x/factor; 

subyL=yy-(height/2-bs/2)-(-1+(float)maxlocL.y/factor); 

float subxR,subyR; 

rect= cvRect(oldstartR.x, oldstartR.y,bs,bs ); 

cvSetImageROI(refR , rect); 

cvCopy(refR , refblockR, NULL); 

filterproduct(refblockR,blockfilter,reffiltered); 

filterproduct(tplR_backup,blockfilter,tplfiltered); 

phase_correlation( reffiltered, tplfiltered, poc_halfR ); 

cvMinMaxLoc( poc_halfR, &minvalR, &maxvalR, &minlocR, &maxlocR, 0 ); 

if (maxlocR.x>bs/2) 

xx=oldstartR.x+bs-maxlocR.x; 

else 

xx=oldstartR.x-maxlocR.x; 

if (maxlocR.y>bs/2) 

yy=oldstartR.y+bs-maxlocR.y; 

else 

yy=oldstartR.y-maxlocR.y; 

x=maxlocR.x; 

y=maxlocR.y; 

real=cvCreateMat(bs, bs, CV_32FC1); 

im=cvCreateMat(bs, bs, CV_32FC1); 

for( i = 0, k = 0 ; i < bs ; i++ ) { 
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for( j = 0 ; j < bs ; j++, k++ ) { 

cvmSet(real,i,j,(float)res_fft[k][0]); 

cvmSet(im,  i,j,(float)res_fft[k][1]); 

} 

} 

upsampling(in, factor,(y-1)*factor, (x-1)*factor,out,2); 

cvReleaseMat(&real); 

cvReleaseMat(&im); 

real=cvCreateMat(factor*2, factor*2, CV_32FC1); 

im=cvCreateMat(factor*2, factor*2, CV_32FC1); 

cvSplit( out, real, im, 0, 0 ); 

cvPow( real, real, 2.0); 

cvPow( im, im, 2.0); 

cvAdd( real, im , real, NULL); 

cvPow( real, real, 0.5 ); 

cvReleaseMat(&in); 

cvReleaseMat(&out); 

cvMinMaxLoc( real, &minvalR, &maxvalR, &minlocR, &maxlocR, 0 ); 

cvReleaseMat(&real); 

cvReleaseMat(&im); 

subxR=width/2-bs/2-xx-1+(float)maxlocR.x/factor; 

subyR=yy-(height/2-bs/2)-(-1+(float)maxlocR.y/factor); 

if ( (maxvalL<THRESHOLD) || (maxvalR<THRESHOLD) ) 

AfxMessageBox("might be fake peak, measure again!"); 

 

float deflection; 

float secondorder; 

deflection=p1*subxL+p2*subyL+p3*subxR+p4*subyR; 

secondorder=(-p2*subxL+p1*subyL-p4*subxR+p3*subyR)*(-p2*subxL+p1*subyL-

p4*subxR+p3*subyR)/(2*25.4*m_gl); 

CStdioFile DataFile; 

cstemp.Format("%f  %f  %5.4f %5.4f %5.4f  %5.4f  %f %f",oldLpeak,  

oldRpeak,subxL,subyL,subxR,subyR,deflection,secondorder); 

if(DataFile.Open("c:\\data_fitting.txt",CFile::modeWrite| 

CFile::modeNoTruncate | CFile::modeCreate ) == TRUE) 

{ 

DataFile.SeekToEnd(); 

DataFile.WriteString(cstemp); 
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DataFile.WriteString("\n"); 

DataFile.Close(); 

} 

deflection=deflection+secondorder; 

CSpreadSheet SS(defaultfolder+"\\"+datasetname+".xls", "Sheet1"); 

SS.BeginTransaction(); 

if (ref_index!=0) 

{ 

SS.ReadCell(cstemp, m_pointnumber+1,ref_index+1); 

float ref_deflection; 

ref_deflection=atof((LPCSTR)cstemp); 

deflection=deflection+ref_deflection; 

} 

CComboBox* pCBunit = (CComboBox*) GetDlgItem(IDC_UNIT); 

pCBunit->UpdateData(TRUE); 

int nUnit = pCBunit->GetCurSel(); 

switch (nUnit) 

{ 

case 2: 

cstemp.Format("Distance change= %5.4fmm",deflection); 

break; 

case 0: 

cstemp.Format("Distance change= %5.5finch",deflection/25.4); 

break; 

case 1: 

CEdit* pEgl = (CEdit*) GetDlgItem(IDC_GL); 

pEgl->UpdateData(TRUE); 

cstemp.Format("strain=%5.1f micro Strain", deflection/25.4/m_gl*1000000); 

; 

break; 

} 

if (m_duration>0) 

{ 

CDelayMessageBox mbox(this); 

mbox.MessageBox(cstemp,    m_duration,    

TRUE,CDelayMessageBox::MBIcon::MBICONNONE); 

} 

cstemp.Format("%5.4f",deflection); 
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SS.AddCell(cstemp, m_pointnumber+1,m_measurementlist.GetCurSel()+1); 

SS.Commit(); 

LucamSaveImage(width, height, LUCAM_PF_8, ppFrames[0], cfilenameL); 

LucamSaveImage(width, height, LUCAM_PF_8, ppFrames[1], cfilenameR); 

cvReleaseMat(&real); 

cvReleaseMat(&im); 

cvReleaseMat(&in); 

cvReleaseMat(&out); 

} 

else 

{ 

LucamSaveImage(width, height, LUCAM_PF_8, ppFrames[0], cfilenameL); 

LucamSaveImage(width, height, LUCAM_PF_8, ppFrames[1], cfilenameR); 

} 

for(colindex=0;colindex<colnum;colindex++) 

{ 

for(rowindex=0;rowindex<rownum;rowindex++) 

{ 

fftwf_free( fft_halfL[colindex][rowindex]); 

fftwf_free( fft_halfR[colindex][rowindex]); 

} 

} 

cvReleaseImage( &poc ); 

cvReleaseImage(&refblockL); 

cvReleaseImage(&refblockR); 

cvReleaseImage(&reffiltered); 

cvReleaseImage(&tplfiltered); 

cvReleaseImage(&tplL_backup); 

cvReleaseImage(&tplR_backup); 

cvReleaseImage(&tplRtemp); 

cvReleaseImage(&tplLtemp); 

cvReleaseImage( &tplR ); 

cvReleaseImage( &refR ); 

cvReleaseImage( &poc_halfR ); 

cvReleaseImage( &tplL ); 

cvReleaseImage( &refL ); 

cvReleaseImage( &poc_halfL ); 

if (!LucamDisableSynchronousSnapshots(hSynchronousSnapshots)) 
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{ 

MessageBox("Failed to unsetup synchronous snapshots"); 

} 

if (pAllFrames) 

{ 

free(pAllFrames); 

} 

} 

m_cbPreview.EnableWindow(TRUE); 

m_cbPreview.SetWindowText(_T("Preview")); 

m_cbApply.EnableWindow(TRUE); 

return TRUE; 

} 

void CStrainDlg::OnSelchangeMeasurementList() 

{ 

int n; 

CString str; 

for (int i=0;i < m_measurementlist.GetCount();i++) 

{ 

if (m_measurementlist.GetSel(i)>0) 

{ 

n = m_measurementlist.GetTextLen( i ); 

m_measurementlist.GetText( i, str.GetBuffer(n) ); 

str.ReleaseBuffer(); 

 

measurementname=str; 

m_strPath=defaultfolder+"\\"+datasetname+"\\"+measurementname; 

} 

} 

m_pointnumber=1; 

m_Spin.SetPos(m_pointnumber); 

if (m_measurementlist.GetCurSel()>0) 

{ 

CSpreadSheet SS(defaultfolder+"\\"+datasetname+".xls", "Sheet1"); 

SS.BeginTransaction(); 

SS.AddCell(measurementname, 1,m_measurementlist.GetCurSel()+1); 

SS.Commit(); 

} 
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} 

void CStrainDlg::PostNcDestroy() 

{ 

CleanUp(); 

CDialog::PostNcDestroy(); 

} 

BOOL CStrainDlg::CreateHanning(int M,int N,CvMat* filter,BOOL flag, int d) 

{ 

CvMat* largefilter; 

CvRect rect ; 

largefilter = cvCreateMat(M/2*3,N/2*3,CV_32FC1); 

CreateLargeHanning(M/2*3,N/2*3,largefilter); 

IplImage *img, img_header; 

img = cvGetImage(largefilter, &img_header); 

rect= cvRect(M/4, N/4,M,N ); 

cvSetImageROI(img , rect); 

cvCopy(img , filter, NULL); 

cvResetImageROI(img); 

cvReleaseMat(&largefilter); 

return TRUE; 

} 

void CStrainDlg::filterproduct(IplImage *img, CvMat *filter, IplImage 

*productimg) 

{ 

 

int  i, j, k; 

float tmp; 

CvScalar s; 

// get image properties 

int width    = img->width; 

int height   = img->height; 

uchar  *img_data = ( uchar* ) img->imageData; 

float  *productimg_data= ( float* )productimg->imageData; 

for(i=0,k=0; i<height; i++) 

for(j=0; j<width; j++,k++) 

{ 

tmp=cvmGet(filter,i,j); 

s=cvGet2D(img,i,j); 
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productimg_data[k]=tmp* s.val[0]; 

} 

} 

void CStrainDlg::converttofloat(IplImage *img, CvMat *filter, IplImage 

*productimg, int shiftx, int shifty) 

{ 

int  i, j, k; 

float tmp; 

// get image properties 

int width    = img->width; 

int height   = img->height; 

uchar  *img_data = ( uchar* ) img->imageData; 

float  *productimg_data= ( float* )productimg->imageData; 

for(i=0,k=0; i<height; i++) 

for(j=0; j<width; j++,k++) 

{ 

if ( ((i+shifty>(height-1)) || ((i+shifty)<0)) || ((j+shiftx)>(width-1)) || 

((j+shiftx)<0) ) 

tmp=0; 

else 

tmp=1.0; 

productimg_data[k]=tmp* ( float )img_data[k]; 

} 

} 

 

void CStrainDlg::OnConcrete() 

{ 

m_exposure=4; 

CEdit* pEd = (CEdit*) GetDlgItem(IDC_EXPOSURE); 

pEd->SetWindowText("4"); 

} 

void CStrainDlg::OnSteel() 

{ 

m_exposure=18; 

CEdit* pEd = (CEdit*) GetDlgItem(IDC_EXPOSURE); 

pEd->SetWindowText("18"); 

} 
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void CStrainDlg::INTfilter(IplImage *img, CvMat *filter, IplImage *productimg, 

int shiftx, int shifty) 

{ 

int  i, j, k; 

float tmp; 

// get image properties 

int width    = img->width; 

int height   = img->height; 

uchar  *img_data = ( uchar* ) img->imageData; 

uchar  *productimg_data= ( uchar* )productimg->imageData; 

for(i=0,k=0; i<height; i++) 

for(j=0; j<width; j++,k++) 

{ 

if ( ((i+shifty>(height-1)) || ((i+shifty)<0)) || ((j+shiftx)>(width-1)) || 

((j+shiftx)<0) ) 

tmp=0; 

else 

tmp=cvmGet(filter,i+shifty,j+shiftx); 

productimg_data[k]=(uchar)(tmp* ( float )img_data[k]+0.5); 

} 

} 

void CStrainDlg::OnOpendatafile() 

{ 

ShellExecute(NULL,"open",defaultfolder+"\\"+datasetname+".xls",NULL,NULL,SW_S

HOWNORMAL); 

 

} 

void CStrainDlg::OnCalibrateIntensity() 

{ 

if (!m_bPreviewing) 

{ 

FLOAT m_Lum; 

LONG flags; 

BOOL rt; 

FLOAT m_Exp=2.0f; 

UpdateData(TRUE); 

switch (m_surfacetype) 

{ 



170 

 

case 0: 

m_Lum=50.0f; 

break; 

case 1: 

m_Lum=70.0f; 

break; 

} 

flags = LUCAM_PROP_FLAG_AUTO; 

BOOL AutoA=1; 

rt = LucamSetProperty(m_hCameraA, LUCAM_PROP_EXPOSURE, m_Exp, flags); 

if (!LucamSetProperty(m_hCameraA, LUCAM_PROP_AUTO_EXP_TARGET, m_Lum, flags)) 

{ 

MessageBox("Failed to set exposure target."); 

AutoA=0; 

} 

flags = LUCAM_PROP_FLAG_AUTO; 

rt = LucamSetProperty(m_hCameraB, LUCAM_PROP_EXPOSURE, m_Exp, flags); 

if (!LucamSetProperty(m_hCameraB, LUCAM_PROP_AUTO_EXP_TARGET, m_Lum, flags)) { 

MessageBox("Failed to set exposure target."); 

} 

// Start the preview 

if (LucamCreateDisplayWindow(m_hCameraA, "Preview A", WS_OVERLAPPEDWINDOW|WS_VISIBLE, 0, 

200, 640, 480, this->m_hWnd, NULL)  && LucamCreateDisplayWindow(m_hCameraB, "Preview B", 

WS_OVERLAPPEDWINDOW|WS_VISIBLE, 500, 300, 640, 480, this->m_hWnd, NULL)) 

{ 

if (LucamStreamVideoControl(m_hCameraA, START_DISPLAY, NULL) && 

LucamStreamVideoControl(m_hCameraB, START_DISPLAY, NULL)) 

{m_bPreviewing = TRUE; 

m_cbPreview.EnableWindow(TRUE); 

m_cbPreview.SetWindowText(_T("Stop")); 

m_cbMeasure.EnableWindow(FALSE); 

} 

else 

{ 

MessageBox("Unable start previewing video.", "Start Preview", MB_OK); 

LucamDestroyDisplayWindow(m_hCameraA); 

LucamDestroyDisplayWindow(m_hCameraB); 
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} 

} 

else 

MessageBox("Unable create preview window.", "Start Preview", MB_OK); 

CDelayMessageBox mbox(this); 

mbox.MessageBox("Calibating Intensity...",    5,    TRUE,CDelayMessageBox::MBIcon::MBICONNONE); 

long dumb=0; 

LucamGetProperty(m_hCameraA, LUCAM_PROP_EXPOSURE, &m_exposureA, &dumb); 

LucamGetProperty(m_hCameraB, LUCAM_PROP_EXPOSURE, &m_exposureB, &dumb); 

if (AutoA==0) 

m_exposureA=m_exposureB; 

if (LucamStreamVideoControl(m_hCameraA, STOP_STREAMING, NULL) && 

LucamStreamVideoControl(m_hCameraB, STOP_STREAMING, NULL)) 

{ 

m_cbPreview.EnableWindow(TRUE); 

m_cbPreview.SetWindowText(_T("Preview")); 

m_cbMeasure.EnableWindow(TRUE); 

} 

else 

MessageBox("Unable STOP previewing video.", "Stop Preview", MB_OK); 

LucamDestroyDisplayWindow(m_hCameraA); 

LucamDestroyDisplayWindow(m_hCameraB); 

m_bPreviewing = FALSE; 

} 

} 

void CStrainDlg::phase_correlation_block(fftwf_complex *fft1, fftwf_complex *fft2, IplImage *poc) 

{ 

float tmp; 

// get image properties 

float fft_size = (float)bs * bs; 

// setup pointers to images 

float  *poc_data = ( float* )poc->imageData; 

for(int i = 0; i < bs * (bs/2+1) ; i++ ) { 

res_fft_half[i][0] = ( fft2[i][0] * fft1[i][0] ) - ( fft2[i][1] * ( -fft1[i][1] ) ); 

res_fft_half[i][1] = ( fft2[i][0] * ( -fft1[i][1] ) ) + ( fft2[i][1] * fft1[i][0] ); 

tmp = sqrt(  pow(res_fft_half[i][0],2) + pow(res_fft_half[i][1],2)); 

res_fft_half[i][0] /= tmp; 
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res_fft_half[i][1] /= tmp; 

} 

// obtain the phase correlation array 

fftwf_execute(ifft_res_halfsize); 

//normalize and copy to result image 

for( i = 0 ; i < bs * bs ; i++ ) 

{ 

poc_data[i] = (res_half[i] /fft_size); 

} 

// deallocate FFTW arrays and plans 

} 

void CStrainDlg::ShowImage(IplImage *img) 

{ 

 

int width    = img->width; 

int height   = img->height; 

IplImage *img_temp; 

img_temp = cvCreateImage( cvSize( width, height ), IPL_DEPTH_32F, 1 ); 

double minv, maxv; 

CvPoint minl, maxl; 

cvMinMaxLoc( img, &minv, &maxv, &minl, &maxl, 0 ); 

cvScale(img, img_temp, 1.0/(maxv-minv), 1.0*(-minv)/(maxv-minv)); 

cvNamedWindow( "image", 0 ); 

cvShowImage( "image", img_temp); 

cvResizeWindow("image",width, height); 

cvWaitKey( 0 ); 

cvDestroyWindow( "image" ); 

cvReleaseImage( &img_temp); 

} 

void CStrainDlg::CreateLargeHanning(int M, int N, CvMat *filter) 

{double pi=3.1415926; 

float temp; 

CvMat* Ma = cvCreateMat(M,1,CV_32FC1); 

CvMat* Mb = cvCreateMat(1,N,CV_32FC1); 

for(int row=0;row<M/2;row++) 

{ 

temp=(float)(0.5*(1-cos( pi*(((float)row)/((float)M/2)) ))); 
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cvmSet(Ma,row,1, temp); 

cvmSet(Ma,M-row-1,1, temp); 

} 

for(int col=0;col<N/2;col++) 

{ 

temp=(float)(0.5*(1-cos(pi*(((float)col)/((float)N/2))))); 

cvmSet(Mb,1,col,temp); 

cvmSet(Mb,1,N-col-1, temp); 

} 

cvMatMul(Ma, Mb, filter); 

 

cvReleaseMat(&Ma); 

cvReleaseMat(&Mb); 

// return TRUE; 

} 

void CStrainDlg::OnSetreference() 

{ 

int selindex,nIndex ; 

selindex=m_measurementlist.GetCurSel(); 

CString texttemp; 

m_measurementlist.GetText(ref_index, texttemp); 

m_measurementlist.DeleteString(ref_index); 

nIndex = m_measurementlist.InsertString(ref_index, texttemp); 

m_measurementlist.GetText(selindex, texttemp); 

m_measurementlist.DeleteString(selindex); 

nIndex = m_measurementlist.InsertString(selindex, texttemp, RGB(255, 0, 0)); 

ref_index=selindex; 

int n=m_measurementlist.GetCount(); 

m_measurementlist.SetCurSel(n-1); 

texttemp= "Reference is  " +texttemp; 

m_refname.SetWindowText( texttemp ); 

// UpdateData(FALSE); 

} 

void CStrainDlg::Subpixel(IplImage *in, double *x, double *y, int factor) 

{ 

CvPoint minl,maxl; 

double minv,maxv; 
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int h=64; 

int w=64; 

CvRect rect; 

IplImage* peakarea = cvCreateImage(cvSize(w,h ), IPL_DEPTH_32F, 1); 

 

 

cvMinMaxLoc( in, &minv, &maxv, &minl, &maxl, 0 ); 

int intx=maxl.x; 

int inty=maxl.y; 

rect= cvRect(maxl.x-w/2, maxl.y-h/2,w,h ); 

cvSetImageROI(in , rect); 

cvCopy(in, peakarea, NULL); 

cvResetImageROI(in); 

IplImage* fftImg = cvCreateImage(cvSize(w, h), IPL_DEPTH_32F, 2); 

IplImage* complexInput = cvCreateImage(cvSize(w, h), IPL_DEPTH_32F, 2); 

IplImage* imaginaryInput = cvCreateImage(cvSize(w, h), IPL_DEPTH_32F, 1); 

cvZero(imaginaryInput); 

cvDFT(complexInput, fftImg, CV_DXT_FORWARD/*|CV_DXT_SCALE*/,complexInput->height); 

cvMinMaxLoc( peakarea, &minv, &maxv, &minl, &maxl, 0 ); 

CvMat* out= cvCreateMat(2*factor,2*factor,CV_32FC2); 

upsampling(fftImg, factor,(maxl.y-1)*factor, (maxl.x-1)*factor,out,2); 

IplImage* real = cvCreateImage(cvSize(factor*2, factor*2), IPL_DEPTH_32F, 1); 

IplImage* im = cvCreateImage(cvSize(factor*2, factor*2), IPL_DEPTH_32F, 1); 

cvSplit( out, real, im, 0, 0 ); 

// Compute the magnitude of the spectrum Mag = sqrt(Re^2 + Im^2) 

cvPow( real, real, 2.0); 

cvPow( im, im, 2.0); 

cvAdd( real, im , real, NULL); 

cvPow( real, real, 0.5 ); 

cvMinMaxLoc( real, &minv, &maxv, &minl, &maxl, 0 ); 

*x=intx-1+(double)(maxl.x)/(double)factor; 

*y=inty-1+(double)(maxl.y)/(double)factor; 

cvReleaseImage( &real); 

cvReleaseImage( &im); 

cvReleaseImage( &peakarea); 

cvReleaseImage( &fftImg); 

cvReleaseImage( &complexInput); 
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cvReleaseImage( &imaginaryInput); 

cvReleaseMat(&out); 

} 

 

void CStrainDlg::PreProcess(IplImage *input, IplImage *output) 

{ 

cvSmooth( input,output,              CV_MEDIAN,               3, 3 ); 

AdaptiveHist(output,output); 

UpdateData(TRUE); 

if (m_invert==TRUE) 

{ 

cvXorS(output, cvScalar(255), output); 

cvThreshold( output,output, 120,    0, CV_THRESH_TOZERO ); 

} 

cvEqualizeHist( output, output ); 

} 

void CStrainDlg::AdaptiveHist(IplImage *input, IplImage *output) 

{ 

int histsize=4; 

CvRect rect; 

int width    = input->width; 

int height   = input->height; 

int colnum=floor(width/histsize); 

int rownum=1; 

for(int colindex=0;colindex<colnum;colindex++) 

{ 

for(int rowindex=0;rowindex<rownum;rowindex++) 

{ 

rect= cvRect(colindex*histsize, rowindex*histsize, histsize,height ); 

cvSetImageROI(input , rect); 

cvEqualizeHist( input, input ); 

cvResetImageROI(input); 

} 

} 

 

cvEqualizeHist( input, output ); 

} 
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BOOL CStrainDlg::Blurcheck(IplImage *img1, IplImage *img2) 

{ 

IplImage *diff = 0; 

diff= cvCreateImage( cvGetSize( img1 ), IPL_DEPTH_8U, 1 ); 

cvAbsDiff(img1,img2,diff); 

CvScalar d=cvAvg(diff); 

cvReleaseImage(&diff); 

if (d.val[0]<16) 

return 0; 

else return 1; 

} 

void CStrainDlg::MaxLoc(IplImage *image, double &max, CvPoint &location) 

{ 

float* data; 

int step; 

CvSize size; 

int x, y; 

cvGetRawData( image, (uchar**)&data, &step, &size ); 

step /= sizeof(data[0]); 

max = 0; 

location.x = 0; 

location.y = 0; 

for( y = 0; y < size.height; y++, data += step ) 

for( x = 0; x < size.width; x++ ) 

{ 

if( data[x] > max ) 

{ 

max = (double)data[x]; 

location.x = x; 

location.y = y; 

} 

} 

} 

void CStrainDlg::MinLoc(IplImage *image, double &min, CvPoint &location) 

{ 

float* data; 

int step; 
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CvSize size; 

int x, y; 

cvGetRawData( image, (uchar**)&data, &step, &size ); 

step /= sizeof(data[0]); 

min = (double)data[0]; 

location.x = 0; 

location.y = 0; 

for( y = 0; y < size.height; y++, data += step ) 

for( x = 0; x < size.width; x++ ) 

{ 

if( data[x] < min ) 

{ 

min = (double)data[x]; 

location.x = x; 

location.y = y; 

} 

} 

} 

void CStrainDlg::MultipleMaxLoc(IplImage *image, CvPoint location[]) 

{ 

float* data; 

int step; 

CvSize size; 

int x, y, i, j; 

int iNumPoints=1; 

double dMax[1]; 

cvGetRawData( image, (uchar**)&data, &step, &size ); 

step /= sizeof(data[0]); 

for( i = 0; i < iNumPoints; i++ ) 

dMax[i] = 0; 

for( y = 0; y < size.height; y++, data += step ) 

{ 

for( x = 0; x < size.width; x++ ) 

{ 

for( i = 0; i < iNumPoints; i++ ) 

{ 

if( data[x] >= dMax[i] ) 
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{ 

for( j = iNumPoints - 1; j > i; j-- ) 

{ 

dMax[j] = dMax[j-1]; 

location[j] = location[j-1]; 

} 

dMax[i] = (double)data[x]; 

location[i].x = x; 

location[i].y = y; 

break; 

} 

} 

} 

} 

} 

void CStrainDlg::MultipleMinLoc(IplImage *image, CvPoint location[]) 

{ 

float* data; 

int step; 

CvSize size; 

int x, y, i, j; 

int iNumPoints=1; 

double dMin[1]; 

cvGetRawData( image, (uchar**)&data, &step, &size ); 

step /= sizeof(data[0]); 

for( i = 0; i < iNumPoints; i++ ) 

dMin[i] = 1; 

for( y = 0; y < size.height; y++, data += step ) 

{ 

for( x = 0; x < size.width; x++ ) 

{ 

for( i = 0; i < iNumPoints; i++ ) 

{ 

if( data[x] <= dMin[i] ) 

{ 

for( j = iNumPoints - 1; j > i; j-- ) 

{ 
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dMin[j] = dMin[j-1]; 

location[j] = location[j-1]; 

} 

dMin[i] = (double)data[x]; 

location[i].x = x; 

location[i].y = y; 

break; 

} 

} 

} 

} 

} 

void CStrainDlg::OnCalibration() 

{ 

double subxL,subyL,subxR,subyR; 

CString cstemp; 

int N=15; 

double  baseb=-0.004447; 

 

LONG numCameras = LucamNumCameras(); 

LUCAM_VERSION pVersionsArray[20]; 

ULONG tt = LucamEnumCameras(pVersionsArray, numCameras); 

UpdateData(TRUE); 

CvMat* X = cvCreateMat(N,3,CV_32FC1); 

CvMat* Y = cvCreateMat(N,1,CV_32FC1); 

CvMat* b = cvCreateMat(3,1,CV_32FC1); 

CvMat* Xt = cvCreateMat(3,N,CV_32FC1); 

CvMat* XtX = cvCreateMat(3,3,CV_32FC1); 

CvMat* tempM  = cvCreateMat(3,N,CV_32FC1); 

b_keepgoing=TRUE; 

//take initial reading 

pThread=AfxBeginThread(RUNTIME_CLASS(CUIThread)); 

TakeInitialReading(); 

pThread->PostThreadMessage(WM_CLOSEDIALOG,NULL,NULL); 

Sleep(100); 

Sleep(2000); 

int i=0; 
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while(b_keepgoing==1 && i<N) 

{b_keepgoing=TRUE; 

pThread=AfxBeginThread(RUNTIME_CLASS(CUIThread)); 

b_redo=FALSE; 

CalibrationReadingSpeckle(&subxL,&subyL,&subxR,&subyR); 

pThread->PostThreadMessage(WM_CLOSEDIALOG,NULL,NULL); 

Sleep(1000); 

cvmSet(Y,i,0,subxL*(-baseb)); 

cvmSet(X,i,0,subyL); 

cvmSet(X,i,1,subxR); 

cvmSet(X,i,2,subyR); 

i++; 

} 

cvTranspose(X, Xt); 

cvMatMul(Xt, X, XtX); 

cvInvert(XtX, XtX); 

cvMatMul(XtX, Xt, tempM ); 

cvMatMul(tempM, Y, b ); 

CvMat* Xb  = cvCreateMat(N,1,CV_32FC1); 

cvMatMul(X, b, Xb); 

cvSub(Xb,Y,Xb); 

cvAbs(Xb,Xb); 

float residue=0; 

int maxindex=-1; 

for(i=0;i<N;i++) 

{ 

if (residue<cvmGet(Xb,i,0)) 

{ 

residue=cvmGet(Xb,i,0); 

maxindex=i; 

} 

} 

cvmSet(Y,maxindex,0,0); 

cvmSet(X,maxindex,0,0); 

cvmSet(X,maxindex,1,0); 

cvmSet(X,maxindex,2,0); 

cvMatMul(X, b, Xb); 
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cvSub(Xb,Y,Xb); 

cvAbs(Xb,Xb); 

residue=0; 

maxindex=-1; 

for(i=0;i<N;i++) 

{ 

if (residue<cvmGet(Xb,i,0)) 

{ 

residue=cvmGet(Xb,i,0); 

maxindex=i; 

} 

} 

cvmSet(Y,maxindex,0,0); 

cvmSet(X,maxindex,0,0); 

cvmSet(X,maxindex,1,0); 

cvmSet(X,maxindex,2,0); 

cvTranspose(X, Xt); 

cvMatMul(Xt, X, XtX); 

cvInvert(XtX, XtX); 

cvMatMul(XtX, Xt, tempM ); 

cvMatMul(tempM, Y, b ); 

cvReleaseMat(&Xb); 

CStdioFile DataFile; 

cstemp.Format("%8.8f \n%8.8f \n%8.8f\n%8.8f\n  ",baseb, cvmGet(b,0,0), 

cvmGet(b,0,1),cvmGet(b,0,2)   ); 

if(DataFile.Open("c:\\para.txt",CFile::modeWrite| CFile::modeNoTruncate | 

CFile::modeCreate ) == TRUE) 

{ 

DataFile.SeekToEnd(); 

DataFile.WriteString(cstemp); 

DataFile.WriteString("\n"); 

DataFile.Close(); 

} 

CStdioFile ppFile; 

if ((pVersionsArray[0].serialnumber==30052108) &&  

(pVersionsArray[1].serialnumber==30052152)) 

{ 
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if (ppFile.Open("C:\\Program Files\\Strain\\parameter_new sensor.txt", 

CFile::modeReadWrite) != TRUE) 

{ 

AfxMessageBox("Failed to load parameter file"); 

} 

} 

if ((pVersionsArray[0].serialnumber==30052090) &&  

(pVersionsArray[1].serialnumber==30052184)) 

{ 

if (ppFile.Open("C:\\Program Files\\Strain\\parameter_old sensor.txt", 

CFile::modeReadWrite) != TRUE) 

{ 

AfxMessageBox("Failed to load parameter file"); 

} 

} 

 

float fvar; 

ppFile.SeekToBegin(); 

int cc=0; 

CString tempString; 

while(ppFile.ReadString(tempString) != FALSE) 

{ 

fvar = (float) atof(tempString); 

cc++; 

switch(cc){ 

case 1: THRESHOLD=fvar;break; 

case 2:thresholdhalf=fvar;break; 

case 3:THRESHOLD_glass=fvar;break; 

case 4: p1=fvar   ;break; 

case 5: p2=fvar    ;break; 

case 6: p3=fvar   ;break; 

case 7: p4=fvar ; break; 

case 8: g1=fvar   ;break; 

case 9: g2=fvar    ;break; 

case 10: g3=fvar   ;break; 

case 11: g4=fvar ; break; 

case 12: g5=fvar ; break; 

} 
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} 

ppFile.SeekToBegin(); 

CString cstemp_thres,cstemp_speckle,cstemp_paint; 

cstemp_thres.Format("%5.4f\n%5.4f\n%5.4f\n",THRESHOLD,thresholdhalf,THRESHOLD

_glass); 

cstemp_speckle.Format("%8.8f\n%8.8f\n%8.8f\n",p1,p2,p3,p4); 

cstemp_paint.Format("%8.8f\n%8.8f\n%8.8f\n%8.8f\n%8.8f\n",g1,g2,g3,g4,0); 

switch (m_surfacetype) 

{ 

case 0: 

cstemp_speckle.Format("%8.8f\n%8.8f \n%8.8f\n%8.8f\n  ",baseb, cvmGet(b,0,0), 

cvmGet(b,0,1),cvmGet(b,0,2)   ); 

break; 

case 1: 

cstemp_paint.Format("%8.8f\n%8.8f\n%8.8f\n%8.8f\n%8.8f\n",baseb, 

cvmGet(b,0,0), cvmGet(b,0,1),cvmGet(b,0,2) ,0  ); 

break; 

} 

cstemp.Empty(); 

cstemp= cstemp_thres+cstemp_speckle+cstemp_paint; 

ppFile.WriteString(cstemp); 

ppFile.Close(); 

AfxMessageBox("Calibration Done"); 

cvReleaseMat(&X); 

cvReleaseMat(&Y); 

cvReleaseMat(&b); 

cvReleaseMat(&Xt); 

cvReleaseMat(&XtX); 

cvReleaseMat(&tempM); 

} 

BOOL CStrainDlg::TakeInitialReading() 

{ 

long lPixelSize=1;  //8 bits 

int i,j; 

BOOL flag=0; 

CString cstemp; 

UpdateData(TRUE); 

CFileFind f; 
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CString cfilenameL,cfilenameR; 

cfilenameL.Empty(); 

cfilenameL=defaultfolder+"\\"+"L.bmp"; 

cfilenameR.Empty(); 

cfilenameR=defaultfolder+"\\"+"R.bmp"; 

hCameras[0]=m_hCameraA; 

hCameras[1]=m_hCameraB; 

for (i = 0 ; i < CAMNUM ; i++) 

{params[i].format.height = height; 

params[i].format.pixelFormat = LUCAM_PF_8; 

params[i].format.subSampleX = 1; 

params[i].format.subSampleY = 1; 

params[i].format.width = width; 

params[i].format.xOffset = 0; 

params[i].format.yOffset = 0; 

 

params[i].exposure = m_exposure;    // 50 ms exposure 

params[i].gain =  23; 

params[i].strobeDelay = 0.0;  // unused 

params[i].timeout = 3000.0;   // 3000 ms 

params[i].useHwTrigger = FALSE;   // Set this to true for hardware 

triggered setup with daisy chaining 

params[i].useStrobe = FALSE;      // Set this to true if daisy-chaining 

cameras 

params[i].exposureDelay = 0; 

params[i].shutterType = LUCAM_SHUTTER_TYPE_GLOBAL; 

pParams[i] = &params[i]; 

} 

params[0].exposure = m_exposureA; 

params[1].exposure = m_exposureB; 

pAllFrames = (UCHAR *)malloc((CAMNUM ) * width * height); 

if (pAllFrames == NULL) 

{ 

MessageBox("No memory for frames"); 

} 

for (i = 0 ; i < CAMNUM ; i++) 

{ 

ppFrames[i] = pAllFrames + i * width * height; 
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} 

hSynchronousSnapshots = LucamEnableSynchronousSnapshots(CAMNUM, hCameras, 

pParams); 

m_cbPreview.EnableWindow(FALSE); 

m_cbPreview.SetWindowText(_T("Preview")); 

m_cbApply.EnableWindow(FALSE); 

UpdateWindow(); 

pThread->PostThreadMessage(WM_SHOWDIALOG,NULL,NULL); 

// int delay; 

CEdit* pEB = (CEdit*) GetDlgItem(IDC_DELAY); 

pEB->UpdateData(TRUE); 

if (m_delay<0) m_delay=0; 

for(int k=0;k<m_delay;k++) 

{ 

Sleep(1000); 

if(b_keepgoing==FALSE || b_redo==TRUE) break; 

 

} 

if(b_keepgoing==TRUE && b_redo==FALSE) 

{ 

IplImage *rL = 0; 

IplImage *rR = 0; 

rL = cvCreateImage( cvSize( width, height ), IPL_DEPTH_8U, 1 ); 

rR = cvCreateImage( cvSize( width, height ), IPL_DEPTH_8U, 1 ); 

IplImage *rL_blurcheck = 0; 

IplImage *rR_blurcheck = 0; 

rL_blurcheck = cvCreateImage( cvSize( width, height ), IPL_DEPTH_8U, 1 ); 

rR_blurcheck = cvCreateImage( cvSize( width, height ), IPL_DEPTH_8U, 1 ); 

cvZero(rL_blurcheck ); 

cvZero(rR_blurcheck ); 

BOOL no_blur=0; 

while (no_blur==0) 

{if (b_keepgoing==0 || b_redo==TRUE) 

break; 

m_tStartTime = GetTickCount(); 

LucamTakeSynchronousSnapshots(hSynchronousSnapshots, ppFrames); 

rL->imageData=(char*)ppFrames[0]; 

rR->imageData=(char*)ppFrames[1]; 
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if ((Blurcheck(rL,rL_blurcheck)==0) && (Blurcheck(rR,rR_blurcheck)==0)) 

no_blur=1; 

cvCopy(rL, rL_blurcheck, NULL); 

cvCopy(rR, rR_blurcheck, NULL); 

} 

PlaySound(MAKEINTRESOURCE(IDR_WAVE1),AfxGetResourceHandle(),SND_ASYNC|SND_RES

OURCE|SND_NODEFAULT); 

pThread->PostThreadMessage(WM_CLOSEDIALOG,NULL,NULL); 

LucamSaveImage(width, height, LUCAM_PF_8, ppFrames[0], cfilenameL); 

LucamSaveImage(width, height, LUCAM_PF_8, ppFrames[1], cfilenameR); 

Sleep(100); 

cvReleaseImage(&rL); 

cvReleaseImage(&rR); 

cvReleaseImage(&rL_blurcheck); 

cvReleaseImage(&rR_blurcheck); 

 

} 

if (!LucamDisableSynchronousSnapshots(hSynchronousSnapshots)) 

{ 

MessageBox("Failed to unsetup synchronous snapshots"); 

} 

if (pAllFrames) 

{ 

free(pAllFrames); 

} 

m_cbPreview.EnableWindow(TRUE); 

m_cbPreview.SetWindowText(_T("Preview")); 

m_cbApply.EnableWindow(TRUE); 

return true; 

} 

BOOL CStrainDlg::CalibrationReadingSpeckle(double *subxL, double *subyL, 

double *subxR, double *subyR) 

{ 

long lPixelSize=1;  //8 bits 

int i,j,k; 

CString cstemp; 

UpdateData(TRUE); 

CFileFind f; 
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hCameras[0]=m_hCameraA; 

hCameras[1]=m_hCameraB; 

for (i = 0 ; i < CAMNUM ; i++) 

{ 

params[i].format.pixelFormat = LUCAM_PF_8; 

params[i].format.subSampleX = 1; 

params[i].format.subSampleY = 1; 

params[i].format.height = height; 

params[i].format.width = width; 

params[i].format.xOffset = 0; 

params[i].format.yOffset =0; 

params[i].exposure = m_exposure;    // 50 ms exposure 

params[i].gain = 23; 

params[i].strobeDelay = 0.0;  // unused 

params[i].timeout = 3000.0;   // 3000 ms 

params[i].useHwTrigger = FALSE;   // Set this to true for hardware 

triggered setup with daisy chaining 

params[i].useStrobe = FALSE;      // Set this to true if daisy-chaining 

cameras 

params[i].exposureDelay = 0; 

params[i].shutterType = LUCAM_SHUTTER_TYPE_GLOBAL; 

pParams[i] = &params[i]; 

} 

params[0].exposure = m_exposureA; 

params[1].exposure = m_exposureB; 

pAllFrames = (UCHAR *)malloc((CAMNUM ) * width * height); 

if (pAllFrames == NULL) 

{ 

MessageBox("No memory for frames"); 

} 

for (i = 0 ; i < CAMNUM ; i++) 

{ppFrames[i] = pAllFrames + i * width * height; 

} 

hSynchronousSnapshots = LucamEnableSynchronousSnapshots(CAMNUM, hCameras, 

pParams); 

m_cbPreview.EnableWindow(FALSE); 

m_cbPreview.SetWindowText(_T("Preview")); 

m_cbApply.EnableWindow(FALSE); 
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int n; 

CString refmeasurementname; 

cRefFilenameL.Empty(); 

cRefFilenameL=defaultfolder+"\\"+"L.bmp"; 

cRefFilenameR.Empty(); 

cRefFilenameR=defaultfolder+"\\"+"R.bmp"; 

if(!f.FindFile(cRefFilenameL)) 

{ 

AfxMessageBox("Left Reference image doesn't exist. Can't do correlation."); 

LucamDisableSynchronousSnapshots(hSynchronousSnapshots); 

free(pAllFrames); 

b_keepgoing=FALSE; 

return FALSE; 

} 

 

if(!f.FindFile(cRefFilenameR)) 

{ 

AfxMessageBox("Right Reference image doesn't exist. Can't do correlation."); 

LucamDisableSynchronousSnapshots(hSynchronousSnapshots); 

free(pAllFrames); 

b_keepgoing=FALSE; 

return FALSE; 

} 

int colindex,rowindex; 

IplImage *poc_halfL = 0; 

IplImage *tplL = 0; 

IplImage *refL = 0; 

IplImage *poc_halfR = 0; 

IplImage *tplR = 0; 

IplImage *refR = 0; 

IplImage *poc = 0; 

IplImage *refblockL=0; 

IplImage *refblockR=0 ; 

IplImage *reffiltered=0; 

IplImage *tplfiltered=0; 

IplImage *tplLtemp = 0; 

IplImage *tplRtemp = 0; 

IplImage *tplL_backup = 0; 
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IplImage *tplR_backup = 0; 

tplLtemp=cvCreateImage( cvSize( bs, bs ), IPL_DEPTH_8U, 1 ) ; 

tplRtemp=cvCreateImage( cvSize( bs, bs ), IPL_DEPTH_8U, 1 ) ; 

poc = cvCreateImage( cvSize( bs, bs ), IPL_DEPTH_32F, 1 ); 

refblockL=cvCreateImage( cvSize( bs, bs ), IPL_DEPTH_8U, 1 ); 

refblockR=cvCreateImage( cvSize( bs, bs ), IPL_DEPTH_8U, 1 ) ; 

reffiltered=cvCreateImage( cvSize( bs, bs ), IPL_DEPTH_32F, 1 ); 

tplfiltered=cvCreateImage( cvSize( bs, bs ), IPL_DEPTH_32F, 1 ); 

tplL_backup=cvCreateImage( cvSize( bs, bs ), IPL_DEPTH_8U, 1 ); 

tplR_backup =cvCreateImage( cvSize( bs, bs ), IPL_DEPTH_8U, 1 ); 

pThread->PostThreadMessage(WM_SHOWDIALOG,NULL,NULL); 

/* load reference image */ 

refL = cvLoadImage( cRefFilenameL, CV_LOAD_IMAGE_GRAYSCALE ); 

/* create an image to store phase correlation result */ 

 

 

poc_halfL = cvCreateImage( cvSize( bs, bs ), IPL_DEPTH_32F, 1 ); 

refR = cvLoadImage( cRefFilenameR, CV_LOAD_IMAGE_GRAYSCALE ); 

/* create an image to store phase correlation result */ 

poc_halfR = cvCreateImage( cvSize( bs, bs ), IPL_DEPTH_32F, 1 ); 

/* create a image template for new imge */ 

tplL = cvCreateImage( cvSize( width, height ), IPL_DEPTH_8U, 1 ); 

int stepsize=192; 

int colnum=(width-bs)/stepsize+1; 

int rownum=(height-bs)/stepsize+1; 

CvRect rect ; 

fftwf_complex *fft_halfL[100][100],*fft_halfR[100][100]; 

for( colindex=0;colindex<colnum;colindex++)  // 0 -> 6 

{ 

for(rowindex=0;rowindex<rownum;rowindex++) 

{ 

rect= cvRect(colindex*stepsize, rowindex*stepsize,bs,bs ); 

cvSetImageROI(refL , rect); 

cvCopy(refL , refblockL, NULL); 

cvResetImageROI(refL); 

filterproduct(refblockL,blockfilter,reffiltered); 

memcpy (img1_half,( float* )reffiltered->imageData,bs*bs*sizeof ( float )); 

fftwf_execute( fft_img1_halfsize ); 



190 

 

fft_halfL[colindex][rowindex] = ( fftwf_complex* )fftwf_malloc ( sizeof 

( fftwf_complex ) * bs * (bs/2+1) ); 

fftwcopy(img1_fft_half,fft_halfL[colindex][rowindex],bs* (bs/2+1) ); 

cvSetImageROI(refR , rect); 

cvCopy(refR , refblockR, NULL); 

cvResetImageROI(refR); 

filterproduct(refblockR,blockfilter,reffiltered); 

memcpy (img1_half,( float* )reffiltered->imageData,bs*bs*sizeof ( float )); 

fftwf_execute( fft_img1_halfsize ); 

fft_halfR[colindex][rowindex] = ( fftwf_complex* )fftwf_malloc ( sizeof 

( fftwf_complex ) * bs * (bs/2+1) ); 

fftwcopy(img1_fft_half,fft_halfR[colindex][rowindex],bs* (bs/2+1) ); 

} 

} 

 

CvPoint minlocL, maxlocL,minlocR, maxlocR, maxlocLhalf,maxlocRhalf; 

CvPoint minlocLtemp, minlocRtemp, maxlocLhalftemp,maxlocRhalftemp; 

double  minvalL, maxvalL,minvalR, maxvalR, maxvalLhalf, maxvalRhalf; 

double  minvalLtemp, minvalRtemp, maxvalLhalftemp, maxvalRhalftemp; 

int colL, rowL,colR,rowR; 

int colindex_store,rowindex_store; 

CvPoint oldstartL,oldstartR,startL,startR; 

oldstartL=cvPoint(0,0); 

oldstartR=cvPoint(0,0); 

startL=cvPoint(0,0); 

startR=cvPoint(0,0); 

BOOL peakflag,workmode; 

peakflag=FALSE; 

double oldLpeak,oldRpeak; 

oldLpeak=0;oldRpeak=0; 

maxvalLhalf=0;maxvalRhalf=0; 

colL=0;rowL=0;colR=0;rowR=0; 

CButton* pCBmode = (CButton*) GetDlgItem(IDC_HANDHOLD); 

pCBmode->UpdateData(TRUE); 

if (pCBmode->GetCheck()==BST_CHECKED) 

workmode=0; 

else workmode=1; 

m_tStartTime = GetTickCount();//clock(); 
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while(b_keepgoing==1 && b_redo==FALSE) 

{ 

m_tEndTime = GetTickCount();//clock(); 

dElapsed =  (m_tEndTime - m_tStartTime); 

if (   ((peakflag==TRUE) && (dElapsed>0)) ||   ( (peakflag==TRUE) &&  

((maxvalLhalf>thresholdhalf) && (maxvalRhalf>thresholdhalf) ) ) ) 

{ 

pThread->PostThreadMessage(WM_CLOSEDIALOG,NULL,NULL); 

PlaySound(MAKEINTRESOURCE(IDR_WAVE1),AfxGetResourceHandle(),SND_ASYNC|SND_RES

OURCE|SND_NODEFAULT); 

break; 

} 

LucamTakeSynchronousSnapshots(hSynchronousSnapshots, ppFrames); 

 

 

tplL->imageData=(char*)ppFrames[0]; 

rect= cvRect(width/2-bs/2, height/2-bs/2,bs,bs ); 

cvSetImageROI(tplL , rect); 

cvCopy(tplL, tplLtemp, NULL); 

cvResetImageROI(tplL); 

filterproduct(tplLtemp,blockfilter,tplfiltered); 

memcpy (img1_half,( float* )tplfiltered->imageData,bs*bs*sizeof ( float )); 

fftwf_execute( fft_img1_halfsize ); 

maxvalLhalf=0; 

colindex_store=0; 

rowindex_store=0; 

for(colindex=0;colindex<colnum;colindex++) 

{ 

for(rowindex=0;rowindex<rownum;rowindex++) 

{ 

phase_correlation_block( fft_halfL[colindex][rowindex], img1_fft_half, 

poc_halfL ); 

cvMinMaxLoc( poc_halfL, &minvalLtemp, &maxvalLhalftemp, &minlocLtemp, 

&maxlocLhalftemp, 0 ); 

if (maxvalLhalftemp>maxvalLhalf) 

{ 

maxvalLhalf=maxvalLhalftemp; 

maxlocLhalf=maxlocLhalftemp; 
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colindex_store=colindex; 

rowindex_store=rowindex; 

} 

} 

} 

if (maxlocLhalf.x>bs/2) 

startL.x=colindex_store*stepsize+bs-maxlocLhalf.x; 

else 

startL.x=colindex_store*stepsize-maxlocLhalf.x; 

if (maxlocLhalf.y>bs/2) 

startL.y=rowindex_store*stepsize+bs-maxlocLhalf.y; 

else 

startL.y=rowindex_store*stepsize-maxlocLhalf.y; 

 

 

 

if(  (maxvalLhalf>THRESHOLD) )   { 

tplR->imageData=(char*)ppFrames[1]; 

rect= cvRect(width/2-bs/2, height/2-bs/2,bs,bs ); 

cvSetImageROI(tplR , rect); 

cvCopy(tplR, tplRtemp, NULL); 

cvResetImageROI(tplR); 

filterproduct(tplRtemp,blockfilter,tplfiltered); 

memcpy (img1_half,( float* )tplfiltered->imageData,bs*bs*sizeof ( float )); 

fftwf_execute( fft_img1_halfsize ); 

maxvalRhalf=0; 

colindex_store=0; 

rowindex_store=0; 

for( colindex=0;colindex<colnum;colindex++) 

{ 

for(rowindex=0;rowindex<rownum;rowindex++) 

{ 

phase_correlation_block( fft_halfR[colindex][rowindex], img1_fft_half, 

poc_halfR ); 

cvMinMaxLoc( poc_halfR, &minvalRtemp, &maxvalRhalftemp, &minlocRtemp, 

&maxlocRhalftemp, 0 ); 

if (maxvalRhalftemp>maxvalRhalf) 

{ 



193 

 

maxvalRhalf=maxvalRhalftemp; 

maxlocRhalf=maxlocRhalftemp; 

colindex_store=colindex; 

rowindex_store=rowindex; 

} 

} 

} 

if (maxlocRhalf.x>bs/2) 

startR.x=colindex_store*stepsize+bs-maxlocRhalf.x; 

else 

startR.x=colindex_store*stepsize-maxlocRhalf.x; 

if (maxlocRhalf.y>bs/2) 

startR.y=rowindex_store*stepsize+bs-maxlocRhalf.y; 

else 

startR.y=rowindex_store*stepsize-maxlocRhalf.y; 

if  (maxvalRhalf>THRESHOLD)  { 

if ( (  (maxvalLhalf>oldLpeak) && (maxvalRhalf>oldRpeak) ) ||  

((maxvalLhalf>thresholdhalf) && (maxvalRhalf>thresholdhalf) )  ) 

{ 

peakflag=TRUE; 

oldLpeak=maxvalLhalf; 

oldRpeak=maxvalRhalf; 

oldstartL=startL; 

oldstartR=startR; 

cvCopy( tplRtemp, tplR_backup, NULL ); 

cvCopy( tplLtemp, tplL_backup, NULL ); 

m_tStartTime = GetTickCount();//clock(); 

} 

} 

} 

} 

if(b_keepgoing==TRUE && b_redo==FALSE) 

{ 

if (oldstartL.x<0) 

oldstartL.x=0; 

if (oldstartL.y<0) 

oldstartL.y=0; 

if (oldstartR.x<0) 
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oldstartR.x=0; 

if (oldstartR.y<0) 

oldstartR.y=0; 

if (oldstartL.x+bs>width) 

oldstartL.x=width-bs-1; 

if (oldstartL.y+bs>height) 

oldstartL.y=height-bs-1; 

if (oldstartR.x+bs>width) 

oldstartR.x=width-bs-1; 

if (oldstartR.y+bs>height) 

oldstartR.y=height-bs-1; 

rect= cvRect(oldstartL.x, oldstartL.y,bs,bs ); 

cvSetImageROI(refL , rect); 

cvCopy(refL , refblockL, NULL); 

cvResetImageROI(refL); 

filterproduct(refblockL,blockfilter,reffiltered); 

filterproduct(tplL_backup,blockfilter,tplfiltered); 

phase_correlation( reffiltered, tplfiltered, poc_halfL ); 

cvMinMaxLoc( poc_halfL, &minvalL, &maxvalL, &minlocL, &maxlocL, 0 ); 

int xx,yy; 

if (maxlocL.x>bs/2) 

xx=oldstartL.x+bs-maxlocL.x; 

else 

xx=oldstartL.x-maxlocL.x; 

if (maxlocL.y>bs/2) 

yy=oldstartL.y+bs-maxlocL.y; 

else 

yy=oldstartL.y-maxlocL.y; 

int  x=maxlocL.x; 

int  y=maxlocL.y; 

CvMat* real=cvCreateMat(bs, bs, CV_32FC1); 

CvMat* im=cvCreateMat(bs, bs, CV_32FC1); 

for( i = 0, k = 0 ; i < bs ; i++ ) { 

for( j = 0 ; j < bs ; j++, k++ ) { 

cvmSet(real,i,j,(float)res_fft[k][0]); 

cvmSet(im,  i,j,(float)res_fft[k][1]); 

} 

} 
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CvMat* in= cvCreateMat(bs,bs,CV_32FC2); 

int factor=25; 

CvMat* out= cvCreateMat(2*factor,2*factor,CV_32FC2); 

upsampling(in, factor,(y-1)*factor, (x-1)*factor,out,2); 

cvReleaseMat(&real); 

cvReleaseMat(&im); 

real=cvCreateMat(factor*2, factor*2, CV_32FC1); 

im=cvCreateMat(factor*2, factor*2, CV_32FC1); 

cvSplit( out, real, im, 0, 0 ); 

// Compute the magnitude of the spectrum Mag = sqrt(Re^2 + Im^2) 

cvPow( real, real, 2.0); 

cvPow( im, im, 2.0); 

cvAdd( real, im , real, NULL); 

cvPow( real, real, 0.5 ); 

cvMinMaxLoc( real, &minvalL, &maxvalL, &minlocL, &maxlocL, 0 ); 

cvReleaseMat(&real); 

cvReleaseMat(&im); 

*subxL=width/2-bs/2-xx-1+(float)maxlocL.x/factor; 

*subyL=yy-(height/2-bs/2)-(-1+(float)maxlocL.y/factor); 

rect= cvRect(oldstartR.x, oldstartR.y,bs,bs ); 

cvSetImageROI(refR , rect); 

cvCopy(refR , refblockR, NULL); 

cvResetImageROI(refL); 

filterproduct(refblockR,blockfilter,reffiltered); 

filterproduct(tplR_backup,blockfilter,tplfiltered); 

phase_correlation( reffiltered, tplfiltered, poc_halfR ); 

cvMinMaxLoc( poc_halfR, &minvalR, &maxvalR, &minlocR, &maxlocR, 0 ); 

if (maxlocR.x>bs/2) 

xx=oldstartR.x+bs-maxlocR.x; 

else 

xx=oldstartR.x-maxlocR.x; 

if (maxlocR.y>bs/2) 

yy=oldstartR.y+bs-maxlocR.y; 

else 

yy=oldstartR.y-maxlocR.y; 

x=maxlocR.x; 

y=maxlocR.y; 

real=cvCreateMat(bs, bs, CV_32FC1); 
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im=cvCreateMat(bs, bs, CV_32FC1); 

for( i = 0, k = 0 ; i < bs ; i++ ) { 

for( j = 0 ; j < bs ; j++, k++ ) { 

cvmSet(real,i,j,(float)res_fft[k][0]); 

cvmSet(im,  i,j,(float)res_fft[k][1]); 

} 

} 

upsampling(in, factor,(y-1)*factor, (x-1)*factor,out,2); 

cvReleaseMat(&real); 

cvReleaseMat(&im); 

real=cvCreateMat(factor*2, factor*2, CV_32FC1); 

im=cvCreateMat(factor*2, factor*2, CV_32FC1); 

cvSplit( out, real, im, 0, 0 ); 

// Compute the magnitude of the spectrum Mag = sqrt(Re^2 + Im^2) 

cvPow( real, real, 2.0); 

cvPow( im, im, 2.0); 

cvAdd( real, im , real, NULL); 

cvPow( real, real, 0.5 ); 

cvReleaseMat(&in); 

cvReleaseMat(&out); 

cvMinMaxLoc( real, &minvalR, &maxvalR, &minlocR, &maxlocR, 0 ); 

cvReleaseMat(&real); 

cvReleaseMat(&im); 

*subxR=width/2-bs/2-xx-1+(float)maxlocR.x/factor; 

*subyR=yy-(height/2-bs/2)-(-1+(float)maxlocR.y/factor); 

if ( (maxvalL<THRESHOLD) || (maxvalR<THRESHOLD) ) 

AfxMessageBox("might be fake peak, measure again!"); 

float deflection; 

CStdioFile DataFile; 

cstemp.Format("%5.4f %5.4f %5.4f  %5.4f ",*subxL,*subyL,*subxR,*subyR); 

if(DataFile.Open("c:\\data_fitting.txt",CFile::modeWrite| 

CFile::modeNoTruncate | CFile::modeCreate ) == TRUE) 

{ 

DataFile.SeekToEnd(); 

DataFile.WriteString(cstemp); 

DataFile.WriteString("\n"); 

DataFile.Close(); 

} 
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cvReleaseMat(&real); 

cvReleaseMat(&im); 

cvReleaseMat(&in); 

cvReleaseMat(&out); 

} 

for(colindex=0;colindex<colnum;colindex++) 

{ 

for(rowindex=0;rowindex<rownum;rowindex++) 

{ 

fftwf_free( fft_halfL[colindex][rowindex]); 

fftwf_free( fft_halfR[colindex][rowindex]); 

} 

} 

cvReleaseImage( &poc ); 

cvReleaseImage(&refblockL); 

cvReleaseImage(&refblockR); 

cvReleaseImage(&reffiltered); 

cvReleaseImage(&tplfiltered); 

cvReleaseImage(&tplL_backup); 

cvReleaseImage(&tplR_backup); 

cvReleaseImage(&tplRtemp); 

cvReleaseImage(&tplLtemp); 

cvReleaseImage( &tplR ); 

cvReleaseImage( &refR ); 

cvReleaseImage( &poc_halfR ); 

cvReleaseImage( &tplL ); 

cvReleaseImage( &refL ); 

cvReleaseImage( &poc_halfL ); 

if (!LucamDisableSynchronousSnapshots(hSynchronousSnapshots)) 

{ 

MessageBox("Failed to unsetup synchronous snapshots"); 

} 

if (pAllFrames) 

{ 

free(pAllFrames); 

} 

m_cbPreview.EnableWindow(TRUE); 

m_cbPreview.SetWindowText(_T("Preview")); 
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m_cbApply.EnableWindow(TRUE); 

return true; 

} 


