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CHAPTER I

INTRODUCTION

1.1 Hot Dry Rock Concept

Increased demand for versatile energy supplies after the energy

crisis has led to a corresponding interest in geothermal energy. The

source is located within the earth's crust and methods used for the

production can be considered geothermal extraction.

In conventional geothermal systems the convecting medium for

extracting the available thermal energy to surface conversion

facilities is the in-situ geothermal fluid (Palen and Narasimhan,

1981) . Thus conventional systems depend on the location of geothermal

fluid reservoirs. Unfortuna'tely , they are only represent a small

fraction of geothermal energy in this world.

The Hot Dry Rock (HDR) concept does not require the presence of

an in-situ fluid reservoir but is dependent only on the presence of a

high geothermal gradient and an adequate supply of a working fluid,

such as water. It is based on closed-loop circulation of pressurized

water through a man-made fracture system, created by hydraulically

fracturing hot rock between two wellbores. The useful heat from

superheated water is recovered at the surface through heat exchangers

,

and the cooled water is reinjected to recirculate through the

underground loop (Los Alamos annual report, 1984).

1.2 Recent Development In HDR Program

The Hot Dry Rock concept originated at Los Alamos National

Laboratory in 1970. The major project effort during the past several



years has been to develop a commercial size underground reservoir by

hydraulic fracturing. The program is now largely centered on the

Fenton Hill Project near Los Alamos. The site is located on an

extinct volcano in the Jemez Mountains of northern New Mexico, USA.

The Phase II engineering system in Fenton Hill has a pair of wells.

EE-2 is the injection well and EE-3 is the production well of the

system (Los Alamos annual report, 1984). Figure 1.1 shows a schematic

drawing of the reservoir.

3
From December 6 to 9, 1983, a total of 21,300 m water was

injected into EE-2 in 61 hours. This experiment was terminated by

fatigue failure of hardware equipment. The resulting rapid vent

returned to the surface about 54% of the water that had been injected

and delivered thermal energy to the surface at rates estimated from

100 MW initially to an average of 30 MW over the 3.3 day period of

rapid venting. The volume and rate of fluid return indicated that the

fracture system was tightly contained and well connected; the high

rate of energy production indicated the heat was extracted effectively

from the fractured reservoir rock back through well EE-2 (Franke and

Nunz, 1985). Despite the disappointment of hardware failures

preventing satisfactory connection between two wellbores, the result

at least indicated that a thermal reservoir extensive enough to be

commercially useful had been opened.

During May and June 1986, a one month flow test of this Phase II

3heat extraction loop was conducted. A total of 37854 m (10 million

gallons) of water at 20 C was injected into an 243.8 m (800 feet)

long section at depths around 3657.6 m (12,000 feet), where the



initial rock temperature was about 240 C. Under a pumping pressure

7 2 3
2.76x10 N/m (4000 psi) , the injection rate was 0.0179 m /sec (285

gpm) . The rate of fluid flow from the production well increased with

3
time to 0.0148 m /sec (235 gpm). The temperature of the produced

water rose to 190 C. The rate of heat production could be converted

to about 1500 to 2000 KW of electrical power. The rate of water loss

was initially very high, in part because of leakage through damaged

casing in the production well, but it decreased with time to a final

value of 26%. Much of this "loss" was water stored temporarily in

fractures that were outside of the circulation paths and a large

fraction of it was recovered later when the system was vented (Los

Alamos annual report, 1985).

In December, 1987, experiment No. 2074 lasted eight days. The

7 2pumping pressure was 2.2x10 N/m (3200 psi) and the outlet pressure

was 1.7x10 N/m (250 psi). The input flowrate was 96 gpm and the

output flowrate rose from gpm at the start to 60 gpm at the end of

the test. The input flow loss is believed to be due to far field

leakage and storage of the fluid (Brown, 1980) . The thickness of the

flow paths between the two wells is believed to be approximately 100

m, giving a flow rate of about 1 gpm for a unit depth of one meter.

This is the test we modeled in the application problems (Chapter V)

.

These tests demonstrated that a Hot Dry Rock system can be

constructed and operated to produce superheated water at temperatures

suitable for generating electricity. However, commercial power plants

require higher rates of heat production, reduced water losses and a

credible basis for predicating useful lifetime of the heat source.



1 . 3 Previous Work

Wilson and Witherspoon (1970) have reviewed the work on fluid

flow through fractured rocks, in the field of both groundwater

hydrology and petrolem engineering. Their work includes an extensive

set of references that is essentially complete to 1970. In this

report, following the convention of Wilson and Witherspoon, the term

"fracture" is used for most discontinuities within a rock mass. The

word "joint" will be generally employed in connection with the finite

element joint model.

The general approach to analysis of fluid flow through fractures

has been to model fluid flow through fractures assuming viscous

,

incompressible flow between smooth parallel plates (Snow, 1965). The

validity of the cubic law for laminar flow of fluids through open

fractures consisting of parallel planar plates has been established by

Witherspoon (1980) and Thomas (1987) in laboratory work. In an "open"

fracture the planar surfaces remain parallel, and thus are not in

contact at any point.

Deviations from the parallel plate model are expected because

real joint surfaces are rough and contact each other at discrete

points. In this thesis, realistic rough surfaces were considered

using a factor of roughness. It has been discussed by Brown (1987)

and Witherspoon (1980).

Witherspoon and Noorishad developed a finite element model of

discrete fracture systems. The model coupled stress and fluid flow

behavior in fractured rock masses. Direct application is to fluid

flow problems in hydraulically fractured reservoirs and naturally

fractured rocks (Noorishad, Ayatollahi and Witherspoon, 1982)

.



A two dimensional finite element model of fluid flow in fractured

rock masses was developed by Hilber and Taylor (1979). The

discontinuities are deformable and constitute the flow paths. The

model includes interaction between the fluid and the fracture motions

as well as inertia effects. They developed a computer code based on

this theory. It determines the hydrodynamic state of the fluid, the

displacement, strain and stress response histories of the rock masses,

the change of the kinetic and the potential energy of the rock, and

the amount of energy dissipated during slip.

A continuum approach has been developed for modeling mass

transport in fractured rocks by Schwartz' and Smith (1988). It

involves a new application of a particle tracking method in which

physical transport is simulated in terms of velocity and the

variations in velocity. This model successfully duplicates patterns

of anisotropic dispersion predicated by de Josselin de Jong (1972).

Applications demonstrate that the de Josselin de Jong approach for

estimating dispersivities for idealized networks cannot generally be

applied to networks formed from sets of finite, irregularly- spaced

fractures. This model does not include rock deformation effects.

1.4 Objectives

Our goal is to develop a finite element fluid model to simulate

flow through fractured rock. This model is the first step in

developing a completely coupled flow/rock deformation/heat transfer

model of the Hot Dry Rock reservoir. Figure 1.2 shows a schematic of

the Hot Dry Rock reservoir. Discrete flow paths are used for the

analysis, forming a fracture network connecting the two wells. We



model a plane section of the network, consisting of flow paths and

blocks of rock masses. Two types of joints are present, shear joints

that are closed and tension joints that are initially open. Fluid can

be stored in the open joints.

We recognize that the density and viscosity of the fluid are

functions of temperature. In the present model, we assume they are

constant, as assumed by Hilber and Taylor (1979) in their model. We

also assume the rock is not deformable and that the joint openings are

constant. In the future development of this model, the coupling

between rock deformation and heat transfer will be included.

The fluid model extends previous work by using a solution scheme

applicable to nonlinear problems with a large number of unrestrained

rock masses. Another important feature is the capability to model

fluid storage in open joints. These joints aire filled as fluid is

pumped into the reservoir. The model includes the capability to

simulate the use of tracers where tracers are pumped into the input

well and the time history at the output is monitored.

In this thesis, we discuss only the fluid model. However, the

fluid model was developed as part of a larger structural model, with

the intent of coupling the two models. After the coupling, these

features can give the engineer a tool to simulate flow and to check

the results using interactive computer graphics. The engineer can

observe flow paths develop as injection is started and will be able to

follow the flow until it exits from the production wellbore. This

tool will aid in understanding and predicting the fluid behavior of

the Hot Dry Rock reservoir.

£"



Figure 1.1: Schematic drawing of Phase II HDR Reservoir
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Figure 1.2: Schematic drawing of HDR Reservoir simulation



CHAPTER II

FLUID- FLOW NETWORK MODEL

In this chapter, we develop a model for fluid flow through non-

porous rock masses. The fluid flow model is similar to the one

discussed by Hilber and Taylor (1979) . First we derive the relation

between pressure gradient and flow rate for flow between parallel

plates (cubic law)

.

2.1 Derivation of flow model

We first consider the fully-developed laminar flow between

infinite parallel plates. The plates are separated by a distance a,

as shown in Figure 2.1. The plates are considered infinite in the Z

direction, without variation of any fluid parameter in this direction.

The flow is further assumed to be steady and incompressible.

Because of the non-slip condition at the wall, the X component of

velocity is zero at both the upper and lower plates. These two

boundary conditions are as follow:

at y = +a/2 u=0 (2.1)

y = -a/2 u=0.

Since the flow is fully developed, the velocity can not vary with

X and is a function of Y only, u = u (y) . There is no component of

velocity in either Y or Z directions, v - w = 0.

A differential control volume of size dV = dXdYdZ is selected

(Fig. 2.1) and applied to the X component of the momentum equation:



_ J updV + JF +F = J updV + J upv.dA (2.2)
Sx Bx dt cv cs

(1) (2) (3) (4)

F_ represents surface force and F_ represents body force. Term

(4) indicates the momentum flux through the control surface area dA.

Term (3) represents the rate of change of momentum. For steady flow,

all fluid parameters are independent of time and term (3) equals zero.

The net momentum flux through the control surface is zero as a result

of fully-developed flow and term (4) equals zero. We assume there is

no body force in X direction, thus term (2) equals zero. Finally, the

momentum equation reduces to,

F - . (2.3)
sx

We now sum the forces acting on the control volume in the X

direction. There are normal forces (pressure forces) acting on the

left and right faces; there are tangential forces (shear forces)

acting on the top and bottom faces.

Suppose the pressure at the left face of the element is p, then

the force on the left face is

p dydz
, (2.4)

and the force on the right face is

dp
-

( p + dx) dydz . (2.5)
dx

10



Similarly for the shear stress t , the shear force on the bottom
yx

face is

- r dxdz
, (2.6)

yx

and the shear force on the top face is

dr
yx

(r + dy) dxdz . (2.7)
yx dy

Summing the forces acting on each face of the control volume, we

can simplify the equation to

(2.8)

(2.9)

dp yx
+ =0

dx dy

dr Ayx dp
— — constant.

dy dx

Integrating this equation, we obtain

dp
r = y + C. .

yx J 1
(2.10)

dx

Using the definition of Newtonian fluid r = /i (du/dy) where
yx

/i is the dynamic viscosity, gives

du dp

m _ = y + c, (2.11)

dy dx
and

1 dp 2 1
u = r v +

C

y + C 9 . (2.12)

2/i dx

Applying boundary conditions, gives

11



c
x
- o, (2.13)

1 dp a
]

2 " " '

H dx 8

(2.14)

and

1 dp ,2a.
u - _1_ (y - ) (2.15)

2\i dx

We calculate the average velocity u

and obtain

[

a/2 udy= [*/2 - j_ 5:
J_a/2 J -a/2 2/i dx

(y
2

-
a

) dy , (2.16)

a dp
u - -( ) _

12/i dx

The volumetric flowrate is given by

Q - V. dA

For a unit depth 1 in the Z direction

Q

a/2 -

ul dy
,

-a/2

or

(2.17)

(2.18)

(2.19)

Q

T

a/2 1 dp 2 af-

(_)( y - _ ) dy
_a/2 2\i dx 4

(2.20)

Thus the volumetric flowrate per unit depth
, (q) is

a dp

q - - ( ) (_) •

12/i dx
(2.21)

12



In real applications, especially for those small apertures,

fracture walls are not strictly smooth and surface roughness can cause

turbulence or a boundary layer in the flow (Ryan and Kimbrell, 1987).

To approximate this, we include a factor of roughness which can cause

an apparent reduction in flow,

a dp

q - - ( ) (_) • (2.22)
12/if 3x

According to the investigations of Witherspoon (1980) and

Sundaram (1987), the factor f varies from 1.04 to 1.78 which depends

on the mechanical properties of fractures and rock. According to the

investigations of Louis (1969) and Wilson (1970) , turbulence only

exists in a small portion of the network which has large hydraulic

gradients. Louis (1969) states the effect of turbulence is only

small within the fluid system, and that the assumption of laminar flow

can be considered a good approximation. Only when large portion of

the fluid network is turbulent, the total flow will be significantly

over estimated by the laminar flow. The validity of the cubic law for

laminar flow through open fractures consisting of parallel plates has

been estabilished with apertures ranging down to a minimum of 0.2 um

(Witherspoon et al., 1980).

3
Defining Kp = a /12juf as the joint permeability, we obtain the

relation between flowrate and pressure gradient,

dp

q = - Kp (_ ) . (2.23)
dx

13



2 .2 One Dimensional finite element model

2.2.1 The differential fluid element

We now derive the differential equation for one dimensional fluid

flow. The differential fluid element with a unit depth is shown in

Figure 2.3. The density of the fluid is assumed to be constant. The

size of joint opening will change the volume of the differential

element, so it must be included in the formulation. It is assumed

that p is the fluid density, u is the average velocity of fluid and a

is the joint opening. From the law of conservation of mass:

a a

pua - [pua + (pua)dx
J

- (pa)dx
, (2.24)

ax at

we obtain

(/ma) - (pa) . (2.25)

Since p = constant,

ax at

a aa
(ua) - . (2.26)

ax at

From the definition of volumetric flowrate Q - ual (1 is depth)

define the volumetric flowrate per unit depth as q = ua

a q
+ a = , (2.27)

ax

where the derivative with respect to time is indicated by (').

Assuming the flow rate is proportional to the pressure gradient

(equation 2.23), where K is the joint permeability,

we obtain;

14



3 dp
(K ) - a - . (2.28)

3x dx

2.2.2 Quadratic one -dimensional element formulation

The interpolation equation for the one -dimensional quadratic

element (Figure 2.2) is

*(£) - a
x
+ a

2
C + a

3
|
2

. (2.29)

The shape functions for the one -dimensional quadratic element

relative to the £ - coordinate system are

N
x CO -(£/2) (£-1)

N
2

(|) - -(?-l) (C+D (2.30)

N
3

(£) -(1/2) (£+1)

so

X (?) - N
t
(0 X

x
+ N

2
(|) X

2
+ N

3
(0 X

3
. (2.31)

The Jacobian of the transformation is

Y - Y
dx(|)

A
3 1

- 6(3^ - 2X
2
+ X

3
) + . (2.32)

d| 2

Assuming node 2 is at the middle point of the element,

X
x

- 2X
2
+ X

3
- (2.33)

and

dX(?) L

d t 2

(2.34)

15



where X- - X, - L, the element length.

The row vector [D] contains the derivatives of element shape

functions with respect to X written in terms of the £ - natural

coordinate system,

dN
x

dN
2

dN
3

[D] -
{ (O (O (O ) . (2.35)
dX dX dX

We use the chain rule to obtain,

dN
x

dN
x

dX

(2.36)
d| dX d£

giving

2
r

l l
\

[D] - {(£ - ) -2£ (£ + )} . (2.37)
L L 2 2

J

2.2.3 Galerkin's method

The weighted residual integral is the line integral along the X

direction. We will assume the weighting function for the Sth node,

W , consists of the shape functions associated with the Sth node

(Segerlind, 1984). Therefore [W ] = [N
] ,

[N] is the row vector

containing the element shape functions. Defining a column vector {R}

,

each component of (R) represents a residual equation,

(R)

T 3 dp
[N] { (Kp ) - a } dx

, (2.38)
L 3x dx

separating the terms inside the integral

16



<R)

t a ap
[N] (Kp ) dx

ax ax
[N] a dx . (2.39)

Integrating by parts, gives

T 3p
{R} = [N] Kp

ax

dp 3[N]
Kp dx

L dx 3x
[N] adx . (2.40)

The integration over the body in equation (2.40) is performed

dividing the body into elements and summing the integration over each

element. For each element, we have,

3p

ax
[D] [P] (2.41)

We can obtain

{R} - [N] q Kp[D][P][D] dx [N] a dx .(2.42)

Because a = [N] [a] and both [P] and [a] are constant with respect

to the integration,

L,

{R} = [N] q Kp[D][D] dx[P] - [N] [N] dx[a] . (2.43)

From the element matrix formulation equation (2.37), we expand

T
[D] [D] to obtain,

[D]
T
[D]

(£-1/2)*

-2?(M/2)

2^-1/2) (r_i/4)

-2£(£+l/2)

(| -1/4) -2£(£+l/2) (1+1/2)^

17



[B] (2.44)

We use the shape functions to describe the fracture opening in

3
equation 2.23, Kp - a /12/if

- {[N] [a]}
3
/12/if (2.45)

substitute (2.44) and (2.45) into equation 2.43, gives,

L
i n

3
{R} = [N] q

(3)

L 12/il/f
.

im [a]KfB]dx [P] -

(2)

[N] [N]dx [a](2.46)

(1)

Integration is done numerically by transforming to the natural

element coordinate system. We can transform term (1) from the global

coordinate system X to the natural coordinate system £ by,

IT.
[N] [N] d£ [a]= [S] [a]

,

-1

where [S] is the storage matrix due to crack opening velocities

Similarily, transforming the stiffness matrix,

(2.47)

3/i L
2
f

{[N] [a]T [B] dx - __^_
L 6/i L f

1
([N] [a]}

3
[B] d£.(2.48)

-1

Using Che shape functions in terms of the natural coordinates,
we obtain for the stiffness matrix,
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[K]

6/iLf

1
[(

a
l - a

2
+ ^3__)i

2
+ (^ -

a
!_)g +a

2]

3
TB] d£,(2.49)

-12 2 2 2

Finally we get,

{R} - [Q] - [K][P] + [S][a] . (2.50)

Setting {R} = {0}

[K][P] = [Q] + [S][a]
,

(2.51)

where [K] is the permeability (stiffness) matrix, [P] is the column

vector containing nodal pressures, [Q] is a vector of specified flow

rates, [S] is the storage matrix due to the opening of the gap, and

[a] is the gap opening velocity at the nodes. We can solve

equation (2.51) for nodal pressures.

2.3 One Dimensional Tracer Model

Tracer are used to track the motion of fluid in the system of

fractures and can provide important information on the fractures

system. Typically, the tracer is a chemical or radioactive material

that is mixed with the injected fluid and the concentration is

monitored at the output. In Fenton Hill experiments, engineers have

used sodium fluorescein dye, sodium bromide and sodium nitrate to

estimate the volumes of fractured systems.

The first derivation of the tracer model is for an active element

already filled with fluid. The differential tracer element with a

unit depth is shown in figure 2.4. The fluid is assumed

incompressible. The concentration of tracer is denoted by c , u is the
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average velocity of fluid and a is the gap opening. From the law of

conservation of mass:

3 3

cua - [cua + (cua)dx II - (ca)dx . (2.52)
3x at

Differentiating the right side,

3 3c 3a
(cua) - a + c . (2.53)

ax at at

The differential form becomes

3c 1 a 3a
= ( - (cua) - c ) . (2.54)

3t a 3x 3t

We solve equation 2.54 using a simple finite difference scheme.

It is assumed that a fluid element is divided into three sections

.

For each section, the current tracer is going to next section and will

be replaced by the new coming tracer. The movement depends on the

direction of fluid velocity. Equation(2 . 54) gives the rate of change

of concentration in each section of fluid element.

c c
3c new old

(2.55)
3t At

and

S , S CUa
I

•
_ CUa

I /O C/-N(cua) = J_in 'out (2.56)
3x Ax
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da a - a , ,new old
(2.57)

at At

At cua I . - cua I a - a , ,

'in 'out new old
c - c +

(
-c ) (2.58)

new old a Ax At

Equation(2 .58) shows the relationship between current tracer and

the new coming tracer.

In the fluid system network, mixing of the tracer occurs at

the connecting nodes of fluid elements. The calculation of tracer

mixing is illustrated in Figure 2.5, where there are two branches of

fluid flowing into a fluid element. At node I the calculation of

concentration of input tracer is a weighted average of the input

concentration,

u.. c.. + u
2

c
2

c. - . (2.59)
input

u
l
+ u

2

The output concentration is the current concentration at the node.

For nonactive fluid elements, the calculation of mixing of tracer is

as follows (refer to Figure 2.5). The input node for any inactive

element may be connected to several other active or nonactive

elements . The active elements give the total flow into the node . The

flow into each inactive element is distributed using the

permeabilities of the inactive elements.

In Figure 2.5, there are three inactive elements at the input

node. The input to element number 23 is then:
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At node I

and

K .

Pi

q in
=

( *1 +
^2 >

K . + K ., + K „pi pi p2

K .

Pi
C
in
=

( c
l
+ c

2 >

(2.60)

(2.61)

pi pi p2

The concentration of tracer in this element becomes

c. Q. At + c, Q. At + c , . V,..,, ,k xk old filled

Q. At + Q, At + V-.., ,x
i

xk filled

c
„ld

-
• <

2 - 62 >

K indicates the conductivity of fluid element, q is the

flowrate in the active element, and c is the concentration of tracer.

V.c--,t , means the volume of the element which is already filled with
filled J

fluid.
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CHAPTER III

DESCRIPTION OF FLUCRK

This chapter provides a brief description of FLUCRK. Significant

features of the implementation include the use of dynamic relaxation,

the connection between the structure model and fluid model, the use of

active/nonactive elements to model storage, and the use of interactive

computer graphics to specify the problem and examine the results. The

flow chart of FLUCRK is shown in Fig. 3.1.

3 .1 User Interaction

3.1.1 Automated mesh generation

Before executing FLUCRK, the user must generate a mesh. A short

program called "AU-MESH" allows the user to generate simple symmetric

meshes interactively. The program automatically creates an output

geometry file which can be read by FLUCRK. This program was used to

generate the meshes used in application calculations (chapter V)

.

3.1.2 Interactive Problem specification

After the geometry file has been read into FLUCRK, the problem

specification is performed interactively. The user can modify the

mesh by deleting or adding elements. The user can enter the FLUID MAT

COND page to examine and change material properties interactively.

The FLUID BC page allows the user to specify boundary conditions

(either pressure vs time or velocity vs time) at arbitrarily picked

nodes. The far field boundary conditions (Section 3.4) are specified
Vi

using a flowrate vs pressure curve. In the ANALYSIS PARAMETER page
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the user can set the start time, the end time, the time intervals to

store analysis results, restart data, and plot data. Parameters

controlling the solution are specified in the FLUID page.

Besides these parameters, the user can also specify the gap

opening used to flag whether an element is active. Elements with

large initial openings accumulate fluid until they are filled,

elements with smaller gaps are assumed filled and initially active.

At the MAIN page, there are two options used to manually save

problem data. These are the SAVE RESTART and SAVE PLOT functions. SAVE

RESTART saves all problem data at the present time in a restart file.

The user can then retrieve all the problem data to rerun the

analysis. SAVE PLOT will save plot data for the current time.

Once a problem is finished, the user can always return to change

parameters or boundary conditions and execute the problem using the

RESTART function or examine the results by entering the PLOTS page.

In the FLUID PLOT page, there are nine functions to examine

results already obtained. These functions are divided into two parts.

One is color plots of a specified parameter (pressure, flowrate,

velocity or tracer) at a chosen time step. Another is time history

plots (pressure, flowrate, velocity, tracer or kinetic energy).

Quantities are displayed as a function of time at a specified node or

element

.
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3.2 Connection Between Structure Elements and Fluid Elements

This finite element model was developed as part of a large

structural code, CRACKER (Swenson, 1985), which can solve both dynamic

and static problems. CRACKER uses six noded triangular elements to

model the continuum and includes interface elements to model contact

between bodies. We added a third element type, a one dimensional

fluid element. As illustrated in Figure 3.3, each fluid element lies

between two structural elements and has six nodes. However, only

three nodes per element are required to represent the network of fluid

elements. To save storage in the fluid solution, a fluid model

numbering system is used that is independent of the structural nodes.

The fluid numbering system (P, , P« , P~, etc) is invisible to the user,

but is automatically generated when the fluid solver is entered.

We create two array listings to define the connection between the

fluid and structure elements. The first array is called a

connectivity list and indicates the node numbers of the structure and

fluid nodes in each fluid element. We use the following storage,

where ELEM indicates the fluid element number,

C0NN(1-6,ELEM) : STRUCTURE NODE NUMBERS

C0NN(7,ELEM) : ELEMENT TYPE

C0NN(8,ELEM) : MATERIAL NUMBER (SPECIFIED BY USER)

C0NN(9-11,ELEM): FLUID NODE NO.

This array allows the program to go from the fluid elements

to the fluid nodes

.

Another array listing which we call the inverse connectivity list

stores the number of all fluid elements connected to each fluid node.
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This array gives the program pointers from the fluid nodes to

elements. The array is used when calculating net flow into any node.

For a fluid node, FLUID, this data is stored as,

FL0W_C0N(1, FLUID)

FL0W_C0N(2,FLUID)

FLOW PT( FLUID)

NO. OF FLUID ELEMENTS CONNECT TO THE NODE

POINTER TO ELEMENT NUMBER LIST

ELEMENT NUMBER LIST

The above data storage scheme eliminates the need for repeated

searching to identify connectivity.

3.3 Active/Nonactive Element

Conceptually, the joint network includes joints that are initially

open. These joints must be filled with fluid before we can assume

that conservation of mass applies for that joint. Until the open

joints are filled, they are called nonactive. The pressure at the

nodes of nonactive elements are assumed zero and they are not included

in the solution of equation (2.51). Instead, they supply boundary

conditions to this equation. Once it is full, the element is turned

active and included into the pressure calculation.

For all initially inactive elements, the initial empty volume

is calculated. In each time step, the flow into the inactive elements

is calculated and the new empty volume obtained. The total flow into

the empty joint is calculated and used to obtain the new empty volume,

v
new m v

old _ (Total flow rate in) * TSTEpempty empty
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where TSTEP is the time increment. If V is smaller than or equalempty M

to zero, that means the fluid element is filled with fluid. It is

automatically turned on to active status and included into the flow

calculation.

In general, several active/nonactive elements may connect at one

node. Total flow into the node is obtained using all active elements.

If more than one nonactive element is connected to a node, the flow is

proportioned to the nonactive elements using their conductivities.

If an element fills in the middle of a time step, all additional

flow into that element is lost to the calculation. It is important to

choose the time step small enough that this loss is minimized.

3.4 Far Field Boundary Condition

The finite element model can not extend to infinity, including all

flow paths between the wells. Instead, we can include only a finite

region around the two wells. We call this boundary around the problem

the far field boundary. In the real problem, flow leaks out of this

boundary into the infinite system. As a first approximation, we

assume the leakage is a function of pressure at the far field boundary

nodes. The user can specify a nonlinear relation of pressure vs

flowrate . As will be discussed in chapter V, we examine the

sensitivity of the solutions to the far field boundary conditions.

3.5 Solution Technique

Dynamic relaxation (Day, 1965; Underwood, 1983; Papadrakakis

,

1981) is the technique used to obtain the solution to equation 2.51.
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Dynamic relaxation (DR) is an explicit iterative method for the static

solution of simultaneous equations. It is based on the fact that a

system undergoing damped vibration excited by a constant force

ultimately comes to rest in the displaced position of static

equilibrium of the system. It has been extensively used for both

linear and nonlinear structure analysis (Frieze, Hobbs and

Dowling, 1978 ; Pica and Hinton, 1980). This method is derived from the

dynamic equilibrium equation:

[M][P] +[C][P] +[K][P] - [Q] , (3.1)

where [M] is a mass matrix, [C] is a damping matrix, [K] is the

stiffness matrix, [P] is the fluid pressure vector, [Q] is the

flowrate vector and the dot represents differentiation with respect to

time.

Using the method of central difference, we can get [P]
,

[P] and [P]

as follows :

. . [QJ-CP-KP
P ,

M

P = P + P h
, (3.2)

new old

P - P,. + Ph
new old

where h is a fixed time increment. To preserve the explicit form of

the central difference integrator [M] must be diagonal and the damping

matrix [C] has the form [C] - c [M]

.
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To obtain the static solution from the equation, we should select

the damping coefficient c, the time increment h, and the mass matrix

[M] to converge rapidly. Physically, the damping, time increment and

mass are selected so that the transient response will reach the steady

state under the applied load Q. Only P and Q must represent the

physical problem and c and M do not need to represent the physical

structure (Underwood 1983)

.

The pseudo mass matrix [M] here being used is derived from

Gerschgorin' s theorem :

1 2

(3.3)

where m. . are the diagonal elements of the pseudo mass matrix and K.

.

are the elements of the stiffness matrix K. Underwood (Underwood

1983) suggested evaluating [M] for h - 1.1 and iterating with h = 1

to ensure stability. We found it was necessary to use h = 0.5 for

stability.

The damping matrix coefficient is computed at each iteration from

Rayleigh's quotient as (Underwood, 1983) :

1 2

m - —

—

ii 4

• h z K

/ P]
T
[K] [P] / [P]

T
[M] [P] (3.4)

The flow chart of dynamic relaxation is shown in Figure 3.2.

We have tested two different convergence criteria. The first uses

the maximum kinetic energy during the solution. At each iteration,

the current kinetic energy is compared to the maximum kinetic energy

times a factor. If the current energy is smaller, we assume that the

system is converged. The difficulty with this criteria is that
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pressure boundary conditions can lead to a large initial kinetic

energy, and convergence is not obtained unless a very small factor is

used. Under this condition, the result is not reliable. The second

criteria checks the difference between the previous pressures and

current pressures divided by previous pressures. If the difference is

smaller than the tolerance specified by the user, we assume the

pressures are converged. The reasonable tolerance is picked by a

series of trial and error tests.

The main advantage of dynamic relaxation lies in its basic

simplicity and the straightforward algorithms which can be written for

complicated problems. In the implementation, no global matrices are

actually formed. Instead, equation 3.1 is solved by looping in all

elements and accumulating the unbalanced forces. There is no required

numbering scheme for the elements or nodes, which is ideal for the

present application, that includes active and inactive elements that

change during the analysis. An additional advantage is the

exceptional robustness of this solution scheme for nonlinear problems,

such as when the structural model is coupled to the fluid model and

fluid flow becomes a cubic function of joint opening (equation 2.22).

The main disadvantage of this method is the relatively long

solution time compared to direct solution methods for a linear system

of equations.

33



Generate Geometry File

^l
Input material properties

nput boundary conditions

No. of time step

\/

Dynamic Relaxation

^L
PRS PLOT

RAT PLOT

VEL PLOT

TRACER

_^_

PRS VS T

RAT VS T

VEL VS T

TRACER VS T

Figure 3.1: Flow chart of FLUCRK
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CHAPTER IV

VERIFICATION PROBLEMS

A number of verification problems have been solved to test the

computer program and to demonstrate the method of analysis described

in chapter II. Problems one and two are designed to test the effect

of fluid flow while all fluid elements are active (problem one) and

nonactive (problem two) at the beginning. They use the same mesh with

a straight flow path that includes 25 fluid elements. Tracer was

pumped into the flow path in these two problems to verify the motion

of tracer through time. Problem three demonstrates the mixing of

fluid flow and the change of concentration of tracer in multiple flow

paths. Problem four tests the specification of nonlinear far field

boundary conditions

.

4.1 Problem One - Flow in Crack

This problem is a simple one dimensional problem (Figure 4.1).

Fluid flow was pumped into the left side under constant pressure and

output from the exit in right side. Twenty five fluid elements

construct a straight flow path and they are all filled with fluid at

the beginning. The problem was solved for 25 time steps of 1 sec

each.

-5 2
All elements had the same dynamic viscosity u = 0.15x10 N-s/m

and gap opening a = 0.03 m, as shown in Figure 4.1. The input

pressure was 20 Pa and output pressure was Pa. Both were kept

constant during the analysis.
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The calculated flowrates at the input and output elements are

shown in Figure 4.2 and Figure 4.3. They both are identical in every

time step and correspond to the expected values.

To demonstrate calculations using the tracer option, we injected

tracer as a pulse from 2 through 5 sec. The input concentration was

100%. Time history plots of the tracer at the input, center, and

output nodes are shown in Figure 4.4. The flow of the tracer from the

input to output is clearly seen, with the pulse travelling at the

velocity of the fluid. Some numerical diffusion of the tracer is seen

to occur.

This example shows the pressure decreased linearly from the input

to output pressure, and flowrates and velocities are constant through

the problem. It also demonstrates that the tracer calculation works

correctly.

4.2 Problem Two - Flow in Empty Crack

Problem two uses the same geometry and mesh as problem one. The

only differences are that all fluid elements (except those connected

to the input and output nodes) are initially nonactive and the gap

opening is 0.05 m. This example demonstrates filling of empty

elements

.

2
The specified input pressure was 2 N/m and the output pressure

2
was N/m . Flowrates of the input element and output element are

displayed in Figure 4.5 and Figure 4.6. Initial flowrates are high

due to the empty elements next to the input elements. As the flow

progressively fills the elements, the resistance to flow increases and

the flow rate drops. Figure 4.7 demonstrates the pressure and
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flowrates at middle of the flow path. The middle element turned on

after fluid flow filled it after 9 time steps. After twenty two time

steps, all fluid elements were filled with fluid, pressures decreased

linearly between input and output, and flowrates were constant

everywhere.

The expected flowrate is:

a dp
, (4.1)

12/xf dx

3
0. 14 m / sec

which is identical to Figure 4.6.

Figure 4.8 displays the motion of tracer at input, middle and

output locations of this crack system.

4.3 Problem Three - Flow in Simple Network

Problem three has ten fluid elements initially active with a gap

opening of 0.01 m as shown in Figure 4.9. Fluid was pumped into two

2
entries in the left side at 5 N/m and output from two exits in the

2
right side at N/m . The calculated flowrates at the entry and exit

are displayed in Figure 4.10 and Figure 4.11. Figure 4.12 shows the

fluid properties at middle flow path where the pressure equals half of

the input pressure and the flowrate equals the sum of two input

flowrates

.

The motion of tracer is shown in Figure 4.13. Tracer was pumped

into one entry at a concentration of 100%. The concentration of
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tracer at the middle of flow path is only 50% because of the mixing of

the two input flows. When the flow splits at the output, the

concentration remains at 50%. Because of the relatively coarse mesh

used, diffusion of the tracer occurs at the output. Figure 4.14 shows

the pressure plot. The pressure decreased linearly from the input to

the output within each element. The overall tracer plot is displayed

in Figure 4.15, which shows the reduction in concentration of tracer

after mixing.

4.4 Problem Four - Far Field Boundary Conditions

This problem tests the option to specify a pressure- flowrate

relation at the far field boundary conditions (Figure 4.16). It is

assumed the far field condition is a nonlinear relation between

pressure and flowrate as shown in Figure 4.17. The input flowrate

boundary condition at fluid node 5 is between fluid element 2 and 3.

3
The value of the input flowrate is 1 m /sec.

Figure 4.18 and Figure 4.19 show the results of flowrates of fluid

elements 2 and 3, with the absolute sum of them equal to the input

3
flowrate 1 m /sec. Pressures at both ends and input node are

displayed in Figure 4.20.
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Figure 4.4(c): Tracer at output node (problem one)
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Figure 4.5: Flowrate of input element (problem two)
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Figure 4.7(b): Flowrate at middle of crack (problem two)
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Figure 4.11: Flowrate of output element (problem three)
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Figure 4.12(a): Pressure at middle of crack (problem three)
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Figure 4.12(b): Flowrate at middle of crack (problem three)
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Figure 4.14: Pressure plot of problem three

Figure 4.15: Tracer plot of problem three
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Figure 4.16: Verification problem four
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Figure 4.18: Flowrate at left end of fluid element (problem four)
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Figure 4.20(a): Pressure at left end (problem four)
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Figure 4.20(b): Pressure at input node (problem four))
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Figure 4.20(c): Pressure at right end (problem four)
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CHAPTER V

APPLICATIONS

We analyzed five problems which simulate the Phase II HDR project

of Los Alamos national laboratory. Problems one, two, three and four

all include 630 fluid elements and 3339 structural nodes. Problem

five has 165 fluid elements and 924 solid nodes. Problems one, two

and three compare the effect of different far field boundary

conditions. All elements are active at the beginning, and there is no

flow leakage (problem one) and zero pressures (problem two) in far

field. In problem three, a nonlinear pressure/flowrate relation is

specified at the far field boundary. In problem four, we examine the

effect of an unsymmetric flow path with increased conductivity. The

final problem displays the fluid motion in which half of the fluid

elements are nonactive initially. The far field conditions of

problems three, four and five are all the same, which is shown in

Figure 5.14. The input pressure and output pressure are assumed to be

2.034xl0
7

N/m
2

(2950 psi) and N/m
2

(0 psi) for all the five

application problems, giving the same pressure difference as observed

experimentally. Fixing the output pressure at zero helps speed

convergence

.

The dimensions of Phase II reservoir are about 400 m long and 200

m wide. It is believed, that in a plan view, the joints are spaced at

about 10 m horizontally and 10 m vertically. To speed the problem

solution, we used a spacing of 20 m between joints. The large joints

are assumed to have an opening of 0.004 m and the vertical joints have

an opening of 0.0000396 m (Figure 5.2). These values were chosen to
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give what we believed to be approximately the correct storage capacity

and approximately the observed flowrate . The depth of the flow path

-3
between wells is about 100 m and the total flowrate is about 6.3x10

3 -5
m /sec (100 gpm) . For one meter depth, the flowrate is 6.3x10

3
m /sec (1 gpm). From the steam tables (Haar and Gallagher, 1984), the

-4 2 o
dynamic viscosity of water is 1.416x10 N-s/m at 350 bar and 200 C.

In our simulation, we included the factor of roughness - 1.5 into the

stiffness calculation.

5.1 Problem One - Zero Flow in Far Field

In problem one we assume that there is no leakage in far field.

The input flowrate and output flowrate are both shown in Fig. 5. 3.

After 7500 iterations, the system reached a stable condition and the

-5 3
output flowrate equaled input flowrate at 6.3x10 m /sec (1 gpm).

Figure 5.4 shows the pressure at a far field node which has no

flow leakage. Figure 5.5 demonstrates the convergence of kinetic

energy. Figure 5.6 shows the pressure distribution. The maximum

pressure is represented by red and the minimum pressure is represented

by green. The pressure decreased from the input node to output node.

Figure 5.7 shows the flowrate plot. The arrow indicates the direction

of fluid flow. The flowrates of the far field nodes are smaller than

1.0x10 which approximately equals to zero because of no far field

leakage

.
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5.2 Problem Two - Zero Pressure in Far Field

The only difference between problem one and two is the far field

condition. The specified pressure vs flowrate far field boundary

condition was chosen to approximate a zero pressure condition. This

is shown in Figure 5.8.

Figure 5.9 shows the flow at the input and output wells. The

input flowrate is approximately three times the flowrate of problem

one due to reduced resistance, because of the added flow paths to the

far field. The output flowrate is only 1/4th the output flowrate of

problem one, since, due to far field leakage, most flow does not reach

the output node

.

The pressure and the leakage flowrate at a far field node are

shown in Figure 5.10. The pressure is approximately zero. Figure

5.11 shows the convergence of kinetic energy.

Figure 5.12 shows the pressure distribution. Far field pressures

are approximately zero. The flowrate plot is shown in Figure 5.13.

The arrows of flowrates in far field elements point outward which

indicates flow leakage in far field.

5.3 Problem Three - Nonlinear Pressure/Flowrate in Far Field

Problem one and two examined the extremes in far field behavior -

zero flow or zero pressure. In reality, it is expected that

some leakage occurs, but that the leakage is pressure dependant. We

examined this situation by specifying a nonlinear pressure/flowrate

relation at the far field boundaries (Figure 5.14). This relation

resulted in leakage flow at about one third of the far field nodes.

Flowrates at the input node and output nodes are shown in

Figure 5.15. The input flowrate is slightly large than the flowrate
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for problem one, which had no leakage. The output flowrate is about

3/4 of the input, so about one fourth of the flow leaks to the far

field. The pressure at a far field node which has no flow leakage is

shown in Figure 5.16.

Tracer was pumped into the crack system from time 1x10 sees to

9x10 sees . The motion of the tracer is shown in Figure 5.17.

Diffusion of the pulse occurs between the input and output. We

believe that most of this is realistic due to mixing of tracer in the

open joints. In addition, the multiple flow paths effectively diffuse

the tracer pulse.

Kinetic energy during convergence is displayed in Figure 5.18.

Figure 5.19 and Figure 5.20 show the pressures plot and flowrates.

Figure 5.21 shows the velocity plot. This clearly indicates the

slower flow velocities in the larger joints. In Fig. 5.20 and

Fig. 5. 21, the arrows of fluid flow in far field show 1/3 of far field

nodes leak due to the nonlinear relation of pressure vs flowrate.

The tracer motion is shown in Figure 5.22 at three different time

steps. The tracer spread into more fluid elements through time

history. Because we only pumped the tracer into the well from time

0x10 to 9x10 sec, Figure 5.22(c) shows that at time 15x10 sec the

zero concentration of tracer has spread from the input area.

5.4 Problem Four - Reduced Resistance Flow Path

In problem three, we examined flow for a perfectly symmetric

situation. In reality, one might expect that there will be preferred

flow paths of lower resistance between the wells, in addition to the
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more uniform flow paths. We examined this situation in problem four

by adding a third material with an gap opening of 0.0000792 m. Eight

elements which previously were material type one were changed to

material type three. Material type three has twice the gap opening of

material type one (Figure 5.23). These eight elements construct a

"bridge" between input node and output node which allows fluid flow

pass more easily.

Figures 5.24(a) and (b) show the input flowrate and output

flowrate. The flow is increased over problem three due to the

decreased resistance of the bridge. Because of the nonlinear

pressure vs flowrate relation in far field, the leakage of fluid flow

causes the output flowrate to be less than the input flowrate.

The motion of tracer is shown in Figure 5.25. The existence of

the "bridge" causes the tracer to move faster from input node to

output node through the "bridge". Due to the dilution of fluid, the

concentration of tracer at the output place is very low at the

beginning and then gradually increases. Figure 5.26 shows the kinetic

energy plot.

Figure 5.27 shows the pressure plot and Figure 5.28 shows the

flowrate plot. The velocity plot is shown in Figure 5.29. Figure

5.28 and 5.29 show clearly the low resistance bridge between input

node and output nodes

.

The motion of the tracer is shown in Figure 5.30 at three

different time steps. The tracer follows the low resistance flow path

from input node to output node through time history.
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5.5 Problem Five - Initially Empty Fractures

In this problem, we used a spacing of 40 m horizontally and 40 m

vertically. The larger joints are assumed to have an opening of 0.008

m (Figure 5.32(a)) and the vertical joints have an opening of 0.00005

m (Figure 5.32(b)). These values were chosen to give approximately

the correct storage capacity and approximately the observed flowrate.

It is assumed that elements of material type one (Figure 5.32(a)) are

active and that of material type two (Figure 5.32(b)) are nonactive

initially, except for those elements which connect to the input and

output nodes which are assumed to be active.

One time step is specified as 40000 seconds (11.1 hours) which

is less than the time that need to fill a empty element. According to

the result, it took 640000 seconds (7.5 days) for fluid to travel from

the input node to output node. This clearly indicates that the

assumed gap of the open joints was too large.

Figure 5.33(a) and (b) show the input flowrate and output

flowrate. The output flowrate is less than the input flowrate because

of the far field leakage.

Figure 5.34 through Figure 5.36 give pressure and flowrate plots

at three different time steps. At each time step, we see that more

fluid elements fill with fluid and become active. Because of the

nonlinear pressure vs flowrate relation, some far field nodes leak, as

shown in Figure 5.36(b).
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Figure 5.1: Mesh plot of application problem one
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Figure 5.3(b): Flowrate at output node
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Figure 5.6: Pressure plot of application problem one
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Figure 5.7: Flowrate plot of application problem one
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Figure 5.9(b): The output flowrate of application problem two
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Figure 5.12: Pressure plot of application problem two

Figure 5.13: Flowrate plot of application problem two
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Figure 5.15(b): Flowrate at output node (problem three)
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Figure 5.19: Pressure plot of application problem three

Figure 5.20: Flowrate plot of application problem three
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Figure 5.21: Velocity plot of application problem three

Figure 5.22(a): Tracer plot at 4x10 seconds
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Figure 5.22(b): Tracer plot at 9x10 seconds

Figure 5.22(c): Tracer plot at 1.5x10 seconds
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Figure 5.24(b): Output flowrate of application problem four
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Figure 5.27: Pressure plot of application problem four

Figure 5.28: Flowrate plot of application problem four
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Figure 5.29: Velocity plot of application problem four

Figure 5.30(a): Tracer plot at 1x10 seconds
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Figure 5.30(b): Tracer plot at 4x10 seconds

1

Tim . • «#*»M**1 Tim <•» . 4 r— .

TOP
•IT *.NC(

"•«• KM

III L niiMM
•

• INNXI ;

• 7MM*M
• «t9M*M *

• >•••!• »l 1
p

• I'511-ll s

• I9«M«M *

• IMH*«I .

• •••••••! -
ft

MODI HUB

ILID HUH J

BBBBB^BB^BSiraOW
55 T!»#] ;

-

Figure 5.30(c): Tracer plot at 6x10 seconds
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Figure 5.32(a): Material property of material type one

Figure 5.32(b): Material property of material type two
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Figure 5.33(b): Output flowrate of application problem five
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Figure 5.34(a): Pressure plot at 4x10 seconds

Figure 5.34(b): FIcv/rate plot at 4x10 seconds
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Figure 5.35(a): Pressure plot at 6x10 seconds

Figure 5.35(b): Flowrate plot at 6x10 seconds
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Figure 5.36(a): Pressure plot at 1.2x10 seconds

Figure 5.36(b): Flowrate plot at 1.2x10 seconds

94



CHAPTER VI

CONCLUSIONS

In this thesis, we have developed a finite element model of

fluid flow in fractured rock. The flow paths in the rock are

modeled discretely using one dimensional finite elements combined in a

network. Special features include the capability to model the

filling of empty joints, simulate far field leakage using a nonlinear

pressure/flowrate relation, and model the injection of a tracer and

its distribution through the system. Interactive computer graphics

allows the user to easily specify the problem and review the

results. Dynamic relaxation is used to obtain a solution. This

robust scheme will be used when the fluid model is coupled to a

deformable rock model and the solution becomes nonlinear.

The verification examples presented in chapter IV are idealistic.

They demonstrate most features of the model.

The application problems show the pressure and fluid flowrate

distributions for fluid being pumped in one well at high pressure and

removed from another well at low pressure. Application problems one,

two, and three show the significance of the far field boundary

conditions. Significant leakage occurs if the zero pressure condition

is specified.

In problem four we examined the effect of a lower resistance

bridge between the input and output wells. This is an attempt to

simulate a more realistic situation, where there is a dominant flow

path between wells in addition to many other flow paths. Flow did
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indeed follow the lower resistance path, as shown by both the flowrate

and tracer calculations. The tracer signal was received at the output

much sooner. Smoothing of the signal occurs both because of dilution

with water in the fractures and due to mixing from the different flow

paths

.

In problem five we demonstrated the filling of open joints. The

analysis showed the progressive filling and activation of elements

between the input and output.

All the application calculations were approximate solutions in

support of the Hot Dry Rock geothermal energy project. The accuracy

of prediction depends largely upon the amount of correct geological

information available. The controlling factor of fluid flow is the

3
magnitude of the aperture, and since flowrate depends on (a) , a

slight change in aperture can easily dominate any other change in the

geometry of the flow field. In general the information such as

fracture aperature, wall roughness and far field conditions are little

known.

The finite element model developed in this study is quite

versatile, and can be coupled to the deformation of the rock blocks

easily. This coupled code will make it possible to predict the manner

in which joint openings change during Hot Dry Rock experiments. After

coupling the fluid and structural models, the next step will be to

couple heat transfer to the solution. The final model will aid the

engineer in developing a clearer picture of flow behavior in the HDR

reservoir.
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ABSTRACT

In this thesis, we develop a finite element model of flow in

fractured rock masses. The joints are modeled discretely using one

dimensional finite elements connected in a network. Because of the

robust solution scheme, complicated nonlinear joint networks can be

solved. The model includes the filling of empty joints as fluid is

pumped through the fracture network. If a joint is not filled, the

pressure in the joint is assumed zero and the net flow into the joint

is calculated. When a joint fills, the element becomes active and is

included in the flow calculation. Far field leakage is simulated using

a nonlinear pressure -flowrate relation. The user can also specify

arbitrary tracer input and monitor the distribution of the tracer

during an analysis.

Example calculations include solutions in support of the Hot Dry

Rock geo thermal energy project. The solutions show the pressure

and fluid velocity distributions for fluid being pumped in one well

at high pressure and removed from another well at low pressure. A

comparison of solutions with uniform and nonuniform joint openings

shows how the fluid follows the low resistance path and how the

tracer output signal is smoothed as a result of the different flow

path arrival times. The results of this model will aid engineers of

Los Alamos to understand more about fluid motion in the Hot Dry Rock

reservoir.




