
';*/

COMPUTER SECURITY IN THE UNIX OPERATING SYSTEM
AND THE INGRES DATA BASE MANAGEMENT SYSTEM

by

LORI LYNN SABRACK

B.A. and B.S., Miami University, 1980

A MASTERS THESIS

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Computer Science

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1987

Approved

Dr. A. Unger

T4
*

' AlieD? 301b3M

C^n5C CONTENTS

nfl
SZtZj Chapter 1 - Computer Security 1

/> p 1.1 Introduction 1

^ 1.2 Computer Security 1

1.2.1 Background 1

1.2.2 Types 2
1.2.3 Issues 3

1.3 UNIX 4
1.3.1 Introduction 4
1.3.2 File System Structure 4
1.3.3 Security Weaknesses and Strengths 5

1.3.4 System Administrator 7
1 .

4

INGRES 7
1.4.1 Introduction 7
1.4.2 INGRES Files 8

1.4.3 Security Weaknesses and Strengths 9
1.4.4 INGRES Implementation 10

1.5 Commercial Security Methods Available 11
1.5.1 Introduction 11
1.5.2 Netlock 11
1.5.3 Memory Cards 11

1 .

6

Current Security Problem 12
1

.

7 Remaining Chapters 12

Chapter 2 - Requirements 13
2. 1 Introduction 13
2

.

2 General Requirements 13
2

.

3 Specific Requirements 14
2.3.1 Front End Processor to INGRES Related UNIX

Commands 15
2.3.2 Front End Processor to INGRES Commands 15

Chapter 3 - Detailed Design 16
3 .

1

Introduction 16
3 .

2

Interface to the User 16
3

.

3 UNIX Commands 17
3 . 4 Error and Interrupt Handling 27
3 . 5 Control Flow 28
3

.

6 Commands Excluded 31

Chapter 4 - Implementation 32
4

.

1 Introduction 32
4 . 2 Variables 32
4 . 3 Routines 33
4.4 C Programs 41

Chapter 5 - Conclusion 42
- i

-

5 . 1 Summary 42
5 . 2 Problems 42
5 . 3 Further Extensions 43

11

LIST OF FIGURES

Figure 3-1. Menu of INGRES Related UNIX Commands 17

Figure 3-2. Options for creatdb Command 19

Figure 3-3. Options for destroydb Command 19

Figure 3-4. Options for helpr Command 20

Figure 3-5. Options for ingres Command 22

Figure 3-6. List of User's Relations 23

Figure 3-7. Options for printr Commands 24

Figure 3-8 . Options for purge Command 25

Figure 3-9. Options for restore Command 26

Figure 3-10. Options for sysmod Command 26

Figure 3-11 . Relations for sysmod Command 27

Figure 3-12. High Level Design of INGRES related UNIX
Commands 29

Figure 3-13. Expanded High Level Design of INGRES
related UNIX Commands 30

Figure 4-1. Control Flow for INGRES Data Base
Commands 35

Figure 4-2. Control Flow for INGRES Relation
Commands 36

Figure 4-3. User Interface and File Access 37

111

Chapter 1 - Computer Security

1 .

1

Introduction

Computer Security has become an increasingly important
subject in today's society where the use of computers has
been incorporated either directly or indirectly in all
phases of everyday life. This paper addresses current
computer security breaches as well as methods used to
enhance computer security. The INGRES (INteractive Graphics
and Retrieval System) Data Base Management System (DBMS)
operating under the UNIX* operating system is the target for
security enhancements discussed in detail in this paper and
the one implemented at Kansas State University. In
preparation for such an implementation, INGRES, UNIX and
their relationship are discussed in terms of current
security measures, strengths and weaknesses and an example
of current usage. Finally, suggestions are made for future
possible enhancements to help eliminate security problems in
the INGRES environment

.

1 .

2

Computer Security

1.2.1 Background The technological advances that have
taken place in the area of computers have forced computer
security to expand. In the early systems, users had access
to all physical resources and what protection that did exist
on the machines was done at the highest level although most
computation was done at a much lower level. As the early
systems matured, there was a need for users to share
resources as machines were able to support many more users
and a variety of functions such as information processing
and computational services. In addition to resource
allocation becoming a major necessity, it was becoming
equally evident that steps toward computer security and
protection were very much a concern. [Dep79]

Not only is the mere increase of users a major contributor
to the growing concern of computer security, but the

* UNIX is a trademark of Bell Laboratories

- 2 -

capability of the users is alarming. The Nihilist Order, a
group of teen-age computer hackers in California, has
succeeded in breaking into computer systems and successfully
produced lists of credit cards and telephone calling card
numbers. The impetus behind their actions is more a
question of conquering the system than a question of greed.
The status gained among their peers is the reward. Although
computer crime consulting firms exist to search out such
illegal acts, and are often successful at preventing hackers
from accessing corporate systems, it does not end there.
The members of the firm are then frequently harassed as the
hackers access their personal numbers in an attempt to get
instant revenge.

The actual amount of both users and criminals indicates that
there is a problem. It is reported by the Communications
Fraud Control Association that hackers are responsible for
$500,000 worth of phone fraud per year. [C0I86] In
addition, for the small business sector, estimated at a
total of 16 million installations by 1986, $300 million is
lost in fraud every year. [Kat83,Nat85] The need applies
in the private businesses but is more urgently a problem in
government applications as they traditionally lag behind.
At least one-half of the more than 17,000 computers in the
Department of Defense (DOD) need stricter access controls.
In the Fall of 1985, President Reagan signed a directive
that established an organization that is responsible for
government wide computer security policies. The Computer
Security Center, was formed to serve the DOD in 1981 and now
serves on a national level, develops standards and
demonstrates methods to best handle various security
problems. [Pet85] It is clear that the need exists for
tighter controls and that, although issues are being
considered, much work still needs to be done.

1.2.2 Types The concept of computer security engulfs many
areas of risk that can be classified into the 6 categories
described here. Natural disasters such as unexpected power
surges, or complete power outages, can threaten secure data,
but precautions can be used to minimize losses. Complete
sets of back-up files stored on tapes or disks should be
made regularly. In addition, devices to prevent loss of
data on magnetic media during power failures should be
incorporated along with emergency generators to operate air
conditioning units. The second category, labeled as
terrorism, would include those cases where the actual
destruction of data is involved and surveillance equipment
is one means by which this problem can be attacked. The

- 3 -

next category, theft by computer, is likely to be the most
popular security risk. This includes such things as
stealing copyrighted, software which is considerably easier
as networks become more popular. [Kat83] Also, companies
such as Central Point Software, Inc., sell lock-busting
schemes to computer owners who are then able to copy
programs such as LOTUS 1.2.3, used in business applications.
Copying of software is illegal unless the people who buy the
software are producing back-up copies for their own use. It
is estimated, however, that there are as many as nine
illegally copied versions of software in use for each
legitimate copy. [Gra86] Theft would also include the
illegal retrieving or modifying of data bases, such as
employee records or bank account data. Because of such
intelligent illegal data manipulations, creative and
sophisticated security systems are emerging. Another
category of security risk is weakness in software design.
The duties of the software designer are numerous and often
include understanding the previously manual operations,
understanding the capabilities of the computer, designing a
system to automate those manual efforts most efficiently,
writing and testing computer programs to accomplish these
tasks, documenting the system, training customers to
properly use it and supporting the system. This long list
of duties allows many opportunities for a weakness to be
incorporated and security can be threatened. The fifth
category includes honest errors which will likely always
occur but which may be minimized through better verification
and testing procedures. [Kat83] The final category relates
directly to the hardware rather than the software. Physical
security, including locks on the doors to the computer room,
alarm systems, guards and fire prevention, must be a serious
consideration as access to the actual hardware by
unauthorized personnel may be a risk to a secure system.

1.2.3 Issues As has been discussed, the advent of
technological advances in the use of computers has created a
greater need for security and protection mechanisms.
Several issues arise, however, when discussing the
implementation of these measures. As the computer's
capabilities become more versatile, more first-time users
than ever are accessing computers and their peripherals. An
extension of that idea indicates that more word processing
is currently being done on computers which indicates that a
large amount of classified company information is being
processed without proper security controls. One of the
biggest obstacles in computer security is that the user does
not practice good security techniques. For example, the
misuse of passwords is prevalent in today's systems where

-4-

users maintain easy to determine passwords, share them with
other users or seldom change them. The log on procedure
must include the use of a password, but it must be safe and
simple without being too rigid, or ways to avoid it will be
developed. There are two basic ways in which to handle
password distribution. The first relies on the user
changing his own password which often leads to the use of a
common word, name or address which is often easily
decipherable. This may or may not include password aging by
the system where the password expires and must be changed by
the user after, say, 30 days. The second method maintains
that the system is responsible for distributing new, random
passwords. Concerns here are that this may not be a secure
and rapid means and that passwords generated may be
difficult to remember. In addition, there is little to no
instruction for new or, for that matter, existing users how
to best handle security problems and there is a reluctance
in naming computer security officers to handle such tasks.
Another time-consuming job to better ensure computer
security, although it is often bothersome, is the making of
back-up disks. It is essential, however, to maintain these
disks as theft, human errors or even natural disasters can
occur. [Hig83] Looking more into the internals, the need
also exists for security modules to perform in the same
dynamic way as application programs. They must be able to
add, delete and modify users to secure files and provide
administrative control over password changes. There must
also be an effective, prompt way in which to report security
violations as they occur. An audit trail of all recent
transactions is often a means of helping conduct a search
for wrongdoing.

1 . 3 UNIX

1.3.1 Introduction The UNIX operating system developed in
the late 1960 's by Bell Laboratories, although not
originally developed with security in mind, is a relatively
secure system. It allows the system administrator some
flexibility in making the system secure or not. It is,
then, the administrator's duty to find the balance between
an environment that restricts the users as much as necessary
and one in which users share data.

1.3.2 File_System_Structure The UNIX file system structure
provides the hierarchically-organized directories and files.
Normally, the file system divides each disk drive into
1024-byte blocks (although, it may vary between 512 and
8192) numbered to the number of possible blocks on that
disk. Block zero is the boot block and is not used by the

5 -

file system. Block one is the super block which contains
the size of the disk, and the sizes of the two remaining
sections of the disk. The next section is the i-list which
is of variable length and contains i-nodes. An i-node is a
64-byte table containing information about a file such as
it's size, owner and permissions, whether it is an ordinary
file, directory or a special file. In addition, the i-node
also contains the disk address list which is a list of 13
block numbers, the first 10 of which are the first 10 blocks
of the file. The eleventh block number gives the number of
a block that contains up to 256 more block numbers and
similarly for the twelfth and thirteenth block numbers.
Although this would allow files of enormous size, UNIX
places a more practical limit on the maximum size. All
devices, as well as files, directories, disks and memory,
are thought of as files. When actions are requested by
programs on devices files, UNIX translates it into actions
on the actual devices. This results in the devices being
treated independently as files which enhances security
because all I/O for the device passes through channels and
users cannot access the devices directly. [Woo85]

1.3.3 Security_Weaknesses_and_Strengths UNIX was
developed, as were most systems, before the recent urge to
include security measures, so it admittedly has some
weaknesses in its design. Probably the biggest flaw UNIX
has is in crash protection or in the handling of conditions
on the machine that temporarily cripple the system's
operations. The culprit here is the lack of checking for
the allocation of resources and exceeding the limits. This
can result in disaster for the system if done by a
mischievous user or even malfunctioning programs and there
is no easy solution. It is, however, relatively easy to
determine the cause of the disaster, or identify the culprit
and act on it. In the case of unauthorized users accessing
data, the degree of security is more adequate. Eleven bits
of protection information along with a user identification
number and a user group number (UID and GID) are associated
with each UNIX file. Nine bits of information specify
permission to read, to write and to execute the file to the
owner, the owner's group and to all other users. In
addition, the GID and UID bits allow developers to write
programs which will be executed by users and will maintain
files accessible to users only by that program. The idea of
permission bits for a directory has slightly different
meaning than for files. If a user has permission to execute
a directory, this actually means permission to search the
directory for a given file in order to access files in that
directory. Write permission of a directory is translated to

- 6 -

mean that creation and deletion of files may take place.
[Rit83] File protection information can be modified with
the three commands chown, chmod and chgrp which determine
who may read, write or execute the file. The rm command
serves to delete files and, although it will ask for
confirmation on a file for which the requester does not have
write permission, the file can be removed, regardless of the
mode or owner. [Woo85]

UNIX maintains a single user, called the "super-user", who
has the ability to read any file and write any non-
directory. It can also change protection modes, owner UID
and GID bits and may execute privileged system calls. Since
so much power is given to one user, it is clear that this is
a flaw in the security system.

Another means exists of attaining super-user status. After
a disk pack or tape has been mounted as a file system, the
system will accept what it contains.. Therefore, by mounting
a device, an authorized user may be able to corrupt a
system. Disallowing the mounting capabilities appears to be
the only solution. [Rit83]

There is an extension to the file protection modes that
enhances security. The umask command enables users to allow
their files to be as accessible by others as they wish. All
files subsequently created are given permissions based on
the user's default creation mask and can be specified to be
as lenient or strict as desired. This gives an individual
the ability to impose a restriction on the users of its
files.

UNIX also maintains a crypt command that affords greater
protection using an encryption mechanism. A key is
associated with the scrambling of the file to ensure privacy
and both the command and the key are again used to decrypt
the file. In addition, the file may be packed before
encrypting which will serve both to add more security and
save space by using file compression.

In order to maintain different divisions of users, groups
are used to logically bind users together. Passwords can
also be attached to groups to restrict those users not in
the group from changing to it. The newgrp command will

- 7 -

allow this change to the restricted group only if the
password is input correctly.

UNIX performs probably better than most systems on the issue
of password security. Each user is associated with a
password that must be entered (but is not written to the
user's screen) at each login and is stored in encrypted
form. [Woo85]

1.3.4 System_Administrat or The System Administrator is
responsible for taking care of a system by keeping
unauthorized people off the system, keeping users from
accessing each others sensitive information, preventing
integrity loss and denying service to excessive resource
requests. UNIX offers assistance in many of these areas.
Auditing programs can be found in UNIX that locate
inconsistencies and security violations. They check such
things as device files, system files writable by anyone,
logins without passwords, and those logins that have not
been recently used.

Users can also be required to periodically change their
passwords. A password aging technique mandates a maximum
number of weeks that the password is valid and a minimum
number of weeks that must transpire before the password may
again be changed. In addition, the users should be made
aware that the passwords chosen should not be simple, easy
to decipher words like first name, birth date or address.
Users should also be made aware of any tools used to
increase security, and better practices to avoid corruption.

1 . 4 INGRES

1.4.1 Introduction The INGRES DBMS is a relational data
base developed at the University of California at Berkeley
to be run under the UNIX operating system. Primarily
programmed in C, INGRES allows users to access their data
which is represented by a collection of tables in the data
base. Users are able to interact with even very large data
bases through the high-level QUEry Language called QUEL. It
is a powerful calculus based language that allows actions to
be performed on a data base based on arithmetic functions,
set valued functions or aggregate functions. [Hel75] The
output is in table form and examples of particular functions
include create, append, delete, and replace relations,
permit the use of your relation for other users and define
integrity constraints on relations. In addition, INGRES

- 8 -

controls concurrency so that many users can access a data
base simultaneously if the data base security and protection
controls allow access. To load or unload a data base of its
data, utilities are provided, and system resources are also
monitored to provide better control and performance. INGRES
maintains an integrated data dictionary that contains all
system information, such as the tables defined and the
column names associated with those tables.

The underlying problem with designing relational data bases
is that users must decide what data must be represented in
their data bases and, once accomplished, may result in
several possible representations which can lead to
inconsistencies in the data base. This, however, merely
requires that the design of the data base be studied and
chosen efficiently. [Row82]

1.4.2 INGRES_Files When installing INGRES, the user must
first define an INGRES "super-user", called ingres, on the
machine who will ultimately own all of the INGRES data bases
and all of the running software. After logging in as that
user, the INGRES tapes are copied in and can be run from the
parent directory of the user ingres (denoted by .../) chosen
by the system administrator. There is a collection of
programs in ... /bin which are executed by the INGRES
programs, a library used to compile user programs and a
concurrency device to be installed in the kernel. The
directories necessary for proper execution of INGRES
(located in .../) are:

bin binary files constituting INGRES
files files used by INGRES
data/base data bases created by users
demo demonstration package

The files under . . . /data/base are files created at the time
each data base is created. They are of four types. An
administration file contains the initialization information
and the user identification of the data base administrator
(DBA). The system relations files have predefined names and
are owned by the DBA. There are 6 of these system relation
files or catalogs for every data base on the system. They
contain information relating to each tuple in the data base,
individual domains of every relation and secondary indices
in the data base. Also there are two catalogs, protection
and integrity, that store the respective constraints for
each relation. The third type of file created for each data
base stores protection predicates specified by the DBA to

- 9 -

authorize accessibility to data bases. There are also other
files created that are not shared by the DBA and serve as
temporary storage files. Additional, but unnecessary,
directories for minimally using INGRES that are given to the
user on the INGRES tape are:

doc documentation
lib object file libraries
source INGRES system source code

A "users" file is maintained by INGRES and contains
information regarding the name, identification number,
status and permission rights of each user. An INGRES user
must be entered into this file which can be thought of as
similar to the UNIX /etc/passwd file. [A1181]

1.4.3 Security_Weaknesses_and_Strengths A definite need
for data base protection exists because it is estimated that
85% of all computer activity involves data handling. Much
of this handled data is sensitive and unauthorized data
access could be extremely serious. The longer the wait to
solve the security problem, the less likely it will be that
cost effective solutions will be available.

One approach to the problem uses kernel architecture whereby
all functions pertinent to security are included in the
kernel while all functions that are not important are
excluded. It is not yet clear that a kernel design for
secure data management will minimize the amount of code
involved in protection and still allow all the necessary
functions of data independence, good performance, flexible
reorganization and sophisticated query language to continue.
The major reason for instituting a kernel architecture was
the difficulty in program verification for large pieces of
code. The design was applied to INGRES because of its
availability in both the particular development and
university environments, its structured programming, and its
ease in the retrofitting procedure since it was a relational
model. The conclusions found from this implementation were
that the retrofit was done rather easily, however, other
functions of a DBMS affecting security, such as back-up
recovery, and a general security policy were not included.
This method met with arguments from one of the key persons
responsible for developing INGRES, Michael Stonebraker, as
to its feasibility. [Dow79]

- 10

The standard INGRES DBMS makes use of the UNIX file
protection method in its handling of data bases as files.
When INGRES is initialized on a system and the user ingres
is created, any data base creations form files listed in
.../data/bases. These files list ingres as the owner and
the actual creator of the data base (the user who called
"ingres" and the "creatdb" UNIX commands) is listed in these
files as the DBA for all future references. This is done
through the use of the UNIX sticky bit, whereby the user's
effective ID is set to ingres, so any files created at this
point will belong to ingres and, in this case, with an
"owner read, owner write, no other access" permission.
Therefore, these files cannot be modified or even perused by
anyone other than the DBA, ingres and the system's super-
user. In this way, it is difficult to access an INGRES data
base other than to execute "ingres". [Sto76]

By the use of some QUEL commands , however , a DBA can add
permissions for users to retrieve, replace, delete or append
relations. The use of these commands, then, automatically
creates the possibility of security problems. The more
users given access to a data base, the greater the
possibility that the data base can be corrupted by an
unauthorized user. A command to be used by the DBA is also
available to clean up temporary system relations, remove
extraneous files and either report on or destroy expired
relations. This helps keep a more secure data base as
unnecessary information is discarded. [Sie85]

1.4.4 INGRES^Implementation The Comprehensive Epilepsy
Program (CEP) which began in 1980 in California was able to
handle all aspects of data management and analysis.
Flexibility and generality in the operations of the
facilities were important since CEP is composed of several
groups ranging from social science research to biomedical
research. The needs of the facility in the area of data
handling included:

a. data input must be fast and precise; a
variety of forms must be acceptable and
a large volume of data was to be
expected.

b. different forms containing information
about the same patient must be
organized easily and properly into the
data base.

11

c. transferring of data to and from the
DBMS to analysis programs must be
relatively easy to do.

The INGRES DBMS was chosen to be used and it was found to be
reasonably flexible, its input and output could be sent
directly to other UNIX programs via the "pipe" capability,
however, the users found the command language QUEL to be
somewhat difficult to use and not very "user-friendly" . The
data base security never seemed to .become a problem in this
environment , but rather it was the communication of the
employees at the data handling center of the CEP with the
other areas that was the problem. [Gre85]

1 . 5 Commercial Security Methods Available

1.5.1 Introduction The current solutions to security
problems are more commonly including a combination of
software and hardware. An additional peripheral is included
that must communicate with the software in order to better
protect the system.

1.5.2 Net lock One example of a new hardware peripheral is
the Netlock System by Datakey, Inc. which is a security
device allowing customer control over remote access to host
computers. The Netlock authenticates the remote users'
access and is able to determine who is trying to access the
system and from where. The Netlock system consists of an
intelligent box that accepts a physical key from the user.
The key is encrypted with information determining what
access that user has on the system. The key's contents are
read, and, based on those readings, access into the system
is granted or denied. This system may be particularly
helpful in a network environment , although it can also be
used to "lock" users from particular features or, in this
case, data bases. The software must be modified to validate
the key's information and determine if accessibility should
be granted. This may not be an extremely feasible solution
to the data base security problem, but it may be a viable
product for other security problems. [Dat85]

1.5.3 Memory_Cards Similar to the Netlock implementation,
memory cards are used to verify a user's capability to
access a particular entity. That entity can be a bit of
information, a file or an entire machine. The current
generation of cards, typically taking the shape of a credit
card, contains both a microprocessor and memory to provide
encryption and adequate storage of access information.
Again this may not be a feasible solution to this security
concern, but it will likely have many applications. [Fis85]

- 12

1 .

6

Current Security Problem

Given the above information, the problem exists whereby an
unauthorized user may be able to access highly sensitive
data in a particular data base. If a user is able to create
relations in a data base and disable all permissions, the
data is thought to be secure. If, however, other
unauthorized users are able to illegally and rather easily
acquire passwords which allow them access to such data
bases, added security measures are necessary. Although
INGRES maintains certain security measures, additional steps
must be taken. The implementation discussed in this paper
enhances INGRES security by placing another security measure
on the data bases.

1 .

7

Remaining Chapters

The remainder of this paper deals with the implementation of
additional security measures to the INGRES DBMS at Kansas
State University. Chapter 2 supplies both the general and
specific requirements of the implementation. Following in
Chapter 3 is the Design and Chapter 4 is the actual code
constituting the implementation. Chapter 5 then deals with
future possible work in computer security and a conclusion
of the paper.

- 13 -

Chapter 2 - Requirements

2 .

1

Introduction

The current security measures of the INGRES DBMS, although
adequate for most data bases, can be enhanced by an
inquiring front end program. The need exists, especially at
an institution like Kansas State University, for those data
bases that have highly privileged information such as grades
and personal records.

2.2 General Requirements

Although permission can be granted or denied on a relation
basis in INGRES, the opportunity exists whereby an
unauthorized user may be able to either log into the system
as another user, or modify the file permissions of the
relations and view the data. This type of illegal retrieval
of the data in INGRES data bases must be eliminated. Since
INGRES uses the UNIX file protection system, read and write
permission is granted only to "ingres" who is the owner of
all data base files. To legally manipulate or peruse the
data base, the user must be the Data Base Administrator
(DBA) or an authorized user given permission by the DBA.
This means of protection, however, does not discourage those
users who are determined to gain the information. Via
programs written to access user's passwords, ill-gotten
logins can be used. An example of such a program, called
'su' (which stands for super-user), taken from [Woo85] is
the following shell routine that can reside in a directory
where the su (normally found in /bin) command may be run:

stty -echo
echo "Password: \c"
read X
echo "

"

stty echo
echo $1 $X i mail outside ! creep #
sleep 1

echo Sorry
rm su

This program is called by a user entering su expecting to
become the super-user of the system. This user is then
prompted for a password, however, echo to the terminal has
been turned off, so it does not appear on the screen. After

- 14 -

the password has been entered by the user, it is mailed to
'creep'; the program sleeps for 1 second and responds
'Sorry' to the user. The user just assumes that they have
mistyped the password and try 'su' again. This 'su' program
has since removed itself, however, and the user's next call
to 'su' is to the correct system program. With programs
such as the above 'su' command in existence, it is necessary
to take all precautions with password safety, however,
additional measures must be incorporated to eliminate data
theft and corruption as much as possible.

2 . 3 Specific Requirements

The INGRES DBMS data manipulations are based on two kinds of
commands, UNIX and QUEry Language (QUEL). The following is
a list of the different commands and a brief description of
what they do

:

UNIX Commands
copydb - create batch files to copy out a data base and

restore it.
creatdb - create a data base,
destroydb - destroy an existing data base,
equel - embedded QUEL interface to C (???).
helpr - get information about a data base,
ingres - INGRES relational data base management system,
printr - print relations.
purge - destroy all expired and temporary relations,
restore - recover from an INGRES or UNIX crash,
sysmod - modify system relations to predetermined

storage structures,
usersetup - setup users file.

QUEL Commands
append - append tuples to a relation,
copy - copy data into/from a relation from/into a UNIX

file,
create - create a new relation,
define - define a subschema,
delete - delete tuples from a relation,
destroy - destroy existing relation(s).
help - get information about how to use INGRES or about

relations in the data base,
index - create a secondary index on an existing

relation,
integrity - define integrity constraints,
modify - convert the storage structure of a relation,
permit - add permissions to a relation.

15 -

print - print relations.
range - declare a variable to range over a relation.
replace - replace values of domains in a relation.
retrieve - retrieve tuples from a relation.
save - save a relation until a specified date.
view - define a virtual relation.

These command interface directly with the data bases
according to permissions stored in administration files kept
on each data base.

2.3.1 Front_End_Processor_to_INGRES_RelatedJ7NIX_Commands
The UNIX commands that manipulate INGRES data bases must
further protect the data by validating authorized users via
data base keys. This is mainly needed in the 'printr'
command where permissions are necessary to access the data.
All permission data should then be done on the relation
level thus continuing to allow every INGRES user the ability
to create data bases, purge their old relations, modify
their contents or structures and destroy them. These INGRES
related UNIZ commands, however, must be run by a command
processor that will be in a menu format . Based on the
command chosen, the additional security measure should also
occur

.

2.3.2 Front_End_Processor_to_INGRES_Commands The INGRES
commands listed above are responsible for modifying or
deleting existing relations and should include additional
protection mechanisms to ensure that only legitimate,
authorized persons are accessing the data bases. This front
end processor will be incorporated in the UNIZ front end
processor within the INGRES command call. It must also be
accessible by executing another command that would handle
only INGRES QUEL commands. A mere validation of the user
identification number is insufficient as password stealing
is common. Any of the above commands for which permission
is necessary must then first be validated for that user's
current knowledge of the relation's key. If the accurate
information cannot be given, access to that relation must be
denied. When creating a relation, however, the user should
be given the option to associate it with a key or not. If
the protection of the data is critical, a key must be given;
otherwise, the omission of the key may allow unauthorized
users to gain access to the data. In this way, all
operations such as append, destroy, delete, permit, print,
retrieve, and performing operations on relations must be
validated as to the user's current knowledge of the key to
that relation before modification.

16 -

Chapter 3 - Detailed Design

3 . 1 Introduction

The INGRES DBMS includes a few UNIX commands that deal, for
the most part, with the data bases as a whole and are more
frequently used by either the DBA or the INGRES super-user,
ingres. In addition, there are INGRES commands, initiated
by first calling the UNIX command "ingres", that operate on
specific data base relations and tuples within those
relations. The design discussed in this chapter is for an
implementation of an inquiring front end through which the
INGRES UNIX commands and the INGRES QUEL commands must be
executed. In the following sections each of the INGRES
related UNIX commands will be described and their design
will be addressed. In addition, the control flow of the
implementation and some other considerations are discussed.

3 . 2 Interface to the User

The INGRES inquiring front end is a menu driven interface
between the user and all INGRES related commands. By
executing the command "newingres" , the user is supplied with
a list of options as to which command to execute. The
format of that menu is as appears in Figure 3-1.

- 17 -

Below are the INGRES related UNIX commands available:

1) CHANGEKEY - change a relation's key.
2) COPYDB - create batch files to copy out a

data base and restore it

.

3) CREATDB - create a data base.
4) DESTROYDB - destroy an existing data base.
5) HELPR - get information about a data base.
6) INGRES - INGRES relational data base management

system.
7) LISTREL - list relations a user has access to in

a certain data base.
8) PRINTR - print relations.
9) PURGE - destroy expired and temporary relations.

10) RESTORE - recover from an INGRES or UNIX crash.
11) SYSMOD - modify system relations to predetermined

storage structures.
12) EXIT - exit from this user's session.

Please Enter COMMAND NAME or NUMBER or '?' for Help:

Figure 3-1. Menu of INGRES Related UNIX Commands

The user can then access any of the commands by entering the
correct command number and will then be prompted for the
information needed for that command. The user may continue
to enter command numbers and execute INGRES commands until
all data base work is accomplished. This may include, for
example, creating one data base, executing QUEL commands on
yet another data base, and destroying yet a third data base.
In this way, the user has flexibility to request one command
and, when complete, continue with another. Exiting the
front end processor is a valid command and must be entered
when the INGRES work session is to be terminated. Below are
descriptions and designs of all of the other valid commands
that may be executed by the INGRES front end.

3 . 3 UNIX Commands

The INGRES related UNIX commands generally revolve around
the maintenance of the databases, and, therefore, in the
case of each of the commands described below, the user is
first prompted for the data base name on which the user
wishes to work. Following is a listing of each of the
INGRES related UNIX commands accompanied by a brief
description and explanation of design.

- 18 -

3.3.1 An added command, "changekey", is executable by
INGRES users via the front end processor. "Changekey"
allows the DBA to change the key of an encrypted relation or
apply a key to a previously unencrypted relation. The user
is prompted for the relation name and the old key, if
applicable. The new key is requested and, after having been
input, is requested again to verify the appropriate key.
The relation is then encrypted using the new key, and the
decrypted file is removed.

3.3.2 The "copydb" command will create batch files, copy. in
and copy. out, for a particular data base, which will create
a copy of a data base or restore it after destruction. If
this command is chosen, the front end processor will prompt
the user for the full path name of the directory where the
two files are to be created. In addition, the user will be
asked if this is to be done on specific relations or on all
relations owned by the user. If any of the relations
specified have been previously encrypted using the INGRES
"create" command or the UNIX "changekey" command, the user
will now be prompted for the key to that specific relation.
The front end processor will then decrypt the relation using
the supplied key and will continue with the next encrypted
relation, if applicable. If the user supplies an incorrect
key, they will be alerted by a standard error message that
the particular relation could not be decrypted because the
key was incorrect and that if access to that relation is
still desired, the user must begin again. The user will
also be prompted as to whether or not the -u option is to be
specified when calling "copydb". This option allows the
user to run "copydb" with a different user identification,
and, although it allows successful creation of the copy
files, it does not imply that the user can necessarily
access the specified relations. The UNIX command "copydb"
is then executed by the front end processor and following
successful completion, the previously decrypted files will
be encrypted to restore the relations to their original
state.

3.3.3 The "creatdb" command allows an INGRES user to create
a new data base or modify the status of an existing data
base. In the first case, the person executing the command
becomes the DBA of the newly created data base; in the
second case, the user must be the DBA. Several options are
also offered with this command to specify such things as
concurrency control schemes or query modification. After
choosing "creatdb" via the front end processor menu
discussed above, another submenu is displayed to the user to
specify the desired options as shown in Figure 3-2.

19 -

creatdb options

1) -uname = specify a different DBA called 'name'.
2) -e = modify options for an existing database.
3) -m = specifies that the UNIX directory in which

the data base is to reside
already exists.

4) +/-c = turns on (+) or off (-) the concurrency
control scheme.

5) + /-q = turns on (+) or off (-) query modification.
6) EXIT = exit from this option session.

Please enter the number of the option desired:

Figure 3-2. Options for creatdb Command

The user is then able to specify options and the front end
processor will formulate a command and execute it.

3.3.4 The "destroydb" command allows either the DBA or the
INGRES super-user, Ingres, to remove all references and all
related files of an existing data base. After the user has
input the data base name according to the front end
processor's request, a menu is supplied, as shown in Figure
3-3, to allow the user to specify that the UNIX directory
storing all of the data base files should not be removed.
Following the option selection, the "destroydb" command will
be executed and the data base removed.

destroydb options

1) -s = INGRES superuser must use this to
execute destroydb.

2) -m = specifies that the UNIX directory in
which the data base resides
is not to be removed.

3) EXIT = exit from this option session.

Please enter the number of the option desired:

Figure 3-3. Options for destroydb Command

- 20 -

3.3.5 To give information about a specified relatione s) in
a particular data base, the "helpr" command is used. After
the user has input the data base name, the front end
processor will prompt the user for relation names for which
help is requested. In addition, prior to completing the
"helpr" command, the user may specify an option based on the
menu in Figure 3-4.

helpr options

1) -uname = specify a different DBA called 'name'.
2) +/-w = wait /do not wait for the data base.
3) EXIT = exit from this option session.

Please enter the number of the option desired:

Figure 3-4. Options for helpr Command

3.3.6 If the command "ingres" is requested, the user will
be prompted for the data base name and the relations on
which work is to be done. The user will no longer have
direct access to the "ingres" command which will enforce an
added layer of security. Instead, the only access to INGRES
commands will be through the front end processor,
"newingres", and specifying the command "ingres" from the
menu or by executing compiled EQUEL programs to be discussed
below. The validation checks done by this front end
processor will monitor and prevent the unauthorized use of
privileged data bases. After the relation names on which
the user requests work to be done have been gathered, a list
is formed to determine the following:

a. that the user has been given permission
by the DBA to view the specified data
base relations. This information is
stored in an INGRES administration
relation kept in the data base's
directory.

b. if any of the requested relations are
encrypted. When a relation is created,
the user will have the opportunity,
prior to exiting the command processor,
of having that relation encrypted to
provide further security control. A

21 -

list of those encrypted relations
within the data base will be maintained
by the command processor in a file
called ".crypt" located in each data
base directory. This file will only be
accessible by this command.

An error message will be output if a user requests a
relation that does not exist . However, if the relation does
exist, the user has access permission, and it is encrypted,
the user will then be prompted for the key for decrypting
the data base relation. The encrypted relation is stored in
the data base directory in a file by the same name as the
relation name which is how unencrypted data base relations
are currently maintained by INGRES. The encrypted relation
will then be decrypted into a temporary file and copied into
the relation name file in the data base directory in order
that all INGRES commands will operate successfully. After
the relations have been decrypted, the front end processor
provides an option menu to the user in the form of Figure
3-5.

22

ingres options

1) +/-U = enable /disable direct update of the
system relations and secondary indices.

2) -uname = specify a different DBA called 'name'.
3) -cN = set the minimum field width for printing

character domains to N.
4) -ilN = set integer output field width to N.
5) -flxM.N = set floating point output field

width to M characters with N
decimal places.

6) -vX = set the column separator for retrieves to
the terminal and print commands to be X.

7) -rM = set modify mode on the retrieve command
to M.

8) -nM = set modify mode on the index command to M.
9) + /-a = set/clear the autoclear option in the

terminal mode.
10) +/-b = set/reset batch update.
11) +/-d = print/do not print the dayfile.
12) +/-s = print /do not print any of the monitor

messages, including prompts.
13) +/-w = wait /do not wait for the database.
14) EXIT = exit from this option session.

Please enter the number of the option desired:

Figure 3-5. Options for ingres Command

The "ingres" command is then executed by the front end
processor passing the data base name and any other
appropriate parameters. When the "ingres" command has
completed (the user has entered "\q" or "<cntl d>"
signifying termination of INGRES and QUEL data base
manipulations), the command processor will finish any duties
necessary. If relations had been decrypted prior to calling
"ingres", they will now be encrypted using the same key.
The decrypted file will be unlinked, so that access to the
legible file is impossible. If, however, a decrypted file
of a previously known relation does not exist, it likely
means that a "delete" (to delete a relation) command was
executed. In this case, the front end processor will verify
in the "admin" (administration) relation, located in each
data base directory, that the relation does not exist. Also
a check is made against all of the relations in the data
base versus those that existed prior to the "ingres" call to

23 -

determine if any new data bases were created. If "create"
was executed to create a new relation, the command processor
will ask the user if this new relation should be encrypted
and, if so, what is the key. After the user has input the
key, they are again prompted for it to ensure that typing
mistakes were not made. The relation will then be encrypted
and the original file storing the relation will be unlinked.

3.3.7 The "listrel" command enables an INGRES user to
determine to which relations in a given data base access has
been given. In addition, it will be indicated on the output
whether or not the listed relation has been encrypted by the
DBA determining that any user must also know the key in
order to execute any command on that relation. An example
of output from this command is shown in Figure 3-6.

User Name : sabrack

Data Base Name: employee

Relation Name Relation Name
managers first_shift
second_shift third_shift
overtime* payroll*
family_info* previous_exp
dept_to_mgrs equipment

* indicates that the relation is encrypted.

Figure 3-6. List of User's Relations

3.3.8 The "printr" command prints specified relations out
of the particular data base. Therefore, after the data base
name has been retrieved, the front end processor requests
the relation(s) which are to be printed. In addition, the
user will be prompted for the keys if the relation has been
encrypted and the relation will be decrypted based on these
keys. Flags are also accepted with this command and are
shown to the user as in Figure 3-7. The command is then
executed and the user is returned to the front end command
menu.

- 24 -

printr options

1) -uname = specify a different DBA called 'name'.
2) -cN = set the minimum field width for printing
3) -ilN = set integer output field width

to N.

4) -flxM.N = set floating point output field
width to M characters with N
decimal places

.

5) -vX = set the column separator for retrieves to
the terminal and print commands to be X.

6) +/-w = wait /do not wait for the database.
7) EXIT = exit from this option session.

Please enter the number of the command desired:

Figure 3-7. Options for printr Commands

3.3.9 "Purge" allows the DBA or the INGRES super-user to
purge all expired and temporary relations. In the case of
this command, a user may or may not specify a data base
name. If one is not given, all of the data bases for which
the user is the DBA or, if the user is ingres and the -s
option is chosen, all data bases will be purged. Therefore,
the front end processor will request that a particular data
base name or 'all' be specified. The user will then be
shown the flag menu as listed in Figure 3-8 and the
appropriate command will be executed. NOTE: If the -f flag
is used, the .crypt files, which store the names of the
encrypted relations in the data base, may be removed.

- 25 -

purge options

1) -p = expired user relations are deleted.
2) -f = causes unrecognizable files to be deleted.
3) -a = causes messages to be printed about the

pending operation and execute it only
if the response is a 'y'.

4) -s = INGRES superuser must use this to
execute purge.

5) +/-w = wait /do not wait for the database.
6) EXIT = exit from this option session.

Please enter the number of the option desired:

Figure 3-8. Options for purge Command

3.3.10 The "restore" command enables either the DBA for a
data base or the INGRES super-user to recover a data base
after an INGRES or UNIX crash. Similar to the "purge"
command above, either a particular data base is specified or
all data bases for which the user is the DBA or, if the -s
option is specified in the menu below by ingres, all data
bases will be restored. Once again the options appear to
the user as in Figure 3-9 and, upon completion of the user
requests, the command is executed to restore the requested
data base(s). NOTE: If the restore command executes with
no errors, the purge command is executed. If the -f flag is
used, the .crypt files which store the names of the
encrypted relations in the data base may be removed.

- 26

restore options

1) -p = if restore completes with no errors,
purge is called and expired user
relations are deleted.

2) -f = if restore completes with no errors,
purge is called and unrecognizable
files will be deleted.

3) -a = causes messages to be printed about the
pending operation and execute it only
if the response is a 'y'.

4) -s = INGRES superuser must use this to
execute restore.

5) +/-w = wait /do not wait for the database.
6) EXIT = exit from this option session.

Please enter the number of the option desired:

Figure 3-9. Options for restore Command

3.3.11 In order for a DBA to modify its data base's system
relations or for the super-user, ingres, to modify any data
base's system relations, the command "sysmod" must be
executed. Figures 3-10 and 3-11 specify the screen output
to the user to specify options and which system relations to
modify to gain maximum access performance when running
INGRES.

sysmod options

1) -s = INGRES superuser must use this to
execute sysmod.

2) +/-w = wait /do not wait for the database.
3) EXIT = exit from this option session.

Please enter the number of the option desired:

Figure 3-10. Options for sysmod Command

- 27

sysmod relations

1) relation
2) attribute
3) indexes
4) tree
5) protect
6) integrities
7) EXIT = exit from this option session.

Please enter the number of the relation desired:

Figure 3-11. Relations for sysmod Command

3.4 Error and Interrupt Handling

An error handling routine will be called in the case of
system errors or non-recoverable errors by the user. This
will normally terminate the "newingres" command. Sometimes,
however, it may only cause the current command to be
terminated and further execution of the INGRES commands may
continue. Interrupts such as a hang up of the terminal, a
delete of the command or a power fail may cause momentary or
complete disruption of the command. If the command is
terminated, however, an interrupt handling routine will be
called first to clean up all residue of previous calls.
This would include the encrypting of any previously
decrypted relations and the removal of those decrypted
relation's files. In this way, an interrupted INGRES
session is not susceptible to data theft or corruption by
unauthorized users. Specific error messages and their
meanings include the following:

a. ERROR: Wrong Key Given!
The key that was input was incorrect

.

If access to the relation is still
desired, it will be necessary to begin
the command again. This may be output
during any of the commands "copydb",
"ingres", or "printr".

b. ERROR: Invalid Data Base Name!
A data base name exceeding 14
characters was entered. The user will
then be prompted for a valid data base

28 -

name

.

c. ERROR: Data Base Does Not Exist!
The data base requested, by the user
does not exist

.

d. ERROR: Relation Does Not Exist!
The relation requested by the user via
the "ingres" command does not exist in
this data base.

e. ERROR: System Call Failed!
A system call such as a create, open,
read or write of a file has failed.
This may occur if too many files were
open at a time or if there was a system
overload and the command could not be
executed.

f. ERROR: Key will not be added/ changed!
The user failed to accurately input the
new key for a relation, given two
chances to do so. Therefore, at this
time, the key will not be added or
modified for this relation.

3 . 5 Control Flow

The general control flow in this design travels from the
main command processor of the INGRES front end to the
particular command chosen and then back to the main command
processor as shown in Figure 3-12. A more specific look at
the detailed design results in flow which appears much like
Figure 3-13. Although the menu acting as the command
processor is still shown as both the start and the end of a
particular cycle of a command, the functions between are
more detailed. The data base name must first be entered
and, depending on the command, relations must then be
gathered, keys must be requested, and relations are
decrypted. Finally, in all cases, except listing of a users
relations, a particular command menu is generated to allow
the user to choose options specific to that command and then
the execution of that command by the front end processor
follows.

- 29

.a

>s
Q.
OO b

a
o

Q.

>»
TJ B

o O
E6 C® >% (0m

UJ

CD

o
c

'</>

<D

Q

>
O
_J

JC

CM

I

o
i_

30

- 31

3 . 6 Commands Excluded

Some considerations exist that prohibit the inclusion of two
INGRES related UNIX commands in this front end processor.

3.6.1 The UNIX command "usersetup" reads and reformats the
/etc/passwd file to create a new file which becomes the
INGRES users file kept in /usr/ingres/files/users. This
command is executed only once to initially create the users
file, therefore, it was felt that it's inclusion in this
command processor would be unnecessary. It is hoped that at
some time the "usersetup" command will be capable of also
updating or modifying the users file with new or changed
users as listed in the password file, but until that time,
it will be omitted from this processor.

3.6.2 The "equel" command provides a user with a way of
interfacing the C programming language with INGRES. It is
comprised of the EQUEL pre-compiler and the EQUEL runtime
library. Because it's product is actually executable C code
with Embedded QUEL statements, it cannot feasibly be
included in this INGRES front end processor. The compiled
code may be executed outside the realms of this INGRES front
end, and, therefore, the decryption of the used relations is
impossible prior to the call to the EQUEL program. The
encryption mechanism utilized in this implementation does,
however, guarantee that use of protected and encrypted
relations will not be successfully included in the EQUEL
programs as access to the relations cannot properly be
accomplished.

32

Chapter 4 - Implementation

4 .

1

Introduction

The INGRES front end processor deals with the various UNIX
commands that manipulate the data bases and their relations.
This chapter deals with the implementation of that processor
and describes the routines and global variables involved.
The actual C code for the implementation is included in
Appendix A.

4 . 2 Variables

Several global variables are needed to implement the INGRES
front end processor as many routines are involved in either
manipulating them or reading them and processing other data
based on their values. The following is a list of those
variables and a brief explanation of their use.

1. cryptfile - A character array that
holds the full path name of the
".crypt" file in the data base's
directory.

2. relname - A character array that holds
the full path name of the relation that
is currently being worked on.

3. dbname - A character array holding the
full path name of the current data base
being worked on.

4. database - The name of the data base
being worked on. This is used to
construct file paths for the ".crypt"
file and the temporary file created to
store the encrypted or decrypted data
base prior to moving it to it's
destination file.

5. files - An array of character pointers
pointing to the list of relations that
are encrypted and that the user has
requested work on.

- 33

6. keys - An array of character pointers
pointing to the list of encryption keys
that the user has requested work on.
These are the actual user keys that
have been encrypted and are stored in
the ".crypt" file in their encrypted
form.

7. errno - An integer used to determine
the reason for an error in system
calls.

8. newkey - A pointer to a character
string that holds the new key for the
relation currently being worked on.

9. cfd - The file descriptor of the
".crypt" file in the current working
data base.

10. placenum - An integer used as a place
holder in the ".crypt" file to
determine which relation within the
file is currently being worked on.

11. crkey - A structure composed of a
character array that is long enough to
store the key resulting from the UNIX
"makekey" function. The output of the
call is placed in a file that is then
read based on this structure.

12. cr - A structure composed of two arrays
of character pointers. One array
points to the names of the relations
that have been encrypted in the data
base and the other array points to the
encrypted keys of each of those
relations. This is the structure used
in building and reading the ".crypt"
file in each data base directory.

4 . 3 Routines

The commands discussed in Chapter 3 require several routines
to handle things such as prompting the user for the data
base name and handling system errors or interrupts. Figures
4-1, 4-2, and 4-3 exhibit the flow of control within this
implementation. The INGRES related UNIX commands that will

- 34 -

entail only prompting the user for information and building
a command line are highlighted in Figure 4-1. Most of these
commands deal with the data base as a whole. The circle
named "actual operations on data bases and relations" is
expanded in Figure 4-2. It displays the interaction between
the routine necessary to handle those INGRES commands that
work with the relations of a data base. The bubble titled
"routines for INGRES data base commands" includes those
highlighted in the previous Figure. Figure 4-3 displays the
user interface and file access necessary in this
implementation. The prompts deal mainly with relation names
and keys and the files are used to manipulate those keys in
encrypting and decrypting those relations. Below are brief
explanations that further define all of the routines that
appear in these Figures.

- 35

36

37

CO
CO

<D
o
o
<

iZ

"D
C
«J

CD
O
(dt
J:
i_

CD
CO

D
CO

I

1

38

4.3.1 The checking for the user's command request is
accomplished in the main() routine. The input can either be
the number associated with the command in the help menu, or
it can be the name of the command itself. This allows
flexibility in parsing user input

.

4.3.2 The menuQ routine prints the help menu to the user
with a listing of valid commands and a brief description of
the function of the command. It completes by asking the
user to input the command name or number selected.

4.3.3 After the valid command has been input, the
checkpickO routine will do the high level processing of the
command. The major responsibility of this routine is to
call other routines to accomplish the set up necessary to
execute any of the commands

.

4.3.4 The getdbnameO routine is responsible for prompting
the user for a data base name on which to work. The syntax
for a valid data base name is checked by ensuring only names
of 14 or fewer characters are input. In addition, a check
is made to validate that it is indeed an existing data base.
Otherwise, an error message, "ERROR: Data Base Does Not
Exist !

" will be output and the user is asked to input
another data base name. Input of three consecutive invalid
data base names will result in prompting for another
command

.

4.3.5 The user must be prompted for one or more relations
in the majority of the commands. Therefore, the
getrelnameO routine will accept as a parameter an "s" or
"»" for a single relation or multiple relations.
GetrelnameO prompts the user for a relation name and, based
on another parameter ("e" for an existing relation or "n"
for a new relation), it will do one of the following:

1. verify that the relation exists; scan
the ".crypt" file (lists of all of the
encrypted relations in that data base)
in the data base's directory and
determine if the given relation appears
there. If it is listed, return to the
calling routine that this relation is
encrypted.

2. verify that the relation does not
exist; place this relation name on a
"newrelation" list to be used after the
"Ingres" call to verify all new

39

relations and ask the user if a key
should he applied.

3. return an error if the relation does
not exist or if a system call failed.

4. return to the calling program since the
user has completed the list of
relations to be worked on.

4.3.6 The getoldkeyO routine is called when an encrypted
relation is to he decrypted and the user must first be
prompted for the appropriate key. Echo will be turned off
on the user's terminal in order that the response to the
prompting for the key cannot be viewed. This key will then
be used to create an encryption key to be stored in the
".crypt" file in the data base's directory with the
relation's name. This implementation is similar to the way
in which passwords are maintained in the UNIX password file.
The user inputs a password (or key); it is then encrypted
using the "makekey" UNIX function (which generates
encryption keys) and is stored in it's encrypted form. The
output of the "makekey" command is redirected to a file and
then read and stored as that relation's key. When the
user's response to "What is your old key?" is received, it
is sent to the makekey command; an encryption key is
generated and is compared to that encryption key stored in
the ".crypt" file. Therefore, the keys themselves are not
stored in any file in raw form, but rather their encrypted
form is saved and used for comparisons. In this way proper
control of the keys is maintained. This routine will output
an error that the wrong key was given if it is incorrect and
the user will be prompted for another command on which to
work.

4.3.7 The user is asked, within the getnewkeyO routine, to
enter the new key for encrypting a relation. It is called
when a new relation is created or when a DBA decides to add
or change the encryption key for an existing relation. Echo
will be turned off on the user ' s terminal in order that the
response to the prompting for the key cannot be viewed. The
user will be asked to input the key twice to ensure that
typing mistakes do not occur. If the key is not entered
identically twice in a row, the user is given another chance
to input it twice. After the second try, this routine will
respond that, at this time, the key will not be added or
changed. Within this routine the encrypt_relations(

)

routine is called to encrypt the given relation with the
newly input key. After the encryption takes place, the new

- 40

key is input to the UNIX "makekey" command and the result is
is stored in the ".crypt" file to be used for comparison
purposes the next time that relation is accessed.

4.3.8 Given the key retrieved in the above routine, the
encrypt_relations() routine will actually encrypt the given
relation. It will use the "crypt" UNIX command to encrypt
the relation and place the newly encrypted file in a
temporary file (called .temper in the data base directory)
and then move it back into it's original file in the data
base directory which is named the same as the relation name.

4.3.9 The decrypt () routine does the opposite of the above
routine. It is called by getoldkeyO once it is determined
from the user the appropriate key for this relation. It
then will decrypt the relation stored in the data base
directory under the relation name and place it in a
temporary file. It will then move that temporary file back
into the file which is the same as the relation name.

4.3.10 The build_exec() routine will formulate the command
that is to be executed and will then do so. Upon successful
completion, it will return to the main menu for another
command to be worked on.

4.3.11 A routine called syserr() is responsible for
producing a message when a system call has failed. It will
print out a number associated with a particular place in the
code for debugging purposes.

4.3.12 The interrupt_handler() will handle the cases when
an interrupt is received and clean up work is necessary.
The relations that have been decrypted must be encrypted
before the program terminates and this routine is
responsible for handling this.

4.3.13 The user must be able to view the list of relations
for which he has access permission and the listrelO routine
performs this function. In addition, it will flag those
relations that are encrypted in the output

.

4.3.14 The addareK) routine will add a relation to the
encrypted relation file (".crypt") in the data base's
directory. This is necessary either when a DBA decides to
add a key to an existing relation via the "changekey"
command or if a new relation is created via -the "ingres"
command.

- 41

4.3.15 Each of the Figures noted in Chapter 3 is generated
by routines to accept the response of the user based on the
desired option or command. Certain help commands are also
available to give the user more information about the
command

.

4.4 C Programs

The above description of implementation was programmed using
the C Programming Language and the UNIX Operating System.
The actual modules comprising the implementation can be
found in Appendix A.

- 45 -

1983.

[Row82] Rowe, L.A., "Ingres Relational Database Management
System", Mini /Micro 82 Conference Record, Published by IEEE,
September, 1982.

[Sie85] Siegal, P., Woodfill, J., Ranstrom, J., Meyer, M.

,

and Allman, E., "Ingres Version 7 Reference Manual", Nov.
18, 1985.

[Sto76] Stonebraker, M. , Wong, E. and Kreps, P., "The Design
and Implementation of Ingres", Trans. Database Systems, Vol.
2, No. 3, Sept. 1976.

[Woo85] Wood, Patrick H. and Kochan, Stephen G. , UNIX System
Security, 1985.

- 42 -

Chapter 5 - Conclusion

5 . 1 Summary

The subject of computer security, in light of today's wide
use of computers, and the vast amount of data stored on
them, has become critical. This paper has taken a brief
look at the UNIX operating system environment and certain
security strengths and weaknesses it possesses. Items such
as password aging were suggested as ways to enhance security
on an existing system. The INGRES DBMS was also discussed
and, based on the interaction between the two, an inquiring
INGRES front end was designed and implemented. It enables
users to encrypt data base relations that may contain very
sensitive data. This may have particular importance at an
institution like Kansas State University for student data,
personnel records and grades. By utilizing this menu driven
system, an INGRES user can access INGRES commands and data
bases and strengthen the security that exists. A user is
asked to input a key in order to access a particular
relation of a data base if it was encrypted on creation.
This is a decision of the DBA based on the value of the data
that the relation contains. The keys are maintained on the
system similar to the way in which the passwords for the
users are. After the user inputs a key, the key is
encrypted and stored in its encrypted form. The next time
access to that relation is necessary, the key is again
prompted for, encrypted and compared to the stored value.
In addition to added security for the data base information,
the INGRES front end processor creates a more user friendly
environment . Menus are printed that display parameters sent
to the various routines and give a brief explanation of
their use. This allows new users to feel more comfortable
with using the INGRES DBMS.

5 . 2 Problems

During the design and development of the implementation of
the inquiring INGRES front end, some problems arose. In
order to serve as a front end with no modification to INGRES
code, it was necessary to demand relation names prior to the
actual execution of the INGRES commands. If work is to be
done on a series of protected and encrypted relations, this
could be time consuming and an irritant to the user. Likely
the best implementation of a more secure INGRES DBMS would
have been to include such implementation within the existing

- 43

INGRES code. It was decided in this implementation,
however, not to do so. Also, extra overhead results from
system calls necessary to encrypt and decrypt both the
relations and keys. This will not be a significant problem
here at Kansas State University, however, based on the only
moderate use of INGRES. The inclusion of the EQUEL command
in the list of possible commands executed by the front end
processor was prohibited due to the availability of
executing EQUEL programs outside of this front end
environment. QUEL statements are embedded within a C
program and are compiled and executable by the user at any
time. This implementation, however, does prohibit users
from accessing encrypted relations via EQUEL programs as the
relations are not readable.

5 . 3 Further Extensions

Based on the problem discovered with the EQUEL programming
environment, it would be beneficial to amend this inquiring
front end and include support for EQUEL programs. This may
be possible by forcing EQUEL programs to include certain
routines which would be responsible for handling all
encryption/decryption algorithms. Without the user
interface, however, this problem becomes more significant.
Another possible enhancement to the INGRES DBMS security
system is the possibility of hashing or encrypting entire
relations and/or data bases and storing them under different
names so that files could not maliciously be tampered with.
This may impede the less serious threats, although total
penetration of security is always possible.

44 -

BIBLIOGRAPHY

[A1181] Allman, Eric, "How to Set up Ingres", 1981.

[C0I86] Columbus Dispatch, "Pulling the Plug on Hackers",
April 6, 1986.

[Dat85] "Datakey-Net-Lock Access Security System", Datakey,
Inc., January, 1985.

[Dep79] Department of Defense, "The DoD Computer Security
Initiative Program" , Proceedings of the Seminar on the DoD
Computer Security Initiative Program, July, 1979.

[Dow79] Downs, Deborah and Popek, Gerald J., "Data Base
Management Systems Security and Ingres", International
Conference on Very Large Data Bases, Published by IEEE,
October, 1979.

[Fis85] Fisher, K. W. , "Memory Card Conference - Battelle
Columbus Laboratories - April 10 and 11, 1985", April, 1985.

[Gra86] Gray, Patricia Bellew, "A Software-Lock Breaker
Becomes A Hero to Some, a Villain to Others", Wall Street
Journal, February 7, 1986.

[Gre85] Greenberg, David A. and Woods, Stephen C.

,

"Establishing a Medical Research Computer Facility",
Computer Biology Medicine, 1985.

[Hel75] Held, G.H., "Ingres — A Relational Data Base
System" , American Federation of Information Processing
Societies Conference Proceedings, May, 1975.

[Hig83] Highland, Harold Joseph, "Impact of Microcomputers
on Total Computer Security", Computer Security, June, 1983.

[Kat83] Katzin, Emanuel, "Problem of Security", Technical
Communications, Forth Quarter, 1983.

[Nat85] Nation's Business, "Heading Off Crime Losses", page
12, February, 1985.

[Pet85] Peterson, I., "Federal Computer Security Concerns",
Science News, p. 230, October 12, 1985.

[Rit83] Ritchie, Dennis M. , "On the Security of UNIX", UNIX
Programmer's Manual, Section 2, ATST Bell Laboratories,

Appendix A

Application Code

Jun 13 13:45 1987 isfe.c Page 1

jjf
i nc I ude <std i o. h>

include <sys/types . h>
| i nc I ude <sys/s i gna I . h>
i nc I ude <sys/f i I e . h>
^include "stot.h"
#i nc I ude <er rno. h>
| i nc I ude "defines. h"

|define quote "\""

char

i

I;

•cmd[]

"ch",
"

I i " ,

"co"

,

"pr",
"cr",
"pu",

-de'
"re'

/• List of Available Valid Commands*/

"he", "in",
"sy", "ex", 8,

char cryptf i le[PATHLENGTH]

;

char relname[PATHLENGTH];

chor f i lename[PATHLENGTH];

char namebuf [PATHLENGTH];

char name[PATHLENGTH];

/• Holds the full path name of the •/
/• . crypt file. •/
/• Holds the full path name of the •/
/• relation name. •/
/• Holds the path name of the •/
/• temporary file for encrypting. «/
/• Holds the full path of the •/
/• relation name. •/

/* Holds the name of the relation,
of the •char fina I name [MAXREL] [PATHLENGTH] ;/• Holds the final name

/* relation.

/
/

char j unk Is [PATHLENGTH]

;

char I sit [PATHLENGTH];

char dbname [PATHLENGTH]

;

the

char database[DBLENGTH];
char f i I es [MAXREL] [DBLENGTH]

nt plocefMAXREL];

total enc

;

int

the

that
are

•/

/
'/

'/

the
'/

Holds the Is command of
re I at ion name. •/
/• Stores the Is command of the •/
re I at ion.
Holds the full path name of

data base being worked on.
Holds the data base name.

/• Holds the relations
user wants to work on that
encrypted. •/

char makekeys[MAXREL][KEYLENGTH];/. Holds the result of 'makekey' •/
/• being executed on the keys of •/
/• the encrypted relations that •/
/• the user wants to work on. •/

chor userkeys[MAXREL][KEYLENGTH];/» Holds the user inputted keys •/
/* for the relations that the user •/

wants to work on. •/
Holds the placenum of the «/
associated files and keys. •/

/• The total number of encrypted •/

int

int

s i ze;
namef d;

/• relations that the user is •/
/• working on. •/
/• The size of the relation name. •/

char re I at i ons[MAXREL] [DBLENGTH]

;

char rel I i st [PATHLENGTH]

;

char workre
I
[DBLENGTH];

char pathname[PATHLENGTH];

char newkeyfCRYPTKEYLEN];
char exingres[COMMANDLENGTH];
char excreatdb[COMMANDLENGTH]

;

char exdestfCOMMANDLENGTH]; /
char exhelpr[COMMANDLENGTH]; /• Holds the helpr command call
chor excopy[COMMANDLENGTH]; /
char exprintr[COMMANDLENGTH]

;

char expurge[COMMANDLENGTH]; /
char exrestore[COMMANDLENGTH]

;

char exsysmod[COMMANDLENGTH]

;

char opt ion[COMMANDLENGTH] ; /

Holds the list of relations on •/
which the helpr command will work.*/

/• Working relation name.
Holds the path name of the source »/
or destination of the copydb call.*/
Holds the relation's new key. •/

/• Holds the ingres command call.
/• Holds the creatdb command call

Holds the destroydb command call. •/
•/

Holds the copydb command call. •/
/• Holds the printr command coll.

Holds the purge command call. •/
/• Holds the restore command call
/• Holds the sysmod commond call.

Holds the options for the command •/

Jun 13 13:45 1987 isfe.c Page 2

char opt i on1 [COMMANDLENGTH]
; /• Holds the options for the command •/
/* ca I I s

.

•/
char cbuf[100]; /• Character buffer for gets routine.*/
int placenum; /« the place number for the relation •/
int errno; /* Global variable to store the error*/

/» number generated by the system •/
/* ca I I s

.

•/

struct cr relkey; /» Structure for storing used •/
/• relations and their keys. •/

ma i n(

)

\

int register differ, a, i;

setsig(); /* Set up the signal handling •/

/• Determine the choice made by the user and complete some »/
/» preliminary set-up work if necessary. •/

whi le (TRUE)

for (i=0; KMAXREL; i++)

I

makekeys[i][0] = '\0'

;

place[
i
] = 0;

f i les[i][0] = '\0';
f i nalnomef

i][0] = '\0'

;

userkeysf
i][0] = '\0';

relat ionsf i][0] = '\0'
;

totalenc = 0;

printf ("\nPleose Enter COMMAND NAME or NUMBER or '?' for Help: ");
gets(cbuf); /• Get the user's response •/

/» If the user's response is a number, convert it and process it */
if ((cbuf[0] >= '1*J kk (cbuf[0] <- '9'))

a = atoi (cbuf)

;

checkpick(a)

;

cbuf[0] = '\0'
;

cont i nue;

}

/* If the user's response is an exit, get out of here •/
if ((cbuf[0] = 'e') kk (cbuffl] = -x'))

printf ("\nFinished with this INGRES/UNIX Session -");
printf (" Goodbye !\n\n")

;

exit(0);

/• If the user's response is 'questionable', show the menu. •/
if ((cbuf[0] = '?') || (cbuf[0] = '\n'))

menu()

;

cbuf[0] = '\0';

cont i nue;

!

/• Determine which command was requested and then call •/
/* checkpick to process it. */
for (a = 0; a < NCMDS; a4+)
{

differ = st rncmp(cbuf ,cmd[a] ,2)

;

if (differ = 0)

Jun 13 13:45 1987 isfe.c Page 3

I

o++;
checkpi ck(a)

;

cbuf [0] = Ae" ;

break;

I

i

if (differ !- 0)

}

pr i nt f ("\nThi s is not a legitimate response An")

;

pr i nt f ("PI ease Try Again!\n");
I

\

>*#•***•*•*•*•***•*

CHECKPICK

.»•••»••••»»..

• Function: This routine will determine what command was chosen
• and perform the appropriate action. Some commands
• require that a relation that has been encrypted be
• decrypted prior to manipulation or viewing of that
• relation. This routine will call another routine
• to do that prompting for the appropriate relation
• name and key.
•

• Input: None.

• Output: Colls to other subroutines.
*

• Returns: SUCCESS or FAILURE.
*

•/

checkpi ck(pi ck)
i nt pick;

{

int I ;

int ret;

swi tch (pick)

case 1 : /* CHANGEKEY »/
printf ("\nCHANGEKEY —\n");
/• call routine to modify the data base key •/
if (changekey() = FAILURE)

printf ("\nChangekey Fai led!\n")

;

return (FAILURE);

break;

case 2: /• COPYDB •/
printf("\nCOPYDB —\n");
if (getdbname('o') = FAILURE)

return (FAILURE);

/• call routine to get the relation names to work on •/
/• This routine also will decrypt the files •/
ret = get re I name('m' ,

'
b' ,

'a')

;

switch (ret)

case MATCH: /» If a MATCH or SUCCESS, then »/
case SUCCESS: /« run copydb to copy the doto »/

Jun 13 13:45 1987 isfe.c Page 4

copydbca I I () ; /» base's relations. •/

case FAILURE:
totalenc— ; /• Subtract one from the total •/

/» number encrypted because the •/
/• I ast one f a i I ed . •/

for(l=0; Ktotalenc; I++)

I

placenum = place[l];
strncpy (newkey, userkeysfpl acenum] , DBLENGTH)

;

sprintf(rel name, "55s%s5Js" , dbname, "/"
, f i les[pl acenum]);

sprintf(fil ename

,

"ZsTLsZs" , dbname, "/" ,fi les[pl acenum])
sprintfQunkls, "?5s55s5Js" .dbname, "/"

,
".

I shold") ;

encrypt_relat ions() ;

i

if (ret = FAILURE)
return (FAILURE);

break;
case NOMATCH:
default:

copydbca I I ()

;

break;

break

;

case 3: /• CREATDB •/
printf("\nCREATDB —\n");
if (getdbname(,

n
>

) = FAILURE)
return (FAILURE);

/• fork and exec /usr/i ngres/bi n/creatdb */
if (crcal l() = FAILURE)

return (FAILURE);
break

;

case 4: /» DESTROYDB •/
printf("\nDESTROYDB —\n");
if (getdbnameCo') = FAILURE)

return (FAILURE);

/• fork and exec /usr/i ngres/bi n/dest roydb •/
if (destcal l() = FAILURE)

return (FAILURE);
break

;

case 5: /• HELPR •/
printf ("\nHELPR —\n"):
if (getdbnameCo 1

) = FAILURE)
return (FAILURE);

/• call routine to get the relation names to work on •/
/* This routine also will decrypt the files «/
if (getrelname('nT , 'b' ,

'
I

') = FAILURE)
return (FAILURE);

/• fork and exec helpr •/
if (helprcallQ — FAILURE)

return (FAILURE);
break

;

case 6: /» INGRES •/
printf("\nINGRES —\n");

Jun 13 13:45 1987 isfe.c Page 5

if (getdbname('o') = FAILURE)
return (FAILURE);

/• call routine to get the relation names to work on •/
/• This routine also will decrypt the files */
if (getrelnafne('m' ,

'b'
,

'a') = FAILURE)
return (FAILURE);

/• fork and exec ingres •/
if (ingrescal l() = FAILURE)

return (FAILURE);

for(l=0; Ktotalenc; I++)

I

placenum place[l];
strncpy (newkey, userkeys[pl acenum] , DBLENGTH)

;

sprintf(rel name, "55s55s%s" , dbname, "/" ,files[pl acenum]);
spr i ntf If I I ename, "%s%s%s" , dbname, "/" ,fi lesfplocenum]);
sprintf(junkls, "J5s/5s55s" , dbname, "/"

,
"

. I shold") ;

/* coll routine to encrypt those relations thot hod •/
/• been decrypted before the ingres call. •/

encrypt_relotions();

break;

case 7: /* LISTRELATIONS •/
printf("\nLISTRELATIONS —\n");

/• call routine to list the relations to which »/
/• he has access to in the specified data base. •/
I istrelQ;
break;

case 8: /* PRINTR •/
printf ("\nPRINTR —\n")

;

/* Call routine to get the data base name on which •/
/* to work. •/
if (getdbnameCo 1

) = FAILURE)
return (FAILURE);

/» call routine to get the relation names to be printed •/
/• This routine also will decrypt the files »/
if (getrelname('nr. 'b', 'a') = FAILURE)

return (FAILURE);
/* fork and exec printr •/
if (printrcal l() = FAILURE)

return (FAILURE);
break;

case 9: /• PURGE •/
printf ("\nPURGE —\n");
/• Call routine to get the data base name on which */
/» to work. •/
if (getdbname('o') = FAILURE)

return (FAILURE);

/• call routine to get the relation names to be purged •/
/• This routine also will decrypt the files •/
if (getrelnameCnT . "b" , "a') = FAILURE)

return (FAILURE);
/• fork and exec purge •/
if (purgecallQ = FAILURE)

return (FAILURE);
break

;

Jun 13 13:45 1987 isfe.c Page 6

cose 10: /• RESTORE »/
printf ("\nRESTORE —\n");
/• Coll routine to get the data base name on which •/
/» to work. •/
if (getdbnameCo') = FAILURE)

return (FAILURE);

/• fork and exec restore •/
if (restcal l() = FAILURE)

return (FAILURE);
break;

case 11: /» SYSMOO */
printf("\nSYSMOD —\n");
/• Call routine to get the data base name on which •/
/* to work. •/
if (getdbnomeCo') — FAILURE)

return (FAILURE);
/• fork and exec systnod «/
if (syscall() = FAILURE)

return (FAILURE);
break;

case 12: /• EXIT «/
printf ("\nFinished with this INGRES/UNIX Session -");
printf(" Goodbye !\n\n")

;

exit(0);
break;

default: /» ERROR •/
pr i nt f ("\nTh i s is not a legitimate response .\n")

;

printf ("Please Try Again!\n");
break;

\

pick = 0;
return(SUCCESS);

GETRELNAME •

»

Function: This routine will prompt the user for one or more
relation names based on o parameter stating 's' =
single or "m' = multiple. It will then verify that
the relation exists, see if it is encrypted, and decrypt
it if necessary. If the relation does not exist, it
means that it is to be created and should be put on a
"newre lot i on" list.

Input: num = s (single) or m (multiple).
state = e (existing) or n (new) or b (both),
what = a (array of relations) or I (list in a character

array.

Output: Calls to other subroutines.

Returns: Global variables files[], makekeysf], userkeysf] and places[].

Jun 13 13:45 1987 isfe.c Page 7

* SUCCESS or FAILURE.

•/

get re I name (n urn, state .what

)

char num;
char state;
char what

;

i

struct stat *buf, buffer;
int m, numreq, fd, cfd, number, i, j, encrypt num;
long nbytes;

spr intf (rel I ist , "%s"
,

" ");

nbytes = 65;
numreq 0;
encryptnum = 0;
plocenum = 0;
buf = (kbuffer);

/• The first thing that must be done is to find out how */
/• many relations we are looking for—> 's' = one and 'm' = */
/• fflu 1 1 i p I e

.

•/
if (num = '

s'

)

\

number= 1

;

pr intf ("\nPlease enter the name of the RELATION on which you");
printf(" would like\nto work: ");

e I se

}

number = MAXREL;
printf ("\nPlease enter the RELATIONS on which you would like ");
printf("to work\n(I i sted one at a time).\nTo complete list, ");
pr i ntf ("simply enter a 'q'.\n");

for (i=0; i<number; i++)

/• Now form a list of all the relations that the user •/
/• wants to work on. The user can create, modify or print*/
/• relations, so they must at this time give all relations*/
/• on which they want to work during this session. •/
/• The maximum number of relations that can be worked on •/
/• at one time is MAXREL (?). «/

scanf ("%s" , re I at ions [numreq])

;

getcharQ; /* Dummy Getchar to clean out the buffer •/

if (»re I at i ons[numreq] = 'q')
break;

sprintf (rel name , "Xs%s55s" , dbname, "/" ,relations[numreq]);
spr intf (fi lename, "%s%s55s" , dbname,"/" , re I at i on s[numreq])

;

sprintf(junkls, "%s%s%s" .dbname, "/" ,

" . I ahold") ;

spr intf (Isi t
. "3s 55s%s J5s %s","ls", filename,"*". ">"

, junkla);

if (system(lsit) = FAILURE)

syser r (34)

;

return(FAILURE);

if ((nomefd = (open (junkls, 0_RDWR, 660))) = FAILURE)

syser r(35)

;

return(FAILURE);

size = str len(dbname) + 15; /• The 15 is for the '/' and the •/
/* relation name. •/

Jun 13 13:45 1987 isfe.c Page 8

if (read(namef d, namebuf , s i ze) <= 0)

)

c I ose(namef d)

;

return(NOTEXIST);
I

c I ose(namef d)

;

for (i=0; i<14; i++)
name[i] = namebuf[i + st r I en(dbname) + 1];

•treat (filMl name[numreq .quote)

;

•treat (final name numreq^ , namebuf)

;

strcat(f inal name[numreq] .quote)

;

sprintf (rellist, "Jts %s" , re I I i st , re lat i ons[numreq]) ;

if (stat(namebuf . buf) != 0)
\

if (num = 's')
return (NOTEXIST);

e I se

i

printf ("ERROR: Relation %s Does Not Exist!\n",
re I at ions[numreq]);

cont i nue;

\

I

sprintf (work re I, "25s" , relations[numreq]);

numreq++; /» Bump this only if it exists */

\ /• End of the number for •/

if (what = '

I

')
return (SUCCESS);

if (stat(cryptf i le, buf) = 0) /» Does .crypt exist? •/

/• If so, open it •/
if ((cfd - open(cryptf i le.O_RDWR.660)) = FAILURE)

!

syser r(1)

;

return(FAILURE);

if (lseek(cfd.0L,0) = FAILURE)
i

syserr(2)

;

cl ose(cfd)

;

return (FAILURE)

placenum = 0;
whi le (nbytes > 0)

if ((nbytes = read(cf d ,_re I key ,s i zeof relkey)) > 0)
i

/• Put the names of all of the encrypted files •/
/• stored in .crypt into "files" and all of the «/
/• encrypted keys into "makekeys". •/

strncpy (f i I es[p I acenum] . re I key . re I at ion , DBLENGTH)

;

strncpy (makekeys[pl acenum] , relkey. key. KEYLENGTH)

;

pi acenum-H-;

I

else if (nbytes = -1)

syserr(3)

;

return(FAILURE)

;

Jun 13 13:45 1987 isfe.c Poge 9

}

c I ose(cf d) ;

j = placenum;

for(m=0; m<numreq; m++)

i

f or(pl ocenum=0; placenum<j; placenum++)

I

i f (st rcmp(re I at i ons[m] , f i

I

es[pl acenum]) = 0)

i

strncpy (workrel ,fi les[pl acenum], DBLENGTH)

;

p I ace[enc ryptnum++] = placenum;
tota lenc++;
if (num = '*') /* must be from changekey •/

return (MATCH);
else /* must be from an ingres command •/

J

print f ("\nRe lotion %s:",files[placenum]);
if (getoldkey() = FAILURE)

I

pr i ntf ("Cannot allow access to %s\n",
f i I es[p I acenum])

;

return (FAILURE);

I

cont i nue
;

/• The end of the strcmp for matched relotion names •/

\ /* The end of the placenum for •/

\ /• The end of the numreq FOR for string comparing »/

i f (num = '

s
'

)

return (NOMATCH)

;

e I se
return (SUCCESS);

{ /• The end of the stat check of .crypt */

else /• stat return !- which means that there ore •/
/• no encrypted relations in this data base. •/

i f (numreq = 0)

\

if (stat (f i na I name[
i] , buf) != 0)

return (NOTEXIST);
e I se

return (NOT FOUND)

;

for(i=0; i < numreq; i-H-)

if (stat(f inalname[i] , buf) != 0)
printf ("ERROR: Relation %a Does Not Exist!\n",

relationsfnumreq]);

return (NOT FOUND)

;

* •

• GETNEWKEY •

Jun 13 13:45 1987 isfe.c Poge 10

Function: This routine will prompt the user for the new key
for a relation when either creating a new relation
via the ingres command or changing the key of a

relation via the changekey command.

Input : None.

Output: Calls to other subroutines.

Returns: Global variable newkey.
SUCCESS or FAILURE.

/

getnewkey()

chor •verifykeyfCRYPTKEYLEN]; /• user's second input of the key */
char »makey[l00J; /• string to hold makekey command •/
char testkey[CRYPTKEYLEN]; /• string to hold output of •/

/• makekey command. •/
struct stat »newbuf, nbuffer;
struct crkey enkey;
struct cr jnker;
int ret, whence, kfd, fd, tries, match;
long offset;

t r ies = 0;
match = FALSE;
newbuf = (4nbuffer);

while ((match = FALSE) kk (tries < 2))

if (system("stty -echo") = FAILURE)

syserr(36)

;

return(FAILURE)

;

pr

i

ntf ("\nWhat is your new key? ");

gets(newkey)

;

pr i nt f ("\nPlease reenter your new key: ");
get s(ver i f ykey)

;

if (system("stty echo") = FAILURE)

syserr(37)

;

return(FAILURE);
I

pri ntf ("\n\t Process i ng. . .\n")

;

i f (st rcmp(newkey

,

ver i f ykey) != 0)

tries++;
if (tries = 2)

pr i nt f ("Mi smatch ! Unable to Apply New Key!\n\n");
e I se

print f ("Mi smatch! Please Try Agai n ! !\n\n")

;

cont i nue;

I

match = TRUE;
strncpy (userkeys[p lacenum] , newkey, KEYLENGTH)

;

/• The user was given two tries to input a new key twice */
/• and was unsuccessful, therefore, terminate this */
/• command by returning FAILURE. •/
if (tries = 2)

Jun 13 13:45 1987 isfe.c Page 11

return(FAILURE)

;

if (st r I en(newkey) — 0)

I

/» Put the key in the .crypt file »/
if ((ret = stot(cryptf ile, newbuf)) !» 0)

I

if ((kfd - creot(cryptf i le,477)) < 0)

{

syserr(4) ;

return(FAILURE);

cl ose(kf d)

;

I

if ((kfd - open(cryptf i I e,0_RDWR, 660)) = FAILURE)

\

syserr(6)

;

return(FAILURE);

i

crypt . relat ion[0] =- '\0'

;

crypt . key[0] = '\0'

;

crypt . busyb i t = 0;

if (lseek(kfd. (I ong) (pi acenum » sizeof crypt), 0) = FAILURE)

un

I

ockbox()

;

close(kfd);
syserr(7)

;

return(FAILURE);

I

i f (wr

i

te(kf d.icrypt , si zeof crypt) < 0)
return (FAILURE);

c lose(kfd) ;

printf ("\tCompleted — NO key will be used!\n");

return(SUCCESS);

j /• End of st r

I

en(newkey) = if statement •/

/• Encrypt the key for ultimate storage in the .crypt file. •/
sprintf (makey ,"/5s%s55s | Xs > 2s", "echo "

, newkey ,
"

I s" , "/usr/l i b/makekey" .KEY)

;

if (system(makey) = FAILURE)

recoverQ;
syserr(8)

;

return (FAILURE);

I

if ((fd = open(KEY,O_RDWR,660)) < 0)

recoverQ;
syser r(37)

;

return(FAILURE);

if (lseek(fd,0L,0) = -1)

recoverQ ;

syser r(38)

;

return(FAILURE);
I

if (read(f d.ienkey , si zeof enkey) < 0)

recoverQ ;

Jun 13 13:45 1987 isfe.c Page 12

un I ockbox()

;

c I ose(f d)

;

syserr(9)

;

return(FAILURE);

i

c lose(f d)

;

spr int f (test key , "55c?5c%c%c%c%c/5c/5c/5c%c/5c "
, en key . key[2],enkey.key[3],

enkey.key[4],enkey.key[5],enkey.key[6],enkey.key[7],enkey.key[8]
l

en key . key [9] , en key . key [10] , en key . key[1
1] , en key . key[12])

;

/ Put the key in the .crypt file •/
if ((ret m stat (crypt f

i

le, newbuf)) != 0)

f

if ((kfd » creat(cryptf i le.477)) < 0)

\

syserr(l0)

;

return(FAILURE);

}

c I ose(kf d)

;

I

if ((kfd = open(cryptf i le ,0_RDWR, 660)) = FAILURE)

syserr(1 1)

;

return(FAILURE);

strncpy (crypt . re I at i on, workrel, DBLENGTH)

;

strncpy (crypt. key, testkey, st r I en(test key))

;

if (

I

seek(kf d,

(

long) (pi acenum • sizeof crypt), 0) = FAILURE)

un

I

ockbox()

;

c lose(kf d)

;

syserr(12)

;

return(FAILURE);

I

i f(wri te(kfd,*crypt
,
sizeof crypt) < 0)

return (FAILURE);
c I ose(kf d)

;

if (encrypt_relat ions() = FAILURE)
return(FAILURE);

e I se
return (SUCCESS);

/a*******************

• ENCRYPT_RELATIONS»
• »

*

• Function: This routine will encrypt the relations again after
• the user has finished the desired manipulations to
• them.
•

• Input: None.

• Output: Calls to other subroutines.

• Returns: SUCCESS or FAILURE.
*

•/

Jun 13 13:45 1987 isfe.c Page 13

encrypt_relations()
i

char crypt it [PATHLENGTH+PATHLENGTH]; /• Stores the crypt command •/
char movi

t [PATHLENGTH+PATHLENGTH+PATHLENGTH] ; /• Stores the mv command
char tempf i le[PATHLENGTH]

;

/» Stores the name of the •/
/• temporary file «/

int index, efd, readret;
st ruct cr ecrypt

;

struct stat »ebuf, ebuffer;

ebuf (iebuffer);

spr i nt f (tempf i I e

,

"Xa .Zs" , re I name

,

"temper") ;

if (lockboxQ = FAILURE)
return (FAILURE);

/• If so, open it and read it. •/
if ((efd open(cryptf i le,0_RDWR,66e)) = FAILURE)

un I ockboxQ ;

c I ose(efd)

;

return(FAILURE);

if (I seek(ef d, (I ong) (pi acenum • sizeof ecrypt), 0) =-1)

unl ockboxQ ;

c lose(ef d)

;

syserr(15) ;

return(FAILURE);

if ((readret = read(ef d .iecrypt , s i zeof ecrypt)) < 0)

unl ockboxQ ;

close(efd);
syserr(16) ;

return(FAILURE);

I

index = pi oce[pl acenum]

;

spr i ntf (crypt i t , "%s 55s < 55s > 55s" , "/usr/bi n/crypt "
, newkey

,

f i no I name[i ndex] , tempf ile);

if (system(cryptit) = FAILURE)

recoverQ ;

unl ockboxQ ;

c I ose(ef d)

;

syser r(17)

;

return(FAILURE);
i

/• Change it to be = FREE »/
ecrypt . busybi t = FREE;

if (I seek(ef d, (I ong) (placenum • sizeof ecrypt), 0) = FAILURE)

un I ockboxQ ;

c lose(ef d) ;

syserr(18)
;

return(FAILURE) ;

i

if (wr

i

te(efd,4ecrypt ,si zeof ecrypt) <= 0)

c I ose(ef d)

;

unlockbox()

;

syser r(19)

;

return(FAILURE) ;

Jun 13 13:45 1987 isfe.c Poge 14

!

c I ose(ef d)

;

un I ockbox()

;

spr i nt f (mov i t

,

"%s %s %s" , "/b i n/mv" , tempf i I e , f i no I name[i ndex])

;

if (system(movit) = FAILURE)

i

recover() ;

syserr(20);
return(FAILURE);

\

return (SUCCESS);

I

• •

» CHANGEKEY *

• •

« Function: This routine will enable the user to change the
• key for a relation given that the current correct
• key is f i rst i nput

.

•

• Input : None.
*

• Output: Calls to other subroutines.

• Returns: SUCCESS or FAILURE.
*

•/

changekey()
i

printf ("\nWith this command you may change the key of a relotion");
printf(" in a data base\nfor which you are the DBA.\n");
if (getdbname('o') = FAILURE)
return(FAILURE);

switch (get re I name('
s' , "•' , *0*))

\

cose NOT FOUND:
case NOMATCH:

pr i nt f ("\nThat relation is not encrypted. Therefore, you");
printf(" must want to encrypt\nth i s re I at ion .\n")

;

if (getnewkey() = FAILURE)
return(FAILURE);

break;

case NOTEXIST:
printf("That relation does not exist!\n");
return(FAILURE);

case MATCH:
if (getoldkey() = FAILURE)

return(FAILURE);
if (getnewkey() = FAILURE)

return(FAILURE);
break;

def au I t

:

break;

return(SUCCESS);

Jun 13 13:45 1987 isfe.c Poge 15

»**•**•*•**•*••<

SYSERR

*********•***•**•**•

• Function: This routine will output an error that a system
• call failed. It will print out the number associated
• with a particular place in the code for debugging
• purposes.
•

• Input: Error number.
*

• Output: Calls to other subroutines.
*

• Returns: SUCCESS or FAILURE.

syser r(er rornum)
int er rornum;

\

pr i nt f ("SYSTEM ERROR number 55d has occur red!\n" , errornum);
pr int f ("Ensure thot all of the encrypted relations on which\n");
pr int f ("\tyou were working ore still encrypted !\n")

;

/* First, ensure that echo is turned back on! •/
system("stty echo");

\

*»»«•»•»•**•*••.•«*<

• L1STREL •

•

• Function: This routine will enable the user to find out whot
• relations he has access to in a given data base.
•

• Input: None.
*

• Output: Printout of user's relations.
• Calls to other subroutines.
•

• Returns: SUCCESS or FAILURE.
*

•/

I istrelQ

pr

i

ntf ("\nTh i s command will list those relations for which you\n");
printf("have permissions in o specified data base\n");
if (getdbname('o") = FAILURE)
return (FAILURE);

/.,«. Check relations in this database and verify permissions »•*/
/••*• before listing relations allowed to this user. »»»»»••»••»/

»**•********•**•••»•

Jun 13 13:45 1987 isfe.c Page 16

» GETDBNAME •

» »

*

• Function: This routine is used to prompt the user for a data
» base name on which to work. In addition, a check
• is made to validate that it is indeed an existing
• data base.
•

• Input: None.
*

• Output: A global variable storing the data base name.
*

• Returns: FAILURE if data base does not exist after three
• t r ies.
•

/
getdbname(state)
char state;

I

struct stat »dbbuf, dbbuffer;
int gotdb, tries;
dbbuf = (Jcdbbuf fer);
tries = 0;
gotdb = FALSE;

while ((gotdb = FALSE) kk (tries < 3))
\

/• The first thing that must be done is to find out which •/
/* data base the user wants to work on. •/
pr i nt f ("\nP I ease enter the name of the DATA BASE on which");
printf(" you would like\nto work: ");

scanf("%s", database);
getchar()

;

if (strlen(database) > 14)

printf ("\nERROR: Invalid Data Base Name!\n\n");
cont i nue;

spr intf (dbname, "%s%s" .DBPATH.dat abase)

;

i f (state ' n'

)

return(SUCCESS);

if (stat(dbname, dbbuf) != 0)

I

pr intf ("\nERROR: Data Base Does Not Ex i st !\n\n")

;

t ries++;
cont i nue;

I

gotdb = TRUE;

J

/• Next check to see if there are any encrypted relations •/
/* in the data base that the user is to be working on. »/
/• The file /usr/i ngres/data/bases/<database_name>/. crypt •/
/* keeps a listing of those encrypted relations. */
/• If there are no encrypted relations, then we know that •/
/» no encryption is necessory and we con return from this •/
/» this routine to checkpick. •/
spr intf (cryptf i le, "7.s7.sZs" , DBPATH.dat abase ,"/. crypt ") ;

/» The user was given three tries to input a valid data •/
/• base name and was unsuccessful, therefore, terminate •/

Jun 13 13:45 1987 isfe.c Page 17

/* this command by returning FAILURE. */

if (tries = 3)
return(FAILURE) ;

e I se
return (SUCCESS);

I

/* ****** •***•••**•**«
• •

« GETOLDKEY •

*

• Function: This routine will get the old key from the user and
» then it will call decryptQ to decrypt the given relation
• with the given key.
•

• Input: None.

• Output: A global variable storing the data base name.
•

• Returns: FAILURE if data base does not exist after three
• t r i es.
•

geto I dkey()

char »maki t[l00]

;

/* Stores the makekey command •/
char *testkey[CRYPTKEYLEN];
char oldkey[KEYLENGTH]; /» Holds the relation's old key «/
int i, fd;
struct crkey junkit;

if (system("stty -echo") = FAILURE)

I

syserr(39)

;

return(FAILURE);

I

pr

i

ntf ("\nThat relation is encrypted. \nflhat is the key? ");

gets(ol dkey)

;

if (system("stty echo") = FAILURE)

i

syser r(40)

;

return(FAILURE);

!

pr i ntf ("\nProcessi ng. . .\n")

;

strncpy (userkeys[pl ocenum] , oldkey, KEYLENGTH)

;

/• Encrypt the user's key and store it in .crypt eventually •/
spr i nt f (maki t , "%s?Js%s | JJs >%s","echo " , ol dkey ,

" I
s" , "/usr/l i b/makekey" ,KEY)

;

if (system(maki t) = FAILURE)

I

syserr(21)

;

return(FAILURE) ;

i

if ((fd = open(KEY,O_RDONLY,660)) < 0)

{

syserr(22)

;

return(FAILURE);

\

if (lseek(fd.0L.0) = FAILURE)

Jun 13 13:45 1987 isfe.c Page 18

i

syser r (23)

;

return(FAILURE) ;

if (read(f d.ijunki t , si zeof junkit) < 0)

syserr(40)

;

return (FAILURE);

sprintf (test key, "7.c7.c7.c7.c7.c7.c7.c7.c7.c7.c7.c"
, junki t . key [2] . junki t .key [3] .

junki t .key [4]

,

junkit .key [5]

.

junki t .key [6]

,

junki t .key [71. junki t . ke
junk it. key [9 J, junkit . key [10]

,
j unk i t . key[1

1] ,
junk i t . key [12])

;

/• Verify that the existing key and the user's inputted key •/
/« are i dent ical . •/

y[8],

i

f

(st rcmp(test key ,makekeys[p I acenum]) != 0)

printf ("ERROR: Wrong Key Given\n");
return(FAILURE);

I

spr intf (re I name , "7.s7.s7.s" , dbname,"/" , f i les[p I acenum])
;

if (decrypt(oldkey) = FAILURE)
return (FAILURE);

return (SUCCESS);

»*»****•*•#****•••*

DECRYPT

>*•***»***•••»••«*»

• Function: This routine will decrypt the given relation with
• the global key.
*

• Input: None.

» Output: A decrypted relation.
*

• Returns: SUCCESS or FAILURE.
»

•/

decrypt(oldkey)
char oldkey[CRYPTKEYLEN];

/* Need to include lockbox and unlockbox around the crypt •/
/* command as I did in encrypt_re I at i ons

.

•/
char decrypt it [PATHLENGTH+PATHLENGTH]

; /• Stores the decrypt command •/
char mov it [PATHLENGTH+PATHLENGTH]; /* Stores the mv command •/
chor tempf i I e[PATHLENGTH]

;

/» Stores the name of the */
/* temporary file •/

int index, dfd;
struct cr decrypt;

spr int f (tempf tie, "%s.J5s" , re I name, "temper")
;

if (lockbox() = FAILURE)
return(FAILURE);

/* Open it and read it. •/
if ((dfd = open(cryptf i I e,O_RDWR,660)) = FAILURE)

unl ockbox () ;

Jun 13 13:45 1987 isfe.c Page 19

close(dfd) ;

syser r (24)

;

return(FAILURE);

if (lseek(dfd, (long) (pi ocenum • sizeof decrypt),©) = FAILURE)

I

un I ockbox()

;

c I ose(df d)

;

syser r(25)

;

return(FAILURE);

if (read(df d.idecrypt , s i zeof decrypt) <= 0)

\

unlockbox() ;

close(dfd);
syserr(26)

;

return(FAILURE);

I

if (decrypt .busybit = BUSY)

pr i nt f ("\nThi s Relation is Currently Being Used!\n");
pr i nt f ("PI ease Try Again Later .\n\n")

;

un I ockbox()

;

c

I

ose(df d) ;

return(FAILURE);

I

else /• Must be = FREE •/
decrypt. busybit = BUSY;

index = p

I

oce[p I ocenum]

;

spr i ntf (dec rypt i t
, "%s %s < 5Ss > Zs"

,

"/usr/b i n/c rypt "

,

oldkey ,

f i na I name[index],tempfile);

if (system(decryptit) = FAILURE)

\

un I ockbox()

;

close(dfd);
syserr(28)

;

return(FAILURE);

{

if (

I

seek(dfd ,(long) (pi ocenum • sizeof decrypt), 0) = FAILURE)

\

un I ockbox()

;

c

I

ose(df d)

;

syserr(29)

;

return(FAILURE);

I

if (wr

i

te(df d .idecrypt , s i zeof decrypt) <= 0)

\

close(df d)

;

un I ockbox()

;

syser r(30)

;

return(FAILURE);

c I ose(df d)

;

un I ockboxQ ;

spr i nt f (mov i t , "7,s %s 55s" , "/bi n/mv" ,t em pfile, final namef i ndex]) ;

if (system(movi t) = FAILURE)

\

syser r(31)

;

return(FAILURE);
I

Jun 13 13:45 1987 isfe.c Page 20

'••*******«*****•*••

SETSIG

••»****••****•••<

• Function: This routine will set up the signal handling.

• Input: None.

• Output: None.
*

• Returns: None.
•

setsig()

I

fifdef REAL_THING /»ZZZZZZZZZZZZ REMOVE THIS IFDEF •/
signal (SIGTERM. SIG_IGN)

;

signal (SIGHUP, SIG_IGN);
signal (SIGQU1T. SIG_IGN)

;

signal(SIGINT, SIG_IGN);
fendif

\

• •

• RECOVER •

• •

• Function: This routine will recover from a grave error in the
* middle of processing.

• Input : None.
*

• Output: None.
»

• Returns: None.
•

recover()

\

int kfd;
struct stat •newbuf, nbuffer;

newbuf = (tnbuffer);

/» Put the key in the .crypt file */
if (stot(cryptf i le. newbuf) != 0)

return (SUCCESS);

if ((kfd = open(cryptf i I e.O.RDWR. 660)) = FAILURE)

syser r(32)

;

return(FAILURE);

crypt

.

relet ion[0] = '\0';

crypt . key[0] = '\0'

;

crypt .busybi t = 0;

if (lseek(kfd, (long) (pi ocenum • sizeof crypt), 0) = FAILURE)

Jun 13 13:45 1987 isfe.c Page 21

un I ockbox(

)

c

I

ose(kf d)

;

syser r(33)

;

i

f

(wri te(kfd,icrypt ,si zeof crypt) < 0)
return (FAILURE);

close(kfd);

printf ("\tDue to System ERROR — NO key will be used!\n");

return(SUCCESS);

May 27 21:19 1987 defines. h Page 1

Idefine TRUE
Idefine FALSE
#def ine MATCH
|def ine NOMATCH

|def ine FAILURE -1

|def i ne SUCCESS 1
#define DONE 1

f def i ne CONTINUE 2
Idefine NOTFOUND -2

|def i ne NOT EX I ST -3
fdefine KEY
|def ine DBPATH

/» Two compared strings are equal •/
/• Two compared strings are not */
/• equa I . •/

/• Relation name was not listed */
/• in the .crypt file. •/
/• The relation does not exist. •/
"/usr/i ngres/data/base"
"/usr/i ngres/data/base"

Idefine MAXOPTS

Idefine MAXREL

Idefine KEYLENGTH
Idefine DBLENGTH

Idefine CRYPTKEYLEN
Idefine PATHLENGTH

Idefine NCMDS

Idefine BUSY

Idefine FREE

Idefine LEFTARROW " < "

Idefine RTARROW " > "

Idefine COMMANDLENGTH 65

Idefine OPTIONLENGTH 30

14 /• Maximum number of options that •/
/• are allowed in one call. •/

10 /• Maximum number of relations to be •/

h worked on at a time. This may be •/
/• changed

.

•/
15 /• Allowable length of a key. •/
15 /• Maximum length of a data base nam« •/

/• or a relation name. •/
14 /• The length of an encrypted key •/
50 /• Maximum length of the path for •/

/* the data base files. •/
12 /• Number of available UNIX INGRES •/

/• Commands

.

•/
/• This indicates in the "busybit" •/
/• integer that someone has got this •/
/• relation and is working on it. •/

/• This indicates in the "busybit" •/
/• integer that no one is working •/
/• on this re I at ion. •/

/* The Maximum length of one of the »/
/• executed commands. /
/• The Maximum length of the combined*/
/• options to a command. •/

struct crkey /• Structure for the .temper files */

\

char key [CRYPTKEYLEN];

I;

struct cr /• Structure for the .crypt files •/

\.

char relet ion[DBLENGTH]

;

char key[CRYPTKEYLEN];
int busybit;

struct cr crypt;

May 27 20:03 1987 atoi c Poge 1

otoi (s)
char s[]

;

i

i nt i , n;

n = 0;
for (i=0; s[i] >» '0 1 kk s[

i
] <= '9'

n = 10 • n + s[i] - "0"

;

return(n) ;

i)

Jun 13 13:34 1987 copydbcoll.c Page 1

finclude "defines. h"

extern char opt i on[COMMANDLENGTH]

;

extern char excopy[COMMANDLENGTH]

;

extern char database[DBLENGTH]

;

extern char rel I i st [PATHLENGTH]

;

extern char pathname[PATHLENGTH]

;

• *

• COPYDBCALL •

• •

• Function: This routine is used to formulate the command copydb.

• Input: None.
*

• Output: A screen of options.

• Returns: SUCCESS or FAILURE.

*/

copydbcal
I ()

I

char optbuf[l00][3];
int j, i, a, differ;

spr i nt f (opt ion, "/5s" ,
" ");

ififdef DEBUG
pr i nt f ("excopy = %s\n" .excopy)

;

pr i nt f ("opt i on = 5s\n" , opt i on)

;

pr i nt f ("copydbca I I database = %s\n" .database)

;

#end i

f

copydbmenuQ ;

for (i=0; ; i++)

I

scanf("%s", optbuffi]);

/• If the user's response is 'questionable', show the menu again */
if ((»optbuf[i] = '?') || (.optbuf[i] = '\n'))

copydbmenuQ

;

cont i nue;

i

/» If the user's response is an exit, get out of here •/
if ((«optbuf[i] = '2') || (.optbuffi] = 'q'))

getchor()

;

#ifdef DEBUG
pr i ntf (" i ns i de the ex part and i = %d!\n",i);

fendi f

for (j=0; j<-i; j++)

if (copydbcheck(optbuf [j]) — DONE)

fifdef DEBUG1
printf("Got to just after copydbcheck and ret urn i ng\n")

;

fendi f

break;

spr i nt f (pathname

,

"%s" ,

" ");
pr intf ("\nWhat is the full path name of the directory");
printf(" where you wish\nto copy the files? ");

Jun 13 13:34 1987 copydbcall.c Page 2

gets(pothname)

;

spr i nt f (excopy
, "%s%s %s %s %s" , "copydb" , opt i on, database

,
pathname , re I I i st)

;

#ifdef DEBUG
pr i nt f ("excopy before exec = %s\n" .excopy)

;

#endif
pr intf ("\n55s\n" .excopy)

;

if (system(excopy) = FAILURE)

syserr(101)

;

retum(SUCCESS);

/• If the user's response is a number, convert it and process it •/
if

'
((•optbufp] = '1') || (»optbuf[i] = '2'))

#i fdef DEBUG
printf("1-9 optbuf [5Sd] = T.c and a - 55d\n'\ i .optbuf [i] [0] , a);

fendif
cont inue;

\

pr

i

ntf ("\nOpt ion %s is not a legitimate opt i on.\n" , opt buf [i]) ;

Jun 13 13:34 1987 copydbcheck . c Page 1

| i nc I ude "defines. h"

extern char opt i on[COMMANDLENGTH]

;

/••a****************
*

• COPYDBCHECK
*

a******************
•

• Function: This routine is used to check and prompt the user for
• more information based on which options the user hos
• requested for the copydb command.
•

• Input: None.

• Output: A list of options.

• Returns: The options to be executed.
*

•/

copydbcheck(pick)
char pick[3];

\

char buf[5];
int a. m;

a = atoi (pick)

;

#ifdef DEBUG
printf("a = %d and pick = %s\n" , a

,

pick) ;

jjtendif

swi tch(o)

I

case 1 :

printf("What is the user's login name? ");

get s(buf)

;

sprintf(opt ion, "%s T.sZs" ,opt i on, "-u" , buf) ;

#ifdef DEBUG
printf("in case 1\n");
pr i nt f ("opt i on = 5Js\n" , opt i on) ;

#endi f

break;

case 2:

#ifdef DEBUG
printf("in case 14\n");

#endi f

return(DONE);
break;

default:
break;

I

for (m=0; m<5; m-H-)

buffm] = 0;

return (CONTINUE);
i

May 27 20:05 1987 copydbmenu.c Page 1

• •

• COPYDBMENU *

• *

•

• Function: This routine is used to print the options of the UNIX
• command copydb to the user.
*

• Input: None.
*

• Output: A screen of options.

« Returns: The options to be executed.

•/

copydbmenuQ
\

pr i nt f

(

pr i ntf

(

pr i ntf

(

pr i ntf

(

pr i ntf

(

pr i ntf

(

pr i nt f

(

\n\n\n");
'\t\t\tcopydb options\n");
'\t\t\t \n\n");

1) -uname = specify a different DBA called");
' name ' .\n")

;

2) EXIT = exit from this option sess i on.\n")

;

'\n\nPlease enter the number of the option desired: ");

Jun 13 13:33 1987 crcall.c Page 1

finclude "defines. h"

extern char opt ion[COMMANDLENGTH]

;

extern char excreatdb[COMMANDLENGTH]

;

extern char databasefDBLENGTH]

;

/••••it**************
* •

* CRCALL •

* Function: This routine is used to formulate the command creatdb.

* Input: None.

* Output: A screen of options.
*

* Returns: The options to be executed.

•/

crcal l()

I

char optbuf [ie0][3];
i nt j , i , o, di f f er

;

spr i nt f (opt ion, "7.s" ,
" ");

#i fdef DEBUG2
pr i nt

f

("excreatdb = %s\n" .excreatdb) ;

pr i nt f
("opt i on = %s\n" , opt ion)

;

pr i nt f ("crca I I database = %s\n"

,

database) ;

#endif

c rmenuQ ;

for (i=0; ; i++)

\

sconf("%s", optbuf[i]);
getcharQ ;

/* If the user's response is 'questionable', show the menu again »/
if ((»optbuf[i] = '?')

|| (»optbuf[i] = '\n'))

i

crmenu()

;

cont inue;

I

/• If the user's response is an exit, get out of here */
if ((»optbuf[i] = '6') || («optbuf[i] = 'q'))

i

#i fdef DEBUG
pr i ntf (" i ns ide the crex part and i = %d!\n",i);

#endi f

for (j=0; j<=i ; j++)

{

if (crcheck(optbuf [j]) = DONE)

}

fifdef DEBUG
printf("Got to just after crcheck and returni ng\n")

;

#endif
break;

j

i

spr i ntf (excreatdb, "%s%s 55s" , "c r eat db" .opt i on, database) ;

jjMfdef DEBUG
pr

i

ntf ("excreatdb before exec = %s\n"

,

excreatdb) ;

#endif
pr i nt f ("\nJ5s\n" .excreatdb);

Jun 13 13:33 1987 crcall.c Poge 2

I

if (system(excreatdb) = FAILURE)
syserr(l01)

;

return(SUCCESS);

/* If the user's response is a number, convert it and process it •/
if (f>optbuf[i] >= "I") kk («optbuf[i] <- 'e'))

I

fifdef DEBUG
printf("1-9 optbuf [J5d] = Zc and o = %d\n" . i , optbuf [i] [0] , o);

fendi f

cont i nue ,

i

pr i nt f ("\nOpt ion %s is not a legitimate opt ion .\n" , optbuf [
i]) ;

Jun 13 13:34 1987 crcheck.c Page 1

§ i nc I ude "def i nes .

h"

extern char opt i on[COMMANDLENGTH]

;

* *

* CRCHECK *

* •

• Function: This routine is used to check and prompt the user for
• more information based on which options the user has
» requested for the creatdb command.
•

• Input: None.
»

» Output: A list of options.
*

• Returns: The options to be executed.

*/

c rcheck(pi ck)
char pick[3];

char buf[5];
i nt a;

a = otoi (pi ck)

;

#i fdef DEBUG2
printf("a = J5d and pick = %s\n" ,a

,
pi ck)

;

fendif
swi tch(a)

1

case 1

:

printf("Whot is the user's login name? ");

get s(buf)

;

sprintf(option, "55s %sJ5s" , opt ion, "-u" , buf) ;

i f def DEBUG2
printf("in case 1\n");
pr intf ("opt ion = 5Js\n" ,opt ion) ;

fendif
break;

case 2:

sprintf(option, "%a %s" , opt ion, "—e")

;

#i fdef DEBUG2
printf("in case 2\n");
pr intf ("opt ion = 5Cs\n" ,opt ion) ;

#endi f

break;

case 3:

spr i nt f (opt ion , "%s T.s" , opt i on , "-m") ;

#ifdef DEBUG2
printf("in cose 3\n");
pr i nt f ("opt ion = /Ss\n" ,opt ion) ;

#endi f

break;

case 4:
whi le(TRUE)

\

printf("Turn On (+) or Off (-) concurrency control? ");

gets(buf) ;

if ((buf[e] = •+•)
|| (buf[e] = •-•))

break;

Jun 13 13:34 1987 crcheck.c Page 2

}

sprintf(opt ion, "%s %s%s"

,

opt i on , buf , "c")

;

jjfifdef DEBUG2
pr i ntf ("opt i on = %s\n" , opt i on)

;

printf("in cose 4\n");
#endif

break;

case 5:

whi le(TRUE)

I

printf ("Turn On (+) or Off (-) Query Modification? ");

gets(buf)

;

if ((buf[0] = •+•)
|| (buf[0] = '-•))

break;

}

sprintf(opt ion, "5!s %sJJs" ,option,buf,"q");
#ifdef DEBUG2

pr int f ("opt i on = %s\n" ,opt ion)

;

printf("in case 5\n");
#endif

break;

case 6:

#ifdef DEBUG2
printf("in case 6\n");

#endif
return(DONE);
break;

defaul t

:

break;

}

- return (CONTINUE);

May 27 20:05 1987 crmenu.c Page 1

• »

» CRMENU •

• •

»

• Function: This routine is used to print the options of the UNIX
• command creatdb to the user.
•

• Input: None.
*

• Output: A screen of options.

» Returns: The options to be executed.

•/

crmenu()

char optbuf [100][3];
int j , i , a, differ;

pr i nt

f

pr i nt

f

pr i nt

f

pr i nt

f

pr i nt

f

pr i nt f

pr i nt

f

pr i nt

f

pr i nt

f

pr i nt f

pr i nt f

pr i nt

f

pr i nt

f

pr i nt

f

"\n\n\n");
"\t\t\tcreatdb options\n");
"\t\t\t \n\n");

1) -uname = specify a different DBA called");
" ' name' An") ;

2) -e = modify options for an existing database .\n")

;

3) -m = specifies that the UNIX directory in");
" which the data base\n\t\tis to reside already exists. \n");
" 4) +/-c = turns on (+) or off (-) the concurrency");
" control scheme. \n");

5) +/-q m turns on (+) or off (-) query");
" mod i f icot i on An") ;

$) EXIT exit from this option session. \n")

;

"\n\nPlease enter the number of the option desired: ");

Jun 13 13:27 1987 destcall.c Page 1

jjf
i nc I ude "def i nes . h"

extern char opt i on[COMMANDLENGTH]
extern char exdest [CCHyMANDLENGTH]
extern char database[DBLENGTH]

;

'**•*•*•***•••••****

DESTCALL

••••a**************
•

• Function: This routine is used to formulate the command
• destroydb.
•

• Input : None.
*

« Output: A screen of options.

• Returns: The options to be executed.

destcal I ()

\

char optbuf [100][3];
int j , i , o. di f f er ;

spr i nt f (opt i on, "25s" ,
" ");

#ifdef DEBUG2
pri nt f ("exdest = Jls\n" , exdest) ;

pr i nt f ("opt i on = 55s\n" ,opt ion) ;

printf("dest database = J5s\n" , database)

;

#endif

destmenu()

;

for (i=>0; ;i++)

I

scanf("55s", optbuf[i]);

/• If the user's response is 'questionable', show the menu oga i n */
if ((•optbufpj = '?') || (»optbuf[i] = '\n'))

I

destmenu()
;

cont i nue
;

\

/* If the user's response is an exit, get out of here •/
if ((«optbuf[i] = '3') || (»optbuf[i] = 'q'))

I

#ifdef DEBUG
pr i nt f (" i ns ide the destex part and i = 5Jd!\n",i);

fendif
for (j=0; j<»i ; j++)

if (destcheck(optbuf [j]) = DONE)

1

#ifdef DEBUG1
printf("Got to just after ingcheck and ret urni ng\n")

;

#endi f

break;

i

\

sprintf(exdest,"J5s%s 5!s","destroydb",option, data base);
#ifdef DEBUG

pr i ntf ("exdest before exec = 5Ss\n" .exdest)

;

#endi f

pr i nt f ("\n?5s\n" .exdest) ;

Jun 13 13:27 1987 destcall.c Page 2

if (system(exdest) = FAILURE)

J

syser r(101)

;

!

return(SUCCESS);

!

/* If the user's response is a number, convert it and process it •/
if ((»optbuf[i] >= '1') ** (»optbuf[i] <= '3'))

fifdef DEBUG
printf("1-9 optbuf [J5d] = Zc and a J5d\n" . i .optbuf [i

] [0] , a);
#endif

cont i nue

;

I

pr i nt f ("\nOpt i on Xs is not a legitimate opt ion .\n" .optbuf flj);

I

Jun 13 13:33 1987 destcheck.c Page 1

jjlinclude "defines, h"

extern char opt i on[COMMANDLENGTH]

;

• *

• DESTCHECK »

• •

••A*****************
•

• Function: This routine is used to check and prompt the user for
« more information based on which options the user has
• requested for the destroydb command.
•

• Input: None.

• Output: A list of options.

• Returns: The options to be executed.
*

•/

destcheck(pick)
char pick[3];

\

char buf[5];
i nt a;

a = atoi (pick) ;

#ifdef DEBUG
printf("o %d and pick = %s\n" ,a, pick) ;

#endif
swi tch(a)

case 1

:

sprintf(option, "55s %s" , opt ion, "—s") ;

#ifdef DEBUG
printf("in case 1\n");
pr int f ("opt ion = 55s\n" , opt ion) ;

#endi f

break;

case 2:

sprintf(opt ion, "%s %s" , opt i on , "-m")

;

#ifdef DEBUG
pr int f ("opt i on = %s\n" , opt ion)

;

printf("in case 2\n");
fendif

break;

case 3:

#i f def DEBUG
printf("in case 3\n");

fendif
getchar()

;

return(DONE);
break;

!

default:
break;

\

return (CONTINUE);

Moy 27 20:06 1987 destmenu.c Page 1

• *

* DESTMENU •

••••••****«•*••*••

• Function: This routine is used to print the options of the UNIX
• command destroydb to the user.
*

• Input: None.

• Output: A screen of options.

• Returns: The options to be executed.

destme

\

pri
pri
pri

pri
pri
pri

pri
pri
pri

nu()

ntf
ntf
ntf
ntf
ntf
ntf
ntf
ntf
ntf

"\n\n\n");
"\t\t\tdest roydb options\n");
"\t\t\t \n\n");
" 1) -s = INGRES superuser must use this to execute");
" dest roydb. \n")

;

2) -m = specifies that the UNIX directory in");
" which the data base\n\t\t res i des is not to be removed An")

;

3) EXIT = exit from this option sessi on.\n")

;

"\n\nPlease enter the number of the option desired: ");

Jun 13 13:33 1987 helprcoll.c Poge 1

finclude "defines. h"

extern char opt i on[COMMANDLENGTH]

;

extern char exhel pr[COMMANDLENGTH]

;

extern char database[DBLENGTH]

;

extern chor rel I i st [PATHLENGTH]

;

• •

» HELPRCALL *

• •

• •••••to***********

• Function: This routine is used to formulate the command helpr.
*

• Input: None.

• Output: A screen of options.

• Returns: SUCCESS or FAILURE.
«

•/

helprcal I ()

I

char optbuf [100][3] ;

i nt j , i , a, differ;

spr i nt f (opt i on , "%s" ,
" ");

#ifdef DEBUG2
pr i nt f ("exhe I pr = J5s\n" ,exhe I pr) ;

pr i nt f (opt ion = 55s\n" ,opt ion) ;

pr i nt f ("he I prcal I database = %s\n" , database) ;

#endif

he I prmenu() '<

for (i=0; ;i++)

I

scanf("%s", optbuf[i]);

/• If the user's response is 'questionable', show the menu again •/
if ((»optbuf[i] — '?')

|| (»optbuf[i] = '\n'))

he I prmenu()

:

cont inue;

\

/• If the user's response is an exit, get out of here •/
if ((»optbuf[i] = '3') || (»optbuf[i] = 'q'))

getchar()

;

#ifdef DEBUG2
pr i nt f (" i ns i de the helprex part and i = 55d!\n",i);

#endi f

for (j»0; j<=i ; j-H-)

if (helprcheck(optbuf[j]) = DONE)

#ifdef DEBUG2
printf("Got to just after helprcheck and return i ng\n")

#endi f

break

;

.
'

sprintf(exhelpr, "7.s7.s Zs JSs" , "he I pr" , opt i on .database , re I I i st) ;

#ifdef DEBUG
pr int f ("exhe I pr before exec = %s\n" , exhe I pr) ;

Jun 13 13:33 1987 helprcall.c Page 2

#endif
pr i nt f ("\nJ5s\n" , exhe I pr) ;

if (system(exhelpr) = FAILURE)

I

syser r(101)

;

I

return(SUCCESS);

/* If the user's response is o number, convert it and process it •/
if ((»optbuf[i] >= 'T) kk (.optbuffi] <= '3'))

\

#i f def DEBUG2
printf("1-9 optbuf [Xd] = %c and a = %d\n", i .optbuf [

i][0] , a);
#end if

cont i nue;

pr i nt f ("\nOpt i on %s is not a legitimate opt i on. \n" .optbuf [
i])

;

!

\

Jun 13 13:34 1987 he I prcheck . c Page 1

(((include "defines, h"

extern opt ion[COMMANDLENGTH]

;

/•***•*******•*•••*•*

» HELPRCHECK •

• »

•***»*•**»*** *******
•

• Function: This routine is used to check and prompt the user for
» more information based on which options the user has
• requested for the helpr command.
•

• Input: None.

» Output: A list of options.
*

• Returns: The options to be executed.
*

he I prcheck(pick)
char pick[3];

{

char buf[5];
i nt a, in;

a = atoi (pi ck)

;

#ifdef DEBUG
printf("a = 7.d and pick = 55s\n" ,a, pi ck) ;

#endi f

swi tch(a)

{

case 1

:

printf("What is the user's login name? ");

gets(buf)

;

sprintf(opt ion, "%s %s%s" , opt i on, "-u" , buf)

;

#i f def DEBUG
printf("in case 1\n");
pr i nt f ("opt ion = %s\n" , opt i on)

;

#endi f

break;

case 2:

whi le(TRUE)

i

printf("Woi t (+) or Do Not Wait (-) for the Data Base? ");
gets(buf)

;

if ((buf[0] = •+•)
|| (buf[0] = •-•))

break;

I

sprintf(opt ion, "Zs /5sJ5s" , opt i on, buf , "w") ;

#ifdef DEBUG
pr i nt f ("opt ion = 55s\n" ,opt i on) ;

printf("in case 2\n");
ifendif

break;

case 3:

#i fdef DEBUG
printf("in case 3\n");

#endi f

return(DONE);
break;

def aul t

:

Jun 13 13:34 1987 he I prcheck . c Page 2

break
;

i

for (m=0; m<5; m++)
buf[m] = 0;

#ifdef DEBUG
printf ("»buf = J5s\n",buf);

#endif

return (CONTINUE);

I

May 27 20:06 1987 helprmenu.c Page 1

/•••••a*************

. HELPRMENU

••*•*•••*••***•***•

• Function: This routine is used to print the options of the UNIX
• command helpr to the user.
•

• Input: None.

• Output: A screen of options.

• Returns: The options to be executed.

he I prmenuQ

pr i ntf (

pr i nt f

(

pr i nt f

(

pr i ntf (

pr i ntf (

pr i ntf (

pr i ntf (

p r i n t f (

•\n\n\n"):
\t\t\thelpr options\n");
•\t\t\t \n\n");

1) -uname = specify a different DBA called");
'

' name' .\n")

;

* 2) +/-w = wait/do not woit for the data base.\n");
' 3) EXIT » exit from this option sessi on.\n")

;

'\n\nPlease enter the number of the option desired: ");

Jun 13 13:34 1987 ingcoll.c Page 1

finclude "defines. h"

extern char opt i on[COMMANDI_ENGTH] ;

extern char ex i ngresfCOMMANDLENGTH]

;

extern char dotabase[DBLENGTH]

;

• »

• INGRESCALL *

• Function: This routine is used to formulate the command ingres.
*

• Input: None.
*

• Output: A screen of options.

» Returns: SUCCESS or FAILURE.

i ngresca I I ()

char optbuf[100][3];
i nt j , i , a, di f f er

;

spr i nt f (opt ion

,

"Zs" ,

" ");

#i fdef DEBUG
pr i nt f ("exi ngres = 55s\n" , ex i ngres) ;

pr i nt f ("opt i on = 55s\n" , opt ion) ;

pr i nt f (" i ngrescal I database = %s\n" .dotobase)

;

#endi f

i ngmenu()

;

for (i=0; ; i4+)
i

scanf("%s", optbuf [i j);

/* If the user's response is 'questionable', show the menu again •/
if ((optbuf[i][0] — '?') || (optbuf[i][0] = '\n'))

i ngmenuQ ;

cont i nue;

I

/• If the user's response is an exit, get out of here •/
if (((optbuf [i][0] = '1') kk (optbuf [i][l] = '4'))

|| (*optbuf[i] — 'q'))

getchar()

;

fifdef DEBUG
pr i nt f (" i ns ide the ex part and i = 9Mt\n",l);

#endif
for (j=0; j<=i ; j++)

if (ingcheck(optbuf [j]) = DONE)

fifdef DEBUG
printf("Got to just after ingcheck and ret urn i ng\n")

;

fendi f

break;

\

\

sprintf(exi ngres, "55s%s 7.s" ,
"

i ngres" , opt i on , database) ;

fifdef DEBUG
pr

i

ntf ("ex i ngres before exec = 5Js\n" , ex i ngres)

;

#endif

Jun 13 13:34 1987 ingcall.c Page 2

pr i nt f ("\n%s\n" , ex i ngres) ;

if (system(ex i ngres) = FAILURE)

i

syserr(101)

j

I

return(SUCCESS);

!

/• If the user's response is a number, convert it and process it •/
if ((»optbuf[i] >= '1") t* (»optbuf[i] <» '9'))

\

#ifdef DEBUG
printf("1-9 optbuf [5Sd] = 7.c and a = J5d\n", i , optbuf [i] [0] , a);

#endif
cont inue;

!

pr i nt f ("\nOpt ion 55s is not a legitimate opt i on. \n", optbuf [
i])

;

Jun 13 13:34 1987 ingcheck.c Page 1

i nc I ude "def i nes .

h"

extern char opt i on[COMMANDLENGTH]

;

* •

• INGCHECK »

* *

*

* Function: This routine is used to check and prompt the user for
* more information based on which options the user has
• requested for the ingres command.
•

• Input: None.

• Output: A list of options.
*

» Returns: The options to be executed.
»

•/

i ngcheck(pi ck)
char pick[3];

I

char buf [5]

;

i nt a , m

;

a = otoi (pi ck) ;

if def DEBUG
printf("a = J5d and pick = ?Js\n" ,a , pick) ;

#endi f

swi tch(o)

I

cose 1 :

whi le(TRUE)

\

printf ("Enable (+) or Disable (-) Direct Update? ");
get s(buf)

;

if ((buf[0] = •+•)
|| (buf[0] = •-'))

break;

i

sprintf(option, "%s J5s/5s" ,option,buf,"U");
if def DEBUG

printf f" in case 1\n M
);

pr i nt f ("opt ion = J5s\n" , opt i on) ;

#endif
break;

case 2:

printf("What is the user's login name? ");
get s(buf)

;

sprintf(option,"?5s ZsZs" ,option,"-u",buf);
#i f def DEBUG

printf("in case 2\n");
pr i nt f ("opt ion = 55s\n" ,opt ion) ;

fendif
break;

case 3:

printf("What is the minimum field width? ");
get s(buf)

;

sprintf(option, "55s JtsJJs" , opt i on, "—e" , buf) ;

#i f def DEBUG
printf("in case 3\n");
pr i nt f ("opt ion = 5Js\n" ,opt ion)

;

Jun 13 13:34 1987 ingcheck.c Page 2

fendi f

break;

case 4:

printf("Whot is the integer output field width? ");

gets(buf)

;

sprintf(option, "55s 55s5Js" , opt ion , "-i "
, buf)

;

#i f def DEBUG
pr intf ("opt ion » 5Js\n" ,opt i on) ;

printf("in case 4\n");
#endif

break;

case 5:

printf("Set the floating point output field width to M");
printf(" characters with N decimal places. \n");
printf("Whot is the IxM.N parameter? ");

gets(buf)

;

sprintf(option. "55s 55s5Js" , opt ion, "-f "
, buf) ;

#ifdef DEBUG
pr i nt f ("opt ion = 55s\n" .opt ion) ;

printf("in case 5\n");
fendi f

break;

case 6:

printf("What is the column separator? ");

get s

(

buf) ;

sprintf(opt ion, "55s 55s55s" ,opt ion, "-v" , buf) ;

#ifdef DEBUG
pr i nt f ("opt ion = 55s\n" ,opt ion) ;

printf("in case 6\n");
fendi

f

break;

case 7:

printf("What is the modify mode on the retrieve command? ");
gets(buf)

;

sprintf(option, "55s 55s55s" , opt ion, "-r" ,buf)

;

i f def DEBUG
pr intf ("opt ion = 55s\n" .opt i on) ;

printf("in case 7\n");
fendif

break;

case 8:

printf("Whot is the modify mode on the index command? ");
gets(buf);

sprintf(opt ion, "55s 55s55s" ,opt ion, "-n" , buf) ;

i f def DEBUG
pri nt f ("opt i on = 55s\n" ,opt i on) ;

printf("in case 8\n");
fendif

break;

case 9:
whi le(TRUE)

I

pr intf ("Enable (+) or Disable (-) Autoclear Option? ");
get s(buf)

;

if ((buf[0] — •+')
|| (buf[0] = •-•))

break;

\

sprintf(opt ion, "55s 55s55s" , opt ion, buf , "a") ;

#ifdef DEBUG
pr i nt f ("opt i on = 55s\n" , opt i on) ;

printf("in case 9\n");
#endif

break;

Jun 13 13:34 1987 ingcheck.c Poge 3

case 10:

whi le(TRUE)

printf ("Enable (+) or Disable (-) Batch Update? ");

gets(buf)

;

if ((buf[0] = '+•) || (buf[0] — '-•))

break;

i

sprintf(opt ion, "Zs JJsXs" , opt ion , buf , "b") ;

fifdef DEBUG
printf ("opt ion » %s\n" ,opt ion) ;

printf("in case 10\n");
#endi f

break;

case 1 1

:

whi le(TRUE)

printf("Print (+) or Do Not Print (-) the Dayfile? ");

get s(buf)

;

if «buf[0] = •+')
|| (buf[0] = •-•))

break;

\

sprintf(opt ion, "JJs %sJ5s" , opt ion, buf , "d") ;

#i fdef DEBUG
pr i ntf ("opt i on = %s\n" , opt ion) ;

printf("in case 11\n");
#endif

break;

case 12:

whi le(TRUE)

I

printf ("Print (+) or Do Not Print (-) Monitor Messages? ");

gets(buf)

;

if ((buf[0] = •+•) || (buf[0] = '-'))

break;

i

sprintf(opt ion, "Xs J5s55s" , opt ion, buf , "s") ;

#i fdef DEBUG
printf ("opt i on = %s\n" ,opt ion)

;

printf("in case 12\n");
#endif

break;

case 13:
whi le(TRUE)

I

printf("Wait (+) or Do Not Wait (-) for the Data Base? ");
gets(buf)

;

if ((buf[0] =- •+•)
|| (buf[0] = '-•))

break;

i

sprintf(opt ion, "%s %sJ!s" , opt ion, buf , "w") ;

#ifdef DEBUG
pr i nt f ("opt i on = 5Ss\n" ,opt ion) ;

printf("in case 13\n");
#endif

break;

case 14:
#i fdef DEBUG

printf("in case 14\n");
#endi f

return(DONE);
break;

def au I t

:

Jun 13 13:34 1987 ingcheck.c Page 4

break;

}

for (m=0; m<5; m++)
buf[m] = 0;

#i fdef DEBUG
printf("»buf = %s\n",buf);

|endi f

return (CONTINUE);

i

May 27 20:07 1987 i ngmenu . c Page 1

•**•••*•••**••*•••

I NGMENU

>*•*•*»*•••*•••***

Funct i on

:

This routine is used to print the options of the UNIX
command ingres to the user.

Input: None.

Output: A screen of options.

Returns: The options to be executed.

/

i ngmenuQ
i

\n");
\t\t\t ingres options\n");
\t\t\t \n");

1) +/-U = enable/disable d

system re I at i ons\n\t\t\t and seco
2) -uname = specify a diff

' name' An")

;

3) -cN = set the minimum f

charoct er\n\t\t\tdomai ns to N.\n
4) — i 1 N = set integer outp
5) -f IxM.N = set f looting

width to M characters\n\t\t\twi

t

6) -vX = set the column se
to the terminal ond\n\t\t\t pr i nt

7) -rM = set modify mode o

command to M.\n");
8) -nM = set modify mode o

to M.\n");
9) +/—a set/clear the au

the terminal mode.\n");
10) +/-b = set/reset batch
11) +/-d print/do not pri

12) +/-S = print/do not pri
messages An")

;

13) +/-w = wait/do not wait
14) EXIT = exit from this o

pr ntf
pr ntf
pr ntf
pr ntf
pr ntf
pr ntf
pr ntf
pr ntf
pr ntf
pr ntf

Pr ntf
pr ntfl

Pr ntf I

pr ntfl
pr ntfl
pr ntf
pr ntf
pr ntf
pr ntf
pr ntfl
pr ntf

(

pr ntf
(

pr ntf(
pr ntf(
pr ntf

(

pr ntf (

pr ntf(II'

pr ntf (

irect update of the");
ndary i nd i ces .\n")

;

erent DBA cal led")

;

ield width for printing");
"):
ut field width to N.\n");
point output field");
h N decimal places. \n");
porator for retrieves");
commands to be X.\n");

n the retrieve");

n the index command");

toe I ear opt ion i n")

;

update. \n")

;

nt the doyf i le.\n")

;

nt any of the monitor");

for the database. \n")

;

ption sess i on .\n")

;

\nPlease enter the numbers of the options desired.
You must finish\nwith 14 for EXIT or 'q' for QUIT: ");

Jun 13 13:35 1987 lockbox. c Page 1

• LOCKBOX »

• •

•

• Function: This routine will handle the concurrency problem of
• two users wanting to access the same encrypted relation
• at the same time. Before reading, checking and
• modifying a .crypt file's busy bit, run "lockbox".
» After the change has taken ploce run "unlockbox".
•

• Input: None.
*

• Output: None.
*

• Returns: An OK to open the .crypt file.

•/

#include <stdio.h>

I ockbox(

)

FILE .fptr;
int i , j

;

for (i=0; i<50; i++)

{

if ((j=occess("/usr/ingres/lock. box" ,0)) = -1

)

if ((fptr = fopen("/usr/ingres/lock.box", "a+")) != NULL)

f c I ose(fptr);
return();

\

e I se
fprintf (stderr, "Can" t create /usr/i ngres/lock. box file\n");

sleep(l);

I

fprintf (stderr ."INGRES Front End times out waiting on lockbox\n");
return(-1)

;

May 27 20:08 1987 menu.c Page 1

• *

* MENU •

»*••*•*****•**••*•

» Function: This routine is used to print the options of the INGRES
related UNIX commands to the User in o menu type format.

• Input: None.
*

• Output: A screen of options.
*

• Returns: The command number to be executed = pick.

menu()

1

pr i nt

f

("\n\n\n"):
pr i nt

f

(" Be 1 ow
pr i nt f (" 1)
pr i ntf (" 2)
pr i nt

f

(" data bas
pr i nt

f

" 3)
pr i nt

f

(" 4)
pr i nt

f

(" 5)
pr i nt

f

(" 6)
pr i nt

f

(" manogeme
pr i nt

f

(" 7)
pr i nt f [" access t

pr i nt f (" 8)
pr i ntf (" 9)
pr i nt f [" re lot ion
pr i nt

f

(" 10)
pr i ntf C 11)
pr i ntf (" storage
pr i nt f (" 12)

are the INGRES relot
CHANGEKEY - change
COPYDB - create bat

se and restore i t .\n"
CREATDB - create a

DESTROYDB - destroy
HELPR - get informa
INGRES - INGRES re I

snt system. \n");
L1STREL - list rela

to in a certai n data
PRINTR - print rela
PURGE - destroy a I I

is.\n")

;

RESTORE - recover f

SYSMOD - modi fy sys
st ructures .\n")

;

EXIT - exit from th

ed UNIX commands ova i I ab I e :\n\n")

;

a relation's key.\n");
ch files to copy out a");

);

data base.\n");
an existing data base.\n");

t i on about a data base.\n");
ational data base");

t i ons a user has")

;

base .\n")

;

t i ons .\n")

;

expired and temporary");

rom an INGRES or UNIX crash. \n");
tern relations to predetermined");

is user's sess ion.\n")

;

Jun 13 13:32 1987 printrcoll.c Page 1

#i nc I ude "def i nes .

h"

extern char opt ionfCOMMANDLENGTH]

;

extern char expr i nt r[COMMAND LENGTH]

;

extern char database[DBLENGTH]

;

extern char re I I i st [PATHLENGTH]

;

• •

• PRINTRCALL •

• *

• Function: This routine is used to formulate the command
• pr int r

.

•

• Input: None.

• Output: A screen of options.

• Returns: The options to be executed.
*

pr i nt rca I I ()

char optbuf [100][3];
int j , i, a, differ;

spr int f (opt i on, "55s" ,
" ");

#i f def DEBUG
pr i nt

f

("expr i nt r = %s\n" ,expr i nt r)

;

pr i nt f ("opt i on = %s\n" , opt i on)

;

pr i nt f ("pr i nt r database = 55s\n" , database) ;

fendif

pr i nt rmenu()

;

for (i=0; ; i++)

I

sconf("/!s", optbuf[i]);
getchorQ ;

/• If the user's response is 'questionable', show the menu again */
if ((*eptbuffi] = '?') || (»optbuf[i] = '\n'))

»

pr i nt rmenu()

;

cont i nue;

\

/• If the user's response is an exit, get out of here •/
if ((.optbuffi] — '7') || (•optbuffi] = 'q'))

I

fifdef DEBUG
pr i nt f (" i ns ide the printrex part and i = J5d!\n",i);

fendif
for (j=0; j<=i ; j++)

if (printrcheck(optbuf [j]) = DONE)
break;

I

sprintf(exprintr,"/5s/5s %s ?5s","printr",option,database,rellist);
#i f def DEBUG

pr i nt

f

("expr i nt r before exec = /5s\n" , expr i nt r)

;

#endi f

printf("\n/5s\n",exprintr);

if (system(exprintr) = FAILURE)

Jun 13 13:32 1987 printrcoll.c Page 2

syser r(101)

;

re turn (SUCCESS);

i

/* If the user's response is a number, convert it and process it »/
if ((•optbuffi] >= '1') kk (»optbuf[i] <= '7')j

i

#ifdef DEBUG
printf("1-9 optbuf [%d] = 7.c and a = 5!d\n", i , optbuf [i] [0] , a);

#endif
cont i nue

;

I

pr i nt f ("\nOpt i on %s is not a legitimate opt i on.\n" ,opt buf [
i J) ;

I

Jun 13 13:33 1987 pr i nt rcheck . c Page 1

finclude "defines. h"

extern char opt i on[COMMANDI_ENGTH] ;

• *

• PRINTRCHECK *

*

• Function: This routine is used to check and prompt the user for
• more information based on which options the user has
• requested for the printr command.
•

• Input: None.
*

• Output: A list of options.

• Returns: The options to be executed.

•/

pr i nt rcheck(pi ck)
char pick[3];

I

char buf [5]

;

i nt a, m

;

a = atoi (pick) ;

fifdef DEBUG
printf("a = %d and pick = 55s\n" ,a. pi ck) ;

#end if

swi tch(a)

i

case 1

:

printf("Whot is the user's login name? ");

gets(buf)

;

sprintf(opt ion, "55s 55s55s" , opt i on, "-u" , buf)

;

fifdef DEBUG
printf("in case 1\n");
pr i nt f ("opt i on = 55s\n" , opt ion) ;

#endif
break;

case 2:

printf("What is the minimum field width? ");
gets(buf);
sprintf(option, "55s 55s55s" , opt i on, "-c" , buf)

;

#ifdef DEBUG
printf("in case 2\n");
pr i nt f ("opt i on = 55s\n" ,opt ion) ;

#endif
break ;

case 3:

printf("What is the integer output field width? ");
gets(buf)

;

sprintf(opt ion, "55s 55s55s" , opt i on, "-i "
, buf) ;

#ifdef DEBUG
pr i nt f ("opt i on = J5s\n" , opt ion) ;

printf("in case 3\n")-;_
#endif

break;

case 4:

printf("Set the flooting point output field width to M");

Jun 13 13:33 1987 pr i nt rcheck . c Page 2

printf(" characters with N decimal places. \n");
printf("What is the IxM.N parameter? ");

gets(buf)

;

spr i nt f (opt ion, "Zs %s%s" , opt i on, "— f
" , buf)

;

fifdef DEBUG
pr i nt f ("opt ion = 55s\n" , opt ion)

;

printf("in case 4\n");
lend if

break;

case 5:

printf("Whot is the column separator? ");

get s(buf) ;

sprintf(option, "%s %s?Js" , opt i on, "-v" , buf) ;

#i fdef DEBUG
pr i nt f ("opt ion = J5s\n" , opt ion) ;

printf("in case 5\n");
fendif

break;

case 6:

whi le(TRUE)

printf("Wait (+) or Do Not Wait (-) for the Data Base? ");

get s(buf)

;

if ((buf[0] = + •) || (buf[0] = •-'))

break;

I

sprintf(option, "%s %sJJs" , opt i on , buf , "w") ;

#i fdef DEBUG
pr i nt f ("opt ion = 55s\n" , opt ion)

;

printf("in case 6\n");
#endi f

break;

cose 7:

#i fdef DEBUG
printf("in case 7\n");

jfend i f

return(DONE);
break;

def au I t

:

break;

for (m=0; nt<5; m-H-)

buf[m] = 0;
fifdef DEBUG

printf ("»buf = %s\n",buf);
fend i f

return (CONTINUE);

i

Jun 13 13:35 1987 printrmenu.c Page 1

. PRINTRMENU

•

• Function: This routine is used to print the options of the UNIX
• command printr to the user.

• Input : None

.

*

• Output: A screen of options.
*

• Returns: The options to be executed.

•/

pr i nt rmenu()

\

pr i nt
pr i nt

pr i nt

pr i nt

pr i nt
pr i nt

pr i nt

print
pr i nt

pr i nt

pr i nt

print
pr i nt

pr i nt

print
print

\n");
\t\t\tp
\t\t\t-

1

' name'
2

choroc
3
A

width
5

to the
6

7

rintrmenu options\n");
\n");

) -uname = specify a different DBA called

An");
) -cN = set the minimum field width for p

ter\n\t\t\tdomai ns to N.\n");
) -MN = set integer output field width to N.\

) -flxM.N = set floating point output field");

to M characters\n\t\t\twi th N decimal places. \n

) -vX = set the column separator for retrieves
terminal and\n\t\t\tpr i nt commands to be X.\n"

) +/-w = wait/do not wait for the datobose.\n"

) EXIT exit from this option sess i on.\n")

;

r int i ng")

;

n");

);
"):

):

);

\nPlease enter the numbers of the options desired.

You must finish\nwith 7 for EXIT or "q' for QUIT:
");

");

Jun 13 13:27 1987 purgecall.c Page 1

§ i nc I ude "def i nes .

h"

extern char opt i on[COMMANDLENGTH]

;

extern chor expurge[COMMANDLENGTH]

;

extern char database[DBLENGTH]

;

*

* PURGECALL •

»

* Function: This routine is used to formulate the command
* purge.
•

* Input: None.

* Output: A screen of options.

* Returns: The options to be executed.
*

purgecal I ()

I

char optbuf[l00][3];
int j , i . o, di f f er

;

spr i ntf (opt i on, "55s" ,
" ");

#i f def DEBUG
pr i nt

f

("expurge = 55s\n" , expurge) ;

pr i nt f ("opt ion = 55s\n" ,opt ion) ;

pr i nt f("purge database = 55s\n" , database) ;

#endi f

purgemenu()

;

for (i=0; ; i++)

\

scanf("55s", optbuf[i]);
getchar() ;

/• If the user's response is 'questionable', show the menu again •/
if ((•optbuffil = "?') || («optbuf[i] — '\n'))

\

purgemenu()

;

cont i nue;

/• If the user's response is an exit, get out of here »/
if ((»optbuf[i] =» '6') || (»optbuf[i] = 'q'))

I

#ifdef DEBUG
pr i nt f (" i ns i de the purgex port and i = 55d!\n",i);

#end if

for (j=0; j<=i ; j++)

\

if (purgecheck(optbuf[j]) = DONE)

I

fifdef DEBUG1
printf("Got to just after purcheck and returni ng\n")

;

fendi f

break

;

i

I

sprintf(expurge, "?5s55s 55s "," purge", opt i on, data base);
fifdef DEBUG

pr i nt

f

("expurge before exec = 55s\n"

,

expurge) ;

Jun 13 13:27 1987 purgecall.c Page 2

#endi f

pr i nt f ("\nJts\n" .expurge);

if (system(expurge) = FAILURE)

i

syser r(101)

;

\

return(SUCCESS);

/• If the user's response is a number, convert it and process it */
if ((•optbuf[i] >= *1*) kit (»optbuf[i] <» '6'))

I

fifdef DEBUG
printf("1-9 optbuf [%d] = Xc and a = 5!d\n", i ,opt buf [

i] [0] , a);

lend if

cont i nue;

pr i ntf ("\nOpt i on %s is not a legitimate opt ion.\n" .opt buf [
i])

;

$

\

Jun 13 13:33 1987 purgecheck.c Page 1

§ i nc I ude "def i nes .

h"

extern char opt i on[COMMANDLENGTH]

;

• •

• PURGECHECK •

• *

*

• Function: This routine is used to check ond prompt the user for
• more information based on which options the user has
• requested for the purge command.
*

• Input: None.
•

• Output: A list of options.
*

• Returns: The options to be executed.
*

purgecheck(pick)
char pick[3];

!

char buf[5];
i nt a , m;

a = ato i (pi ck)

;

#ifdef DEBUG
printf("a = 55d and pick = 55s\n" ,a ,

pick) ;

#endi f

swi tch(a)

I

case 1

:

sprintf(option, "55s 55s" , opt ion, "— f ") ;

fifdef DEBUG
printf("in case 1\n");
pr i nt f ("opt ion = 55s\n" ,opt ion)

;

#endi f

break;

case 2:

sprintf(option, "55s 55s" , opt i on, "—p") ;

#ifdef DEBUG
printf("in case 2\n");
pr i nt f ("opt i on = 55s\n" .opt ion)

;

#end i

f

break;

cose 3:

spr i nt f (opt ion, "55s 55s" , opt ion, "-a") ;

fifdef DEBUG
printf("in case 3\n");
pr i nt f ("opt ion = 55s\n" , opt i on) ;

#endi f

break;

case 4:

sprintf(option, "55s 55s" , opt i on, "-s") ;

fifdef DEBUG
pr i nt f ("opt ion = 55s\n" ,opt ion) ;

printf("in case 4\n");
#endi f

break;

Jun 13 13:33 1987 purgecheck . c Page 2

case 5:

whi le(TRUE)

i

printf("Wait (+) or Do Not Wait (-) for the Data Base? ");
gets(buf)

;

if ((buf[0] = '+•)
|| (buf[0] = '-•))

break;

I

sprh~t f (opt i on , "J5s T.s%s" , opt ion, buf , "w") ;

fifdef DEBUG
pr i nt f ("opt ion = JJs\n" .opt ion) ;

printf("in case 5\n");
#endif

break;

case 6:

fjlifdef DEBUG
printf("in case 6\n");

#endif
return(DONE);
break;

default:
break;

{

for (m=0; m<5; m++)
buf[m] = 0;

return (CONTINUE);

May 27 20:08 1987 purgemenu.c Page 1

*

« PURGEMENU
*

•

• Function: This routine is used to print the options of the UNIX
• command purge to the user.
*

• Input: None.
*

• Output: A screen of options.
*

• Returns: The options to be executed.

:/

purgemenu()

I

pr i nt

pr i nt

pr i nt

pr i nt
print
pr i nt
print
pr i nt

pr i nt

print
pr i nt

pr i nt

pr i nt

print

\n\n\n"):
'\t\t\tpurge options\n");
•\t\t\t \n\n");

1) -p = expired user relations are de

I

eted .\n")

;

2) -f = causes unrecognizable files to be");
' deleted\n");
' 3) —a = causes messages to be printed about");
' the pending operat i on\n\t\tand execute it only");
1 if the response is a 'y'.\n");
' 4) -s = INGRES superuser must use this to execute");
' purge. \n");
' 5) +/-w = wait/do not wait for the dc
' 6) EXIT = exit from this option sessi
'\nPlease enter the number of the option desi

database
; i on .\n"
; i red: "

An");
);

):

Jun 13 13:27 1987 rested I. c Page 1

i nc I ude "def i nes .

h"

extern char opt i on [COMMANDLENGTH]

;

extern char exrestore[COMMANDLENGTH]

;

extern char databasefDBLENGTH]

;

• *

• RESTCALL •

• *

•

• Function: This routine is used to formulate the command
» restore.
*

• Input: None.

• Output: A screen of options.
*

• Returns: The options to be executed.

•/

restcal I ()

I

char optbuf [100][3];
int j, i, a, differ;

spr i nt f (opt ion, "J5s", " ");

i f def DEBUG
pr i ntf ("ex restore = 55s\n" , exrestore) ;

pr i nt f ("opt i on = ?Cs\n" ,opt i on)

;

pr i ntf (" rest ore database = %s\n" . database)

;

#endif

restmenu()
;

for (i=0; ; i++)

sconf("J5s", optbuffi]);
getcharQ ;

/• If the user's response is 'questionable', show the menu again •/
if ((»optbuf[i] =- '?') || (»optbuf[i] = "\n'))

I

restmenuQ ;

cont i nue;

i

/• If the user's response is an exit, get out of here •/
if ((*optbuf[i] = '6') || (.optbuffi] = 'q'))

\

fifdef DEBUG
pr i nt f ("

i

nside the restorex port and i = 55d!\n",i);
#endif

for (j=0; j<»i ; j++)

if (restcheck(optbuf [j]) = DONE)

I

#i fdef DEBUG1
printf("Got to just after restcheck and ret urn i ng\n")

;

#endif
break;

\

I

sprintf(exrestore,"J5s%s 55s"," restore ".option, data base);
#i f def DEBUG

pr i nt

f

("exrestore before exec = 55s\n"

,

exrestore) ;

Jun 13 13:27 1987 rested I. c Poge 2

#endi f

pr i nt f ("\n55s\n" .exrestore)
;

if (system(exrestore) = FAILURE)

I

syser r(101)

;

J

return(SUCCESS);

i

/• If the user's response is a number, convert it ond process it */
if ((»optbuf[i] >- '1') it (»optbuf[i] <- '*>'))

\

#ifdef DEBUG
printf("1-9 optbuf [55d] = 55c ond o = 2d\n", i .optbuf [

i][0] , o);

fendif
cont i nue ;

pr i nt f ("\nOpt ion ?Js is not a legitimate opt ion. \n", optbuf [
i])

;

i

Jun 13 13:33 1987 restcheck.c Page 1

^include "defines. h"

extern char opt i on[COMMANDLENGTH]

;

• RESTCHECK •

• Function: This routine is used to check and prompt the user for
• more information bosed on which options the user has
• requested for the restore command.
•

• Input: None.

• Output: A list of options.

» Returns: The options to be executed.
•

•/

rest check(p i ck)
char pick[3];

char buf[5];
i nt a, m;

a = atoi (pi ck)

;

#ifdef DEBUG
printf("a = 55d and pick = J5s\n" , a , pick) ;

#endif
swi tch(a)

{

case 1 :

spr i nt f (opt i on, "55s 55s" , opt i on ,
"-p")

;

#ifdef DEBUG
printf("in case 1\n");
pr i nt f ("opt i on = 55s\n" ,opt ion) ;

#endif
break;

case 2:

sprintf(option, "55s 55s" , opt ion, "—f") ;

#ifdef DEBUG
printf("in case 2\n");
pr i nt f ("opt i on = 55s\n" , opt i on) ;

jjtendif

break;

case 3:

spr i nt f (opt i on, "55s 55s" , opt i on, "-a") ;

#ifdef DEBUG
printf("in case 3\n");
pr i nt f ("opt i on = 55s\n" ,opt i on) ;

#endif
break;

case 4:

sprintf(opt ion, "55s 55s" .opt ion , "-s") ;

#ifdef DEBUG
pr i nt f ("opt i on = 55s\n" ,opt ion) ;

printf("in case 4\n");
#endi f

break;

Jun 13 13:33 1987 restcheck.c Page 2

case 5:

whi le(TRUE)

i

printf("Wait (+) or Do Not Wait (-) for the Data Base? ");

gets(buf);
if ((buf[0] = '+')

|| (buf[6] = •-•))

break;

i

sprintf(opt ion, "%s %s?Cs" .opt i on , buf , "w") ;

jjfifdef DEBUG
pr i nt f ("opt ion = %s\n" , opt i on)

;

printf("in case 5\n");
#endi f

break;

case 6:

fifdef DEBUG
printf("in case 6\n");

#endi f

return(DONE);
break;

def au I t

:

break;

\

for (m=0; m<5; m++)
buffm] = 0;

return (CONTINUE);

May 27 20:09 1987 restmenu.c Page 1

• •

• RESTMENU *

*

• Function: This routine is used to print the options of the UNIX
• command restore to the user.
*

• Input: None.
»

• Output: A screen of options.

• Returns: The options to be executed.
*

•/

restmenuQ
i

pr ntf (

pr ntf (

pr ntf(
pr ntf (

pr ntf(
pr ntf (

pr ntf (

pr ntf (

pr ntf (

pr ntf (

Pr ntf (

pr ntf (

pr ntf (

pr ntf(
pr ntf(
Pr ntf(

"\n\n\n");
"\t\t\t restore options\n");
"\t\t\t \n\n");

1) —p = if restore completes with no errors,");
" purge is ca I I ed\n\t\tand expired user relations are de

I

eted .\n")

;

2) -f = if restore completes with no errors,");
" purge is called ond\n\t\t unrecogni zabl e files will be");
" deleted. \n");
" 3) -a = causes messages to be printed about");
" the pending operat i on\n\t\tand execute it only");
" if the response is a 'y'.\n");
" 4) -s = INGRES superuser must use this to execute");
" restore .\n")

;

" 5) +/-w = wait/do not wait for the database .\n")

;

" 6) EXIT = exit from this option sess i on.\n")

;

"\nPleose enter the number of the option desired: ");

Jun 13 13:33 1987 syscall.c Page 1

| i nc I ude "def i nes. h"

include <sys/s
i
gna I . h>

extern char opt i on[COMMANDLENGTH]

;

extern char opt i on1 [COMMAND LENGTH]

;

extern char exsysmod [COMMANDLENGTH]

;

extern char database[DBLENGTH]

;

• •

« SYSCALL •

• »

*

• Function: This routine is used to formulate the command
• sysmod.
•

• Input: None.

• Output: A screen of options.

» Returns: The options to be executed.
*

•/

sysca I I ()

i

char optbuf[100][3];
i nt j , i , a, di f f er

;

i nt done = 0;

spr i nt f (opt i on, "%a" ,

" ");
spr intf (opt ionl , "J5s" ,

" ");

#i fdef DEBUG2
pr i nt f ("exsysmod = ?5s\n" , exsysmod)

;

pr i nt f ("opt i on = /5s\n" ,opt i on) ;

pr i nt f ("opt i on1 = %s\n" ,opt ionl)

;

pr i nt f ("sysmod database = %s\n" .database) ;

#endif

sysmenuQ ;

for (i=0; done != DONE ; i++)

sconf("55s", optbuf[i]);
getchor() ;

/• If the user's response is 'questionable', show the menu again •/
if ((»optbuf[i] = •?') || (.optbuf[i] = '\n'))

sysmenuQ ;

cont i nue;

!

/» If the user's response is an exit, get out of here »/
if ((»optbuf[i] = '3') || («optbuf[i] = 'q'))

\

for (j=0; j<=i; j++)

if (syscheck(optbuf [j]) = DONE)

done = DONE;
break

;

I

\

I

/• If the user's response is a number, convert it and process it •/

Jun 13 13:33 1987 syscoll.c Page 2

if ((.optbuf [i] >= '1') 44 (•optbuf[i] <= '3'))

cont i nue

;

pr i nt f ("\nOpt i on 55s is not a legitimate opt ion. \n" .optbuf [
i]) ;

*

sysrel();
done = 0;

for (i=0; done != DONE ; i++)

\

scanf("JJs", optbuf[i]);

/• If the user's response is 'questionable', show the menu again •/
if ((»optbuf[i] — '?") || (»optbuf[i] = '\n'))

I

sysrel ()

;

cont inue;

I

/« If the user's response is an exit, get out of here •/
if ((»optbuf[i] = '7') || (»optbuf[i] = 'q'))

for (j=0; j<=i; j++)

if (sysrelcheck(optbuf [j]) = DONE)

done = DONE;
break;

i

\

/» If the user's response is a number, convert it and process it •/
if ((»optbuf[i] >= '1') 44 (»optbuf[ij <= '7'))

cont i nue;
pr i nt f ("\nOpt i on %s is not a legitimate opt ion.\n" , opt buf [

i])

;

spr int f (exsysmod ,

"%sJ5s %s %s" , "sysmod" , opt i on , database , opt i on1)

;

#ifdef DEBUG2
pr

i

ntf ("exsysmod before exec = %s\n" , exsysmod)

;

#endif
pr i nt f ("\nJ5s\n" , exsysmod)

;

getchar() ;

if (system(exsysmod) — FAILURE)
syser r(101)

;

return(SUCCESS);

Jun 13 13:32 1987 syscheck.c Poge 1

finclude "defines. h"

extern char opt i on [COMMAND LENGTH]

;

/' **•*•*•*•*•*••••••

SYSCHECK

*****•**•••**••**•»

• Function: This routine is used to check and prompt the user for
• more information based on which options the user has
• requested for the sysmod command.

• Input: None.

• Output: A list of options.

• Returns: The options to be executed.

•/

syscheck(pick)
chor pick[3];

chor buf[5];
i nt a, m;

a » atoi (pick) ;

swi tch(o)

I

case 1

:

sprintf(option, "55s J5s" , opt ion, "-s") ;

break;

case 2:

whi le(TRUE)

I

printf("Wait (+) or Do Not Wait (-) for the Data Base? ");

get s(buf)

;

if ((buf[0] = •+')
|| (buf[0] = •-•))

break;

I

sprintf(option, "T.s %s%s" , opt i on , buf , "w")

;

break;

case 3:

return(DONE)

;

break;

default:
break;

i

for (m=0; m<5; m++)
buf[m] = 0;

return (CONTINUE);

May 27 20:09 1987 sysmenu.c Page 1

/*************•******
• •

. SYSMENU *

• *

•

• Function: This routine is used to print the options of the UNIX
• command sysmod to the user.
*

• Input: None.
*

• Output: A screen of options.
*

• Returns: The options to be executed.
*

sysmenu()

I

pr i nt f ("\n\n\n") ;

pr i nt f ("\t\t\t sysmod opt ions\n")

;

printf ("\t\t\t \n\n");
printf(" 1) -s INGRES superuser must use this to execute");
printf(" restore. \n")

;

printf(" 2) +/-w = wait/do not wait for the database. \n")

;

printf(" 3) EXIT = exit from this option sess ion.\n")

;

pr i nt f ("\nPI ease enter the number of the option desired: ");

May 27 20:09 1987 sysrel.c Page 1

•••«•««»•»»*•»•*

SYSREL

«••»**••••«•••».

• Function: This routine is used to print the relations on which
• the sysmod commond can be run.
•

• Input: None.
*

• Output: A screen of options.

• Returns: The options to be executed.

•/

sysre
I ()

I

ntf ("\n\n\n");
nt f ("\t\t\t sysmod relet i ons\n")

;

ntf ("\t\t\t-
ntf("\t
ntf("\t
ntf("\t
ntf("\t
ntf("\t
ntf("\t
ntf("\t

ij
3)
4)

5)

6)

7)

-\n\n");
re lot ion\n")

;

at t r i bute\n")

;

i ndexes\n")

;

tree\n");
protect\n")

;

i ntegr i t ies\n")

;

EXIT = exit from this option sess i on.\n")

;

nt f ("\n\nP I ease enter the number of the relation desired: ");

Jun 13 13:32 1987 sysre I check . c Poge 1

§ i nc I tide "def i nes . h"

extern char opt ionl [COMMANDLENGTH]

;

• •

• SYSRELCHECK »

a*******************
*

• Function: This routine is used to check and prompt the user for
• the relations to be modified using the sysmod command.
«

• Input: None.
*

• Output: A list of options.
*

• Returns: The options to be executed.

•/

sysrelcheck(pick)
char pick[3];

int a, m;

a = oto i (pick)

;

swi tch(a)

{

case 1

:

spr intf (opt ionl , "55s 55s" . opt i on1 ,
" re I at i on") ;

break;

case 2:

spr intf (opt i on 1 , "55s 55s" , opt ion 1 , "ot t r i bute") ;

break;

case 3:

sprintf(option1 , "55s 55s" , opt ion 1 ,
"

i ndexes") ;

break;

case 4:

spr intf (opt i on 1 . "55s 55s" , opt ionl , "t ree") ;

break;

case 5:

sprintf(option1. "55s 55s" , opt ion 1 , "protect") ;

break;

case 6:

sprintf(option1, "55s 55s" , opt ionl ,
"

i ntegr i t ies") ;

break;

case 7:

return(DONE);
break;

default:
break;

}

return (CONTINUE);

Jun 13 13:35 1987 unlockbox.c Page 1

»••••*•*«**••••*•

UN LOCKBOX

>•*•*«•••*•*••****•

« Function: This routine will handle the concurrency problem of

• two users wanting to occess the same encrypted relation
• at the same time. After reading, checking and
• modifying a .crypt file's busy bit, run "unlockbox".
« This follows the use of "lockbox" before doing the
• reading, checking and writing.

put : None

.

tput: None,

turns: None.

unlockboxQ
\

unl ink("/usr/ingres/lock.box")
;

return()

;

COMPUTER SECURITY IN THE UNIX OPERATING SYSTEM
AND THE INGRES DATA BASE MANAGEMENT SYSTEM

by

LOR I LYNN SABRACK

B.A. and B.S., Miami University, 1980

AN ABSTRACT OF A MASTER'S THESIS

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Computer Science

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1987

Abstract

Computer security has become an increasingly important
subject in today's society where the use of computers has
been incorporated either directly or indirectly in all
phases of everyday life. This paper will address current
computer security breaches as well as methods used to
enhance computer security. The INGRES (Interactive Graphics
and Retrieval System) Data Base Management System (DBMS)
operating under the UNIX* operating system will be the
target for security enhancements to be discussed in detail
in this paper and one to be implemented at Kansas State
University. The design for the implementation using INGRES
and UNIX discusses in detail the relevant design features of
INGRES and UNIX and the relationship that exists between
them. The focus of the design is current security measures,
strengths and weaknesses of the combined systems and
included is an example of current usage.

* UNIX is a trademark of Bell Laboratories

