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Abstract

This thesis presents a curriculum designed for 5th and 6th grade students attending a

summer camp for science, technology, engineering, and mathematics (STEM) disciplines.

The curriculum uses several concepts from educational theory and computer science educa-

tion research. It also uses techniques such as cognitive apprenticeship, expansive framing,

and scaffolded lessons to increase student learning outcomes. It was taught during two

cohorts of a STEM summer camp.

The curriculum is analyzed through self-efficacy surveys both before and after the class,

measuring how students judged their own capability to use skills learned during the class.

Analysis of the data shows that the increase in student self-efficacy has a medium to large

effect size overall, as well as student self-efficacy with many computational thinking skills.

Data from various population groups based on gender, previous STEM experience, and

socio-economic status indicators is also analyzed. Finally, many areas of future work and

improvement are presented and discussed.

The outcome of this work is to demonstrate the effectiveness of the curriculum presented

in increasing student self-efficacy with computational thinking skills, specifically by showing

the links between content in the curriculum and specific computational thinking skills.
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Chapter 1

Introduction

Today’s modern world increasingly relies on technology, and young students today must

be equipped with the skills needed to thrive in such a society. Computational thinking is

one important aspect of understanding how these various technological devices function,

in essence a “fundamental skill for everyone”1 in the 21st century. We must find a way

to integrate teaching and learning that skill into educational curricula to develop the next

generation of science, technology, engineering, and mathematics (STEM) graduates.

Research published in the journal Science has shown that introducing students to STEM

careers during middle school has a large effect on their choice of future careers.2 To that end,

this thesis presents and analyzes a curriculum developed for a summer camp for middle school

students promoting STEM careers. The overall goal of this curriculum, named Mission to

Mars, is to introduce students to computational thinking skills through the field of computer

science, and encourage them to consider computer science it as a future STEM career path.

This can be done by increasing their knowledge, experience, and self-efficacy within the

field.3

To accomplish that goal, Mission to Mars models modern educational theories such as

cognitive apprenticeship to promote knowledge transfer,4 and focuses on improving student

self-efficacy in computational thinking through hands-on activities.5 The curriculum has also

been annotated to describe the levels of student achievement with computational thinking
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skills desired using the revised Bloom’s Taxonomy.6;7

Using data collected from two cohorts of the summer camp, this work seeks to answer

the following research questions:

RQ1) What is the impact of this curriculum on student self-efficacy with computational

thinking skills?

RQ2) What is the relationship between the computational thinking skills covered in the

curriculum and the student self-efficacy with those skills?

RQ3) What is the relationship between student factors such as gender, previous STEM expe-

rience, or socio-economic status indicators and the observed student self-efficacy with

computational thinking skills?

Before discussing the curriculum, a review of current research literature related to this

topic is presented in Chapter 2. Following that, the curriculum design is discussed in Chap-

ter 3. Chapter 4 discusses the structure and format of the camp and how the class is taught,

and Chapter 5 discusses the design of the assessment tools and techniques used. The results

of the surveys and other assessment data are presented in Chapter 6 along with a discussion

of those results in Chapter 7. Chapter 8 lists possible future work identified to improve this

project, with Chapter 9 providing a conclusion.

The curriculum and results described in this work are part of a larger project discussed

in several other publications.5;8–10

2



Chapter 2

Literature Review

This work builds upon existing knowledge from many different areas. This chapter cov-

ers relevant research literature in the areas of computational thinking, educational theory,

computer science curricula, and student assessment.

2.1 Computational Thinking

In 2006, Wing wrote “Computational Thinking,” a seminal Viewpoint article in the Commu-

nications of the ACM magazine, advocating for computational thinking as a “fundamental

skill for everyone”1 and starting a vast discussion of what that term actually entails and how

to accomplish that goal.‡ She later refined her own definition in 2011, stating “computa-

tional thinking is the thought processes involved in formulating problems and their solutions

so that the solutions are represented in a form that can be effectively carried out by an

information-processing agent.”12 She also drew a very clear distinction between learning

computer programming and computational thinking, underscoring that learning to program

isn’t enough to ensure students are learning computational thinking skills.1;12 In both ar-

ticles, she strongly argued that computational thinking is a necessary skill set for anyone

‡As of this writing, Google Scholar lists over 2800 citations of this article, and over 400 citations are listed
in the ACM Digital Library. Computational thinking was also previously discussed by Papert, but in a much
more limited scope as it related to enhancing mathematics education with computers, and is therefore not
relevant to this discussion.11
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to learn, and it should be taught throughout our educational system.1;12 This clearly in-

forms the need for the creation and wide use of computational thinking curricula, which is

a primary goal of this work.

Lee et al. furthered this call by discussing how computational thinking could be integrated

into primary and secondary (kindergarten through 12th grade, commonly referred to as K-

12) education more directly.13 They chose to focus on three major areas of computational

thinking: “abstraction, automation, and analysis,”13 showing how each of those concepts

could be applied in many different learning scenarios, such as modeling and simulation,

robotics, and game design.13 Unfortunately, they also noted that there are many obstacles to

directly including computational thinking in K-12 curricula due to, in their words, “existing

curriculum standards, lack of opportunities for teachers to learn [computational thinking]

as part of their professional development, and lack of access to necessary infrastructure.”13

Instead, they remarked that computational thinking is much more prevalent in activities

outside of the normal classroom, such after-school clubs, weekend activities, and STEM

camps such as the one this curriculum was created for.13

Recently, Yadav et al. discussed how to integrate computational thinking into K-12 edu-

cation.14–16 In those articles, the authors made the case for including computational thinking

and related pedagogical strategies in K-12 teacher training.15;16 This can be done by teach-

ing non-computer science teachers how to use tools and techniques to engage students in

computational thinking within a different subject, such as the use of modeling and sim-

ulation tools in a science classroom.15 In another instance, they discussed how vital it is

to introduce teachers to computational thinking concepts throughout their education, per-

haps in an educational technology course already required in their curriculum.16 To further

their argument, they conducted an experiment with two groups of pre-service teachers, one

receiving instruction in computational thinking, and another control group.14 The results

showed that pre-service teachers who were exposed to about two hours of training in compu-

tational thinking were much more likely to define computational thinking as more than just

including technology in the classroom, and slightly more likely to agree that it should be

included in the curriculum.14 This is similar to the program described by Bean et al.17 when
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training pre-service teachers to use computational thinking in the classroom at Kansas State

University. Through the partnership with local teachers and pre-service teachers offered in

the STEM camp environment, this project allows those teachers to become more familiar

with computational thinking and encourages them to bring that knowledge back to their

classrooms.

Grover and Pea provided a “state of the field” review of computational thinking in K-12

education in 2014.18 They discussed many of the problems inherent to teaching compu-

tational thinking, namely that it has been very difficult to find an agreeable definition of

what computational thinking is and how best to integrate it into K-12 curricula.18 Much

of the work they presented revolves around the creation of tools and environments that aid

in learning computational thinking or computer programming, but most haven’t achieved

broad curricular integration.18 However, they did provide a large list of areas ripe for fu-

ture research and improvement, such as applying modern educational theories, including

situated cognition and cognitive apprenticeship, to computational thinking curricula; using

computational thinking within other subjects; and dealing with student perceptions of com-

putational thinking and computer science in general.18 Much of the design of the Mission to

Mars curriculum was informed by these ideas.

Mannila et al. provided a much deeper look at computational thinking in primary and

middle school education (kindergarten through 9th grade, or K-9) that same year.19 They

discussed how K-9 education is different than other areas, namely that it is much more

generalized and teachers tend to teach many subjects at once in an integrated fashion,

instead of being subject-matter experts.19 The authors then provided a review of several

different countries’ previous attempts at including computational thinking in K-9 curricula,

informal initiatives to introduce computational thinking outside the classroom, and broader

initiatives aimed at increasing computational thinking in national curriculum standards.19

They also discussed results from an international survey of teachers, collecting information

about how they integrated computational thinking into their subject areas.19 Finally, they

also gave several explicit examples of computational thinking successfully implemented into

educational contexts.19 Many of those examples provided inspiration for some of the activities
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included in the Mission to Mars curriculum. In addition, the curriculum’s use of expansive

framing and links to concepts in a variety of subject areas further builds on this concept.

Many previous research publications from Kansas State University also dealt with compu-

tational thinking in a K-12 setting. Bean et al. discussed a program to introduce pre-service

teachers to computational thinking concepts using Scratch,20 along with a survey to assess

student and teacher learning.17 It also included a prototype of the shapes activity discussed

in section 3.1.17 Weese et al.5 discussed how a previous version of the curriculum discussed

in this thesis impacted student self-efficacy in computational thinking and computer science

at the 2016 STEM Summer Institute.5 Weese and Feldhausen, and Feldhausen et al., pre-

sented further results from the 2016 and 2017 cohorts at the STEM Summer Institute using

the current version of the curriculum.8;10 The assessment methods used will be discussed in

detail in section 2.4 and Chapter 5. Finally, Weese further discussed many of these outreach

programs and assessment methods in his doctoral dissertation.9. While these works primar-

ily focused on assessing student gains in computational thinking ability, this work will cover

the design aspects of the Mission to Mars curriculum. It will, however, rely on many of the

same assessment methods and data to support the effectiveness of the curriculum’s design.

Brennan and Resnick provided a concrete definition for computational thinking (CT)

in terms of computational concepts, practices, and perspectives through their study of the

Scratch20 programming environment.21 Similarly, Google also uses a list of concepts and

skills to further define computational thinking.22. Weese and Feldhausen created a list of

computational thinking skills and related CS principles based on those works, adapted below

in Table 2.1, which informed the curriculum design and assessments in this work.8

2.2 Educational Theory

The design of the Mission to Mars curriculum makes use of several concepts from the field

of educational theory. This includes expansive framing to aid with knowledge transfer to

other domains, the cognitive apprenticeship model for teaching how a master thinks when

performing a task, and the revised Bloom’s taxonomy, which is used to describe the expected
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Table 2.1: CT Concepts and Related Computer Science Principles8

Abbr. Description

ALG Algorithmic thinking - sequence of steps that complete a task. Operators
and expressions are also included

ABS Abstraction - generalized representation of a complex problem, ignoring
extraneous information

DEC Problem decomposition - breaking a problem into smaller, more manage-
able parts that can be solved independently of each other

DAT Data - collection, representation, and analysis of data22

PAR Parllelization - simultaneous processing of a task22

CON Control flow - directs an algorithm’s steps when to complete

IAI Incremental and iterative - building small parts of the program at each
step instead of the whole program at once

TAD Testing and debugging - performing intermediate testing and fixing prob-
lems while developing

QUE Questioning - working to understand each part of the code instead of using
code that is not understood well

USE Reuse and remix - making use of other people’s work and resources to solve
a problem

learning outcomes from each lesson.

2.2.1 Framing and Knowledge Transfer

Vygotsky introduced the concept of the zone of proximal development, which he defined as

the “distance between the actual developmental level as determined by independent problem

solving and the level of potential development as determined through problem solving under

adult guidance or in collaboration with more capable peers.”23 Likewise, Piaget also wrote

extensively about the cognitive development of children.24 In his work, he discussed a learning

paradigm called constructivism, where students must “construct” new knowledge from what

is being taught, while challenging their own view of the world and understanding of how it

works.25

In 1980, Papert published Mindstorms: Children, Computers and Powerful Ideas, which

discussed the creation and use of the Logo programming language and computer technology
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to teach students.26 In that seminal book, he provided a strong argument for his view of what

he termed constructionism in education.26 Similar to Piaget, Papert argued that students

must build their own understanding, but they can do so through the “construction” of

artifacts such as computer programs, while working directly with the tools and ideas they

are exploring.25 He compared it to learning a language by spending time among native

speakers of the language instead of just learning it from a textbook.26 This supports the use

of hands-on learning of computational thinking skills

Brown et al. continued this work by discussing what they called situated cognition.27

This theory posits that the material being taught, the process by which it is taught, and

the larger context in which it is taught, all play a role in learning.27 This is in contrast

to the notion that knowledge gained is fundamentally independent from the context and

situation wherein it is learned, thereby assuming that the problem of knowledge transfer

from school environments to work environments is trivial.27 In their work, they discuss the

differences between how “just plain folks” (JPFs), students, and practitioners learn a skill.

Their comparison shows that JPFs and practitioners both learn skills within the context

those skills are to be employed, leading to much more effective learning.27 They argue that

learning is best accomplished through authentic activity, using the “tools of the trade,” while

immersed in the culture of the subject area.27. The Mission to Mars curriculum is designed to

provide that authentic feel by using precise computer science terms and concepts wherever

possible, while providing background information to students about the larger context in

which those activities are placed.

This is further supported by Pea, who suggested that educators could improve knowledge

transfer “by making everyday situations and school situations part of the same classification

scheme for problem types, making explicit the links the student is now expected to draw

spontaneously.”28 Furthermore, he suggests that schools should spend time bridging the

gap between in-school and out-of-school experiences and situations.28 He would later assist

Grover et al.29–31 in the creation of their computer science curriculum discussed in section

2.3.

Engle et al. discussed how the framing of a learning experience affects how well that

8



knowledge transfers to other situations.32;33 Framing refers to the larger societal context in

which the learning experience is situated.33 This should not be confused with scaffolding,

as described below in relation to cognitive apprenticeship, but is similar to the concepts

related to the contexts surrounding a learning environment as discussed by Brown et al.27

and Pea.28 above. From Engle et al., “[a] teacher can frame a lesson as a one-time event of

learning something that students are unlikely to ever use again,”33 called bounded framing,

“or as an initial discussion of an issue that students will be actively engaging with throughout

their lives,”33 called expansive framing. Their initial research showed that expansive fram-

ing resulted in students who were able to more easily transfer knowledge between related

subject areas when compared to bounded framing.32 They theorize that students exposed

to expansive framing are more likely to make better use of their time and abilities to learn

the material and generalize it for future use because expansive framing implies that they

may need this information in the future.32 Whenever possible, the Mission to Mars curricu-

lum encourages instructors to provide expansive framing and discussion to assist students in

learning the material within a larger context, while employing an encompassing scenario to

link the individual lessons together.†

Tai et al. presented research showing that students expecting to have a science-related

career in 8th grade were up to 3.4 times as likely to graduate with a physical science or engi-

neering degree as their peers.2 This implies that introducing students to computer science in

middle school can have a very strong effect on their future career choices.2 This is supported

by independent articles by Greening,35 Carter,36 and Grover et al.,3 who each focused on

student perceptions of computer science prior to college. They collectively showed that many

of the issues preventing students from choosing computer science as a possible college major

or career choice involved incorrect perceptions about the field and the types of people who

succeed in it.3;35;36 The Mission to Mars curriculum helps present computer science in a

positive light while hopefully mitigating previous poor perceptions students may have of the

†Interestingly, the authors reference a unique study by Hart and Albarraćın, which demonstrated that
simply using the imperfective aspect instead of the perfective aspect when describing a previously undertaken
action—i.e “I was doing something” instead of “I did something,” made participants more willing to resume
a task or continue a previously learned behavior, indicating that simply how we discuss learning experiences
after the fact could also have an impact in retention and transfer.34
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field, encouraging students to consider it as a possible future career path.

2.2.2 Cognitive Apprenticeship

Brown et al.27 (including Collins as a co-author), and other works by Collins et al.4;37 in-

troduce the concept of cognitive apprenticeship as an educational paradigm. Based on the

traditional apprenticeship method of learning a task or trade, cognitive apprenticeship di-

rects students to first observe a master of a cognitive task at work, with the master clearly

describing the internal thought processes and methods being employed.4 The student is then

slowly given larger and larger tasks to complete under the watchful eye of the master, who

provides brief correction and instruction as needed while completing the more difficult parts

for the student, a process called scaffolding.4 Over time, the student assumes more respon-

sibility, with the master providing projects of appropriate skill level until the student is able

to complete entire projects independently.4 The overall structure of cognitive apprenticeship

is divided into four areas: the content to be taught, the methods by which it is taught,

the sequence in which skills are learned, and the social aspects,4 linking back to Brown et

al.’s situated cognition.27 Furthermore, Collins also discussed how the growth of computer

technology could help cognitive apprenticeship become more approachable and cost-effective,

making this paradigm very useful in modern education.37

That discussion was continued by Ghefaili, who discussed how cognitive apprenticeship

could effectively be used as an instructional technique.38 He took the approach of clearly

describing the theories behind cognitive apprenticeship, how it differs from traditional no-

tions of apprenticeship, and, more specifically, the teaching methods that can be used to

achieve it.38 In addition, he also discusses how educational technology can make cognitive

apprenticeship a reality in modern classrooms, by bringing real-world problems to students,

allowing students to interact with experts, and making the thought processes and tech-

niques used to solve the problems more visible.38 Much of the design of the Mission to Mars

curriculum uses concepts and methods from cognitive apprenticeship discussed by Ghefaili.

Specifically, when leading students through a guided activity, the instructors are encouraged
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to clearly talk through any thought processes they use to complete the task, helping the

students understand not only what is being done, but why it is done that way.

2.2.3 Bloom’s Taxonomy

Bloom et al. created a taxonomy for describing expected student learning outcomes, now

known as Bloom’s taxononmy, which was later revised by Anderson et al. and Krathwohl.6;7

The revised Bloom’s taxonomy uses two dimensions to describe the expected learning out-

come using both a noun, to describe the type of knowledge, and a verb, to describe the

cognitive process level at which students should be competent with that knowledge.7 A

summary of these two dimensions is presented in Table 2.2, adapted from Krathwohl.7 This

taxonomy is used in Chapter 3 to annotate the expected learning outcomes in the Mission

to Mars curriculum.

2.3 Related Computer Science Curricula

There have been many efforts to include computer science and computational thinking in

K-12 education. Some efforts focus on entire curricula or standards to be adopted broadly

at all levels, while others represent single classes or interventions designed for a specific

audience, venue, or technology. For this work, the most relevant literature focuses on small

interventions and single activities, as discussed below.

2.3.1 Activities and Lesson Plans

There have been many efforts to create online resources for K-12 computer science lesson

plans. One of the most notable examples is CS Unplugged, a project from the University of

Canterbury, New Zealand, co-sponsored by Google.39 CS Unplugged provides “a collection of

free learning activities that teach Computer Science through engaging games and puzzles that

use cards, string, crayons, and lots of running around.”39 The overall goal of the project is to

demonstrate that learning computer science and computational thinking does not require a
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Table 2.2: Revised Bloom’s Taxonomy Dimensions7

Knowledge Dimension

Factual
Knowledge

The basic elements that students must know to be acquainted with a dis-
cipline or solve problems in it

Conceptual
Knowledge

The interrelationships among the basic elements within a larger structure
that enable them to function together

Procedural
Knowledge

How to do something; methods of inquiry, and criteria for using skills,
algorithms, techniques, and methods

Metacognitive
Knowledge

Knowledge of cognition in general as well as awareness and knowledge of
one’s own cognition

Cognitive Process Dimension

Remember Retrieving relevant knowledge from long-term memory

Understand Determining the meaning of instructional message, including oral, written,
and graphic communication

Apply Carrying out or using a procedure in a given situation

Analyze Breaking material into its constituent parts and detecting how the parts
relate to one another and to an overall structure or purpose

Evaluate Making judgements based on criteria and standards

Create Putting elements together to form a novel, coherent whole or make an
original product

computer, and to allow students to experience the field without first learning programming.39

Several of the activities in the Mission to Mars curriculum are adapted from or inspired by

CS Unplugged activities.

Google also provides an online repository of computer science lesson plans on their Ex-

ploring Computational Thinking page.40 In addition, they provide a guide showing how

their lessons align with various international standards, including the CSTA K-12 Computer

Science Standards in the United States and the Computing at School standards from the

United Kingdom.41–44 The activities in this resource are not used directly within the Mission

to Mars curriculum, but they were reviewed at the time of writing and may have brought

forward ideas that are present in the curriculum.
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Code.org, along with Computer Science Education Week, hosts the Hour of Code each

year to encourage students to learn at least one hour of programming.45;46 The Code.org

website currently lists over 170 activities for a variety of grade levels and programming

environments.45 Some related activities developed prior to the Mission to Mars curriculum

were used for Hour of Code events held at Kansas State University, and were subsequently

adapted to fit the curriculum.

Many individual lesson plans published online are built around the use of a specific pro-

gramming language such as Alice,47 or a specific technology such as robots48;49 or other

devices.50 While there are many to choose from, of particular interest to this project is re-

search using the Scratch programming environment from MIT.20 Meerbaum-Salant et al.

discussed how early research working with Scratch showed it to be a viable platform for

teaching students computer science concepts.51;52 However, they also cited that learning to

program in Scratch lead to the development of some habits outside accepted good program-

ming practices, and they were concerned that this could cause issues as students progress

to other languages.52 Specifically, they note that because of the low barrier to entry with

Scratch, many students only learn the basics of creating scripts, and don’t progress toward

creating more advanced and complex scripts; instead, they engage in what the authors call

“extremely fine-grained programming,”52 whereby they create a large number of very simple

scripts to accomplish a task instead of a single, more complex script.52

More recently, Moreno-León and Robles performed a literature review of research related

to the use of Scratch to teach programming.53 In their analysis, they narrowed the field down

to seven papers of interest, and concluded that there is a “very promising outlook” for using

Scratch to integrate computer science and programming into the K-12 curriculum, but that

much of the research is not as rigorous as it should be, with small sample sizes and a lack

of quantitative data.53 Still, the Scratch programming environment is a very powerful tool,

and was chosen for the Mission to Mars curriculum due to its flexibility and ease of use.

In addition, many students were already familiar with the tool from other STEM outreach

activities, making it a good choice for use with this project.
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2.3.2 Educational Theory and Computer Science Curricula

There are also some examples of educational theory, specifically cognitive apprenticeship and

scaffolding as discussed in section 2.2, being used to create lesson plans and curricula. Shabo

et al. describe an early attempt at bringing cognitive apprenticeship to computer science by

creating an online repository of notes and resources for various problems in order to make

visible the thought processes and techniques used to solve them.54

Larkins et al. describe a project applying the cognitive apprenticeship framework to a

middle school robotics camp.55 They specifically note how they designed activities around

each teaching method described in the cognitive apprenticeship principles from Collins et

al.4;55 In their results, they note that they did not achieve significant gains in student per-

ceptions of STEM fields, mainly due to the already high interest of participants before the

camp, but they did observe an improvement in the variable isolation reasoning skills of the

students.55 Many of the activities in the Mission to Mars curriculum use the same teaching

methods from cognitive apprenticeship as applied in this project.

Webb and Rosson used scaffolding extensively, along with the Scratch environment, to

teach computational thinking to middle school girls.56 Their activities were centered around

programs developed in Scratch and designed to be usable by the participants, but with a flaw

that could be investigated and corrected, encouraging exploration and reflection.56 Based

on their qualitative review of student work and reactions, they concluded that “scaffolded

examples in Scratch are an effective way to convey [computational thinking] concepts and

skills in a short amount of time.”56 Many of the activities in Mission to Mars take advantage

of scaffolding in a similar way to tackle more difficult problems than could normally be

addressed during a short learning session.

Repenning et al. provided one of the largest and most comprehensive projects for bringing

computational thinking skills to K-12 classrooms.57;58 Their Scalable Game Design interven-

tion uses a project-first approach to scaffolding, where students immediately start working

on a project, with concepts and skills taught along the way.58 They were able to conclude

that, by properly scaffolding the activities, they can take advantage of Vygotsky’s zone of
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proximal development to push students beyond what they could accomplish on their own.58

The authors also note that over 80% of teachers who used their program chose to continue

it beyond the first year, demonstrating its effectiveness in the eyes of K-12 teachers.58

Grover et al. presented another project for bringing computational thinking to middle

school students.29–31 The Foundations for Advancing Computational Thinking (FACT) in-

tervention was created using a design-based research approach to review and enhance the

curriculum across several iterations.29–31 In designing the curriculum, they focused on using

both scaffolding and cognitive apprenticeship techniques, combined with expansive framing

to encourage transfer to other areas.29–31 In addition, the course was first taught as a combi-

nation of in-person lessons and accompanying videos, then converted to a completely online

version.29–31 Their work successfully showed that students could transfer some computational

thinking skills to other areas, and also that the students participating in the online course

performed at least as well as students in the earlier course with in-person lessons.29;30 Much

of the design and desired outcomes of the Mission to Mars curriculum align with this work.

2.4 Student Assessment

Another major aspect of designing a curriculum is determining how to assess student learn-

ing outcomes and the quality of the curriculum itself. Most techniques for assessment of

computer science and computational thinking fit into three broad categories: knowledge

assessment, code analysis, and self-efficacy assessment. Chapter 5 discusses in detail why

self-efficacy assessment was chosen for this project, with information on possible future work

to include knowledge assessment and code analysis discussed in Chapter 8

2.4.1 Knowledge Assessment

Knowledge assessments include typical classroom activities such as exams, quizzes, and

homework to assess a student’s knowledge of the subject. Bransford et al. provided a

strong case for assessment in curriculum design.59 The authors argued that schools should
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be centered around four areas: the learner, knowledge, assessment, and community.59 As

part of an assessment-centered classroom, they stated that teachers should “continually at-

tempt to learn about their students’ thinking and understanding.”59 However, they also

discussed that many common views of assessment are troublesome, such as the focus on

rote memorization of facts and procedures, and tricky quiz questions instead of assessing for

deeper understanding of the subject.59

Whalley et al.60 and Thompson et al.61 described two different projects to create com-

puter science assessments based on commonly used educational models, such as the revised

Bloom’s taxonomy6;7 and the SOLO taxonomy.62 In both projects, they used the frame-

works and their associated categories to devise questions for exams that are designed to

measure aspects of student learning.60;61 While they noted that both projects yielded useful

exam questions, they also both discussed the difficulty in agreeing on what level of learn-

ing should be expected from students while consistently underestimating the difficulty of

the assessment.60;61 The Mission to Mars curriculum makes use of these taxonomies to de-

scribe the level of student learning desired at various points in the curriculum, but does not

use them directly for assessment. Other works describing knowledge-based assessment of

computational thinking include Bienkowski et al.63 and Grover.64

2.4.2 Code Analysis

Code analysis refers to the process of discovering information about a student’s learning

outcomes by analyzing projects created by the student, either at the time of submission or

during the creation of the project. Werner et al. described a process they’ve used to ana-

lyze games developed in the Alice programming language.65–67 While successful, they also

note that this process was very time consuming.66;67 Meerbaum-Salant et al. also performed

detailed analysis of student work in Scratch.52 Their analysis was performed manually, and

was primarily driven by their own observations of student work while working on a different

research topic.52 Franklin et al. presented an effort to automate analysis of Scratch pro-

grams.68 They collected student projects from a summer camp very similar to the STEM
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Summer Institute and analyzed them based on desired computer science concept outcomes

using a custom developed tool.68 Moreno-León et al. developed a more advanced code analy-

sis tool named Dr. Scratch to measure how well students implemented various computational

thinking concepts in their Scratch projects through static code analysis.69;70

Fields et al. took a slightly different approach to code analysis, using techniques from

big data to sift through code snapshots collected over time.71 They collected JSON repre-

sentations of student Scratch projects as they were being edited, with a snapshot created

each time a student switches context in the program, or at least every two minutes.71 They

then analyzed the number of instances of different programming aspects across the time stu-

dents spent editing the project.71 By correlating the data with their own qualitative analysis

of student progress at various checkpoints throughout the course, they were able to get a

deeper view into student learning and thought processes that would not be visible by simply

analyzing the code after the fact.71

2.4.3 Self-efficacy Assessment

Bandura provided another insight into how to measure student success, or in this case,

student confidence.72 Self-efficacy is described by Bandura as “how people judge their ca-

pabilities”72 and the effect that judgement has on their own “motivation and behavior.”72

He argued that students who have a high level of self-efficacy with a task will tend to work

harder and persist in the face of obstacles, whereas someone with a lower sense of self-

efficacy might give up.72 Conversely, someone with high self-efficacy might also find simple

tasks boring and put forth less effort than someone with low self-efficacy.72 He also noted

that self-efficacy seems to play a role in career choice, citing the difference between males

and females and their own self-efficacy regarding different possible careers, when each group

has similar measured capability to perform the job.72

While measuring self-efficacy is as simple as asking a student to rate herself or himself,

Bandura did describe some possible concerns and his own attempts to remedy them.72 In

one instance, he addressed the notion that by asking someone to rate his or her self-efficacy,
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it created an expectation that the person must live up to that rating.72 In his explanation

of related research, he noted that this is indeed a myth, and no relation has been found

between subjects who were asked to rate themselves before a task and those who were not,

or those whose ratings were made publicly or privately.72

Ramalingam et al. applied the concept of self-efficacy to computer science education.73

In their work, they studied the self-efficacy of students before and after a programming

class, and compared that to the measured mental models, or subject knowledge, of the

participants.73 They found that not only do most students experience significant gains in

self-efficacy, but student self-efficacy itself was a significant predictor of student performance,

along with the student’s own mental model.73 In essence, while knowledge in the subject is

important, student self-efficacy is also an essential part in determining a student’s success

in a class.73

Lishinski et al. furthered this work by studying how self-efficacy relates to course perfor-

mance over time, as well as many other “self-regulated learning” aspects.74 They confirmed

that self-efficacy is the strongest predictor of student performance in classes when compared

to other predictors such as student goals and student metacognitive strategies.74 However,

they noted that their research shows that self-efficacy alone isn’t enough, because, in their

words, “metacognitive strategies and goal orientation impact self-efficacy, which impacts

performance, and then performance impacts self-efficacy, which then impacts performance

again.”74 Thankfully, they described self-efficacy as “very malleable” compared to other as-

pects of student learning, so there is still value in designing learning experiences around

improving student self-efficacy.74

Much of the previous work at Kansas State University related to this project also used

self-efficacy as a primary means of assessing student learning.5;8–10;17 Those assessments were

also used during this project.
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Chapter 3

Curriculum Design

The Mission to Mars curriculum was designed for the STEM Summer Institute, hosted

by the Manhattan-Ogden USD 383 school district.75 It was first designed during the 2015

summer camp, and was subsequently refined before the 2016 session. The curriculum was

again used in 2017, with only minor changes from the previous year.

The primary goal of the curriculum is to introduce 5th and 6th grade students to compu-

tational thinking skills through computer science, increasing their knowledge and self-efficacy

within the field. By doing so, the desired outcome is an increase in the number of students

who consider STEM majors in college and related careers.

The theme was chosen to relate many of the activities to the field of space exploration,

one that has proven popular with many students at that level. Additionally, inspiration for

the revised version was taken from the popular book The Martian by Andy Weir and its

film adaptation.76;77 The use of an overarching theme for the lessons helps provide expansive

framing for these activities within the broader world.

Many of the activities and lessons included in the curriculum were adapted from a variety

of sources, including previous outreach activities, courses at Kansas State University, CS

Unplugged,39 and other online repositories. The sources are cited below wherever possible.

In this chapter, the activities and learning objectives for each day of the four-day cur-

riculum are outlined, as well as relevant notes regarding the design aspects of each part. The
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complete curriculum and notes can be found in Appendix A.

3.1 Day 1

The first day begins with an icebreaker activity. During the activity, students introduce

themselves and are encouraged to ask the instructors any questions they may have, no

matter how strange or difficult. This allows the students and instructors to get to know

each other, and also begins an open and friendly dialog between students and instructors.

By showing that any questions will be answered honestly and truthfully, it establishes a

classroom norm of open communication, a very important aspect of constructive student

learning and cognitive apprenticeship.

Following the icebreaker, students complete a brief survey to measure previous computer

science and STEM experiences, as well as their current self-efficacy with computer program-

ming and computational thinking. The assessments used are discussed in Chapter 5.

Before starting any formal activities, the students are shown two videos as part of the

expansive framing of the curriculum. The first video is a promotional video from Code.org,78

describing the importance of learning computer programming by featuring various famous

figures and celebrities discussing their experiences. The second is a short clip from the film

adaptation of The Martian,77 explaining how the main character found himself stranded on

Mars and setting the stage for several of the activities in the course.

To begin the lessons, students are introduced to the Scratch programming environment.20

While many students have previously worked with programming tools such as Scratch, they

may not all have a similar experience level. Therefore, it is important to ensure each student

has the proper foundation. The lesson starts by introducing the vocabulary of terms used

to refer to various parts of the Scratch interface, and then briefly demonstrates how to

manipulate blocks and sprites to create very simple programs. The programs typically

involve moving sprites within the Scratch stage, causing them to respond to each other

through the use of special blocks to detect collisions. However, the amount of instruction is

purposely kept to a minimum, and students are encouraged to experiment with the many
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blocks available in Scratch during a large block of unstructured time. This follows the

constructivist ideal of allowing students to build their own world-view and understanding

of the field through hands-on experience. Students are encouraged to constantly test their

program after adding new blocks, introducing the skills of testing and debugging when a

block does not function properly, as well as iterative and incremental development, both

core skills in computational thinking.

Once the students have some basic experience with Scratch, the lesson continues with a

couple of activities to demonstrate more advanced capabilities of the tool. The first activity

involves drawing regular geometric polygons using a moving sprite in Scratch. It is adapted

from a set of Scratch activities published online by Bean.79 The activity starts by providing

a scaffolded example demonstrating how to draw three lines connected by obtuse angles on

the screen. A screenshot of the example is shown in Figure 3.1. The students must modify

the example to draw an equilateral triangle, easily done by simply modifying the angles.

However, most students immediately try to set the angles to 60 degrees, correctly recalling

the measurement of internal angles of such a shape, and are surprised when that doesn’t

produce the desired result. In fact, the angles in the code represent the external angles of

the shape, and not the internal angles as expected. Through trial and error, most students

can complete the activity given enough time. Students who complete the activity quickly are

encouraged to help their neighbors if they are stuck, effectively turning them into teachers

and creating a more collaborative learning environment.

As the activity continues, students are directed to modify their program to draw regular

polygons with progressively more and more sides. Typically, the first modification is difficult

for students to grasp, but once they see that it involves simply adding more lines and

modifying the angles, they quickly catch on to the process. However, soon they realize

that the program becomes bigger and more complex as they modify it. Students are then

introduced to the concept that “programmers are lazy” and good programmers will find

ways to simplify their code. Following the model of cognitive apprenticeship, emphasis is

placed on discussing the thought processes a programmer would use to analyze this problem.

After observing that many blocks of code are repeated, students learn about iteration to
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Figure 3.1: Scratch Shapes Activity Example

simplify the code significantly. Students quickly realize that, with iteration, adding more

sides involves simply changing the number of iterations.

Similarly, once students create a shape with many sides, they realize that the angles may

no longer be whole integers. Instead of manually calculating those values, students learn

how to use the math operators in Scratch to calculate the size of each angle, using a formula

from geometry that many of them are already aware of. Finally, once students see that

their code only involves the number of sides in two places, they are shown how to replace

those two values with a variable, just as a programmer would in a real-world program. By

using a variable, students only have to modify one number to direct the program to draw a

shape with any number of sides. Finally, the program can be modified to accept user input

to set the value of the variable, creating a fully developed and usable application. At each

step, students are encouraged to modify their program, test it, and debug any problems,

further emphasizing both the testing and debugging skill and the iterative and incremental

development skill.

Additionally, with one small modification to make the length of sides inversely propor-
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tional to the number of sides, students can create a program to draw figures with tens or

hundreds of sides while shrinking them to a size that is still visible on the screen. Students

quickly notice that, as the number of sides increases, the shape looks more and more like a

circle. As part of the goal of expansive framing, this observation is explicitly linked to how

circles are represented in computer games, animation, and graphics programs. Additionally,

these concepts can be linked to the fundamental laws of calculus, showing that a smooth

shape can be approximated by a shape made of infinitely many infinitely small sides.

The final activity of the day is a Scratch program simulating a Spirograph drawing toy. It

is meant to demonstrate another usage of the drawing capabilities of Scratch, while giving the

students something fun and engaging to interact with at the end of the day. The students can

modify the values of variables controlling the simulation, and are challenged to experiment

and find values that create interesting designs. Some students struggle initially due to the fact

that they are likely to use composite numbers, being more familiar with them after learning

multiplication tables. However, using prime numbers, or combinations of coprime numbers,

yields the best results. Again, the connections between computer science, aesthetics, and

mathematics are explicitly described as part of the expansive framing of the lesson.

At the end of the day’s activities, the students are asked to respond to some simple

reflection questions to help build a lasting memory of the day by calling attention to the

aspects that were most important in the lesson. In addition, the instructors can quickly

gauge what students felt was most important as well as any areas they wanted to focus on

in the future. This stems from the work of Bransford et al.,59 who encourage teachers to

continually assess student thinking and learning as they teach.

The major topics covered in day 1, annotated with the related computational thinking

skills from Table 2.1, are listed below. They are also placed within the revised Bloom’s

taxonomy in Table 3.1.

1) Understand how programming is used in the broader world (QUE)

2) Understand what several of the Scratch blocks do in a script (QUE)

3) Create working scripts in Scratch (CON)
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4) Test programs after adding each block and debug as needed (TAD)

5) Build programs in small chunks (IAI)

6) Write a computer program based on a given specification (DEC)

7) Apply the formula for external angles of a regular polygon from geometry (ALG)

8) Understand that “programmers are lazy” and look for ways to deconstruct a problem

into repeatable steps (DEC)

9) Understand the use of iteration in computer programs (CON)

10) Understand the use of variables in computer programs (ABS)

11) Learn how circles are represented and displayed in a computer (DAT)

12) Learn how a Spirograph can be simulated in Scratch (ABS)

Table 3.1: Revised Bloom’s Taxonomy Analysis of Day 1 Outcomes

Remember Understand Apply Analyze Evaluate Create

Factual 11 2 7

Conceptual 1 6

Procedural 12 9,10 3

Metacognitive 8 4,5

3.2 Day 2

To begin the second day of activities, the students cover some simple questions about the

Scratch interface and what some of the blocks can be used for. This is designed to refresh

the students’ mindset and get them ready to work with Scratch again. They are also able

to ask any questions about the activities from the previous day before moving on.

The first lesson of the day involves sorting. Sorting was chosen as a representative

algorithm for computer science since it is easily understood by students of all ages. In

addition, there are many different forms of sorting algorithms that are well known and studied

in computer science, and they can easily be discussed by anyone familiar with programming.

24



Finally, sorting lends itself to several unplugged-style activities much better than many

other algorithms. Clearly, a large part of this day’s activities are devoted to the algorithmic

thinking skill in computational thinking.

The discussion begins by asking students why sorting is important in the real world. This

includes descriptions of how words are ordered in the dictionary, how phone numbers are

listed in the phonebook, and many others. In addition, students are asked to think about

which attributes of real-world objects can be used for sorting, such as by height, weight,

color, name, age, etc. In doing so, students are encouraged to start thinking of the world

in terms of data to be manipulated, a key part of the abstraction skill in computational

thinking.

The next activity involves the use of a sorting network, as shown in Figure 3.2. This

activity was inspired by a similar activity from CS Unplugged.39 The instructors create a

sorting network on the floor of the classroom using colored tape, and describe to students

how it works. At each intersection where 2 students meet, the one with the higher value

being sorted goes right, and the student with the lower value goes left. At the end, the

students should be in sorted order, no matter where they started in the beginning. It is

recommended to avoid duplicate sorting values at the start, so items such as age are not

optimal; instead values that are easily discernable such as height or the number of letters on

a nametag work well for this activity. As students learn how the process works, groups are

encouraged to see if they can perform the task faster and with fewer errors that the previous

group. Once students are comfortable with the activity, they are asked to describe how this

activity relates to computer programming. Instructors can use open-ended questions to help

lead the discussion, such as: “is the sorting network a computer program? Why or why

not?”

Following that activity, the day continues with a discussion of algorithms from the per-

spective of a computer scientist. Much of this activity is adapted from slides used in the

Introduction to Computing Science class at Kansas State University, taught by the author of

this work.80 First, the instructors perform an in-class demonstration of how difficult it can

be to create an algorithm that works. To do this, two students are asked to demonstrate
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Figure 3.2: Sorting Network39

how to shuffle a deck of cards. One student tries to give detailed instructions, while the

other student, aided by the instructor, performs those steps explicitly while outside of the

view of the first student. This is very similar to a well-known activity of creating a peanut

butter and jelly sandwich. Usually students find it very difficult to describe the exact steps

to shuffle a deck of cards. However, at the end the instructor can demonstrate a very simple

method to accomplish the task to show it can be done: place the cards into two separate

piles, then repeatedly take one card from each pile and place it on top of a third pile. While

it isn’t a method someone would normally use to shuffle cards because it is slow, it still

works. In doing so, students are encouraged to “think outside the box” and carefully con-

sider their own preconceptions of how to perform a task. This leads to a discussion about

why this method might be ideal for computers to implement and why it is counter-intuitive

for a person to do in reality.

The activity then shifts to a more formal discussion of algorithms, including the origin

of the name and a simple formal algorithm, such as Euclid’s algorithm for finding greatest

common divisor of two numbers. This helps support the notion that an algorithm is a simple

list of steps that anyone can follow to accomplish a task.
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To give students hands-on experience with algorithms that computers perform, each

student is given a suit of 13 cards from a standard deck of playing cards which they can use

to practice computer sorting algorithms. Students are first directed to shuffle and sort the

cards however they naturally would, then describe the steps they followed to get the cards

into sorted order. Typically most students perform a variant of insertion sort or selection

sort, but a few students have demonstrated a bucket sort algorithm or even something

resembling quicksort. These activities are designed to give students further experience both

with abstraction and data manipulation in the realm of computational thinking.

The first formal sorting algorithm demonstrated is insertion sort. The students hold the

suit of cards in their hand, then place the first card face up on the table. Then, they take

the second card, hold it before the first card on the table, and ask “does this card go here?”

If so, they place it on the table there, if not, they place it behind the last card. They repeat

that process for each card, starting with the first opening and asking themselves if it fits

there, then moving to the next one until the correct place is found. While doing so, students

are directed to keep track of the number of times they ask that question as a simple way of

tracking the number of steps they perform. Once they are done, they shout out that number

while it is recorded on the board.

The same process is done for bubble sort. Student start with all cards in a line face-up

on the table in front of them. Then, they look at the first two cards and ask themselves “do

I need to swap these?” If so, they swap those cards, then look at the second and third cards

and ask the same question. They repeat this process, starting over at the beginning each

time they reach the end, until the cards are sorted. Again, they are asked to keep track of

the number of times they swap two cards, and then shout out the result at the end so the

numbers can be recorded on the board.

After these two steps, there are two sets of numbers on the board. The instructors

help the students determine the average number of steps for each, and use that to determine

which algorithm used fewer steps. Typically they are similar, but each time the result is a bit

different. From there, the students are asked to then discuss which algorithm would be faster

on a computer, based on their observations. Eventually, the instructors lead the discussion
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toward the need for some way to evaluate these algorithms numerically, introducing simple

algorithm analysis and the concept of worst-case inputs. This is done to help increase the

link between mathematics and computer science.

Once they are comfortable with sorting algorithms, students are then led through an

activity to create a program that uses the bubble sort algorithm in Scratch. First, the

instructor describes how to work with lists in Scratch, introducing a new set of blocks.

Then, they are shown how to create a list that has a few unsorted numbers. It is important

to carefully show them how to set up the list to be the same each time instead of filling it

with random numbers each time, so that it is easier to debug errors later on. Once they have

a list, students then build the bubble sort algorithm from the inside out, first creating an

“if” block to check if the first two consecutive numbers should be swapped, then filing in the

block with the standard three-step swap procedure, introducing the concept of a temporary

variable. Then, they can use variables to generalize the “if” block to work with any two

consecutive numbers, while wrapping it in a “repeat” block and a “forever” block to loop

through the list multiple times until it is sorted. This process of building a program from the

inside-out uses the skills of problem decomposition, iterative and incremental development,

and testing and debugging from computational thinking. A version of this program is shown

in Figure 3.3.

The last activity of the day links back to the space exploration theme and uses an activity

inspired by the events in the book The Martian. In this instance, the main character must

figure out how to grow enough food to survive on Mars for over a year. He has a few

real potatoes available, but must somehow obtain the other requirements for plant growth,

namely water. The activity starts with a brief discussion of how to get water on Mars using

the available oxygen in his living quarters and the hydrogen in the rocket fuel. This leads

to a short explanation of the chemical reactions at work, how much of each ingredient is

needed, and what the byproducts are. It also links back to programming by discussing how

to simulate these reactions in a computer program. The instructors can also generalize this

discussion to include the use of computer programs to simulate many real-world interactions,

another key concept in abstraction.
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Figure 3.3: Bubble Sort in Scratch
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Figure 3.4: Growing Potatoes Simulation in Scratch

The students are then given a scaffolded simulation program in Scratch which they must

complete. It includes sprites for the potatoes to be grown, hydrazine (rocket fuel), oxygen

reclaimer, ionizer, and a flame. In addition, there are variables for the amount of hydrazine,

hydrogen, oxygen, nitrogen, and water in the atmosphere of the simulation. On each sprite,

students must add a few blocks to produce the proper ingredient or use available ingredients

in a reaction. In doing so, they affect the atmosphere in some way. Their goal is to produce

water quick enough to grow food, while maintaining safe levels of hydrogen in the atmosphere.

If too much hydrogen is released, it will cause the simulation to stop and explode. A

screenshot of this simulation, including the code for the flame sprite which creates water

from hydrogen and oxygen in the air, is shown in Figure 3.4.

Finally, there is some time set aside for asking the students reflection questions at the

end of the day, similar to the end of the first day.

The major topics covered in day 2, annotated with the related computational thinking

skills from Table 2.1, are listed below. They are also placed within the revised Bloom’s

taxonomy in Table 3.2.

1) Understand the importance of working with data (ALG)
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2) Use a sorting network to sort data (ALG, ABS)

3) Understand that an algorithm is a series of steps (ALG, DEC)

4) Use insertion sort to sort playing cards (ALG)

5) Use bubble sort to sort playing cards (ALG)

6) Compare bubble sort and insertion sort (ALG, QUE)

7) Write a program to sort numbers using bubble sort (ALG, IAI, TAD)

8) Learn how water can be produced through chemical reactions (ABS)

9) Create a working simulation of water synthesis (ABS, TAD, IAI, PAR)

10) See that computers and humans may use different algorithms for similar tasks (ALG,

QUE)

Table 3.2: Revised Bloom’s Taxonomy Analysis of Day 2 Outcomes

Remember Understand Apply Analyze Evaluate Create

Factual 8

Conceptual 3 9 6

Procedural 1 2,4,5,7

Metacognitive 10

3.3 Day 3

The third day of activities begins by quickly reviewing what students have done so far to

get them back in the mindset of working with computer science. They are also asked for any

questions or unclear ideas covered so far, so those can be resolved before moving forward.

The first part of this day deals with numbers and how computers store and represent

data, another major concept in computational thinking. It starts with an activity from CS

Unplugged39 that introduces binary numbers using cards and worksheets from the Computer

Science and Engineering for K-12 website.81 Each card has a number of dots on it representing

a power of two. Each student has a set of cards for the first eight powers of two. The students
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are then shown how to construct binary numbers using the cards. For example, to represent

the decimal number 11 in binary, the cards for eight, two and one are turned face up, while

the others are face down. Then, they write out the number by using a 0 for a face down

card, and a 1 for a face up card. Therefore, decimal 11 becomes 00001011 in 8-bit binary.

This exercise is repeated for several numbers, while students convert from binary to decimal

and from decimal to binary. These exercises can also be used to teach simple addition in

binary, showing that it follows the same process and rules that they’ve already learned for

decimal addition.

Once students are familiar with binary numbers, they are then introduced to the hex-

adecimal numbering system. Since hexadecimal is simply an adaptation of binary to a larger

set of symbols, it has a direct one-to-one translation from binary. Students are given a work-

sheet that helps them make the transition from decimal to binary and hexadecimal. Once

they have completed that worksheet they can use it as a resource for later activities.

The discussion then moves to how computers could represent other data types. Students

are asked to describe the types of files they store on their computer, and then discuss how

the computer might store those files using binary. For example, the American Standard

Code for Information Interchange (ASCII) can be used for storing text as numbers, which

can be expanded to include items such as documents and spreadsheets which could be stored

as text represented as numbers using ASCII. Similarly, images can be stored as text in the

form of vector images, or as an array of pixels that use numbers to record the intensity of

each of the three primary colors as an RGB bitmap image. This can be further developed by

explaining that videos are just images that change over time, following the same concept as

bitmap images. This discussion is supplemented by slides from the Introduction to Computing

Science class.80 This is typically a very fun and engaging discussion for students, and many

times students are observed after class talking with their peers about binary numbers and

ASCII codes. This activity further enforces the abstraction and data skills in computational

thinking.

The next activity once again pulls from the theme and a situation found in the ac-

companying book. In this instance, the main character on Mars is trying to establish a
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communication channel with Earth. While the folks on Earth can see what is happening

on Mars using a camera, the main character on Mars has no way of getting information

from Earth. The only thing that his companions on Earth can do is rotate the main camera

they are using to view Mars. This leads the main character to place sixteen signs around

the camera in a circle, marking them with the sixteen symbols used in hexadecimal. He

remembers that two hexadecimal symbols can represent a single character in ASCII, so if

the camera points at the symbols he can record them and convert that information to text.

The students are provided with another scaffolded activity in Scratch that simulates this

situation. When students first run the simulation, they see a camera randomly rotate back

and forth, with no direct indication of what it means. A secondary backdrop is provided

which has the hexadecimal symbols marked on a circle to help start the decoding process.

From there, students follow along and answer guided questions as the instructor describes

how to find the angle the camera is facing and how to convert that angle to a value corre-

sponding to a hexadecimal symbol. Once they have a value, students must store it and wait

for a second value, since two hexadecimal values are required to decode one ASCII character.

With both values, the students use a chain of “if” blocks to determine which character is

represented. Unfortunately, in Scratch there is no direct way to convert from a value to

a character as in most programming languages, so a large chain of “if” blocks is the only

way to go. This requires students to be very careful when arranging blocks, and helps to

highlight the importance of understanding how code blocks fit together and how many ways

it can produce an incorrect result if a minor change is made. Because of this limitation,

it further emphasizes the importance of testing and debugging as well as incremental and

iterative development to avoid problems when working on a large program. An example of

this project is shown in Figure 3.5.

In addition, once students have completed the project, they discover that the initial

message received, “go eest mark,” is very confusing. This leads to another discussion about

data and how sometimes it can be misinterpreted. The instructor can show how this can

be mitigated, and link it back to situations in real world, such as asking someone to repeat

what they said or using a phonetic alphabet. By pressing a second button on the simulation,
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Figure 3.5: Hexadecimal to ASCII in Scratch

it will replay the message with a corrected output, so the students can see how important it

is. This further builds on the skill of working with data in computational thinking, as well as

the questioning skill related to how the program functions and still returns an invalid result.

As with the other days, some time is set aside at the end to ask the students some

questions to reflect on what they’ve learned.

The major topics covered in day 3, annotated with the related computational thinking

skills from Table 2.1, are listed below. They are also placed within the revised Bloom’s

taxonomy in Table 3.3.

1) Understand the binary and hexadecimal numbering systems (ABS, DAT)

2) Convert numbers to and from binary, decimal, and hexadecimal (ALG, DAT)

3) Observe simple addition in binary (ALG)

4) Understand how other data types are stored on a computer in binary (ABS, DAT)

5) Convert an angular measure to a hexadecimal value in Scratch (ALG, ABS, DAT)

6) Store a value for use later in a program (DAT)

7) Use a large set of conditional statements to decode a value (ABS, DAT)

8) Develop a large computer program without errors (TAD, IAI)

9) Understand how data can be misinterpreted or incorrect (ABS, DAT)
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Table 3.3: Revised Bloom’s Taxonomy Analysis of Day 1 Outcomes

Remember Understand Apply Analyze Evaluate Create

Factual 4 5

Conceptual 1,9

Procedural 3 2,6,7

Metacognitive 8

3.4 Day 4

The fourth day uses the field of artificial intelligence to continue teaching students about

computer science. As with the previous days, it begins with a brief discussion of topics

covered earlier in the week to make sure students are in the correct mindset as well as

time to answer any questions they may have before starting on new material. In addition,

in 2016 students were asked to play a brief online quiz game consisting of several simple

review questions, in order to determine how well each student was retaining the knowledge

gained from previous activities. The questions used and responses obtained from students

are discussed in Chapter 6. This may also form the basis of a future extension to this work

that includes knowledge-based assessments, which will be discussed in Chapter 8.

Following that, slides from the Introduction to Computing Science class80 are used to

introduce the topic of artificial intelligence. The slides include a few videos on the topic, and

briefly discusses the background and history of artificial intelligence. This culminates in a

lively discussion of the classic Turing test and its counterpoint, the Chinese room experiment.

This gives the instructor a chance to ask students their own thoughts on what would make a

computer seem intelligent, and how to determine if a computer is truly acting with a human

level of intelligence. Typically, through this discussion most students find it very difficult

to determine exactly what intelligence is and how to determine if a computer is intelligent,

mirroring many experts’ views on the subject. This process continues to build upon the

abstraction, problem decomposition, and questioning skills in computational thinking.
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Next, students are introduced to the concept of artificial neural networks as one method

for building an artificially intelligent computer. They also are shown the early belief that

a computer structured like the human brain, with neurons and synapses, should be able to

think like a human brain to support this concept. The discussion also describes how a neural

network is trained, and how that mirrors learning in the brain.

The first activity of the day is an unplugged activity originally designed by the author for

the Introduction to Computing Science class,80 simulating how to train a neural network to

identify if a picture contains a cat or a dog. Each student is given a small section of a larger

image, and then asked to look only at their section and vote if the whole image contains

a cat or a dog. Some students will have sections from the center of the image, making it

simple. Other students will have sections near the edge, containing very little if any useful

information. As students vote, the results are counted and presented to the class. Students

who vote correctly are given more heavily weighted votes for the next round, typically by

grouping them in the classroom based on the number of correct votes. In addition, one of

the images is revealed to be a bear, prompting a discussion about what would happen if the

training data is incorrect or misleading.

After a few rounds, the students should be split into several groups. Students then reveal

which section of the pictures each student has, observing that students with sections near

the center of the picture typically have guessed correctly more times than students with

sections near the edge. This helps demonstrate that a neural network can be trained to be

correct more often by changing how much weight each neuron is given.

Following the activity, students are presnted information about a famous incident where

neural networks failed, as well as shown a video of a neural network learning how to play a

video game, which gives a very clear view of how a neural network can be built over time

using evolutionary programming. While it is a bit advanced for most middle-school students,

it clearly links the field of artificial intelligence to video games, helping to connect it with an

area of interest to many students. The overall goal of these hands-on activities is to provide

additional framing for the field of computer science within the larger scope of the world.

The next activity involves creating artificially intelligent agents for a video game. Stu-

36



Figure 3.6: Pac-Man in Scratch

denst are provided with a scaffolded Scratch program that resembles the classic Pac-Man

arcade game.82 In the original game, each of the four ghost enemies had a unique artifi-

cial intelligence algorithm controlling its movement.83 For this activity, the instructor leads

the students through creating three of them using a two-phase intelligent agent framework,

consisting of perceive and act phases. In the perceive phase, each agent will determine the

location or locations it intends to move toward. In the act phase, it will choose a single

option and move in that direction. In doing so, students are once again shown how they can

use problem decomposition to make large programs simpler to build, as well as reiterating

many skills they’ve covered earlier in the week. A screenshot of this activity is shown in

Figure 3.6.

The final activity uses one more situation from the source material for the theme. In this

instance, the main character must traverse the surface of Mars to get to a new area. While

doing so, he must avoid several roadblocks along the way. For this activity, students start

with a scaffolded Scratch program that simulates a Martian surface with three randomly

placed obstacles between the vehicle and the goal. Students use what they’ve learned to

build an artificially intelligent agent to avoid the obstacles, following the same two-phase

model as in the previous activity. Once they have successfully created a program to reach
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Figure 3.7: Mars Pathfinding AI in Scratch

the goal, students are encouraged to modify their program to try and reduce the length of

the path taken by adjusting how the agent makes decisions. This culminating activity also

reinforces many previously covered skills from computational thinking. A screenshot of this

activity is shown in Figure 3.7.

At the end of the week, each student once again completes the survey given at the

beginning of the week. That data is used to demonstrate any changes in student self-efficacy

and familiarity with computer science concepts. The assessments are discussed in Chapter 5

and the results are given and discussed in Chapters 6 and 7.

The major topics covered in day 4, annotated with the related computational thinking

skills from Table 2.1, are listed below. They are also placed within the revised Bloom’s

taxonomy in Table 3.4.

1) Understand what the field of artificial intelligence entails (QUE)

2) Discuss the Turing test and Chinese room experiment (ABS, DEC, QUE)

3) Learn how a neural network is trained (ABS, QUE)

4) Implement a two-phase artificial agent for a video game (ALG, ABS, DEC, PAR, CON,

TAD, IAI)
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5) Implement and optimize a pathfinding artificial agent (ALG, ABS, DEC, PAR, CON,

TAD, IAI)

Table 3.4: Revised Bloom’s Taxonomy Analysis of Day 4 Outcomes

Remember Understand Apply Analyze Evaluate Create

Factual 2

Conceptual 1

Procedural 3 4,5

Metacognitive
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Chapter 4

Implementation

The Mission to Mars curriculum was taught to students during the 2016 and 2017 sessions

of the STEM Summer Institute,75 hosted by the Manhattan-Ogden USD 383 school district.

This chapter discusses the structure of the camp and the process of delivering and refining

the lessons over time.

4.1 STEM Camp Structure

STEM Summer Institute is a summer camp for students in 5th grade through 9th grade,

coming primarily from the Manhattan-Ogden USD 383 school district. It was originally

funded through a grant from the United States Department of Defense. The stated goal

of the camp is “to raise student achievement levels and increase enrollments in science,

technology, engineering and math, or STEM, careers.”84

The camp takes place during four weeks each year in June, and is located primarily on

the Kansas State University campus. Students are able to select four classes from a list of

classes available each year, with each class lasting for one week. Most class groups each

week are between 15 and 20 students in size. The camp meets Monday through Thursday

during the week, with students in attendance from 8:30 to 11:30 AM each day. Each Friday

is reserved for teacher activities and planning time.
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Each class is typically marked as appropriate either for younger students in 5th and 6th

grades, or older students in 7th through 9th grades. Mission to Mars was designed for the

younger group of students.

4.2 Teacher Duties

Each year, Mission to Mars was taught cooperatively between a teacher from the Manhattan-

Ogden USD 383 school district, acting as an expert in teaching young students, and a

Computer Science faculty member, acting as a subject-matter expert. During the spring

semester before each summer camp, those individuals would typically meet several times to

discuss ideas for the class and build or refine existing curricula and activities.

In addition, several years the group would also include one or more pre-service teachers

from Kansas State University’s College of Education. They would be assisting with the camp

as part of a teaching experience class for college credit in their program. Their goal was to

gain experience teaching young students in a STEM field, while working with and observing

a more experienced teacher and a subject-matter expert. As part of their responsibilities, the

pre-service teachers were directed to lead at least one lesson each summer, typically during

the last week of camp.

During each camp, the subject-matter expert would typically lead the class for most of

the first week, introducing the curriculum to both the students and the teachers she or he

was partnered with. During the next three weeks, the subject-matter expert would typically

take the lead on fewer and fewer lessons, with the partnered teacher taking the lead as his

or her comfort level allowed. Whenever possible, the teaching group would try to coordinate

their teaching efforts, joining in when appropriate on each lesson with comments or feedback.

In addition, the pre-service teachers would select a lesson and start learning how to present

it. They would typically do so for a grade during the last week of camp.

While presenting the lessons, each teacher and pre-service teacher would constantly move

about the classroom, observing students as they worked. Whenever a student was confused,

had a question, or was unable to keep up with an activity, a nearby teacher would usually
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jump in and help without disrupting the rest of the class. In addition, other teachers were

encouraged to contribute to the class at any time if they had a comment, suggestion, or

correction. Many times they were able to observe students acting confused much more

quickly than the teacher leading the lesson. Since the class itself is very short, it is important

to always keep the students on task and deal with issues quickly.

At the end of each week, the teachers would typically meet as a group to discuss the

class and any changes that needed to be made. Through that process, the curriculum was

continually changed and improved as questions arose or ideas were presented. In addition,

teachers were required to submit formal lesson plans each year, which would typically be

written by the USD 383 teacher in coordination with the pre-service teachers.

During the summer of 2016, recordings were made while teaching several of the lessons.

This was primarily for students who were unable to attend class or if they wanted to review

what was covered later on. The video recordings also served as a valuable aid for teachers

who were asked to lead the lessons in 2017, when the primary author of the curriculum was

unavailable to work as a subject-matter expert. In addition, prior to the 2017 session, the

author formalized the curriculum by creating lesson plans for each day that could be shared

with future teachers. Those lesson plans, along with the associated activities and slides,

serve as the primary artifacts for the curriculum.
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Chapter 5

Assessment

As discussed in section 2.4, there are three major methods to assess student learning. The

first method, knowledge assessments, can produce some of the strongest results. By directly

assessing student learning and retention, it is trivial to demonstrate that the class was

effective in changing the students’ understanding of the field. Unfortunately, knowledge

assessments can be very time-consuming to construct and perform, and typically take the

form of a test or quiz that students must complete. Because this curriculum was developed

for a summer STEM camp, it was decided that performing knowledge assessment through

tests or quizzes was not in keeping with the fun spirit of the camp. However, Chapter 8 will

discuss one possible area of future work to informally include knowledge assessments.

Another method of student assessment is code analysis. While the students create several

code artifacts throughout the camp, many of them are heavily scaffolded and do not require

students to perform much independent work to complete the projects. Therefore, most

student submissions would be so similar as to invalidate any observations of actual student

performance. This method may be applicable for future versions of the curriculum targeted

at older students.

Therefore, the third type of assessment presented, self-efficacy assessment, was used for

this project. By measuring changes in student confidence and self-efficacy with computa-

tional thinking skills and programming concepts, this project seeks to demonstrate that the
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course has had a positive impact on students. Each year, pre- and post-surveys of student

experiences were conducted to gather this data.

5.1 Surveys

The survey instrument used for this project is primarily detailed in Weese and Feldhausen.8

That paper details a self-efficacy survey that collects information about student attitudes

regarding their own ability to think computationally and create computer programs. While

the original survey was designed to determine if student self-efficacy in computational think-

ing and problem solving are correlated, the data regarding computational thinking is still

relevant for this project. Therefore, the questions regarding problem solving are not included

in this presentation of the survey and results, but were originally included in the survey given

to students.

The questions are linked to accompanying skills in computational thinking and com-

puter science detailed previously in Table 2.1. A summary of questions and their related

computational thinking skills are presented in Table 5.1.

Cronbach’s Alpha was used to measure the internal consistency of the survey questions

on computational thinking skills. The Cronbach’s Alpha of the 2016 pre-survey was 0.859,

the 2016 post-survey was 0.866, the 2017 pre-survey was 0.882, and the 2017 post-survey was

0.836. All of those values show a good internal consistency, demonstrating that the survey

is reliable.

Along with the self-efficacy information, the survey collected some information about

students’ previous experiences with computer programming, STEM outreach events, and

previous attendance at the STEM Summer Institute, as well as some very basic demographic

information. In addition, in 2017 questions were added to elicit information about students’

socio-economic status, based on the works of Entwisle and Astone,85 Currie et al.,86 and

Hauser.87 This information can be used to group the results based on some student charac-

teristics that are of interest to this project.
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Table 5.1: Self-Efficacy Survey Questions and Related CT Skill8

I can write a computer program which...

10 runs a step-by-step sequence of commands ALG - Algorithms
11 does math operations like addition and subtraction ALG - Algorithms
12 uses loops to repeat commands CON - Control Flow
13 responds to events like pressing a key on the keyboard CON - Control Flow
14 only runs specific commands when a specific condition

is met
CON - Control Flow

15 does more than one thing at the same time PAR - Parallelization
16 uses messages to talk with different parts of the program PAR - Parallelization
17 can store, update, and retrieve values DAT - Data
18 uses custom blocks ABS - Abstraction

When creating a computer program I...

19 make improvements one step at a time and work new
ideas in as I have them

IAI - Incremental and Iter-
ative

20 run my program frequently to make sure it does what I
want and fix any problems I find

TAD - Testing and Debug-
ging

21 share my programs with others and look at others’ pro-
grams for ideas

USE - Reuse and Remix

22 break my program into multiple parts to carry out dif-
ferent actions

DEC - Problem Decomposi-
tion

Impact

23 I understand how computer programming can be used
in my daily life

QUE - Questioning
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Chapter 6

Results

The results from the surveys for the 2016 and 2017 summer camps are presented here. A

full discussion of the results and inferred information can be found in Chapter 7.

6.1 Survey Result Data

For each survey, Cohen’s d effect size was calculated as a measure of the size of the change in

student scores from the pre-survey to the post-survey.88 Entries with significant p-values less

than 0.01 are shaded. Significant effect sizes are marked according to Cohen’s recommended

reference points as follows:88

• Small effect ≥0.2 is italicized

• Medium effect ≥0.5 is bolded

• Large effect ≥0.8 is bolded and italicized

Rows are marked by the computational thinking skills listed in Table 2.1. The results also

grouped by how each skill was framed in the survey instrument presented in Table 5.1, with

“CT” representing skills framed within computational thinking from survey questions 10-23.

The columns are marked with the following abbreviations for various student groupings:

• Male - Male-identifying students
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• Female - Female-identifying students

• NoS - Haven’t previously attended a STEM event

• STEM - Have previously attended a STEM event

• OutS - Have previously attended a STEM event outside of STEM Summer Institute

• SI - Have previously attended STEM Summer Institute

• SB - Have previously attended STARBASE89

• >$10 - More than $10 in weekly spending money

• ≤$10 - $10 or less in weekly spending money

• Cell - Have a cell phone of their own

• NoC - No cell phone of their own

• MS - At least one parent has MS degree or higher

• NoMS - No parent has MS degree or higher

Results from the summer 2016 cohort are given in Table 6.1, and similarly results from

the summer 2017 cohort are presented in Table 6.2. Unfortunately, the post-survey was not

given to one of the classes during the summer 2017 cohort, so only valid surveys from the

other three weeks are included, leading to a smaller number of student responses overall.

Combined results for both summer sessions are given in Table 6.3.
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6.2 Knowledge Assessment Results

In addition to the survey results, during the summer of 2016 an online trivia game creator

was used to collect some rudimentary data regarding student knowledge retention. The

game consisted of seven to eight multiple-choice questions, with each student responding

individually on her or his computer or mobile device. While the trivia game awarded more

points to students who answered quickly, students were encouraged to take their time to

come up with the correct answer.

The questions used, as well as the correct response rate for students each week, are given

in Table 6.4.

Table 6.4: Knowledge Assessment Questions and Correct Response Rate

Question Wk1 Wk2 Wk3 Wk4

1. What is a character called in Scratch? 100% 88% 100% 100%
2. How do you start the action in Scratch? 94% 91% 87% 100%
3. What is the difference between a list and a variable? 94% 94% 80% 69%
4. Which tool allows you to duplicate code? 76% 100% 100% 100%
5. Who came up with the GCD algorithm? 71% 88% 53% 62%
6. Which blocks would you use to compare numbers? 29% 94% 93% 92%
7. What is the number 8 in binary? 41% 47% 40% 31%
8. What is the purpose of a simulation? N/A 94% 100% 100%
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Chapter 7

Discussion of Results

This chapter contains the analysis and discussion of the results presented in Chapter 6. It

will address each research question individually.

7.1 Research Question 1

RQ1) What is the impact of this curriculum on student self-efficacy with com-

putational thinking skills?

The 2016 results in Table 6.1 show a small or medium effect size for each computa-

tional thinking skill except for testing and debugging (CT-TAD). In addition, all but two

of those skills also have a p-value less than 0.01, confirming their significance. This clearly

demonstrates an increase in student self-efficacy with computational thinking skills in 2016.

The 2017 results in Table 6.2 show a small or medium effect size for each computational

thinking skill except for iterative and incremental development (CT-IAI) and reuse and

remix (CT-USE). Of those, only 4 have p-values less than 0.01: algorithms (CT-ALG),

parallelization (CT-PAR), data (CT-DAT), and control flow (CT-CON). While there are

not as many significant results in this year’s data, it still shows an increase in student self-

efficacy in 2017.

The combined results from 2016 and 2017 in Table 6.3 are similar, with each compu-
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tational thinking skill except for iterative and incremental (CT-IAI) and reuse and remix

(CT-USE) showing a small or medium effect size. Of those, all except testing and debugging

(CT-TAD) have a p-value less than 0.01. Those results also support the claim that students

experience an increase in self-efficacy with computational thinking skills as a result of the

curriculum.

Based on this analysis of the results, the curriculum does appear to cause an increase in

student self-efficacy with several computational thinking skills, answering the first research

question.

7.2 Research Question 2

RQ2) What is the relationship between the computational thinking skills covered

in the curriculum and the student self-efficacy with those skills?

The curriculum design given in Chapter 3 describes the computational thinking skills

covered each day, as well as the level at which it is covered according to Bloom’s revised

taxonomy. Using that information, the computational thinking skills covered most often and

at depth are algorithms (CT-ALG) and abstraction (CT-ABS). Other skills that are covered

often are data (CT-DAT), iterative and incremental development (CT-IAI), and testing and

debugging (CT-TAD). These five computational thinking skills comprise the core skills of

the curriculum for the purpose of this analysis.

In the 2016 results given in Table 6.1, three of the five computational thinking skills with

medium effect size are represented in the core skills given above: algorithms (CT-ALG),

abstraction (CT-ABS) and data (CT-DAT). Each has a p-value less than 0.01, indicating a

significant result. Iterative and incremental development (CT-IAI) has a small effect size,

while testing and debugging (CT-TAD) does not have an effect size large enough to be

considered meaningful. So, while three of the five core skills clearly show an increase in

student self-efficacy, two of them do not.

The 2017 results given in Table 6.2, three of the four computational thinking skills with

medium effect size are represented in the core skills given above: algorithms (CT-ALG),
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data (CT-DAT), and testing and debugging (CT-TAD). With the exception of testing and

debugging (CT-TAD), each has a p-value less than 0.01, indicating a significant result.

Abstraction (CT-ABS) has a small effect size, while iterative and incremental development

(CT-IAI) does not have an effect size large enough to be considered meaningful. Once again,

three of the five skills clearly show an increase in self-efficacy, while two of them do not.

The combined results from 2016 and 2017 in Table 6.3 are similar to those given above.

Two of the three computational thinking skills with medium effect size are represented in the

core skills given above: algorithms (CT-ALG) and data (CT-DAT). Each has a p-value less

than 0.01, indicating a significant result. Abstraction (CT-ABS) and testing and debugging

(CT-TAD) have small effect sizes, with abstraction (CT-ABS) also possessing a significant

p-value. Iterative and incremental development (CT-IAI) does not have an effect size large

enough to be considered meaningful.

Based on the analysis given above, there is a loose correlation between the computational

thinking skills presented in the curriculum and the increase in student self-efficacy with those

skills. Algorithms (CT-ALG) and data (CT-DAT) have a medium effect size in each data set

with a significant p-value, and a majority of the computational thinking skills with medium

effect sizes in each data set are represented in the five core skills listed earlier in this section.

The representation of the core skills in the data set varies each year, but in general each set

shows that the core skills are represented well among the skills with the highest effect size.

7.3 Research Question 3

RQ3) What is the relationship between student factors such as gender, previous

STEM experience, or socio-economic status indicators and the observed student

self-efficacy with computational thinking skills?

Each of the surveys also collected demographic data from each student, allowing the

creation of population groups to further analyze the data. While some of the population

groups are very small, they can provide additional insight into the types of students attend-

ing the camp, what effect the curriculum has, and how that could possibly relate to their
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background.

The first population grouping analyzed was based on self-reported student gender. As

shown in Table 6.3, there were 63 males and 26 females across both cohorts. The effect size

for many skills was similar between the two groups, with the largest differences observed in

problem decomposition (CT-DEC), where females outperformed males, and data (CT-DAT),

where males outperformed females. In addition, males had a much larger overall effect size in

the impact area (CT-QUE). While it may be tempting to draw conclusions about this result,

it is difficult to find any research that supports a clear relation between gender and ability

to perform computational tasks. Instead, much of the difference is attributed to how each

gender is encouraged or discouraged to pursue certain careers or interests. Additionally, the

major differences can be attributed to a small sample size and individual variation between

students and their previous experiences.

The next population group considered includes students with previous STEM experience

(STEM) and students without previous STEM experience (NoS). There were very few major

differences between these two groups, with the only large difference in the data (CT-DAT)

area where students with previous STEM experience had a much larger effect size. Interest-

ingly, students without previous STEM experience had a somewhat larger effect size in the

overall impact area (CT-QUE). This could be indicative of students with previous experience

being more able to learn new concepts easily by building on their existing knowledge and

interest, such as when working with data representation on the third day of the curriculum.

This is a key expected outcome from both the constructivist and constructionist paradigms in

education. Students without previous experience gained more overall by working with com-

puters and becoming much more comfortable with computer programming itself, outside of

any particular skill.

Similarly, groups of students who had previously attended the STEM Summer Institute

(SI), students who had attended another STEM event outside of STEM Summer Institute

(OutS), and students who had previously attended STARBASE (SB), a structured STEM

program for 5th graders in the area,89 were analyzed. Once again, there was not a large

difference observed between the three groups. The most notable difference was observed
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in the STEM Summer Institute group, who had a lower effect size in both the abstraction

(CT-ABS) and problem decomposition (CT-DEC) skills. This difference could be due to the

fact that those students have already gained some experience working with those areas at

previous STEM Summer Institute classes.

In 2017, some questions were added to the survey to learn more about the students’

socioeconomic status. The three groupings are based on student weekly spending money

(>$10, ≤$10), whether the student had a cell phone of their own (Cell, NoC), and whether

one or more parent had at least a master’s degree (MS, NoMS). The groupings based on

spending money and parent’s education are inconclusive due to small sample size. Only 4

students reported having more than $10 in weekly spending money, and only 2 students

reported neither parent with at least a master’s degree. One interesting result is that a vast

majority of students attending the course had at least one highly-educated parent. It could

indicate a connection between the parents’ education level and the participation of students

in optional educational camps such as this one.

The third grouping, based on student cell phone possession, does provide a bit of infor-

mation. Generally, students who had access to a cell phone of their own had much larger

effect sizes than students who didn’t. This could be attributed to a couple of factors. One

factor is that students who have easy access to a cell phone are much more comfortable

and familiar with technology, making it easier for them to learn computer programming

and computational thinking skills. Similarly, students who have a cell phone tend to have

a higher socioeconomic status, so there may be additional outside factors giving them an

advantage over their peers.

7.4 Knowledge Retention

The knowledge assessment results in Table 6.4 also provide a few interesting insights. While

the questions asked are in no way intended to be a true measure of student knowledge, they

serve as a good first-step in that direction. For most questions, students responded correctly

at a rate of 80% or higher. The questions students struggled with the most were questions
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5 and 7. In the case of question 5, it requires remembering a name that was only briefly

mentioned a couple of times on the second day of class. For question 7, it shows that their

familiarity with binary does not hold very well the next day. However, because students

may have been under pressure to respond quickly, they could have selected an option that

appeared correct without careful consideration. This will be one area of interest in future

knowledge assessments.

Also, worth noting is the result from question 6 on week 1. During the first week, the

options for that question were “sensing,” “operators,” “data,” and “operators and data.”

The last option was correct, but many students incorrectly chose “operators” based on their

extensive experience using those blocks. For the later weeks, that question was adjusted

to accept either “operators” or “data” as a correct answer, resulting in much better results

from students.
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Chapter 8

Future Work

While this project has yielded many unique artifacts and outcomes, there are still several

areas that could be improved. This chapter discusses some areas of future work and im-

provement based on this project.

8.1 Rewrite using Educational Theory and Previous

Results

The first major area of future work would be to rebuild the curriculum from the ground up,

following what has been learned researching educational theory and analyzing the results

of the previous curriculum. When the Mission to Mars curriculum was first created, it

was done to fill the immediate need for a curriculum for an upcoming summer camp. At

that time, the author did not have much experience with educational research, and relied

primarily on experience as a teacher and intuition from helping with this and other STEM

outreach events.

The next goal would be to continue this work by recreating the curriculum, using con-

cepts from cognitive apprenticeship, extensive framing, and scaffolded lessons to reach the

zone of proximal development, as discussed in Chapter 2. Linking the curriculum to these

concepts will strengthen the connection between observed results and the exact ways that
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the curriculum has achieved those outcomes through the use of these concepts.

In addition, many students attend the STEM Summer Institute multiple years, so several

students end up attending the same class more than once. By having additional curricula

available, it helps avoid using the same curriculum in sequential years.

Finally, by building on the results from the self-efficacy surveys, it will help identify areas

of weakness in the current curriculum so they can be addressed more directly in the design

of lessons and activities.

8.2 Knowledge Assessments

The second significant area of future work involves creating formal knowledge assessments.

While the current self-efficacy instrument is very useful and should continue to be used,

additional instruments to measure student knowledge gains as a result of the curriculum

would also be helpful. By linking student knowledge gains to changes in self-efficacy, it will

further establish the link between student outcomes and their own confidence in working

with the field.

In addition, it will help reveal more about students’ prior knowledge coming to the

camp. Using a pre-test to determine what areas students already have experience with, the

curriculum can be adapted to meet their unique backgrounds and interests.

8.3 Languages

Currently, the curriculum is designed to use the Scratch programming environment.20 How-

ever, there are many additional tools and environments available that could be considered.

Some possible areas would be moving to a text-based programming language such as Python,

or building a new environment based on Scratch or Google’s Blockly library.90

In addition to using a different language, it would increase the amount data that can be

collected from students based on their programming environment. Currently, Scratch does

not have a way to collect data beyond the resultant projects that students create. However,
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many other environments will collect intermediate data as students work on their projects,

providing a greater ability to analyze student thought processes and techniques used to

complete the projects.

8.4 Other Venues

In addition to the STEM Summer Institute, in the future this curriculum could be adapted for

other venues. Some possible examples would be the Hour of Code,91 other STEM outreach

events, or even more in-depth programming classes for young students.

Beyond that, many of the activities in this curriculum could be adapted into stand-alone

lessons for teachers at various grade levels. A few activities were inspired by or adapted

from activities already used in the author’s own college teaching experience, and they could

easily be used in many other settings.

8.5 Code Analysis

The last area of future work identified is related to code analysis. By collecting additional

information from the programming environment, code analysis techniques from the field of

big data can be used to gain further insight into the knowledge and thought processes of

students as they complete the projects. Fields et al.71 provides a good starting point for this

area of further research, as they collected and analyzed data from a Scratch-based summer

camp very similar to the STEM Summer Institute.
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Chapter 9

Conclusion

This thesis presents a curriculum, named Mission to Mars, for 5th and 6th grade students

attending a STEM summer camp. The curriculum aims to increase student self-efficacy

working with computational thinking skills through computer programming with hands-on

activities and scaffolded programming projects. It also employs expansive framing through

the use of a common theme from popular culture to increase student interest.

By collecting data from two cohorts of the summer camp, the following research questions

were addressed.

RQ1) What is the impact of this curriculum on student self-efficacy with computational

thinking skills?

RQ2) What is the relationship between the computational thinking skills covered in the

curriculum and the student self-efficacy with those skills?

RQ3) What is the relationship between student factors such as gender, previous STEM expe-

rience, or socio-economic status indicators and the observed student self-efficacy with

computational thinking skills?

Regarding RQ1, analysis of the results shows that this curriculum increases student self-

efficacy with several computational thinking skills. For RQ2, the data shows that the core

skills addressed in the curriculum make up a majority of the skills with the highest measured
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effect size for the increase in student self-efficacy. This provides evidence that those core

skills are correlated with measured increases in student self-efficacy with those skills. To

answer RQ3, many of comparisons made between different student groupings do not result

in significant differences between the groups, showing that there may not be a relationship

between student factors and observed self-efficacy. While some differences are present, many

of them could be the result of individual student differences.

With these results, the curriculum does appear to result in an increase in student self-

efficacy with many computational thinking skills, and the skills focused upon in the cur-

riculum generally show larger effect sizes in student self-efficacy than other skills. This

demonstrates the effectiveness of the curriculum overall, making it a useful result of this

work.
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Appendix A

Mission to Mars Curriculum

This appendix contains the full lecture notes for the Mission to Mars curriculum. The

associated slides, activities, and other materials are available online at

http://people.cs.ksu.edu/~russfeld/curriculum/.
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Mission​ ​to​ ​Mars​ ​-​ ​USD​ ​383​ ​Summer​ ​STEM​ ​-​ ​Day​ ​1 
Summer​ ​2017 

 
Learning​ ​Objectives 

● Students​ ​will​ ​be​ ​able​ ​to​ ​navigate​ ​and​ ​use​ ​Scratch​ ​with​ ​a​ ​basic​ ​knowledge,​ ​build​ ​scripts, 
and​ ​draw​ ​within​ ​the​ ​program 

 
Resources 

● Slides:​ ​​http://people.cs.ksu.edu/~russfeld/presentations/stem2017/day1.html  
● Code.org​ ​video:​ ​​https://www.youtube.com/watch?v=nKIu9yen5nc  
● Scratch​ ​Website:​ ​​http://scratch.mit.edu 
● Scratch​ ​Wiki​ ​on​ ​Blocks:​ ​​http://wiki.scratch.mit.edu/wiki/Blocks  
● Scratch​ ​Spirograph:​ ​​http://scratch.mit.edu/projects/21326308/ 

 
Lesson​ ​Setup​ ​Before​ ​Class 

● Log​ ​on​ ​to​ ​computers​ ​using​ ​STEM​ ​accounts 
● Have​ ​​Spirograph​ ​​Scratch​ ​file​ ​available​ ​on​ ​the​ ​Scratch​ ​website 

 
Schedule 

● 9:00​ ​-​ ​Icebreaker 
● 9:15​ ​-​ ​STEM​ ​Surveys​ ​&​ ​Accounts 
● 9:30​ ​-​ ​Videos 
● 9:45​ ​-​ ​Learning​ ​Scratch 
● 10:15​ ​-​ ​Break 
● 10:20​ ​-​ ​Shapes​ ​in​ ​Scratch 
● 10:50​ ​-​ ​Spirograph 
● 11:00​ ​-​ ​Wrap-Up 

 
Lecture​ ​Notes 

1. [​Icebreaker​]​ ​Have​ ​teachers​ ​introduce​ ​and​ ​give​ ​a​ ​bit​ ​of​ ​information​ ​about​ ​themselves 
and​ ​what​ ​they’d​ ​like​ ​to​ ​achieve​ ​during​ ​the​ ​camp.​ ​Go​ ​around​ ​the​ ​room​ ​and​ ​have​ ​each 
student​ ​introduce​ ​herself/himself​ ​and​ ​say​ ​what​ ​they​ ​want​ ​to​ ​learn​ ​from​ ​the​ ​camp.​ ​You 
could​ ​also​ ​encourage​ ​students​ ​to​ ​ask​ ​any​ ​questions​ ​they​ ​have​ ​about​ ​the​ ​instructors​ ​or 
the​ ​class,​ ​just​ ​to​ ​set​ ​the​ ​stage​ ​for​ ​an​ ​open​ ​forum​ ​of​ ​ideas​ ​(provided​ ​it​ ​is​ ​PG​ ​rated,​ ​of 
course). 

 
2. [​Surveys​]​ ​Before​ ​we​ ​get​ ​started,​ ​we’d​ ​like​ ​you​ ​to​ ​do​ ​an​ ​online​ ​survey​ ​about​ ​what​ ​you 

know​ ​so​ ​far.​ ​This​ ​helps​ ​with​ ​K-State’s​ ​research​ ​about​ ​how​ ​to​ ​teach​ ​students​ ​to​ ​be 
computer​ ​programmers​ ​more​ ​effectively. 

 
<<<STEM​ ​Surveys​ ​and​ ​Online​ ​Account​ ​Setup​ ​Here>>> 
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3. [​Code.org​ ​Video​]​ ​Computer​ ​Science​ ​is​ ​becoming​ ​an​ ​important​ ​part​ ​of​ ​many​ ​different 

fields,​ ​and​ ​knowledge​ ​of​ ​how​ ​computers​ ​work​ ​could​ ​be​ ​vital​ ​in​ ​the​ ​future.​ ​Code.org​ ​is​ ​a 
non-profit​ ​organization​ ​founded​ ​to​ ​help​ ​bring​ ​Computer​ ​Science​ ​to​ ​young​ ​people​ ​in 
schools​ ​and​ ​beyond.​ ​Let’s​ ​take​ ​a​ ​look​ ​at​ ​their​ ​video​ ​promoting​ ​what​ ​they’d​ ​like​ ​to 
accomplish.​ ​​<Show​ ​Video>​. 

a. Discussion​ ​Points: 
i. What​ ​do​ ​you​ ​think​ ​about​ ​this​ ​video? 
ii. Do​ ​you​ ​think​ ​learning​ ​how​ ​computers​ ​work​ ​is​ ​important?​ ​Why/Why​ ​not? 
iii. What​ ​are​ ​some​ ​of​ ​the​ ​things​ ​you​ ​do​ ​every​ ​day​ ​that​ ​use​ ​computers?​ ​Can 

you​ ​do​ ​them​ ​without​ ​computers? 
 

4. [​The​ ​Martian​ ​Video​]​ ​How​ ​can​ ​computer​ ​science​ ​be​ ​used​ ​in​ ​the​ ​real​ ​world?​ ​To​ ​help 
show​ ​how​ ​useful​ ​it​ ​is,​ ​this​ ​week​ ​we’re​ ​going​ ​to​ ​put​ ​ourselves​ ​in​ ​the​ ​shoes​ ​of 
programmers​ ​at​ ​NASA​ ​working​ ​on​ ​a​ ​unique​ ​situation:​ ​someone​ ​is​ ​stranded​ ​on​ ​Mars! 
How​ ​many​ ​of​ ​you​ ​have​ ​seen​ ​the​ ​movie​ ​“The​ ​Martian”?​ ​<get​ ​feedback>​ ​Let’s​ ​take​ ​a​ ​look 
at​ ​this​ ​clip​ ​from​ ​the​ ​start​ ​of​ ​the​ ​movie​ ​so​ ​we​ ​know​ ​what​ ​is​ ​going​ ​on.​ ​​<Show​ ​Video>.​ ​​This 
week,​ ​we’ll​ ​tackle​ ​several​ ​issues​ ​presented​ ​in​ ​the​ ​movie​ ​and​ ​show​ ​how​ ​computer 
science​ ​can​ ​help​ ​us​ ​bring​ ​him​ ​home!  

 
5. [​Schedule​]​ ​Here’s​ ​today’s​ ​Schedule:​ ​​<refer​ ​to​ ​slide> 

 
6. [​Introduce​ ​Scratch​]​ ​​Have​ ​students​ ​load​ ​the​ ​Scratch​ ​website,​ ​then​ ​instruct​ ​them​ ​to​ ​click 

on​ ​the​ ​Create​ ​button​ ​at​ ​the​ ​top.​ ​That​ ​will​ ​take​ ​them​ ​directly​ ​to​ ​the​ ​main​ ​Scratch​ ​editor. 
Take​ ​some​ ​time​ ​to​ ​describe​ ​the​ ​different​ ​parts​ ​of​ ​the​ ​Scratch​ ​editor: 

a. The​ ​Stage 
i. Editing​ ​Backdrops 
ii. Editing​ ​Sounds 
iii. X​ ​&​ ​Y​ ​Coordinates​ ​(can​ ​relate​ ​back​ ​to​ ​cartesian​ ​coordinates​ ​in​ ​geometry) 
iv. X​ ​ranges​ ​from​ ​-240​ ​to​ ​240​ ​and​ ​Y​ ​ranges​ ​from​ ​-180​ ​to​ ​180​ ​(480​ ​x​ ​360 

size) 
b. The​ ​Sprites 

i. How​ ​to​ ​choose​ ​a​ ​new​ ​sprite​ ​from​ ​the​ ​library 
ii. How​ ​to​ ​create​ ​a​ ​sprite​ ​from​ ​an​ ​uploaded​ ​image 
iii. How​ ​to​ ​paint​ ​a​ ​new​ ​sprite​ ​from​ ​scratch 
iv. Duplicating​ ​Sprites 
v. Deleting​ ​Sprites 
vi. Renaming​ ​Sprites​ ​(click​ ​the​ ​blue​​ ​(​ ​i​ ​)​ ​​on​ ​the​ ​sprite​ ​when​ ​selected) 
vii. Editing​ ​Sprite​ ​Costumes 
viii. Editing​ ​Sounds 

c. The​ ​Palette​ ​(​http://wiki.scratch.mit.edu/wiki/Blocks​)  
i. Motion​ ​-​ ​Blocks​ ​that​ ​move​ ​sprites​ ​around​ ​the​ ​screen 
ii. Looks​ ​-​ ​Blocks​ ​that​ ​change​ ​how​ ​sprites​ ​or​ ​backgrounds​ ​look 
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iii. Sound​ ​-​ ​Blocks​ ​that​ ​will​ ​play​ ​sounds​ ​and​ ​adjust​ ​volume 
iv. Pen​ ​-​ ​Blocks​ ​that​ ​will​ ​draw​ ​on​ ​the​ ​screen​ ​using​ ​sprites​ ​as​ ​the​ ​pen 
v. Data​ ​-​ ​Blocks​ ​for​ ​storing​ ​data​ ​into​ ​variables​ ​and​ ​lists 
vi. Events​ ​-​ ​Blocks​ ​for​ ​starting​ ​and​ ​stopping​ ​the​ ​program 
vii. Control​ ​-​ ​Blocks​ ​for​ ​altering​ ​the​ ​flow​ ​of​ ​the​ ​program 
viii. Sensing​ ​-​ ​Blocks​ ​for​ ​learning​ ​the​ ​state​ ​of​ ​the​ ​program​ ​and​ ​getting​ ​input 
ix. Operators​ ​-​ ​Blocks​ ​for​ ​mathematics,​ ​boolean,​ ​and​ ​string​ ​operations 
x. More​ ​Blocks​ ​-​ ​Create​ ​your​ ​own​ ​blocks​ ​to​ ​simplify​ ​your​ ​programs 

d. Block​ ​Shapes​ ​(​http://wiki.scratch.mit.edu/wiki/Blocks​)  
i. “Hat”​ ​blocks​ ​-​ ​they​ ​start​ ​the​ ​program​ ​based​ ​on​ ​the​ ​condition​ ​specified​ ​(ex: 

When​ ​green​ ​flag​ ​clicked) 
ii. “C”​ ​blocks​ ​-​ ​they​ ​have​ ​code​ ​inside​ ​them​ ​that​ ​runs​ ​at​ ​specific​ ​times​ ​based 

on​ ​the​ ​block​ ​(if,​ ​repeat,​ ​forever,​ ​etc.) 
iii. “Hat”​ ​blocks​ ​-​ ​Stop​ ​All,​ ​Forever,​ ​Delete​ ​this​ ​Clone 
iv. “Stack”​ ​blocks​ ​-​ ​Standard​ ​blocks 
v. “Reporter”​ ​blocks​ ​-​ ​these​ ​blocks​ ​report​ ​values​ ​such​ ​as​ ​numbers,​ ​strings, 

etc.​ ​(rounded​ ​edges) 
vi. “Boolean”​ ​blocks​ ​-​ ​these​ ​blocks​ ​are​ ​for​ ​representing​ ​boolean​ ​values 

(angled​ ​edges) 
e. Menus 

i. File​ ​>​ ​Downloading​ ​to​ ​your​ ​computer 
ii. File​ ​>​ ​Upload​ ​from​ ​your​ ​computer 
iii. Edit​ ​>​ ​Undelete 

f. Ask​ ​for​ ​questions​ ​/​ ​Give​ ​students​ ​some​ ​time​ ​(5-10​ ​minutes)​ ​to​ ​play​ ​around​ ​and 
discover​ ​how​ ​it​ ​works​ ​on​ ​their​ ​own.  

 
7. [​Getting​ ​Started​ ​with​ ​Scratch​] 

a. Introduce​ ​various​ ​blocks​ ​(below​ ​are​ ​some​ ​suggestions) 
i. Events​ ​-​ ​When​ ​green​ ​flag​ ​clicked 
ii. Motion​ ​-​ ​all 
iii. Looks​ ​-​ ​say​ ​/​ ​think,​ ​next​ ​costume 
iv. Sound​ ​-​ ​play​ ​sound 
v. Pen​ ​-​ ​clear,​ ​pen​ ​down,​ ​pen​ ​up 
vi. Data​ ​-​ ​(none​ ​at​ ​this​ ​time) 
vii. Control​ ​-​ ​repeat,​ ​if 
viii. Sensing​ ​-​ ​touching,​ ​ask​ ​/​ ​answer,​ ​timer​ ​/​ ​reset​ ​timer,​ ​key​ ​pressed 
ix. Operators​ ​-​ ​basic​ ​math​ ​(+​ ​-​ ​*​ ​/​ ​) 
x. More​ ​Blocks​ ​-​ ​(none​ ​at​ ​this​ ​time) 

b. Work​ ​with​ ​students​ ​to​ ​build​ ​a​ ​simple​ ​program 
i. Start​ ​by​ ​gliding​ ​a​ ​sprite​ ​across​ ​the​ ​screen​ ​with​ ​the​ ​motion​ ​blocks.​ ​Have​ ​it 

bounce​ ​if​ ​it​ ​hits​ ​an​ ​edge 
ii. Have​ ​the​ ​sprite​ ​play​ ​a​ ​sound​ ​when​ ​it​ ​hits​ ​an​ ​edge 
iii. Create​ ​a​ ​second​ ​sprite,​ ​then​ ​have​ ​it​ ​say​ ​something​ ​when​ ​it​ ​touches​ ​the 
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main​ ​sprite 
iv. Allow​ ​students​ ​ample​ ​time​ ​to​ ​experiment​ ​and​ ​learn​ ​on​ ​their​ ​own 
v. See​ ​​Activity1_Explore.sb2​ ​ ​for​ ​an​ ​example 

c. Students​ ​should​ ​learn: 
i. Simple​ ​motion​ ​blocks 
ii. Working​ ​with​ ​sprites​ ​and​ ​costumes 
iii. Working​ ​within​ ​the​ ​Scratch​ ​environment 

 
8. [​Drawing​ ​in​ ​Scratch​]​ ​See​ ​the​ ​lesson​ ​plans​ ​in​ ​the​ ​“Drawing​ ​in​ ​Scratch”​ ​folder​ ​from 

Nathan​ ​Bean:​ ​​http://www.nathanhbean.com/scratch/ScratchCurriculum/Geometry.zip  
a. Students​ ​should​ ​learn: 

i. Using​ ​the​ ​Pen​ ​blocks 
ii. Using​ ​iteration​ ​(repetition)​ ​to​ ​repeat​ ​actions 
iii. Getting​ ​user​ ​input 
iv. Simple​ ​mathematics​ ​in​ ​Scratch 

b. See​ ​the​ ​​Activity2_*.sb2​​ ​files​ ​for​ ​examples​ ​of​ ​partially​ ​completed​ ​projects 
 

9. [​Spirographs​]​ ​Now​ ​that​ ​we​ ​can​ ​draw​ ​in​ ​Scratch,​ ​let’s​ ​play​ ​around​ ​with​ ​something​ ​even 
more​ ​interesting:​ ​spirographs.  

a. Show​ ​the​ ​slides​ ​to​ ​help​ ​explain​ ​what​ ​a​ ​spirograph​ ​is.​ ​It​ ​includes​ ​some​ ​examples 
of​ ​the​ ​math​ ​that​ ​goes​ ​into​ ​making​ ​a​ ​Spirograph​ ​work,​ ​which​ ​ends​ ​with​ ​the 
formula​ ​for​ ​calculating​ ​the​ ​position​ ​of​ ​the​ ​pencil​ ​at​ ​any​ ​given​ ​time.  

b. Have​ ​the​ ​students​ ​open​ ​the​ ​Scratch​ ​Spirograph​ ​program: 
http://scratch.mit.edu/projects/21326308/ 

c. Let​ ​students​ ​experiment​ ​by​ ​adjusting​ ​the​ ​value​ ​of​ ​the​ ​two​ ​variables.​ ​For​ ​best 
results,​ ​those​ ​values​ ​should​ ​be​ ​“relatively​ ​prime”​ ​which​ ​means​ ​that​ ​they​ ​should 
not​ ​share​ ​any​ ​common​ ​factors.​ ​Prime​ ​numbers​ ​are​ ​a​ ​good​ ​choice​ ​to​ ​use.​ ​Let 
students​ ​share​ ​good​ ​values​ ​that​ ​they​ ​find​ ​with​ ​the​ ​class. 

d. Bonus​:​ ​Show​ ​students​ ​how​ ​to​ ​modify​ ​the​ ​variables​ ​by​ ​hand.​ ​Encourage​ ​them​ ​to 
try​ ​different​ ​values​ ​outside​ ​the​ ​normal​ ​range​ ​(less​ ​than​ ​0,​ ​greater​ ​than​ ​1,​ ​etc.) 

e. Discussion​:​ ​Where​ ​would​ ​this​ ​be​ ​important​ ​in​ ​the​ ​real​ ​world? 
i. Artificial​ ​intelligence​ ​for​ ​games​ ​-​ ​randomly​ ​move​ ​within​ ​a​ ​set​ ​area 
ii. Rotational​ ​motion​ ​-​ ​think​ ​of​ ​the​ ​wheels​ ​of​ ​a​ ​steam​ ​locomotive 
iii. Modeling​ ​how​ ​gears​ ​interlock​ ​and​ ​move​ ​together 

f. Students​ ​should​ ​learn: 
i. Opening​ ​already​ ​created​ ​projects 
ii. Working​ ​with​ ​existing​ ​variables 
iii. Experimenting​ ​within​ ​a​ ​Scratch​ ​program 

 
10. [​Reflections​] 

a. What​ ​did​ ​we​ ​learn​ ​today? 
b. What​ ​can​ ​we​ ​do​ ​with​ ​this​ ​new​ ​knowledge? 
c. What​ ​do​ ​we​ ​want​ ​to​ ​learn​ ​next? 
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d. Any​ ​other​ ​questions? 
 
NOTE:​ ​I​ ​included​ ​a​ ​bunch​ ​of​ ​slides​ ​on​ ​programming.​ ​They​ ​are​ ​good​ ​information​ ​if​ ​you​ ​want​ ​to 
show​ ​how​ ​Scratch​ ​relates​ ​to​ ​real​ ​programming,​ ​as​ ​well​ ​as​ ​what​ ​real​ ​programming​ ​looks​ ​like. 
The​ ​notes​ ​for​ ​those​ ​slides​ ​are​ ​below: 
 

1. [​Source​ ​Code​]​ ​Let’s​ ​say,​ ​for​ ​example,​ ​that​ ​we​ ​want​ ​to​ ​write​ ​a​ ​program​ ​that​ ​will​ ​take​ ​an 
input​ ​from​ ​the​ ​user​ ​and​ ​print​ ​the​ ​result​ ​of​ ​the​ ​number​ ​divided​ ​by​ ​61. 

 
2. [​Scratch​]​ ​To​ ​do​ ​that​ ​in​ ​Scratch,​ ​we​ ​would​ ​use​ ​the​ ​following.​ ​[slide]​ ​As​ ​you​ ​can​ ​see,​ ​this 

program​ ​is​ ​written​ ​in​ ​a​ ​language​ ​that​ ​very​ ​closely​ ​resembles​ ​the​ ​English​ ​language​ ​that 
you​ ​and​ ​I​ ​use​ ​every​ ​day.​ ​That​ ​makes​ ​it​ ​really​ ​easy​ ​for​ ​a​ ​human​ ​to​ ​understand.​ ​Do​ ​you 
think​ ​a​ ​computer​ ​is​ ​able​ ​to​ ​easily​ ​understand​ ​this​ ​language? 

a. Discuss.​ ​Ask​ ​them​ ​why​ ​or​ ​why​ ​not. 
 

3. [​Language​ ​Hierarchy​]​ ​In​ ​fact,​ ​Scratch​ ​as​ ​a​ ​programming​ ​language​ ​is​ ​very​ ​hard​ ​for​ ​a 
computer​ ​to​ ​understand​ ​directly.​ ​Therefore,​ ​it​ ​is​ ​called​ ​a​ ​High​ ​Level​ ​language.​ ​Let’s​ ​look 
at​ ​some​ ​other​ ​examples​ ​of​ ​High​ ​Level​ ​languages. 

 
4. [​C/C++​]​ ​​I​ ​usually​ ​note​ ​how​ ​the​ ​main​ ​function​ ​is​ ​like​ ​a​ ​“hat”​ ​block​ ​in​ ​Scratch 

 
5. [​Java​]​ ​​I​ ​usually​ ​note​ ​how​ ​the​ ​“class”​ ​in​ ​Java​ ​is​ ​like​ ​a​ ​sprite​ ​in​ ​Scratch;​ ​it​ ​can​ ​have 

multiple​ ​functions​ ​of​ ​“hat”​ ​blocks 
 

6. [​C#​]  
 

7. [​Python​]​ ​​I​ ​used​ ​python​ ​in​ ​a​ ​“terminal”​ ​style​ ​here​ ​just​ ​to​ ​show​ ​how​ ​it​ ​can​ ​work​ ​without​ ​the 
framework​ ​code​ ​the​ ​other​ ​languages​ ​require. 

 
8. [​Other​ ​Languages​]​ ​There​ ​are​ ​many​ ​other​ ​high​ ​level​ ​languages​ ​out​ ​there.​ ​Some​ ​of​ ​these 

you​ ​may​ ​work​ ​with​ ​in​ ​the​ ​future,​ ​but​ ​many​ ​of​ ​them​ ​you​ ​may​ ​not​ ​need​ ​at​ ​all​ ​unless​ ​you 
are​ ​in​ ​a​ ​specialized​ ​field.  

 
9. [​Language​ ​Hierarchy​]​ ​The​ ​next​ ​step​ ​in​ ​the​ ​path​ ​of​ ​most​ ​programs​ ​is​ ​to​ ​convert​ ​it​ ​to 

Assembly​ ​language.​ ​This​ ​is​ ​a​ ​language​ ​that​ ​is​ ​still​ ​readable​ ​by​ ​humans,​ ​but​ ​it​ ​is​ ​much 
closer​ ​to​ ​the​ ​language​ ​a​ ​computer​ ​actually​ ​understands. 

 
10. [​Compiler​]​ ​To​ ​go​ ​from​ ​a​ ​high​ ​level​ ​language​ ​to​ ​assembly​ ​language,​ ​we​ ​use​ ​a​ ​program 

called​ ​a​ ​“compiler.”​ ​Its​ ​entire​ ​purpose​ ​is​ ​to​ ​translate​ ​what​ ​we​ ​wrote​ ​in​ ​a​ ​high​ ​level 
language​ ​and​ ​turn​ ​it​ ​into​ ​assembly​ ​language. 

 
11. [​Assembly​ ​Language​]​ ​This​ ​is​ ​an​ ​example​ ​of​ ​what​ ​assembly​ ​language​ ​looks​ ​like.​ ​This 

particular​ ​part​ ​is​ ​simply​ ​taking​ ​a​ ​number​ ​and​ ​dividing​ ​it​ ​by​ ​61.​ ​Looks​ ​quite​ ​a​ ​bit​ ​more 
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complex,​ ​doesn’t​ ​it? 
 

12. [​Assembly​ ​Language​]​ ​Here’s​ ​another​ ​example​ ​from​ ​the​ ​C​ ​program​ ​I​ ​showed​ ​earlier. 
This​ ​is​ ​the​ ​section​ ​of​ ​code​ ​that​ ​is​ ​getting​ ​input​ ​from​ ​the​ ​user.  

 
13. [​Language​ ​Hierarchy​]​ ​Once​ ​we​ ​have​ ​the​ ​assembly​ ​language,​ ​the​ ​next​ ​step​ ​is​ ​to 

convert​ ​it​ ​to​ ​machine​ ​language.​ ​This​ ​is​ ​the​ ​actual​ ​“code”​ ​that​ ​computers​ ​can​ ​read​ ​and 
use.  

 
14. [​Assembler​]​ ​To​ ​do​ ​that,​ ​we​ ​use​ ​another​ ​program,​ ​called​ ​an​ ​assembler,​ ​to​ ​convert​ ​our 

existing​ ​assembly​ ​language​ ​code​ ​into​ ​machine​ ​language​ ​code  
 

15. [​Machine​ ​Language​]​ ​This​ ​is​ ​an​ ​example​ ​of​ ​Machine​ ​Language​ ​code,​ ​written​ ​in​ ​a​ ​way 
that​ ​it​ ​is​ ​somewhat​ ​approachable​ ​by​ ​humans.  

 
16. [​Machine​ ​Language​]​ ​This​ ​is​ ​the​ ​real​ ​machine​ ​language​ ​code.​ ​It​ ​is​ ​simply​ ​a​ ​set​ ​of​ ​binary 

code​ ​(1s​ ​and​ ​0s)​ ​that​ ​tell​ ​the​ ​computer​ ​exactly​ ​what​ ​to​ ​do. 
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Mission​ ​to​ ​Mars​ ​-​ ​USD​ ​383​ ​Summer​ ​STEM​ ​-​ ​Day​ ​2 
Summer​ ​2017 

 
Learning​ ​Objectives 

● Students​ ​will​ ​explore​ ​different​ ​methods​ ​for​ ​sorting​ ​data. 
● Students​ ​will​ ​see​ ​how​ ​different​ ​sorting​ ​algorithms​ ​perform​ ​differently 
● Students​ ​will​ ​learn​ ​how​ ​to​ ​use​ ​a​ ​computer​ ​program​ ​to​ ​simulate​ ​a​ ​real-world​ ​scenario 

 
Resources 

● Slides:​ ​​http://people.cs.ksu.edu/~russfeld/presentations/stem2017/day2.html  
● Scratch​ ​Website:​ ​​http://scratch.mit.edu 
● Sorting​ ​Networks:​ ​​http://csunplugged.org/sorting-networks/  
● Potatoes​ ​on​ ​Mars​ ​Simulator:​ ​​https://scratch.mit.edu/projects/112633885 
● Hydrazine​ ​on​ ​Wikipedia:​ ​​https://en.wikipedia.org/wiki/Hydrazine#Rocket_fuel 
● Description​ ​of​ ​Chemical​ ​Reaction: 

https://www.quora.com/How-did-Mark-Watney-produce-water-by-burning-Hydrazine-in-a
-closed-chamber-in-Mars  

 
Lesson​ ​Setup​ ​Before​ ​Class 

● Log​ ​on​ ​to​ ​computers​ ​using​ ​STEM​ ​accounts 
● Create​ ​Sorting​ ​Network​ ​on​ ​the​ ​floor​ ​using​ ​tape 
● Make​ ​sure​ ​​Potatoes​ ​on​ ​Mars​​ ​is​ ​available​ ​on​ ​Scratch​ ​website.  

 
Schedule 

● 9:00​ ​-​ ​Welcome​ ​&​ ​Icebreaker 
● 9:15​ ​-​ ​Sorting​ ​Networks​ ​&​ ​Sorting​ ​Cards 
● 9:45​ ​-​ ​Sorting​ ​in​ ​Scratch 
● 10:15​ ​-​ ​Break 
● 10:20​ ​-​ ​Martian​ ​Video​ ​&​ ​Basic​ ​Chemistry​ ​Intro 
● 10:30​ ​-​ ​Creating​ ​Water​ ​Simulator 
● 11:00​ ​-​ ​Wrap-Up​ ​Discussion 

 
Lecture​ ​Notes 

1. [​Icebreaker​]​ ​Take​ ​a​ ​minute​ ​to​ ​review​ ​what​ ​was​ ​learned​ ​yesterday.​ ​Some​ ​good 
questions: 

a. How​ ​do​ ​we​ ​move​ ​a​ ​sprite​ ​around​ ​the​ ​stage?​ ​​Motion​ ​blocks,​ ​Move​ ​___​ ​Steps,​ ​etc. 
b. What​ ​block​ ​can​ ​we​ ​use​ ​to​ ​make​ ​the​ ​sprite​ ​turn​ ​around​ ​if​ ​it​ ​hits​ ​a​ ​wall?​ ​​If​ ​on​ ​edge, 

bounce 
c. What​ ​block​ ​can​ ​we​ ​use​ ​to​ ​get​ ​the​ ​sprite​ ​to​ ​do​ ​the​ ​same​ ​thing​ ​over​ ​and​ ​over 

again?​ ​​Repeat​ ​or​ ​Forever 
d. What​ ​block​ ​can​ ​we​ ​use​ ​to​ ​see​ ​if​ ​one​ ​sprite​ ​touches​ ​another​ ​sprite?​ ​​Sensing 
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blocks,​ ​Touching​ ​_____ 
e. What​ ​block​ ​can​ ​we​ ​use​ ​to​ ​change​ ​what​ ​a​ ​sprite​ ​is​ ​doing​ ​depending​ ​on​ ​the​ ​output 

of​ ​another​ ​block?​ ​​If​ ​block​ ​or​ ​If​ ​-​ ​Else​ ​block 
 

2. [​Sorting​]​ ​Today,​ ​we​ ​are​ ​going​ ​to​ ​learn​ ​about​ ​how​ ​computers​ ​can​ ​sort​ ​data​ ​into​ ​a​ ​certain 
order.​ ​Let’s​ ​talk​ ​about​ ​that: 

a. What​ ​are​ ​some​ ​different​ ​orderings​ ​of​ ​data​ ​you​ ​can​ ​think​ ​of?​ ​​Alphabetical, 
Numerical,​ ​smaller​ ​to​ ​larger,​ ​by​ ​height,​ ​weight,​ ​size,​ ​color,​ ​etc.​ ​Basically,​ ​get 
them​ ​thinking​ ​about​ ​how​ ​to​ ​categorize​ ​and​ ​sort​ ​data 

b. Why​ ​would​ ​it​ ​be​ ​important​ ​for​ ​a​ ​computer​ ​to​ ​sort​ ​data?​ ​​Think​ ​about​ ​a​ ​dictionary; 
what​ ​if​ ​all​ ​the​ ​words​ ​were​ ​in​ ​a​ ​random​ ​order?​ ​Or​ ​a​ ​phone​ ​book?  

 
3. [​Sorting​ ​Network​]​ ​Let’s​ ​take​ ​a​ ​look​ ​at​ ​one​ ​way​ ​that​ ​you​ ​can​ ​sort​ ​data,​ ​using​ ​a​ ​sorting 

network.​ ​<gesture​ ​to​ ​the​ ​sorting​ ​network​ ​on​ ​the​ ​floor>​ ​This​ ​is​ ​a​ ​special​ ​design​ ​that​ ​will 
guarantee​ ​any​ ​data​ ​at​ ​one​ ​end​ ​will​ ​be​ ​sorted​ ​by​ ​the​ ​time​ ​you​ ​reach​ ​the​ ​other​ ​end.​ ​Think 
it​ ​will​ ​work?​ ​​<get​ ​feedback>​ ​​Let’s​ ​give​ ​it​ ​a​ ​try! 

a. Assign​ ​some​ ​numerical​ ​value​ ​to​ ​the​ ​students​ ​and​ ​put​ ​6​ ​of​ ​them​ ​at​ ​the​ ​start​ ​end​ ​of 
the​ ​network.​ ​Height​ ​works​ ​well,​ ​or​ ​the​ ​number​ ​of​ ​letters​ ​in​ ​their​ ​name.​ ​Try​ ​to 
avoid​ ​duplicates​ ​at​ ​first,​ ​but​ ​later​ ​you​ ​can​ ​deal​ ​with​ ​those​ ​as​ ​well. 

b. Have​ ​the​ ​students​ ​follow​ ​their​ ​lines.​ ​At​ ​any​ ​place​ ​where​ ​the​ ​lines​ ​intersect,​ ​the 
student​ ​with​ ​the​ ​higher​ ​value​ ​will​ ​go​ ​one​ ​direction,​ ​and​ ​the​ ​lower​ ​value​ ​will​ ​go​ ​the 
other.​ ​It​ ​helps​ ​to​ ​establish​ ​some​ ​consistent​ ​direction​ ​beforehand.​ ​I’ve​ ​always 
used​ ​“higher​ ​goes​ ​right.” 

c. At​ ​the​ ​end,​ ​check​ ​to​ ​see​ ​if​ ​the​ ​students​ ​are​ ​sorted.​ ​If​ ​they​ ​aren’t,​ ​see​ ​if​ ​you​ ​can 
start​ ​over​ ​and​ ​diagnose​ ​the​ ​problem.​ ​Some​ ​students​ ​like​ ​to​ ​go​ ​faster​ ​than​ ​others 
and​ ​miss​ ​the​ ​point.​ ​You​ ​can​ ​challenge​ ​the​ ​students​ ​to​ ​create​ ​groups​ ​and​ ​see 
which​ ​group​ ​can​ ​do​ ​it​ ​the​ ​fastest​ ​but​ ​correctly. 

d. Lots​ ​of​ ​good​ ​resources​ ​are​ ​available​ ​here: 
http://csunplugged.org/sorting-networks/  

e. See​ ​​SortingNetwork.mp4​​ ​in​ ​the​ ​Google​ ​Drive​ ​folder​ ​for​ ​an​ ​example. 
 

<<<These​ ​next​ ​slides​ ​come​ ​from​ ​my​ ​CIS​ ​115​ ​lectures​ ​on​ ​Algorithms​ ​and​ ​can​ ​be​ ​adapted 
to​ ​fit​ ​the​ ​audience​ ​as​ ​needed.​ ​I​ ​usually​ ​don’t​ ​get​ ​all​ ​the​ ​way​ ​through​ ​it,​ ​but​ ​I​ ​at​ ​least​ ​like 
to​ ​do​ ​the​ ​first​ ​two​ ​algorithms:​ ​insertion​ ​sort​ ​and​ ​bubble​ ​sort​ ​and​ ​the​ ​quick​ ​discussion 
that​ ​they​ ​take​ ​the​ ​same​ ​amount​ ​of​ ​time.​ ​Beyond​ ​that,​ ​it​ ​is​ ​really​ ​difficult​ ​to​ ​relate​ ​to 
younger​ ​students.​ ​>>> 

 
4. [​Sorting​ ​Cards​]​ ​Now​ ​that​ ​we’ve​ ​explored​ ​how​ ​to​ ​sort​ ​using​ ​a​ ​sorting​ ​network,​ ​let’s​ ​look 

at​ ​ways​ ​a​ ​computer​ ​will​ ​sort​ ​data. 
a. ​ ​​<ACTIVITY>​​ ​This​ ​is​ ​very​ ​similar​ ​to​ ​the​ ​PB&J​ ​activity 

http://www.mathcs.emory.edu/~valerie/courses/fall13/170/resources/pbj-algorith
m.pdf  

i. I​ ​need​ ​a​ ​volunteer​ ​that​ ​thinks​ ​he​ ​or​ ​she​ ​is​ ​very​ ​good​ ​at​ ​bossing​ ​people 

84



around. 
ii. I​ ​also​ ​need​ ​a​ ​volunteer​ ​that​ ​is​ ​really​ ​good​ ​at​ ​following​ ​directions 
iii. Have​ ​the​ ​first​ ​person​ ​give​ ​the​ ​steps​ ​to​ ​shuffle​ ​a​ ​deck​ ​of​ ​cards​ ​without 

looking​ ​at​ ​what​ ​the​ ​other​ ​person​ ​is​ ​doing.​ ​Encourage​ ​the​ ​second​ ​person 
to​ ​be​ ​as​ ​“literal”​ ​as​ ​possible;​ ​aka​ ​-​ ​offer​ ​a​ ​knife​ ​to​ ​help​ ​“cut”​ ​the​ ​cards,​ ​etc. 
Hopefully​ ​that​ ​person​ ​will​ ​not​ ​be​ ​specific​ ​enough​ ​and​ ​they’ll​ ​end​ ​up​ ​with​ ​a 
mess. 

iv. Maybe​ ​have​ ​them​ ​try​ ​again,​ ​but​ ​this​ ​time​ ​watch​ ​what​ ​each​ ​other​ ​does. 
At​ ​the​ ​end,​ ​I​ ​usually​ ​relate​ ​the​ ​story​ ​of​ ​the​ ​PB&J​ ​activity​ ​so​ ​they​ ​understand​ ​what​ ​the 
intent​ ​was 

5. [​How​ ​Shuffle​]​ ​As​ ​you​ ​can​ ​see,​ ​there​ ​is​ ​more​ ​to​ ​this​ ​than​ ​simply​ ​giving​ ​someone​ ​the 
steps​ ​of​ ​the​ ​process.​ ​They​ ​need​ ​to​ ​have​ ​the​ ​right​ ​ingredients,​ ​the​ ​right​ ​tools,​ ​the​ ​right 
skills,​ ​and​ ​the​ ​right​ ​prior​ ​knowledge​ ​before​ ​they​ ​can​ ​proceed. 

6. [​al-Khwarizmi​]​ ​The​ ​origin​ ​of​ ​the​ ​word​ ​Algorithm​ ​comes​ ​from​ ​this​ ​man,​ ​Abu​ ​Abdallah 
Muhammad​ ​ibn​ ​Musa​ ​al-Khwarizmi​ ​(al​ ​-​ ​khwarithmi).​ ​In​ ​the​ ​9th​ ​century​ ​AD,​ ​he​ ​wrote 
many​ ​important​ ​books​ ​covering​ ​the​ ​solutions​ ​to​ ​linear​ ​and​ ​quadratic​ ​equations.​ ​His 
solutions​ ​took​ ​the​ ​form​ ​of​ ​a​ ​series​ ​of​ ​steps,​ ​and​ ​over​ ​time,​ ​the​ ​word​ ​“algorithm,”​ ​based 
on​ ​his​ ​name,​ ​became​ ​the​ ​term​ ​we​ ​use​ ​to​ ​describe​ ​such​ ​a​ ​series. 

7. [al-Khwarizmi​ ​Video​]​ ​Here​ ​is​ ​a​ ​quick​ ​video​ ​from​ ​Hank​ ​Green​ ​on​ ​the​ ​Science​ ​Show 
about​ ​the​ ​impact​ ​of​ ​al-Khwarizmi​ ​on​ ​the​ ​world​ ​of​ ​mathematics. 
 
<play​ ​video;​ ​start​ ​at​ ​0:00,​ ​stop​ ​at​ ​0:35​ ​when​ ​the​ ​show​ ​intro​ ​begins>​​ ​​Encourage 
students​ ​to​ ​finish​ ​video​ ​later 

8. [​Algorithm​]​ ​In​ ​general​ ​terms,​ ​an​ ​algorithm​ ​is​ ​simply​ ​a​ ​finite​ ​list​ ​of​ ​specific​ ​instructions​ ​for 
carrying​ ​out​ ​a​ ​procedure​ ​or​ ​solving​ ​a​ ​problem.​ ​Let’s​ ​spend​ ​some​ ​time​ ​looking​ ​at 
examples​ ​of​ ​algorithms. 

9. [​Euclid​]​ ​​<<<This​ ​part​ ​can​ ​be​ ​skipped​ ​if​ ​needed;​ ​depends​ ​on​ ​the​ ​age​ ​of​ ​the 
students>>>​​ ​One​ ​of​ ​the​ ​oldest​ ​algorithms​ ​still​ ​used​ ​today​ ​is​ ​called​ ​Euclid’s​ ​Algorithm. 
As​ ​you​ ​might​ ​know,​ ​Euclid​ ​was​ ​greek​ ​mathematician​ ​from​ ​around​ ​300​ ​BC.​ ​One​ ​of​ ​the 
things​ ​he​ ​discovered​ ​was​ ​a​ ​simple​ ​and​ ​easy​ ​way​ ​to​ ​calculate​ ​the​ ​greatest​ ​common 
divisor​ ​of​ ​two​ ​numbers.​ ​If​ ​you​ ​remember​ ​from​ ​algebra,​ ​this​ ​is​ ​needed​ ​to​ ​help​ ​reduce 
fractions. 

10. [​Euclid’s​ ​Algorithm​]​ ​His​ ​algorithm​ ​is​ ​as​ ​follows 

a. Go​ ​over​ ​slide 

11. [​Euclid​ ​Example​]​ ​​<Slide​ ​has​ ​2​ ​positions>​​ ​Let’s​ ​do​ ​an​ ​example​ ​and​ ​find​ ​the​ ​GCD​ ​of 
1071​ ​and​ ​462.  
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a. Go​ ​through​ ​the​ ​example 
i. 1071,​ ​462 
ii. 609,​ ​462 
iii. 147,​ ​462 
iv. 147,​ ​315 
v. 147,​ ​168 
vi. 147,​ ​21 
vii. 126,​ ​21 
viii. 105,​ ​21 
ix. 84,​ ​21 
x. 63,​ ​21 
xi. 42,​ ​21 
xii. 21,​ ​21 
xiii. 21,​ ​0 

12. [​Euclid​ ​Example​]​ ​Here​ ​is​ ​the​ ​full​ ​process 

13. [​Sorting​ ​Algorithms​]​ ​To​ ​help​ ​us​ ​really​ ​understand​ ​algorithms,​ ​let’s​ ​try​ ​a​ ​couple​ ​out 
ourselves.​ ​We’re​ ​going​ ​to​ ​look​ ​at​ ​some​ ​different​ ​sorting​ ​algorithms. 

a. <optional>​ ​First,​ ​everyone​ ​stand​ ​up​ ​and​ ​move​ ​to​ ​a​ ​different​ ​table.​ ​Try​ ​to​ ​sit​ ​at​ ​a 
table​ ​that​ ​doesn’t​ ​have​ ​any​ ​of​ ​your​ ​other​ ​teammates.​ ​We’d​ ​like​ ​to​ ​be​ ​in​ ​groups​ ​of 
no​ ​more​ ​than​ ​four. 

b. Each​ ​table​ ​needs​ ​a​ ​deck​ ​of​ ​cards. 
c. First,​ ​split​ ​the​ ​deck​ ​into​ ​the​ ​4​ ​suits,​ ​and​ ​each​ ​person​ ​needs​ ​a​ ​single​ ​suit. 
d. Shuffle​ ​the​ ​suit​ ​so​ ​that​ ​it​ ​is​ ​random. 

14. [​Sorting​]​ ​So,​ ​to​ ​begin,​ ​sort​ ​the​ ​decks​ ​of​ ​cards.​ ​As​ ​you​ ​do​ ​so,​ ​try​ ​to​ ​think​ ​of​ ​what​ ​the 
steps​ ​are​ ​that​ ​you​ ​follow​ ​and​ ​how​ ​you​ ​would​ ​describe​ ​that​ ​to​ ​others. 

a. Discuss​:​ ​How​ ​did​ ​you​ ​do​ ​it?​ ​(Try​ ​to​ ​link​ ​back​ ​to​ ​common​ ​algorithms​ ​such​ ​as 
selection​ ​or​ ​insertion​ ​sort) 

15. [​Insertion​ ​Sort​]​ ​First,​ ​let’s​ ​implement​ ​insertion​ ​sort.  

a. Follow​ ​Slide 
b. Have​ ​students​ ​keep​ ​track​ ​of​ ​the​ ​number​ ​of​ ​times​ ​they​ ​have​ ​to​ ​ask​ ​“does​ ​this​ ​card 

go​ ​before​ ​this​ ​card?”​ ​starting​ ​from​ ​the​ ​beginning​ ​each​ ​time.​ ​(A​ ​crude​ ​measure​ ​of 
running​ ​time) 

c. Record​ ​their​ ​results​ ​on​ ​the​ ​board​ ​and​ ​average​ ​them​ ​for​ ​later 
d. As​ ​you​ ​can​ ​see,​ ​this​ ​is​ ​very​ ​similar​ ​to​ ​the​ ​way​ ​that​ ​most​ ​humans​ ​would​ ​sort 

something. 

16. [​Bubble​ ​Sort​] 
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a. Now,​ ​lets​ ​try​ ​bubble​ ​sort. 
b. As​ ​you​ ​are​ ​doing​ ​bubble​ ​sort,​ ​have​ ​students​ ​count​ ​the​ ​number​ ​of​ ​times​ ​that​ ​they 

swap​ ​one​ ​card​ ​for​ ​another​ ​(not​ ​how​ ​many​ ​times​ ​you​ ​compare​ ​two​ ​cards). 
c. Have​ ​the​ ​students​ ​record​ ​their​ ​counts​ ​on​ ​the​ ​board. 

17. [​Big​ ​O​ ​Notation​]​ ​So,​ ​now​ ​that​ ​we’ve​ ​played​ ​with​ ​a​ ​couple​ ​of​ ​algorithms,​ ​let’s​ ​talk​ ​about 
how​ ​we​ ​can​ ​decide​ ​which​ ​one​ ​to​ ​use.​ ​Can​ ​we​ ​tell​ ​from​ ​our​ ​data​ ​we’ve​ ​recorded​ ​which 
one​ ​is​ ​faster?​ ​​<discuss​ ​&​ ​speculate>​ ​​Obviously​ ​we​ ​need​ ​a​ ​better​ ​way​ ​to​ ​do​ ​this.​ ​The 
answer​ ​lies​ ​within​ ​Big​ ​O​ ​(notation)!​ ​(No,​ ​I’m​ ​not​ ​talking​ ​about​ ​the​ ​giant​ ​robot​ ​anime​ ​from 
the​ ​early​ ​2000’s) 

18. [​Big​ ​O​ ​Notation​]​ ​Big​ ​O​ ​notation​ ​is​ ​simply​ ​a​ ​way​ ​to​ ​express​ ​the​ ​complexity​ ​of​ ​an 
algorithm.​ ​It​ ​approximates​ ​the​ ​number​ ​of​ ​steps​ ​needed​ ​to​ ​complete​ ​the​ ​algorithm​ ​based 
on​ ​the​ ​size​ ​of​ ​the​ ​input.​ ​Finally,​ ​Big​ ​O​ ​notation​ ​assumes​ ​that​ ​the​ ​input​ ​is​ ​“worst​ ​case”​ ​for 
that​ ​particular​ ​algorithm. 

19. [​Worst​ ​case​]​ ​So,​ ​what​ ​would​ ​you​ ​say​ ​is​ ​the​ ​worst​ ​case​ ​input​ ​for​ ​Bubble​ ​Sort? 

a. Discuss​ ​the​ ​options 

20. [​Worst​ ​case​]​ ​As​ ​you​ ​can​ ​see,​ ​the​ ​worst​ ​case​ ​input​ ​for​ ​Bubble​ ​sort​ ​is​ ​a​ ​list​ ​that​ ​is​ ​sorted 
in​ ​reverse​ ​order.​ ​In​ ​the​ ​case​ ​of​ ​a​ ​suit​ ​of​ ​cards,​ ​it​ ​takes​ ​78​ ​swaps​ ​to​ ​get​ ​it​ ​back​ ​to​ ​the 
sorted​ ​order. 

21. [​Graph​]​ ​If​ ​we​ ​graph​ ​the​ ​number​ ​of​ ​swaps​ ​against​ ​the​ ​number​ ​of​ ​cards,​ ​we​ ​get​ ​the 
following​ ​graph.​ ​What​ ​kind​ ​of​ ​a​ ​function​ ​does​ ​this​ ​look​ ​like? 

a. Discuss.​ ​Hopefully​ ​should​ ​get​ ​x^2​ ​or​ ​quadratic​ ​or​ ​something​ ​similar 

22. [​Sorting​ ​Algorithms​]​ ​As​ ​you​ ​can​ ​see,​ ​the​ ​complexity​ ​of​ ​Insertion​ ​Sort​ ​and​ ​Bubble​ ​Sort 
is​ ​in​ ​Big​ ​O​ ​of​ ​n^2.​ ​So,​ ​what​ ​about​ ​some​ ​algorithms​ ​that​ ​are​ ​faster? 

23. [​Merge​ ​Sort​] 

a. Combine​ ​the​ ​deck​ ​back​ ​together​ ​and​ ​shuffle​ ​it  
b. Do​ ​merge​ ​sort​ ​at​ ​the​ ​table​ ​(split​ ​into​ ​smaller​ ​and​ ​smaller​ ​piles) 
c. After​ ​completing,​ ​try​ ​to​ ​quickly​ ​walk​ ​them​ ​through​ ​the​ ​calculation​ ​that​ ​leads​ ​to​ ​Big 

O​ ​of​ ​n​ ​lg​ ​n.​ ​I​ ​usually​ ​draw​ ​a​ ​tree​ ​of​ ​piles​ ​starting​ ​with​ ​13​ ​at​ ​the​ ​top,​ ​then​ ​count​ ​the 
layers​ ​of​ ​the​ ​tree​ ​(should​ ​be​ ​lg​ ​n)​ ​and​ ​then​ ​the​ ​max​ ​number​ ​of​ ​swaps​ ​(n/2)​ ​and 
then​ ​they​ ​layers​ ​up​ ​again​ ​(should​ ​be​ ​lg​ ​n).  

24. [​Quicksort​] 

a. Do​ ​the​ ​same​ ​with​ ​Quicksort 
b. Again,​ ​try​ ​to​ ​explain​ ​the​ ​running​ ​time​ ​of​ ​Quicksort​ ​by​ ​showing​ ​the​ ​worst-case 

example​ ​(already​ ​sorted)​ ​and​ ​describe​ ​how​ ​it​ ​can’t​ ​be​ ​calculated​ ​absolutely​ ​but​ ​in 
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practice​ ​it​ ​is​ ​very​ ​fast 

25. [​Sorting​ ​Algorithms​]​ ​As​ ​you​ ​hopefully​ ​can​ ​tell,​ ​these​ ​algorithms​ ​are​ ​much​ ​quicker​ ​to 
implement,​ ​but​ ​they​ ​are​ ​much​ ​more​ ​complex.​ ​They​ ​run​ ​in​ ​Big​ ​O​ ​of​ ​n​ ​lg​ ​n​ ​time.  

<<<Sorting​ ​Activity​ ​in​ ​Scratch>>> 

26. [​Sorting​ ​in​ ​Scratch​]​ ​Now​ ​that​ ​we​ ​know​ ​how​ ​bubble​ ​sort​ ​works,​ ​let’s​ ​see​ ​if​ ​we​ ​can​ ​try​ ​to 
write​ ​it​ ​in​ ​Scratch! 

a. Have​ ​the​ ​students​ ​create​ ​a​ ​list​ ​of​ ​numbers​ ​in​ ​Scratch.​ ​At​ ​the​ ​start​ ​of​ ​the​ ​program 
it​ ​should​ ​clear​ ​the​ ​list.​ ​Then,​ ​instead​ ​of​ ​assigning​ ​random​ ​numbers​ ​which​ ​would 
change​ ​each​ ​time,​ ​have​ ​them​ ​manually​ ​add​ ​8​ ​-​ ​10​ ​numbers​ ​in​ ​an​ ​unsorted​ ​order 
to​ ​the​ ​list.  

b. Discuss​ ​how​ ​bubble​ ​sort​ ​works.​ ​Hopefully​ ​they​ ​should​ ​realize​ ​that​ ​the​ ​first​ ​step​ ​is 
to​ ​compare​ ​the​ ​first​ ​number​ ​and​ ​the​ ​second​ ​number​ ​in​ ​the​ ​list.​ ​Show​ ​them​ ​how​ ​to 
access​ ​those​ ​numbers​ ​and​ ​use​ ​an​ ​If​ ​block​ ​to​ ​test​ ​for​ ​that​ ​situation. 

c. Talk​ ​about​ ​what​ ​they​ ​need​ ​to​ ​do​ ​to​ ​swap​ ​those​ ​numbers.​ ​I​ ​usually​ ​use​ ​2​ ​different 
items​ ​held​ ​in​ ​my​ ​hand.​ ​They​ ​should​ ​realize​ ​that​ ​they’ll​ ​need​ ​a​ ​“3rd​ ​hand”​ ​to​ ​make 
it​ ​work.​ ​That​ ​leads​ ​to​ ​the​ ​idea​ ​of​ ​creating​ ​a​ ​Temp​ ​variable​ ​to​ ​store​ ​that​ ​item. 
Show​ ​them​ ​how​ ​to​ ​do​ ​the​ ​3​ ​step​ ​swap​ ​operation.  

d. Once​ ​they​ ​have​ ​that,​ ​talk​ ​about​ ​the​ ​next​ ​step.​ ​It​ ​should​ ​be​ ​to​ ​compare​ ​items​ ​2 
and​ ​3.​ ​Show​ ​them​ ​how​ ​to​ ​duplicate​ ​the​ ​block​ ​of​ ​code​ ​you’ve​ ​created​ ​to​ ​handle 
that​ ​(tell​ ​them​ ​to​ ​watch​ ​and​ ​not​ ​follow​ ​along,​ ​since​ ​you’ll​ ​undo​ ​it​ ​later),​ ​and 
discuss​ ​how​ ​they​ ​would​ ​do​ ​the​ ​next​ ​steps​ ​(3​ ​and​ ​4,​ ​4​ ​and​ ​5,​ ​etc.).​ ​They​ ​should 
remark​ ​that​ ​it​ ​is​ ​very​ ​inefficient.​ ​Talk​ ​about​ ​how​ ​to​ ​use​ ​a​ ​repeat​ ​block​ ​to​ ​repeat 
steps.​ ​It​ ​should​ ​do​ ​one​ ​fewer​ ​comparison​ ​than​ ​there​ ​are​ ​number​ ​of​ ​items.​ ​Help 
them​ ​understand​ ​by​ ​looking​ ​at​ ​their​ ​hands.​ ​There​ ​are​ ​one​ ​fewer​ ​gaps​ ​(pairs)​ ​than 
there​ ​are​ ​fingers.  

e. Now​ ​that​ ​we​ ​are​ ​repeating​ ​steps,​ ​we​ ​need​ ​to​ ​change​ ​the​ ​two​ ​items​ ​it​ ​is​ ​looking​ ​at 
each​ ​time.​ ​Discuss​ ​how​ ​they​ ​could​ ​do​ ​that.​ ​Lead​ ​them​ ​towards​ ​using​ ​a​ ​variable 
to​ ​keep​ ​track​ ​of​ ​the​ ​current​ ​position,​ ​and​ ​show​ ​how​ ​to​ ​include​ ​that.​ ​They​ ​will​ ​also 
have​ ​to​ ​update​ ​it​ ​after​ ​each​ ​repeat. 

f. Finally,​ ​discuss​ ​how​ ​bubble​ ​sort​ ​repeats​ ​all​ ​of​ ​those​ ​steps​ ​from​ ​the​ ​beginning 
each​ ​time​ ​until​ ​it​ ​is​ ​sorted.​ ​Add​ ​one​ ​more​ ​forever​ ​loop​ ​and​ ​a​ ​block​ ​to​ ​reset​ ​the 
position​ ​to​ ​1​ ​each​ ​time. 

g. For​ ​more​ ​information,​ ​watch​ ​the​ ​​BubbleSort.mp4​ ​​video​ ​in​ ​the​ ​Google​ ​Drive​ ​for​ ​a 
demonstration​ ​from​ ​2016. 

h. There​ ​is​ ​also​ ​a​ ​solution​ ​file​ ​included,​ ​named​ ​​BubbleSortSoln.sb2​ ​​from​ ​that 
demo. 

 
27. [​Martian​ ​Video​]​ ​Sorting​ ​is​ ​just​ ​one​ ​way​ ​that​ ​computer​ ​programming​ ​can​ ​help​ ​us​ ​deal 

with​ ​the​ ​real​ ​world.​ ​We​ ​can​ ​also​ ​use​ ​it​ ​to​ ​simulate​ ​what​ ​would​ ​happen​ ​in​ ​a​ ​particular 
situation.​ ​Let’s​ ​check​ ​out​ ​this​ ​video​ ​from​ ​​The​ ​Martian​​ ​to​ ​see​ ​what​ ​astronaut​ ​Mark 
Watney​ ​is​ ​dealing​ ​with.​ ​<​watch​ ​video​>  
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28. [​Chemistry​]​ ​So,​ ​Mark​ ​Watney​ ​needs​ ​to​ ​figure​ ​out​ ​how​ ​to​ ​grow​ ​food​ ​on​ ​the​ ​surface​ ​of 

Mars.​ ​Thankfully,​ ​in​ ​the​ ​food​ ​for​ ​the​ ​mission​ ​were​ ​actual,​ ​real​ ​potatoes.​ ​Most​ ​of​ ​the​ ​food 
was​ ​freeze-dried,​ ​but​ ​since​ ​they​ ​would​ ​be​ ​on​ ​Mars​ ​over​ ​Thanksgiving,​ ​they​ ​sent​ ​real 
potatoes​ ​so​ ​they​ ​could​ ​have​ ​a​ ​little​ ​treat.​ ​So,​ ​we​ ​have​ ​access​ ​to​ ​plants​ ​that​ ​can​ ​grow. 
What​ ​else​ ​do​ ​we​ ​need​ ​to​ ​grow​ ​plants?​ ​<​discuss​ ​-​ ​Water,​ ​sunlight,​ ​soil,​ ​nutrients, 
etc.​>.  
 
He​ ​could​ ​make​ ​soil​ ​by​ ​mixing​ ​the​ ​dirt​ ​on​ ​Mars​ ​with​ ​actual​ ​human​ ​waste​ ​(just​ ​like​ ​we​ ​use 
animal​ ​waste​ ​as​ ​natural​ ​fertilizer​ ​on​ ​farms),​ ​and​ ​there​ ​was​ ​plenty​ ​of​ ​sunlight​ ​available. 
The​ ​one​ ​thing​ ​he​ ​was​ ​missing​ ​was​ ​water.​ ​Does​ ​anyone​ ​know​ ​what​ ​water​ ​is​ ​made​ ​of? 
<​discuss​ ​-​ ​Hydrogen​ ​&​ ​Oxygen​>.  
 
Humans​ ​have​ ​to​ ​breathe​ ​oxygen,​ ​so​ ​he​ ​had​ ​a​ ​way​ ​to​ ​get​ ​a​ ​continuous​ ​supply​ ​of​ ​that. 
The​ ​only​ ​thing​ ​he​ ​was​ ​missing​ ​was​ ​hydrogen.​ ​Thankfully,​ ​hydrogen​ ​is​ ​a​ ​major 
component​ ​of​ ​almost​ ​all​ ​fuels,​ ​including​ ​rocket​ ​fuel​ ​like​ ​Hydrazine​ ​<​see​ ​slide​>.​ ​So,​ ​all​ ​he 
needs​ ​to​ ​do​ ​is​ ​break​ ​down​ ​the​ ​Hydrazine​ ​into​ ​hydrogen​ ​and​ ​nitrogen,​ ​then​ ​mix​ ​it​ ​with 
oxygen​ ​using​ ​fire​ ​to​ ​create​ ​useable​ ​water.​ ​It​ ​was​ ​a​ ​dangerous​ ​idea​ ​(and​ ​he​ ​about​ ​blew 
himself​ ​up​ ​at​ ​least​ ​once),​ ​but​ ​thankfully​ ​we​ ​can​ ​simulate​ ​it​ ​in​ ​a​ ​computer​ ​program​ ​on 
Scratch.  

 
29. [​Potatoes​ ​on​ ​Mars​] 

a. Direct​ ​the​ ​students​ ​to​ ​load​ ​the​ ​Potatoes​ ​on​ ​Mars​ ​scratch​ ​project: 
https://scratch.mit.edu/projects/112633885  

b. The​ ​students​ ​should​ ​click​ ​the​ ​“See​ ​Inside”​ ​button​ ​to​ ​see​ ​the​ ​code.​ ​If​ ​they​ ​have​ ​a 
Scratch​ ​account,​ ​they​ ​can​ ​also​ ​click​ ​the​ ​“Remix”​ ​button​ ​to​ ​save​ ​it​ ​to​ ​their​ ​account. 

c. For​ ​each​ ​of​ ​the​ ​major​ ​sprites,​ ​we​ ​need​ ​to​ ​simulate​ ​what​ ​it​ ​will​ ​do.​ ​There​ ​are 
variables​ ​created​ ​for​ ​many​ ​different​ ​things,​ ​including​ ​the​ ​hydrogen,​ ​nitrogen, 
oxygen​ ​and​ ​water​ ​available,​ ​as​ ​well​ ​as​ ​the​ ​number​ ​of​ ​plants​ ​grown​ ​and​ ​the 
number​ ​of​ ​calories​ ​available. 

i. Hydrazine​ ​-​ ​Forever​ ​change​ ​N2H4​ ​by​ ​1,​ ​wait​ ​some​ ​amount​ ​of​ ​time, 
usually​ ​1​ ​second​ ​to​ ​start​ ​(can​ ​be​ ​adjusted​ ​later) 

ii. O2​ ​Reclaimer​ ​-​ ​Forever​ ​change​ ​O​ ​by​ ​1​ ​if​ ​it​ ​is​ ​less​ ​than​ ​a​ ​certain​ ​value, 
then​ ​wait​ ​some​ ​time​ ​before​ ​checking​ ​again​ ​(can​ ​be​ ​adjusted​ ​later).​ ​18%​ ​- 
22%​ ​is​ ​the​ ​optimal​ ​range​ ​for​ ​real​ ​life,​ ​so​ ​I​ ​usually​ ​have​ ​it​ ​add​ ​more​ ​oxygen 
if​ ​the​ ​value​ ​is​ ​less​ ​than​ ​20.  

iii. Ionizer​ ​-​ ​Forever​ ​if​ ​N2H4​ ​is​ ​greater​ ​than​ ​0,​ ​reduce​ ​it​ ​by​ ​1​ ​and​ ​increase​ ​N 
by​ ​2​ ​and​ ​H​ ​by​ ​4​ ​(using​ ​the​ ​chemical​ ​formula).​ ​It​ ​doesn’t​ ​have​ ​to​ ​wait,​ ​as​ ​it 
can​ ​do​ ​this​ ​anytime.  

iv. Flame​ ​-​ ​Forever​ ​if​ ​H​ ​is​ ​greater​ ​than​ ​2​ ​and​ ​O​ ​is​ ​greater​ ​than​ ​18​ ​(to​ ​keep​ ​a 
safe​ ​value),​ ​reduce​ ​each​ ​by​ ​the​ ​appropriate​ ​amount​ ​and​ ​release​ ​1​ ​water 
into​ ​the​ ​air.  

v. Once​ ​the​ ​water​ ​is​ ​released,​ ​the​ ​plants​ ​will​ ​start​ ​growing​ ​and​ ​multiplying. 
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As​ ​they​ ​grow,​ ​they​ ​release​ ​more​ ​oxygen​ ​and​ ​the​ ​simulation​ ​will​ ​run​ ​faster. 
However,​ ​if​ ​at​ ​anytime​ ​the​ ​amount​ ​of​ ​hydrogen​ ​in​ ​the​ ​air​ ​exceeds​ ​100,​ ​the 
simulation​ ​will​ ​explode,​ ​just​ ​like​ ​it​ ​would​ ​in​ ​real​ ​life​ ​if​ ​there​ ​is​ ​too​ ​much 
hydrogen​ ​in​ ​the​ ​atmosphere.  

vi. Students​ ​will​ ​have​ ​to​ ​adjust​ ​the​ ​wait​ ​times​ ​in​ ​the​ ​Hydrazine​ ​sprite​ ​to 
optimize​ ​the​ ​simulation.​ ​They​ ​can​ ​also​ ​make​ ​the​ ​O2​ ​reclaimer​ ​work 
faster.​ ​Encourage​ ​them​ ​to​ ​see​ ​how​ ​fast​ ​they​ ​can​ ​make​ ​the​ ​simulation​ ​run 
without​ ​it​ ​blowing​ ​up. 

vii. See​ ​​MarsPotatoes.mp4​​ ​in​ ​Google​ ​Drive​ ​for​ ​an​ ​example​ ​from​ ​2016. 
viii. See​ ​​PotatoesonMars.sb2​ ​​for​ ​a​ ​starter​ ​example​ ​(it​ ​will​ ​still​ ​explode​ ​and 

needs​ ​adjustment). 
 

30. [​Reflections​] 
a. Why​ ​do​ ​computers​ ​want​ ​to​ ​sort​ ​data? 
b. What​ ​are​ ​some​ ​ways​ ​we​ ​can​ ​sort​ ​information? 
c. Can​ ​we​ ​use​ ​computers​ ​to​ ​simulate​ ​real​ ​world​ ​situations​ ​such​ ​as​ ​a​ ​chemical 

reaction? 
d. What​ ​else​ ​could​ ​we​ ​simulate​ ​with​ ​computers?​ ​What​ ​have​ ​you​ ​observed 

computers​ ​doing​ ​in​ ​the​ ​real​ ​world? 
  

● 112633885 
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Mission​ ​to​ ​Mars​ ​-​ ​USD​ ​383​ ​Summer​ ​STEM​ ​-​ ​Day​ ​3 
Summer​ ​2017 

 
Learning​ ​Objectives 

● Students​ ​will​ ​explore​ ​how​ ​a​ ​computer​ ​represents​ ​data​ ​in​ ​binary 
● Students​ ​will​ ​learn​ ​how​ ​to​ ​convert​ ​simple​ ​numbers​ ​between​ ​binary​ ​and​ ​decimal​ ​formats 
● Students​ ​will​ ​see​ ​how​ ​data​ ​encoding​ ​can​ ​be​ ​used​ ​to​ ​transmit​ ​data​ ​with​ ​very​ ​few​ ​data 

points​ ​or​ ​code​ ​words 
● Students​ ​will​ ​see​ ​how​ ​a​ ​data​ ​transmission​ ​error​ ​can​ ​cause​ ​problems​ ​and​ ​will​ ​discuss 

ways​ ​to​ ​fix​ ​the​ ​problem. 
 
Resources 

● Slides:​ ​​http://people.cs.ksu.edu/~russfeld/presentations/stem2017/day3.html  
● Scratch​ ​Website:​ ​​http://scratch.mit.edu 
● Binary​ ​Numbers​ ​on​ ​Wikipedia:​ ​​https://en.wikipedia.org/wiki/Binary_number 
● Binary​ ​Numbers​ ​on​ ​Math​ ​is​ ​Fun: 

https://www.mathsisfun.com/binary-number-system.html 
● Binary​ ​Numbers​ ​on​ ​CS​ ​Unplugged:​ ​​http://csunplugged.org/binary-numbers/ 
● Binary​ ​Flash​ ​Cards:​ ​​http://cse4k12.org/cards/number_cards.html  
● Binary​ ​Worksheets:​ ​​http://cse4k12.org/binary/counting_in_binary.html 
● Rover​ ​Hex​ ​Code:​ ​​https://scratch.mit.edu/projects/112910972/  

 
Lesson​ ​Setup​ ​Before​ ​Class 

● Log​ ​on​ ​to​ ​computers​ ​using​ ​STEM​ ​accounts 
● Print​ ​Binary​ ​Flash​ ​Cards​ ​&​ ​Binary​ ​Worksheets​ ​for​ ​students 
● Make​ ​sure​ ​​Rover​ ​Hex​ ​Code​​ ​is​ ​available​ ​on​ ​Scratch​ ​website.  

 
Schedule 

● 9:00​ ​-​ ​Welcome​ ​&​ ​Icebreaker 
● 9:15​ ​-​ ​Binary​ ​Numbers​ ​&​ ​Hexadecimal​ ​-​ ​Flash​ ​Cards​ ​&​ ​Worksheet 
● 9:45​ ​-​ ​Text,​ ​Images,​ ​etc.​ ​as​ ​Binary​ ​Data​ ​(Data​ ​Encoding​ ​in​ ​ASCII,​ ​BMP) 
● 9:55​ ​-​ ​Break 
● 10:00​ ​-​ ​Mars​ ​Message​ ​Decoder 
● 11:00​ ​-​ ​Wrap-Up​ ​Discussion 

 
Lecture​ ​Notes 
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Find​ ​someone​ ​who: 
1:​ ​Can​ ​draw​ ​a​ ​square​ ​using​ ​repeat​ ​blocks​ ​in​ ​Scratch 
2:​ ​Can​ ​make​ ​and​ ​name​ ​a​ ​variable​ ​in​ ​Scratch 
3:​ ​Can​ ​create​ ​a​ ​list​ ​in​ ​Scratch 
4:​ ​Can​ ​show​ ​the​ ​block​ ​that​ ​starts​ ​the​ ​program 
5:​ ​Can​ ​show​ ​you​ ​the​ ​blocks​ ​to​ ​use​ ​when​ ​computing​ ​data 
6:​ ​Can​ ​show​ ​you​ ​his/her​ ​age​ ​in​ ​binary​ ​code 
7:​ ​Can​ ​make​ ​a​ ​Sprite​ ​bounce​ ​on​ ​the​ ​edge.  
 
 
 
 

1. [​Icebreaker​]​ ​Take​ ​a​ ​minute​ ​to​ ​review​ ​what​ ​was​ ​learned​ ​yesterday.​ ​Some​ ​good 
questions: 

a. Why​ ​do​ ​computers​ ​want​ ​to​ ​sort​ ​data?​ ​Why​ ​is​ ​that​ ​useful? 
b. What​ ​are​ ​some​ ​different​ ​ways​ ​we​ ​learned​ ​to​ ​sort​ ​data​ ​yesterday? 
c. What​ ​are​ ​some​ ​examples​ ​of​ ​real-world​ ​things​ ​could​ ​computers​ ​be​ ​used​ ​to 

simulate? 
 

2. [​Binary​ ​Numbers​]​ ​Today​ ​we​ ​are​ ​going​ ​to​ ​learn​ ​about​ ​how​ ​computers​ ​store​ ​and 
manipulate​ ​data.​ ​Does​ ​anyone​ ​know​ ​how​ ​it​ ​works?​ ​<​discuss​ ​-​ ​hopefully​ ​coming​ ​to​ ​the 
idea​ ​of​ ​binary​>.  

 
<<<These​ ​slides​ ​are​ ​from​ ​my​ ​CIS​ ​115​ ​lecture.​ ​They​ ​can​ ​be​ ​adapted​ ​to​ ​fit​ ​the​ ​audience​ ​as 
needed>>> 
 

3. [​Stibitz​]​ ​The​ ​first​ ​person​ ​to​ ​really​ ​use​ ​binary​ ​in​ ​a​ ​computer​ ​was​ ​George​ ​Stibitz.​ ​In​ ​1937, 
he​ ​completed​ ​his​ ​“Model​ ​K”​ ​calculator​ ​named​ ​for​ ​the​ ​“Kitchen​ ​Table”​ ​where​ ​he​ ​worked 
on​ ​it.​ ​It​ ​was​ ​capable​ ​of​ ​performing​ ​addition​ ​on​ ​two​ ​binary​ ​numbers.  

4. [​Complex​ ​Numerical​ ​Calculator​]​ ​After​ ​receiving​ ​a​ ​full​ ​research​ ​grant​ ​from​ ​Bell​ ​labs,​ ​he 
was​ ​able​ ​to​ ​compete​ ​his​ ​Complex​ ​Numerical​ ​Calculator​ ​in​ ​1940,​ ​which​ ​was​ ​able​ ​to 
perform​ ​calculations​ ​on​ ​complex​ ​numbers.​ ​It​ ​was​ ​also​ ​unique​ ​because​ ​it​ ​was​ ​able​ ​to 
perform​ ​those​ ​calculations​ ​remotely.​ ​It​ ​was​ ​attached​ ​to​ ​a​ ​phone​ ​line,​ ​and​ ​when​ ​it​ ​was 
demonstrated​ ​at​ ​Dartmouth​ ​College​ ​in​ ​New​ ​Hampshire​ ​he​ ​used​ ​a​ ​teletype​ ​machine​ ​to 
send​ ​commands​ ​to​ ​the​ ​machine​ ​while​ ​it​ ​was​ ​in​ ​New​ ​York.​ ​This​ ​was​ ​the​ ​first​ ​example​ ​of​ ​a 
machine​ ​ever​ ​used​ ​remotely​ ​over​ ​a​ ​telephone​ ​line.​ ​(We’ll​ ​talk​ ​more​ ​about​ ​this​ ​when​ ​we 
get​ ​to​ ​the​ ​history​ ​of​ ​the​ ​Internet.) 

5. [​Stibitz​ ​Video​]​ ​Let’s​ ​hear​ ​the​ ​story​ ​from​ ​George​ ​Stibitz​ ​himself  
 
<play​ ​video;​ ​start​ ​at​ ​1:14,​ ​stop​ ​at​ ​4:20,​ ​right​ ​after​ ​the​ ​“Divide​ ​one​ ​by​ ​zero” 
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anecdote.> 

6. [​Binary​ ​-​ ​Natural​ ​Numbers​]​ ​​<Slide​ ​has​ ​many​ ​stops;​ ​each​ ​bullet​ ​is​ ​a​ ​stop>​​ ​So,​ ​let’s 
take​ ​a​ ​look​ ​at​ ​how​ ​the​ ​math​ ​works​ ​for​ ​binary​ ​numbers.​ ​As​ ​you​ ​may​ ​already​ ​know,​ ​binary 
numbers​ ​are​ ​simply​ ​a​ ​way​ ​to​ ​represent​ ​numbers​ ​using​ ​the​ ​powers​ ​of​ ​2.​ ​Here​ ​is​ ​an 
example​ ​of​ ​an​ ​8​ ​bit​ ​binary​ ​number.​ ​Can​ ​anyone​ ​tell​ ​me​ ​what​ ​number​ ​this​ ​is​ ​in​ ​base​ ​10? 

7. [​Binary​ ​-​ ​Natural​ ​Numbers​]​ ​As​ ​you​ ​can​ ​see,​ ​for​ ​each​ ​space​ ​that​ ​has​ ​a​ ​one​ ​you​ ​add​ ​that 
power​ ​of​ ​2​ ​to​ ​the​ ​answer,​ ​so,​ ​in​ ​this​ ​case​ ​we​ ​have​ ​a​ ​one​ ​in​ ​the​ ​32​ ​position,​ ​the​ ​8 
position,​ ​and​ ​the​ ​2​ ​position. 

8. [​Binary​ ​-​ ​Natural​ ​Numbers​]​ ​Putting​ ​it​ ​all​ ​together,​ ​we​ ​have​ ​32​ ​+​ ​8​ ​+​ ​2​ ​=​ ​42. 

9. [​Binary​ ​Flashcards​ ​&​ ​Worksheet​] 
a. Gather​ ​the​ ​students​ ​together​ ​on​ ​the​ ​floor​ ​or​ ​somewhere​ ​easy​ ​to​ ​work.​ ​Give​ ​each 

student​ ​one​ ​set​ ​of​ ​the​ ​binary​ ​flash​ ​cards​ ​from 
http://cse4k12.org/cards/number_cards.html​.​ ​This​ ​set​ ​of​ ​activities​ ​is​ ​useful: 
http://csunplugged.org/binary-numbers/  

b. Have​ ​them​ ​lay​ ​down​ ​the​ ​cards​ ​in​ ​order​ ​with​ ​the​ ​most​ ​dots​ ​on​ ​the​ ​left​ ​and​ ​the 
least​ ​on​ ​the​ ​right.​ ​Then,​ ​to​ ​make​ ​a​ ​binary​ ​number,​ ​add​ ​up​ ​the​ ​dots​ ​on​ ​the​ ​face-up 
cards​ ​to​ ​find​ ​the​ ​value.​ ​Face​ ​up​ ​cards​ ​are​ ​1,​ ​face​ ​down​ ​cards​ ​are​ ​0.​ ​Start​ ​with 
small​ ​numbers​ ​first,​ ​then​ ​go​ ​up.​ ​Usually​ ​works​ ​best​ ​to​ ​first​ ​start​ ​by​ ​turning​ ​cards 
up​ ​and​ ​seeing​ ​if​ ​they​ ​can​ ​add​ ​the​ ​dots,​ ​then​ ​go​ ​the​ ​other​ ​way​ ​by​ ​giving​ ​them​ ​a 
number​ ​and​ ​letting​ ​them​ ​turn​ ​over​ ​cards​ ​to​ ​represent​ ​it. 

c. Especially​ ​focus​ ​on​ ​numbers​ ​less​ ​than​ ​powers​ ​of​ ​2,​ ​such​ ​as​ ​15,​ ​31,​ ​63.​ ​See​ ​if 
they​ ​can​ ​find​ ​the​ ​pattern. 

d. On​ ​the​ ​board,​ ​briefly​ ​show​ ​binary​ ​addition.​ ​Many​ ​of​ ​the​ ​same​ ​arithmetic​ ​rules 
apply​ ​to​ ​binary.  

e. You​ ​can​ ​also​ ​discuss​ ​place​ ​values​ ​and​ ​compare​ ​it​ ​to​ ​the​ ​decimal​ ​system. 
f. Take​ ​a​ ​minute​ ​to​ ​have​ ​students​ ​fill​ ​out​ ​the​ ​binary​ ​counting​ ​worksheet,​ ​at​ ​least​ ​to 

the​ ​value​ ​of​ ​16.​ ​More​ ​is​ ​better! 
g. Once​ ​they​ ​have​ ​a​ ​grasp​ ​on​ ​binary,​ ​introduce​ ​hexadecimal.​ ​The​ ​worksheet​ ​makes 

it​ ​easy.​ ​Just​ ​write​ ​“A​ ​-​ ​F”​ ​next​ ​to​ ​“10​ ​-​ ​15”​ ​on​ ​the​ ​sheet.​ ​Explain​ ​that​ ​it​ ​is​ ​just 
another​ ​way​ ​to​ ​refer​ ​to​ ​the​ ​same​ ​values,​ ​but​ ​with​ ​only​ ​one​ ​letter/digit​ ​instead​ ​of 
many.​ ​There​ ​is​ ​also​ ​a​ ​slide​ ​to​ ​introduce​ ​the​ ​topic.  

 
<<<More​ ​slides​ ​from​ ​CIS​ ​115​ ​-​ ​feel​ ​free​ ​to​ ​adapt​ ​or​ ​skip​ ​parts​ ​based​ ​on​ ​time​ ​and 
audience>>> 

 
10. [​Text​]​ ​But​ ​what​ ​about​ ​other​ ​data,​ ​like​ ​words​ ​and​ ​sentences.​ ​For​ ​those​ ​items,​ ​we​ ​use​ ​a 

couple​ ​of​ ​different​ ​formats.​ ​The​ ​first​ ​is​ ​ASCII​ ​or​ ​“as-key”,​ ​which​ ​stands​ ​for​ ​the​ ​American 
Standard​ ​Code​ ​for​ ​Information​ ​Interchange.​ ​This​ ​is​ ​a​ ​table​ ​of​ ​all​ ​the​ ​values​ ​in​ ​the​ ​ASCII 
code. 
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11. [​ASCII​ ​Example​]​ ​Here​ ​is​ ​a​ ​sample​ ​of​ ​information​ ​encoded​ ​into​ ​ASCII.​ ​It​ ​is​ ​really​ ​hard​ ​to 
understand.​ ​Let’s​ ​see​ ​if​ ​we​ ​can​ ​decipher​ ​it. 
 
<do​ ​an​ ​example​ ​of​ ​deciphering​ ​the​ ​text​ ​a​ ​bit> 

12. [​ASCII​ ​Example​]​ ​As​ ​you​ ​can​ ​see,​ ​this​ ​example​ ​says​ ​“forty​ ​two”​ ​in​ ​ASCII.​ ​There​ ​are 
other​ ​formats​ ​for​ ​this,​ ​most​ ​notably​ ​Unicode,​ ​which​ ​is​ ​used​ ​extensively​ ​on​ ​the​ ​internet.​ ​It 
has​ ​codes​ ​for​ ​a​ ​much​ ​wider​ ​variety​ ​of​ ​symbols​ ​and​ ​languages.  

13. [​Images​]​ ​Another​ ​common​ ​data​ ​type​ ​that​ ​we​ ​run​ ​into​ ​everyday​ ​is​ ​images.​ ​How​ ​do​ ​you 
think​ ​images​ ​are​ ​encoded​ ​for​ ​computers?​​ ​<discuss>​​ ​There​ ​are​ ​really​ ​two​ ​common 
ways: 

a. Bitmap​ ​-​ ​each​ ​pixel​ ​in​ ​the​ ​image​ ​is​ ​assigned​ ​a​ ​numerical​ ​value​ ​representing​ ​the 
color​ ​of​ ​the​ ​image.​ ​This​ ​is​ ​simple​ ​to​ ​do,​ ​but​ ​doesn’t​ ​work​ ​well​ ​if​ ​you​ ​want​ ​to 
magnify​ ​the​ ​image​ ​very​ ​far. 

b. Vector​ ​-​ ​each​ ​element​ ​of​ ​the​ ​image​ ​is​ ​defined​ ​via​ ​a​ ​series​ ​of​ ​mathematical 
vectors.​ ​This​ ​is​ ​much​ ​more​ ​complex​ ​(usually​ ​must​ ​be​ ​done​ ​by​ ​hand),​ ​but​ ​the 
images​ ​can​ ​be​ ​magnified​ ​indefinitely. 

14. [​Vector​]​ ​In​ ​fact,​ ​here​ ​is​ ​an​ ​example​ ​of​ ​the​ ​code​ ​within​ ​a​ ​Vector​ ​graphics​ ​file.​ ​As​ ​you​ ​can 
see,​ ​it​ ​clearly​ ​defines​ ​in​ ​mathematical​ ​terms​ ​the​ ​exact​ ​shape​ ​that​ ​should​ ​be​ ​drawn​ ​to​ ​the 
screen,​ ​allowing​ ​it​ ​to​ ​be​ ​infinitely​ ​scaled​ ​in​ ​any​ ​direction​ ​just​ ​by​ ​applying​ ​simple 
mathematical​ ​operations.​ ​Most​ ​3D​ ​graphics​ ​are​ ​defined​ ​in​ ​a​ ​very​ ​similar​ ​manner,​ ​but 
we’ll​ ​talk​ ​about​ ​those​ ​in​ ​a​ ​later​ ​lecture. 

15. [​Bitmap​]​ ​Let’s​ ​look​ ​at​ ​a​ ​bitmap​ ​example.​ ​This​ ​is​ ​a​ ​16x16​ ​sprite​ ​that​ ​could​ ​have​ ​been 
used​ ​in​ ​an​ ​early​ ​video​ ​game.​ ​It​ ​consists​ ​of​ ​only​ ​four​ ​different​ ​colors.​ ​So,​ ​how​ ​do​ ​you 
think​ ​that​ ​would​ ​get​ ​encoded? 

a. Discuss!​ ​See​ ​what​ ​they​ ​think 

16. [​RGB​ ​Colors​]​ ​As​ ​you​ ​may​ ​know,​ ​bitmap​ ​images​ ​are​ ​comprised​ ​of​ ​individual​ ​pixels,​ ​with 
each​ ​pixel​ ​giving​ ​the​ ​color​ ​of​ ​just​ ​a​ ​single​ ​dot​ ​on​ ​the​ ​picture.​ ​To​ ​store​ ​that​ ​data,​ ​a 
computer​ ​would​ ​simply​ ​store​ ​the​ ​color​ ​value​ ​for​ ​each​ ​pixel​ ​in​ ​an​ ​array.​ ​The​ ​color​ ​values 
are​ ​stored​ ​using​ ​their​ ​corresponding​ ​red,​ ​green​ ​and​ ​blue​ ​values.  

17. [​Bitmap​ ​Text​]​ ​Therefore,​ ​this​ ​is​ ​an​ ​example​ ​of​ ​what​ ​a​ ​bitmap​ ​would​ ​look​ ​like​ ​stored​ ​on 
your​ ​computer.​ ​It​ ​looks​ ​like​ ​just​ ​a​ ​bunch​ ​of​ ​random​ ​text,​ ​but​ ​there​ ​is​ ​a​ ​method​ ​to​ ​the 
madness. 

18. [​Bitmap​ ​Text​]​ ​Here​ ​is​ ​what​ ​that​ ​text​ ​would​ ​look​ ​like​ ​if​ ​I​ ​actually​ ​filled​ ​in​ ​each​ ​area​ ​with 
the​ ​corresponding​ ​color.  

19. [​Bitmap​ ​Text​ ​with​ ​Key​]​ ​In​ ​many​ ​cases,​ ​instead​ ​of​ ​storing​ ​the​ ​actual​ ​color​ ​values,​ ​the 
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bitmap​ ​might​ ​use​ ​a​ ​color​ ​table​ ​to​ ​store​ ​the​ ​individual​ ​colors,​ ​and​ ​then​ ​use​ ​the​ ​indexes​ ​of 
the​ ​color​ ​table​ ​to​ ​represent​ ​the​ ​colors​ ​in​ ​the​ ​file.​ ​In​ ​this​ ​case,​ ​the​ ​file​ ​can​ ​be​ ​stored​ ​in 
less​ ​than​ ​4%​ ​of​ ​the​ ​size​ ​it​ ​would​ ​normally​ ​take. 

20. [​Data​ ​Compression​]​ ​​<Slide​ ​has​ ​multiple​ ​stops>​​ ​The​ ​same​ ​concept​ ​can​ ​be​ ​used​ ​for 
Text.​ ​Here​ ​we​ ​see​ ​a​ ​very​ ​common​ ​piece​ ​of​ ​text​ ​with​ ​repeated​ ​words.​ ​We​ ​can​ ​easily 
replace​ ​these​ ​words​ ​with​ ​numbers​ ​that​ ​represent​ ​those​ ​words​ ​instead,​ ​resulting​ ​in​ ​this 
much​ ​short​ ​version. 

21. [​Mars​ ​Rover​ ​Hex​ ​Code​]​ ​Why​ ​would​ ​this​ ​be​ ​useful?​ ​Well,​ ​Mark​ ​Watney​ ​found​ ​out​ ​when 
he​ ​was​ ​stranded​ ​on​ ​Mars​ ​with​ ​no​ ​way​ ​to​ ​communicate​ ​with​ ​Earth.​ ​The​ ​only​ ​thing​ ​that​ ​the 
folks​ ​on​ ​Earth​ ​could​ ​do​ ​was​ ​rotate​ ​the​ ​camera​ ​on​ ​top​ ​of​ ​the​ ​old​ ​Mars​ ​Pathfinder​ ​rover. 
So,​ ​knowing​ ​that​ ​he​ ​needed​ ​a​ ​way​ ​to​ ​understand,​ ​Mark​ ​set​ ​up​ ​16​ ​signs,​ ​one​ ​for​ ​each 
hexadecimal​ ​character.​ ​Since​ ​he​ ​knew​ ​that​ ​2​ ​hexadecimal​ ​characters​ ​would​ ​make​ ​one 
text​ ​letter​ ​in​ ​ASCII,​ ​it​ ​was​ ​a​ ​really​ ​efficient​ ​way​ ​to​ ​communicate.​ ​For​ ​our​ ​activity​ ​today, 
we’re​ ​going​ ​to​ ​build​ ​a​ ​program​ ​that​ ​decodes​ ​that​ ​information​ ​just​ ​like​ ​he​ ​did! 

a. Direct​ ​the​ ​students​ ​to​ ​load​ ​the​ ​Rover​ ​Hex​ ​Code​ ​scratch​ ​project: 
https://scratch.mit.edu/projects/112910972  

b. The​ ​students​ ​should​ ​click​ ​the​ ​“See​ ​Inside”​ ​button​ ​to​ ​see​ ​the​ ​code.​ ​If​ ​they​ ​have​ ​a 
Scratch​ ​account,​ ​they​ ​can​ ​also​ ​click​ ​the​ ​“Remix”​ ​button​ ​to​ ​save​ ​it​ ​to​ ​their​ ​account. 

c. Let​ ​the​ ​students​ ​observe​ ​the​ ​program​ ​running​ ​once​ ​to​ ​see​ ​what​ ​it​ ​does.​ ​It​ ​looks 
like​ ​the​ ​rover’s​ ​camera​ ​moves​ ​randomly,​ ​but​ ​there​ ​is​ ​an​ ​underlying​ ​pattern.​ ​Show 
them​ ​how​ ​to​ ​change​ ​the​ ​stage​ ​backdrop​ ​to​ ​the​ ​circle​ ​and​ ​observe​ ​it​ ​again. 

d. Explain​ ​that​ ​this​ ​program​ ​is​ ​very​ ​much​ ​a​ ​“code​ ​and​ ​test”​ ​programming​ ​project, 
where​ ​we​ ​try​ ​little​ ​bits​ ​at​ ​a​ ​time​ ​and​ ​then​ ​run​ ​it​ ​to​ ​see​ ​what​ ​it​ ​does​ ​and​ ​test​ ​it. 
That​ ​helps​ ​us​ ​avoid​ ​little​ ​mistakes​ ​that​ ​become​ ​big​ ​mistakes​ ​later. 

e. Basic​ ​steps: 
i. Under​ ​the​ ​“When​ ​I​ ​receive​ ​Letter”​ ​block,​ ​first​ ​have​ ​the​ ​program​ ​say​ ​the 

direction​ ​of​ ​the​ ​camera.​ ​That​ ​helps​ ​us​ ​understand​ ​what​ ​the​ ​camera 
direction​ ​is​ ​saying​ ​as​ ​it​ ​rotates. 

ii. Since​ ​the​ ​camera​ ​direction​ ​is​ ​in​ ​degrees,​ ​we’ll​ ​need​ ​to​ ​convert​ ​it​ ​into 
sixteenths.​ ​To​ ​do​ ​that,​ ​we​ ​divide​ ​it​ ​by​ ​22.5​ ​(which​ ​is​ ​360/16).​ ​That​ ​will​ ​let 
us​ ​know​ ​which​ ​sixteenth​ ​it​ ​is​ ​pointing​ ​to.​ ​However,​ ​since​ ​the​ ​direction​ ​is 
negative,​ ​we’ll​ ​get​ ​negative​ ​sixteenths​ ​as​ ​well.​ ​So,​ ​we’ll​ ​add​ ​8​ ​to​ ​the 
result.​ ​We​ ​then​ ​store​ ​that​ ​value​ ​in​ ​the​ ​Code​ ​variable. 

iii. Next,​ ​we​ ​need​ ​to​ ​keep​ ​track​ ​of​ ​2​ ​consecutive​ ​code​ ​words.​ ​We​ ​can​ ​do​ ​that 
using​ ​the​ ​Last​ ​variable.​ ​So,​ ​we’ll​ ​need​ ​a​ ​couple​ ​of​ ​If-Else​ ​blocks​ ​to​ ​check 
if​ ​the​ ​Last​ ​variable​ ​is​ ​blank.​ ​If​ ​it​ ​is,​ ​we’ll​ ​put​ ​Code​ ​into​ ​it​ ​and​ ​get​ ​another 
Code​ ​variable​ ​from​ ​the​ ​next​ ​movement​ ​of​ ​the​ ​camera.​ ​If​ ​it​ ​isn’t​ ​blank,​ ​we’ll 
use​ ​the​ ​Code​ ​and​ ​Last​ ​variables​ ​to​ ​decode​ ​the​ ​letter​ ​and​ ​add​ ​it​ ​to​ ​output.  

iv. To​ ​decode​ ​the​ ​letters,​ ​refer​ ​to​ ​the​ ​ASCII​ ​table​ ​here: 
http://mediawiki.factotumnw.com/mediawiki/images/a/a2/ASCIITable1.jpg​. 
The​ ​Last​ ​variable​ ​is​ ​the​ ​first​ ​hex​ ​character,​ ​and​ ​the​ ​Code​ ​variable​ ​is​ ​the 
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last.​ ​All​ ​of​ ​the​ ​characters​ ​are​ ​in​ ​lowercase​ ​(and​ ​uses​ ​tilde​ ​for​ ​space),​ ​so 
you​ ​really​ ​only​ ​need​ ​to​ ​deal​ ​with​ ​Last​ ​=​ ​6​ ​and​ ​Last​ ​=​ ​7.​ ​So,​ ​you’ll​ ​have​ ​a 
block​ ​of​ ​code​ ​looking​ ​like​ ​this:  

If​ ​Last​ ​=​ ​6 
If​ ​Code​ ​=​ ​0 

Set​ ​Output​ ​to​ ​(join​ ​Output​ ​and​ ​ ​̀ ​) 
Else 

If​ ​Code​ ​=​ ​1 
Set​ ​Output​ ​to​ ​(join​ ​Output​ ​and​ ​a​ ​) 

… 
Else 

If​ ​Last​ ​=​ ​7 
If​ ​Code​ ​=​ ​0 

Set​ ​Output​ ​to​ ​(join​ ​Output​ ​and​ ​p​ ​) 
… 

Set​ ​Last​ ​to​ ​(blank) 
v. This​ ​part​ ​takes​ ​time​,​ ​and​ ​students​ ​have​ ​to​ ​be​ ​really​ ​careful​ ​about​ ​their 

code.​ ​If​ ​they​ ​get​ ​stuck,​ ​look​ ​closely​ ​at​ ​the​ ​structure​ ​to​ ​make​ ​sure​ ​they 
didn’t​ ​get​ ​off​ ​somewhere.​ ​I​ ​usually​ ​do​ ​the​ ​“If​ ​Last​ ​=​ ​6”​ ​part​ ​first,​ ​and​ ​show 
them​ ​how​ ​to​ ​duplicate​ ​the​ ​If-Else​ ​blocks​ ​16​ ​times,​ ​then​ ​once​ ​that​ ​is​ ​done​ ​I 
show​ ​them​ ​how​ ​to​ ​duplicate​ ​the​ ​whole​ ​thing​ ​for​ ​“If​ ​Last​ ​=​ ​7”​ ​and​ ​then​ ​they 
just​ ​change​ ​the​ ​output. 

vi. Once​ ​it​ ​is​ ​done,​ ​it​ ​should​ ​give​ ​the​ ​students​ ​the​ ​message​ ​of 
“move~eest~mark.”​ ​Discuss​ ​how​ ​this​ ​message​ ​could​ ​be​ ​very​ ​confusing 
(should​ ​it​ ​be​ ​east​ ​or​ ​west).​ ​How​ ​can​ ​we​ ​fix​ ​that?​ ​Discuss​ ​ways​ ​of 
detecting​ ​and​ ​correcting​ ​errors​ ​in​ ​the​ ​message.​ ​If​ ​the​ ​students​ ​press​ ​“r”​ ​in 
Scratch,​ ​it​ ​will​ ​replay​ ​the​ ​message​ ​again,​ ​this​ ​time​ ​with​ ​the​ ​correct 
direction.  

f. See​ ​the​ ​​MarsHexCode.mp4​​ ​video​ ​for​ ​a​ ​demonstration​ ​of​ ​how​ ​to​ ​complete​ ​this 
project. 

g. Also​ ​check​ ​the​ ​​RoverHexCode.sb2​​ ​for​ ​a​ ​sample​ ​solution. 
 

22. [​Reflections​] 
a. How​ ​do​ ​computers​ ​represent​ ​data?  
b. What​ ​is​ ​the​ ​value​ ​42​ ​in​ ​binary? 
c. What​ ​is​ ​the​ ​value​ ​101101​ ​in​ ​decimal?  
d. What​ ​is​ ​hexadecimal? 
e. What​ ​could​ ​happen​ ​if​ ​a​ ​computer​ ​message​ ​is​ ​not​ ​correct​ ​when​ ​it​ ​is​ ​received? 

How​ ​can​ ​we​ ​fix​ ​that? 
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Mission​ ​to​ ​Mars​ ​-​ ​USD​ ​383​ ​Summer​ ​STEM​ ​-​ ​Day​ ​4 
Summer​ ​2017 

 
Learning​ ​Objectives 

● Students​ ​will​ ​discuss​ ​artificial​ ​intelligence​ ​and​ ​how​ ​to​ ​determine​ ​if​ ​a​ ​computer​ ​is 
intelligent. 

● Students​ ​will​ ​experience​ ​how​ ​a​ ​neural​ ​network​ ​is​ ​built​ ​using​ ​training​ ​data. 
● Students​ ​will​ ​build​ ​a​ ​working​ ​video​ ​game​ ​AI​ ​based​ ​on​ ​PacMan. 
● Students​ ​will​ ​use​ ​their​ ​knowledge​ ​of​ ​AI​ ​to​ ​write​ ​a​ ​program​ ​to​ ​avoid​ ​random​ ​obstacles.  

 
Resources 

● Slides:​ ​​http://people.cs.ksu.edu/~russfeld/presentations/stem2017/day4.html  
● Scratch​ ​Website:​ ​​http://scratch.mit.edu 
● Information​ ​on​ ​Turing​ ​Test:​ ​​http://csunplugged.org/the-turing-test/ 
● Pacman​ ​AI​ ​Behavior: 

http://gameinternals.com/post/2072558330/understanding-pac-man-ghost-behavior  
● Pacman​ ​on​ ​Scratch:​ ​​https://scratch.mit.edu/projects/65404312/  
● Pacman​ ​Solution​ ​on​ ​Scratch:​ ​​https://scratch.mit.edu/projects/90692358/  
● Mars​ ​Pathfinding​ ​on​ ​Scratch:​ ​​https://scratch.mit.edu/projects/113105354/  

 
Lesson​ ​Setup​ ​Before​ ​Class 

● Log​ ​on​ ​to​ ​computers​ ​using​ ​STEM​ ​accounts 
● Print​ ​Cat​ ​&​ ​Dog​ ​handouts 
● Make​ ​sure​ ​​PacMan​ ​Starter​​ ​is​ ​available​ ​on​ ​Scratch​ ​website. 
● Make​ ​sure​ ​​Mars​ ​Pathfinding​​ ​is​ ​available​ ​on​ ​Scratch​ ​website.  

 
Schedule 

● 9:00​ ​-​ ​Welcome​ ​&​ ​Icebreaker 
● 9:15​ ​-​ ​Intro​ ​to​ ​AI​ ​&​ ​Decision​ ​Making  
● 9:30​ ​-​ ​Cat​ ​or​ ​Dog​ ​activity 
● 9:45​ ​-​ ​PacMan​ ​AI 
● 10:10​ ​-​ ​Break 
● 10:15​ ​-​ ​Mars​ ​Rover​ ​Pathfinding 
● 10:45​ ​-STEM​ ​Survey 
● 11:00​ ​-​ ​Wrap-Up​ ​Discussion 

 
Lecture​ ​Notes 

1. [​Icebreaker​]​ ​Take​ ​a​ ​minute​ ​to​ ​review​ ​what​ ​was​ ​learned​ ​yesterday.​ ​Some​ ​good 
questions: 

a. Convert​ ​some​ ​numbers​ ​back​ ​and​ ​forth​ ​between​ ​binary 
b. What​ ​other​ ​numbering​ ​system​ ​besides​ ​binary​ ​did​ ​we​ ​learn?​ ​How​ ​does​ ​it​ ​work? 
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c. What​ ​could​ ​happen​ ​if​ ​a​ ​message​ ​gets​ ​jumbled​ ​up​ ​when​ ​we​ ​send​ ​it?​ ​How​ ​can​ ​we 
fix​ ​that? 

 
2. [​Video​]​ ​Today​ ​we​ ​are​ ​going​ ​to​ ​talk​ ​all​ ​about​ ​artificial​ ​intelligence.​ ​Before​ ​we​ ​begin, 

here’s​ ​a​ ​short​ ​video​ ​from​ ​PBS​ ​introducing​ ​the​ ​subject​ ​with​ ​some​ ​of​ ​the​ ​world’s​ ​renowned 
experts​ ​in​ ​the​ ​field.​ ​(Watch​ ​through​ ​2:05,​ ​first​ ​section)  

 
3. [​Video​ ​2​]​ ​Here’s​ ​another​ ​video​ ​about​ ​a​ ​robot​ ​that​ ​is​ ​programmed​ ​to​ ​learn​ ​just​ ​like​ ​a 

human​ ​does.​ ​Do​ ​you​ ​think​ ​that​ ​would​ ​be​ ​a​ ​good​ ​way​ ​to​ ​build​ ​an​ ​artificial​ ​intelligence? 
 

4. [​What​ ​is​ ​Artificial​ ​Intelligence​]​ ​So,​ ​what​ ​is​ ​artificial​ ​intelligence? 
a. Discuss.​ ​A​ ​good​ ​definition​ ​is​ ​“the​ ​study​ ​and​ ​design​ ​of​ ​intelligent​ ​agents.” 

 
5. [​Intelligent​ ​Behavior​ ​Diagram​]​ ​One​ ​problem​ ​with​ ​AI​ ​is​ ​that​ ​it​ ​forces​ ​the​ ​computer​ ​to 

mimic​ ​all​ ​human​ ​behavior,​ ​not​ ​just​ ​intelligence.​ ​Things​ ​such​ ​as​ ​slow​ ​response​ ​times, 
typos,​ ​and​ ​commonly​ ​held​ ​misconceptions​ ​that​ ​aren’t​ ​true​ ​are​ ​all​ ​examples​ ​of​ ​human 
behavior​ ​that​ ​might​ ​not​ ​be​ ​considered​ ​intelligent,​ ​but​ ​it​ ​is​ ​still​ ​something​ ​a​ ​successful​ ​AI 
agent​ ​must​ ​possess​ ​to​ ​pass​ ​the​ ​test.​ ​Likewise,​ ​it​ ​must​ ​also​ ​act​ ​as​ ​if​ ​it​ ​cannot​ ​solve​ ​some 
problems​ ​that​ ​are​ ​perfectly​ ​within​ ​its​ ​abilities,​ ​simply​ ​because​ ​those​ ​problems​ ​are 
unsolvable​ ​by​ ​a​ ​human’s​ ​intelligence. 

 
6. [​Alan​ ​Turing​]​ ​That​ ​was​ ​the​ ​problem​ ​that​ ​Alan​ ​Turing​ ​ran​ ​into.​ ​He​ ​was​ ​deeply​ ​interested 

in​ ​the​ ​field,​ ​but​ ​unfortunately​ ​there​ ​was​ ​no​ ​good​ ​way​ ​to​ ​determine​ ​if​ ​a​ ​system​ ​was​ ​truly 
“intelligent”​ ​at​ ​the​ ​time.​ ​In​ ​1950,​ ​he​ ​wrote​ ​a​ ​paper​ ​called​ ​“Computing​ ​Machinery​ ​and 
Intelligence”​ ​which​ ​he​ ​opened​ ​with​ ​the​ ​following​ ​statement:​ ​“I​ ​propose​ ​to​ ​consider​ ​the 
question,​ ​‘Can​ ​machines​ ​think?’”​ ​In​ ​that​ ​paper,​ ​he​ ​describes​ ​one​ ​way​ ​to​ ​test​ ​a​ ​machine’s 
intelligence,​ ​which​ ​is​ ​now​ ​known​ ​as​ ​a​ ​Turing​ ​Test 

 
7. [​Turing​ ​Test​]​ ​The​ ​basic​ ​idea​ ​of​ ​a​ ​turing​ ​test​ ​is​ ​as​ ​follows:​ ​you​ ​have​ ​a​ ​person​ ​in​ ​a​ ​room 

with​ ​a​ ​computer​ ​capable​ ​of​ ​text-based​ ​chat.​ ​In​ ​another​ ​room​ ​is​ ​either​ ​a​ ​computer​ ​or​ ​a 
human​ ​that​ ​responds​ ​via​ ​the​ ​text-based​ ​chat​ ​system.​ ​The​ ​computer​ ​will​ ​try​ ​to​ ​pass​ ​itself 
off​ ​as​ ​a​ ​human​ ​being,​ ​by​ ​responding​ ​to​ ​the​ ​prompts​ ​from​ ​the​ ​tester.​ ​The​ ​tester​ ​then​ ​must 
determine​ ​if​ ​he​ ​or​ ​she​ ​was​ ​conversing​ ​with​ ​a​ ​computer​ ​or​ ​a​ ​real​ ​person.​ ​So​ ​far​ ​in​ ​history, 
no​ ​computer​ ​has​ ​completely​ ​passed​ ​the​ ​Turing​ ​test,​ ​but​ ​many​ ​have​ ​come​ ​very​ ​close​ ​at 
times. 

a. So,​ ​now​ ​that​ ​we’ve​ ​seen​ ​the​ ​turing​ ​test,​ ​can​ ​anyone​ ​think​ ​of​ ​some​ ​problems​ ​it 
may​ ​have? 

 
8. [​Chinese​ ​Room​]​ ​Another​ ​problem​ ​with​ ​the​ ​Turing​ ​Test​ ​is​ ​highlighted​ ​in​ ​the​ ​Chinese 

Room​ ​thought​ ​experiment,​ ​as​ ​proposed​ ​by​ ​John​ ​Searle​ ​in​ ​1980​ ​in​ ​his​ ​paper​ ​“Minds, 
Brains,​ ​and​ ​Programs.”​ ​In​ ​this​ ​setup,​ ​an​ ​English​ ​speaking​ ​person​ ​is​ ​placed​ ​in​ ​a​ ​room 
with​ ​sufficient​ ​supplies​ ​and​ ​a​ ​set​ ​of​ ​instructions​ ​completely​ ​written​ ​in​ ​English​ ​that​ ​directs 
him​ ​to​ ​accept​ ​Chinese​ ​language​ ​characters​ ​as​ ​input,​ ​and​ ​output​ ​a​ ​response​ ​of​ ​Chinese 
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characters.​ ​On​ ​the​ ​other​ ​side​ ​of​ ​the​ ​wall​ ​is​ ​a​ ​native​ ​Chinese​ ​speaker​ ​performing​ ​a 
“Turing​ ​Test,”​ ​and​ ​in​ ​this​ ​case​ ​that​ ​person​ ​is​ ​convinced​ ​that​ ​the​ ​person​ ​on​ ​the​ ​other​ ​side 
of​ ​the​ ​wall​ ​is​ ​indeed​ ​a​ ​human.​ ​However,​ ​the​ ​computer,​ ​being​ ​a​ ​human​ ​that​ ​only​ ​speaks 
English,​ ​is​ ​blissfully​ ​unaware​ ​of​ ​the​ ​conversation​ ​taking​ ​place​ ​in​ ​Chinese.​ ​So,​ ​is​ ​the 
machine​ ​“intelligent”​ ​or​ ​merely​ ​so​ ​advanced​ ​at​ ​following​ ​instructions​ ​as​ ​to​ ​appear 
“intelligent?” 

 
9. [​Strong​ ​AI​ ​vs.​ ​Weak​ ​AI​]​ ​This​ ​leads​ ​to​ ​the​ ​endless​ ​debate​ ​between​ ​Strong​ ​AI​ ​and​ ​Weak 

AI.​ ​When​ ​you​ ​think​ ​of​ ​AI​ ​in​ ​movies,​ ​this​ ​is​ ​usually​ ​“Strong​ ​AI”​ ​which​ ​is​ ​designed​ ​to 
completely​ ​mimic​ ​or​ ​surpass​ ​human​ ​intelligence.​ ​Unfortunately,​ ​at​ ​this​ ​time​ ​Strong​ ​AI​ ​is 
not​ ​a​ ​reality,​ ​and​ ​some​ ​debate​ ​that​ ​it​ ​is​ ​even​ ​possible.​ ​Most​ ​of​ ​the​ ​AI​ ​that​ ​we​ ​deal​ ​with 
today​ ​is​ ​a​ ​form​ ​of​ ​Weak​ ​AI,​ ​also​ ​called​ ​Narrow​ ​AI,​ ​which​ ​is​ ​designed​ ​to​ ​perform​ ​only​ ​a 
subset​ ​of​ ​intelligent​ ​actions. 

 
10. [​Marvin​ ​Minsky​]​ ​To​ ​dive​ ​a​ ​bit​ ​deeper​ ​into​ ​the​ ​topic​ ​of​ ​AI,​ ​we’re​ ​going​ ​to​ ​look​ ​at​ ​a​ ​very 

unique​ ​tool​ ​called​ ​Neural​ ​Networks.​ ​In​ ​1969,​ ​Marvin​ ​Minsky,​ ​one​ ​of​ ​the​ ​founders​ ​of​ ​MIT’s 
AI​ ​lab,​ ​wrote​ ​a​ ​book​ ​called​ ​​Perceptrons​​ ​that​ ​laid​ ​the​ ​groundwork​ ​for​ ​the​ ​idea​ ​of​ ​neural 
networks.  

 
11. [​Artificial​ ​Neural​ ​Networks​]​ ​The​ ​idea​ ​behind​ ​neural​ ​networks​ ​lies​ ​in​ ​the​ ​power​ ​of 

individual​ ​“neurons”​ ​and​ ​the​ ​connections​ ​between​ ​them.​ ​Each​ ​neuron​ ​is​ ​capable​ ​of 
doing​ ​a​ ​certain​ ​task,​ ​and​ ​then​ ​its​ ​output​ ​is​ ​passed​ ​on​ ​to​ ​other​ ​neurons.​ ​The​ ​strength 
comes​ ​in​ ​the​ ​form​ ​of​ ​the​ ​connections​ ​between​ ​the​ ​neurons.​ ​If​ ​one​ ​tends​ ​to​ ​give​ ​correct 
answers​ ​to​ ​a​ ​problem,​ ​other​ ​neurons​ ​will​ ​be​ ​more​ ​likely​ ​to​ ​use​ ​its​ ​output​ ​based​ ​on​ ​the 
strength​ ​of​ ​the​ ​connection​ ​between​ ​them.​ ​The​ ​process​ ​of​ ​strengthening​ ​good 
connections​ ​and​ ​weakening​ ​bad​ ​ones​ ​is​ ​how​ ​a​ ​neural​ ​network​ ​is​ ​able​ ​to​ ​“learn”​ ​how​ ​to 
do​ ​things.  

 
12. [​Neural​ ​Network​ ​Activity​] 

a. Each​ ​student​ ​gets​ ​one​ ​of​ ​the​ ​half-sheet​ ​handouts.​ ​They​ ​are​ ​directed​ ​to​ ​only​ ​look 
at​ ​their​ ​own​ ​sheet​ ​and​ ​not​ ​share. 

b. Around​ ​the​ ​room,​ ​post​ ​numbers​ ​0​ ​-​ ​10 
c. For​ ​each​ ​picture,​ ​ask​ ​the​ ​class​ ​to​ ​vote​ ​whether​ ​the​ ​overall​ ​picture​ ​is​ ​of​ ​a​ ​Cat​ ​or​ ​a 

Dog.​ ​I​ ​usually​ ​have​ ​them​ ​close​ ​their​ ​eyes​ ​to​ ​prevent​ ​cheating.​ ​Also,​ ​remind​ ​them 
that​ ​it​ ​is​ ​OK​ ​to​ ​get​ ​this​ ​wrong​ ​(some​ ​students​ ​are​ ​very​ ​self-conscious​ ​about​ ​being 
wrong​ ​at​ ​this​ ​age). 

d. Use​ ​the​ ​Excel​ ​document​ ​to​ ​show​ ​the​ ​full​ ​picture. 
e. At​ ​the​ ​end,​ ​any​ ​students​ ​who​ ​got​ ​it​ ​right​ ​move​ ​up​ ​to​ ​the​ ​number​ ​that​ ​represents 

how​ ​many​ ​they’ve​ ​gotten​ ​correct​ ​so​ ​far.​ ​(So,​ ​if​ ​they​ ​have​ ​3​ ​correct,​ ​they​ ​stand​ ​by 
number​ ​3).​ ​The​ ​students​ ​at​ ​the​ ​higher​ ​numbers​ ​get​ ​“more​ ​votes”​ ​or​ ​higher​ ​weight 
than​ ​the​ ​lower​ ​students.  

f. At​ ​the​ ​end,​ ​let​ ​the​ ​students​ ​vote​ ​one​ ​last​ ​time​ ​with​ ​their​ ​eyes​ ​open.​ ​Hopefully 
they​ ​should​ ​see​ ​that​ ​most​ ​of​ ​the​ ​students​ ​who​ ​get​ ​it​ ​right​ ​are​ ​at​ ​the​ ​higher 
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numbers.​ ​You​ ​can​ ​also​ ​use​ ​the​ ​Excel​ ​sheet​ ​to​ ​record​ ​the​ ​number​ ​each​ ​student​ ​is 
at​ ​based​ ​on​ ​the​ ​X-Y​ ​coordinates​ ​on​ ​the​ ​handout.​ ​Hopefully​ ​the​ ​higher​ ​numbers 
should​ ​be​ ​centrally​ ​located​ ​and​ ​the​ ​lower​ ​numbers​ ​are​ ​around​ ​the​ ​outside.  

g. See​ ​​StudentTeach.mp4​​ ​for​ ​a​ ​short​ ​example​ ​of​ ​how​ ​this​ ​works.  
 

13. [​Camouflaging​ ​Tanks​]​ ​Refer​ ​to​ ​story​ ​here:​ ​​http://neil.fraser.name/writing/tank/  
a. Trained​ ​a​ ​neural​ ​network​ ​with​ ​pictures​ ​of​ ​tanks​ ​hiding​ ​in​ ​trees​ ​and​ ​pictures​ ​of​ ​just 

trees 
b. It​ ​worked​ ​well​ ​for​ ​all​ ​the​ ​original​ ​photos,​ ​but​ ​when​ ​they​ ​brought​ ​in​ ​a​ ​new​ ​set​ ​of 

photos,​ ​it​ ​was​ ​totally​ ​random 
c. The​ ​reason:​ ​the​ ​original​ ​photos​ ​had​ ​all​ ​the​ ​tanks​ ​taken​ ​on​ ​sunny​ ​days,​ ​and​ ​all​ ​the 

trees​ ​taken​ ​on​ ​cloudy​ ​days.​ ​They​ ​had​ ​built​ ​a​ ​machine​ ​to​ ​determine​ ​if​ ​it​ ​was​ ​sunny 
or​ ​not! 

 
14. [​MarI/O​]​ ​Here’s​ ​another​ ​use​ ​of​ ​Neural​ ​Networks​ ​-​ ​to​ ​play​ ​a​ ​video​ ​game.​ ​This​ ​video​ ​does 

a​ ​great​ ​job​ ​of​ ​explaining​ ​how​ ​neural​ ​networks​ ​can​ ​be​ ​evolved​ ​to​ ​complete​ ​any​ ​task. 
 

15. [​Pacman​ ​AI​]​ ​Now​ ​that​ ​we​ ​know​ ​a​ ​little​ ​bit​ ​about​ ​AI,​ ​let’s​ ​see​ ​if​ ​we​ ​can​ ​build​ ​one​ ​in 
Scratch.​ ​One​ ​of​ ​the​ ​simplest​ ​and​ ​yet​ ​most​ ​interesting​ ​AIs​ ​can​ ​be​ ​found​ ​in​ ​the​ ​old​ ​game 
Pacman.​ ​How​ ​many​ ​of​ ​you​ ​have​ ​played​ ​Pacman?​ ​There​ ​are​ ​4​ ​ghosts​ ​-​ ​Inky,​ ​Blinky, 
Pinky,​ ​and​ ​Clyde.​ ​Let’s​ ​take​ ​a​ ​look​ ​at​ ​how​ ​to​ ​write​ ​their​ ​AI: 

a. Direct​ ​the​ ​students​ ​to​ ​load​ ​the​ ​​Pacman​ ​​starter​ ​scratch​ ​project: 
https://scratch.mit.edu/projects/65404312  

b. The​ ​students​ ​should​ ​click​ ​the​ ​“See​ ​Inside”​ ​button​ ​to​ ​see​ ​the​ ​code.​ ​If​ ​they​ ​have​ ​a 
Scratch​ ​account,​ ​they​ ​can​ ​also​ ​click​ ​the​ ​“Remix”​ ​button​ ​to​ ​save​ ​it​ ​to​ ​their​ ​account. 

c. The​ ​AIs​ ​in​ ​this​ ​project​ ​use​ ​a​ ​simple​ ​perceptron​ ​model.​ ​They​ ​first​ ​perceive​ ​their 
surroundings,​ ​then​ ​act​ ​based​ ​on​ ​that​ ​perception.​ ​To​ ​complete​ ​this​ ​project,​ ​follow 
these​ ​steps: 

i. Blinky:​ ​​Blinky​ ​always​ ​moves​ ​toward​ ​Pacman.​ ​So,​ ​in​ ​the​ ​perceive​ ​stage,​ ​it 
must​ ​determine​ ​which​ ​direction​ ​to​ ​move.​ ​To​ ​do​ ​this,​ ​I​ ​usually​ ​draw​ ​a​ ​circle 
on​ ​the​ ​board​ ​and​ ​divide​ ​it​ ​into​ ​4​ ​quadrants​ ​with​ ​an​ ​X.​ ​Then,​ ​each​ ​line 
must​ ​be​ ​labeled,​ ​with​ ​0​ ​being​ ​up.​ ​So,​ ​the​ ​lines​ ​will​ ​be​ ​45,​ ​135,​ ​-135​ ​and 
-45,​ ​going​ ​clockwise​ ​from​ ​0.​ ​Label​ ​the​ ​quadrants​ ​up,​ ​right,​ ​left​ ​and​ ​down. 
In​ ​the​ ​code,​ ​we​ ​must​ ​point​ ​Blinky​ ​at​ ​the​ ​direction​ ​of​ ​Pacman,​ ​then​ ​analyze 
our​ ​direction​ ​variable​ ​to​ ​determine​ ​what​ ​quadrant​ ​to​ ​move​ ​to.​ ​It​ ​is​ ​easiest 
to​ ​go​ ​from​ ​least​ ​to​ ​greatest.​ ​So,​ ​you’ll​ ​have​ ​something​ ​like: 

If​ ​direction​ ​>​ ​-135​ ​and​ ​direction​ ​<​ ​-45 
set​ ​Direction​ ​to​ ​Pacman​ ​to​ ​left 

else 
If​ ​direction​ ​>​ ​-45​ ​and​ ​direction​ ​<​ ​45 

set​ ​Direction​ ​to​ ​Pacman​ ​to​ ​up 
… 

Once​ ​you​ ​have​ ​the​ ​direction​ ​set,​ ​the​ ​Act​ ​phase​ ​is​ ​simply​ ​to​ ​move​ ​in​ ​that 
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direction.​ ​The​ ​Move​ ​block​ ​accepts​ ​directions​ ​in​ ​lower​ ​case​ ​(left,​ ​right,​ ​up, 
down).​ ​See​ ​​Blinky.png​​ ​in​ ​the​ ​Google​ ​Drive​ ​for​ ​an​ ​example. 

ii. Pinky​:​ ​Pinky​ ​always​ ​moves​ ​to​ ​a​ ​point​ ​a​ ​few​ ​spaces​ ​in​ ​front​ ​of​ ​Pacman, 
which​ ​is​ ​represented​ ​by​ ​a​ ​sprite​ ​called​ ​“PinkyPoint.”​ ​It​ ​uses​ ​much​ ​the 
same​ ​algorithm​ ​as​ ​Blinky.​ ​In​ ​fact,​ ​it​ ​is​ ​simple​ ​to​ ​just​ ​drag​ ​the​ ​blocks 
attached​ ​to​ ​“perceive”​ ​in​ ​Blinky​ ​and​ ​drop​ ​them​ ​on​ ​Pinky,​ ​then​ ​attach​ ​them 
to​ ​the​ ​perceive​ ​block.​ ​(DO​ ​NOT​ ​drag​ ​the​ ​Purple​ ​“Define​ ​perceive”​ ​block 
along​ ​with​ ​it;​ ​that​ ​will​ ​break​ ​things).​ ​Then,​ ​just​ ​change​ ​the​ ​set​ ​blocks​ ​to 
use​ ​the​ ​“Direction​ ​to​ ​Point”​ ​variable​ ​instead,​ ​and​ ​have​ ​Pinky​ ​move​ ​toward 
that​ ​point.​ ​See​ ​​Pinky.png​​ ​in​ ​the​ ​Google​ ​Drive​ ​for​ ​an​ ​example. 

iii. Clyde​:​ ​Clyde​ ​is​ ​a​ ​bit​ ​different.​ ​He​ ​will​ ​move​ ​toward​ ​Pacman​ ​most​ ​of​ ​the 
time,​ ​but​ ​if​ ​he​ ​gets​ ​too​ ​close​ ​he​ ​will​ ​retreat​ ​toward​ ​a​ ​point​ ​in​ ​the​ ​lower​ ​left 
corner​ ​of​ ​the​ ​screen,​ ​represented​ ​by​ ​a​ ​sprite​ ​called​ ​“ClydePoint.”​ ​So,​ ​his 
code​ ​is​ ​a​ ​combination​ ​of​ ​both​ ​Blinky​ ​and​ ​Pinky.​ ​So,​ ​just​ ​drag​ ​and​ ​drop​ ​the 
two​ ​perceive​ ​sections​ ​(again,​ ​DO​ ​NOT​ ​include​ ​the​ ​purple​ ​“Define 
perceive”​ ​blocks).​ ​In​ ​the​ ​act​ ​section,​ ​just​ ​include​ ​an​ ​If​ ​block​ ​to​ ​check​ ​if 
Clyde​ ​is​ ​within​ ​a​ ​set​ ​distance​ ​of​ ​PacMan​ ​(I’ve​ ​used​ ​100).​ ​If​ ​it​ ​is​ ​too​ ​close, 
move​ ​toward​ ​ClydePoint,​ ​else​ ​move​ ​toward​ ​PacMan.​ ​See​ ​​Clyde.png​​ ​for 
an​ ​example.  

iv. Inky:​ ​​The​ ​AI​ ​for​ ​Inky​ ​is​ ​much​ ​more​ ​difficult​ ​to​ ​code​ ​in​ ​Scratch.​ ​But,​ ​if 
students​ ​want​ ​to​ ​experiment,​ ​all​ ​they​ ​have​ ​to​ ​do​ ​is​ ​attach​ ​blocks​ ​below 
the​ ​“When​ ​green​ ​flag​ ​clicked”​ ​together​ ​to​ ​active​ ​it,​ ​then​ ​they​ ​can​ ​code 
their​ ​own​ ​Perceive​ ​and​ ​Act​ ​phases.  

d. See​ ​the​ ​​Pac​ ​Man​ ​Solution​​ ​file​ ​on​ ​Scratch​ ​for​ ​a​ ​complete​ ​example: 
https://scratch.mit.edu/projects/90692358  

 
16. [​Mars​ ​Rover​ ​Pathfinder​]​ ​For​ ​the​ ​last​ ​project,​ ​we​ ​need​ ​to​ ​get​ ​Mark​ ​Watney​ ​back​ ​home. 

To​ ​do​ ​that,​ ​he​ ​has​ ​to​ ​traverse​ ​the​ ​Martian​ ​terrain,​ ​but​ ​there​ ​are​ ​obstacles​ ​in​ ​his​ ​way.​ ​We 
are​ ​going​ ​to​ ​write​ ​a​ ​program​ ​to​ ​use​ ​AI​ ​to​ ​help​ ​him​ ​find​ ​a​ ​way​ ​around​ ​the​ ​obstacles. 

a. Direct​ ​the​ ​students​ ​to​ ​load​ ​the​ ​​Mars​ ​Pathfinding​ ​​starter​ ​scratch​ ​project: 
https://scratch.mit.edu/projects/113105354  

b. The​ ​students​ ​should​ ​click​ ​the​ ​“See​ ​Inside”​ ​button​ ​to​ ​see​ ​the​ ​code.​ ​If​ ​they​ ​have​ ​a 
Scratch​ ​account,​ ​they​ ​can​ ​also​ ​click​ ​the​ ​“Remix”​ ​button​ ​to​ ​save​ ​it​ ​to​ ​their​ ​account. 

c. For​ ​this​ ​project,​ ​there​ ​are​ ​3​ ​randomly​ ​generated​ ​circular​ ​obstacles​ ​between​ ​the 
rover​ ​(lower​ ​left)​ ​and​ ​the​ ​goal​ ​(upper​ ​right).​ ​Students​ ​can​ ​press​ ​the​ ​Space​ ​key​ ​to 
move​ ​the​ ​obstacles,​ ​but​ ​once​ ​they​ ​start​ ​they​ ​should​ ​not​ ​change​ ​the​ ​obstacles​ ​for 
a​ ​while.​ ​The​ ​rover​ ​must​ ​make​ ​it​ ​to​ ​the​ ​goal​ ​in​ ​as​ ​few​ ​steps​ ​as​ ​possible.​ ​Here​ ​are 
the​ ​basic​ ​steps​ ​to​ ​complete​ ​the​ ​project 

i. First,​ ​have​ ​the​ ​students​ ​simply​ ​point​ ​towards​ ​the​ ​goal​ ​and​ ​put​ ​the​ ​custom 
Move​ ​block​ ​into​ ​a​ ​Forever​ ​block,​ ​and​ ​see​ ​what​ ​happens.​ ​By​ ​default,​ ​it​ ​will 
move​ ​toward​ ​the​ ​goal,​ ​but​ ​it​ ​will​ ​stop​ ​once​ ​it​ ​hits​ ​a​ ​rock.  

ii. Once​ ​it​ ​hits​ ​an​ ​obstacle,​ ​we​ ​must​ ​figure​ ​out​ ​which​ ​one​ ​using​ ​some​ ​If 
blocks.​ ​See​ ​​Pathfinder1.png​​ ​for​ ​an​ ​example.​ ​At​ ​the​ ​same​ ​time​ ​we​ ​only 
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want​ ​to​ ​move​ ​if​ ​we​ ​aren’t​ ​touching​ ​an​ ​obstacle,​ ​so​ ​it​ ​needs​ ​to​ ​go​ ​in​ ​the 
last​ ​Else​ ​block. 

iii. In​ ​the​ ​case​ ​that​ ​we’ve​ ​hit​ ​an​ ​obstacle,​ ​we​ ​should​ ​find​ ​the​ ​direction​ ​to​ ​the 
center​ ​of​ ​the​ ​obstacle,​ ​then​ ​see​ ​which​ ​side​ ​would​ ​be​ ​shorter​ ​to​ ​go​ ​around. 
We​ ​can​ ​do​ ​that​ ​by​ ​comparing​ ​that​ ​direction​ ​with​ ​45​ ​degrees.​ ​If​ ​it​ ​is​ ​less 
than​ ​45​ ​degrees,​ ​we​ ​should​ ​turn​ ​right,​ ​else​ ​we​ ​should​ ​turn​ ​left.​ ​We​ ​can 
decide​ ​how​ ​many​ ​degrees​ ​to​ ​turn​ ​and​ ​how​ ​many​ ​steps​ ​to​ ​make​ ​in​ ​that 
direction​ ​before​ ​turning​ ​back​ ​toward​ ​the​ ​goal.​ ​I​ ​usually​ ​turn​ ​90​ ​degrees 
and​ ​move​ ​100​ ​steps​ ​before​ ​turning​ ​back.​ ​Students​ ​can​ ​adjust​ ​those 
numbers​ ​to​ ​make​ ​their​ ​program​ ​more​ ​efficient.​ ​See​ ​​Pathfinder2.png​ ​​for 
an​ ​example.  

iv. That​ ​idea​ ​can​ ​be​ ​generalized​ ​for​ ​all​ ​3​ ​obstacles.  
v. Finally,​ ​the​ ​students​ ​should​ ​add​ ​once​ ​more​ ​If​ ​block​ ​to​ ​detect​ ​if​ ​the​ ​goal 

has​ ​been​ ​reached​ ​and​ ​stop​ ​the​ ​program​ ​at​ ​that​ ​point.  
vi. Once​ ​that​ ​is​ ​done,​ ​encourage​ ​students​ ​to​ ​modify​ ​their​ ​solutions​ ​by 

adjusting​ ​the​ ​angles​ ​and​ ​movements​ ​to​ ​reduce​ ​the​ ​number​ ​of​ ​moves 
(reported​ ​in​ ​the​ ​upper​ ​left​ ​corner).  

d. See​ ​​MarsPathfinder.mp4​​ ​for​ ​an​ ​example​ ​of​ ​how​ ​to​ ​complete​ ​this​ ​program. 
 
<<<​There​ ​are​ ​some​ ​videos​ ​at​ ​the​ ​end​ ​of​ ​the​ ​slides​ ​for​ ​time​ ​filler​ ​if​ ​needed​>>> 
 

17. [AI​ ​Today]​ ​Some​ ​examples​ ​of​ ​AI​ ​today: 
18. [Deep​ ​Blue]​ ​Deep​ ​Blue​ ​was​ ​a​ ​computer​ ​created​ ​by​ ​IBM​ ​that​ ​plays​ ​chess.​ ​In​ ​1996,​ ​over 

20​ ​years​ ​ago,​ ​it​ ​beat​ ​the​ ​world’s​ ​reigning​ ​chess​ ​champion,​ ​Garry​ ​Kasparaov.​ ​It​ ​was​ ​once 
of​ ​the​ ​greatest​ ​milestones​ ​in​ ​AI,​ ​and​ ​today​ ​computers​ ​are​ ​becoming​ ​better​ ​and​ ​better​ ​at 
playing​ ​even​ ​more​ ​difficult​ ​games​ ​such​ ​as​ ​poker​ ​and​ ​go.  

19. [Watson​ ​on​ ​Jeopardy]​ ​In​ ​2008,​ ​another​ ​IBM​ ​computer​ ​called​ ​Watson​ ​participated​ ​in 
several​ ​rounds​ ​of​ ​the​ ​Jeopardy!​ ​game​ ​show​ ​against​ ​two​ ​of​ ​the​ ​greatest​ ​champions​ ​of​ ​all 
time.​ ​Watson​ ​won​ ​quite​ ​heavily,​ ​but​ ​not​ ​without​ ​making​ ​a​ ​few​ ​mistakes​ ​such​ ​as​ ​the​ ​one 
shown​ ​here​ ​in​ ​the​ ​video. 

20. [2​ ​AI​ ​Chatbots​ ​Talking]​ ​Of​ ​course,​ ​AI​ ​still​ ​have​ ​a​ ​long​ ​ways​ ​to​ ​go​ ​before​ ​it​ ​can​ ​interact 
just​ ​like​ ​a​ ​human​ ​would.​ ​This​ ​video​ ​shows​ ​one​ ​of​ ​the​ ​most​ ​advanced​ ​AI​ ​chatbots, 
Cleverbot,​ ​talking​ ​to​ ​itself.​ ​As​ ​you​ ​can​ ​see,​ ​the​ ​conversation​ ​really​ ​doesn’t​ ​get​ ​very​ ​far.  
 

 
21. [​Reflections​] 

a. What​ ​did​ ​we​ ​learn​ ​about​ ​computer​ ​programming​ ​this​ ​week? 
b. What​ ​was​ ​the​ ​most​ ​interesting​ ​thing​ ​we​ ​did? 
c. Do​ ​you​ ​think​ ​you​ ​could​ ​do​ ​more​ ​with​ ​computers?​ ​What​ ​other​ ​things​ ​would​ ​you 

like​ ​to​ ​learn? 
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