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THE LIND-LEHMER CONSTANT FOR CYCLIC GROUPS OF
ORDER LESS THAN 892, 371, 480.

VINCENT PIGNO AND CHRISTOPHER PINNER

Abstract. We determine the Lind Lehmer constant for the cyclic group Zn
when n is not a multiple of 892, 371, 480 = 23 · 3 · 5 · 7 · 11 · 13 · 17 · 19 · 23.

1. Introduction

In [4] Lind introduced the concept of Mahler measure and Lehmer constant for arbi-
trary compact abelian groups, with the classical Mahler measure and Lehmer problem
corresponding to the group R/Z. In [1] the constant was determined for the groups Zkp.
Here we consider cyclic groups. We write Zn for Z/nZ. For a polynomial F in Z[x] one
can define its logarithmic Mahler measure over Zn as

mn(F ) :=
1

n
log |Mn(F )|

where

Mn(F ) :=

nY
j=1

F (wjn), wn := e2πi/n.

The Lind-Lehmer constant for Zn then corresponds to the smallest non-zero measure over
Zn

λ(Zn) :=
1

n
log Mn

where

Mn := min{|Mn(F )| : F ∈ Z[x], |Mn(F )| > 1}.

Lind showed that

Mn = 2 if n is odd.

Kaiblinger [2] obtained the bounds

ρ1(n) ≤Mn ≤ ρ2(n)

where

ρ2(n) = min


min
p-n

p, min
pα||n

pp
α
ff
,

and

ρ1(n) = min


min
p-n

p, min
pα||n

pα+1

ff
.
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2 VINCENT PIGNO AND CHRISTOPHER PINNER

Equality in these upper and lower bounds immediately gives:

Mn = 3 if n = 2m, 3 - m,
Mn = 4 if n = 2 · 3m, 2 - m,

Mn = 5 if n = 22 · 3m, 5 - m,

Mn = 7 if n = 22 · 3 · 5m, 7 - m.

Kaiblinger’s upper bound ρ2(n) is achievable, with Mn(Φpα+1) = pp
α

if pα||n, α ≥ 0.
Kaiblinger’s lower bound ρ1(n) follows at once from his observation that if p | Mn(F )
with pα||n then pα+1 | Mn(F ). Kaiblinger proves this using a result of Newman [5] on
determinants of circulant matrices but we give an independent proof of this in part (ii) of
Lemma 2.1 below.

For the first undetermined value Kaiblinger’s results show that M420 = 8, 9 or 11. Here
we are able to rule out Mn = 2α+1 when 2α||n, α ≥ 2 (see Lemma 3.1), or 3α+1 if 3α||n
when 12 | n (see Lemma 3.2), replacing the 2α+1 and 3α+1 in Kaiblinger’s lower bound
by 2α+2 and 3α+2 when 12 | n. With this we immediately extend the list of known Mn.

Theorem 1.1.

Mn = 11 if n = 22 · 3 · 5 · 7m, 11 - m,

Mn = 13 if n = 22 · 3 · 5 · 7 · 11m, 13 - m,

Mn = 16 if n = 22 · 3 · 5 · 7 · 11 · 13m, 2 - m,

Mn = 17 if n = 23 · 3 · 5 · 7 · 11 · 13m, 17 - m,

Mn = 19 if n = 23 · 3 · 5 · 7 · 11 · 13 · 17m, 19 - m,

Mn = 23 if n = 23 · 3 · 5 · 7 · 11 · 13 · 17 · 19m, 23 - m.

The first unresolved case now becomes M23·3·5·7·11·13·17·19·23 = 25 or 27.

2. Preliminaries

The value of Mn(F ) can be written as a resultant

Mn(F ) = Res(xn − 1, F )

and, using Φn(x) to denote the nth cyclotomic polynomial, plainly

Mn(F ) =
Y
d|n

Td(F )

where the integers

Td(F ) := Res(Φd, F ) =

dY
j=1

(j,d)=1

F (wjd).

Observing that when (r, s) = 1 the rs-th primitive roots of unity are exactly the products
of the primitive r-th and s-th roots of unity one can write

(2.1) Trs(F ) = Tr(G), G(x) :=

sY
j=1

(j,s)=1

F (wjsx),

with of course G(x) in Z[x] when F (x) is in Z[x].
We observe the following congruence relation, similar to Lemma 5.4 of Kaiblinger [3]:

Lemma 2.1. (i) If (r, p) = 1 then for any j in N

Trpj (F ) ≡ Tr(F )φ(pj) mod p.
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In particular

Trpj (F ) ≡

(
0 mod p, if p | Tr(F ),

1 mod p, otherwise.

(ii) If p |Mn(F ) and pα||n, α > 0 then pα+1 |Mn(F ).

Proof. (i) In view of (2.1) we can assume without loss of generality that r = 1. Writing
π = 1− wpj we have

F (wipj ) = F ((1− π)i) = F (1) + πui,

and hence

Tpj (F ) = F (1)φ(pj) + πu,

for some ui and u in Z[wpj ]. Taking |x|p to be the extension of the p-adic absolute value

to Q(wpj ) we have |π|p = p−1/φ(pj) < 1 giving
˛̨̨
Tpj (F )− F (1)φ(pj)

˛̨̨
p
< 1. But Tpj (F )

and F (1)φ(pj) are integers and so Tpj (F ) ≡ F (1)φ(pj) mod p.

(ii) If p | Mn(F ) and pα||n, α > 0 then p | Trpj (F ) some rpj |n, (r, p) = 1, j ≤ α, and

so by (i) the p | Trpi , 0 ≤ i ≤ α and pα+1 |Mn(F ). �

3. Key Lemmas

We rule out |Mn(F )| = 8 when 4 | n, and more generally rule out |Mn(F )| = 2α+1

when 2α||n, α ≥ 2, with the following Lemma:

Lemma 3.1. (i) If 2 | Tr(F ), (r, 2) = 1, then 16 | Tr(F )T2r(F )T4r(F )
(ii) If 2 |Mn(F ), 2α||n, α ≥ 2 then 2α+2 |Mn(F ).

Proof. (i) From (2.1) we assume again that r = 1 and 2 | T1(F ). Writing F (x) =
PN
i=0 aix

i

and defining

Aj :=
X

1≤i≤N
i≡j mod 4

ai, 0 ≤ j ≤ 3,

we have

T1(F ) = A0 +A1 +A2 +A3

T2(F ) = A0 −A1 +A2 −A3

and

T4(F ) = (A0 −A2 + i(A1 −A3))(A0 −A2 − i(A1 −A3))

= (A0 −A2)2 + (A1 −A3)2.(3.1)

From Lemma 2.1 we know that T1(F ), T2(F ) and T4(F ) are all even. If 2||T4(F ) then
A0 − A2 and A1 − A3 (and hence A0 + A2 and A1 + A3) are both odd. If A0 + A2 and
A1 + A3 are both 1 mod 4 or both 3 mod 4 then 4 | T2(F ) = (A0 + A2) − (A1 + A3).
Otherwise 4 | T1 = (A0 +A2) + (A1 +A3). Hence in all cases 2 · 2 · 4 | T1(F )T2(F )T4(F ).

(ii) If 2 |Mn(F ), 2α||n, α ≥ 2 then 2 | Tr(F ) some (r, 2) = 1 and 16 | Tr(F )T2r(F )T4r(F ),
with 2 | T2ir(F ) for any 2 < i ≤ α, and 2α+2 |Mn. �

Finally we also rule out |Mn(F )| = 9 for 12 | n, and more generally rule out |Mn(F )| =
3α+1 when 12 | n with 3α||n.

Lemma 3.2. (i) T4r(F ) is a sum of two squares. In particular if p ≡ 3 mod 4 and
pβ ||T4r(F ) then β is even.

(ii) If Tr(F ) = ±3 then r = 1 or 2.
(iii) If 3 | Tr(F ) or T2r(F ) for some (r, 6) = 1 then T3r(F )T4r(F )T6r(F )T12r(F ) 6= 3.
(iv) If 12 | n, 3α||n and 3 |Mn(F ) then |Mn(F )| ≥ 3α+2.
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Proof. (i) From (2.1) it is enough to show that T2i(F ) is the sum of two squares for any
i ≥ 2. We write F (x) =

P∞
k=0 akx

k. For T4(F ) the claim follows from (3.1) and any
T2i(F ) with i > 2 can be reduced to a T4(F0) for some F0, since for i ≥ 2

T2i(F ) =
Y

1≤j≤2i
j odd

F (wj
2i

) =
Y

1≤j≤2i−1
j odd

F (wj
2i

)F (−wj
2i

)

=
Y

1≤j≤2i−1
j odd

 
∞X
k=0

a2kw
jk

2i−1

!2

− wj
2i−1

 
∞X
k=0

a2k+1w
jk

2i−1

!2

= T2i−1(H)

where H(x) =
`P∞

k=0 a2kx
k
´2 − x `P∞k=0 a2k+1x

k
´2

.
(ii) If Tr(F ) = ±3, (r, 3) = 1 and p | r then by Lemma 2.1(i) we have ±3 ≡ 1 mod p

and p = 2. By part (i) we know 22 - r so r = 1 or 2.
(iii) From (2.1) we assume r = 1 and, replacing F (x) by F (−x) if necessary, that

3 | T1(F ). By Lemma 2.1 we have 3 | T3(F ) so T3(F )T4(F )T6(F )T12(F ) = 3 can only
happen if

T3(F ) = 3, T4(F ) = 1, T6(F ) = 1, T12(F ) = 1.

Writing w = w3 and π = 1− w we work in Z[w]. Observing that the norm N(a+ bw) =
(a+bw)(a+bw2) = a2−ab+b2 = 1

4

`
(2a− b)2 + 3b2

´
it is readily seen that the only units in

Z[w] are ±1,±w,±(1+w), and only elements of norm 3 are ±(1−w), ±(2+w), ±(1+2w).
Observe that F (iw)F (−iw) is in Z[w]. Since T12(F ) = F (iw)F (−iw)F (iw2)F (−iw2) = 1
plainly F (iw)F (−iw) must be a unit, ±1,±w,±(1 + w), since further

F (iw)F (−iw) = F (i− iπ)F (−i+ iπ) ≡ F (i)F (−i) = T4(F ) = 1 mod π

we must have F (iw)F (−iw) = 1, w or −(1 + w). Writing

F (x) =

NX
l=0

alx
l, Aj =

NX
l=0

l≡j mod 4

alw
l, 0 ≤ j ≤ 3,

we have

F (w) = A0 +A1 +A2 +A3, F (−w) = A0 −A1 +A2 −A3,

and

F (iw)F (−iw) = (A0 −A2)2 + (A1 −A3)2 =
1

2

`
F (w)2 + F (−w)2

´
− 4A0A2 − 4A1A3

≡ 1

2

`
F (w)2 + F (−w)2

´
mod 4.

As T3(F ) = 3, T6(F ) = 1 plainly F (w) has norm 3 and F (−w) is a unit, but in addition
F (w) ≡ F (−w) mod 2. Thus we have the twelve possibilities

(F (w), F (−w)) = (±(1− w),±(1 + w)) or (±(2 + w),±w) or (±(1 + 2w),±1),

giving respectively

1

2

`
F (w)2 + F (−w)2

´
= −w or 1 + w or − 1.

But none of these are ≡ 1, w or −(1 + w) mod 4.
(iv) If 12 | n with 3α||n and 3 |Mn(F ) then 3 | Tr(F ) some (r, 3) = 1 and 3 | Tr3j (F ),

0 ≤ j ≤ α giving 3α+1 | Mn(F ). But |Mn(F )| = 3α+1 would require |Tr(F )| = 3, which
by (ii) forces r = 1 or 2 and (iii) gives T3(F )T4(F )T6(F )T12(F ) 6= 3. So we must pick up
at least one extra prime and 3α+2 |Mn(F ) or 16 · 3α+1 |Mn(F ) or pβ+13α+1 |Mn(F ) for
some pβ ||n, β ≥ 0, p ≥ 5, and |Mn(F )| ≥ 3α+2.

�
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