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Abstract 

Enterococcus faecalis, a gram-positive member of the mammalian gastrointestinal 

flora, emerged as an important contributor to nosocomial infections and antibiotic 

resistance gene transfer.  Lipoteichoic acid (LTA), a vital component of gram-positive 

cell walls, has been reported to function in numerous cellular processes, ranging from 

maintenance of cation homeostasis and virulence to modulating function and presentation 

of wall proteins such as adhesins and autolysins.  Interestingly, LTA can be covalently 

modified by the addition of D-alanyl ester residues, which appear to help regulate its 

function by altering surface charge.  In E. faecalis the process of esterification is 

catalyzed by four proteins encoded by the dlt operon.  Mutants lacking a functional dlt 

operon display the inability to incorporate D-alanyl residues on LTA and are thus 

deficient in their ability to regulate the anionic charge of the outer envelope in response 

to extracellular cues.  Recent evidence suggests that two-component systems are 

responsible for sensing environmental conditions and regulating dlt operon expression.  

Utilizing a reporter construct with the upstream promoter region of dlt fused to lacZ, we 

were able to determine how extracellular stimuli affect transcription of this operon by 

measuring β-galactosidase activity.  Furthermore, we were able to identify specific 

response regulators important for bile salt, magnesium and polymyxin B signaling.     
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Literature Review 

Introduction 
The first known use of antibiotics occurred in ancient China some 2,500 years ago 

when pre-historic pharmacists would prescribe the moldy curd of soybeans as a 

therapeutic treatment for wound infection.  This crude form of medicine was utilized 

without the knowledge of the active antimicrobial compounds contained in the curd or 

the biochemical mechanisms of efficacy.  It was not until the turn of the 20th century 

when pioneers like Louis Pasteur, Alexander Fleming, Ernst Chain, and Howard Florey 

began to revolutionize the knowledge of antibiotics by elucidating the underlying factors 

of their antimicrobial properties.  Fleming, Chain, and Florey shared the Nobel Prize in 

Medicine in 1945 for their contributions to the field.         

Prior to the advent of modern antibiotics, attempts to control microbial infections 

and disease were largely centered on chemical compounds including strychnine and 

arsenic that, in addition to their antimicrobial properties, were highly toxic to mammalian 

cells.  The discovery of penicillin, attributed to Alexander Fleming in 1928, had a 

profound impact on the treatment of microbial infections by identifying naturally 

produced compounds that were not only capable of treating infectious disease, but were 

also specific for the cell biology of microorganisms.  Penicillin, a diffusible β-lactam that 

prevents transpeptidation of peptidoglygan, was isolated from the mold Penicillium 

notatum when Fleming observed that the mold inhibited the growth of other 

microorganisms on an agar plate (36).    

The onset of World War II was another critical step in speeding the development 

of mass produced antibiotics for human usage.  A major contributor to war fatalities was 

wound infection due to the lack of effective treatment options on the battlefields and in 

the barracks.  Advances in fermentation procedures allowed scientists such as Chain and 

Florey to mass produce penicillin in a laboratory setting, which saved countless lives in 

the latter stages of the war (128).  During this time, scientists were also discovering new 

antibiotics possessing different modes of action that were isolated from other species of 
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microorganisms, including chloramphenicol, streptomycin, tetracycline, and 

cephalosporins.  This era clearly marked one of the crowning achievements in medicine. 

Unbeknownst to researchers and medical personnel at the time, the use of 

penicillin in mass quantities was effectively providing a selective pressure for bacteria 

that could resist the antibiotic challenge.  Indeed, the first recorded instance of penicillin 

resistance emerged nearly four years after widespread use in a strain of Staphylococcus 

aureus (44).  Resistance to any antimicrobial is usually conferred by either intrinsic 

properties of the bacterium, by point mutations, or by the acquisition of resistance genes 

on mobile genetic elements such as plasmids or transposons.  Penicillin resistance arose 

from the transfer of genes encoding a β-lactamase (penicillinase) that is able to disrupt 

the β-lactam ring needed for activity (130).  At first, other antibiotics were successful in 

treating penicillin resistant infections; however, overuse and misuse of these 

antimicrobial agents rapidly selected for other resistant strains.      

In the late 1950’s researchers again gained the upper hand in the battle against 

bacterial infection with the introduction of semi-synthetic and synthetic antibiotic 

derivatives.  Unlike naturally occurring antibiotics which are produced by 

microorganisms as an attempt to control the growth of competing species and as a form 

of nutrient acquisition, the man-made antibiotics are chemically altered analogs designed 

to overcome resistance mechanisms.  An early example was the creation of methicillin, a 

penicillin derivative containing an ortho-dimethoxyphenyl modification to a side chain 

carbonyl group, by Beecham in 1959 (16).  The modification maintained the efficacy of 

the antibiotic and also rendered it insensitive to β-lactamase.  The success was short lived 

as methicillin-resistant Staphylococcus aureus (MRSA) strains began to arise almost 

immediately (12).   

Antibiotics have similar modes of action on microbes in that they interrupt vital 

cellular functions, usually by attacking cell wall and cell membrane integrity or by 

interfering with either DNA or protein synthesis (Fig. 1).  They can be either 

bacteriocidal or bacteriostatic depending on their mechanisms of action with 

bacteriocidals destroying the cellular encasement and bacteriostatics effectively halting 

cell growth and replication.  The interplay between researchers and microbes in an 

apparent microbial arms race continues to this day with resistance among bacteria being 
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observed for nearly every antibiotic on the market.  Pharmaceutical companies seem 

reluctant to fund projects aimed at producing novel antibiotics due to the high monetary 

and time costs associated with developing a marketable drug that could become obsolete 

within a few short years.  Much of today’s current research emphasizes the need to find 

novel cellular processes that are essential for survival and that can be exploited as 

therapeutic targets.   
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Figure 1.  Mechanisms of action for common antimicrobials.   

Antimicrobials mainly target either the cellular encasement or affect DNA 

structure or proteins synthesis.  Colistin and polymyxin B target the cytoplasmic 

membrane, while the antibiotics bacitracin, β-lactams, glycopeptides, and 

cephalosporins disrupt cell wall components.  Folate synthesis, which is required 

for construction of DNA base pairs, is a process that includes the conversion of 

para-aminobenzoic acid (PABA) into dihydrofolate (DHT) and then finally into 

trihydrofolate (THF).  Trimethoprim and sulfanomides block these conversions 

and effectively halt DNA synthesis.  Other antibiotics function by interrupting 

DNA replication, RNA sythesis, and protein synthesis.  Enterococci have been 

shown to possess a wide range of either intrinsic or acquired resistance to nearly 

all of the selected antimicrobials. 
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Enterococci 
Enterococci were long believed to be members of the genus Streptococcus despite 

a wide variety of phenotypic differences.  Even as early as the late 19th and early 20th 

centuries, observers began to note the identification of unique streptococci isolated from 

mammalian fecal products (123, 77, 44).  These fecal isolates were quickly divided into 

the species Streptococcus faecalis, Streptococcus faecium, and Streptococcus durans 

based on fermentation patterns observed in mannitol, lactose, and raffinose containing 

media (3, 94, 118).   

The first breakthrough in the creation of the genus Enterococcus occurred in the 

late 1930’s when Sherman coined the term enterococcal group, which was designed to 

differentiate streptococci species that were isolated from fecal origins, grew at 10 and 

45°C, grew in media containing 6.5% NaCl, grew in media adjusted to a pH of 9.6, and 

could withstand heating to 60°C for 30 minutes (118).  All of the known enterococcal 

species at that time were included in this grouping.  Around the same time, Lancefield 

began devising her serological classification of streptococcal bacteria based on antigenic 

reactivity (70).  Again, all of the known enterococcal species were included in her Group 

D streptococci, a classification that became a mainstay until the establishment of a new 

genus. 

The first suggestion of an Enterococcus genus occurred in 1970 when Kalina 

proposed that the enterococcal streptococci S. faecalis and S. faecium should be separated 

from classical streptococci based on their unique cellular arrangement (pairs and short 

chains) and phenotypic characteristics (62). However, this separation was not universally 

accepted until researchers published proof that there were significant genetic differences 

based on DNA-DNA reassociation experiments between the bacterium to warrant an 

independent genus classification (76).  The results of these studies led to today’s accepted 

nomenclature of Enterococcus faecalis and Enterococcus faecium.     

Since 1984, 25 additional species have been added to the Enterococcus genus, 

bringing the total to 27 members (www.atcc.org).  These additions were based largely on 

DNA hybridization experiments, 16S rRNA sequencing, and whole cell protein analysis.  

All members are gram-positive cocci that possess cellular grouping of singles, pairs, or 

short chains.  They are also mesophilic, facultative anaerobes which make them well 
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suited to reside in the gastrointestinal tracts of mammals.  However, they can reside in 

fecal excretions, in soil, in water, and, in some cases, on several different species of 

vegetation.  Other defining traits include the production of lactic acid as the end product 

of glucose fermentation and a wide range of intrinsic resistance to numerous 

antimicrobial agents (salinity, desiccation, antibiotics, bile salts, etc) (118, 96). 

 

Enterococcus faecalis 

 E. faecalis is currently the most intensively studied enterococcal species due to its 

prominence in the nosocomial setting.  The only publicly sequenced genome is available 

at The Institute for Genomic Research (TIGR, www.tigr.org) for stain V583, the first 

reported vancomycin resistance clinical isolate discovered in the United States (110).  

The genome consists of a 3.2 Mb circular chromosome encoding for 3182 functional 

genes and three plasmids encoding an additional 155 genes.  Of the 3337 predicted open 

reading frames, 2115 (66.5%) have been assigned a role category while the other 1222 

remain hypothetical in nature (TIGR).  The three plasmids present are pTEF1, pTEF2, 

and pTEF3 (96).  Plasmids pTEF1 and pTEF2 are structurally similar to the pheromone-

responsive plasmids pAD1 and pCF10 in that they contain the prgABC genes belonging 

to this distinct family of plasmids (96).  The plasmid pTEF3 closely resembles pAMβ1 

and is a broad host range plasmid.  Reports have indicated that approximately one quarter 

of the genome was acquired by either mobile genetic elements or other exogenous 

methods (96).  Indeed, partial sequencing of other E. faecalis isolates has revealed 

relatively high sequence variance among strains, furthering the notion that there is an 

abundance of gene acquisitions and dissemination taking place in these organisms (39).            

 

Importance of Enterococci 
Enterococci have emerged as nosocomial pathogens due to increasing  

antimicrobial resistance and their ability to readily transfer those resistance genes through 

horizontal gene transfer (56, 83).  The increased isolation of vancomycin resistant 

enterococci (VRE) over the last few decades in Europe and the United States has alarmed 

the medical community with reports of VRE accounting for one-third of infections 
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occurring in hospital intensive care units (CDC 2005, www.cdc.gov).  There is strong 

evidence that strains of S. aureus, including MRSA, have acquired vancomycin resistance 

genes from E. faecalis, rendering common treatment options for these infections obsolete 

(135, 138).    

Enterococci find their importance in the duality of their lifestyle.  They exist 

mainly as commensals of the gastrointestinal tract in a symbiotic relationship with the 

host, but are also facultative parasites (3).  Healthy hosts rarely succumb to enterococcal 

infections, which usually manifest into commonly classified medical diseases such as 

urinary tract infections (UTI), bacteremia, and endocarditis.  Infection mainly occurs 

when the bacteria disseminate from the GI tract to other host systems via wounds, 

internal and external, or medically important abiotic devices, including indwelling 

catheters and artificial replacements.  It has also been speculated that enterococci may 

translocate across the intestinal epithelium in order to begin the infectious process (99).      

 Enterococci currently rank third among the leading causes of nosocomial 

infection in the United States, trailing only the highly publicized staphylococcal and 

streptococcal infections (77).  Interestingly, E.  faecalis and E. faecium account for 

approximately 90% of all enterococcal infections, with E. faecalis constituting the 

majority (65-80%) of infections (56).  E. faecalis is by far the more virulent of the two 

species and possesses many virulence factors not found in E. faecium (83).  However, 

vancomycin resistance genes are more frequently harbored in E. faecium (107). 

  

Treatment 
 The treatment of enterococcal infections varies widely from patient to patient, but 

usually involves a combination of broad spectrum antibiotics.  Common cocktails include 

the use of penicillin and vancomycin, novobiocin and doxycycline, and ciprofloxacin and 

ampicillin (10).  Drug regimens mainly utilize a cell-wall acting antibiotic coupled with 

an antibiotic that affects protein synthesis.  This approach can lead to nephrotoxicity if 

the antibiotics are used in large quantities (32).  In many cases, utilizing broad spectrum 

antibiotics fails to specifically target the infectious strain and can intensify problems by 

removing beneficial commensal organisms (10).  Furthermore, by exposing the entire 
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bacterial community of the host to these antibiotics, the medical community is creating an 

environment with extreme selective pressure for antibiotic resistance through either 

spontaneous mutation or genetic transfer. 

   For several years vancomycin has been the choice of last resort when dealing 

with gram-positive infections due to its efficacy and the medical community wanting to 

limit its use to reduce the selective pressure for developing resistance (79).  However, 

VRE are now becoming more common in the nosocomial setting and strains have 

recently been isolated that even have a dependence on vancomycin for growth (23).  

Again, this underscores the need to discover new therapeutic targets to treat infection. 

 

Virulence Factors  
 E. faecalis possess a plethora of virulence factors designed to help establish 

infection and then persist in the presence of the host immune response.  There are four 

main stages in the pathogenesis of enterococcal infections.  The first is persistence on  

inanimate objects due to intrinsic properties of bacteria.  Resistance to desiccation, heat 

and other common conditions that impair bacterial endurance outside of the host 

contribute largely to enterococci’s prevalence as a nosocomial pathogen by providing a 

means of survival until an opportunity for infection presents itself.  Next, entry into the 

bloodstream or other non-native areas of the host is a critical step in the transformation of 

enterococci from commensals to damaging pathogens.  This phase is usually facilitated 

by damage to host tissues and the presence of bacterial factors such as bile acid 

hydrolases, adhesins like aggregation substance (AS) and enterococcal surface protein 

(Esp), and antibiotic resistance that give enterococci an edge in surviving these newly 

discovered niches. 

Once outside of their normal setting, enterococci have been shown to utilize 

several classified virulence factors for adherence and colonization in the establishment of 

an infection site.  In this step adhesins play a vital role in attachment to host tissues, as 

well as in the formations cell aggregates such as biofilms.  Also, factors that possess 

immune evasion qualities are vital to cell survival.  Many of these characterized virulence 

factors, including cytolysin, AS, Esp, and LTA, are describe in detail below.  The final 
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stage is the clinical manifestation of infection resulting in damage of vital tissues.  This is 

the result of proteins that carry direct activity against host tissues and include cytolysin, 

gelatinase, and serine protease. 

 

Cytolysin 

 The functional cytolysin is encoded on the cyl operon which contains eight genes 

that are involved in the regulation, post-translational activation, and export of the secreted 

enzyme.  (18, 42, 41, 47, 58).  The active toxin contains two subunits termed CylLl and 

CylLs that are post-translationally modified by CylM in the cytosol before they are 

exported and cleaved at the C-terminus by CylB, which possesses cysteine protease 

activity (42, 41).  Extracellulary, the serine protease CylA completes the final proteolytic 

cleavage to form the active cytolysin (7, 42).  CylI is predicted to be a membrane bound 

protein that confers self-resistance to cytolytic activity through an unknown mechanism 

(7).  The final two proteins, R1 and R2, are predicted to control operon expression 

through a quorum sensing mechanism whose exact details remain to be elucidated as they 

show little sequence homology to other two-component signal transduction systems.   

 Cytolysin displays both hemolytic and bacteriocidal characteristics making it 

responsible for both host damage by lysis of native tissues, and colonization by removing 

competition from other commensal organisms.  Its effects on E. faecalis pathogenicity 

have been well characterized, with strains expressing this secreted protein being greater 

than 10 fold more toxic to host systems in a murine intraperitoneal challenge model (29).  

Furthermore, a rabbit endocarditis model displayed a 55% mortality rate when infected 

with a cytolytic strain containing AS as compared to a 7% mortality rate in a strain that 

only contained AS (13).  Interestingly, removing AS greatly reduced the lethality of the 

cytolytic strain, indicating that both proteins work together in pathogenesis.  It is 

speculated that adhesins such as AS and Esp help facilitate bacterial cell aggregates, 

leading to increased quorum sensing signals and, hence, production of the cytolysin.  This 

is supported by the increase virulence of strains containing both the cytolysin and AS on 

a plasmid or the cytolysin in close proximity to Esp on an area of the genome known as 

pathogenicity island.       
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It appears to be no coincidence that nearly 60% of clinical isolates from hospital 

wards possess the cytolysin as compared to 17% of isolates from healthy human stool 

samples (59).   In the infectious sequelae, cytolysin has been shown to a certain extent, to 

promote entry into and proliferation in the bloodstream via translocation across the 

intestinal epithelium (136, 57).  Little is know about both mechanisms, but it has been 

hypothesized that proliferation can be contributed to increased host immune evasion due 

to cytolysins documented activity against macrophages and polymorphonuclear 

leukocytes (PMNs) in a mouse model (80).  Another hypothesis for advanced 

proliferation of cytolytic strains in the bloodstreams involves increased nutrient 

acquisition, namely heme, from the lysis of erythrocytes (60).        

    

Enterococcal Surface Protein (Esp) 

 Esp is a large, well characterized, 1,872-amino-acid protein that is encoded by a 

single gene esp .  Similar to the cytolysin, Esp is more abundant in enterococci isolated 

from the bloodstream (41%) than from stool isolates (3%) (115).  It is anchored to the 

cell wall and functions as an adhesin, promoting both colonization of the urinary tract and 

biofilm formation (114, 124).  A mouse transurethral infection model demonstrated that 

strains expressing Esp could be isolated at a significantly higher frequency from the 

bladder and urine than strains lacking this surface adhesin, which correlates with the high 

frequency of esp being observed in strains isolated from human UTIs (114).  In vitro 

biofilm assays on polystyrene found that 93.5% of E. faecalis strains possessing esp 

could form micro-colonies known as biofilms, while not a single strain lacking esp could 

produce this result.  The biofilm-deficient strains could be complemented with the 

addition of exogenous esp (124).  Biofilm formation is not solely dependent on the 

presence of esp since strains such as OG1RF are capable of biofilm formation.  Together 

these results demonstrate the importance of Esp in the formation of biofilms on abiotic 

surfaces including polystyrene.   
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Pheromone-Responsive Plasmids and Aggregation Substance 

Enterococci possess a unique system for conjugative genetic exchange that 

utilizes secreted pheromones to induce mating and transfer of specific pheromone-

responsive plasmids (Fig. 2).  These plasmids exhibit a narrow host range and contain 

many conserved genes that are distinct to this family of plasmids.  Transfer of these 

plasmids between E. faecalis strains occurs at a high frequency (10-3 to 10-1 

transconjugates per donor cell) within a few hours during mating in liquid media (28).  

Moreover, exchange can take place at a frequency of 10-1 transconjugates/donor in 10 

min when the donor strain is exposed to 10 ng/ml of exogenous pheromone for 2 hours 

prior to mating (82).   Interestingly, cells deficient in AS or enterococcal binding 

substance (Ebs) display more efficient transfer on solid surfaces and a reduced transfer in 

liquid culture, indicating these two proteins do not participate in the formation of a 

functional mating channel (5, 17).  The high frequency of transfer is alarming since many 

of these plasmids encode determinants for hemolysin, bacteriocins, and resistance to UV 

light and antibiotics, including VanA-type resistance (49, 26). 

Genetic exchange of these plasmids is dependent on a sex pheromone, a small 

peptide which is enzymatically cleaved into a 7-8 amino acid signal inducer, secreted by 

potential recipient cells (122).  This mating signal is only produced by cells that do not 

possess the plasmid and facilitates the production of several mating factors, including AS 

on the surface of donor cells harboring the related pheromone-responsive plasmid.  AS is 

a surface adhesin that binds Ebs to form high density mating aggregates to aid in the 

formation of a stable mating channel, and ultimately plasmid transfer (26).  Once a 

recipient acquires a pheromone responsive plasmid, it begins production of a related 

pheromone inhibitor and a regulatory protein (PrgY/TraB), both of which are encoded on 

the plasmid.  The secreted pheromone inhibitor neutralizes endogenously produced 

pheromone that has been secreted, while still allowing the cell to sense exogenous 

pheromone.  In addition, the regulatory protein PrgY functions in binding endogenous 

pheromone also prevent auto-induction of mating proteins (26).    
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Figure 2.  Model for pheromone-responsive plasmid transfer.   

The donor cell is stimulated by the binding of the mating pheromone to the 

pheromone receptor and begins production or several plasmid encoded mating 

factors including AS.  AS then binds to binding substance in order to form mating 

aggregates.  The plasmid is then transferred to the recipient, which then becomes 

and viable donor cell.  Adapted from Olmstead et al (93).   

 

 
   

 

There are numerous members of the pheromone-responsive plasmid family with 

the two best characterized members being pAD1 and pCF10.  Both of these plasmids 

carry virulence factors that are transferred upon mating.  pAD1 contains genes 

responsible for the specific AS Asa1 and the cytolysin (25), while pCF10 harbors genes 

for the specific AS Asc10 and a Tn925 transposon containing tetracycline resistance (52).  

The sex pheromones for pAD1 and pCF10 mating induction are cAD1 and cCF10, 

respectively.  Also of importance are the plasmids pHKK702 and pHKK703 which have 

been show to carry high-level vancomycin resistance in E. faecium (50).  These plasmids 
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were discovered in the clinical isolates R7 found in a hospitalized patient and further the 

concern of growing resistance to vancomycin in these nosocomial pathogens. 

AS has been the subject of intense studies that have found additional roles in 

enterococcal virulence.   In addition to its participation as an adhesin in pheromone-

responsive mating, AS has also been implicated in host cell attachment and immune 

evasion.  Although the genes for AS are ubiquitously expressed on pheromone-

responsive plasmids, there is, in some cases, high sequence diversity among plasmids 

such as in Asa373 (84).  Mostly, genes encoding AS share 75-85% sequence homology, 

but that is enough to warrant unique gene naming assignments between plasmids and 

raise questions as to how these differences affect function among versions of the protein.       

Bioinformatic analysis of AS proteins have revealed two Arg-Gly-Asp (RGD) 

motifs sharing high homology to those found in eukaryotic fibronectin that are involved 

in integrin binding on host cell surfaces (37).  This discovery raised speculation that AS 

may have a role in adherence to host cells and initial colonization of host tissues.  Indeed, 

it has been demonstrated that E. faecalis possessing AS displays an increased ability in-

vitro to adhere to porcine renal epithelial cells and human macrophages when compared 

to strains devoid of the adhesin (67, 120).  Additional reports have shown Asa1 and 

Asc10 to help facilitate binding to other extracellular matrix components, including 

fibrin, collagen type I, vitronectin, and thrombospondin (53, 109).  These finding are in 

support of AS being involved in host cell attachment. 

 Another potential role for AS is speculated to be increased resistance to the host 

immune response either through reducing immune cell efficacy or by immune cell 

evasion.  AS has been shown to initiate opsonin-independent binding of enterococcal 

isolates to human PMN’s and human macrophages (129, 120).  The attachment to PMN’s 

is dependent on the interaction between the RGD motif in AS and PMN surface β2 

integrins (CD11b and CD18) (129).  AS also contributes to bacterial survival following 

phagocytosis by PMNs even when they are activated (106).  PMNs that had internalized 

E. faecalis expressing AS were characterized as possessing abnormally high phagosomal 

pH, which was thought to interfere with the activation of enzymes with bacteriocidal 

properties (106).  Another possible form of immune evasion is thought to be AS mediated 

internalization of the bacterial cells by the GI epithelium (92).  Association to enterocytes 

 13



is mediated by the aggregation domain and not the RGD motif, suggesting a distinctive 

mechanism of binding when compared to PMNs (133). This internalization is not coupled 

with translocation across the epithelium, so it does not directly lead to dissemination from 

the GI tract (111).   

   

Gelatinase and Serine Protease 

 Bacterial proteases are commonly thought to aid the microorganisms in nutrient 

acquisition and activation of proteins that need to be cleaved in order to facilitate 

function.  However, they may also provide a means of inflicting host cell damage, either 

directly or indirectly, by exuding proteolytic activity on host proteins.  This activity can 

alter host biochemistry in many ways, including activation of host matrix 

metalloproteases, and degradation of connective tissue and components of the immune 

response (8, 104, 71).       

 Two secreted proteases implicated in enterococcal pathogenesis, gelatinase and 

serine protease, are encoded in the same operon by gelE and sprE, respectively (Fig. 3).  

GelE is a 509 amino acid proenzyme that is truncated to its active form extracellularly 

(40).  It is a zinc-metalloprotease that is able to hydrolyze numerous host proteins, but its 

main identifying phenotype is the ability to liquefy gelatin.  SprE is encoded by a 284 

amino acid ORF also displays proteolytic activity to a wide range of proteins.  Both 

proteases are co-transcribed, indicating they may function jointly in biological activities 

(105).  Disruption of either gene is enough to significantly delay mortality in a mouse 

peritonitis model (105). 

 

Figure 3.  Organization of the operon containing fsrABC, gelE, and sprE.   

Diagram of operon containing the spatial arrangement of the fsr two component 

regulatory system loci and the gelatinase and serine protease genes. 
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The operon also contains the fsr (RR15) two component regulatory system, which 

is directly involved in the regulation of the protease genes (105).  The fsr locus shows 

significant similarity to the S. aureus agr locus and contains fsrA (response regulator), 

fsrB (signal peptide) and fsrC (histidine kinase) (90).  These three proteins function in a 

quorum sensing mechanism and may be biologically relevant in pathogenesis after the 

initial establishment of infection.  Increased signal peptide concentrations in biofilms and 

other cell aggregates would lead to an induction of protease expression and amplify 

damage to host tissues.    

      

Pathogenicity Island 

 Clinical isolates of enterococci, most notably MMH594, have been shown to 

possess pathogenicity islands that contain many of the previously described virulence 

factors, including cytolysin, AS, Esp, and a bile acid hydrolase in a 150 kb region of the 

genome (100).  The pathogenicity island of MMH594 contains 129 ORFs and is littered 

with recombination factors that include transposases, integrases and insertion elements 

that are believed to have been used in initial recombination events (113).  Numerous 

other strains have been isolated that contain pathogenicity islands with high identity to 

the one present in MMH594.  It is believed that this feature contributes greatly to the 

pathogenesis of a particularly virulent sub-population of enterococci.     

    

LTA - Function 

One candidate that demands consideration as a potential therapeutic target is the 

cell wall constituent lipoteichoic acid (LTA).  It has been demonstrated that functional 

LTA is essential for cell growth and survival (45), but the inability to create a mutant 

devoid of LTA has raised question as to its exact roles in bacterial cell biochemistry.   

This unique polymer has been implicated in a wide range of cellular processes including 

virulence, biofilm formation, maintenance of cation homeostasis, regulation of autolytic 

activity, ultraviolet radiation sensitivity, acid tolerance, and low to intermediate antibiotic 

resistance (88).  Elucidating compounds that either block synthesis or interfere with 

normal LTA functions is a practical avenue of research that may provide novel treatment 
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options for bacterial infections as well as a more comprehensive understanding of 

biochemical processes in bacteria.     

There has been much speculation on the relevance of LTA to pathogenicity as a 

virulence factor due to its ability to act as an adhesin and elicit a robust immune response 

in host models. Some of the roles of LTA in bacterial biochemistry and pathogenesis 

have been well documented and include adherence to host tissues (19),  the post 

infectious sequelae (22), resistance to anitmicrobial compounds (99), maintenance of 

cation homeostatis (54), regulation and presentation of autolysins (6), and – in 

Enterococcus faecalis – even bacterial conjugation (133, 126).   

   The ability of LTA to act as an adhesin to host uroepithelial, mucosal, and 

mesoepithelial cells has been documented in strains of staphylococci (2, 11).  

Furthermore, LTA has been show to facilitate the attachment of S. mutans to 

hydroxylapatite of tooth surfaces (15), of S. epidermidis to fibrin-platelet clots in the 

establishment of endocarditis (14) and of other streptococci to erythrocyte membranes 

(24, 87).  These results demonstrate the importance of LTA in the establishment of host 

colonization.  Its role as an adhesin is not limited to host binding, but it also important for 

bacterial coaggregation in mating and biofilm formation (20, 27).  Dunny et al. showed 

that LTA could interact with AS to help brings cells into close proximity to facilitate 

mating (27). 

   In addition to its adhesin characteristics, LTA can also induce proinflammatory 

mediators and activate complement.  LTA has been shown to mediate the release of IL-1, 

IL-6, TNFα, and nitric oxide by monocytes and macrophages in-vitro (127).  It is also 

specifically recognized by the pattern-recognition receptors CD14 and Toll-Like 

Receptor 2 (TLR2), resulting in an inflammatory response (16, 112).  Activation of the 

complement cascade is achieved by direct binding of LTA to the C1q subcomponent of 

C1 (75).  This activation can produce local tissue damage in the area of activation. 

 LTA, and specifically D-alanylation of LTA, is also shown to help regulate many 

biochemical processes of bacteria including cation regulation, activity of autolysins, and 

resistance to antimicrobial compounds.  D-alanylation of LTA plays a role in autolysin 

presentation at the cell surface by altering the anionic charge, and hence, the number of 

binding sites required for autolysin attachment (6).  Furthermore, it seems to play a role 
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in facilitating autolytic activity since reducing LTA content alters autolytic activity 

without changing the surface protein profile (33).  Support for LTA to regulate cation 

homeostasis is largely centered on its ability to sequester Mg2+ around the cell surface 

and findings of cation-dependent regulation of the dlt operon (66).  The anionic 

properties of LTA seem to provide a unique place to accumulate cationic metals for 

biochemical usage and/or to help regulate the electrochemical and concentration 

gradients of the cell.  Finally, mutants deficient in the ability to produce D-alanyl-LTA 

are almost universally described as possessing a decreased survivability when used in 

mouse host models and when exposed to cationic antimicrobial peptides or defensins in 

vitro (99, 1)  Vancomycin resistance in a strain of E. faecium was also accompanied by a 

two fold increase in D-alanine content on LTA (46). This demonstrates a crucial role for 

LTA in bacterial survival against host innate immunity.    

 

LTA-  Structure and Synthesis 
The cell envelope of gram-positive bacteria is a multi-faceted structure that not 

only serves as semi-permeable encasement responsible for maintaining cellular shape and 

integrity, but also as a scaffold for the presentation of proteins and polysaccharides (Fig. 

4).  A major constituent of the cellular envelope are teichoic acids (TA), which can be 

divided into two subcategories:  the amphipathic, membrane anchored lipoteichoic acids 

(LTA) and peptidoglycan attached wall teichoic acids (WTA).  TA’s contribute largely to 

the anionic properties of the gram-positive cell and constitute an integral part of cell wall 

structure and function (4, 34).   

LTA’s necessity is underscored by the inability to create mutants completely 

devoid of functional LTA.  Recently, the ltaS gene was discovered to encode an essential 

membrane bound protein responsible for the elongation of the hydrophilic chains.  

Complete knockout of ltaS results in a null phenotype, while quelling expression during 

log phase leads to cell growth arrest (45).  Additionally, a strain of S. aureus containing 

an 87% reduction in LTA displayed reduced autolytic activity, increase hydrophobicity, 

and an complete absence in biofilm formation, while showing no differences in patterns 

of cell wall proteins and autolytic enzymes (33).  Gram-positive bacteria that do not 
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synthesize LTA compensate by producing structurally similar compounds that also 

impart an anionic charge to the outer membrane.  These atypical derivatives of LTA have 

been termed macroamphiphiles, lipoglycans, or surface glycolipids (121).   

 

Figure 4.  Gram-positive cell wall.   

Diagram of a representative gram-positive cell wall showing spatial arrangement 

of its components.  Adapted from http://www.kcom.edu/faculty/chamberlain 

/LECTS/Bacteria.htm. 

 
 

Most LTA consists of repeating chains of either glycerol phosphate or ribotol 

phosphate.  However, some bacteria utilize arabitol-P (Agromyces cerinu) and erythrol-P 

(Glycomyces tenuis) (116, 101).  Enterococci possess Type I LTA which is comprised of 

a repeating glycerol-phosphate (Gro-P) moiety that is embedded into the cell membrane 

through a glycolipid anchor (Fig. 5) (125).  The synthesis of fully functional LTA 

proceeds in a three step process that includes synthesis of the glycolipid anchor, creation 

and elongation of the Gro-P chain, and decoration of the poly Gro-P backbone through 

glycosylation and esterification.   
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Figure 5.  Model of Type I LTA found in enterococci.   

The glycolipid anchor (A) show the attachment of kojibiose to diacylglyerol.  The 

poly (GroP) chain (B) consist of repeating negatively charged glycerol phosphate 

moieties that can be substituted at the X positions by either kojibiose, D-alanine, 

or H+.  Adapted from Neuhaus and Baddiley (88). 

 

 
 

The glycolipid anchor consists of a glycosylated diacylglyerol compound in the 

lipid bilayer.  In B. subtilis and S. aureus the diglucosyldiacylglycerol anchor is 

synthesized by the gene product of ypfP which encodes for a diglucosyldiacylglycerol 

synthase (65).  The E. faecalis genome does not possess a ypfP homolog, but this is not 

surprising due to the differing sugars and sugar linkages between species.  Instead, the 

lipid anchor in enterococci is though to be a phospatidylkojibiosyldiacylglycerol 

compound that is constructed in part by LtaA (38, 45). Interestingly, disruption of the 

anchor synthesis proteins does not result in non-functional LTA.  Instead, the poly Gro-P 
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moieties are placed directly on diacylglycerol, again underscoring the importance of 

producing the Gro-P chains despite how they are anchored to the membrane (45). 

 The poly Gro-P chains of LTA and wall teichoic acid (WTA) are synthesized in 

differing ways.  LTA utilizes glycerol-1-phosphate at the membrane surface, while WTA 

chains are created in the cytosol with glyercol-3-phophate before being exported through 

the membrane to the outer wall. The poly Gro-P chain length of LTA is highly variable 

among species with E. faecalis LTA containing anywhere from 14-33 subunits (74).  

LTA chains are constructed one sub-unit at a time and it has recently been demonstrated 

that the LTA Gro-P chain of S. aureus is constructed by an intermembrane polyglycerol 

phosphate synthase termed LtaS (45).  Prior to this research it was unknown how this step 

in the LTA creation process was facilitated because the synthase is an essential gene.  By 

placing LtaS on a plasmid under an IPTG inducible promoter in an ltaS  null mutant, it 

was shown that the removal of IPTG resulted in severe growth and cell division defects 

(45).  This is the only step in LTA synthesis that results in non-viable cells when 

disrupted.   

The final step in LTA synthesis is the decoration of the poly Gro-P chain. The 

backbone of both TA’s in E. faecalis can be modified through glycosylation or D-

alanylation.  In E. faecalis glycosylation occurs with the addition of a kojibiose sugar 

moiety (α-D-Glc-(1→2)-D-Glc) and alanylation occurs when the amino acid D-alanine is 

added in an esterification process (64).  Covalent modification of LTA with D-alanyl 

residues provides counter-ions to the negatively charged Gro-P subunits, thereby 

potentially allowing the cell to adjust its surface charge properties.  Reports have 

suggested D-alanylation of LTA plays significant roles pertaining to regulation of cation 

binding, virulence, and activity of surface proteins such as autolysins (88).   Across 

genera, mutants deficient in the ability to modify LTA with D-alanyl residues have been 

characterized as possessing increased susceptibility to host innate immune factors such as 

defensins and cationic peptides, increased autolytic activity and reduced virulence (98).      
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D-alanylation of LTA 

The esterification of LTA with D-alanine is facilitated by the gene products of the 

dlt operon.  The importance of this operon is evident by its presence and high 

conservation among nearly all gram-positive bacteria (TIGR).  In E. faecalis the operon 

encodes four characterized genes (dltABCD) and a novel fifth gene (dltX) whose function 

has yet to be elucidated (Fig. 6) (TIGR).   The proposed mechanism of action of DltA-D 

in facilitating the addition of D-alanine to LTA is schematically depicted below (Fig. 7).  

Dcl (DltA) is proposed to be a ligase that transfers D-alanine to the carrier protein Dcp 

(DltC) as an D-alanyl residue in an adenosine-triphosphate (ATP) dependent manner (21, 

51).  DltD is a membrane bound protein that is believe to bring Dcl and Dcp in close 

proximity to each other to initiate the transfer of the D-alanine residue within the cytosol 

(21).  DltB shows high sequence homology to other transport proteins and is thought to 

be involved in shuttling the Dcp-D-alanyl compound to the extracellular environment.  

(89).  Once outside on the cell, Dcp can facilitate the esterification of D-alanyl residues to 

LTA.  Collectively, all four are involved in the following two-step reaction: 

 

ATP + D-alanine + Dcp → AMP + PPi + D-alanyl-Dcp     (1) 

D-alanyl-Dcp + LTA ↔ D-alanyl LTA + Dcp  (2) 

 

Little is known about the involvement of the gene product of dltX in the function of this 

operon, or if the ORF is even translated into a functional protein.  Only recently has this 

gene even been characterized as belonging to the dlt operon in S. aureus (66). 

Mohamed et al. (81) identified a mutant strain in E. faecalis (TX5427) through 

random transposon mutagenesis that possessed an insertional deactivation of the dltA 

gene and lacked the ability to covalently modify LTA with D-alanyl residues.  

Inactivation of any single gene (dltA-D) is enough to completely abrogate operon 

function, leaving the cell wall largely anionic (97).  The degree of LTA substitution is 

dependent upon environmental conditions, with high salt concentrations, high 

temperatures, and basic pH conditions promoting alanine hydrolysis (30, 35, 55, 91).  The 

observed reduction in alanine content of LTA was reversible when salt concentrations 
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were reduced, indicating that cells can adjust their degree of alanylation depending on 

environmental conditions (30).      

  

Figure 6.  Organization of the dlt operon in E. faecalis V583. 

 
 

 

Figure 7.  Proposed mechanism for the incorporation of D-alanine.   

Adapted from Neuhaus (88). 

 
 

Little is known about the regulation of the dlt operon in general.  In Bacillus 

subtilis, operon regulation has been shown to be under control of the global regulation 

factor σx (9), while Streptococcus agalactiae possesses two additional genes in the 

operon, dltR and dltS, encoding a two component system (TCS) that is believed to 
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directly regulate operon expression (102).  In Staphylococcus aureus increased 

concentrations of cations (Na+, Mg2+, and Ca2+) repressed operon expression, with Mg2+ 

signaling occurring partially through the ArlRS two component system (66).    

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 23



Objectives of the Study 

  

1.) Further characterize E. faecalis strain TX5427, a ΔdltA knockout deficient in D-

alanylation of LTA, in regards to phenotypes observed in minimal inhibitory 

concentrations of selected bacteriocins, autolytic activity, pheromone-responsive 

mating, and survival in host model systems. 

 

2.) Determine if the ORF (dltX) is indeed a constituent of the dlt operon in E. faecalis 

OG1RF and if it conveys any influences on operon expression. 

 

3.) Identify environmental factors that influence expression of the dlt operon. 

 

4.) Assess the involvement of TCSs on operon expression. 

 

5.) Identify TCSs involved in signaling specific environmental stimuli. 
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Materials and Methods 

Bacterial Strains, Plasmids, and Growth Conditions  
 Bacterial strains and plasmids used in this study are listed in Table 1.  E. faecalis 

strains were routinely grown at 37°C without aeration in brain heart infusion (BHI), 

Todd-Hewitt broth (THB), M17, or GM17, while E. coli strains were cultured at 30°C 

with aeration in Luria-Bertani broth (LB).  All media was supplied by Difco and prepared 

following manufacturer’s instructions.    
 

 

Table 1.  Strains and plasmid used in this study 
___________________________________________________________________________________________________ 

 

Strain or Plasmid  Characterization  Reference/Source 

__________________________________________________________________ 
Strains 

E. faecalis  

OG1RF    Wild type    (43)      

OG1RF:pTCV-lac  Wild type with promotorless vector  This study 

OG1RF:pMHK100  Wild type with expression vector 1 (V1) This study 

OG1RF:pMHK200  Wild type with expression vector 2 (V2) This study 

OG1RF:pCF10   Wild type with mating vector  (25) 

TX5427(dltA)   D-ala-LTA deficient strain   (81) 

TX5427(dltA):pMHK100  D-ala-LTA deficient strain with V1  This study 

TX5427(dltA):pMHK200  D-ala-LTA deficient strain with V2  This study 

TX5427(dltA):pCF10  D-ala-LTA deficient strain with pCF10 This study 

OG1RFΔRR01   Resposne regulator 01 mutant  Perego (unpub.) 

OG1RFΔRR02   Response regulator 02 mutant  Perego (unpub.) 

OG1RFΔRR03   Response regulator 03 mutant  Perego (unpub.) 

OG1RFΔRR04   Response regulator 04 mutant  Perego (unpub.) 

OG1RFΔRR05   Response regulator 05 mutant  Perego (unpub.) 

OG1RFΔRR06   Response regulator 06 mutant  Perego (unpub.) 
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OG1RFΔRR09   Response regulator 09 mutant  Perego (unpub.) 

OG1RFΔRR10   Response regulator 10 mutant  Perego (unpub.) 

OG1RFΔRR13   Response regulator 13 mutant  Perego (unpub.) 

OG1RFΔRR14   Response regulator 14 mutant  Perego (unpub.) 

OG1RFΔRR15   Response regulator 14 mutant  Perego (unpub.) 

OG1RFΔRR17   Response regulator 17 mutant  Perego (unpub.) 

OG1RFΔRR18   Response regulator 18 mutant  Perego (unpub.) 

OG1RFΔRR01:pMHK100  Response regulator 01 mutant with V1 This study 

OG1RFΔRR02:pMHK100  Response regulator 02 mutant with V1 This study 

OG1RFΔRR03:pMHK100  Response regulator 03 mutant with V1 This study 

OG1RFΔRR04:pMHK100  Response regulator 04 mutant with V1 This study 

OG1RFΔRR05:pMHK100  Response regulator 05 mutant with V1 This study 

OG1RFΔRR06:pMHK100  Response regulator 06 mutant with V1 This study 

OG1RFΔRR09:pMHK100  Response regulator 09 mutant with V1 This study 

OG1RFΔRR10:pMHK100  Response regulator 10 mutant with V1 This study 

OG1RFΔRR13:pMHK100  Response regulator 13 mutant with V1 This study 

OG1RFΔRR14:pMHK100  Response regulator 14 mutant with V1 This study 

OG1RFΔRR15:pMHK100  Response regulator 15 mutant with V1 This study 

OG1RFΔRR17:pMHK100  Response regulator 17 mutant with V1 This study 

OG1RFΔRR18:pMHK100  Response regulator 18 mutant with V1 This study 

OG1SSp:pCF10        (25) 

CK111:pCF10-101       (68) 

E. coli 

 EC1000         (73) 

 
Plasmids 

pTCV-lac   Promotorless LacZ expression vector (103) 

pMHK100   LacZ expression vector   This study 

pMHK200   LacZ expression vector    This study 

pCF10    Conjugative plasmid, TetR   (25) 

 pCJK47    Plasmid for markerless exchange  (68) 

___________________________________________________________________________________ 
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Molecular Techniques 
Chromosomal DNA was obtained using Chelex® 100 Resin (Bio-Rad 

Laboratories, Hercules, CA) following the DNA extraction for PCR method (131), 

Plasmid DNA was extracted and purified using the Mini Prep Spin Kit (Qiagen, 

Valencia, CA) according to manufacturer’s protocol.  Custom primers used for PCR and 

RACE reactions were supplied by IDT Technologies (Coralville, IA) (Table 2).  

Bioinformatics, including BLAST searches and identification of genome sequences, were 

carried out on The Institute for Genomic Research website (TIGR).  PCR conditions were 

optimized for individual reactions based on primer Tm and length of amplified sequence 

using Bio-X-act Short DNA polymerase (Bioline, Tauton, MA).     

Electrocompetent enterococci were prepared as described by Shepard and 

Gilmore (117).  Transformations were performed on the BIO-RAD GenePulser Xcell 

using 2.5 kV current, 200 Ω resistance, 25 µF capacitance, and 2 mm cuvetes.  

Restriction digests were performed with appropriate restriction enzymes supplied by 

Promega at 37°C for 4-16 hours depending on cutting efficiency.  Primers Vlac1 and 

Vlac2 are located on the expression vector pTCV-lac and encompass the multiple cloning 

site.  They were used in colony PCR for screening transformants following the protocol 

described on the Oklahoma University Enterococcus Research Site 

(http://w3.ouhsc.edu/enterococcus/).   
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Table 2.  Custom primers used in this study 
_________________________________________________________________________ 

 

Name      Sequence (5’-3’)      

_________________________________________________________________________ 

REP01       TTT AAT GAA TTC GCC GTT GTG AAG CGG     

REP02       ATA TAA GGA TCC CAT TAT CAT TCA CCT CCT    

REP03       TTA TTA GGA TCC CAT GTA TAG CCG CCT CCT    

DA09RACE GCT TGC GGA ACG ACA TAG GC 

DA10RACE GCT GGT AGC CCA TCT AAT TGG 

DA11RACE GCT TCT GTC GGC CCA TAC G 

dltA F  CGG AAG AAT AAC AGA AAT GAT GAT GC 

dltA R  ATG AGC CAC CTA ACG CCA ATG 

gryB F  CAA GCC AAA ACA GGT CGC C 

gyrB R  ACC ACC ACC GTG CAA GCC 

dltX01  AAT AAA TCT AGA GCC ACA GAA TGG CAA GCG 

dltX02  TAA AAT CTG CAG TCA CCT CCT AAG GTT AAT CGC 

dltX03   ATA TAT CTG CAG ATG GAA AAA GTA ATT ATT ATG 

dltX04  TAT TAT GAA TTC GCG CAG TTG GGA AAC GAG 

P1  GCG ATT AAC CTT AGG AGG TG 

P2  GAA ATT TCA ATG GAC TTT GC 

P3  GCT GAA ATA TAG CAT AAA ATA ATG G 

   _____________________________________________________________ 

 

Creation of a dltX Knockout 
To clone the allele of interest into pCJK47, PCR was used to amplify 800-1000 

bp of the DNA regions flanking the site of the planned mutation.  The two regions were 

made using primers dltXO1 (XbaI), dltXO2 (BamHI), dltX03 (BamHI), and dltX04 

(EcoRI), and then inserted into plasmid pCJK47 at the appropriate restriction sites using 

restriction digest followed by ligation reactions.  The plasmid containing our inserts was 

transformed into and propagated in E. coli EC1000 cells using the previously described 

conditions for electroporation.  EC1000 cells carrying pCJK47, or its derivatives, were 

cultivated in BHI supplemented with 100 µg/ml erythromycin at 30°C with aeration.  The 

recombinant plasmid was then extracted using a Qiagen mini-prep kit (Qiagen), and 
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transformed into E. faecalis CK111:pCF10-101.  Colonies carrying the plasmid were 

selected by plating on BHI supplemented with 10 µg/ml erythromycin and 250 µg/ml X-

gal.  Blue transformants were restreaked on similar media 2 times to ensure the retention 

of the blue color prior to use as a donor in the mating procedure.   

For conjugation, the donor strain was grown overnight in BHI containing 10 

µg/ml erythromycin at 37°C.  Donor and recipient were then washed 2 time with BHI and 

resuspended in the original volume of BHI.  Both cultures were then diluted 10-fold in 

BHI and incubated at 37°C for one hour.  Conjugation was initiated by mixing 1 part 

donor to 9 parts recipient and 500 ml of the mixture was spread over the surface of a BHI 

agar plate.  Mating proceeded for 6 hours at 37°C before the cells were collected from the 

surface by adding 2 ml of PBS and scraping the cells from the agar surface.  The cells 

were then collected and serially diluted in PBS before selection of transformants on BHI 

containing 1000 µg/ml spectinomycin, 10 µg/ml tetracycline, and 10 µg/ml 

erythromycin.  Blue colonies from the transconjugant plates were restreaked on the same 

media at least two times to ensure the retention of the blue color.  Colony PCR was 

performed on several colonies to ensure recombination occurred at the desired locus.   

Appropriate colonies were then cultured in BHI without selection until stationary 

phase.  The culture was then used to inoculate fresh media at a rate of ~100 cfu/ml.  The 

new culture was allowed to reach stationary phase prior to serial dilutions in PBS.  100 

ml of MM9YEG with 10 nM p-CL-Phe was prepared using 10 ml of 10x M9 salts, 0.25 g 

yeast extract, 199.6 mg p-Cl-Phe, 1.5 g agar, 1 ml of 50% glucose and 250 µg/ml X-gal 

solution, and filled up to a total volume of 100 ml with water.  Dilutions were plated on 

MM9YEG agar to select for white colonies representing an excise of the plasmid.  

Primers Xcom1 and Xcom2 were used to amplify DNA which included the planned 

mutation site in potential mutants.  PCR products were sequenced using Applied 

Biosystems 3730 DNA analyzer. 

 

Transmission Electron Microscopy (TEM) 
Strains OG1RF and TX5427 were grown to either mid-log phase (O.D. 0.6-0.8 at 

600 nm) or stationary phase in BHI media at 37°C prior to fixation.  1 ml of culture was 
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pelleted in a 1.5 ml microcentrofuge tube at 8,000 x g for 10 min.  The supernatant was 

decanted and the pellet washed three time in PBS buffer.  Primary fixation was carried 

out by resuspending the washed pellet in 1 ml of 0.1 M sodium cacodylate buffer (pH 

7.2-7.4) buffer, containing 2% paraformaldehyde, 2% glutaraldehyde and placing at room 

temperature overnight with constant rotation.  Samples were then washed 3 times in 0.1 

M sodium cacodylate buffer, and a secondary staining was performed by incubating 

samples in 1 ml of 0.1 ml sodium cacodylate buffer supplemented with 2% osmium 

tetroxide for 1-2 hours until the pellet turn amber or black in color.  The sample was 

again washed three time in 0.1 ml sodium cacodylate buffer, followed by three washes in 

0.2 M sodium acetate buffer (pH 5.2) and pre-embedded with 2% uranyl acetate in 0.2 M 

sodium acetate buffer for 1 hour in the absent of light.  Samples were washed a final three 

times in 0.2 M sodium acetate buffer before dehydration.  Dehydration was performed by 

exposing samples to increasing concentrations of alcohol, 50%, 60%, 70%, 80%, 90%, 

95% and 100%, until the samples were devoid of water.  Polymerization was carried out 

at 60°C in EMBED 812/Araldite resin. 

Sectioning of the samples was performed using a Reichert Ultracut S 

ultramicrotome (Leica).  Sectioned samples were placed on 200 mesh copper grids and 

visualized on a CM100 (FEI Company) transmission electron microscope at 100 kV.  

Images were captured using a Hamamatsu digital camera (Advanced Microscopy 

Techniques Corp.) equipped with capture engine software version 5.4.2.22.B.  

 

Rapid Amplification of cDNA Ends (RACE) 
 E. faecalis OG1RF was grown to mid-log phase (O.D. 0.3 at 600 nm).  Two 

volumes of Bacterial RNAprotect (Qiagen, Valencia, CA) was added to the culture and 

incubated at 25°C for 5 min. prior to isolation of total RNA using the RNeasy Kit 

according to manufacturer’s protocol (Qiagen, Valencia, CA).  All glassware, dispensing 

materials, and solutions were treated with either sodium dodecyl sulfate (SDS) or DPEC 

to neutralize RNase activity.  Identification of the 5’ transcript start site was carried out 

using the 3’/5’ RACE Kit, 2nd Generation (Roche, Indianapolis, IN) (fig 8).  Sequencing 

was completed on the Applied Biosystems 3730 DNA analyzer.    
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Figure 8.  Methods for RACE.   

Schematic diagram of the steps in RACE.  Adapted from Roche 3’/5’ RACE Kit, 

2nd Generation product insert. 

 
 

Construction of Reporter Plasmids  
Expression vectors pMHK100 and pMHK200 (Fig. 14) were made by inserting 

cloned sections of the upstream promoter region of the dlt operon into pTCV-lac at the 

BamHI and EcoRI restriction sites (Fig. 9) (103).  Expression vectors were propagated in 

E. coli EC1000 cells before transformation into appropriate E. faecalis strains.  

Sequencing of reporter constructs was performed using the Applied Biosystems 3730 

DNA analyzer to ensure proper promoter sequence insertion. 
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Figure 9.  A diagram of the reporter vector pTCV-lac.   

Shows the gene organization and the restriction sites used to introduce the 

upstream sequence for the reporter constructs pMHK100 and pMHK200 (103).    

 

 
 

Minimal inhibitory concentrations (MICs)  
Sensitivities to vancomycin (Sigma; Vancomycin Chloride), polymyxin B 

(Sigma; Polymyxin B sulfate), nisin (Sigma), and bile salts (Sigma; Bile Salt mixture) 

were determined following the protocol provided by the Clinical and Laboratory 

Standards Institute (CLSI) for Antimicrobial Susceptibility Testing (86).  All chemicals 

were provided by Sigma (Sigma, St. Louis, MO).  Appropriate starting concentrations of 

the antimicrobials were serially diluted in a 96-well microtiter plate using BHI media.  

Inoculation was performed by the addition of 50 µl of overnight culture diluted to ~1x106 

cfu/ml to each well.  MICs were identified as the last well that exhibited growth 

inhibition after 24 hours of incubation at 37°C.          
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Autolysis Assay   
Overnight cultures were prepared using freezer stocks in fresh BHI media.  

Determination of autolysis in stationary phase was carried out using the overnight 

cultures.  Otherwise, cultures were inoculated at a 1:100 ratio in fresh BHI and grown to 

and O.D. of 0.600 at 600 nm for determination of autolysis in log phase.  Cultures were 

then placed on ice for 10 min. before 1.5 ml was removed for centrifugation at 16,000 x g 

for 5 min at 4°C.  The supernatant was removed and the pellet resuspended in 1.5 ml of 

ice cold water before centrifugation at 16,000 x g for 5 min at 4°C.   The pellet was 

washed twice more with ice cold water and resuspended in 1ml ice cold 10 mM NaPO4 

(pH6.8) supplemented with 0.5 µg/ml trypsin.  200 µl of the suspensions were placed in 

triplicate in the center of a 96-well flatbottom microtiter plate and the remaining wells 

were filled with 200 µl ddH2O.  Samples were incubated at 37°C and O.D. readings were 

taken every 30 min for 9 hours at 600 nm in a spectrophotomer.  Autolysis was expressed 

as percent of initial turbidity at 600 nm.  

 

Plasmid Transfer  
Overnight cultures were used to inoculate fresh BHI media at a 1:10 ratio.  Media 

used for donor strains carrying the pCF10 plasmid was supplemented with either 10 

ng/ml, 1 ng/ml or 100 pg/ml of cCF10 in order to initiate conjugation.  Cultures were 

grown at 37°C for 2 hours before mating.  Donors and recipients were co-cultured at a 

1:10 ratio for 10 min at 37°C.  Serial dilutions in 0.9% NaCl were plated on BHI plates 

containing 1 mg/ml streptomycin for selection and enumeration of donors and BHI 

containing 1 mg/ml rifampicin and 10 µg/ml tetracycline for selection and enumeration 

of transconjugates.  Mating efficiency was assessed as the number of transconjugates 

recovered per donor.     

 

Plate Expression Assay   
Overnight cultures containing the lacZ expression vector pMHK100 were used to 

swab BHI agar plates containing 10 µg/ml erythromycin and 150 µg/ml X-gal.  Effects of 
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antibiotics were tested using pre-made 6 mm paper disks (BD, Franklin Lakes, NJ).  

Blank 6 mm paper disks (BD Franklin Lakes, NJ) were used to test other environmental 

stimuli by placing the disks on agar plates and saturating with 10 µl of tested 

environmental stimuli.  Plates were incubated for 24 - 48 h at 37°C before analysis of 

reporter expression.     

 

Modified Miller Assay for Quantifying β-galactosidase Activity  
Miller Assays were performed following the protocol described on the Oklahoma 

University Enterococcal Research Site (http://w3.ouhsc.edu/enterococcus/) with 

modifications.  Overnight cultures were used to inoculate fresh BHI, at a 1:100 ratio, 

containing 1 mg/ml kanamycin and appropriate concentrations of environmental stimuli.  

Cultures were incubated at 37°C until late log phase (O.D. 0.6-0.8 at 600 nm) and chilled 

on ice.  Cells were pelleted at 8,000 x g at 4°C for 10 min in a Beckman countertop 

centrifuge.   The supernatant was removed the cells were washed in 3 ml of ice cold Z-

buffer (0.06 M Na2HPO47H2O, 0.04 M NaH2PO4H2O, 0.01 M KCl, 0.05 M 

MgSO47H2O) and centrifuged at 8,000 x g at 4°C for 10 min.  Cultures were resuspended 

in 1.5 ml  of ice cold Z-buffer and placed in 2 ml screw cap tubes containing 0.5 ml (by 

volume) of  0.1 mm glass beads (BioSpec, Bartlesville, OK).  Cells were lysed for 60 sec 

at 5000 rpm in a Mini-bead beater (BioSpec, Bartlesville, OK) and placed on ice.  

Samples were pulse spun to settle glass beads.  The supernatant was removed and 

centrifuged for 10 min at 16,100 x g at 4°C to pellet cellular debris.  Cell extracts were 

then used to quantify total protein using the BCA Protein Assay Kit (Pierce 

Biotechnology, Rockford, IL) according to manufacturer’s recommendation.  To measure 

β-galactosidase activity, 100 µl of a 4 µg/ml solution of ONPG was added to 500 µl of 

cell extract, vortexed briefly, and incubated in a water bath at 37°C for 30 min.  The 

reaction was stopped by the addition of 250 µl sodium carbonate (Na2CO3).  200 µl of 

sample was placed in triplicate on a 96-well flatbottom microtiter plate (Corning 

Incorporated, Corning, NY) and O.D. was measured at 405 nm.  Miller activity was 

calculated as O.D. 405 nm divided by mg/ml total protein.  Statistical analyses were 
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performed on the Microsoft Graph Pad program using a one-way ANOVA followed by a 

Neuman-Kuhls post-test.  Significant differences were determined by a value of P<0.05. 

 

Real-Time PCR 
Enterococci samples were either grown to O.D. 0.3-0.5 at 600 nm and  

processed or grown to O.D. 0.3-0.5 at 600 nm, exposed to stimuli for an additional 15 

min at 37°C, and then processed.  For RNA extraction, cultures were treated with 2x 

volumes of bacterial RNAprotect (Qiagen, Valencia, CA) for 5 min and processed using 

the RNeasy kit (Qiagen, Valencia, CA).  Total RNA was used for quantification using the 

two-step Iscript Reverse Transcriptase and IQ-SYBR Green procedure (Bio-Rad, 

Taunton, MA).  Quantification reactions were carried out on the IQ5 Real-Time PCR 

Detection System (Bio-Rad) using 35 cycles of 94°C denaturation for 1 min, 72°C 

annealing temp. for 30 sec, and 57° elongation for 1 min.   The primers used were dltA F 

and dltA R for the gene of interest (GOI) and gyrB F and gyrB R for the housekeeping 

gene (HK) gyrB.  
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Results 

 

Autolytic Activity of E. faecalis Strains  
A commonly described phenotype related to the loss of alanylation is changes in 

the autolytic behavior of the mutants (95, 98, 134).  We investigated if the common 

laboratory strain OG1RF showed any differences in autolytic activity between wild type 

and a dlt mutant (Fig. 10a).  We found no difference between the two strains.  However, 

when Response Regulator (RR) mutants were tested, RR13 was found to possess 

dramatically reduced autolytic activity.  None of the other RR mutants presented an 

autolysis phenotype.  A RR13 knockout in the vancomycin resistant clinical isolate V583 

showed the same phenotype (Fig. 10b).   
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Figure 10.  Autolysis assay data.   

Values expressed as percent of initial turbidity vs. time.  OD. reading were 

recorded every 30 min.  A comparison of OG1RF (wild type), TX5427 (dltA) and 

the response regulators RR03, RR09, and RR13 is shown in A.  In addition to 

those five strain in and OG1RF background, a RR13 knockout in a V583 

background was also tested (B).  The data is the average of three independent 

experiments.  Error bars were omitted for clarity sake, but both strains of RR13 

displayed significantly reduced autolysis. 
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Effects of a dlt Knockout on Plasmid Transfer 
Recently, Waters et al. showed that Aggregation Substance (AS) binds in vitro to 

purified LTA in a dose dependent manner (132), providing evidence that LTA may 

participate in mobile genetic element transfer by promoting the formation of mating 

aggregates.  It has been demonstrated that the binding of AS to LTA was abolished with 

an in frame deletion of N-terminal amino acids 156-358, while a purified N-terminal 

fragment consisting of amino acids 44-331 displayed high LTA binding (132).  A closer 

look at the N-terminal amino acid profile of AS reveals a cluster of positively charges 

amino acids in the stretch were binding occurs.  Little is known about the chemical 

interactions between LTA and AS, but it is feasible that the positively charged N-terminal 

amino acids could electrostatically interact with the anionic poly-glycerol phosphate 

backbone of LTA and that D-alanylation of LTA could impact this interaction.   Our 

findings suggest there is no significant difference between strains TX5427 and OG1RF as 

a recipient during plasmid transfer when the donor media is supplemented with 10 ng/ml 

of the inducing pheromone cCF10 (Fig. 11A).  This concentration of pheromone greatly 

exceeds naturally occurring pheromone levels.  As a result, the cells may be over-

expressing mating proteins, namely AS, and thereby masking the significance of the 

putative LTA-AS interaction.  To test this we reduced the concentration of exogenous 

pheromone in the mating procedure by 10- and 100-fold.  There was also no significant 

difference in mating efficiency when the pheromones concentration was lowered 10-fold 

to 1 ng/ml (Fig. 11B) or 100-fold lower to 100 pg/ml (Fig. 11C).  
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Figure 11.  Plasmid transfer data.   

Mating assay data expressed as the number of transconjugates observed per donor 

recovered.  The concentrations of pheromone cCF10 used were 10 ng/ml (A), 1 

ng/ml (B), and 100 pg/ml.  Data shown is the average of three independent 

experiments.   

 

A.  10ng/ml 

 
B.  1ng/ml 

 
C.  100pg/ml 
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Morphological Characteristics of Strains OG1RF and TX5427 
 In order to visualize any phenotypical differences that may be present between 

OG1RF and TX5427, we utilized TEM to get a closer look at fixed cell samples.  After 

analyzing several frames from cells either in mid-log or stationary phase, there was 

nothing noticeably different between the two strains (Fig. 12).  These results are 

supported by a report published after our findings that found there was no difference 

between wild type and a dlt mutant in the clinical isolate E. faecalis 12030 (31). 

 

Figure 12.  TEM photos.   

Pictures of OG1RF in log phase (A), TX5427 in log phase (B), and OG1RF in 

stationary phase (C).  

 

A.  OG1RF (Log Phase) 

 
B.  TX5427 (Log Phase) 
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C.  OG1RF (Stationary Phase) 

 

Identification of dlt Operon Transcript Start Site 
The 150 base pair open reading frame (dltX) upstream of dltA is present and 

highly conserved among gram-positive bacteria containing the dlt operon.  In S. aureus 

the open reading frame was shown through RACE to be contained on the same transcript 

as dltA with the transcript start site approximately 250 base pairs upstream of dltA (82 bp 

upstream of dltX).  Because of the ORF’s high conservation, we hypothesized that dltX 

would also be a member of the operon in E. faecalis.   Utilizing RACE, we identified the 

transcript start site of the operon in E. faecalis to be 191 bases upstream of dltA and 29 

bases upstream of dltX (Fig. 13A), showing that dltX is indeed a constituent of the 

operon.  A promoter region of 29 base pairs appeared to be rather small when compared 

to the findings in S. aureus.  In order to test the accuracy of RACE we performed PCR 

with total cDNA and primers P1, P2, and P3 (Fig. 13B).  The presence of a PCR product 

with P3 coupled with the lack of products with P1 and P2 confirm that there was likely 

RNA degradation of the RACE product and that the transcriptional start site is several 

bases upstream of the predicted +29 bases.    
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Figure 13.  Race and reporter constructs.   

A diagram for the identification of the transcription start site through RACE and 

the sequence of the reporter constructs (A).  Determination of the accuracy of 

RACE was confirmed through PCR using custom primers P1, P2, and P3 to 

amplify cDNA and chromosomal DNA (B). 

 

A. 

 
 

 

B. 

   cDNA           chromosomal DNA 

     P1      P2       P3       P1       P2       P3 
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Effects of dltX on Operon Expression 
 Upon discerning that dltX was part of the operon, we wanted to see if the gene 

possessed any effects on transcription levels of the operon.  A 150 amino acid protein is 

quite small, so we hypothesized that dltX may be playing a role in operon regulation by 

either acting as a cis- or trans-element.  To test this hypothesis two reporter constructs, 

one containing dltX (pMHK200) and one lacking the gene (pMHK100), were created in 

order to quantify operon expression.  The constructs were introduced into OG1RF and 

TX5427 and β-galactosidase expression was quantified for mid-log phase cells (Fig. 14).  

All reporters showed activity over the empty reporter in both strains.  Also, in both 

strains, the construct containing dltX showed reduced Miller activity, indicating that dltX 

is interfering with transcription in some capacity.     

 

Figure 14.  Miller activity for reporter constructs.   

Miller assay of selected strains containing either pMHK100, pMHK200, or the 

promotorless pTCV-lac plasmid.  Cells were grown to late log (O.D. 0.6-0.8) 

prior to quantification of Miller activity.  Data is expressed as the average of three 

independent experiments.   
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Identification of Stimuli Affecting dlt Operon Expression  
   It has been demonstrated that metal cations, especially divalent cations, possess 

repressive properties on dlt operon expression in Staphylococcus aureus (66).  These 

results suggested that gram-positive bacteria could regulate their cell surface chemistry 

by altering the charge of their teichoic acids via modulation of the D-alanine substitution 

rate.  We utilized a plate expression assay to quickly screen other environment conditions 

that could impact operon expression in E. faecalis.  The reporter construct pMHK100 

was created using the upstream promoter region of the dlt operon fused to the 

promotorless lacZ gene in the plasmid pTCV-lac.  Up or downregulation of the lacZ 

reporter was observed in the presence of the cationic compounds vancomycin, polymyxin 

B, Cu2+, as well as penicillin and bile salts (Fig. 15).  Strain OG1RF displayed a ring of 

up-regulated reporter expression around the zone of inhibition for the cell wall acting 

antibiotics vancomycin and penicillin, as well as the cationic peptide polymyxin B.  

Copper produced an interesting phenotype by displaying a gradient with no/slightly 

repressive effects on reporter expression near minimum inhibitory concentrations (MICs) 

and an inducing effect at lower concentrations.  Bile salts produced a distinct phenotype 

in that there was noticeable down regulation of reporter expression around the zone of 

inhibition that also seemed to supersede the over-expression induced by other stimuli.   

The phenotypes observed were consistent with the bacteria being able to sense 

environmental stimuli and adjust transcription of the dlt operon accordingly. 
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Figure 15.  Plate expression assay.   

Expression profile of selected strains carrying pMHK100 on BHI containing 10 

µg/ml erythomycin and 200 µg/ml X-gal.   

 

 

 

Quantification of Operon Expression in RR Knockouts 
A common theme among bacteria when responding to environmental stresses is 

the involvement of two component sensory and regulatory systems to sense the stimulus 

and transform the signal into gene expression.  The only publicly available sequence for 

E. faecalis is for the vancomycin resistant clinical isolate V583 (TIGR).  The genome 

encodes 17 two-component systems comprised of a sensory kinase and cognate response 

regulator, along with an orphan 18th response regulator.  Hancock and Perego 

systematically inactivated all 18 response regulators in V583 using targeted insertional 

mutagenesis and characterized the strains according to antibiotic sensitivity, biofilm 

formation, and environmental stress (48).  Of the 18 response regulators in V583, only 

RR07 was unable to be inactivated.  RR07 is an ortholog of the essential YycF for gram-

positive bacteria.  The same approach was utilized to inactivate homolog response 

regulators in OG1RF (Hancock and Perego, unpublished).  There is relatively high 
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sequence variance among strains of E. faecalis (39) and only 14 response regulators are 

conserved in OG1RF.  The OG1RF genome is smaller than V583 (2.8 MB compared to 

3.2 MB) and is lacking four strain specific two component systems.  Three of these four 

missing TCS, including VanRS which is involved regulation of vancomycin resistance 

genes, are linked to mobile DNA elements (96, 114).   

In order to assess the TCS involvement in operon expression, the reporter vector 

pMHK100 was transformed into the 13 response regulator mutants (Table 1) and 

expression in comparison to wild type was assessed throughout the growth cycle (Fig. 

16).  Operon expression was maximal during mid to late log phase and substantially 

subsided after entry into stationary, with none of the strains showing significantly higher 

expression over the control.  Strains OG1RF and TX5427 showed the same expression 

profile indicating that the cells are not sensing their degree of alanylation, but rather 

responding to different stimuli by either activating or repressing expression of the genes 

responsible for this covalent modification.  This observation was confirmed with a plate 

expression assay with both strains again displaying an identical expression profile (data 

not shown).  RR03 and RR13 showed significant overexpression in comparison to wild 

type, while in RR09 operon expression was significantly reduced.   
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Figure 16.  Miller assay for RR’s during log and stationary phases.   

Miller assay of selected strains containing pMHK100 or the promotorless pTCV-

lac plasmid.  Cells were grown to late log (O.D. 0.6-0.8) (A) or stationary phase 

(B) prior to quantification of Miller activity.  Data is expressed as the average of 

three independent experiments.  Dotted line represents wild type expression 

levels.  P<0.05 when compared to the control is indicated by (*).   

A

 
B.
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Analysis of RR Knockouts on Plate Expression Assay 
Upon discerning expression variance in the Miller assay, RR03, RR09, and RR13 

were compared to OG1RF to visualize changes in expression profiles to environmental 

stimuli utilizing the plate expression assay (Fig. 16).  Response regulator knockouts 

RR03 and RR13 showed similar phenotypes to the wild type strain except for in response 

to bile salts.  The noticeable ring of repressed reporter expression was absent in these two 

strain, indicating they may play essentials roles in bile salt induced repression of the dlt 

operon.  The RR09 knockout lacked wild type levels of reporter up-regulation in response 

to Cu2+ and polymyxin B, again indicating potential roles in signal recognition and 

regulation of the operon.  None of the tested TCS were indicated in regulation of the dlt 

operon in response to vancomycin or penicillin (data not shown).      

 

Antimicrobial Susceptibility 
The MICs of stimuli that produced a distinct phenotype on the plate assay were 

determined to obtain proper concentrations for use in the Miller Assay to confirm effects 

on regulation (Table 3).  Despite seeing differences in dlt gene expression through β-

galactosidase activity, there was no discernable difference between strains in bile salt 

susceptibility.  In addition to repressing operon expression, the bile salts may also be 

producing a microenvironment around the cell that promotes cleavage of the covalently 

attached D-alanyl residues from TA.  If the cells are undergoing D-alanine hydrolysis and 

the dlt operon is being repressed, it would be expected that wild type cells would show 

the same phenotype as a dltA mutant, since both would have significantly reduced D-

alanine substitution on the cell wall.  As expected, dltA showed increased sensitivity to 

the cationic compounds polymyxin B and nisin, as well as to the cell wall acting 

vancomycin.  RR09, a strain in which the dlt operon is under-expressed also showed 

increased sensitivity to the cationic peptides polymyxin B and nisin, while maintaining 

wild type levels of resistance to vancomycin. 
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Table 3.  Minimum inhibitory concentration data.   

Results are indicative of three independent experiments. 

 

Quantification of Operon Expression Through Miller Assays and Real-

Time PCR 
To confirm the results of the plate assay, cultures containing expression vector 

pMHK100 were grown in media containing sub-inhibitory concentrations of 

environmental stimuli/stress to assess effects on β-galactosidase expression.  In E. 

faecalis the divalent Mg2+ ion has a repressive action on dlt operon expression for 

OG1RF, RR03, RR09, and RR13 in a concentration dependent manner (Fig. 17A).  

Furthermore, none of the 13 response regulator mutants used in our study ceased this 

down regulation, suggesting that there are other mechanisms for Mg2+ induced regulation 

of the dlt operon (data not shown).   The strains were also grown in increasing 

concentrations of bile salts before quantification of reporter expression (Fig. 17B).  

OG1RF and RR09 display reduced reporter expression in a concentration dependent 

manner, while RR03 and RR13 failed to show this reduction.  To quantify the effects of 

polymyxin B on reporter expression all strains were grown in BHI or BHI supplemented 

with 25 µg/ml polymyxin B before processing.  All of the strains showed 2-3 fold 

induction of reporter expression in the presence of polymyxin B except for RR09, which 

is again consistent with the plate expression assay (Fig. 17C).   
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Figure 17.  Miller assay for Mg2+, bile salts, and polymyxin B.   

Strains containing pMHK100 were grown in the presence of (A) increasing 

concentrations of MgCl, (B) increasing concentrations of bile salts, or (C) 25 

µg/ml polymyxin B.  Data is expressed as the average of three independent 

experiments.  P<0.05 when compared to the control is indicated by (*).     

 

A.  MgCl 

 
 

B.  Bile Salts 
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C.  Polymyxin B 

 
 

Real-time PCR was then employed to detect changes in transcript levels after 

acute (15 min) exposure to bile salt and polymyxin B (Table 4).  We observed a 13 fold 

induction in transcript levels after a 15 min. exposure to polymyxin B and a 3 fold 

reduction after exposure to bile salts.  
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Figure 18.  Real-time PCR.   

A representative graph obtained from real-time PCR experiments (A).  The four 

tightly overlapping lines represent the house keeping (HK) gene GyrB that serves 

as a loading control.  The other lines represent DltA expression in the presence of 

polymyxin B (yellow with black lines), normal BHI media (purple), magnesium 

(blue), and bile salts (green).  Figure B quantifies the fold induction or repression 

observed for polymyxing B, bile salts, and magnesium during 4 independent 

experiments.  

    

 

A. 

 
B.  
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Discussion 

Autolytic Activity 
The effect of D-alanine deprivation on autolytic activity appears to be species 

dependent.  Reports have shown dlt mutants to be more susceptible than wild type to 

autolysins in both Staphylococcus aureus (98) and Bacillus subtilis (134).  Additionally, 

in Lactobacillus plantarum a dlt mutant shows cell wall perforations at the divisional 

septum mediated by the increased activity of the Acm2 autolysin (95).  However, reports 

have shown no difference between wild type and a dlt mutant strain in the Enterococcus 

faecalis 12030 clinical isolate (31).  We confirmed those finding for the E. faecalis strain 

OG1RF.  Therefore, lack of D-alanylation does not seem to significantly influence 

autolytic activity in E. faecalis.  Interestingly, a screening of the response regulator 

mutants indicated greatly diminished autolytic activity in the RR13 mutant in both 

OG1RF and V583.  It is still unclear if there is a correlation between increased dlt operon 

expression and reduced autolysis since RR03, an additional over-expressed dlt strain, did 

not produce the same phenotype.  RR13 may be playing a more direct role in regulation 

of autolysin production or activity.  Future studies aimed at determining the effects of 

RR13 on autolytic activity would be valuable.   

 

Transcript Start Site and dltX 
Transcript initiation of the dlt operon starts at least 29 bases upstream of the dltA 

start codon and includes the open reading frame designated dltX.  The presence of a PCR 

product when using a primer just upstream of the start site obtained through RACE 

provides evidence that the actual start site is more likely 20-40 bp further upstream.  This 

would a more realistic place for the start site when compared to the positioning of other 

characterized start sites in relation to the translational start site in the genome.  No 

consensus promotor sequences have been documented in E. faecalis so analyzing the 

upstream sequence provides little insight as to the stretch of DNA need for promotor 

recognition.            
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The gene product of dltX is predicted to be a 50 amino acid transmembrane 

protein.  It is unclear whether the dltX ORF is translated into a functional protein that 

helps facilitate the esterification of LTA or if it plays a role in operon regulation by acting 

as a cis- or trans-element during transcription.  A direct biosynthetic role in D-alanylation 

seems unlikely since all necessary tasks are performed by the DltA-D proteins (88).    

The role of dltX in the dlt operon will be an interesting subject of future research.   

 

Operon Regulation 
We observed no difference in the LacZ expression profiles in the OG1RF and 

TX5427 backgrounds, indicating that the cells are not sensing their degree of D-

alanylation.  These findings are in agreement with previous reports in Staphylococcus 

aureus that showed no difference in expression performed by both real-time PCR and a 

chloramphenicol acetyltransferase (CAT) assay in wild type and a dltA mutant (66).  We 

also observed a substantial decrease in operon expression after transition into stationary 

phase.  This is not surprising since actively dividing cells would have to supply the 

continuously synthesized LTA with alanine to avoid unwanted cell surface charge 

imbalances; a function no longer required in stationary phase. 

The results displayed in this report from both real-time PCR and β-gal activity of 

the reporter construct demonstrate that dlt transcription is affected by the presence of 

vancomycin, polymyxin B, and bile salts at least partially through TCS activity.  These 

stimuli also produced distinct phenotypes of altered reporter expression at the edge of the 

zone of inhibition on the plate assay.  Upregulation of dlt transcription with the cell wall 

acting antibiotic vancomycin and the cationic peptide polymyxin B was not all that 

surprising since dlt mutants are almost universally characterized by increased sensitivity 

to these compounds (99).  There have also been reports of intermediate vancomycin 

resistant S. aureus that in addition to a thickened cell wall also possessed an increased D-

alanine content of their LTA (98).  Our results also indicated that E. faecalis can, up to a 

certain limit in responding to the presence of cationic peptides and cell wall active 

antibiotics, defend itself and counteract the damaging effects by adjusting the degree of 

D-alanylation of its teichoic acids.   
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Analysis of the Involvement of TCS 
RR03 is a member of the NarL family which possesses the highly conserved 

orthologs yvqC in B. subtilis and vraR in S. aureus.  Both orthologs, yvqC and vraR, have 

been shown to function in bacitracin antibiotic response.  Exposure to bacitracin results in 

an increased expression of yvqC  in B. subtilis (78) and vraR plays an important role in 

resistance to a wide variety of cell wall acting antibiotics, including bacitracin (69).  In E. 

faecalis RR03 was also characterized as bacitracin sensitive; however, there was no 

difference in phenotype compared to wild type in the cell wall acting antibiotic ampicillin 

(48).   RR13 was identified by Le Breton et al. as belonging to the OmpR family based on 

sequence homology to the E. coli OmpR protein (72).  It shows significant sequence 

homology to the S. aureus response regulator SrrA that acts in global regulation of 

virulence factors (137).  No phenotype in regards to antibiotic sensitivity, biofilm 

formation, or environmental stress has been assigned to this mutant in E. faecalis.  RR09 

has also been assigned to the OmpR family, yet it possesses little homology to any known 

response regulator and there is no assigned phenotype to this mutant (48, 72). Even 

though RR09 is needed for maximal expression of the dlt operon, it is of importance to 

note that no single RR knockout completely abrogated expression to control values 

indicating multiple levels of regulation.  RR10 (EtaRS) has been characterized as 

possessing heat and bile-salt resistance (72).  However, the bile salt resistance phenotype 

does not appear to be a direct result of changes in dlt operon expression because RR10 

produced a similar expression profile to OG1RF (data not shown).     

The absence of complete loss of expression due to any single RR knockout raises 

questions about other mechanisms of environmental sensing.  Evidence has shown that a 

one-component signaling protein named PrkC contributes to inherent resistance to certain 

antimicrobials and proliferation in the GI tract (55).  PrkC is predicted to contain a 

cytosolic kinase domain and an extracellular domain thought to bind uncross-linked 

peptidoglycan (55).  A PrkC knockout is characterized as possessing wild type growth 

rates in the absences of environmental stresses, but an increased sensitivity to cell-

envelope acting antimicrobials and bile detergents (55).  There are 158 one-component 

systems in the E. faecalis V583 genome (55).  It is reasonable to believe that there may 

be a role for one-component systems in the overall biology of the outer membrane in 
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general by regulating expression of key genes involved in maintaining cell wall and 

membrane integrity.  The dlt operon may very well fit into this category due to the nature 

of its function. 

In Staphylococcus aureus Mg2+ regulation is under the control of the ArlSR two 

component system (66).  We were unable to identify a RR knockout that abrogated Mg2+ 

dependent repression of the dlt operon.  It is unclear why a RR could not be identified, 

but OG1RF may contain additional two component systems not found in the V583 

sequence that are as yet unidentified.  The orphan RR18 could also participate in cross 

talk between histidine kinases as suggested in Pseudomonos aeruginosa TCS regulation 

(108).   It is not impossible that Mg2+ signaling is controlled by the essential RR07 since 

regulation of this metal may be important for the activity of vital metalloproteases and 

other essential enzymes such as DNA polymerase.   

Our study shows that E. faecalis is capable of fine-tuning its cell surface charge 

dependent on environmental conditions by the modification of teichoic acids through D-

alanylation.  Not surprisingly, two component regulatory systems are involved in the 

process of dlt operon regulation.  Signals can be transmitted through one TCS to the dlt 

operon as is the case with polymyxin B or involve more complex patterns such as the 

involvement of two TCSs in the detection of bile salt signals.  These results emphasize 

the intricate and complex interactions of bacteria with their environment and the capacity 

to respond and adapt to a variety of challenges.  D-alanylation of teichoic acids is without 

a doubt only one of the many dynamic responses of bacterial cells to ever changing 

environmental conditions.  LTA decoration is certainly a contributor to increased 

toughness of E. faecalis as evident in virulence models and in vitro exposure to 

antimicrobial agents.  It is most likely part of a much larger network that allows the cells 

to withstand environmental changes, even if only for a limited time, and contribute to the 

virulence of enterococci. 
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