GAS ABSORPTION IN CO_CURRENT FLOW

by

Lin-chuan Cha

B. S., National Taiwan University, China, 1954

A THESIS

submitted in partial fulfillment of the

requirements for the degree

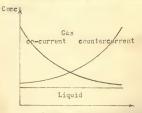
MASTER OF SCIENCE

Department of Chemical Engineering

KANSAS STATE UNIVERSITY OF AGRICULTURE AND APPLIED SCIENCE

1960

LD
2668
T4
1960
C42
C.2
DACUMEN


TABLE OF CONTENTS

THEORY 2 EXPERIMENTAL 2 EXPERIMENTAL 4 EXPERIMENT	INTRODUCTION	1
RESULTS AND DISCUSSION OF EXPERIMENT	THEORY	2
DISCUSSION OF RESULTS	EXPERIMENTAL	4
CONCLUSION	RESULTS AND DISCUSSION OF EXPERIMENT	10
ACKNOWLEDGMENT	DISCUSSION OF RESULTS	15
BIBLIOGRAPHY	CONCLUSION	32
	ACKNOWLEDCMENT	38
APPENDIX	BIBLIOGRAPHY	39
	APPENDIX	41

INTRODUCTION

Gas absorption is one of the numerous chemical engineering operations which involve transfer of material from one phase to another. Up to the present time nearly all industrial absorption equipment is operated under the countercurrent flow condition. However, evidence indicates that in certain cases this type of flow is not necessarily the best (17).

The main disadvantage of co-current flow is that generally a smaller driving force is established in the absorption equipment in comparison with the countercurrent flow. Such disadvantage will disappear when there is no appreciable vapor pressure of the transferring component in the liquid phase. For instance, in the absorption of CO_2 into caustic solutions, it has been assumed by various investigators (17), that there is no CO_2 pressure over the solution. Thus, the driving forces in both countercurrent and co-current flows will be the same, as shown by the following graph.

Distance from liquid inlet

On the other hand, operation under co-current flow has some advantages over that under countercurrent flow. The pressure drop is smaller in the former case, and correspondingly the power requirement will be lower. Besides, there is no limitation of high rates of flow due to flooding or loading.

Various apparatus have been proposed for laboratory scale absorption studies. Two of the frequently used apparatus are the disc column, which was introduced by Stephens and Morris (19), and the short wetted-wall column, which has been widely used during the last few years (4) (22). In both columns the surface areas are measurable, but the disc column provides a condition more like that in the packed absorber.

This investigation was to study the co-current flow absorption. The experiments were performed in both a disc and a packed column under cocurrent and counter-current flows for the sake of comparison. The CO_{2-H₂O system was chosen for this study, not only for the well-known fact (16) that the liquid-film is the only controlling factor, but also for the extensive results of other investigators available for comparison (6).}

THEORY

In developing absorption theories, several models have been proposed to describe the absorption mechanism.

Hatta's Film Theory (15)

The film concept pictures a stagnant fluid film at the interface, through which film the substance to be absorbed is transferred by stationary diffusion. The rest of the liquid is considered to be completely homogenized. 2

Surface Renewal Theory (3)

This is the modified form of the Higble Penetration Theory due to Danckwerts. In this theory an element of the liquid present at the interface is changed by a transient diffusion process. After some time the element is replaced by another. The chance of the element being replaced within a given time is assumed to be a statistical distribution and independent of its age.

In both concepts use is made of a quantity which can not be directly measured. In the film theory this is the effective film thickness x_{f} , while in Danckwerts' theory it is the mean rate of production of fresh surface per unit surface F. According to these theories, the liquid film coefficient can be expressed as:

$$\begin{split} k_{\underline{L}} &= D/x_{\underline{f}} \text{ by Hatta's film theory, and} \\ k_{\underline{L}} &= \sqrt{DF} \text{ by surface renewal theory,} \end{split}$$

where k_{L} is the liquid film coefficient of physical mass transfer, and D is the diffusivity.

Boundary Layer Theory (14)

In this theory the diffusion boundary layer is considered. The thickness of the layer is the distance measured normally from the interface in which the concentration changes from the interfacial value to the stream value. This theory differs from the film theory on the point that the boundary layer is moving while the film is assumed stagnant. This theory was developed only recently. Owing to mathematical difficulties, only some simple cases have been treated. However, the theory provided a more realistic physical picture than any other theory. The applicability of the boundary layer theory will likely be reduced considerably by the instability of a fluid-fluid interface, but the same is true of the stagnant film and Surface Renewal theories. Some important papers on this field are listed in the references (12) (14).

EXPERIMENTAL.

Scope

Two types of columns, disc column and packed column, were used in the present investigation. In the disc column, the range of liquid flow was determined by the rates at which the column became unstable; that is, from the lowest rate which maintained nearly perfect wetting (cf. section under the heading 'De-wetting' on p.(4) of the disc surface, 10.0 lb./hr., to the highest rate which kept the water from spraying-out, 33.0 lb./hr. In the packed column, the liquid rate covered a range of 13.0-52.6 lb./hr. The gas rate waried from 1.55-10.6 cu.ft./hr. (the corresponding Reynolds numbers based on effective column diameter were 606 and 4150 respectively). The highest liquid temperature was 31.6°C, and the lowest was 21.0°C. The column pressures fluctuated between 722 - 755 mm. Hg. The experimental quantity determined was the liquid film coefficient at 25°C.

Equipment

<u>Columns.</u> The disc column consisted of 35 ceramic discs, enclosed in a pyrex glass tube of 1-1/8 inch inside diameter. The discs were threaded edgewise on a vertical fiberglas cord in such a way that the successive ones were maintained at right angles by means of Duco cement. The general arrangement is shown on Plate I. The water was introduced at the top through a jet, and removed by a central tube and small funnel under the lowest disc. The liquid feed jet was placed 5 cm. above the uppermost disc, as recommended by Stephens and Morris (19).

The packed column was constructed with a 2 inch inside diameter pyrex glass pipe, packed with 8 mm. glass rasching rings. The bed was 5-1/4" in height and supported by a perforated plate. Water was distributed over the packings by a Tygon sprayer. Both ends of column were connected to glass tees, which formed the gas calming sections. Other constants for both columns are listed in Appendix I.

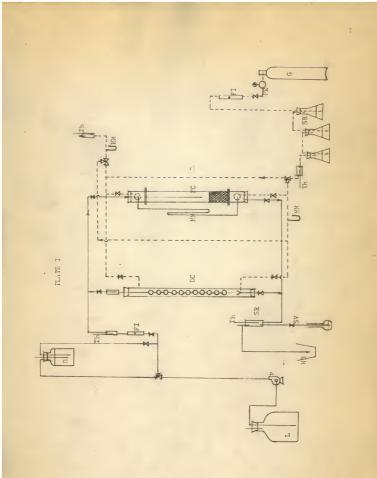
Accessories. A 1/8 hp. centrifugal pump was used to feed water (distilled water) from a 5 gal. carboy to the absorption columns. In the case of the disc column, a constant head tank was used.

A 1/4" needle valve was placed before a flowrator to regulate the liquid flow.

Another 1/4" needle valve was placed before a rotameter to regulate the gas flow from a CO₂ cylinder.

Gas leaving the rotameter passed through three saturation bottles. The difference between the inlet and outlet gas temperature was kept within 1°F to eliminate any effect due to vaporization of water. The guage pressure of the gas flow was measured by a manometer.

A sampling reservoir was used to stabilize the outlet liquid flow during sampling.


Thesemsters were provided at the inlets and outlets of both gas and liquid lines.

EXPLANATION OF PLATE I

Schematics Diagram of Experimental Layout

	SV: Sampling valve	SF: Sampling flash	DG: Dise celum	Mancmeter	Packed column	Saturation bottles	Pressure regulator
•	SV:	ST':	DG1	MM	PCs	SB:	PR:
	Lt Liquid feed tank	P: Feed pump	H: Constant head tank	WB: Weste bucket	Th: Thermometer	FI: Flow meter	SR: Sampling reservoir
	Lt	a.	Ha	-	Th	E	SR

G: CO2 cylinder

Procedure

1.	Discharge remaining liquid from the column and sampling reservoir.
2.	Set gas rate G and liquid rate L.
3.	Adjust the height of the sampling reservoir to ensure liquid seal
	with minimum liquid level in the liquid collecting tube.
4.	Take the first sample at 10 min. for the disc column, or at 5 min.
	for the packed column after the start of the experiments.
5.	Sampling tube was dipped into the trapping solution (20 ml. of 0.1M
	BaCl2 and 40 ml. of 0.05W NaOH) in a 100 ml. measuring flask. The
	flask was plugged with rubber stopper before filtration.
6.	Drain off the liquid remaining in the sampling tube.
7.	Take the second sample at 16 min. for the disc column, or at 8-10
	min. for the packed column,
8.	Time of sampling was about 45".
	Chemical Analysis
Star	dard solutions. HCl was standardized against NagCO3. The effective

concentration of MaOH (OF ion only, CO₃ not considered) was standardized against the standard HGL solution, after excess BaCl₂ was added. <u>Inlet H₂O</u>. The concentration of CO₂ in the inlet distilled water was analyzed every six runs. No appreciable content of CO₂ in H₂O was found. <u>Purity of CO₂</u>. The purity of cylinder CO₂ was analyzed by volumetric method. The result showed that it contained CO₂ more than 99.2 percent. In calculation, 100 percent was assumed.

<u>Analysis of samples.</u> The absorbed GO₂ was precipitated as BaGO₃ in the trapping solution. After filtration the excess NaOH was determined by back titration against HCl solution with phenolphthalein as indicator.

A Magnetic stirrer was used in titration.

Filtration had no appreciable effect on the analytical results, as shown in Appendix II.

Preliminary Experiments

A suspicion of errors introduced by the filtration of the sampling solution in the course of analysis led to the conduction of an auxiliary experiment. Its results are summarized in Appendix II. It was shown in this auxiliary experiment, that the results of analysis were practically unaffected by filtration, the variation of the height of funnel nozzle above filtrate surface, or the exposure time when it was less than 30 minutes.

The same experiment showed that the variation of sample obtained in the disc column was within experimental error for samples taken at longer than 8 minutes after start of the experiment, and another experiment showed that in the packed column it was 4 minutes after start (Appendix II).

Design of Experiment

In the design of experiment letters P,Q, and R denote the co-current flow, and C,D, and E the counter-current flow operation.

A 2x3x3 factorial experiment, PC (2 types of flow, 3 levels of gas rate and 3 levels of liquid rate) was conducted for the disc column study. This experiment contained 2 replicates with total 36 runs and 72 observations.

Another 2x5 factorial experiment, QD (2 types of flow and 5 levels of liquid rate) with various repititions was conducted for the disc column af a fixed gas rate. A 2x3x4 factorial experiment, UE (2 types of flow, 3 levels of gas rate and 4 levels of liquid rate) with 2 replicates was conducted for the packed column study.

Randomized complete block designs were used for the experiments PG and RE, and completely randomized design was used for the experiment QD.

RESULT AND DISCUSSION OF EXPERIMENT

Calculation of Liquid-Film Coefficients

For calculating liquid-film coefficients from the experimental data, the following equations were used;

$$k_{\rm L} = \frac{N/L}{(\Delta C)_{\rm L}m_{\rm c}}$$
(1)

for the packed column

$$k_{L}a = \frac{N/V}{(\triangle C)_{1,m}}$$
(2)

where

kL = liquid-film coefficient, lb./(hr.-sq.ft.)(lb./cu.ft.)

kja=liquid-film coefficient on a volume basis, lb./(hr.-cu.ft.)(lb./cu.ft.)

N = rate of absorption, 1b./hr.

V = volume of the packed bed, cu.ft.

A = dry surface area of the discs, sq.ft.

(AC)_{1.m.} = logarithmic mean of (C_e-C) at inlet and outlet, lb./cu.ft.

 C_e = liquid concentration in equilibrium with the gas phase, lb./cv.ft.

C = liquid concentration, 1b./du.ft.

The values of C_{0} were calculated from the Henry's law, $C_{0} = p/E$, where p is the partial pressure of CO₂, and H the Henry constant (13). The reason for replacing the interfacial concentration with the equilibrium concentration C is based on the fact that the CO2-H2O absorption is controlled by the Hquid film, as verified by Sherwood and Holloway(16).

All mass transfer coefficients so obtained were corrected to 25% according to the following equation, (16):

$$k_{\rm L}^{25} = k_{\rm L} \cdot e^{0.023(25-t)}$$
 (3)

Summary of Data

Data are summarized on Table 3 to 7 in Appendix III. Table 3 lists observed data for PC series experiments. Table 4 gives values of liquidfilm coefficients calculated from the data in Table 3. Table 5 contains both observed data and calculated liquid-film coefficients for QD series experiments. Table 6 contains observed data for RE series experiments and Table 7 lists the values of liquid-film coefficients calculated from the data in Table 6.

Analysis of Data

Data obtained from experiments PC and RE were analyzed statistically. The results are given in Table 1 and 2 below. The detail can be found in Appendix IV (p. 62.). It is important to notice that the ordinarily assumed additive model in statistical analysis is not applicable to the k_L value, since multiplication is involved in the evaluation of k_L . Such operation will lead to serious error in standard deviation, and thus transformation is necessary before analysis. The logarithmic transformation was carried out for this purpose.

Source of Variation	d.f.	5.5.	M.S.
Replicate (R)	1	0.19995	0.19995
Treatment (T)	17	2.04449	0.12030
Flow type (F)	1	0.02467	0.02467
Liquid rate (L)	2	1.89697	0.94850
Gas rate (G)	2	0.02553	0.01276
FxL	2	0.00241	0.00121
FxG	2	0.01207	0.00604
LacG	4	0.00962	0.00240
FxLaG	4	0.07322	0.01830
Error	53	0.24888	0.00470
RgT	17	0.13487	0.00793
Obs'n : run	36	0.11401	0.00316
Total	71	2.49332	

Table 1. Analysis of variance; PC series.

Table 2. Analysis of variance; RE series.

Source of Variation	d.f.	5.8.	m.s.
Replicate (R)	1	0,00206	0.00206
Treatment (T)	23	3.65824	0.15905
Flow type (F)	1	0.00270	0,00270
Liquid rate (L)	3	3.62859	1.20963
Gas rate (G)	2	0.00079	0,00040
FxL	3	0.00403	0.00134
FxG	2	0.00552	0.00276
LarG	6	0.00472	0.00079
FxLarG	6	0.07189	0.00198
Error	69	0.06956	0.00101
RXT	23	0.04.227	0.00183
Obs'n : run	46	0.02729	0.000593
Total	93	3.72986	and the second

Since the m.s. of the main effects (F,L, and G) estimate error terms of very complicated forms (5), it is not suitable to use Snedecor's F to test the significance of those effects. However, comparing the main effects with interaction terms (FxL etc.), it is reasonable to believe that there is no difference between flow types, and only liquid rate has any effect on the liquid-film coefficient within the range of study. The significance of variation due to replicate in PC series (Table 1) indicates that some unnoticed error might be introduced in either of the two replicates. A discussion on this case is given in Appendix V under the heading, Selection of Data $(p, \mathcal{L}q)$.

The standard deviation is 13.8 percent for FG series, 4 percent for QD series, and 5.8 percent for NE series. The high deviation in FG series must result from a few seattered data.

Experimental Error

<u>Error Due to Liquid Sampling</u>. In order to get better reading of sample volume, the sampling nozzle was immersed less than 1-1/2 inches below the surface of liquid in the measuring flash. But this could not ensure no loss of gas from samples. The magnitude of such error is not easy to estimate.

Error Due to Method of Analysis. The method of Emmert and Pigford (4) was used. An average error of 2 percent was supposed to be involved. As mentioned by Taylor and Roberts (20), this method was better than the barium hydroxide method, which generally results 3 percent in error, and the method of Hammerton and Garner, which gives results systematically high by about 10 percent.

Error Due to Liquid Temperature. Thermometers with scale graded to 0.1°C were used on liquid lines for QD and RE series, and with scale graded to 0.5° C were used for series PC. A misreading in 0.1°C would lead to an error in equilibrium constant of about 0.3 percent, and this would further be enlarged by the k_L computation formula to about 0.9 percent, as will be shown in a later section. In RE series experiments, the pump caused the inlet water temperature to continuously increase at a low flow rate. This complicated the absorption process by sensible heat transfer. This unsteadiness of the absorption condition would give rise to some deviation, and this was counted as experimental error. The total error contributed by liquid temperature deviation to the value of k_L is thus considered as 1.5 percent.

<u>De-wetting of the Liquid on the Disc</u>. The de-wetting phenomenon has been reported by a number of investigators, and in some cases the de-wetted areas have been quite extensive, even at liquid flow rates up to 200 lb./hr.-ft. (20). In this experiment, de-wetting was found at a liquid rate as high as 173 lb./hr.ft., e.g. run Q-9-4, and complete wetting was found at the liquid rate as low as 103 lb./hr.ft., e.g. run D-5-1. Generally, de-wetting rarely occurred at the rate higher than 120 lb./hr.ft., and complete wetting was hard to find at the rate below 129 lb./hr.ft. The largest de-wetted area observed visually was about 14 percent of the total area. Loss of absorption surface will cause low absorption coefficients, while the increased flow rate in the wetted areas will tend to offset this. It is possible that partial de-wetting might give rise to either high or low results.

It was found that, at high flow rate, liquid would sometimes drop from one disc to the next paralleled to it, without touching the neighboring one, which was at the right angle to it. This phenomenon would also decrease the contact surface area of liquid and gas, and resulted a relatively low coefficient.

Errors Amplified by Transfer Equation. Errors will be amplified 2 or 3 times by the transfer equation. This will be shown by the following illustration:

Illustration: Run POO-1 had the following observed data:

p.p. of CO₂ = column pressure - p.p. of H₂O =-730-24 - 706 mm. Liquid temperature both at inlet and outlet = 24.5°C.
The Henry's Lew constant at 24.5°C is 8.10x16³ mm.Hg/lb.CO₂/ou.ft. The inlet concentration of CO₂ in H₂O is zero, and that at the outlet is 0.0470 lb./ou.ft. k_L was computed accouding to eq.(1), where N = CxL/62.4 (L is the liquid mass velocity in unit of lb./hr. per area of contact surface in sq.ft.). The value of k_L = 0.566 at 24.5°C was obtained.
If a deviation of 5 percent less than the present value of C occurs, k_L will be equal to 0.517, i.e. it causes an error of 9.15 percent, and if a deviation of 0.5 percent less than the present value of C₀ occurs, k_L will become 0.574, and an error of 1.4 percent results. In the case of different C₀ at inlet and outlet the deviation will be even larger.

DISCUSSION OF RESULTS

Effect of Flow Type

It was expected that co-current flow and countercurrent flow would have some different effects on the mass transfer coefficient. According to the stagnant film concept, the liquid film should be thinned and the holding time should be much decreased by the co-current flow. According to the boundary layer theory, the relative velocity should play an important part in establishing the thickness of fluid layer. However, this investigation showed that there is no effect of using co-current flow or countercurrent flow on k_L within the range of investigation. In studying the GO_2 -H₂O absorption system in wetted-wall columns, Collins (2) found that the use of co-current flow, at Reynolds number of gas higher than 14,800, increased the transfer coefficient appreciably.

Effect of Gas Rate

In this investigation, the gas rate range was too marrow to detect any influence on the liquid film coefficient. Hikits et al. (7) found that the liquid-film coefficient of CO_2 -H₂O system in a wetted-wall column was affected by gas rates at Reynolds number greater than 6000 in countercurrent flow, when the liquid rate was such that Re = 300 and also Re = 600. This seems contradictory to what might be expected by boundary layer theory for the simplest case (2-dimensional, co-current flow with horisontal interface), in which the relative velocity as well as the absolute velocity of gas is the determining factor for rate effect on transfer coefficient. It could be explained as that the effect of gas rate was due to ripple formation rather than the change in film thickness.

Effect of Liquid Rate

Since there was no interaction between flow type and liquid rate, as shown by analysis (Table 1 and 2), a single correlation shall be provided for each column. Logerithmic plots of k_L vs. [] and k_L vs. L were constructed for the disc column and packed column respectively. [] is the wetting rate (equal to the liquid flow rate in lb./hr. divided by the mean perimeter for liquid flow in ft.) and L is the liquid flow rate in lb./hr.sq.ft. These lines can be represented in the following form:

$$k_{L} = bj^{n}$$

 $k_{L} = bL^{n}$

or

where b and n are the constants to be determined experimentally.

For the disc column the absorption data can be correlated in the following equation:

$$k_{L} = 0.0203 | 0.745$$
 at 20°C (4

The equation was based on 88 observations (Appendix V). The sample standard deviation from the equation is 0.0436 in logarithmic scale, or 10.5 percent of the value of $k_{\rm L}$. The sample standard deviation of the slope is 0.0298, or 4.0 percent.

For the packed column the absorption data can be correlated by the equation:

$$k_{La} = 0.655 L^{0.85}$$
 at 20°C (5)

The equation was based on 88 observations. The sample standard deviation from regression is 0.0284 in logarithmic scale, or 6.75 percent of the value of k_La. The sample standard deviation of the slope (the regression coefficient) is 0.0127, or 1.5 percent.

Generalized Correlation

Sherwood and Holloway (16), investigated desorption of oxygen from water and they proposed the following generalized correlation for k_r :

$$\frac{\mathbf{k}_{\mathrm{L}}}{n} = d\left(\frac{4\pi}{\mu}\right)^{n} \left(\frac{\mu}{p}\right)^{0.5} \tag{6}$$

$$\frac{\mathbf{k}_{\mathbf{L}\mathbf{a}}}{\mathbf{D}} = d\left(\frac{\mathbf{L}}{\mu}\right)^{\mathbf{n}} \left(\frac{\mu}{2}\right)^{0.5}$$
(7)

where \not is the viscosity of the liquid, (is the density of the liquid, and \sim and n are constants of a particular column. When the general equation is applied to the results of this experiment, the following equations are obtained:

OF

$$\frac{k_{\rm L}}{m} = \frac{7.44(\frac{4\Gamma}{M})^{0.745}(\frac{M}{C})^{0.5}}{(8)}$$

for the disc column

for the packed column

$$\frac{k_{L}a}{D} = \frac{84.0(\frac{L}{L})^{0.85}}{(\frac{M}{C})^{0.5}}$$
(9)

Comparison with Results of Previous Workers

<u>Disc column equation</u>. The liquid-film coefficients obtained are lower than all the published results. Stephens and Morris (19) have mentioned that the absorption coefficients obtained on different disc columns might vary by \pm 10 percent. However, data with deviation about 50 percent lower than that given by Stephens and Morris have been found in the literature (6). The present result, though much lower, gives a line mearly parallel to Stephen and Morris'. Their data was represented by the equation:

In pletting their data for GO_2 absorption in Doulton disc and pyrophyllite disc columns, Taylor and Roberts (20) observed the existance of a distinct change of slope in liquid film coefficient versus wetting rate plot. Their results for both columns were correlated into a single set of equations, viz:

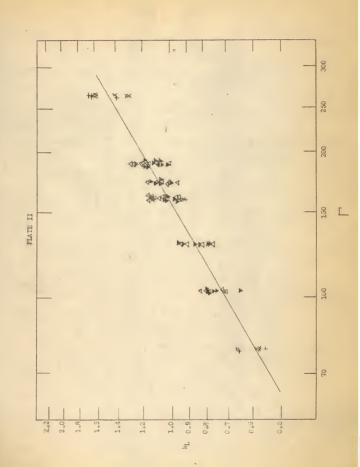
For	1<1551b./hr.ft.	k_L	=	0.124 10.4
For	/>155 lb./hr.ft.	kz	H	0.0056 1.0

Chu (1), using the same column as that for the present study, also observed the break slopes in his data. He obtained the following set of equations:

For	73 < 11 < 200 1b./hr.ft.	k _L = 0.0386 [70.644	(10)
For	16 < /1 < 73 lb./hr.ft.	kr = 0.123 / 0.37	

EXPLANATION OF PLATE II

Experimental data of disc column plotted on k vs. 7 coordinates k_ ---- Idquid-film coefficient, lb./(hr.msq.ft.)(lb./cu.ft.) at 2500


7 ---- wetting rate (liquid rate per mean wetting perimeter afdise), lb./hr.ft.

× ----- data from PC-l series for co-current flow

+ ----- data from PC--1 series for countercurrent flow

△ data form QD series for co-current flow

Y ----- data from QD warles for countervurrent flow

The difference in critical flow rates at which the break occurred has been reported by Taylor and Roberts (20) after the study of six different types of disc columns. However no such break was observed in this study, nor in Hwu's work (9). Hwu constructed the present column, and he suggested the equation

$$k_{\rm r} = 0.0075 \, \left[\, \, ^{0.95} \, \, (11) \, \, \right]$$

for CO_2 absorption in this column. The liquid-film coefficients found by Hwu were higher than those of Chu (1) and the present investigator. All the results just mentioned and some others are plotted on Plate III for comparison.

<u>Prediction of Correlation for $Cl_2=H_2O$ System by the Present Result</u>. The absorption of chlorine is a typical liquid-film controlled system, as has been shown by Sherwood on the basis of CO_2 and oxygen absorption and desorption data. It has also been recognized that in the tower with a small diameter the variation of gas rate has no effect on the transfer coefficient, as verified by Vivian and Whitney (23). Therefore, the result obtained from CO_2 absorption study is expected to be applicable to the chlorine-water absorption data.

Using the general equation (6), or remembering that $k_{\rm L}$ varies with $D^{0.5}$ for the same absorbent at the same liquid rate, we can derive an equation for ${\rm Cl_2-H_2O}$ system as:

$$k_{r} = 0.0178 \int^{-0.745} (12)$$

Similarly we have the corresponding equations derived from Chu's equation and Evu's equation. These are:

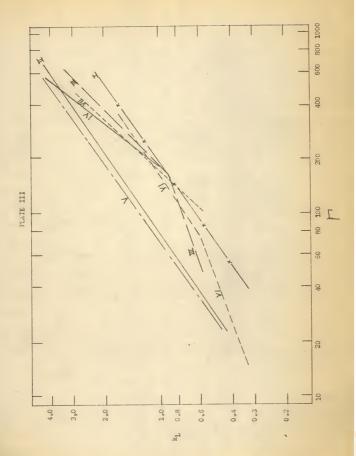
$$k_{\rm L} = 0.0338 | ^{0.644}$$
(13)
$$k_{\rm L} = 0.00657 | ^{-0.95}$$
(14)

respectively. The three predicted equations are represented by lines II,

EXPLANATION OF PLATE III

Comparison of the present result of $00^{-41}_{-10}0$ Absorption with those of previous vorkers on a k_L ws.

kr ---- liquid-film coefficient, lb./(hr.-sq.ft.)(lb./cu.ft.) at 2000


7 ---- wetting rate (liguid rate per meen wetting perimeter of disc), lb./hr.ft.

Curve I --- the present result Curve II --- result of Staphens and Morris (19) Curve III --- result of Taylor and Roberts (20) Curve IV --- result of Carner (6)

Curve V --- recult of Imperial Chemical Industries Ltd. (6)

Curve VI --- result of Chu (1)

Curve VII - result of Hwu (9)

III, and IV on Plate IV, and compared with the line directly drawn from the experimental data by Tion (21) in the same column. The corresponding equation for the experimental data is:

$$k_{\tau} = 0.0163 \Gamma^{0.81}$$

The agreement of equation (12) with that obtained by Tien within the range of experiment (180-400 lb./hr.ft.) is clearly shown by Plate IV. The predicted values of liquid film coefficient by use of Chu's equation (13) are little higher than the experimental values, and those predicted by Hwu's equation were even higher. The derivation of the equations, and their representative points are given in Appendix VII.

Prediction of Gas-film Coefficient of HH_2-H_2O system. By the combination of liquid-film coefficient data and overall mass-transfer coefficient, $K_{\rm G}$, data, we can calculate the gas-film coefficient from the following relationship:

$$\frac{1}{k_{\rm G}} = \frac{1}{k_{\rm G}} - \frac{\rm H}{k_{\rm L}}$$

where H is Henry constant.

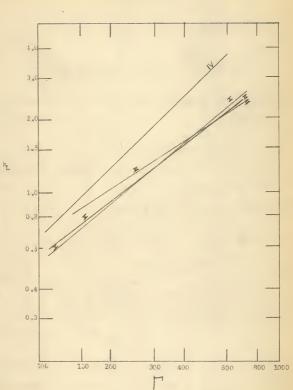
Hwu has determined the overall mass transfer coefficient of NH_3-H_2O system, and calculated the gas-film coefficient by using his own equation for liquid-film coefficient. Since equation (12) predicts liquid film coefficients in the Cl_2-H_2O system better than Hwu's equation, an attempt was thus made to use equation (4) of the present investigation together with Hwu's experimental data of K₀ to calculate k₀ for NH_3-H_2O system. The detail of calculation are given in Appendix VII. The resulting equation is:

$$k_{\rm g} = 3.90 \, {\rm p}^{0.30}$$
 (15)

EXPLANATION OF PLATE IV

Chlorine-water absorption correlation $(k_L vs. f)$ in the disc column

k, -- liquid film coefficient, lb./(hr.-sq.ft.)(lb./cu.ft.) at 20°C


- wetting rate (liquid rate per mean wetting perimeter of disc), lb./hr.ft.

Curve I --- experimental result by Tien (21)

Curve II --- predicted by the present work on the basis of CO2-H2O system

Curve III --- predicted by the result of Chu's work on the basis of CO2-H20 system

Curve IV - predicted by the result of Hwu's work on the basis of CO2-H2O system

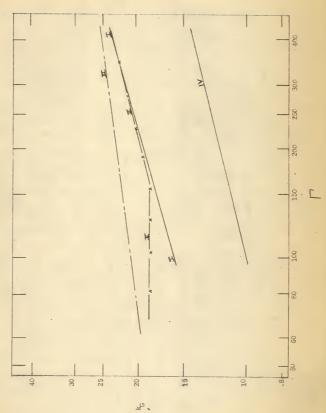
•

EXPLANATION OF FLATE V

Correlation of ges-film coefficient with wetting rate of $\rm RH_2^{-H}_2O$ system in disc column

Rg ---- gas-film coefficient, lb./(hr.sq.ft.atm.) at 20°C.

- wetting rate (liquid rate per mean wetting perimeter of disc), lb./hr.ft.


Curve I --- predicted by the experimental data of overall gas phase coefficient as obtained by Hau (9), and the liquid film coefficient versus wetting rate given by this investigation.

Curve II - result obtained by Taylor and Roberts (20)

Curve III --- result obtained by Stephens and Morris (19)

Curve IV - result obtained by Hwu (9)

or in the general form

$$\frac{k_{\rm g}^{\rm P}}{\nabla f a} = \frac{0.0326}{0.0326} \int_{-0.30}^{0.30} \left(\frac{Vd_{\rm P}}{M}\right)^{-0.33} \left(\frac{M}{f_{\rm PD}}\right)^{-.56} \int_{-0.50}^{0.30} \left(\frac{Vd_{\rm PD}}{M}\right)^{-0.33} \left(\frac{M}{f_{\rm PD}}\right)^{-.56} \int_{-0.50}^{0.30} \left(\frac{Vd_{\rm PD}}{M}\right)^{-0.33} \left(\frac{M}{f_{\rm PD}}\right)^{-.56} \int_{-0.50}^{0.30} \left(\frac{Vd_{\rm PD}}{M}\right)^{-0.33} \left(\frac{M}{f_{\rm PD}}\right)^{-.56} \int_{-0.30}^{0.30} \left(\frac{Vd_{\rm PD}}{M}\right)^{-0.33} \left(\frac{M}{f_{\rm PD}}\right)^{-0.33} \left$$

The equation (15) was corrected to a relative velocity of 8.4 ft./sec. for the convenience of comparison with published data (Hwu corrected his data to the relative velocity 5.84 ft./sec.). Plate V shows the comparison of the results from various sources. It may be noted that, over the range of studied by Hwu ($[^{-1}=155-395$ lb./hr.ft.), equation (15) is quite consistent with the experiment data of Taylor and Roberts. Hwu's equation corrected to 8.4 ft./sec. gives relatively low gas-film coefficients. The equations of the curves are:

S. and M. (19)	kg = 11.17 0.23
T. and R. (20)	kg = 5.3 p 0.25
Hwu (9)	kg = 2.99 -0.26

Packed Column Equation. Koch et al. (10) studied GO2 absorption in 6- and 30-inch towers with a considerable variety of packing rings. He correlated all his data by the equation.

$$K_{L}^{a} = 0.015 L^{0.96}$$
, or
 $H_{oL} = 1.05 L^{0.04}$

where the result of the present investigation, equation (5) and the corresponding equation:

$$H_{ol} = 0.103 L^{0.15}$$
 (17)

 $(H_{oL} = L/K_La)$ is the height of transfer unit give much higher liquid-film coefficients at the low liquid rate range then Koch's.

Since the diffusivity of CO_2 and O_2 are 6.8-7.0 x10⁻⁵ sq.ft./hr. at 20^oC (11) (17), equation (5) should directly be applicable to O_2 -H₂O

EXPLANATION OF PLATE VI

Experimental data of ${\rm CO}_{\rm o-E_2O}$ system in the packed column plotted on $K_{\rm L}e$ vs. 1 coordinates

kra --- liquid-film woefficient, lb./(hr.-cu.ft.)(lb./cu.ft.) at 2500

L ---- liquid mass velocity, lb./hr.-sq.ft.

o ---- data for co-current flow

+ ---- data for countercurrent flow

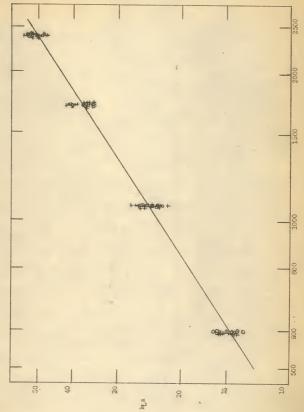


PLATE VI

31

Ч

system. A comparison with 0_2 -H₂O absorption data by Sherwood and Holloway (16) is shown on Plate VIII. The present results give higher H₀L values.

Chu (1) worked with the same $\operatorname{CO}_2-\operatorname{H}_2O$ system in the same packed column. The values of $k_{\mathrm{L}}a$ obtained by Chu are 18 percent higher than those obtained in this investigation. A comparison plot is given on Plate VII.

CONCLUSION

The results of the present investigation lead to the following conclusions:

(1) This investigation fails to show any different effect of flow types, commercurrent and co-current, on the value of liquid-film coefficient within the range of study. The significantly higher liquidfilm coefficient found by Collins (2) in wetted-wall column for the co-current flow did not appear in the present investigation.

(2) Discrepancies between the present results in disc column and those quoted in the literature have been found. This inconsistency also exists among other investigator's work.

(3) Though the performance is quite different from one disc column to another, the data from the same column are likely self-consistant, as justified by the agreement of the predicted correlation for Cl₂-H₂O system with the experimental results.

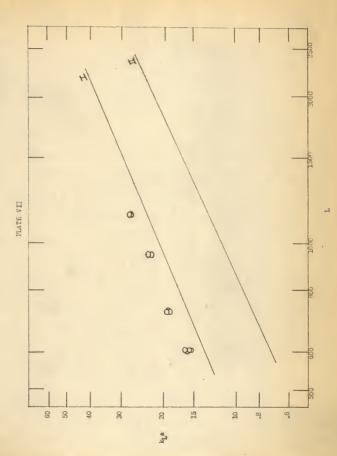
(4) The empirical correlation for liquid film coefficient in the disc column was found to be:

$$k_{T} = 0.0203 | 0.745$$

This correlation is better than both Hwu's and Ghu's correlations in view of the successfulness in predicting Gl_2-H_2O system data.

EXPLANATION OF PLATE VII

Comparison of $k_{\rm FA}$ ws. L plot with results obtained by previous workers on ${\rm GO}_{2^{\rm od}}{\rm H}_2{\rm O}$ system in packed column

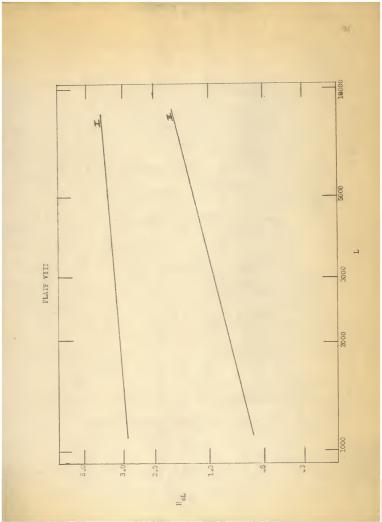

kra --- liquid-film coefficient, lb./(hr.-cu.ft.)(lb./cu.ft.) at 20°C

L - liquid mass velocity, Ib./ hr.-sq.ft.

Curve I --- result of the present work

Curve II --- result of Koch et al. (10)

0 --- experimental data of Chuis work (1)


EXPLANATION OF PLATE VIII

HoL vs. I plot for oxygen-water system in packed column

 H_{oL} ---- transfer unit (= L/K_La)

I --- liquid mas velocity, lb./hr.-sq.ft.

Curve I- predicted by the present work on the basis of 60 dig0 absorption data Curve II - result obtained by Sherwood and Holloway (16)

kL = 0.0178 - 0.745

or the generalized equation can be represented by:

$$\frac{k_{L}}{D} = 7.44 \left(\frac{4}{2}\right)^{0.745} \left(\frac{4}{2}\right)^{0.5}$$

(6) The gas-film coefficient for NH3-H20 system in the disc column can be represented by:

(7) The liquid film coefficient for the packed column is given by:

$$k_{ra} = 0.0655 L^{0.85}$$

or by the general form:

$$\frac{\mathbf{k_{L}e}}{\mathbf{k_{L}e}} = \frac{84.0 \ \left(\frac{1}{2\pi}\right)^{0.85} \ \left(\frac{\pi}{2}\right)^{0.5}}{\left(\frac{\pi}{2}\right)^{0.5}}$$

or expressed in transfer unit as:

$$H_{oL} = 0.103 L^{0.15}$$

(8) The satisfactory interpretation of Cl_2-H_2O system data justifies the relation given by the Penetration Theory, that k_L is proportional to $D^{0.5}$ rather than D. The latter is predicted by Hatta's film theory.

ACKNOWLEDGMENT

The author vishes to express his gratitude to Dr. Liang-tseng Fan and Dr. Henry T. Ward for their guidance and advice during the course of this work, and to the Kansas State University Engineering Experiment Station for financial support.

BIBLIOGRAPHY

- Chu, I. Interphase mass transfer in various types of column. Unpublished M. S. Thesis, Kansas State University, Manhattan, Kansas, 1957.
- (2) Collins, D. E. Co-current gas absorption. Unpublished Ph.D. Thesis, Purdue University, Lafayette, Indiana, 1958.
- (3) Danchwerts, P. V. Significance of liquid-film coefficient in gas. Ind. Eng. Chem. A3: 1260, 1951.
- (4) Emmert, R. E. and R. L. Figford A study of gas absorption in falling liquid films. Chem. Engg. Progr. 50: 87, 1954.
- (5) Federer, W. T. Experimental Design. The MacWillan Company, 1955. (p. 134 &222)
- (6) Ganner, F. H., R. Long and A. Pennell The selective absorption of hydrogen sulphide in carbonate solutions. J. Appl. Chem. 8: 325, 1958.
- (7) Hikita, H., H. Makanishi, and T. Kataoka Idquid phase mass transfer in wetted-wall columns. Chem. Eng. (Japan) 23: 7, 461, 1957.
- (8) Hoftyser, P. J. and D. W. Van Krevelan Applicability of the results of small-scale experiments to the design of technical apparatus for gas absorption. Trans. Inst. Chem. Engr. 32: 850, 1954.
- (9) Hwu, C. K. Absorption with chemical reaction. Unpublished M. S. Thesis, Kanses State University, Manhatan, Kansas, 1954.
- (10) Koch, Stutsman, Blum and Hutchings Absorbed 602 in water in 6- and 10- inch diameter columns using various size Rasching rings. Chem. Eng. Progr. 45: 677, 1949.

(11) Leva, M.

Tower packings and packed tower design. The United States Stonewate Company, Akron, Ohio, 1953.

(12) Merk, H. J.

Mass transfer in laminar boundary layers calculated by means of a perturbation method. Appl. Sci. Res. 8:A, 237, 1959.

- (13) Perry, J. H. Chemical engineers' handbook, 3rd edition. New York, McGraw-Hill Company, 1950.
- (14) Petter, O. E. Mass transfer between co-current fluid streams and boundary layer solutions. Chem. Eng. Sci. 6: 170, 1957.
- (15) Sherwood, T. K. Mass transfer between phases. The Pennsylvania State University, University Park, Fennsylvania, 1959.
- (16) Sherwood, T. K. and F. A. L. Holloway Performance of packed towers. Trans. Am. Inst. Chem. Engr., 36: 391, 1940.
- (17) Sherwood, T. K. and R. L. Pigford Absorption and Extraction. New York, McGraw-Hill Company, 1952.
- (18) Snedecor, G. W. Statistical Methods. The Iowa State College Press, Ames, Iowa, 1957. (p. 122)
- (19) Stephens, E. J. and C. G. Morris Determination of liquid-film absorption coefficients. Chem. Eng. Progr. 47: 232, 1951.
- (20) Taylor, R. F. and F. Roberts Absorption of 60₂ by water in disc column. Chem. Eng. Sci., 5: 4, 1956.
- (21) Tien, G. Absorption with chemical reaction. Unpublished M. S. Thesis, Kansas State University, Manhattan, Kansas, 1954.
- (22) Vivian J. E. and D. W. Feaceman Liquid-side resistance in gas absorption. A. I. Ch. E. Journal, 2: 437, 1956.
- (23) Vivian, J. E. and R. P. Whitney Solubility of chlorine in water. Ind. Eng. Chem. 33: 741, 1941.

I. Principal Constants of Columns

(a) Disc column

Number of discs	35
Disc diameter	1.5 cm. (0.0492 ft.)
Disc thickness	0.48 cm. (0.0304 ft.)
Dry surface area of discs	0.218 sq. ft.
Mean perimeter for liquid flow	0.127 ft.
Tube internal diameter	0.0938 ft.

(b) Packed column

Size of packing	8 mm.
Height of bed	5-1/2 inches
Tube internal diameter	2 inches
Cross section area	0.0218 sq. ft.
Volume of bed	0.00954 cu. ft.

II. Preliminary Experiments

Test for filtration effect.

A test run was performed in the disc column under countercurrent flow condition. The recorded data are given as follows:

PC .
5 6
5 18
-
,
LO
LO

CO2 absorbed 1b./cu.ft.

0.0431 0.0438 0.0445 0.0408 0.0434 0.0431

Sampling flasks were rubber-stopped before filtration. The various factors indicated above were so combined that all the effects in a single sample were additive and easy to detect. The result favors the statement that there is no effect of filtration on CO₂ absorbed. Test for Effect of Exposure Time on the Trapped Sampling Solution.

Three samples were used for this test. Each sample contained 40ml.

0.051 N NaOH and 20 ml. 0.1N BaCl, solutions, and was put in a 400 ml. beaker. Then the following data were obtained:

Sample No.	1	2	3
Exposure time, min.	0	15	30
CO2 absorbed mole/initial mole of NaSH, x104	O#	0.865	1.37

*The effective concentration of NaOH was determined under this assumption.

Ho correction for CO, so absorbed has been made in evaluating ki. Test for Time for Reaching Steady State in The Packed Column.

A test run for this purpose was performed under co-current flow condition. Observed data and results are given below:

	Baromet	tric pressure		752.8 mm.	Hg. Room	Temp. 93°F
	Gas Rai	te		5.42 cu. 1	rt./hr.	
	Gas ter	perature, i	inlet	83°F	outlet 8	13°F
	Liquid	rate		42.9 1b./1	ır.	
	Liquid	temperature,	inlet	27.800	outlet 2	7.900
Sample	No.	1	2	3	4	5
min. at run sta		.4	6	8	10	12
CO2 abs 1b./cu	sorbed	0.0218	0.0236	0.0233	0.0221	0.0236

Sa mi ru CO

The result of this run, though quite inconsistent with other runs, shows that the data taken from the 4th min. deviate from the mean within 5 percent. It may also be noted that the small standard deviation of the result of HE series (for the packed column) leads to the same conclusion.

III. Experimental Data

Sample Calculation.

(a) Observed data for Run ROO-1A,	co-current flow, packed column,
Barometric pressure	744.8 mm. Hg at 750F
Gas rate	1.55 cu.ft./hr.
Gas temperature, inlet	78°F outlet 78°F
Column gauge pressure	2.2 cm. water
Liquid rate	13.0 lb./hr.
Liquid temperature, inlet	30.8°C outlet 28.2°C
CO2 concentration in water	, at inlet 0.0000 at outlet 0.0397 lb./cu.ft.

(b) Published data

Correction factor for 800 mm. brass scale barometer (13)=0.130 mm./°C Vapor pressure of H₂0 at 78°F, from Keenan's Thermodynamical Properties of Steam p.28, = 0.9666 in. Hg, or 24 mm. Hg Henry constant (13) at 30.8 = 9.44 x 10³ mm. Hg/(1b. C0₂/cu.ft.) at 28.2°C = 8.88 x 10³ mm. Hg/(1b.C0₂/cu.ft.)

(c) Calculation

p.p. of CO_2 in the column = 718 mm.Hg $C_e = P_{cO2} / H = 0.0761 lb./cu.ft. at inlet, and$ <math>= 0.0809 lb./cu.ft. at outlet $\Delta G = (G_e-G)_{in} - (G_e-G)_{out} = 0.0397 lb./cu.ft.$ $ln(G_e-G)_{in} - ln(G_e-G)_{out} = 0.615$ $(\Delta G)_{1.m.} = \Delta G / ln(G_e-G)_{in} - ln(G_e-G)_{out} = 0.0568 lb./cu.ft.$ $N = (G_{out} - G_{in}) \times Liquid rate / 62.4 = 8.41 \times 10^{-3} lb/hr.$ A = 0.0218 eq. ft. Substitute the above values into equation (1), and obtain the value of $k_{L}a$ at average temperature 29.5°C, 15.5. Correct this value to 25°C with equation (3) on page 11, and the resulting $k_{L}a$ will be 14.1 (1b./hr.-cu.ft.)(1b./cu.ft.).

Data Experimental data are listed in the following tables:

- Table 3. Absorption data of CO2-H2O system in the disc column (PC).
- Table 4. Liquid film coefficient for GO2-H2O absorption in the disc column (PC).
- Table 5. Absorption data of GO2-H2O system in the disc column at gas rate of 5.42 cu.ft./br. (QD).
- Table 6. Absorption data of CO2-H2O system in the packed column (RE).
- Table 7. Liquid film coefficeint for CO2-H2O absorption in the packed column (RE).

In recording gas rate the effect of variation of temperature and pressure was ignored. This would introduce a maximum error of less than 3 percent (ef. Catalog 92-A, Fisher & Porter Company).

The differences between gas inlet and outlet temperatures were kept within 19F , and therefore only the inlet temperature was listed in the tables.

Since the operating liquid temperatures fluctuated around 25°C, all observed data of liquid film coefficient were corrected to 25°C rather than 20°C, in order to reduce effect of any error associated with the correction equation (3). However, for comparison with published data, equations drawn from data at 25°C were corrected to 20°C with equation (3). Table 3. Absorption data of CO. - H.O system in the disc column

0.64	5533	: Pressure : mm. Hg. 730 722	Rate 10.0 10.0 10.0	: Metting : Rate : 1b./hr.ft.: 78.7 78.7	Idquid Inlet oc 24.5 24.5 24.5 24.5 29.0	Temp. Outlet oc	t 100, absorbed 100, cu.ft. x102 4.70 4.77 4.77
	78 78 85	661 221	10.0 10.0 10.0	7.87 7.87 7.87	25.5 25.5 29.0	25.4 25.4 25.4	668 5-63 5-63 5-68
	828EE	727 967 767 767	10.0 10.0 10.0	78.7 78.7 78.7 78.7 78.7 78.7	29.0 24.5 24.5 24.5	24.5 24.5 24.5 24.5	5-35 4-45 5-94 5-68
	229351	737 725 725 730	22.00	159.0 159.0 159.0	24.0 24.0 29.0 24.5	24.0 24.0 29.0 29.0	4-96 5-02 4-83 4-83
	£3322288	728 7728 7738 7738 7738 7738 7738	8.2.000 8.2.00 8.5.000 8.5.000 8.5.000 8.5.000 8.5.000 8.5.000 8.5.000 8.5.000 8.5.000 8.5.0000 8.5.0000 8.5.0000000000	159.0 159.0 159.0 159.0 159.0	57-2000 57-20000 57-20000 57-20000 57-2000000000000000000000000000000000000	25.0 29.0 24.0 25.0 25.0	4-86 4-87 4-89 4-89 4-74 8-74 8-74 8-74 8-74 8-74 8-74 8-74

Run	: Gas Rate	: Gas Temp.	: 00	alumn	* Liquid	: Wetting :	Liquid	Temp. : (0. absorbe
Mo.	: cu. ft./hr.	. or.		Pressure m. Hg.	: Rate : 1b./hr.	: Rate :	Inlet	Outlet:	15./eu.ft. x102
20-14	0.64	64	14	80	33.0	260	25.0	25.0	4.25
A	0.64	64	5	88	33.0	260	25.0	25.0	4.96
-24	0.64	84	12	52	33.0	260	29.0	29.0	3.82
20	0.64	84	11	52	33.0	260	29.0	29.0	3.48
AL-12	5.42	78	1	32	33.0	260	23.5	23.5	3.56
-		78	2	32	33.0	260	23.5	23.5	3.62
-24		85	2	80	33.0	260	30.0	30.0	4.38
-		85	12	88	33.0	260	30.0	30.0	4.42
22-1A		78	12	3	33.0	260	25.0	25.0	3.59
-		78	712	2	33.0	260	25.0	25.0	3.67
-24	10.60	84	1	1	33.0	260	29.5	29.5	5.60
89	10.60	8¢	2	734	33.0	260	29.5	29.5	6.24
AL-00	0.64	62	2	60	10.0	78.7	26.0	26.0	5.27
-	0.64	64	22	729	10.01	78.7	26.0	26.0	4.44
-2A	0.64	85	7	52	10.01	78.7	30.0	30.0	5.14
2	0.64	85	7	52	10.0	78.7	30.0	30.0	5.04
COL-1A	5.42	11	12	22	10.0	78.7	25.0	25.0	5.15
20	5.42	44.	22	35	10.0	78.7	25.0	25.0	5.18
-2A	5.42	85	2Lo	8	10.0	78.7	29.0	29.0	6.82
2	5.42	85	2L	8	10.0	78.7	29.0	29.0	5.50
02-JA	10.60	7/8	74	8	10.0	78.7	25.0	25.0	4.67
2	10.60	7/8	72	9	10.0	78.7	25.0	25.0	4.30
-24	10.60	80	24	8	10.0	78.7	25.5	25.5	5.65
2	10 60	90							

02 absorb b./cu.ft.	44884444444444444444444444444444444444
Temp. : C Outlet: 1 oc :	รัฐสัสส์ชุมส์ส์ชุมส์ส์ชุมส์ส์ชุมส์ส์ชุมส์ส์ชุมส์ส์ชุมส์ส์ชุมส์ส์ชุมส์ส์ชุมส์ส์ชุมส์ส์ชุมส์ส์ชุมส์ส์ชุมส์ส์ชุมส สารารารารารารารารารารารารารารารารารารา
Idquid Inlet oc	ราสสรรรรรรรรรรรรรรรรรรรรรรรรรรรรรรรรรร
Wetting : Rate : Ib./hr.ft.:	8611466511466558888888888888888888888888
: Liquid : Rete : : lb./hr.	800 800 800 800 800 800 800 800 800 800
Column Pressure mm. Hg.	728 7729 7729 7729 7729 7722 7722 7722 7
Gas Temp. : or. :	***************************************
: Gas Rate : : ou. ft./hr. :	
Run No.	CIOLIA CIOLIA

	: log (K _L x 10)	0.7852 0.7852 0.8129 0.8129 0.6697 0.6697 0.8976 0.9426 0.9426 0.9426 0.9426 0.9426 0.9426 0.9468 0.9468 1.05888 1.05888 1.05888 1.05888 1.05888 1.05888 1.05888 1.05888 1.05888 1.05888 1.05888 1.05888 1.05888 1.05888 1.05888 1.05888 1.05888 1.05888 1.05888 1.058888 1.058888 1.05888 1.05888 1.058888 1.0
LAquid film coefficient for $00_2 = H_2^0$ absorption in the disc column.	k _L at 25°C 110. (hraq.ft.)(lb./ou.ft.)	0.573 0.573 0.659000 0.65900000000000000000000000000000000000
- H20 absorption	: (AC) _{1.m.} : 1b./en.ft. : x102	
costicient for 602	Absorption Rate per area 1b./hrsq.ft.	eurere 44resser 2000 2000 2000 2000 2000 2000 2000 20
	Wetting Rate 1b./hr.ft.	78.7 78.7 78.7 78.7 78.7 78.7 78.7 78.7
• • 97027	Run : No. :	F00-14 -24 -24 -24 -24 -24 -24 -24 -2

Table 4. Limit film

-	: 10g (k _L x 10)	1.2021 1.2181 1.2181 1.2181 1.2712 1.2712 1.2712 1.2712 1.2712 1.2712 1.2712 1.2712 1.2722	0, 8465 0, 8345 0, 8573 0, 8573 0, 8573 0, 8573 0, 8573 0, 8573 0, 8620 0, 8630 0, 8630
and and a second se	k _L at 25°C Ib. (hrsq.ft.)(Ib./cu.ft.	487444444444888 882838888888888888888888888	0.702 0.644 0.644 0.720 0.720 0.720 0.723 0.723 0.723 0.723 0.723 0.723
	: (40) _{1,m.} : : 1b./ov.ft. : : x10 ² :		44444449944 4558555555555555555555555555
	: Absorption Rate : per area : 1b./nrsq.ft.	0.22 9.82 8.85 9.65 8.65 8.65 8.65 8.65 8.65 8.65 8.65 8	
(p. tuon)	Wetting Rete 1b./hr.ft.	260 260 260 260 260 260 260 260 260 260	78.7 78.7 78.7 78.7 78.7 78.7 78.7 78.7
Table 4.	Run : No. :	F20-14 -24 -24 -24 -24 -24 -24 -24	COOLIA B -24 -24 -24 -24 -24 -24 -24 -24 -24 -24

(n-++2.2

Table /

: log (K _L x 10)	L. 0730 L. 0730 L. 0590 L. 11959 L. 11959 L. 11959 0. 9865 L. 12655 L. 12655 L. 12655 L. 2032 L. 2022 L. 2022
K _L at 25°C 1b. (hrsq.ft.)(1b./cu.ft.	1.1133 1.1370 1.1370 0.922 0.923 0.923 0.923 1.133 1.1
: (AC) _{1.m.} : : 1b./cu.ft. : : x102	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
: Absorption Rate : per area : lb./hrsg.ft.	, , , , , , , , , , , , , , , , , , ,
Wetting Rate lb./hr.ft.	1129 1129 256 256 256 256 256 256 256 256 256 256
Run : No. :	C10-11 - 1 - 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2

Table 4. (Cont'd)

1 1	No.	Temp.	: Column : Press. : mm.Hg.	: Wetting : Rate : Ib./hr.ft.	: Liquid : Inlet .: oC	Temp. Outlet	: CO2 absorbed : 1b./cu.ft. : x102	: X _L at 25°C : : (hr-aq.ft)(lb/cu.ft.):	log(KL = 10)
8 773 773 103 21.7 2	15-1A	80	730	103	27.2	27.3	4.86	CE8 0	2010 0
76 77 10 21,7 2	24	80	730	103	27.2	27.3	4-67	0.784	0 8010
37 37 <td< td=""><td>-24</td><td>20</td><td>727</td><td>103</td><td>21.7</td><td>21.7</td><td>1.73</td><td>20.0</td><td>0 2613</td></td<>	-24	20	727	103	21.7	21.7	1.73	20.0	0 2613
73 73 73 73 73 73 73 733 733 733 733 733 733 73 733 733 733 733 733 733 73 733 733 733 733 733 733 73 733 733 733 733 733 133 73 733 733 733 733 733 133 73 733 733 733 733 133 133 73 733 733 733 733 133 133 73 733 733 733 733 1413 0.733 73 733 733 733 743 743 0.733 73 743 743 744 143 0.443 74 743 744 744 0.443 743 743 744 744 0.443 743 744 744 1.143 0.443 744 744 744 1.143 0.443 744 744 744 744 1.143 744 744 744 744 1.143 <td>2</td> <td>22</td> <td>727</td> <td>103</td> <td>21.7</td> <td>21.7</td> <td>1.75</td> <td>6LL-0</td> <td>Caller O</td>	2	22	727	103	21.7	21.7	1.75	6LL-0	Caller O
8.8 737 103 24,0 24,3 8.8 737 103 24,0 24,3 737 739 129 25,0 0,073 737 739 129 24,3 25,0 737 739 129 24,3 24,3 737 739 129 24,3 24,3 737 739 129 24,3 24,3 737 739 129 24,3 24,3 737 739 129 24,4 4,43 737 739 129 24,4 4,43 737 733 24,4 4,43 0,435 737 733 24,4 4,43 0,435 737 733 24,4 4,43 0,443 737 74 74,3 74,4 0,443 737 74,4 74,4 74,4 0,444 738 74,4 74,4 74,4 0,444 733 74,4 74,4 74,4 0,444 74,4 74,4 </td <td>-3A</td> <td>78</td> <td>737</td> <td>103</td> <td>24.0</td> <td>24.3</td> <td>4.60</td> <td>0.705</td> <td>CCC0-0</td>	-3A	78	737	103	24.0	24.3	4.60	0.705	CCC0-0
88 730 129 86.9 77.9 5.91 733 739 129 86.9 77.9 5.91 733 739 129 22.5 5.91 733 739 129 22.5 5.91 733 739 129 22.5 5.91 733 739 129 22.5 5.91 734 739 129 22.5 5.91 735 739 129 22.5 5.91 735 739 129 22.5 5.91 735 739 129 23.0 23.1 736 737 1199 23.0 23.1 737 738 23.0 23.1 1.109 737 1199 23.0 23.1 1.139 737 1199 23.0 23.1 1.139 738 23.0 23.1 1.139 0.133 737 1199 23.0 23.1 1.139 738 23.0 23.1 1.139 0.133 738 23.0 23.3 1.139 1.139 738 23.0 23.3 1.139 1.139 744 1.139	2	78	737	103	24.0	24.3	5.04	0.810	0 Onder
8 730 129 25,9 7,9 1,15 733 739 129 25,9 1,15 0,25 733 739 129 25,1 1,15 0,25 733 739 129 25,2 2,13 0,25 733 739 129 25,2 2,13 0,25 734 739 129 25,2 2,13 0,25 735 72,3 21,9 22,5 2,11 0,25 736 737 1199 23,3 24,4 1,12 0,25 737 732 21,9 23,3 24,1 1,13 0,25 0,25 737 733 21,9 23,3 24,1 1,19 0,25 733 74,2 14,3 1,19 24,1 1,19 0,26 733 119 25,0 25,0 25,0 1,19 0,26 733 119 25,0 25,1 1,19 0,29 1,19 733 219 25,0 25,0 1,19 1,1	A1-0	80	730	129	26.9	27.9	3.91	0.735	0.8663
737 129 21,5 21,6 4,25 733 739 129 21,5 21,6 4,25 733 739 129 21,5 21,6 4,25 733 129 21,8 21,9 21,6 4,25 733 129 21,8 21,9 21,6 4,25 733 21,9 21,9 21,9 21,1 0,25 733 21,9 21,9 21,3 21,5 1,1 733 734 73,9 21,9 21,1 0,25 733 734 73,3 21,1 1,1 0,25 733 74,4 119 23,0 24,1 1,1 0,25 733 74,4 119 23,0 24,1 1,1 0,25 733 74,1 1,1 1,1 1,1 0,25 1,1 1,1 0,25 733 21,1 1,1 1,1 1,1 1,1 0,25 1,1 0,25 733 21,1 1,1 1,1 1,1 1,1	A	80	730	129	26.9	27.9	4-15	ACR.O	00100
73 73 73 73 73 73 73 73 73 73 73 73 73 73 73 21,5 74 73 73 21,5 74 73 123 21,5 74 73 123 21,5 74 73 11,9 21,4 74 74 11,9 21,5 74 74 11,9 21,5 74 74 11,9 21,5 74 74 11,9 21,5 74 74 11,9 21,1 74 74 11,9 21,1 75 74,1 1,4 11,09 74 74 74 11,9 75 74,1 1,4 11,09 74 74 1,9 21,1 75 74,1 1,4 1,19 75 74,1 1,4 1,19 75 74,1 1,4 1,19 75 74,1 1,4 1,19 75 74,1 1,4 1,19 75 74,1 1,4 1,19 75 74,2 1,4 <	-24	20	727	129	21.5	21.6	4.25	0.771	0. 4471
73 73 73 23 23 24 24 73 73 123 24,0 44,0 0,05 73 73 143 24,0 44,0 0,05 73 73 143 24,0 44,0 0,05 73 73 143 24,0 44,0 0,05 73 73 143 24,0 44,0 0,05 73 74 149 23,0 24,1 0,05 73 74 149 24,0 44,0 0,05 73 74 149 24,1 1,05 74 74 149 24,1 1,05 74 74 74 14,1 0,05 75 74 14,1 1,15 1,13 75 74 1,13 1,13 75 74 1,13 1,13 75 74 74 1,13 75 74 1,13 1,13 75 74 1,13 1,13 75 74 74 1,13 75 74 1,13 1,13 75 74 74 1,13 75 74	-34	73	739	129	22.3	22.5	2.91	0.295	10000
733 129 24.8 24.9 4.13 733 129 24.8 24.9 4.13 735 732 1193 23.8 24.9 4.13 735 732 1193 23.8 24.9 4.13 737 737 1193 23.8 24.9 4.13 737 737 1193 23.0 23.3 4.11 737 741 1193 23.0 23.3 4.12 737 741 1193 23.0 23.3 4.12 737 732 1193 23.0 23.3 4.12 737 1193 23.0 23.3 4.12 11.09 737 1193 23.0 23.3 4.12 11.09 738 23.0 23.3 4.12 11.09 738 23.0 23.3 4.12 11.19 738 23.0 23.3 4.12 11.19 739 1193 23.6 23.0 4.28 738 23.0 23.3 4.12 11.19 744 744 14.28 11.19 11.19 745 74.11 14.28 11.19 746	-	5	139	129	22.3	22.5	3.11	0.516	0.712K
733 129 24.8 24.9 4.8 733 129 24.8 24.9 4.8 734 735 159 23.8 24.0 735 739 23.8 24.0 4.6 737 1199 23.3 4.42 1.099 737 733 23.0 23.3 4.42 1.099 737 743 733 24.0 4.43 1.099 737 743 733 24.1 4.44 1.099 737 732 1199 25.0 25.1 4.42 1.096 737 732 1199 25.3 4.42 1.096 733 1199 25.6 25.0 4.45 1.199 733 139 25.6 25.0 4.45 1.199 733 139 25.6 25.0 4.45 1.199 733 139 25.6 25.0 4.45 1.199 733 139 25.6 25.0 4.45 1.199	-44	2	739	129	24.8	24.9	4.13	0.945	0.9751
742 199 2.8 24.0 4.66 1.165 742 732 199 2.8 24.0 4.66 1.165 743 737 199 2.9 2.1 4.66 1.165 743 737 199 2.3 2.3 4.1 1.165 743 737 199 2.3 2.1 4.65 1.165 743 737 199 2.3 2.1 4.12 1.006 743 732 1199 2.5 1.42 1.006 743 732 1199 2.5 4.12 1.106 743 732 1199 2.5 4.12 1.106 743 732 1199 2.5 4.12 1.106 743 732 1199 2.5 4.12 1.106 743 732 1199 2.5 4.12 1.133 743 733 1.19 4.12 1.133 744 733 1.19 4.12 1.133 744 733 1.19 4.12 1.133 745 743 743 743 1.133 744 744 745 744 1.133 </td <td>1</td> <td>27</td> <td>139</td> <td>129</td> <td>24.8</td> <td>24.9</td> <td>4+27</td> <td>0.905</td> <td>0.9566</td>	1	27	139	129	24.8	24.9	4+27	0.905	0.9566
772 159 23.8 24.0 4.65 773 773 159 23.3 24.0 4.65 773 773 1199 23.3 4.41 1.099 773 741 1199 23.3 4.42 1.099 773 741 1199 23.1 4.42 1.099 773 743 732 24.1 4.42 1.099 773 732 1199 25.3 4.42 1.099 773 732 1199 25.3 4.42 1.099 773 732 1199 25.3 4.42 1.193 773 733 23.0 23.3 4.43 1.193 773 733 139 23.5 4.45 1.133 773 139 23.6 23.0 4.43 1.133 773 139 23.6 23.0 4.43 1.119 773 73 23.6 23.0 4.43 1.119	N-14	2	742	159	23.8	24.0	4.66	1.163	1.06%
772 159 33.0 33.3 4.11 772 159 33.0 33.3 4.11 773 159 33.0 33.3 4.11 773 159 33.0 33.3 4.11 773 159 33.0 33.3 4.12 1.000 773 159 23.0 24.1 4.12 1.000 773 159 25.1 4.12 1.006 773 159 25.1 4.12 1.006 773 159 25.0 25.1 4.12 1.006 773 732 159 25.3 4.12 1.133 773 159 25.3 4.12 1.133 773 159 25.3 4.12 1.116 773 159 25.3 4.12 1.116 773 159 25.3 4.12 1.116 773 159 25.3 4.12 1.116	-	2	742	159	23.8	24.0	4.65	1.154	1.0622
722 159 23.0 23.3 4.42 1.050 777 159 23.0 24.1 4.42 1.050 777 159 23.0 24.1 4.43 0.096 777 159 23.0 24.1 4.43 0.096 777 159 25.0 25.1 3.45 0.096 777 159 25.0 25.1 4.43 0.096 76 777 159 25.0 25.1 4.43 0.193 76 772 159 25.0 25.1 4.42 1.193 77 772 159 25.0 25.3 4.42 1.193 77 773 159 25.0 4.42 1.119 77 773 159 25.0 4.42 1.119 77 773 159 25.0 4.42 1.119 77 73 159 25.0 4.42 1.119 77 73	-24	2	722	159	23.0	23.3	11.4	0.953	10791
77 159 23.9 24.1 4.34 1.000 77 747 159 23.0 24.1 4.34 1.000 77 747 159 25.0 25.1 4.34 1.006 76 747 159 25.0 25.1 4.48 1.096 76 742 159 25.5 4.465 1.133 77 722 189 25.5 4.465 1.133 77 722 189 25.3 4.455 1.133 77 773 189 25.6 2.3.0 4.455 1.110 77 773 189 22.6 23.0 4.455 1.110 77 773 189 22.6 23.0 4.455 1.110	-	21	722	159	23.0	23.3	4.42	1.050	0100.1
77 7.71 1.99 239 241 418 0.998 77 7.11 1.99 250 25.11 418 0.998 77 7.11 1.99 250 25.11 418 1098 76 7.77 1.89 250 25.11 428 1098 76 7.72 1.89 250 251 480 1332 77 722 1.89 250 253 417 1132 77 772 1.89 230 233 417 1193 77 773 1.89 226 230 428 1117 77 773 1.89 226 230 428 1117	-34	22	737	159	23.9	24.1	4.34	1.010	1.00.3
741 199 25.0 25.1 3.85 1.098 777 189 25.0 25.1 3.85 1.098 772 189 25.0 25.1 4.80 1.332 722 189 25.9 25.9 4.45 1.332 722 189 23.0 23.3 4.17 1.122 773 189 23.6 23.0 4.25 1.172 773 189 22.6 23.0 4.26 1.126	-	2	737	159	23.9	24.1	4.18	0.958	7186-0
741 159 25.0 25.1 4.21 1.050 737 189 25.0 25.3 4.61 1.050 742 189 25.0 25.9 4.65 1.332 722 189 25.0 23.3 4.17 1.132 722 189 23.0 23.3 4.17 1.142 723 189 22.6 23.3 4.17 1.143 723 189 22.6 23.3 4.17 1.143 723 189 22.6 23.0 4.25 1.143 723 189 22.6 23.0 4.25 1.143	-	FI	1712	159	25.0	25.1	3.85	1.098	1.0407
777 189 26.0 26.1 4.80 1.332 722 189 25.9 4.15 1.1352 722 189 25.0 23.3 4.12 1.142 722 189 23.0 23.3 4.17 1.142 773 189 22.6 23.0 4.25 1.150 773 189 22.6 23.0 4.25 1.150 723 189 22.6 23.0 4.25 1.150		FI	1712	159	25.0	25.1	4.21	1.050	1.0212
742 189 25.9 25.9 4.65 1.952 722 189 25.0 23.3 4.112 1.142 723 189 22.6 23.0 4.23 4.17 723 189 22.6 23.0 4.25 1.170 723 189 22.6 23.0 4.25 1.170	AL-D	27	737	189	26.0	26.1	4.80	1.332	1.1245
722 189 23.0 23.3 4.12 1.142 723 189 23.0 23.3 4.17 1.190 723 189 22.6 23.0 4.25 1.172 723 189 22.6 23.0 4.20 1.160		2	2712	189	25.9	25.9	4.65	1.352	1.1309
722 189 23.0 23.3 4.17 1.150 723 189 22.6 23.0 4.25 1.172 723 189 22.6 23.0 4.20 1.360	- 34	E	722	189	23.0	23.3	4.12	1.142	7-0577
723 189 22.6 23.0 4.25 1.172 723 189 22.6 23.0 4.20 1.160	a :	F	722	189	23.0	23.3	4.17	1.150	1.0607
723 189 22.6 23.0 4.20 1.160	-44	FI	723	189	22.6	23.0	4.25	1.172	1.0690
	-	11	723	189	22.6	23.0	4.20	1.160	1.0645

Run No.	Temp.	Press. : Press. : nm.Hg. :	Wetting Rate 1b./hr.ft.	: Inlet	d Temp. Outlet	: CO2 absorbed : lb./ou.ft.	: KL at 25°C : :(hr-sq.ft)(lb/ou.ft.)	; log(KL x 10)
8-5A	74	684	189	1.00	29.3	1 06	1 146	- 0000
-	74	664	189	22.1	5.00	4.05	870 L	1 0000 T
-64	E.	739	189	21.0	21.2	76.6	0.908	0.0001
8	17	739	189	21.0	21.2	4.50	1.190	1.0744
-7A	74	739	189	22.6	22.8	4.18	671-1	LUCIO+T
8	74	739	189	22.6	22.8	7.06	1.092	1.0380
-84	14	141	189	24.3	24.5	3.96	1.270	1.1038
8	44	141	189	24.3	24.5	3.88	1.290	Solt L
A-14	2	737	173	24.7	24.8	4.25	1.016	1.0068
m ;	26	737	173	24.7	24.8	4.08	310°T	1.0076
-24	22	723	173	22.7	23.9	4.19	1.056	1.0237
m ;	75	723	173	22.7	23.9	4.28	1.095	1.0395
-3A	75	737	173	23.3	23.5	4.56	1,161	1.0653
-44	2	739	173	21.2	21.4	4.20	0.952	0.9786
N-1-N	18	737	103	25.8	25.9	4.90	0.800	0.9031
-	18	737	103	25.8	25.9	4.83	0.780	0.8921
-24	E	723	103	22.9	23.4	4.95	164.0	0.8962
-	F	723	103	22.9	23.4	4.78	0.750	0.8751
-34	F	737	103	24.1	24.04	4.58	0.795	7006 0
	11.	137	103	24.1	24.4	4.86	0.766	0.8342
4.	20	141	103	24.1	24.04	5.05	0.642	0.8075
2	21	1712	103	24.1	24.04	4.19	0.636	0.8036
NI-	FI	737	129	24.9	25.1	4.16	0.785	6763.0
A	11	131	129	24.9	25.1	4.23	0.795	1006-0
-44	21	123	621	22.5	22.8	4++7	0,865	0.9370
4 40	22	621	129	22.5	22.8	436	0.828	0.9180
1	25	601	677P	24.2	22.5	3.22	0.534	0.7275
47-	24	661.	621	22.2	22.5	3.00	0.490	0.6937
B	26	730	677	1.42	24.03	4.65	0.950	0.97777
	2	201	101	Cho L	14+03	4.04	0° 442	1716.0

Table 5. (Cont'd)

 Press.	Rate : Ib./hr.ft.t	Inlet oc	Temp. Outlet	: CO_ absorbed : lb./cu.ft. : xlO ²	: KL at 2500 : [hr-sq.ft](lb/cu.ft.)	-: 10g(K _L x 10)
735	159	25.0	25.3	4.17	0.979	0.9908
735	159	25.0	25.3	4.36	1.040	1.0170
723	159	23.2	23.5	3.90	0.830	1616.0
723	159	23.2	23.5	4.15	0.955	0°9795
737	159	23.1	23.4	4.45	1.030	1.0128
737	159	23.1	23.4	4.046	1.030	1.0128
739	189	22.5	22.7	3.83	0.966	0.9827
739	189	22.5	22.7	3.90	1.010	1.0043
6EL	189	22.5	22.7	3.66	0.928	0.9675
664	189	22.5	22.7	3.78	0,960	0.9823
664	189	21.4	21.5	4.22	1.084	1.0351
739	189	22.4	21.5	4.11	1.056	1.0237
742	189	24al	24.5	4.50	1.248	1.0958
742	189	24.4	24.5	4.033	1.180	1.0719
737	189	25.4	25.5	3.60	0.942	1716-0
137	189	25.4	25.5	4.22	1.170	1.0682
722	189	23.1	23.3	3.90	1.045	10101
722	189	23.1	23.3	4.24	1.130	1.0531
722	189	22.3	22.6	4.10	1.105	1.0433
722	189	22.3	22.6	4.30	1.180	1.0719
730	173	27.0	27.1	10.4	1.048	1.0203
730	173	27.0	27.1	4.25	060"1 .	1.0374
727	173	22.0	22.0	4.052	1.130	1.0531
127	173	22.0	22.0	4.13	1.000	1.0000

Table 5. (Cont'd)

MO-LI 1.55 73 743 13.0 556 30.8 28.2 3.9 B 1.55 75 74 743 13.0 556 30.8 28.2 3.9 B 1.55 75 75 745 13.0 556 30.1 28.7 4.06 B 5.42 75 745 13.0 556 30.1 28.7 4.06 B 5.42 75 747 13.0 556 30.1 28.7 4.06 B 5.42 75 741 13.0 556 30.2 28.7 4.06 B 10.66 743 13.0 556 30.2 28.7 4.06 B 10.66 741 13.0 556 30.2 28.7 4.06 B 10.66 743 745 13.0 556 30.2 28.7 4.05 B 10.66 743 13.0 556 30.2 <td< th=""><th>4 4 4 4 4 4 4 4 4 4 4 4 4 4</th><th>t rressure t nuckg.</th><th>: Rate : : Ib./hr.:l</th><th>Mass Velu : b./hr-aqft:</th><th>Inlet oc</th><th>Outlet</th><th>10, co, absorbed 10, cu, ft.</th></td<>	4 4 4 4 4 4 4 4 4 4 4 4 4 4	t rressure t nuckg.	: Rate : : Ib./hr.:l	Mass Velu : b./hr-aqft:	Inlet oc	Outlet	10, co, absorbed 10, cu, ft.
1455 75 75 75 13,0 956 31,6 25,2 1,55 5,4,2 75 73 13,0 956 30,1 28,7 5,4,2 75 73 13,0 956 30,1 28,7 5,4,2 75 73 13,0 956 30,1 28,7 5,4,2 73 13,0 956 30,1 28,7 5,4,2 73 13,0 956 30,1 28,7 10,6 73 13,0 956 30,2 28,1 11,5 76 73 13,0 956 30,2 28,1 11,5 76 73 24,0 1100 956 30,2 28,1 11,5 76 73 24,0 1100 35,4 28,1 28,1 11,5 74 73 24,0 1100 26,4 28,2 28,0 11,5 74 73 24,0 1100 26,4 28,2 28,1 11,5 74 74 24,0 1100 26,4 28,2 11,5 74 73 24,0 1100 26,4 28,2 11,5 74 24,0 1100<	++++++ %%%&&%%%%%%%%%%%%%%%%%%%%%%%%%%%		13.0	596	30.8	28.2	3.07
1.155 7.3 7.36 13.0 956 27.5 5.42 7.8 7.0 13.0 956 30.0 27.5 5.42 7.8 7.9 13.0 956 30.0 27.5 5.42 7.8 7.9 13.0 956 30.0 27.5 10.6 7.9 13.0 956 30.0 27.8 10.6 7.9 13.0 956 30.0 27.8 10.6 7.9 13.0 956 30.0 27.8 10.6 7.9 13.0 956 30.0 27.8 10.6 7.9 13.0 956 30.7 28.4 10.6 7.1 13.0 956 29.5 28.7 10.6 7.4 13.0 956 29.5 28.7 10.6 7.4 13.0 956 29.5 28.7 11.5 80 7.4 13.0 956 27.2 5.42 10.0 956 29.4 1100 27.4 5.43 7.4 10.00 27.4 28.4 27.4 10.6 7.4 24.0 1100 27.4 28.4 5.42 10.0 24.	୳୳୶୶୶୶ୠୠୠୠୠ୳୳୲୳୲୳୶୶୶୶୶ୠୠୠୠୠ୲ ଽଽଽୡଌଌ୕ଌୠଡ଼୶୶୶ <i>ଽଽଽଽ</i> ଽଽୡଌୡୡଡ଼୶୶୶ଽଽଽ		13.0	596	31.6	29.2	4.000
5.22 7.47 7.47 13.0 956 90.1 23.7 5.42 73 7.47 13.0 956 90.2 23.4 5.42 73 739 13.0 956 90.2 23.4 5.42 73 739 13.0 956 90.2 23.4 10.6 73 741 13.0 956 90.7 23.4 10.6 73 745 13.0 956 90.7 23.4 10.6 73 745 13.0 956 90.7 23.4 10.6 73 745 13.0 956 90.7 23.4 11.55 80 743 24.0 1100 77.4 27.4 24.7 11.55 54.4 73 24.0 1100 77.4 27.4 27.4 11.55 54.4 74.5 24.0 1100 77.4 27.4 27.4 11.55 54.4 74.5 24.0	៹៹៷៷៷៷៰៰៰៰៰ ៹៹៹៹៹៹៹៹៹៹៹៹៹៹៹៹៹៹៹៹៹៹៹៹៹៹៹	962	13.0	596	29.6	27.5	4.28
State Tot Tate Tate <th< td=""><td>44440000111111222200000000 444400000222224444446000022</td><td></td><td>13.0</td><td>596</td><td>30.1</td><td>28.7</td><td>4.06</td></th<>	44440000111111222200000000 444400000222224444446000022		13.0	596	30.1	28.7	4.06
5.42 73 13.0 556 30.7 23.8 10.6 73 13.0 556 30.7 23.8 10.6 73 13.0 556 30.7 23.8 10.6 73 13.0 556 30.7 23.8 10.6 73 743 13.0 556 30.7 23.1 11.55 80 741 13.0 556 30.7 23.1 11.55 80 743 13.0 556 30.7 23.1 11.55 80 743 24.0 1100 57.6 20.7 23.7 11.55 80 743 24.0 1100 27.6 27.2 23.7 5.42 74 24.0 1100 27.6 27.8 27.2 5.43 74 74 24.0 1100 27.4 28.4 5.45 74 24.0 1100 27.4 28.4 27.4 5.45 74<	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	147	0.61	596	30.2	27.5	4.16
5,52 73 741 13.0 995 90.0 25.1 10.6 73 745 13.0 996 90.0 25.1 10.6 73 745 13.0 996 20.0 25.2 11.65 80 745 13.0 996 20.0 25.1 11.55 76 733 74.0 110.0 996 20.0 25.1 11.55 76 733 24.0 1100 996 29.2 28.1 11.55 76 733 24.0 1100 27.6 28.1 5.42 745 24.0 1100 27.6 28.1 28.1 5.42 74 733 24.0 1100 27.6 28.1 5.43 74 73 24.0 1100 27.6 28.1 5.43 74 74 73 24.0 1100 27.4 28.1 5.44 10.00 26.4 28.6 2		720	13.0	596	30.7	28.8	4.00
IO.6 75 741 IO.0 956 20.5 77.5 IO.6 73 745 13.0 956 20.5 27.5 IO.6 73 745 13.0 956 20.5 27.5 I.55 80 745 13.0 956 20.5 27.5 I.55 80 745 13.0 956 20.5 27.5 27.5 I.55 80 745 13.0 956 20.5 22.5 27.6 22.5 I.55 5.45 745 24.0 1100 27.6 22.6 23.6 23.6 S.45 5.45 24.0 1100 27.6 20.6 20.7 24.6 2	000011111122220000000 0000822225444446000022	101	13.0	NON NON	20.00	1.02	4.35
10.6 73 745 13.0 956 90.7 28.7 10.6 73 745 13.0 956 29.5 28.7 1.55 60 741 24.0 1100 29.6 29.5 28.7 1.55 76 733 24.0 1100 27.6 28.7 28.7 1.55 76 733 24.0 1100 27.6 28.4 28.7 5.42 74 733 24.0 1100 27.4 28.4 28.4 5.42 74 733 24.0 1100 27.4 28.4 5.43 74 733 24.0 1100 27.4 28.4 5.43 74 73 24.0 1100 27.4 28.4 10.6 74 73 24.0 1100 26.6 20.3 10.6 74 24.0 1100 26.6 20.7 28.4 10.6 74 24.0 1100	ਗ਼ਗ਼ਗ਼ ਗ਼ਗ਼ਗ਼ਗ਼ਗ਼ਗ਼ਗ਼ਗ਼ਗ਼ਗ਼ਗ਼ਗ਼ਗ਼ਗ਼ਗ਼ਗ਼ਗ਼ਗ਼ ਗ਼ਗ਼ਗ਼ਗ਼ਗ਼ਗ਼ਗ਼ਗ਼ਗ਼ਗ਼ਗ਼ਗ਼ਗ਼ਗ਼ਗ਼	11/1	13.0	280	29.5	27.2	4.12
10.6 73 745 13.0 976 23.1 27.1 1.55 80 7.1 13.0 976 23.2 23.1 1.155 80 7.1 24.0 1100 976 23.2 23.1 1.155 76 733 24.0 1100 27.6 23.2 23.2 1.155 76 733 24.0 1100 27.6 23.2 23.2 5.42 80 7.45 24.0 1100 27.6 23.2 23.2 5.42 7.4 733 24.0 1100 27.6 23.2 23.2 5.42 80 7.45 24.0 1100 27.6 23.2 23.2 10.66 78 74.0 1100 26.6 26.5 26.7 26.1 10.66 74 24.0 1100 26.6 26.3 26.6 26.7 10.66 74 74 24.0 11000 26.6 26.7	9644444 <i>4444</i> 469669444 6 <i>6888884444</i> 6666888		13.0	596	30.7	28.7	3.82
1.05 1.05 20.5 22.0 1.05 20.5 22.0 1.155 10 1.0 1.00 1000 20.5 22.6 1.155 76 733 24.0 1100 20.4 22.6 1.155 80 7.45 24.0 1100 20.4 22.6 5.42 7.43 24.0 1100 27.6 22.6 22.6 5.42 80 7.45 24.0 1100 27.6 22.6 5.42 80 7.5 24.0 1100 27.6 22.6 23.2 5.43 80 7.45 24.0 1100 27.6 23.6 23.2 10.66 74 739 24.0 1100 20.6 20.3 20.7 10.66 74 24.0 1100 26.2 28.0 27.1 10.66 74 27.4 1100 20.6 20.3 20.7 10.66 74 27.4 1100<		745	13.0	596	29.1	27.1	4.72
1.955 80 74.1 24.0 1100 29.4 28.7 1.155 76 733 24.0 1100 27.8 27.8 1.155 76 733 24.0 1100 27.4 28.4 5.45 80 745 24.0 1100 27.4 28.4 5.42 74 733 24.0 1100 27.4 28.4 5.42 74 739 24.0 1100 27.4 28.4 5.42 74 739 24.0 1100 27.4 28.4 5.42 74 739 24.0 1100 27.4 28.4 10.6 745 24.0 1100 26.5 26.5 26.5 10.6 745 24.0 1100 28.2 28.0 28.5 10.6 741 71.3 71.4 27.0 28.2 28.0 10.6 741 71.3 71.4 27.4 28.3 28.0	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		13.0	5%	29.5	28.0	67.7
1.233 76 733 24.0 1100 27.6 27.3 1.155 5.42 100 27.0 1100 27.4 27.4 5.42 80 745 24.0 1100 27.4 27.4 5.42 80 745 24.0 1100 27.4 27.4 5.42 74 739 24.0 1100 27.4 27.8 27.4 5.42 74 739 24.0 1100 27.6 27.8 27.4 10.6 78 27.0 1100 26.9 26.9 26.9 10.6 74 739 24.0 1100 30.6 30.3 10.6 74 24.0 1100 30.6 30.3 10.6 74 24.0 1100 30.5 28.0 10.6 74 24.0 1100 30.3 28.1 10.6 74 27.4 170 36.3 28.1 1.5 <t< td=""><td>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</td><td>1712</td><td>24.0</td><td>0011</td><td>29.4</td><td>28.7</td><td>3.66</td></t<>	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1712	24.0	0011	29.4	28.7	3.66
1.33 7.3 2.4.0 1100 27.8 27.8 5.42 80 7.45 2.4.0 1100 27.9 27.4 5.42 80 7.45 2.4.0 1100 27.4 28.6 5.42 7.4 739 2.4.0 1100 27.4 28.6 5.42 7.4 739 2.4.0 1100 27.4 28.6 5.42 80 745 2.4.0 1100 27.6 28.6 10.6 78 74.0 1100 26.6 30.3 26.6 10.6 74 24.0 1100 26.2 28.0 27.0 10.6 74 27.4 1100 28.2 28.0 28.1 10.6 74 27.4 1100 28.2 28.0 28.1 10.5 80 74.1 77.3 27.4 28.3 28.0 1.55 77 77.3 77.3 27.3 28.3 28.0			24.0	0011	29.6	29.2	3.%
Line Bo 745 24.0 1100 27.4 27.4 5.42 7.4 7.3 24.0 1100 27.4 24.8 5.42 7.4 739 24.0 1100 29.4 26.8 5.42 7.4 739 24.0 1100 29.4 26.8 5.42 10.6 80 755 24.0 1100 26.6 26.3 10.6 78 74.0 1100 26.6 30.8 26.6 10.6 78 74.0 1100 26.9 26.4 26.6 10.6 78 74.0 1100 26.2 26.0 26.6 10.6 74.8 74.0 1100 26.2 26.3 26.0 10.6 60 74.1 77.3 27.0 26.3 26.0 10.5 60 74.1 77.3 27.9 26.3 26.0 1.5 77.8 1770 26.3 26.3 26.3		733	24.0	0011	27.8	27.2	3.58
3.42 80 745 24.0 1100 29.4 24.8 5.42 7.4 7.9 24.0 1100 29.4 28.8 5.42 10.6 80 755 24.0 1100 29.4 28.6 10.6 75 24.0 1100 29.4 28.6 28.5 10.6 75 24.0 1100 30.6 30.3 30.3 10.6 78 74.0 1100 30.6 30.3 30.3 10.6 741 24.0 1100 30.5 28.0 30.3 10.6 741 37.8 1770 28.2 28.0 1.55 77 77.3 1770 28.3 28.7	44444900000000000000000000000000000000		24.0	0011	27.9	27.4	3.87
74 739 24.0 1100 29.6 39.2 80 755 24.0 1100 26.6 39.3 80 755 24.0 1100 26.6 39.4 78 748 24.0 1100 26.6 39.4 78 748 24.0 1100 26.6 39.4 80 741 24.0 1100 28.2 28.0 80 741 24.0 1100 28.2 28.0 71 73 77.8 1770 28.3 28.0 77 733 77.8 1770 28.3 28.3	10	245	24.0	1100	29.4	28.8	3.73
74 739 24.0 1100 26.9 36.9 80 755 24.0 1100 26.9 36.9 78 74.0 1100 26.8 26.7 78 74.8 24.0 1100 30.8 29.7 78 74.8 24.0 1100 30.6 30.3 80 74.8 24.0 1100 28.2 28.0 80 74.1 27.4 1100 28.2 28.0 80 74.1 27.4 1100 28.2 28.0 71 77.3 1770 28.2 28.0 36.7 77 733 1770 28.3 28.0 36.7	10		24.0	0011	29.6	29.2	3.76
80 755 24.0 1100 26.6 26.6 78 745 24.0 1100 30.6 29.7 78 74.6 24.0 1100 30.6 30.3 78 74.8 24.0 1100 30.6 30.3 80 74.1 24.0 1100 28.2 28.0 80 74.1 27.3 1720 28.3 28.0 77 733 37.8 1770 28.3 28.3 77 733 37.8 1770 28.3 28.3		739	24.0	0011	26.9	26.9	4.06
60 755 24.0 1100 30.8 29.7 78 748 24.0 1100 30.4 30.3 78 748 24.0 1100 30.2 30.3 80 741 24.0 1100 28.2 28.0 80 741 27.8 1730 28.2 28.0 77 73 37.8 1730 28.3 28.3 77 73 37.8 1730 28.5 28.3			24.0	0011	26.8	26.6	3.77
78 748 24.0 1100 30.6 30.3 78 743 24.0 1100 28.2 28.0 80 741 27.4 1100 28.2 28.0 80 741 27.4 1730 28.2 28.0 77 733 37.8 1770 28.5 28.0 77 733 37.8 1770 28.5 28.3		755	24.0	0011	30.8	29.7	4042
76 748 24.0 1100 28.2 28.0 80 741 27.6 1100 28.2 28.0 77. 733 77.8 1720 28.3 28.3 77.8 1730 28.5 28.3			24.0	0011	30.6	30.3	4.02
80 741 24-0 1100 28-2 28.0 77.8 1730 28-3 28.3 77.8 1730 28-3 28.3 77.8 1730 28-5 28.7		148	24.0	0011	28.2	28.0	3.98
60 741 37.8 1730 28.3 28.3 37.8 1730 28.5 28.3 37.8 1730 26.5 26.7			24.0	OOTT	28.2	28.0	3.88
733 37.8 1730 28.3 26.3 37.8 1730 26.5 26.7	1.55	THL	37.8	1730	28.3	28.3	3.80
733 37.8 1730 26.5 26.7			37.8	1730	28.3	26.3	4.01
	-24 1-22 14	662	37.8	1730	26.5	26.7	3.46

73 739 77.8 1739 77.8 1730 24.7 75 739 77.8 1730 24.7 76 755 77.8 1730 24.7 76 755 77.8 1730 24.7 76 755 77.8 1730 24.7 76 754 77.6 24.0 25.3 734 734 27.6 24.10 25.4 734 734 27.6 24.10 25.4 734 734 27.6 24.10 25.4 75 74 74.5 22.6 24.10 76 734 22.6 24.10 25.4 76 735 22.6 24.10 25.5 76 735 22.6 24.10 25.5 76 735 22.6 24.10 25.5 76 735 23.6 24.10 25.5 76 735 13.0 55.6 25.4 76 74 13.0 55.6 25.4 77 13.0 55.6 24.10 25.5 76 74 13.0 55.6 25.4 76 74 13.0	7,60 73 739 37,8 1730 7,60 73 739 37,8 1730 10,66 80 739 37,8 1730 10,66 80 739 37,8 1730 10,66 75 739 37,8 1730 10,66 75 739 37,8 1730 11,55 80 744 734 1730 11,55 80 744 734 24,00 5,425 73 74 74 24,00 5,425 74 74 74 24,00 5,425 76 745 52,60 24,00 10,66 76 745 52,60 24,00 10,6 76 745 52,60 24,00 10,6 76 745 52,60 24,10 10,6 76 745 52,60 24,10 10,6 76 745 52,66 24,10	Run No.	: Gas Rate : cu.ft./hr.	: Gas Temp	a : Column : Pressure : ma.Hg.	: Lidquid : Rate : Ib./hr.	: Mass Vel. : Mass Vel.	Inlet 00	Temp. : Outlet : oc :	CO2 absorbed lb./cu.ft.
7,60 73 97.8 1730 22.4 7,60 73 739 77.8 1730 22.4 10.6 75 739 77.8 1730 25.3 10.6 75 739 77.8 1730 25.4 10.6 75 739 77.8 1770 25.3 11.55 80 7.4 756 210 25.4 5.42 74 74 52.6 2410 25.4 5.42 74 74 52.6 2410 25.4 5.42 74 74 52.6 2410 25.6 5.42 76 74 52.6 2410 25.6 5.42 76 74 74 52.6 2410 25.6 5.42 76 74 74 52.6 2410 25.6 10.6 74 74 52.6 2410 25.6 25.6 10.5 52.6 24.0	7,60 7 7,90 7,18 1790 2,48 2,48 10,6 6 739 77.8 1770 25,3 35,3 10,6 76 739 77.8 1770 25,4 35,3 10,6 76 739 77.8 1770 25,4 35,3 11,55 80 744 75,6 24,10 26,4 26,4 11,55 81 736 27,48 1770 25,3 36,4 11,55 80 744 73,6 24,10 78,4 24,10 26,4 26,4 5,42 74 74 52,6 24,10 78,4 26,4 26,4 5,42 76 74 74 52,6 24,10 76,4 26,4 10,6 76 745 52,4 24,10 26,4 26,4 10,6 76 74 74 52,6 24,10 26,4 26,4 10,6 76 <t< td=""><td>4</td><td>7.60</td><td>73</td><td>6EL</td><td>37.8</td><td>1730</td><td>24.7</td><td>24.5</td><td>3.80</td></t<>	4	7.60	73	6EL	37.8	1730	24.7	24.5	3.80
7,60 73 739 77,8 1730 25,3 10,6 76 735 77,8 1730 25,5 10,6 76 735 77,8 1730 25,5 10,6 76 735 77,8 1730 25,5 11,55 80 745 77,8 1730 25,5 11,55 80 744 52,6 24,10 26,5 5,4,2 76 744 52,6 24,10 26,5 5,4,2 76 74,4 52,6 24,10 26,5 5,4,2 76 74,4 52,6 24,10 27,6 5,4,2 76 74,4 52,6 24,10 27,6 11,55 76 74,4 52,6 24,10 27,6 10,6 76 74,4 52,6 24,10 27,6 10,6 76 74,4 52,6 24,10 27,6 10,6 76 74,4 52,6	7,60 75 77,8 1790 25,3 25,2 10,6 75 77,8 1790 25,3 25,3 25,4 10,6 75 77,8 1790 25,3 35,4 35,4 10,6 75 77,8 1790 25,3 35,4 36,4 11,5 80 74,4 22,6 24,10 26,4 36,4 11,5 74 72,6 24,10 26,4 36,4 36,4 11,5 74 74,5 52,6 24,10 26,4 36,4 11,5 76 74,4 52,6 24,10 26,4 36,4 5,42 76 74,4 74,9 52,6 24,10 26,4 36,4 10,6 76 74,4 74,9 54,6 24,10 26,4 36,4 10,6 74,4 74,9 52,6 24,10 26,4 36,4 10,6 74,4 74,9 54,6 24,10	-	7.60			37.6	1730	24.8	24.8	3.84
7,60 732 77,8 1770 25,3 10,6 6 735 77,8 1770 25,3 11,55 80 744 726 2410 26,4 11,55 81 734 72,6 2410 26,4 11,55 81 734 72,6 2410 26,4 11,55 81 734 52,6 2410 26,4 5,4,2 76 745 52,6 2410 26,4 5,4,2 76 745 52,6 2410 26,4 5,4,2 76 745 52,6 2410 26,5 5,4,2 76 745 52,6 2410 26,5 10,6 76 745 52,6 2410 26,5 10,6 76 745 52,6 2410 26,5 10,6 76 745 52,6 2410 26,5 10,6 74 74,5 52,6 2410 26,5<	Trico 80 732 97.8 1790 25.3 35.4 10.6 75 77.8 1790 25.3 35.4 10.6 75 77.8 1790 25.4 36.4 11.55 80 744 32.6 2410 284.4 36.4 11.55 81 734 57.8 17790 36.4 36.4 11.55 81 734 57.6 2410 284.4 36.4 5.42 75.4 75.6 2410 77.4 55.6 2410 77.4 36.4 5.42 75.4 75.6 2410 77.4 36.4 36.4 5.42 76 745 55.6 2410 77.4 36.4 5.42 76 745 55.6 2410 77.4 36.4 10.6 76 745 55.6 2410 27.4 26.4 10.6 76 745 55.6 2410 27.4 27.4	-	7.60	22	664	37.8	1730	25.3	25.2	3.66
10.6 80 732 97.8 1770 26.4 10.6 76 735 97.8 1770 26.4 10.6 76 735 97.8 1770 26.4 11.55 80 7.44 52.6 2410 26.4 11.55 81 7.34 52.6 2410 26.4 5.42 7.44 52.6 2410 26.4 5.42 7.4 52.6 2410 26.4 5.42 7.4 52.6 2410 26.4 5.42 7.4 52.6 2410 26.4 5.42 7.4 7.4 52.6 2410 26.5 5.42 7.6 7.4 52.6 2410 26.5 10.6 7.6 7.4 52.6 2410 26.5 10.6 7.6 7.4 52.6 2410 26.5 10.6 7.6 7.4 52.6 2410 26.5 10.6 <td< td=""><td>10.6 80 732 77.8 1770 26.4 36.4 10.6 75 77.8 1770 26.4 24.0 26.4 26.4 1.55 80 745 77.8 1770 26.4</td><td>8</td><td>7.60</td><td></td><td></td><td>37.8</td><td>1730</td><td>25.3</td><td>25.2</td><td>3.66</td></td<>	10.6 80 732 77.8 1770 26.4 36.4 10.6 75 77.8 1770 26.4 24.0 26.4 26.4 1.55 80 745 77.8 1770 26.4	8	7.60			37.8	1730	25.3	25.2	3.66
10.6 755 77.8 1770 26.4 11.55 80 744 72.6 2410 26.4 11.55 80 744 72.6 2410 27.6 11.55 80 744 72.6 2410 27.6 5.425 77 734 52.6 2410 27.6 5.425 74 734 52.6 2410 27.6 5.425 76 734 52.6 2410 27.6 5.425 76 734 52.6 2410 27.6 5.426 76 734 52.6 2410 27.6 5.426 76 745 52.6 2410 27.6 5.426 76 735 52.6 2410 27.6 10.6 76 745 52.6 2410 27.6 10.6 76 741 13.0 97.6 27.9 5.428 76 741 13.0 97.6 2	Diology Total Type	-	10.6	80	752	37.8	1730	26.4	28.6	4.00
10.6 75 7.8 1730 26.5 11.55 80 7.4 72.6 24.10 26.5 11.55 80 7.4 72.6 24.10 76.4 11.55 81 734 52.6 24.10 76.4 11.55 81 734 52.6 24.10 76.4 5.42 7.4 52.6 24.10 77.6 5.42 7.4 52.6 24.10 77.6 5.42 7.4 52.6 24.10 77.6 5.42 7.6 7.4 52.6 24.10 77.6 5.42 7.6 7.4 52.6 24.10 27.6 5.42 7.6 7.4 7.4 52.6 24.10 27.6 10.6 7.4 7.4 7.4 52.6 24.10 27.6 11.55 76 7.4 13.0 57.6 24.10 27.6 11.55 76 7.3 13.0 57.6	10.6 75 77.8 1770 26.3 36.3 11.55 80 744 72.6 21.00 78.4 36.4 11.55 81 736 27.8 1770 26.4 26.4 26.4 11.55 81 736 21.00 78.4 26.4	-	10.6			37.8	1730	28.4	28.4	3.79
10.6 74.4 27.8 1770 26.5 11.55 80 74.4 52.6 24.10 26.5 11.55 81 73.4 52.6 24.10 26.5 5.422 74 52.6 24.10 27.6 5.422 76 74.5 52.6 24.10 27.6 5.422 76 74.5 52.6 24.10 27.6 5.422 76 74.5 52.6 24.10 27.6 5.423 76 74.5 52.6 24.10 27.6 5.423 76 74.5 52.6 24.10 27.6 10.6 76 74.4 52.6 24.10 27.6 10.6 76 73.5 52.6 24.10 27.6 11.55 76 74.1 13.0 57.8 29.4 11.55 76 73.1 13.0 57.6 29.4 11.55 76 73.1 13.0 57.6 <td< td=""><td>10.6 11.5 20.8 1770 26.3 1770 26.3 27.4 26.4 <th< td=""><td>-</td><td>10.6</td><td>92</td><td>755</td><td>37.8</td><td>1730</td><td>26.3</td><td>26.3</td><td>3.70</td></th<></td></td<>	10.6 11.5 20.8 1770 26.3 1770 26.3 27.4 26.4 <th< td=""><td>-</td><td>10.6</td><td>92</td><td>755</td><td>37.8</td><td>1730</td><td>26.3</td><td>26.3</td><td>3.70</td></th<>	-	10.6	92	755	37.8	1730	26.3	26.3	3.70
1155 30 744 92.6 2410 28.4 1155 81 734 92.6 2410 28.4 1155 81 734 92.6 2410 28.4 5.42 74 73 92.6 2410 26.4 5.42 75 74 92.6 2410 26.4 5.42 74 74 92.6 2410 26.4 5.42 75 74 92.6 2410 26.4 5.42 75 74 92.6 2410 26.4 5.42 76 73 92.6 2410 26.4 10.6 76 73 92.6 2410 26.4 11.55 76 73 92.6 2410 26.5 11.55 76 73 11.0 956 20.3 5.42 76 73 11.0 956 20.3 5.42 76 73 11.0 956 20.3 5.42 76 73 11.0 956 20.3 5.42 76 73 13.0 956 20.3 5.42 76 73 13.0 956 20.3 5.42 <td>1.55 80 744 92.6 2.410 28.4 38.4 1.155 81 7.34 92.6 2.410 28.4 38.4 1.155 81 7.34 92.6 2.410 28.4 38.4 5.42 7.4 92.6 2.410 28.4 28.4 28.4 5.42 7.4 92.6 2.410 28.4 28.4 28.4 5.42 7.4 92.6 2.410 28.4 28.4 28.4 5.42 7.4 92.6 2.410 28.4 28.4 28.4 5.42 7.4 7.5 92.6 2.410 28.4 28.4 10.6 7.6 7.3 92.6 2.410 28.4 28.4 10.6 7.6 7.3 92.6 2.410 28.4 28.4 10.6 7.4 7.3 92.0 28.4 77.3 28.4 1.155 7.6 7.3 92.0 28.4 77.3 28.4 1.155 7.6 7.10 7.9 79.3 77.3 1.155 7.6 7.3 10.0 79.6 77.3 1.15 5.4 7.3 10.0 79.6 77.3 <</td> <td>-</td> <td>10.6</td> <td></td> <td></td> <td>27.8</td> <td>1730</td> <td>26.3</td> <td>26.3</td> <td>3.48</td>	1.55 80 744 92.6 2.410 28.4 38.4 1.155 81 7.34 92.6 2.410 28.4 38.4 1.155 81 7.34 92.6 2.410 28.4 38.4 5.42 7.4 92.6 2.410 28.4 28.4 28.4 5.42 7.4 92.6 2.410 28.4 28.4 28.4 5.42 7.4 92.6 2.410 28.4 28.4 28.4 5.42 7.4 92.6 2.410 28.4 28.4 28.4 5.42 7.4 7.5 92.6 2.410 28.4 28.4 10.6 7.6 7.3 92.6 2.410 28.4 28.4 10.6 7.6 7.3 92.6 2.410 28.4 28.4 10.6 7.4 7.3 92.0 28.4 77.3 28.4 1.155 7.6 7.3 92.0 28.4 77.3 28.4 1.155 7.6 7.10 7.9 79.3 77.3 1.155 7.6 7.3 10.0 79.6 77.3 1.15 5.4 7.3 10.0 79.6 77.3 <	-	10.6			27.8	1730	26.3	26.3	3.48
1155 11 734 92.6 2410 26.4 1155 71 734 92.6 2410 27.6 5.42 5.42 734 92.6 2410 27.6 5.42 5.42 734 92.6 2410 27.6 5.42 7.4 92.6 2410 27.6 5.42 7.4 92.6 2410 27.6 5.42 7.5 92.6 2410 25.0 5.42 7.5 92.6 2410 25.6 5.42 7.5 92.6 2410 25.5 10.6 75 92.6 2410 25.3 10.6 75 92.6 2410 25.3 11.5 76 735 92.6 2410 25.3 11.5 76 733 13.0 956 30.3 5.42 76 733 13.0 956 29.9 5.42 76 733 13.0 956 29.9 5.42 76 730 13.0 956 29.9 5.42 76 733 13.0 956 29.9 5.42 76 730 93.0 956 99.9	11:55 E1 734 32.6 24.0 73.4 33.4 11:55 54.2 73.4 52.6 24.0 73.4 33.4 5.4.2 54.2 73.6 24.0 73.5 73.4 5.4.2 75.4 73.6 24.0 73.5 73.4 5.4.2 75.6 24.0 75.6 24.0 75.6 5.4.2 75.6 24.0 75.6 24.0 75.4 5.4.2 75.6 24.0 75.6 24.0 75.4 5.4.2 75.6 24.0 75.0 25.0 25.0 10.6 75 75.6 24.0 75.3 25.4 10.6 75 52.6 24.0 75.3 25.4 10.6 74 75.6 24.0 25.3 25.4 11.5 76 73.5 13.0 75.3 25.4 5.42 77.9 77.9 77.9 77.9 5.42 77.9 77.9 77.9 77.9 11.5 76 71.0 75.3 77.4 5.44 77.9 77.9 77.9 77.9 5.45 77.9 77.9 77.9 77.9 <	-	1.55	80	744	52.6	2410	28.4	28.4	3.88
1155 81 734 92.6 2210 27.5 5.42 7.4 92.6 2210 27.5 5.42 7.4 72.6 2210 27.5 5.42 7.6 7.4 92.6 2210 27.5 5.42 7.6 7.4 92.6 2210 25.0 10.6 7.6 7.4 92.6 2210 25.0 10.6 7.6 7.4 92.6 2210 25.0 10.6 7.6 7.3 92.6 2210 25.0 10.6 7.6 7.3 92.6 2210 25.3 10.6 7.6 7.3 92.6 2210 25.3 11.5 7.6 7.3 92.6 2210 25.3 11.5 7.6 7.3 92.6 2210 25.3 11.5 7.6 7.3 19.0 95.6 32.4 11.5 7.7 7.4 19.0 95.6 20.3 5.42 7.7 7.4 19.0 95.6 20.3 5.42 7.7 7.4 19.0 95.6 20.3 5.42 7.7 7.4 19.0 95.6 20.3 5.42 <td>1.55 81 734 32.6 2.10 27.5 27.4 5.47 71 72,6 2.10 27.5 27.4 5.47 74 32.6 2.10 27.5 27.4 5.47 76 745 32.6 2.10 26.4 5.47 76 745 32.6 2.10 26.4 5.47 76 745 32.6 2.10 26.4 5.47 76 745 32.6 2.10 26.4 5.47 76 745 32.6 2.10 26.4 10.6 76 745 32.6 2.10 26.3 10.6 76 745 32.6 2.10 26.3 10.6 74 13.0 96.6 20.3 26.4 11.5 76 741 13.0 96.6 26.4 11.5 76 743 13.0 96.6 26.4 5.42 76 741 13.0 96.6 26.4 1.5 76 741 13.0 96.6 26.4 1.5 76 743 13.0 96.6 26.4 5.42 76 13.0 96.6 26.4 26</td> <td>-</td> <td>1.55</td> <td></td> <td></td> <td>52.6</td> <td>5410</td> <td>28.4</td> <td>28.4</td> <td>4.13</td>	1.55 81 734 32.6 2.10 27.5 27.4 5.47 71 72,6 2.10 27.5 27.4 5.47 74 32.6 2.10 27.5 27.4 5.47 76 745 32.6 2.10 26.4 5.47 76 745 32.6 2.10 26.4 5.47 76 745 32.6 2.10 26.4 5.47 76 745 32.6 2.10 26.4 5.47 76 745 32.6 2.10 26.4 10.6 76 745 32.6 2.10 26.3 10.6 76 745 32.6 2.10 26.3 10.6 74 13.0 96.6 20.3 26.4 11.5 76 741 13.0 96.6 26.4 11.5 76 743 13.0 96.6 26.4 5.42 76 741 13.0 96.6 26.4 1.5 76 741 13.0 96.6 26.4 1.5 76 743 13.0 96.6 26.4 5.42 76 13.0 96.6 26.4 26	-	1.55			52.6	5410	28.4	28.4	4.13
1,555 77 749 72,6 22,10 27,6 5,422 76 749 52,6 24,10 26,6 5,422 76 745 52,6 24,10 26,6 5,422 76 745 52,6 24,10 26,6 10,6 76 745 52,6 24,10 25,3 10,6 76 735 52,6 24,10 25,3 10,6 76 735 52,6 24,10 25,3 11,55 76 733 13,0 56,4 23,4 11,55 76 733 13,0 56,4 23,4 5,422 76 733 13,0 56,6 24,0 11,55 76 733 13,0 56,6 24,0 5,422 76 733 13,0 56,6 24,0 5,422 76 73,0 13,0 56,6 24,0 5,423 76 73,0 13,0 56,6 24,0 5,423 76 73,0 13,0 56,6 24,0 5,424 76 73,0 13,0 56,6 24,6 5,424 76 73,0 56,6 24,6 </td <td>1.55 71 72,6 24,0 27,6 24,10 27,6 24,10 5,12 5,12 5,12 77,6 24,10 75,6 24,10 75,6 24,10 5,12 5,12 75,6 24,10 75,6 24,10 75,6 24,10 5,12 75,6 24,10 75,6 24,10 75,6 24,10 10,6 76 75,4 75,6 24,10 75,3 25,4 10,6 76 75,5 52,6 24,10 25,3 25,4 10,6 76 73,5 74,0 25,3 25,4 26,6 1,55 76 73,3 11,0 95,6 24,10 25,3 25,4 1,54 76 73,3 11,0 95,6 24,10 25,3 25,4 1,54 76 73,3 11,0 95,6 24,10 25,3 25,4 1,54 76 73,3 11,0 95,6 24,10 25,3 25,4 1,54 76 73,3 11,0 95,6 24,10 25,4 5,42 76 73,3 11,0 95,6 24,10 25,4 5,42 76 73,3 1</td> <td>-</td> <td>1.55</td> <td>81</td> <td>734</td> <td>52.6</td> <td>5410</td> <td>27.5</td> <td>27.04</td> <td>3.75</td>	1.55 71 72,6 24,0 27,6 24,10 27,6 24,10 5,12 5,12 5,12 77,6 24,10 75,6 24,10 75,6 24,10 5,12 5,12 75,6 24,10 75,6 24,10 75,6 24,10 5,12 75,6 24,10 75,6 24,10 75,6 24,10 10,6 76 75,4 75,6 24,10 75,3 25,4 10,6 76 75,5 52,6 24,10 25,3 25,4 10,6 76 73,5 74,0 25,3 25,4 26,6 1,55 76 73,3 11,0 95,6 24,10 25,3 25,4 1,54 76 73,3 11,0 95,6 24,10 25,3 25,4 1,54 76 73,3 11,0 95,6 24,10 25,3 25,4 1,54 76 73,3 11,0 95,6 24,10 25,3 25,4 1,54 76 73,3 11,0 95,6 24,10 25,4 5,42 76 73,3 11,0 95,6 24,10 25,4 5,42 76 73,3 1	-	1.55	81	734	52.6	5410	27.5	27.04	3.75
5.42 77 749 52.6 2100 26.6 5.42 76 745 52.6 2100 26.6 10.6 76 745 52.6 2100 25.3 10.6 76 744 52.6 2100 25.3 10.6 76 734 52.6 2100 25.3 10.6 76 734 52.6 2100 25.3 10.6 76 734 52.6 2100 25.3 11.5 80 741 13.0 57.6 23.4 11.55 76 733 13.0 57.6 23.4 5.42 76 733 13.0 57.6 23.4 5.42 76 733 13.0 57.6 23.4 5.42 76 733 13.0 57.6 23.4 5.42 76 733 13.0 57.6 23.4 5.42 76 736 13.0 57.6	5.42 77 749 35.4 2.10 35.4 36.4 5.42 7.5 7.4 7.9 55.4 2.10 25.4 36.4 10.6 7.6 7.4 52.6 2.10 25.4 35.4 10.6 7.6 7.4 52.6 2.10 25.0 25.0 10.6 7.6 7.5 52.6 2.10 25.3 25.4 10.6 7.6 7.5 52.6 2.10 25.3 25.4 10.6 7.6 7.5 52.6 2.10 25.3 25.4 10.6 7.6 7.3 13.0 95.6 2.10 25.3 25.4 1.5 7.6 7.1 13.0 95.6 20.2 25.4 1.4 7.4 13.0 95.6 20.2 25.4 27.9 1.45 7.4 13.0 95.6 20.2 25.4 27.9 1.45 7.4 13.0 95.6 20.2	-	1.55			52.6	0172	27.6	27.7	3.84
5.42 5.42 5.42 5.42 5.42 5.42 5.42 5.41 25.6 2410 25.4 10.6 5.42 75 75 75.6 2410 25.3 10.6 76 734 52.6 2410 25.3 10.6 76 734 52.6 2410 25.3 10.6 76 734 52.6 2410 25.3 10.6 76 735 52.6 2410 25.3 11.55 76 735 52.6 2410 25.3 11.55 76 733 13.0 956 29.3 11.55 76 733 13.0 956 29.3 5.42 76 733 13.0 956 29.3 5.42 76 735 13.0 956 29.3 5.42 76 736 13.0 956 29.4 5.42 76 736 13.0 956 29.4	5.42 5.42 5.43 5.44 <th< td=""><td>-</td><td>5.42</td><td>44</td><td>671</td><td>52.6</td><td>2410</td><td>26.4</td><td>26.4</td><td>3.93</td></th<>	-	5.42	44	671	52.6	2410	26.4	26.4	3.93
5,422 76 745 52.6 24.0 25.0 10.6 76 745 52.6 24.0 25.0 10.6 76 754 52.6 24.0 25.0 10.6 76 754 52.6 24.0 25.3 10.6 76 735 52.6 24.0 25.3 10.6 76 735 52.6 24.0 25.3 11.55 76 733 13.0 556 23.4 11.55 76 733 13.0 556 23.4 5.42 76 733 13.0 556 29.3 5.42 76 733 13.0 556 29.3 5.42 76 733 13.0 556 29.3 5.42 76 733 13.0 556 29.3 5.42 76 730 13.0 556 29.3 5.42 76 73.0 13.0 556	5.42 7.43 52.6 2.410 25.0 <t< td=""><td></td><td>5.42</td><td></td><td></td><td>52.6</td><td>2410</td><td>26.4</td><td>26.4</td><td>3.64</td></t<>		5.42			52.6	2410	26.4	26.4	3.64
5.42 754 52.6 2210 25.0 10.6 76 734 52.6 2210 25.0 10.6 76 734 52.6 2210 25.3 10.6 76 735 52.6 2210 25.3 10.6 76 735 52.6 2210 25.3 11.55 76 735 52.6 2410 25.3 11.55 76 733 13.0 956 33.4 5.422 76 733 13.0 956 39.9 5.422 76 733 13.0 956 39.9 5.422 76 733 13.0 956 39.9 5.422 76 735 13.0 956 29.9 5.422 76 735 13.0 956 29.9 5.422 76 735 13.0 956 29.9 5.422 76 736 13.0 956 29.4	Ji.42 Tild Zi.6 Zill Zill </td <td>4</td> <td>5.42</td> <td>22</td> <td>745</td> <td>52.6</td> <td>2410</td> <td>25.0</td> <td>25.0</td> <td>3.71</td>	4	5.42	22	745	52.6	2410	25.0	25.0	3.71
10.6 76 734 52.6 24.0 25.3 10.6 76 734 52.6 24.0 25.3 10.6 76 735 52.6 24.0 25.3 10.6 76 735 52.6 24.0 25.3 10.6 76 735 52.6 24.0 25.3 11.55 76 733 13.0 596 33.4 1.155 76 733 13.0 596 33.4 1.155 76 733 13.0 596 23.4 5.422 76 733 13.0 596 23.4 5.422 76 733 13.0 596 23.4 5.422 76 733 13.0 596 29.3 5.422 76 73.0 59.4 29.4 29.4 5.422 76 73.0 59.4 29.4 29.4 5.422 76 73.0 59.4 29.4 <td>10.6 76 734 53.6 24.0 25.3 25.4 10.6 76 754 53.6 24.0 25.3 25.4 10.6 76 755 53.6 24.0 25.3 25.4 10.6 75 53.6 24.0 25.3 25.4 35.4 10.6 75 53.6 24.0 25.3 35.4 35.4 1.55 76 733 13.0 956 27.4 36.6 1.55 76 733 13.0 956 27.4 26.4 5.42 76 733 13.0 956 27.3 21.4 5.42 76 733 13.0 956 27.3 21.4 5.42 76 733 13.0 956 27.3 21.4 5.42 76 733 13.0 956 27.3 21.4 5.42 76 733 13.0 956 27.3 21.4 1</td> <td>-</td> <td>5.42</td> <td></td> <td></td> <td>52.6</td> <td>24,10</td> <td>25.0</td> <td>25.0</td> <td>3.77</td>	10.6 76 734 53.6 24.0 25.3 25.4 10.6 76 754 53.6 24.0 25.3 25.4 10.6 76 755 53.6 24.0 25.3 25.4 10.6 75 53.6 24.0 25.3 25.4 35.4 10.6 75 53.6 24.0 25.3 35.4 35.4 1.55 76 733 13.0 956 27.4 36.6 1.55 76 733 13.0 956 27.4 26.4 5.42 76 733 13.0 956 27.3 21.4 5.42 76 733 13.0 956 27.3 21.4 5.42 76 733 13.0 956 27.3 21.4 5.42 76 733 13.0 956 27.3 21.4 5.42 76 733 13.0 956 27.3 21.4 1	-	5.42			52.6	24,10	25.0	25.0	3.77
10.6 735 52.6 22.00 25.3 10.6 75 52.6 22.00 25.3 10.6 75 52.6 22.00 25.3 11.55 76 735 52.6 24.10 25.3 11.55 76 733 13.0 55.4 32.4 11.55 76 733 13.0 556 32.4 5.42 76 733 13.0 556 32.4 5.42 76 733 13.0 556 29.4 5.42 76 733 13.0 556 29.4 5.42 76 735 13.0 556 29.4 5.42 76 735 13.0 556 29.4 5.42 76 735 13.0 556 29.4 5.42 76 736 73.0 556 29.4 5.42 76 736 73.0 556 29.4 5.42	10.6 75 52.6 2.20 25.3 25.4 10.6 75 52.6 2.20 25.3 25.4 10.6 75 52.6 2.10 25.3 25.4 1.55 7.6 2.10 25.3 25.4 25.4 1.55 7.6 2.10 25.3 25.4 25.4 1.55 7.6 731 13.0 956 33.4 27.9 1.55 7.6 733 13.0 956 33.4 27.9 27.9 5.42 7.4 13.0 956 30.2 27.9 27.9 5.42 7.6 733 13.0 956 30.2 27.9 5.42 7.6 13.0 956 30.2 27.9 27.9 5.42 7.6 13.0 956 30.2 27.9 27.9 5.42 7.6 13.0 956 30.2 27.9 27.9 10.6 7.6 13.0	-	10.6	92	154	52.6	0172	25.3	25.3	3.73
10.6 76 735 52.6 2410 25.3 10.6 76 735 52.6 2410 25.3 1.55 80 741 13.0 556 31.5 1.55 76 733 13.0 556 31.5 1.55 76 733 13.0 556 32.4 1.55 76 733 13.0 556 32.9 5.42 76 733 13.0 556 30.3 5.42 76 748 13.0 556 30.3 5.42 76 748 13.0 556 30.3 5.42 76 748 13.0 556 30.3 5.42 76 73.0 556 30.3 31.1 5.42 76 73.0 556 30.3 32.4 5.42 76 73.0 556 30.3 32.4 5.42 76 76 73.0 556 30	10.6 75 52.6 2410 25.3 25.4 10.6 75 52.6 2410 25.3 25.4 1.55 76 735 19.0 55.3 35.4 1.55 76 733 19.0 556 24.0 25.3 35.4 1.55 76 733 19.0 556 32.4 30.8 1.55 76 733 19.0 556 32.4 30.8 5.42 76 733 19.0 556 32.4 30.8 5.42 76 733 19.0 556 32.4 30.8 5.42 76 733 19.0 556 30.2 27.3 5.42 76 733 19.0 556 30.2 27.3 5.42 76 733 19.0 556 30.2 27.3 10.6 76 19.0 556 30.2 27.9 35.4 10.6 76	-	10.6	-		52.6	2470	25.3	25.4	3.90
10.6 92.6 24.0 25.3 11.55 80 741 19.0 596 31.5 11.55 76 733 19.0 596 32.4 11.55 76 733 19.0 596 30.2 11.55 76 733 19.0 596 30.2 5.42 76 733 19.0 596 30.2 5.42 76 733 19.0 596 30.2 5.42 76 735 13.0 596 30.2 5.42 76 735 13.0 596 30.2 5.42 76 735 13.0 596 30.2 5.42 76 73.0 13.0 596 30.1 10.6 77 747 13.0 596 29.4 10.6 77 747 13.0 596 29.2	J0.6 32.6 24.0 25.3 35.4 1.55 80 741 13.0 556 31.5 20.6 1.55 76 733 13.0 556 31.5 20.6 1.55 76 733 13.0 556 30.2 27.9 1.55 76 733 13.0 556 29.4 70.8 5.42 76 733 13.0 556 29.4 70.8 5.42 76 735 13.0 556 29.4 70.3 5.42 76 735 13.0 556 29.4 20.3 5.42 76 735 13.0 556 20.3 27.9 5.42 76 735 13.0 556 20.3 27.9 10.6 77 13.0 556 20.3 27.9 27.9 10.6 77 13.0 556 20.2 27.9 27.9 10.6 77	-	10.6	22	755	52.6	2410	25.3	25.4	4.004
1.55 80 741 13.0 596 31.5 1.55 76 733 13.0 596 32.4 1.55 76 733 13.0 596 32.4 5.42 76 733 13.0 596 29.4 5.42 76 735 13.0 596 29.4 5.42 76 735 13.0 596 29.4 13.0 596 39.4 13.0 596 39.4 13.0 596 39.4	1.55 80 741 19.0 56 31.5 29.6 1.155 76 733 19.0 566 39.4 30.8 1.155 76 733 19.0 566 39.4 30.8 5.42 77 748 19.0 566 39.4 37.9 5.42 77 748 19.0 566 39.3 37.9 5.42 76 735 19.0 566 39.3 37.9 5.42 76 735 19.0 566 39.3 37.9 5.42 76 735 19.0 566 30.3 37.9 5.42 76 735 19.0 566 30.3 37.9 10.6 76 736 19.0 566 30.2 37.9 10.6 76 19.0 566 30.2 27.9 10.6 76 19.0 566 30.2 27.9 10.6 76 19.0 566 30.2 27.9 10.6 76 30.2 27.9 27.9 10.0 566 30.2 27.9 27.9 10.0 566 30.2 27.9 27.9 </td <td>8</td> <td>10.6</td> <td></td> <td></td> <td>52.6</td> <td>0172</td> <td>25.3</td> <td>25.4</td> <td>3.78</td>	8	10.6			52.6	0172	25.3	25.4	3.78
L155 76 733 11.0 956 32.4 11.55 76 733 11.0 956 30.4 5.442 77 748 13.0 956 30.4 5.442 77 748 13.0 956 30.4 5.442 76 735 13.0 956 20.4 5.442 76 735 13.0 956 20.4 5.442 76 735 13.0 956 31.1 5.442 76 735 13.0 956 31.1 10.6 77 13.0 956 29.4 10.6 77 13.0 956 29.4	Lumber Lumber <thlumber< th=""> <thlumber< th=""> <thlumber< t<="" td=""><td>-</td><td>1.55</td><td>80</td><td>147</td><td>13.0</td><td>596</td><td>31.5</td><td>29.6</td><td>4.07</td></thlumber<></thlumber<></thlumber<>	-	1.55	80	147	13.0	596	31.5	29.6	4.07
11.55 76 733 13.0 596 29.9 5.42 77 748 13.0 596 30.3 5.42 77 748 13.0 596 30.3 5.42 76 735 13.0 596 30.3 5.42 76 735 13.0 596 30.3 5.42 76 735 13.0 596 30.4 5.42 76 735 13.0 596 31.1 5.42 76 750 13.0 596 31.1 10.6 76 730 13.0 596 29.4 10.6 77 747 13.0 596 29.4	11.55 76 733 13.0 556 23.9 27.3 5.42 77 74.8 13.0 556 32.3 27.9 5.42 76 735 13.0 556 33.3 27.9 5.42 76 735 13.0 556 33.3 27.9 5.42 76 735 13.0 556 33.1 35.3 5.42 76 735 13.0 556 33.1 35.3 5.42 76 73.0 556 33.1 35.4 36.7 10.6 76 73.0 556 30.2 27.9 27.9 10.6 77 74.7 13.0 556 30.3 27.9 10.6 77 13.0 556 30.3 27.9 27.9 10.6 77 13.0 556 30.3 27.9 27.9	m	2.55			13.0	596	32.4	30.8	4.48
1.55 77 748 13.0 956 30.2 5.42 77 748 13.0 956 30.3 5.42 76 735 13.0 956 30.3 5.42 76 735 13.0 956 30.3 5.42 76 735 13.0 956 31.1 5.42 76 730 13.0 956 31.1 10.6 77 13.0 956 29.4 31.1 10.6 77 747 13.0 956 29.4 29.4	1.55 77 748 13.0 956 30.2 27.9 5.42 77 748 13.0 556 29.3 26.0 5.42 76 735 13.0 556 30.3 26.4 5.42 76 735 13.0 556 31.1 29.3 5.42 76 735 13.0 556 31.1 29.3 10.6 76 730 13.0 596 29.4 28.4 10.6 77 13.0 596 29.4 28.4 28.7 10.6 77 13.0 596 29.2 27.9 27.9 10.6 77 13.0 596 29.3 27.9 27.9 10.6 77 13.0 596 29.3 27.9 27.9	-	1.55	26	733	13.0	236	29.9	27.3	4.18
5.42 77 745 13.0 556 29.3 50.5 50.3 50.5 50.3 50.5 50.3 50.5 50.3 50.5 50.5 50.3 50.5 50.3 50.5 50.3 50.5 50.4 50.5 50.4 50.	5.42 77 74.8 13.0 556 29.3 36.0 5.42 76 735 13.0 556 30.3 36.1 5.42 76 735 13.0 556 31.1 29.3 5.42 76 755 13.0 596 31.1 29.7 10.6 76 790 13.0 596 31.1 29.7 10.6 77 74.7 13.0 596 30.2 27.9 10.6 77 74.7 13.0 596 30.2 27.9 10.6 77 74.7 13.0 596 29.3 27.9 10.6 77 13.0 596 29.3 27.9	-	1.55			13.0	596	30.2	27.9	4.22
5.42 5.42 76 735 13.0 596 30.9 5.42 76 735 13.0 596 31.1 5.42 76 735 13.0 596 31.1 10.6 76 750 13.0 596 29.4 10.6 77 747 13.0 596 29.4	5.42 7.6 735 13.0 956 90.9 86.4 5.42 7.6 735 13.0 556 31.1 29.7 5.42 7.6 735 13.0 556 31.1 29.7 10.6 7.6 750 13.0 556 31.1 29.7 10.6 77 13.0 556 29.4 26.7 10.6 77 747 13.0 556 29.4 26.7 10.6 77 747 13.0 556 30.2 27.9 10.6 77 747 13.0 556 30.3 26.6	-	5.42	44	748	13.0	596	29.3	26.0	missing
5.42 76 735 13.0 556 31.1 10.6 76 750 13.0 596 31.1 10.6 76 750 13.0 596 29.4 10.6 77 747 13.0 596 29.4	5.42 76 735 13.0 556 31.1 23.3 5.42 76 755 13.0 596 31.1 23.7 10.6 76 750 13.0 596 30.1 27.9 10.6 77 747 13.0 596 30.2 27.9 10.6 77 747 13.0 596 30.2 27.9 10.6 77 747 13.0 596 30.3 28.6 10.6 77 747 13.0 596 20.3 28.6	-	5.42			13.0	596	30.9	28.4	4.84
5.42 5.42 13.0 596 31.1 10.6 76 750 13.0 596 29.4 10.6 77 747 13.0 596 30.2 10.6 77 747 33.0 596 30.2	5.42 76 750 13.0 556 31.1 29.7 10.6 76 750 13.0 596 29.4 26.7 10.6 77 747 13.0 596 29.4 27.9 10.6 77 747 13.0 596 29.3 27.8 10.6 10.6 27.8 27.8	-	5.42	26	262	23.0	265	32.1	29.3	3.99
10.6 76 750 13.0 596 29.4 10.6 77 747 13.0 596 30.2 10.6 77 747 13.0 596 30.2	10.6 76 750 13.0 596 29.4 26.7 4 10.6 77 74.7 13.0 596 29.2 27.9 1 10.6 77 74.7 13.0 596 29.3 28.6 4 10.6 10.6 13.0 596 30.3 28.6 4	-	5.42			13.0	596	31.1	29.7	3.84
10.6 77 747 13.0 596 30.2 10.6 77 747 13.0 596 29.8	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-	10.6	9/2	750	13.0	596	29.4	26.7	4.10
1 10.6 77 747 13.0 596 29.8	1 10.6 77 747 13.0 596 29.8 27.8 4 13.0 596 30.3 28.6 4	-	10.6	1		13.0	236	30.2	27.9	4.30
	13.0 596 30.3 28.6 4	at o	10.0	11	147	13.0	236	29.8	27.8	4.36

Run No.	: Gas Rate : cu.ft./hr.	: Gas Temp. : of	: Column	: Rate	: Liguid : Mass Wel. :	Inlet	Temp. : Outlet:	CO2 absort 1b./cu.ft.
ALT	1-55	78	737	21.0	UULL	26.7	26.6	1.72
-	1.55	2	2	24.0	1100	26.9	26.8	3.98
-24	1.55	81	734	24.0	0011	30.2	29.7	3.68
8	1.55			24.0	0011	30.4	30.0	3.64
AL-	5.42	80	14712	24.0	1100	30.8	30.3	4.02
A	5.42			24.0	1100	30.9	30.5	4.20
-24	5.42	78	739	24.0	0011	27.0	26.9	3.95
8	5.42			24.0	0011	27.1	2730	3.68
AL-	10.6	342	752	24.0	1100	28.6	27.3	3.77
-	10.6			24.0	1100	28.6	27.3	3.55
-24	10.6	84	748	24.0	OOLI	27.8	27.7	3.86
8	10.6			24.0	0011	27.8	27.7	3.84
-14	1.55	76	71,2	37.8	1730	25.8	25.8	4.03
8	1.55			37.8	1730	35.8	35.8	3.83
-24	1.55	34	737	37.8	1730	25.6	25.7	3.92
A	1.55			37;8	1730	25.6	25.7	4.24
PI-	5.42	64	746	3738	1730	28.6	28.5	4.00
-	5.42			37.8	1730	28.7	28.6	3.74
-24	5.42	76	1477	37.8	1730	26.5	26.5	3.67
2	5.42			37.8	1.730	26.5	26.5	3.44
14	20.6	80	750	37.8	1730	28.2	28.2	3.83
8	10.6			37.8	1730	28.2	28.2	3.73
-2A	10.6	78	736	37.8	1730	25.1	25.4	4.17
2	10.6			37.8	1730	25.1	25.4	3.85
TT-	1.55	24	746	52.6	2410	26.6	26.7	3.62
2	1.55 1			52.6	2410	26.6	26.6	3.60
-24	1.55	81	734	52.6	2410	28.3	28.3	3.94
-	1.55			52.6	2410	28.3	28.3	3.75
AL-	5.42	80	141	52.6	2410	28.3	28.3	missing
A	5.42			52.6	5410	28.3	28.3	3.92
-2A	5.42	78	745	52.6	2410	26.5	26.5	3.62
B	5.42			52.6	2410	26.5	26.5	3.78
TT-	10.6	92	754	52.6	9172	25.3	25.4	3.72
A	10.6			52.6	2410	25.3	25.4	3.87
-2A	10.6	81	742	52.6	2410	28.1	28.3	3.58
-								

T/a		92	23	63	1:	16	66	03	74	12	05	22	15	200	62	29	38	16	29	98	34		12	88	500	76	53	87
log kla		1.1492	1.1523	1.19	1.164	1.1492	1.19	1.17	1.1614	1.12	1.24	1.21	To J	045E-L	1.39	1.37	1.38	1.42	1.37	1.47	1014	1.40	Cor .	12.01	10.1	1.52	1.56	1.5587
Rta Kta Coefficient : 14 uid Film Coefficient : 15.	(.)(Ib./en.ft.) : Corrected :	14.1	14.2	15.5	14.6	1440	15.7	14.8	14.5	13.4	17.4	16.3	2.2	22.8	24.9	23.6	24.2	26.4	23.6	30.1	×0.0	25.0	10470	201	33.0	33.7	26.5	36.2
Liguta Figure	Observed :	15.5	16.1	16.8	16.3	15.7	17.3	16.5	15.8	9-11	18.7	17.9	0.00	24.1	26.6	26.2	26.8	27.5	24.6	34.1	0.00	4.12	0.02	E 77	34.4	35.1	36.2	36.2
(4C)1.m. 1b./cu.ft.		5.68	5.50	5.62	5.55	5.66	5.46	5.46	5.79	5.69	5.57	5.55	20.07	6.15	5.99	5.87	5.80	6.08	6.32	5.35	4C .C	2.4	5 02	2.80	6.41	6.41	6.68	6.75
Absorption Rate : 1b./hr. : x10 ³ :		8.41	8.48	10.6	8.65 6 65	0.00 8.18	9.22	8.62	8.73	8.09	10.00	9.51	C4047	14.10	15.25	14.70	14.82	16.00	14.85	17.42	10°04	00°CT	11 26	67.76	21.07	21.44	23.14	23.39
Idquid : Mass Velocity : 1b./hrsq.ht.:		596	596	596	946	200	596	596	596	596	236	266	OULL	DOTT	0011	DOLL	0011	0011	0011	DOTT	UULL	UULL	1730	1730	1730	1730	1730	1730
Run : No. :		VI-OOI	-	-24	a tod	8	-24	A	R02-14	m ;	-24	R OLO	H	-24	-	AL-LLR	2	-24		RI-SIA	AC	49-	AL-US	A	-2A	8	R21-1A	EA :

uno.	: Mass Velocity : : Nass Velocity : : Th. An an. At. :	Absorption Rate : 1b./hr	10-/cuitt.	: Liquid Film:	kra : Liquid Film Coefficient : 1b. Coefficient :	log k _L a
		1		: (hrcu.ft.)(lb./cu.ft.) : : Corrected :	
T	1100	15.84	5.40	30.8	27.0	1.4314
-	DOLL	16.55	5.31	32.6	28.7	1.4579
-2A	1100	15.56	6.11	26.6	25.3	1.4031
-	DOLL	14.50	6.30	24.2	27.5	1.4393
TA	0011	14.85	6.16	25.2	23.4	1.3692
-	0011	13.99	6.26	23.4	21.8	1.3385
SA	0011	15.21	6.16	25.9	24.3	1.3856
-	OOLI	15.13	6.15	25.7	24.1	1.3820
E20-14	1730	24.54	6.38	40.2	39.4	1.5955
-	1730	23.32	. 6.53	37.3	36.6	1.5635
2A	1730	23.87	6.40	39.2	38.6	1.5866
2	1730	25.21	6.23	42.1	42.04	1.6170
E21-1A	1730	24.36	5.80	44.0	40.4	1.6064
20	1730	22.78	5.95	40.2	36.8	1.5658
SA	1730	22.35	6.52	35.9	34.8	1.5416
m	1730	20.95	6.65	33.0	31.9	1.5038
E22-1A	1730	23.32	6.02	40.5	37.7	1.5763
-	1730	22.72	6.07	39.1	36.3	1.5599
SA	1730	25.40	6.34	42.0	42.0	1.6232
m	1730	22.45	6.57	35.8	35.8	1. 5539
E30-14	2410	30.51	6.45	49.5	47.6	1.6776
8	2410	30.34	6.45	49.5	47.5	1.6767
ZA	2410	33.21	5.82	59.6	55.5	1.7435
-	2410	31.61	5.96	55.5	52.0	1.7160
\$31-1A	2410					missing
-	0172	33.04	5.92	58.4	54.0	1.7324
2A	2410	30.51	6.17	51.7	6.64	1.6981
2	0172	31.86	6.05	55.2	53.4	1.7275
E32-14	2410	31.36	6.83	48.0	47.6	1.6776
-	2410	32.62	6.75	50.7	50.1	1.6998
-ZA	2410	30.18	6.10	51.8	48.1	1.6821
-	0110	00 00		A 44	A 84	and the second s

IV. Statistical Analysis

<u>PC series</u>. Data taken from the last column of Table 4 are summarized in Table 8a. The following sums of squares are calculated from the main table and sub-tables of Table 8 a,b,c, and d.

 $\texttt{C.F.}=(74.6514)^2/72$ - 77.40043 , where 72 is the total number of observation.

(a)
$$0.7852^2 + 1.3424^2 - C.F. = 2.49332$$

(b) $(1.5704^2 + \dots + 2.6096^2)/2 - C.F. = 2.37931$

(c) $(17.8723^2+\ldots+19.1362^2)/18 - C.F. = 0.22781$

(d) $(35.4286^2 + \dots + 39.2228^2)/36 - C.F. = 0.19995$

(e) $(3.2152^2 + \dots + 5.0626^2)/4 - C.F. = 2.04449$

(f) (6.6249²+....+ 9.9347²)/8 - C.F. = 1.93212

(g) $(36.6593^2 + \dots + 37.9921^2)/36 - C.F. = 0.02467$

(h) $(9.6952^2 + \dots + 14.9618^2)/12 - C.F. = 1.92405$

(1) $(24.4221^2 + \dots + 24.7320^2)/24 - C. F. = 0.02553$

(j) $(11.8503^2, \dots, 12.3982^2)/12 = C.F. = 0.05986$

(k) (20.0281²+....+ 29.5656²)/24 - C.F. - 1.89697

Sum of square for R = d, T = e, RxT = b-d-e

for main effects: F = g, L = k, G = i

for interactions: FxL = h-g-k , FxG = j-i-g , IxG = f-k-i FxIxG = d-f-g-h-i-j-k

for observation within run: a-b

<u>QD series</u>. We attempt was made to test for significance of effects flow type with this experiment. The purpose of conducting this experiment was to furnish more data to determine the relationship between $k_{\tilde{L}}$ and the liquid rate. Therefore only error of observation within run was calculated. This was done by the method as described for PC series, i.e. to find the corresponding a-b term.

<u>RE sories</u>. Computation similar to that done in PC series was carried out. There were two missing data, EOL-1A and E3L-1A, due to known errors. In order to facilitate computation, these data were substituted by values that would give minimum errors. The new values were calculated with the following formula (5):

 $X_{11} = \frac{nX_{11} + (v-1)X_{11} + X_{21} - X_{11}}{(v-2)(n-1)}$ $X_{21}^{\prime} = \frac{nX_{\cdot1} + (v-1)X_{2} + X_{1} - X_{\cdot}}{(v-2)(v-1)}$

where

X = value of observation

- X₁₁ the estimated value of the missing one of replicate 1 and treatment 1.
- X21 = the estimated value of the missing one of replicate 1 and treatment 2.
- X_{γ} = the sum of replicate 1 excluding $X_{\gamma\gamma}$.
- $X_{1,}$ = the sum of treatment 1 excluding X_{71} .
- X .. = the grand total excluding the missing one.
- n = number of replicate.
- v = number of treatment.

According to the above formula and using the first sample (a) of replicate 1 as the replicate in the formula, we can calculate the best estimate values for EOL-1A and E31-JA. These are 1.2096 and 1.7221 respectively.

Since we have introduced two values with minimum error, the total number of observation for determining experimental error will thus be reduced by two. So total degree of freedom becomes 96-1-2=93. The logarithm of liquid film coefficient, log $(k_{\rm L}~x~10),$ data from the absorption experiment of $\rm CO_2-H_2O$ system in the disc column. Table S.

(a) Replicate versus treatment.

Treatment				Replicate			
	TA	3B	sum 1.	24	2B	gum 2	Total
700 2 1	.7852 .6693 .7679	.77852 .6857 .7135	1.5704 1.3550 1.4814	.9129 .9120	. 8319 . 8976 . 8865	1.6448 1.8396 1.8030	3.2152 3.1946 3.2844
P10 2 2	.9689 1.0835 1.0835	.9786	1.8286 2.1423 2.0621	.9768 1.1732 1.1673	1.0043 1.0588 .9479	1.9811 2.2320 2.1152	3.8097 4.3743 4.1773
P20 2 1	1.2041	1.3181 1.2095 1.1173	2.5222 2.3556 2.2245	1.1761 1.2742 1.3444	1.1271 1.2765 1.3032	2.3032 2.5507 2.6476	4-8254 4-9063
000 000	.8463 .8129 .7404	1169. 12613.	1.6314 1.6324 1.4315	.8710 1.1673	. 8573 . 9217 . 8820	1.7283 2.0890 1.7713	3.4097 3.7214 3.2028
610	1.0730 .9643 .9380	1.0550 .9800 .9253	2.1280 1.9443 1.8633	1.1959	1.1139 1.0550 1.0934	2.3098 2.1815 2.2695	4.4378 4.1258 4.1328
620	1.1430 1.3032 1.2355	1.0792 1.2272 1.2175	2.2222 2.5304 2.4530	1.2279 1.3320 1.2672	1.2742 1.3424	2.5021 2.6096 2.6096	4.7243 5.1749 5.0626
Total	17.8723	17.5563	35.4386	20.0866	19.1362	39.2228	74.6514

Table 8. (Cont'd)

(b) Flow type versus flow rate

-											-							
Total	-	6.6249 6.9160 6.4872	8.2475 8.5001 8.3101	9.5497 10.0812 9.9347	74.6514		Total	24.4221	25.4973	24.7320	74.6514		Totel		20.0281	25.05777	29.5656	7159-74
		10.3339	12.6964	14.9618		-		-										
0	0	3.4097 3.7214 3.2028	4.4378 4.1258 4.1328	4.7243 5.1749 5.0626	37.9921		o	12.5718	13.0221	12.3982	37.9921			2	6.4872	8.3101	9.9347	24.7320
Flow type		9.6942	12.3613	14.6038		ts rate.	-					quid rate.	Gas Rate	1	6.9160	\$° 5001	10.0812	28. 4973
	P	3.2152 3.1946 3.2844	3.8097 4.3743 4.1773	4.8254 4.9063 4.8721	36.6593	Flow type versus gas rate.	Ą	11.8503	12.4752	12.3338	36.6593	Gas rate versus liquid rate.		0	6.6249	8.2475	9.5497	24.4221
Rates		848	9 H 8	8 H 8	Total	(c) Flow	Gas Rate	0	1	2	Total	(d) Gas	Liquid Rate		0	-	8	Total

10	
ti	11.
10	5
bsd	t
6	11.
he	0
-	42
1Q	5
x 10), dete fr	20
te	
de	rat
~	-
10	202
14	42
G	2 2
0	朝
20	10
M	0
Jt.	1.80
1.01	3
in o	he
JJ	40
ő	11
E	ena
12	35
4	53
ute	00
1 qu	5
-	2
of	0
E	of
14	2
Sar	Ber
10	TT
	90
The logarithm of liquid film coefficient, log (k1 x 10), data from the absorption	(ex
6	
9	
ab.	
H	

		Sample		Run No.		Semple	
	Y	B	Sum		A	B	Sum
7	0.9135	6768.0	1.8084	D5-1	0.9031	0.8921	1.7952
2	0.8543	0.8555	1.7098	3	0.8982	0.8751	1.7733
3	0.8482	0.9085	1.7567	-	0.9004	0.88/2	1.7846
	0.8663	0.9170	1.7833	1	0.8075	0.8035	1.6110
ñ	0.6946	0.7126	1.4072	1-90	6768.0	0.9004	1.7953
+	0.9754	0.9566	1.9320	2	0466.0	0.9180	1.8550
-	1.0656	1.0622	2.1278	5	0.7275	0.6937	1.4212
3	1616.0	1.0212	2.0003	4-	1116.0	T716.0	1.9518
5	1.0043	0.9814	1.9857	D'-L	0.9908	1.0170	2.0078
1	1.0407	1.0212	2.0619	3	1616.0	0.9795	1.8986
ŝ	1.0577	1.0607	2.1184	-3	1.0128	1.0128	2.0256
*	1.0690	1.0645	2.1335	D8-1	0.9827	1.0043	1.9870
2	1.0278	1.0203	2.0481	2	0.9675	0.9823	1.9498
9	1666.0	1.0755	2.0746	-	1.0351	1.0237	2.0588
5-	1.0577	1.0382	2.0959	1	1.0958	1.0919	2.1677
ę	1.1038	3.1106	2.2144	5-	1716.0	1.0682	2.0423
-	1.0068	1.0076	2.0154	9	1,0191	1.0531	2.0722
4	1.0237	1.0395	2.0632	1-	1.0433	1.0719	2.1152
				1-60	1.0203	1.0374	2.0577
				9	1.0531	1.0000	2.0531

The logarithm of liquid film coefficient, log $k_{\rm L}$, data from the absorption experiment of $\rm GO_2$ - $\rm H_2O$ system in the packed column. Table 10.

(a) Replicate versus treatment.

	Total	4.6562	4.6798	4.7412	5.5402	5.5512	5.7027	6.2354	6.2042	6.2095	6.9533	6.7844	6.8026	4.8106	4.8301	4.7459	5.6160	5.7317	5.4753	6.3526	6.2176	6.3133	6.8138	6.8801	6.7730	210 1000
	sum 2	2.3547	2.3662	2.4527	2.7541	2.7945	2.8009	3.0461	3.0832	3.0416	3.4353	3.3839	3.4136	2.3890	2.3282	2.3886	2.7437	2.8424	2.7676	3.2036	3.0454	3.1771	3.4595	3.4256	3.3956	PADA ANA
	88	1.1644	1.1703	1.2122	1.3962	1.3729	1.3927	1.5276	31.5416	1.5038	1.7243	1.6844	1.6893	1.1987	1.1492	1.1818	1.3617	1.4393	1.3820	1.6170	1.4038	1.5539	1.7160	1.7275	1.7135	A 1 0000
Replicate	2.4	1.1903	1.1959	1.2405	1.3579	1.4216	1.4282	1.5185	1.5416	1.5378	1.7110	1.6955	1.7243	1.1903	1.1790	1.2068	1.3820	1.4031	1.3856	1.5866	1.5416	1.6232	1.7436	1.6981	1.6821	AF 21 FO
	sum 1	2.3015	2.3136	2.2885	2.7861	2.7567	2.9018	3.1893	3.1210	3.1679	3.5180	3.4005	3.3890	2.4216	2.5019	2.3573	2.8723	2.8893	2.7077	3.1590	3.1722	3.1362	3.3543	3.4545	3.3774	and name
	IB	1.1523	1.1492	1.1271	1.4150	1.3838	1.4232	1.6107	1.5587	1.5658	1.7896	1.6812	1.7042	1.2455	1.2923	1.1959	1.4409	1.4579	1.3385	1.5635	1.5658	1.5599	1.6767	1.7324	1.6998	A 4000
	IA	1.1492	1.1644	1.1614	1.3711	1.3729	1.4786	1.5786	1.5623	1.6021	1.7284	1.7193	1.6848	1.1761	(a=1.2096)	1.1614	1.4314	1.4314	1.3692	1.5955	1.6064	1.5763	1.6776	(b- 1.7221)	1.6776	THOUSE IS
Treatment		ROO	-	2	RIO	-	~	RZO	r-i	2	R30	-	~	EOO	-1	2	EIO	-	2	E20	r-l	2	E30	eri	2	T-4-2

37

-	3
(Cont.)	in the second
10.	• •
-	*>* 0101

) Flow type versus flow rates

-		1		28.4638			33.6171		37.5126		C400 17	with the second														
Total		9.4668	9.5099	9.4871	11.1562	11.2829	11.1780	12.5980	12.6228	13.7671	13.6645	AUEY UTL	Informer		Total	1886.94	1678.64	46.7635	140.6307		Total		28.4638	33.6171	37-5426	41.0016
				14.3866			16.8230		18.8935		20.1669															
	53	4.8106	1068.4	4.4759	0.5160	5.7317	5.4753	6.3626 6 2176	6.3133	6.8138	6.8801	70. 4700			A	23.6030	23.6596	23.3075	70.5700			2	1784.9	11.1780	12.5228	N/1007
Flow Type		•												ate.						rate.	Gas Rate	1	9.5099	11.2829	12.4218	7400000
				14.0772			1762.91		1679.91		20- 5403			Flow type versus gas rate.						Gas rate versus liquid rate.	Gai		9.4668	11.1562	12.5980	
	X	4.6562	4.6789	4.7412	5.5402	5.5512	5.7027	6.2012	6.2095	6.9533	6.8026	70.0607		Flow type	R	23.3851	23.2196	23.4560	70.0607	Gas rate 1		0	7°6	11.1	13.51	
Rates		8	-1	5	10	-	N	2	2	30	-1 01	Total		(c)	Gas Rate	0	el	2	Total	(P)	Liquid Rate		0		N2 (PM	P.A.S

V.Derivation of Equations

- (4) $k_{\rm L} = 0.0203 \, 10.745$
- (5) $k_{1.8} = 0.0655 L^{0.85}$

<u>Selection of data</u>. All data from REseries were used to derive equation (5), but data from FC series were examined carefully, because the analytical result (Table 1) showed the significance of variation due to replicate in FC series. There are two possibilities; (a) the experiment is irreproducible in the disc column, or (b) some unnoticed error has been introduced in either of the two replicates.

Though the performance in different disc columns may give different results (2.0), it is not plausible that the experiment is irreproducible in the same column. The changable de-wotting phenomenon will definitely increase the experimental error to a considerable degree, but it will not introduce any systematical error. Therefore, the irreproducibility of the experiment will not be considered.

The detail of experimental procedure was exactly the same for both replicates. The HCl solution used belonged to the same batch and was analyzed from time to time for check. The only difference between the replicates was the MaOH solution used. In replicate 1 a batch of MaOH solution of concentration 0.0465M was used, and in replicate 2 another batch of 0.0510W was used. Two samples of HaOH solution were determined for effective concentration for each batch, and one obeck was made during the experiment (For QD and RE series, the concentration of GO_2 in inlet water and the effective concentration of MaOH were checked every six runs. The three series were performed in the order of PC, QD and RE.). Thus the concentration determination would not be the source of error. Since the record did not show any perceivable mistake, a comparison of data from replicate 1 and 2 of PC series with those from QD series was made.

The total of 164 k_L data for the disc column were separated into three groups, FC-1 (for rep. 1), FC-2 and QD. Every observation was compared with the mean value of the observations that belonged to the same group and had the same liquid rate (ignoring the flow type and gas rate difference). If that observation had a deviation more than 20 percent from the mean, it was discarded. The rejected observations were F10-1B, F12-2B, F20-1B, P20-2B, F22-2A, G02-1B, G20-1B, G21-1A, G10-1A, G01-2A, G21-2A, G6-3A and B, D6-3A and B, a total number of 15 observations. The resulting means after these observations were rejected, were plotted on Flate |X. It is obvious from the plot that data from FC-1 are consistent with those from QD, while data from FC-2 give higher k_L values. Therefore, all data from FC-2 were not used in correlation. <u>Derivation</u>. Least square method (same as that used in linear regression determination) was used in derivation. The procedure can be found in Snedecor's Statistical Methods p.138.

The sample standard deviation from the resulting function (regression) can be evaluated by:

$$S_{y,x} = \sqrt{\frac{1}{n-2} \left(\Sigma_y^2 - b \Sigma_{xy} \right)}$$

where n is the number of data used, b is the slope (coefficient of regression), y and xy are deviation of I (dependent variable) and XI (independent variable times I) of a single point with the means. Since $S_{y,x}$ is expressed in the logarithmic scale, we must change it back to unit related to k_{L} , e.g. a 0.02 unit of $S_{y,x}$ has an anti-logarithm of 1.047. It means that the standard deviation is 4.7 percent.

Data beyond 95 percent confidence limits were rejected. For the disc

EXPLANATION OF PLATE IX

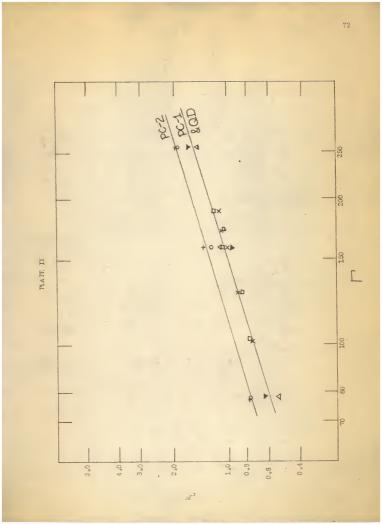
Mean value of kr vs. Plot for series PC-1, PC-2, and QD

kr -- 11quid-film coefficient, lb./(hr.-sq.ft.)(lb./ou.ft.)

7 --- wetting rate (liguid rate per mean wetting perimeter of disc), lb./hr.ft.

PG-1 --- replicate 1 of PC series

PG-2 --- replicate 2 of PC series


△ date from PC-1 for co-current flow

t --- data from PC-2 for co-current flow

× ---- data from QD for co-current flow

data from FO-1 for countercurrent flow
 ---- data from FO-2 for countercurrent flow

D ---- date from QD for countercurrent flow

column there were 20, and for the packed column 8. The remaining data were used to recalculate the equation of least deviation. The resulting equations were further transferred to that for 20°G by use of equation (3).

The final equation for the disc column, based on PC-1 and QD, is:

$$k_{r} = 0.0203 \, [^{-0.745}$$
 (4)

and for the packed column is:

$$k_{ra} = 0.0655 \perp^{0.85}$$
 (5)

and for the disc column based on PG-2 is:

$$k_{\rm T} = 0.0304 \ \Gamma^{0.738}$$
 (18)

The last equation given is for comparison only. Equation (4.) is the sole one that is considered as the result \overline{c} the present experiment for the disc column, and used anywhere for interpretation and correlation. The fact that the two lines expressed by equations (4) and (13) are parallel indicated that the experimental error associated with $k_{\underline{L}}$ is in simple multiple form (cf. p.||). Therefore use of logarithmic transformation is justified.

VI. Derivation of Equations (8) and (9)

Equations (8) and (9) are of the general forms for the disc column and packed column respectively. They are easy to obtain by comparing the equations (8) and (9) with the generalized equation (6) and (7) together with the following data:

$$D = 7.0 \times 10^{-5} \text{ ft}^2/\text{hr.},$$
 (17)

VII. Equations for Cl2-H20 System in the Disc Column

Equation predicted from the result of this investigation. From the generalized equation (6), k_L is proportional to $D^{0.5}$. The equation for CO_2-H_2O system is:

$$k_{T} = 0.0203 \Gamma^{0.745}$$

and the diffusivity of Cl_2 in vater is 5.4 x 10⁻⁵ ft²/hr. (19). Therefore, the equation for Cl_2-H_2O will be:

$$k = 0.0178 h^{0.745}$$

Equation predicted by use of Chu's equation. Chu's (1) equation for CO_{q} -H₂O system in the same disc column is:

kL= 0.0383 0.644

and the resulting equation for Cl2-H20 system is:

kr = 0.0338 1.0.644

(19)

Some particular points on lines predicted by the equations (12) and (19).

For equation (19):

Г	Г ^{0.644}	kī
150	25.1	0.848
200	30.3	1.03
300	39.3	1.33
400	47.5	1.61

For equation (12):

Г	M 0.745-	kL		
150	42.0	0.748		
200	50.5	0.897		
300	70.0	1.240		
400	87.0	1.545		

VIII. Gas-Film Coefficient of Ammonia-water System in the Disc Column

Equations.

(a) Predicted equation for liquid-film coefficient:

The diffusivity of NH₃ in water is given as $7.9 \ge 10^{-5}$ ft.²/hr. (19). The equation for CO_2 -H₂O system in the disc column was suggested by the present paper as:

$$k_{L} = 0.0203 \cap 0.745$$

and so the resulting equation for NH3-H20 system will be (cf. Appendix VII): $k_L^{}=0.0216\,|^{10}.745 \tag{20}$

(b) Relation between overall and film coefficients is:

$$\frac{1}{k_{\rm G}} = \frac{1}{k_{\rm G}} - \frac{\rm H}{k_{\rm L}} \tag{21}$$

as given in any absorption book. The Henry constant H for ammonia in water at 20°C is taken as 0.013 atm./(lb. of NH₂/cu.ft. of H₂0), which was evaluated by Hwu (9) from Kowalke's equation.

(c) k, vs. relative velocity:

Through Hwu's experimental result showed that the relation between k_{g} and relative velocity in the disc column could be represented by $k_{g} \simeq v^{0.65}$, the following conventional relation was used:

which has been verified by Stephens and Morris, and also by Taylor and Roberts in four different disc columns (19) (20).

Experimental Data.

The NH₃ absorption experiment in the disc column was performed by Huu (9). Data at six different liquid rates with nearly equal interval were taken for the present correlation. These data and the corresponding $k_{\rm g}$ values calculated with equations (20) (21) and (22) are listed in the following table:

						2			
	m :	Liquid rate	:	Relative	2	K _G at 20°C lb.	1	kg	
	:1	b./hr.ft	. :	ft./sec.	:	hr.sq.ft.atm.	:	At v	5.84 It./sec.
2		220		4.82		9.55		10.6	12.1
3		360		5.34		12.2		13.4	14.2
5		185		4.69		8.91		10.0	11.6
7		255		4.97		10.57		11.8	13.2
10		300		5.33		11.6		12.9	13.7
13		395		5.65		13.02		14.3	14.6

Table 11. Absorption data of NH_-H_O system

The first four columns were taken from Table 3 of Hwu's thesis (9). The last two columns were calculated with equations (20)(21) and (22).

With the data given above we can derive an equation of kg vs. through the same procedure as described in Appendix V. The resulting Equation is:

$$k_{\rm G} = 3.06 \, |^{0.30}$$
 (23)

In order to compare with other investigator's results, we transform

equation (23) to satisfy the condition of relative velocity equal to

8.4 ft./sec. Thus the fanal equation becomes:

At two particular points,	∏ = 155 lb./hr.ft.	k _G = 17.7 lb./(hr. ft?atm.)
	/1 = 400 lb./hr.ft.	kg = 23.6 lb./(hr.ft ² .atm.)

GAS ABSORPTION IN CO_CURRENT FLOW

by

Lin-chuan Cha

B. S., National Taiwan University, China, 1954

AN ABSTRACT OF A MASTER'S THESIS

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Chemical Engineering

KANSAS STATE UNIVERSITY OF AGRICULTURE AND APPLIED SCIENCE

ABSTRACT

The purpose of this investigation was to study the effect of flow type on liquid film coefficient in gas absorption. Experiments under both countercurrent flow and co-current flow were carried out, and their results were compared. Experimental data of some previous workers were also recorrelated.

CO₂-H₂O system was chosen for this study. Apparatus used were 1-1/2 inch disc column with 35 pieces of 1.5 mm diameter I 0.48 th¹k ceramic discs, and a 2 inch packed column with 3 mm packings. The experiments were designed and their results were analyzed statistically. The liquid rate covered a range from 10.0 lb./hr. to 52.6 lb./hr., and gas rate covered a range from 1.55 cu.ft./hr. to 10.6 cu.ft./hr.

From the secults of this investigation the following conclusions were reached:

(1) Flow type has no effect on magnitude of liquid film coefficient within the range of study.

(2) Results obtained from disc column will generally wary from column to column.

(3) Data of CO₂-H₂O system for the columns used in this investigation can be correlated by the following equations:

> for the disc column $k_L = 0.0203 |^{0.745}$ at 20°C, for the packed column $k_{La} = 0.0655 L^{0.85}$ at 20°C.

(4) A general equation for liquid film coefficient in the disc column can be obtained from the present results. It is expressed as:

$$\frac{k_{\rm L}}{D} = 7.44 \left(\frac{4\pi}{\mu}\right)^{0.745} \left(\frac{\mu}{\rm p}\right)^{0.5}$$

This equation was verified with experimental data of Gl_2-H_2O system obtained by the previous investigators.

(5) Gas film coefficient in the disc column can be predicted with considerable accuracy with the following equation:

 $\frac{k_GP}{\sqrt{r_4}} = 0.0326 \, p^{0.30} \times (\frac{\sqrt{d}r}{\sqrt{r}})^{-0.33} \left(\frac{M}{\ell D}\right)^{-0.56} \frac{P}{\frac{P}{PBM}}$ which was obtained from the results of this investigation and that of another investigator.