This is the author's final, peer-reviewed manuscript as accepted for publication. The publisher-formatted version may be available through the publisher's web site or your institution's library.

The Lind–Lehmer Constant for cyclic groups of order less than 892,371,480

Vincent Pigno · Christopher Pinner

How to cite this manuscript

If you make reference to this version of the manuscript, use the following information:

Pigno, V., & Pinner, C. (2014). The Lind-Lehmer Constant for cyclic groups of order less than 892,371,480. Retrieved from <u>http://krex.ksu.edu</u>

Published Version Information

Citation: Pigno, V., & Pinner, C. (2014). The Lind-Lehmer Constant for cyclic groups of order less than 892,371,480. *Ramanujan Journal*, 33(2), 295-300.

Copyright: © Springer Science+Business Media New York 2013

Digital Object Identifier (DOI): 10.1007/s11139-012-9443-1

Publisher's Link: http://link.springer.com/article/10.1007/s11139-012-9443-1

This item was retrieved from the K-State Research Exchange (K-REx), the institutional repository of Kansas State University. K-REx is available at http://krex.ksu.edu

THE LIND-LEHMER CONSTANT FOR CYCLIC GROUPS OF ORDER LESS THAN 892, 371, 480.

VINCENT PIGNO AND CHRISTOPHER PINNER

ABSTRACT. We determine the Lind Lehmer constant for the cyclic group \mathbb{Z}_n when n is not a multiple of 892, 371, 480 = $2^3 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 13 \cdot 17 \cdot 19 \cdot 23$.

1. INTRODUCTION

In [4] Lind introduced the concept of Mahler measure and Lehmer constant for arbitrary compact abelian groups, with the classical Mahler measure and Lehmer problem corresponding to the group \mathbb{R}/\mathbb{Z} . In [1] the constant was determined for the groups \mathbb{Z}_p^k . Here we consider cyclic groups. We write \mathbb{Z}_n for $\mathbb{Z}/n\mathbb{Z}$. For a polynomial F in $\mathbb{Z}[x]$ one can define its *logarithmic Mahler measure over* \mathbb{Z}_n as

$$m_n(F) := \frac{1}{n} \log |M_n(F)|$$

where

$$M_n(F) := \prod_{j=1}^n F(w_n^j), \quad w_n := e^{2\pi i/n}.$$

The Lind-Lehmer constant for \mathbb{Z}_n then corresponds to the smallest non-zero measure over \mathbb{Z}_n

$$\lambda(\mathbb{Z}_n) := \frac{1}{n} \log \mathscr{M}_n$$

where

$$\mathcal{M}_n := \min\{|M_n(F)| : F \in \mathbb{Z}[x], |M_n(F)| > 1\}.$$

Lind showed that

$$\mathcal{M}_n = 2$$
 if n is odd.

Kaiblinger [2] obtained the bounds

$$\rho_1(n) \le \mathscr{M}_n \le \rho_2(n)$$

where

$$\rho_2(n) = \min\left\{\min_{p \nmid n} p, \min_{p^{\alpha} \mid \mid n} p^{p^{\alpha}}\right\},\,$$

and

$$\rho_1(n) = \min\left\{\min_{p \nmid n} p, \min_{p^{\alpha} \mid \mid n} p^{\alpha+1}\right\}$$

Date: April 4, 2014.

¹⁹⁹¹ Mathematics Subject Classification. Primary: 11R06, 11R09; Secondary: 11B83, 11C08, 11G50, 11T22.

Key words and phrases. Mahler measure, Lind's Lehmer Problem, finite abelian groups .

Equality in these upper and lower bounds immediately gives:

$$\mathcal{M}_n = 3 \text{ if } n = 2m, 3 \nmid m,$$

$$\mathcal{M}_n = 4 \text{ if } n = 2 \cdot 3m, 2 \nmid m,$$

$$\mathcal{M}_n = 5 \text{ if } n = 2^2 \cdot 3m, 5 \nmid m,$$

$$\mathcal{M}_n = 7 \text{ if } n = 2^2 \cdot 3 \cdot 5m, 7 \nmid m.$$

Kaiblinger's upper bound $\rho_2(n)$ is achievable, with $M_n(\Phi_{p^{\alpha+1}}) = p^{p^{\alpha}}$ if $p^{\alpha}||n, \alpha \geq 0$. Kaiblinger's lower bound $\rho_1(n)$ follows at once from his observation that if $p \mid M_n(F)$ with $p^{\alpha}||n$ then $p^{\alpha+1} \mid M_n(F)$. Kaiblinger proves this using a result of Newman [5] on determinants of circulant matrices but we give an independent proof of this in part (ii) of Lemma 2.1 below.

For the first undetermined value Kaiblinger's results show that $\mathcal{M}_{420} = 8, 9 \text{ or } 11$. Here we are able to rule out $\mathcal{M}_n = 2^{\alpha+1}$ when $2^{\alpha}||n, \alpha \geq 2$ (see Lemma 3.1), or $3^{\alpha+1}$ if $3^{\alpha}||n$ when 12 | n (see Lemma 3.2), replacing the $2^{\alpha+1}$ and $3^{\alpha+1}$ in Kaiblinger's lower bound by $2^{\alpha+2}$ and $3^{\alpha+2}$ when 12 | n. With this we immediately extend the list of known \mathcal{M}_n .

Theorem 1.1.

$$\begin{aligned} \mathcal{M}_n &= 11 \ if \ n = 2^2 \cdot 3 \cdot 5 \cdot 7m, \ 11 \nmid m, \\ \mathcal{M}_n &= 13 \ if \ n = 2^2 \cdot 3 \cdot 5 \cdot 7 \cdot 11m, \ 13 \nmid m, \\ \mathcal{M}_n &= 16 \ if \ n = 2^2 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 13m, \ 2 \nmid m, \\ \mathcal{M}_n &= 17 \ if \ n = 2^3 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 13m, \ 17 \nmid m, \\ \mathcal{M}_n &= 19 \ if \ n = 2^3 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 13 \cdot 17m, \ 19 \nmid m, \\ \mathcal{M}_n &= 23 \ if \ n = 2^3 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 13 \cdot 17m, \ 19 \nmid m, \end{aligned}$$

The first unresolved case now becomes $\mathscr{M}_{2^3\cdot 3\cdot 5\cdot 7\cdot 11\cdot 13\cdot 17\cdot 19\cdot 23} = 25$ or 27.

2. Preliminaries

The value of $M_n(F)$ can be written as a resultant

$$M_n(F) = \operatorname{Res}(x^n - 1, F)$$

and, using $\Phi_n(x)$ to denote the *n*th cyclotomic polynomial, plainly

$$M_n(F) = \prod_{d|n} T_d(F)$$

where the integers

$$T_d(F) := \operatorname{Res}(\Phi_d, F) = \prod_{\substack{j=1\\(j,d)=1}}^d F(w_d^j).$$

Observing that when (r, s) = 1 the *rs*-th primitive roots of unity are exactly the products of the primitive *r*-th and *s*-th roots of unity one can write

(2.1)
$$T_{rs}(F) = T_r(G), \quad G(x) := \prod_{\substack{j=1\\(j,s)=1}}^{s} F(w_s^j x),$$

with of course G(x) in $\mathbb{Z}[x]$ when F(x) is in $\mathbb{Z}[x]$.

We observe the following congruence relation, similar to Lemma 5.4 of Kaiblinger [3]:

Lemma 2.1. (i) If (r, p) = 1 then for any j in \mathbb{N}

$$T_{rp^j}(F) \equiv T_r(F)^{\phi(p^j)} \mod p.$$

In particular

$$T_{rp^{j}}(F) \equiv \begin{cases} 0 \mod p, & \text{ if } p \mid T_{r}(F), \\ 1 \mod p, & \text{ otherwise.} \end{cases}$$

(ii) If $p \mid M_n(F)$ and $p^{\alpha} \mid \mid n, \alpha > 0$ then $p^{\alpha+1} \mid M_n(F)$.

Proof. (i) In view of (2.1) we can assume without loss of generality that r = 1. Writing $\pi = 1 - w_{p^j}$ we have

$$F(w_{n^{j}}^{i}) = F((1-\pi)^{i}) = F(1) + \pi u_{i},$$

and hence

$$T_{p^j}(F) = F(1)^{\phi(p^j)} + \pi u,$$

for some u_i and u in $\mathbb{Z}[w_{p^j}]$. Taking $|x|_p$ to be the extension of the *p*-adic absolute value to $\mathbb{Q}(w_{p^j})$ we have $|\pi|_p = p^{-1/\phi(p^j)} < 1$ giving $\left|T_{p^j}(F) - F(1)^{\phi(p^j)}\right|_p < 1$. But $T_{p^j}(F)$ and $F(1)^{\phi(p^j)}$ are integers and so $T_{p^j}(F) \equiv F(1)^{\phi(p^j)} \mod p$.

(ii) If $p \mid M_n(F)$ and $p^{\alpha} \mid |n, \alpha > 0$ then $p \mid T_{rp^j}(F)$ some $rp^j \mid n, (r, p) = 1, j \le \alpha$, and

so by (i) the $p \mid T_{rp^i}$, $0 \le i \le \alpha$ and $p^{\alpha+1} \mid M_n(F)$.

3. Key Lemmas

We rule out $|M_n(F)| = 8$ when 4 | n, and more generally rule out $|M_n(F)| = 2^{\alpha+1}$ when $2^{\alpha} ||n, \alpha \geq 2$, with the following Lemma:

Lemma 3.1. (i) If $2 | T_r(F)$, (r, 2) = 1, then $16 | T_r(F)T_{2r}(F)T_{4r}(F)$ (ii) If $2 | M_n(F)$, $2^{\alpha} | | n, \alpha \ge 2$ then $2^{\alpha+2} | M_n(F)$.

Proof. (i) From (2.1) we assume again that r = 1 and $2 | T_1(F)$. Writing $F(x) = \sum_{i=0}^N a_i x^i$ and defining

$$A_j := \sum_{\substack{1 \le i \le N\\i \equiv j \mod 4}} a_i, \quad 0 \le j \le 3,$$

we have

$$T_1(F) = A_0 + A_1 + A_2 + A_3$$
$$T_2(F) = A_0 - A_1 + A_2 - A_3$$

and

(3.1)
$$T_4(F) = (A_0 - A_2 + i(A_1 - A_3))(A_0 - A_2 - i(A_1 - A_3)) = (A_0 - A_2)^2 + (A_1 - A_3)^2.$$

From Lemma 2.1 we know that $T_1(F), T_2(F)$ and $T_4(F)$ are all even. If $2||T_4(F)$ then $A_0 - A_2$ and $A_1 - A_3$ (and hence $A_0 + A_2$ and $A_1 + A_3$) are both odd. If $A_0 + A_2$ and $A_1 + A_3$ are both 1 mod 4 or both 3 mod 4 then 4 | $T_2(F) = (A_0 + A_2) - (A_1 + A_3)$. Otherwise 4 | $T_1 = (A_0 + A_2) + (A_1 + A_3)$. Hence in all cases $2 \cdot 2 \cdot 4 | T_1(F)T_2(F)T_4(F)$.

(ii) If $2 | M_n(F), 2^{\alpha} | | n, \alpha \ge 2$ then $2 | T_r(F)$ some (r, 2) = 1 and $16 | T_r(F)T_{2r}(F)T_{4r}(F)$, with $2 | T_{2^i r}(F)$ for any $2 < i \le \alpha$, and $2^{\alpha+2} | M_n$.

Finally we also rule out $|M_n(F)| = 9$ for 12 | n, and more generally rule out $|M_n(F)| = 3^{\alpha+1}$ when 12 | n with $3^{\alpha} || n$.

Lemma 3.2. (i) $T_{4r}(F)$ is a sum of two squares. In particular if $p \equiv 3 \mod 4$ and $p^{\beta}||T_{4r}(F)$ then β is even.

(*ii*) If $T_r(F) = \pm 3$ then r = 1 or 2.

(iii) If $3 \mid T_r(F)$ or $T_{2r}(F)$ for some (r, 6) = 1 then $T_{3r}(F)T_{4r}(F)T_{6r}(F)T_{12r}(F) \neq 3$. (iv) If $12 \mid n, 3^{\alpha} \mid n \text{ and } 3 \mid M_n(F)$ then $|M_n(F)| \ge 3^{\alpha+2}$.

Proof. (i) From (2.1) it is enough to show that $T_{2i}(F)$ is the sum of two squares for any $i \ge 2$. We write $F(x) = \sum_{k=0}^{\infty} a_k x^k$. For $T_4(F)$ the claim follows from (3.1) and any $T_{2^i}(F)$ with i > 2 can be reduced to a $T_4(F_0)$ for some F_0 , since for $i \ge 2$

$$\begin{split} T_{2^{i}}(F) &= \prod_{\substack{1 \le j \le 2^{i} \\ j \text{ odd}}} F(w_{2^{i}}^{j}) = \prod_{\substack{1 \le j \le 2^{i-1} \\ j \text{ odd}}} F(w_{2^{i}}^{j}) F(-w_{2^{i}}^{j}) \\ &= \prod_{\substack{1 \le j \le 2^{i-1} \\ j \text{ odd}}} \left(\sum_{k=0}^{\infty} a_{2k} w_{2^{i-1}}^{jk} \right)^{2} - w_{2^{i-1}}^{j} \left(\sum_{k=0}^{\infty} a_{2k+1} w_{2^{i-1}}^{jk} \right)^{2} = T_{2^{i-1}}(H) \end{split}$$

where $H(x) = \left(\sum_{k=0}^{\infty} a_{2k} x^k\right)^2 - x \left(\sum_{k=0}^{\infty} a_{2k+1} x^k\right)^2$. (ii) If $T_r(F) = \pm 3$, (r, 3) = 1 and $p \mid r$ then by Lemma 2.1(i) we have $\pm 3 \equiv 1 \mod p$ and p = 2. By part (i) we know $2^2 \nmid r$ so r = 1 or 2.

(iii) From (2.1) we assume r = 1 and, replacing F(x) by F(-x) if necessary, that 3 | $T_1(F)$. By Lemma 2.1 we have 3 | $T_3(F)$ so $T_3(F)T_4(F)T_6(F)T_{12}(F) = 3$ can only happen if

$$T_3(F) = 3$$
, $T_4(F) = 1$, $T_6(F) = 1$, $T_{12}(F) = 1$.

Writing $w = w_3$ and $\pi = 1 - w$ we work in $\mathbb{Z}[w]$. Observing that the norm N(a + bw) = $(a+bw)(a+bw^2) = a^2 - ab + b^2 = \frac{1}{4}((2a-b)^2 + 3b^2)$ it is readily seen that the only units in $\mathbb{Z}[w]$ are $\pm 1, \pm w, \pm (1+w)$, and only elements of norm 3 are $\pm (1-w), \pm (2+w), \pm (1+2w)$. Observe that F(iw)F(-iw) is in $\mathbb{Z}[w]$. Since $T_{12}(F) = F(iw)F(-iw)F(iw^2)F(-iw^2) = 1$ plainly F(iw)F(-iw) must be a unit, $\pm 1, \pm w, \pm (1+w)$, since further

$$F(iw)F(-iw) = F(i-i\pi)F(-i+i\pi) \equiv F(i)F(-i) = T_4(F) = 1 \mod \pi$$

we must have F(iw)F(-iw) = 1, w or -(1+w). Writing

$$F(x) = \sum_{l=0}^{N} a_l x^l, \quad A_j = \sum_{\substack{l=0\\l \equiv j \bmod 4}}^{N} a_l w^l, \quad 0 \le j \le 3,$$

we have

$$F(w) = A_0 + A_1 + A_2 + A_3, \quad F(-w) = A_0 - A_1 + A_2 - A_3,$$

and

$$F(iw)F(-iw) = (A_0 - A_2)^2 + (A_1 - A_3)^2 = \frac{1}{2} \left(F(w)^2 + F(-w)^2 \right) - 4A_0A_2 - 4A_1A_3$$
$$\equiv \frac{1}{2} \left(F(w)^2 + F(-w)^2 \right) \mod 4.$$

As $T_3(F) = 3$, $T_6(F) = 1$ plainly F(w) has norm 3 and F(-w) is a unit, but in addition $F(w) \equiv F(-w) \mod 2$. Thus we have the twelve possibilities

$$(F(w), F(-w)) = (\pm(1-w), \pm(1+w))$$
 or $(\pm(2+w), \pm w)$ or $(\pm(1+2w), \pm 1)$,

giving respectively

$$\frac{1}{2} \left(F(w)^2 + F(-w)^2 \right) = -w \text{ or } 1 + w \text{ or } -1$$

But none of these are $\equiv 1, w$ or $-(1+w) \mod 4$.

(iv) If 12 | n with $3^{\alpha} || n$ and $3 | M_n(F)$ then $3 | T_r(F)$ some (r, 3) = 1 and $3 | T_{r3j}(F)$, $0 \le j \le \alpha$ giving $3^{\alpha+1} | M_n(F)$. But $|M_n(F)| = 3^{\alpha+1}$ would require $|T_r(F)| = 3$, which by (ii) forces r = 1 or 2 and (iii) gives $T_3(F)T_4(F)T_6(F)T_{12}(F) \ne 3$. So we must pick up at least one extra prime and $3^{\alpha+2} \mid M_n(F)$ or $16 \cdot 3^{\alpha+1} \mid M_n(F)$ or $p^{\beta+1} 3^{\alpha+1} \mid M_n(F)$ for some $p^{\beta}||n, \beta \ge 0, p \ge 5$, and $|M_n(F)| \ge 3^{\alpha+2}$.

References

- [1] D. DeSilva & C. G. Pinner, The Lind-Lehmer constant for \mathbb{Z}_p^n , Proc. AMS to appear.
- [2] N. Kaiblinger, On the Lehmer constant of finite cyclic groups, Acta Arith. 142 (2010), no.
- 79-84.
 N. Kaiblinger, Progress on Olga Taussky-Todd's circulant problem, Ramanujan J. 28 (2012), no. 1, 45-60.
- [4] D. Lind, Lehmer's problem for compact abelian groups, Proc. Amer. Math. Soc. 133 (2005), 1411-1416.
- [5] M. Newman, On a problem suggested by Olga Taussky-Todd, Illinois J. Math. 24 (1980), no. 1, 156-158.

Department of Mathematics, Kansas State University, Manhattan, KS 66506 $E\text{-}mail\ address: \texttt{pignovmath.ksu.edu}$

Department of Mathematics, Kansas State University, Manhattan, KS 66506 $E\text{-}mail\ address:\ pinner@math.ksu.edu$