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THE LIND-LEHMER CONSTANT FOR CYCLIC GROUPS OF
ORDER LESS THAN 892,371, 480.

VINCENT PIGNO AND CHRISTOPHER PINNER

ABSTRACT. We determine the Lind Lehmer constant for the cyclic group Z,
when n is not a multiple of 892,371,480 =23.3.5.7-11-13-17-19.23.

1. INTRODUCTION

In [4] Lind introduced the concept of Mahler measure and Lehmer constant for arbi-
trary compact abelian groups, with the classical Mahler measure and Lehmer problem
corresponding to the group R/Z. In [1] the constant was determined for the groups ZF.
Here we consider cyclic groups. We write Z,, for Z/nZ. For a polynomial F in Z[z] one
can define its logarithmic Mahler measure over Z,, as

ma(F) = - log | Ma (F)|

where
n

M, (F) := H Fwl), wy:=e™/m.
j=1

The Lind-Lehmer constant for Z,, then corresponds to the smallest non-zero measure over
L,

1

ANZy) := = log M,

n

where

My = min{|M,(F)| : F € Z[z], |Mn(F)| > 1}.
Lind showed that
My = 2 if n is odd.

Kaiblinger [2] obtained the bounds
p1(n) < M < pa(n)
where
p2(n) = min {min]o7 min ppa} ,
ptn — p|[In
and

p1(n) = min {minp, min po‘H} .

ptn ~ p%|[In
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2 VINCENT PIGNO AND CHRISTOPHER PINNER

Equality in these upper and lower bounds immediately gives:
My =3 ifn=2m,31m,
My =41ifn=2-3m,2tm,
My =5if n=2%-3m, 51 m,
Mo =T ifn=12%.3.5m, Ttm.

Kaiblinger’s upper bound pz(n) is achievable, with My, (®,a+1) = p" if p%ln, a > 0.
Kaiblinger’s lower bound p;(n) follows at once from his observation that if p | My, (F)
with p®||n then p®** | M, (F). Kaiblinger proves this using a result of Newman [5] on
determinants of circulant matrices but we give an independent proof of this in part (ii) of
Lemma 2.1 below.

For the first undetermined value Kaiblinger’s results show that .#420 = 8,9 or 11. Here
we are able to rule out .4, = 2" when 2%||n, a > 2 (see Lemma 3.1), or 3" if 3%||n
when 12 | n (see Lemma 3.2), replacing the 2°! and 3°*! in Kaiblinger’s lower bound
by 2272 and 3*72 when 12 | n. With this we immediately extend the list of known .#,.

Theorem 1.1.

My =11 ifn=2%-3-5-Tm, 11 {m,

My =13 if n=2%-3-5-7-11lm, 13 {m,

My =16 if n=2%-3-5-7-11-13m, 2t m,

My =17 if n=2%-3.5-7-11-13m, 17 m,

My =19 ifn=2%.3.5.7-11-13-17m, 194 m,
My =23 ifn=2%-3-5-7-11-13-17-19m, 23t m.

The first unresolved case now becomes .#53.3.5.7.11.13.17.19.23 = 25 or 27.

2. PRELIMINARIES
The value of M, (F) can be written as a resultant
M, (F) = Res(z" — 1, F)

and, using @, (z) to denote the nth cyclotomic polynomial, plainly
M, (F) =[] Ta(F)
d|n
where the integers
d
Ty(F) :=Res(®q, F) = [] F(w)).
Grd)=1

Observing that when (r,s) = 1 the rs-th primitive roots of unity are exactly the products
of the primitive r-th and s-th roots of unity one can write

(2.1) T(F) =T,(G), G()= [] Flwla),
(=1
with of course G(z) in Z[z] when F(z) is in Z[z].
We observe the following congruence relation, similar to Lemma 5.4 of Kaiblinger [3]:

Lemma 2.1. (i) If (r,p) = 1 then for any j in N

T,,i (F) = To(F)**") mod p.
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In particular
0 mod p, 1 T-(F),
Trpj(F)_{ p fp | Tr(F)

1 mod p, otherwise.
(i) If p | M (F) and p®||n, a > 0 then p*™' | M, (F).

Proof. (i) In view of (2.1) we can assume without loss of generality that r = 1. Writing
m=1—w,; we have
F(w;j) =F((1—-n)") =FQ1)+ mu;,
and hence ‘
T, (F) = FOY*®) + mu,
for some u; and u in Z[w,;]. Taking |z|, to be the extension of the p-adic absolute value

to Q(w,i) we have |r|, = p‘l/(f’(pj) < 1 giving |T,; (F') fF(l)‘b(pj) < 1. But T,;(F)
and F(1)*®") are integers and so T, (F)= F(1)*®") mod p.

(ii) If p | Mn(F) and p*||n, « > 0 then p | T,
so by (i) the p | T,

pJ (F) so1me rpj|n7 (T7p) = 15 ] < Q, and
pi,OSigaandp“+1|Mn(F). O

3. KEy LEMMAS

We rule out |M,(F)| = 8 when 4 | n, and more generally rule out |M,(F)| = 2***
when 2%||n, a > 2, with the following Lemma:

Lemma 3.1. (i) If 2 | T.(F), (r,2) =1, then 16 | Tr.(F)Tor(F) T4 (F)
(ii) If 2 | M, (F), 2%||n, a > 2 then 2°F2 | M,,(F).

Proof. (i) From (2.1) we assume again that r = 1 and 2 | T1(F'). Writing F(z) = va:o a;xt
and defining

Aji= > a;, 0<j<3,
1<i<N
1=7 mod 4
we have
T\ (F)= Ao+ A1 + A2 + As
To(F)=Ao— A1+ A2 — A3
and

Tu(F) = (Ao — A +i(A1 — A3))(Ao — As — i(A; — A3))
(3.1) = (Ao — A2)2 —+ (A1 — A3)2.

From Lemma 2.1 we know that T (F),T>(F) and T4(F) are all even. If 2||T4(F) then
Ao — Az and A1 — As (and hence Ag + A2 and Ay + As) are both odd. If Ag + A2 and
A1 4+ As are both 1 mod 4 or both 3 mod 4 then 4 | T2(F) = (Ao + A2) — (A1 + A3).
Otherwise 4 | T1 = (Ao + A2) + (A1 + As). Hence in all cases 2-2-4 | T1 (F)To2(F)T4(F).
(ii) If 2 | Mp(F), 2%||n, a > 2 then 2 | T;.(F) some (r,2) = 1 and 16 | T5.(F) T (F)Tur(F),
with 2 | Tyi,.(F) for any 2 < i < o, and 2*72 | M,,. O

Finally we also rule out | M, (F)| =9 for 12 | n, and more generally rule out |M, (F)| =
3%t when 12 | n with 3%||n.

Lemma 3.2. (i) Tu-(F) is a sum of two squares. In particular if p = 3 mod 4 and
PP||Tur-(F) then 8 is even.
(i) If T.,(F) = +3 thenr =1 or 2.
(i) If 3 | T (F) or Tar(F) for some (r,6) =1 then Ta,(F)Tur(F)Tsr(F)T12-(F) # 3.
(iv) If 12 | n, 3%||n and 3 | My, (F) then |M,(F)| > 3°F2.
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Proof. (i) From (2.1) it is enough to show that T,:(F) is the sum of two squares for any
i > 2. We write F(z) = Y32, arz”. For Tu(F) the claim follows from (3.1) and any
Ty (F) with ¢ > 2 can be reduced to a T4(Fp) for some Fy, since for i > 2

Ti(F)= [] Fwi)= T[] F@l)F(-w))

1<5<20 1< <2t -1
7 odd J odd
— Jk J Jk — .
= | | E A2k Wy; 1 — W51 E A2k4+1W5; 1 = Tyi-1(H)
1<j<2i—1 \k=0 k=0
7 odd

where H(z) = (352, agkmk)Q -z (300, a2k+1xk)2.
(ii) If T0.(F) = £3, (r,3) = 1 and p | r then by Lemma 2.1(i) we have £3 = 1 mod p
and p = 2. By part (i) we know 2> {r sor =1 or 2.
(iii) From (2.1) we assume r = 1 and, replacing F(x) by F(—=z) if necessary, that
3 | T1(F). By Lemma 2.1 we have 3 | T3(F) so T5(F)T4(F)Ts(F)T12(F) = 3 can only
happen if
T3(F) =3, Tu(F) =1, Ts(F) =1, Tia(F)=1.

Writing w = ws and m# = 1 — w we work in Z[w]. Observing that the norm N(a + bw) =
(a+bw)(a+bw®) = a®—ab+b*> = 1 ((2a — b)* + 3b°) it is readily seen that the only units in
Z|w] are +1, +w, (14 w), and only elements of norm 3 are +(1—w), +(2+w), £(1+2w).
Observe that F(iw)F(—iw) is in Z[w]. Since Ti2(F) = F(iw)F(—iw)F(iw?)F(—iw?) = 1
plainly F(iw)F(—iw) must be a unit, £1, +w, +(1 + w), since further

F(iw)F(—iw) = F(i —im)F(—i+ir) = F(i))F(—i) = Tu(F) =1 mod 7
we must have F(iw)F(—iw) = 1,w or —(1 4+ w). Writing

N N
Fa)=> aa', 4= > aw', 0<j<3,
=0 1=0
=7 mod 4
we have
F(w) = Ao+ A1 + As + A3,  F(—w) = Ag — Ay + Az — As,
and
F(iw)F(~iw) = (Ao — A2)* + (A1 — A3)* = . (F(w)* + F(~w)?) — 440 A2 — 441 A5

2
= l (F(w)2 + F(—w)Z) mod 4.

T2
As T3(F) = 3, Te(F) = 1 plainly F(w) has norm 3 and F(—w) is a unit, but in addition
F(w) = F(—w) mod 2. Thus we have the twelve possibilities

(F(w), F(—w)) = (£(1 —w),£(14+w)) or (£(2+w),+w) or (£(1+ 2w),=+1),

giving respectively
1
3 (F(w)?+ F(-w)®) =-w or 1+w or — 1.
But none of these are = 1, w or —(1 + w) mod 4.
(iv) If 12 | n with 3%||n and 3 | M,,(F) then 3 | T}.(F) some (r,3) =1 and 3 | T4, (F),
0 < j < a giving 3°T! | M,,(F). But |M,(F)| = 3*T! would require |T,-(F)| = 3, which
by (ii) forces r = 1 or 2 and (iii) gives T5(F)T4(F)T6(F)T12(F) # 3. So we must pick up
at least one extra prime and 3%+2 | M, (F) or 16 - 3%+ | M, (F) or p?*13%*1 | M,,(F) for
some p°|[n, B >0, p > 5, and | M, (F)| > 3%F2,
O
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