This is the author's final, peer-reviewed manuscript as accepted for publication. The publisher-formatted version may be available through the publisher's web site or your institution's library.

The Lind-Lehmer Constant for cyclic groups of order less than 892,371,480

Vincent Pigno • Christopher Pinner

How to cite this manuscript

If you make reference to this version of the manuscript, use the following information:
Pigno, V., \& Pinner, C. (2014). The Lind-Lehmer Constant for cyclic groups of order less than 892,371,480. Retrieved from http://krex.ksu.edu

Published Version Information

Citation: Pigno, V., \& Pinner, C. (2014). The Lind-Lehmer Constant for cyclic groups of order less than 892,371,480. Ramanujan Journal, 33(2), 295-300.

Copyright: © Springer Science+Business Media New York 2013

Digital Object Identifier (DOI): 10.1007/s11139-012-9443-1

Publisher's Link: http://link.springer.com/article/10.1007/s11139-012-9443-1

THE LIND-LEHMER CONSTANT FOR CYCLIC GROUPS OF ORDER LESS THAN 892,371,480.

VINCENT PIGNO AND CHRISTOPHER PINNER

Abstract. We determine the Lind Lehmer constant for the cyclic group \mathbb{Z}_{n} when n is not a multiple of $892,371,480=2^{3} \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 13 \cdot 17 \cdot 19 \cdot 23$.

1. Introduction

In [4] Lind introduced the concept of Mahler measure and Lehmer constant for arbitrary compact abelian groups, with the classical Mahler measure and Lehmer problem corresponding to the group \mathbb{R} / \mathbb{Z}. In [1] the constant was determined for the groups \mathbb{Z}_{p}^{k}. Here we consider cyclic groups. We write \mathbb{Z}_{n} for $\mathbb{Z} / n \mathbb{Z}$. For a polynomial F in $\mathbb{Z}[x]$ one can define its logarithmic Mahler measure over \mathbb{Z}_{n} as

$$
m_{n}(F):=\frac{1}{n} \log \left|M_{n}(F)\right|
$$

where

$$
M_{n}(F):=\prod_{j=1}^{n} F\left(w_{n}^{j}\right), \quad w_{n}:=e^{2 \pi i / n}
$$

The Lind-Lehmer constant for \mathbb{Z}_{n} then corresponds to the smallest non-zero measure over \mathbb{Z}_{n}

$$
\lambda\left(\mathbb{Z}_{n}\right):=\frac{1}{n} \log \mathscr{M}_{n}
$$

where

$$
\mathscr{M}_{n}:=\min \left\{\left|M_{n}(F)\right|: F \in \mathbb{Z}[x], \quad\left|M_{n}(F)\right|>1\right\} .
$$

Lind showed that

$$
\mathscr{M}_{n}=2 \text { if } n \text { is odd. }
$$

Kaiblinger [2] obtained the bounds

$$
\rho_{1}(n) \leq \mathscr{M}_{n} \leq \rho_{2}(n)
$$

where

$$
\rho_{2}(n)=\min \left\{\min _{p \nmid n} p, \min _{p^{\alpha} \| \mid n} p^{p^{\alpha}}\right\},
$$

and

$$
\rho_{1}(n)=\min \left\{\min _{p \nmid n} p, \min _{p^{\alpha} \| n} p^{\alpha+1}\right\} .
$$

[^0]Equality in these upper and lower bounds immediately gives:

$$
\begin{aligned}
\mathscr{M}_{n} & =3 \text { if } n=2 m, 3 \nmid m, \\
\mathscr{M}_{n} & =4 \text { if } n=2 \cdot 3 m, 2 \nmid m, \\
\mathscr{M}_{n} & =5 \text { if } n=2^{2} \cdot 3 m, 5 \nmid m, \\
\mathscr{M}_{n} & =7 \text { if } n=2^{2} \cdot 3 \cdot 5 m, 7 \nmid m .
\end{aligned}
$$

Kaiblinger's upper bound $\rho_{2}(n)$ is achievable, with $M_{n}\left(\Phi_{p^{\alpha+1}}\right)=p^{p^{\alpha}}$ if $p^{\alpha} \| n, \alpha \geq 0$. Kaiblinger's lower bound $\rho_{1}(n)$ follows at once from his observation that if $p \mid M_{n}(F)$ with $p^{\alpha} \| n$ then $p^{\alpha+1} \mid M_{n}(F)$. Kaiblinger proves this using a result of Newman [5] on determinants of circulant matrices but we give an independent proof of this in part (ii) of Lemma 2.1 below.

For the first undetermined value Kaiblinger's results show that $\mathscr{M}_{420}=8,9$ or 11. Here we are able to rule out $\mathscr{M}_{n}=2^{\alpha+1}$ when $2^{\alpha}| | n, \alpha \geq 2$ (see Lemma 3.1), or $3^{\alpha+1}$ if $3^{\alpha} \| n$ when $12 \mid n$ (see Lemma 3.2), replacing the $2^{\alpha+1}$ and $3^{\alpha+1}$ in Kaiblinger's lower bound by $2^{\alpha+2}$ and $3^{\alpha+2}$ when $12 \mid n$. With this we immediately extend the list of known \mathscr{M}_{n}.

Theorem 1.1.

$$
\begin{aligned}
\mathscr{M}_{n} & =11 \text { if } n=2^{2} \cdot 3 \cdot 5 \cdot 7 m, 11 \nmid m, \\
\mathscr{M}_{n} & =13 \text { if } n=2^{2} \cdot 3 \cdot 5 \cdot 7 \cdot 11 m, 13 \nmid m, \\
\mathscr{M}_{n} & =16 \text { if } n=2^{2} \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 13 m, 2 \nmid m, \\
\mathscr{M}_{n} & =17 \text { if } n=2^{3} \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 13 m, 17 \nmid m, \\
\mathscr{M}_{n} & =19 \text { if } n=2^{3} \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 13 \cdot 17 m, 19 \nmid m, \\
\mathscr{M}_{n} & =23 \text { if } n=2^{3} \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 13 \cdot 17 \cdot 19 m, 23 \nmid m .
\end{aligned}
$$

The first unresolved case now becomes $\mathscr{M}_{2^{3} \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 13 \cdot 17 \cdot 19 \cdot 23}=25$ or 27 .

2. Preliminaries

The value of $M_{n}(F)$ can be written as a resultant

$$
M_{n}(F)=\operatorname{Res}\left(x^{n}-1, F\right)
$$

and, using $\Phi_{n}(x)$ to denote the nth cyclotomic polynomial, plainly

$$
M_{n}(F)=\prod_{d \mid n} T_{d}(F)
$$

where the integers

$$
T_{d}(F):=\operatorname{Res}\left(\Phi_{d}, F\right)=\prod_{\substack{j=1 \\(j, d)=1}}^{d} F\left(w_{d}^{j}\right)
$$

Observing that when $(r, s)=1$ the $r s$-th primitive roots of unity are exactly the products of the primitive r-th and s-th roots of unity one can write

$$
\begin{equation*}
T_{r s}(F)=T_{r}(G), \quad G(x):=\prod_{\substack{j=1 \\(j, s)=1}}^{s} F\left(w_{s}^{j} x\right) \tag{2.1}
\end{equation*}
$$

with of course $G(x)$ in $\mathbb{Z}[x]$ when $F(x)$ is in $\mathbb{Z}[x]$.
We observe the following congruence relation, similar to Lemma 5.4 of Kaiblinger [3]:
Lemma 2.1. (i) If $(r, p)=1$ then for any j in \mathbb{N}

$$
T_{r p^{j}}(F) \equiv T_{r}(F)^{\phi\left(p^{j}\right)} \bmod p
$$

THE LIND-LEHMER CONSTANT FOR CYCLIC GROUPS OF ORDER LESS THAN 892, 371, 4803

In particular

$$
T_{r p^{j}}(F) \equiv \begin{cases}0 \bmod p, & \text { if } p \mid T_{r}(F), \\ 1 \bmod p, & \text { otherwise } .\end{cases}
$$

(ii) If $p \mid M_{n}(F)$ and $p^{\alpha}| | n, \alpha>0$ then $p^{\alpha+1} \mid M_{n}(F)$.

Proof. (i) In view of (2.1) we can assume without loss of generality that $r=1$. Writing $\pi=1-w_{p^{j}}$ we have

$$
F\left(w_{p^{j}}^{i}\right)=F\left((1-\pi)^{i}\right)=F(1)+\pi u_{i},
$$

and hence

$$
T_{p^{j}}(F)=F(1)^{\phi\left(p^{j}\right)}+\pi u
$$

for some u_{i} and u in $\mathbb{Z}\left[w_{p^{j}}\right]$. Taking $|x|_{p}$ to be the extension of the p-adic absolute value to $\mathbb{Q}\left(w_{p^{j}}\right)$ we have $|\pi|_{p}=p^{-1 / \phi\left(p^{j}\right)}<1$ giving $\left|T_{p^{j}}(F)-F(1)^{\phi\left(p^{j}\right)}\right|_{p}<1$. But $T_{p^{j}}(F)$ and $F(1)^{\phi\left(p^{j}\right)}$ are integers and so $T_{p^{j}}(F) \equiv F(1)^{\phi\left(p^{j}\right)} \bmod p$.
(ii) If $p \mid M_{n}(F)$ and $p^{\alpha} \mid n, \alpha>0$ then $p \mid T_{r p^{j}}(F)$ some $r p^{j} \mid n,(r, p)=1, j \leq \alpha$, and so by (i) the $p \mid T_{r p^{i}}, 0 \leq i \leq \alpha$ and $p^{\alpha+1} \mid M_{n}(F)$.

3. Key Lemmas

We rule out $\left|M_{n}(F)\right|=8$ when $4 \mid n$, and more generally rule out $\left|M_{n}(F)\right|=2^{\alpha+1}$ when $2^{\alpha} \| n, \alpha \geq 2$, with the following Lemma:
Lemma 3.1. (i) If $2 \mid T_{r}(F),(r, 2)=1$, then $16 \mid T_{r}(F) T_{2 r}(F) T_{4 r}(F)$
(ii) If $2\left|M_{n}(F), 2^{\alpha}\right| \mid n, \alpha \geq 2$ then $2^{\alpha+2} \mid M_{n}(F)$.

Proof. (i) From (2.1) we assume again that $r=1$ and $2 \mid T_{1}(F)$. Writing $F(x)=\sum_{i=0}^{N} a_{i} x^{i}$ and defining

$$
A_{j}:=\sum_{\substack{1 \leq i \leq N \\ i \equiv j \bmod 4}} a_{i}, \quad 0 \leq j \leq 3,
$$

we have

$$
\begin{aligned}
& T_{1}(F)=A_{0}+A_{1}+A_{2}+A_{3} \\
& T_{2}(F)=A_{0}-A_{1}+A_{2}-A_{3}
\end{aligned}
$$

and

$$
\begin{align*}
T_{4}(F) & =\left(A_{0}-A_{2}+i\left(A_{1}-A_{3}\right)\right)\left(A_{0}-A_{2}-i\left(A_{1}-A_{3}\right)\right) \\
& =\left(A_{0}-A_{2}\right)^{2}+\left(A_{1}-A_{3}\right)^{2} . \tag{3.1}
\end{align*}
$$

From Lemma 2.1 we know that $T_{1}(F), T_{2}(F)$ and $T_{4}(F)$ are all even. If $2 \| T_{4}(F)$ then $A_{0}-A_{2}$ and $A_{1}-A_{3}$ (and hence $A_{0}+A_{2}$ and $A_{1}+A_{3}$) are both odd. If $A_{0}+A_{2}$ and $A_{1}+A_{3}$ are both $1 \bmod 4$ or both $3 \bmod 4$ then $4 \mid T_{2}(F)=\left(A_{0}+A_{2}\right)-\left(A_{1}+A_{3}\right)$. Otherwise $4 \mid T_{1}=\left(A_{0}+A_{2}\right)+\left(A_{1}+A_{3}\right)$. Hence in all cases $2 \cdot 2 \cdot 4 \mid T_{1}(F) T_{2}(F) T_{4}(F)$.
(ii) If $2\left|M_{n}(F), 2^{\alpha}\right| \mid n, \alpha \geq 2$ then $2 \mid T_{r}(F)$ some $(r, 2)=1$ and $16 \mid T_{r}(F) T_{2 r}(F) T_{4 r}(F)$, with $2 \mid T_{2^{i} r}(F)$ for any $2<i \leq \alpha$, and $2^{\alpha+2} \mid M_{n}$.

Finally we also rule out $\left|M_{n}(F)\right|=9$ for $12 \mid n$, and more generally rule out $\left|M_{n}(F)\right|=$ $3^{\alpha+1}$ when $12 \mid n$ with $3^{\alpha}| | n$.

Lemma 3.2. (i) $T_{4 r}(F)$ is a sum of two squares. In particular if $p \equiv 3 \bmod 4$ and $p^{\beta} \| T_{4 r}(F)$ then β is even.
(ii) If $T_{r}(F)= \pm 3$ then $r=1$ or 2 .
(iii) If $3 \mid T_{r}(F)$ or $T_{2 r}(F)$ for some $(r, 6)=1$ then $T_{3 r}(F) T_{4 r}(F) T_{6 r}(F) T_{12 r}(F) \neq 3$.
(iv) If $12\left|n, 3^{\alpha}\right| \mid n$ and $3 \mid M_{n}(F)$ then $\left|M_{n}(F)\right| \geq 3^{\alpha+2}$.

Proof. (i) From (2.1) it is enough to show that $T_{2^{i}}(F)$ is the sum of two squares for any $i \geq 2$. We write $F(x)=\sum_{k=0}^{\infty} a_{k} x^{k}$. For $T_{4}(F)$ the claim follows from (3.1) and any $T_{2^{i}}(F)$ with $i>2$ can be reduced to a $T_{4}\left(F_{0}\right)$ for some F_{0}, since for $i \geq 2$

$$
\begin{aligned}
T_{2^{i}}(F) & =\prod_{\substack{1 \leq j \leq 2^{i} \\
j \\
\text { odd }}} F\left(w_{2^{i}}^{j}\right)=\prod_{\substack{1 \leq j \leq \leq^{i-1} \\
j \text { odd }}} F\left(w_{2^{i}}^{j}\right) F\left(-w_{2^{i}}^{j}\right) \\
& =\prod_{\substack{1 \leq j \leq 2^{i-1} \\
j \text { odd }}}\left(\sum_{k=0}^{\infty} a_{2 k} w_{2^{i-1}}^{j k}\right)^{2}-w_{2^{i-1}}^{j}\left(\sum_{k=0}^{\infty} a_{2 k+1} w_{2^{i-1}}^{j k}\right)^{2}=T_{2^{i-1}}(H)
\end{aligned}
$$

where $H(x)=\left(\sum_{k=0}^{\infty} a_{2 k} x^{k}\right)^{2}-x\left(\sum_{k=0}^{\infty} a_{2 k+1} x^{k}\right)^{2}$.
(ii) If $T_{r}(F)= \pm 3,(r, 3)=1$ and $p \mid r$ then by Lemma 2.1(i) we have $\pm 3 \equiv 1 \bmod p$ and $p=2$. By part (i) we know $2^{2} \nmid r$ so $r=1$ or 2 .
(iii) From (2.1) we assume $r=1$ and, replacing $F(x)$ by $F(-x)$ if necessary, that $3 \mid T_{1}(F)$. By Lemma 2.1 we have $3 \mid T_{3}(F)$ so $T_{3}(F) T_{4}(F) T_{6}(F) T_{12}(F)=3$ can only happen if

$$
T_{3}(F)=3, \quad T_{4}(F)=1, \quad T_{6}(F)=1, \quad T_{12}(F)=1
$$

Writing $w=w_{3}$ and $\pi=1-w$ we work in $\mathbb{Z}[w]$. Observing that the norm $N(a+b w)=$ $(a+b w)\left(a+b w^{2}\right)=a^{2}-a b+b^{2}=\frac{1}{4}\left((2 a-b)^{2}+3 b^{2}\right)$ it is readily seen that the only units in $\mathbb{Z}[w]$ are $\pm 1, \pm w, \pm(1+w)$, and only elements of norm 3 are $\pm(1-w), \pm(2+w), \pm(1+2 w)$. Observe that $F(i w) F(-i w)$ is in $\mathbb{Z}[w]$. Since $T_{12}(F)=F(i w) F(-i w) F\left(i w^{2}\right) F\left(-i w^{2}\right)=1$ plainly $F(i w) F(-i w)$ must be a unit, $\pm 1, \pm w, \pm(1+w)$, since further

$$
F(i w) F(-i w)=F(i-i \pi) F(-i+i \pi) \equiv F(i) F(-i)=T_{4}(F)=1 \bmod \pi
$$

we must have $F(i w) F(-i w)=1, w$ or $-(1+w)$. Writing

$$
F(x)=\sum_{l=0}^{N} a_{l} x^{l}, \quad A_{j}=\sum_{\substack{l=0 \\ l \equiv j \bmod 4}}^{N} a_{l} w^{l}, \quad 0 \leq j \leq 3,
$$

we have

$$
F(w)=A_{0}+A_{1}+A_{2}+A_{3}, \quad F(-w)=A_{0}-A_{1}+A_{2}-A_{3},
$$

and

$$
\begin{aligned}
F(i w) F(-i w) & =\left(A_{0}-A_{2}\right)^{2}+\left(A_{1}-A_{3}\right)^{2}=\frac{1}{2}\left(F(w)^{2}+F(-w)^{2}\right)-4 A_{0} A_{2}-4 A_{1} A_{3} \\
& \equiv \frac{1}{2}\left(F(w)^{2}+F(-w)^{2}\right) \bmod 4 .
\end{aligned}
$$

As $T_{3}(F)=3, T_{6}(F)=1$ plainly $F(w)$ has norm 3 and $F(-w)$ is a unit, but in addition $F(w) \equiv F(-w) \bmod 2$. Thus we have the twelve possibilities

$$
(F(w), F(-w))=(\pm(1-w), \pm(1+w)) \quad \text { or } \quad(\pm(2+w), \pm w) \quad \text { or } \quad(\pm(1+2 w), \pm 1)
$$

giving respectively

$$
\frac{1}{2}\left(F(w)^{2}+F(-w)^{2}\right)=-w \text { or } 1+w \text { or }-1 .
$$

But none of these are $\equiv 1, w$ or $-(1+w) \bmod 4$.
(iv) If $12 \mid n$ with $3^{\alpha}| | n$ and $3 \mid M_{n}(F)$ then $3 \mid T_{r}(F)$ some $(r, 3)=1$ and $3 \mid T_{r 3 j}(F)$, $0 \leq j \leq \alpha$ giving $3^{\alpha+1} \mid M_{n}(F)$. But $\left|M_{n}(F)\right|=3^{\alpha+1}$ would require $\left|T_{r}(F)\right|=3$, which by (ii) forces $r=1$ or 2 and (iii) gives $T_{3}(F) T_{4}(F) T_{6}(F) T_{12}(F) \neq 3$. So we must pick up at least one extra prime and $3^{\alpha+2} \mid M_{n}(F)$ or $16 \cdot 3^{\alpha+1} \mid M_{n}(F)$ or $p^{\beta+1} 3^{\alpha+1} \mid M_{n}(F)$ for some $p^{\beta}| | n, \beta \geq 0, p \geq 5$, and $\left|M_{n}(F)\right| \geq 3^{\alpha+2}$.

References

[1] D. DeSilva \& C. G. Pinner, The Lind-Lehmer constant for \mathbb{Z}_{p}^{n}, Proc. AMS to appear.
[2] N. Kaiblinger, On the Lehmer constant of finite cyclic groups, Acta Arith. 142 (2010), no. 1, 79-84.
[3] N. Kaiblinger, Progress on Olga Taussky-Todd's circulant problem, Ramanujan J. 28 (2012), no. 1, 45-60.
[4] D. Lind, Lehmer's problem for compact abelian groups, Proc. Amer. Math. Soc. 133 (2005), 1411-1416.
[5] M. Newman, On a problem suggested by Olga Taussky-Todd, Illinois J. Math. 24 (1980), no. 1, 156-158.

Department of Mathematics, Kansas State University, Manhattan, KS 66506 E-mail address: pignovmath.ksu.edu

Department of Mathematics, Kansas State University, Manhattan, KS 66506 E-mail address: pinner@math.ksu.edu

[^0]: Date: April 4, 2014.
 1991 Mathematics Subject Classification. Primary: 11R06, 11R09; Secondary: 11B83, 11C08, 11G50, 11T22.

 Key words and phrases. Mahler measure, Lind's Lehmer Problem, finite abelian groups .

