COMPARISON OF COMPRESSIVE STRENGTHS OF MOLDED AND SAWED CONCRETE SPECIMENS

by

MOHAN SITALDAS JETHWANI

B. S., Kansas State University, 1964

A MASTER'S THESIS

Submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Civil Engineering

KANSAS STATE UNIVERSITY

MANHATTAN, KANSAS

Approved by: Major Instructor

LD 2668 T4 1964 J58 c 2 Doccime +

/

TABLE OF CONTENTS

				Page
SYNOPSIS			 	111
INTRODUCTION	• •		 	l
EXPERIMENTAL WORK			 	3
Scope	• •		 	3
Preparation of Specimens	• •		 	4
Materials	• •		 	4
Fresh Concrete	• •	• • • •	 	6
Molding and Curing	• •		 • • •	6
Methods of Test	• •		 	7
Results	• •		 	8
Test of Significance	• •		 	10
DISCUSSION OF RESULTS			 	11
CONCLUSION	• • •		 	12
ACKNOWLEDGMENT	• •		 	13
BIBLIOGRAPHY	• • •		 	14
APPENDIX			 	16

COMPARISON OF COMPRESSIVE STRENGTHS OF MOLDED AND SAWED CONCRETE SPECIMENS

by

MOHAN SITALDAS JETHWANI

SYNOPSIS

When standard concrete test cylinders fail to yield the specified 28-day compressive strength, it is the usual practice to test cores or prisms taken from the concrete in place. So far, there is no generally accepted method of correlating the strengths of cores or sawed prisms and molded specimens. It is therefore essential that the relationship between their strengths be established, so that the results can be interpreted correctly.

This experiment was designed to compare the compressive strengths of molded and sawed prisms that were cast, cured, and tested under minilar conditions. Opportunity also existed to investigate the relationship between the ratio of prism

¹Graduate Student, Civil Engineering Department, Kansas State University, Manhattan, Kansas, U. S. A. widths, d , to maximum sizes of coarse aggregate, a, and the strength of test specimens. In all, three series of test were made. Since series III was an improvement over the first two, all conclusions are based on the results obtained from this series.

The results indicate that the compressive strength of 4-in.sawed specimens is significantly less than that of 4-in. molded specimens. The statistical analysis does not show any significant difference in the compressive strengths of 2-in. prism. For 1.33-in. specimens the difference is significant at \approx -.05 and not significant at \approx = .025.

Though no simple relationship between the ratio of prism width to maximum size of coarse aggregate and the strength of the test specimen is apparent, the results do indicate that there is increasing influence of coarse aggregate on the variance of strength properties of specimens as the edge dimension of the specimen approaches the diameter of the maximum size of coarse aggregate.

iv

INTRODUCTION

The compressive strength of standard concrete cylinders is the foundation of our concrete design and is usually used as the criterion of concrete quality. The strength of almost every concrete structure is computed on the basis of the apparent strengths obtained from test specimens. Therefore, it is important that this property be determined as correctly as possible.

Unfortunately, there are many factors influencing the indicated strength of molded concrete test specimens. Such factors sometimes lead to erroneous results. If the indicated 28-day strength of molded cylinders fails to yield the specified minimum strength, it is often necessary to test cores or prisms taken from the concrete in place to confirm that results previously obtained were not chance events.

There is only a limited amount of data on the relationship between compressive strengths of cores and molded cylinders in the literature. This limited amount of available data shows considerable conflict.

The Bureau of Reclamation Concrete Manual⁽¹⁾ states that tests of drilled cores taken from structures almost invariably show strengths greater than those obtained from control cylinders which are standard cured for 28 days.

Numbers in parenthesis--thus(1)--refer to corresponding items in the bibliography.

W. H. Price⁽²⁾ observed that core strengths were almost all higher than control strengths in the case of cores taken from structures which had some curing; and he states that if cores were taken from columns of buildings (which were cured and were protected from moisture), the cores might show higher strengths than the moist-cured control specimens. Core strengths ranged from about 70 to 180 percent of control cylinder strengths, but were for the most part higher.

F. E. Legg, Jr.,⁽⁴⁾ compared compressive strengths of standard molded cylinders and cores drilled from pavement slabs at ages 28 days, 90 days, one year, and five years. With core data corrected to a ratio of length to diameter of 2.00 (using a factor of 0.94 for a ratio of 1.25), cores tested 121, 113, 101 and 100 percent of standard cylinders at the four ages respectively.

W. K. Wagner⁽⁵⁾ found that cores yield only about 67 percent of the 28-day cylinder strength and 85 percent of the 7 day cylinder strength. He compared the results of standard cylinders at 7 and 28-days with 4 by 8-inch diamond-drilled cores taken from the same concrete after field curing.

Average core strengths at 28 days, as obtained by R. A. Lapinas⁽⁶⁾, ranged from 61 to 74 percent of standard 28 day cylinders for concrete containing type I cement. Where type IV cement was used and the peak temperature ranged from 110 to 120 F, cores gave substantially the same strengths as companion standard cylinders at 28 days.

Bryant Mather and W. O. Tynes⁽⁷⁾ observed that standard cylinders and cores yielded approximately equal strengths for low-strength concrete, but cores yielded lower results than cylinders for high-strength concrete.

Research conducted by R. D. Gaynor⁽⁸⁾ indicated that at 95 days, cores from well cured slabs gave strengths ten percent less than 28 day standard cylinders.

Apparently, a greater understanding of the significance of tests of cores is needed. The work reported here was designed to compare the compressive strengths of sawed and molded concrete prisms that were cast, cured, and tested under similar conditions.

Opportunity also existed to investigate the relationship between the ratio of prism width, d, to maximum size of coarse aggregate, a, and the strength of the test specimen.

EXPERIMENTAL WORK

Scope

The main purpose of this experiment was to compare the compressive strengths of molded specimens with those of corresponding sawed specimens. Care was taken to ensure similar casting, curing and testing of both kinds of specimens.

Since the specimens compared had the same ratio of d/a, an opportunity existed to observe the relationship, if any, between the ratio d/a and the compressive strength.

The experiment was conducted in three series as shown in

Table I. Since about nine specimens are required to make proper statistical inferences, nine specimens of each size were cast wherever possible.⁽¹¹⁾ However, this could not be achieved in every case, due to various handicaps. The concrete mixer used for series I did not have enough capacity to mix the required batch. For series III, only four 4-inch specimens could be cast because the vibrating table was not big enough to accomodate a bigger mold. But according to Tucker, as quoted by Mather⁽⁷⁾, "If we reduce the diameter of the test specimen, we need only make the number of specimens proportional to the ratio of the areas to obtain equal statistical information." Thus it is inferred that four 4-inch cubes are statistically equivalent to sixteen 2-inch cubes.

Preparation of Specimens

<u>Materials</u>. Portland Cement Association's⁽⁹⁾ recommendations were followed in designing the mix. Six gallons of water, 245 pounds of Kaw River sand (Fineness Modulus 3.00), and 255 pounds of crushed pseudo-quartzite were used per sack of normal portland cement.

Series I had 3/4-in. maximum aggregate size, and the maximum size of aggregate was 3/8 in. for the other two series. This change was made to keep the least specimen size at least three times the maximum nominal size of the aggregate.(10)

The change of aggregate size made it necessary to change the proportions of sand and rock also. To provide the same grain size distribution in all the three series, 16.7 percent

Specimen size	Maximum Aggregate size in inches	Ratio Specimen width to maximum Aggregate	Number Molded	Tested Sawed
(1)	(2)	size (d/a) (3)	(4)	(5)
Series I				
8.0 in. cubes		10.67	7	9
6.0 in. cubes	n A.	8.00	7	6
4.0 in. cubes	3/4	5.33	6	6
3.0 in. cubes		4.00	9	9
Series II				
4.0 in. cubes		10.67	9	9
3.0 in. cubes	a (0	8.00	8	9
2.0 in. cubes	3/8	5.33	9	9
1.5 in. cubes		4.00	6	9
Series III ^a				
4.0 in. cubes		10.67	4	4
2.0 by 2.0 by 2.0 in.	3/8	5.33	16	16
1.33 by 1.33 by 4.0 in.		3.56	6	7

TABLE I .--- NUMBER AND SIZE OF SPECIMENS TESTED.

^aTested as cast and corrected to (1/d) = 2.00 according to ASTM Designation: C 42. (10)

rock and 83.3 percent sand were used for series II and III.

<u>Fresh Concrete</u>. Ten-cubic-foot and two-cubic-foot concrete mixers were used for series I and the other two series respectively. The properties of fresh concrete are shown in Table II.

Series	Concrete Batch Size	Slunp inch	Unit Weight 1b./ft.3
(1)	(2)	(3)	(4)
I	10.0	5.5	147.0
II	1.5	0.0	142.8
III	2.0	0.38	142.0

TABLE II. -- PROPERTIES OF FRESH CONCRETE

Added a pound of extra water to achieve some workability.

Molding and Curing. Figure 1 shows a typical mold used in series I and II. Each mold was partitioned into two parts. Three beams were cast in one part; as many as nine cubes were cast in the other part.

Test specimens for series I were molded and cured in accordance with ASTM Designation : C 192. The beams were taken out of the fog room on the sixth day, and three cubes were sawed from each beam. All test specimens were then capped with a commerical capping compound and their dimensions were recorded. Testing was done on the seventh day.

The same procedure was adopted for series II, with two exceptions. Instead of a 5/8 in. tamping rod, a hand vibrator was used for compaction, and the specimens were kept submerged in water for curing.

Series III was designed to remove some of the variables inherent in series I and II. Instead of using different molds for different sizes, only one mold was used. This mold was partitioned into various different sizes as shown in Fig. 2. The entire mold was then fastened securely to a vibrating table. Concrete was vibrated for 20 seconds when the mold was half full, and for a minute when the mold was full. This procedure was followed to achieve uniform compaction for all specimens. The mold was then left undisturbed and fully covered with a polyethylene sheet for six days, after which the specimens were removed from the mold. The slab was saved into different sizes as shown in Fig. 6. All specimens were left in water until the next day, when they were capped and tested.

Methods of Test

Both sawed and molded specimens were tested in accordance with the applicable provisions of the Method of Test for Compressive strength of Molded Concrete Cylinders (ASTM Designation: C 39).⁽¹⁰⁾

Table III shows the testing machines used for various specimens.

Series	Size of specimen tested, in	Machine used	Capacity of the machine, in
(1)	inches (2)	(3)	pounds (4)
I	3 and 4	Southwark Emery	120,000
	6 and 8	Universal Hydraulic	300,000
II	1.5 and 2.0	Emery Hydraulic	75,000
	3 and 4	Southwark Emery	120,000
III	1.33 and 4	Southwark Emery	120,000

TABLE III. -- TESTING MACHINES USED.

Only one testing machine was used for series III to eliminate between-machine variation. All specimens were tested in the as-cast position.

Results.

The results of these tests have been summarized in Table IV for ready reference. Detailed results are given in Tables VI, VII, and VIII in the Appendix.

In Table IV, relative compressive strengths have been calculated for each series based on the average compressive strength of the molded cubes for which d/a is 10.67 as 100 percent. In all but three cases, values are lower for sawed specimens than for molded specimens. Series I and II show a marked increase in strength with decreasing specimen size (decreasing d/a); there is no clear-cut trend in series III.

Speci-	. Max. aggre-	Ratio speci-		Molded	ad			Sawed	þe	
size in inches		men width to max. gate size	Average strength pounds per inch	Relative strength as a percent	Standard devla- tion in pounds per sq. inch	Coeffi- cient of varia- tion in percent	Average strength in lbs. per sq. inch	Average strength as per- cent	Standard devia- tion	Coeffi- cient of vari- ation in percent
(1)	(2)	(3) (3)	(4)	(2)	(9)	(2)	(8)	(6)	(01)	(11)
		Se	eries IAll	All cubical	al specimens.	•sue				
0000 M + 0 8	3/4	10.67 8.00 4.00	4620 6090 6520 6520	100.0 131.8 1412.6	110 122 122 122 122 122 120 120 120 120	7.5782 7.57877 7.57877 7.578777 7.5787777777777	4470 5360 6390 6750	96.80 116.00 138.20 145.50	227 227 496	7.35 2.35
		2	Series II-	IIAll cubical	cal specimens.	nens.				
1000 1005	3/8	10.67 8.00 4.00	4-090 4-580 7050	100.0 112.0 123.5	273 344 266	5.27 5.27	1+240 1+380 1+200 1+940	103.80 107.00 102.70 120.80	117 131 208 210	5200 5200 5200 5200 5200 5200 5200 5200
		5 S	Series III.	IIIAll spec	specimens 4 1	in. high.	ø			
4.0 x 1 2.0 x 1 1.33 x	4.0 2.0 3/8	10.67 5.33 3.56	3400 3030 3250	100.0 89.2 95.6	26 119 133	0.76 3.93 4.09	3040 2930 3020	89.4 86.2 89.0	125 133 201	11.4 42.4 6.66
đ	aResults	correcte	ed to 1/d	= 2.00 ac	according 1	to ASTM I	Designation:	on: C 42(10)		File 5

Series III shows an increase in coefficient of variation with decreasing specimen size; there is no such trend in series I and II. For series III, the coefficient of variation is larger for sawed specimens than for molded specimens for each of the three sizes.

The maximum coefficient of variation is 7. 84 percent for the 3-in. molded specimens (d/a = 8.00) of series II. The minimum coefficient of variation is 0.76 percent for the 4-in. molded specimens (d/a = 10.67) of series III.

Test of Significance.

This test is performed only on the results obtained for series III. Table V shows the three analyses. The analyses were carried out seperately because of the unequal number of test specimens and the differing variances for the three sizes.

The analyses, therefore, indicate that the differences in the strengths of the sawed vs. molded specimens was significant for 4-in. size specimens and not significant for 2-in. sizes specimens. For 1.33-in. size specimens the difference in the compressive strengths of molded and sawed specimens was significant at $\propto = .05$ and not significant at $\propto = .025$.

Source	Degrees of Freedom	Sum of squares	Mean sum of squares	"F" Decision
4-in.	size			
Total		298,000		
Treatment	l	251,000	251,000	32.06 signific (5.99) cant
Withln	6	47,000	7,830	
2-in.	size			
Total		542,000		
Treatment	1	30,000	30,000	1.76 Not signifi- (4.17) cant
Within	30	512,000	17,067	
1.33-	in. size			
Total		490,000		
Treatment	1	182,000	182,000	5.91 signifi- (4.96) cant
Within	10	308,000	30,800	

Table V -- Analysis of Variance - Tables for Strength

test data.

Values in parenthesis are the "F"-table values. The sum of squares are computed on the basis of table LX (see appendix). 10a

DISCUSSION OF RESULTS

All inferences have been based on the compressive strength test data from series III. Proper control over some of the variables affecting compressive strength could not be exercised for the first two series. Lack of uniform compaction, different molds for different sizes, and different testing machines were a few of those uncontrolled variables. Though both the beams and molded specimens of series II were submerged in water for curing, yet the molded specimens had six faces in contact with water while the still un-sawed specimens had only four. In series III, however, these variables were eliminated.

The relative compressive strengths for series III show lower values for sawed specimens than for molded specimens, which is in accord with some of the previous findings. Though the strength of 4-in. sawed specimens is significantly lower than that of 4-in. molded specimens, it is not significantly different for 2-in. specimens. Also the strength of 1.33-in. sawed specimens is significantly less than that of 1.33-in. molded specimens at $\ll = .05$, and not significantly less at $\ll = .025$.

No simple relationship between the ratio of prism width to maximum size of coarse aggregate and the strength of test specimens is apparent from the results obtained. However, it is apparent that the compressive strength decreases as the ratio d/a increased except where d/a = 10.67. Also, the within-cell variance increases as the size of specimen decreases. In other words, the data are more hetrogeneous for the smaller sized specimens. This effect may be attributed to the increasing influence of coarse aggregate on the strength properties of specimens as the edge dimension of the cube approaches the diameter of the maximum size of coarse aggregate.

CONCLUSION

From the experimental data obtained from this study, the following conclusions may be drawn:

- The 4-in. sawed specimens were significantly weaker than the 4-in. molded specimens.
- There was no statistically significant difference between the compressive strengths of molded and sawed concrete specimens of 2-ih size.
- 3. The strengths of 1.33-in. molded specimens are significantly lower than those of 1.33-in. molded specimens at ~=.05, and the difference in their strengths is not singificant at ~=.025.
- 4. The coefficient of variation decreased as the ratio d/a increased.

The conclusions drawn above hold good only when the concrete mix design remained fixed with a cement factor of 5.5 sacks per cu. yd.; the water cement ratio was 0.53; aggregate gradation was fixed; and, molding and fabricating procedures were held constant.

ACKNOWLEDGMENTS

The author wishes to express his thanks and appreciation to his Major Instructor, Dr. Cecil H. Best, for his help, guidance, advice, and criticism. An expression of gratitude is extended to Professor C. H. Scholer, for permitting an easy access to his personal library. He is also deeply indebted to Dr. Jack B. Blackburn, for granting an opportunity to undertake this study.

B IBL IOGRAPHY

(1) "Concrete Manufacturing" Concrete Manual, United States Department of Interior, Bureau of Reclamation, United States Government Printing Office, Washington, D. C., 7th Ed., 1963, p. 277.

(2) "Factors Influencing Concrete Strength," by W. H. Price, Proceeding American Concrete Institute, Vol. 47, 1951, p. 417.

(3) "Static and Fatigue Strength of Hardened Concrete," by C. E. Kesler and C. P. Siess, Special Technical Publication, American Society for Testing and Materials, No. 169, 1956.

(4) "Experimental Fly Ash Concrete Pavement in Michigan," by F. E. Legg, Jr., Presented at Annual Meeting of Highway Research Board, January 1964.

(5) "Effect of Sampling and Job Curing Procedures on Compressive Strength of Concrete," by W. K. Wagner, Materials Research and Standards, Vol. 3, No. 8, 1963, pp. 629 to 634.

(6) "Strength Development of High Cement Content Concrete Cast in Large Sections," by R. A. Lapinas, Presented at Fall Meeting of American Concrete Institute, Toronto, Ontario, November 1963.

(7) "Investigation of Compressive Strength of Molded Cylinders and Drilled Cores of Concrete," by Bryant Mather and W. O. Tynes, Journal of the American Concrete Institute, January 1961, pp. 767-778.

(8) "Research Highlight" by R. D. Gaynor, Presented at 34th Convention of National Ready Mixed Concrete Association, February 1964.

(9) "Design and Control of Concrete Mixture," Bulletin, Portland Cement Association, Chicago, Illinois, 10th Ed. p. 16.

(10) "Standards Book," American Society for Testing and Materials, Philadelphia, Pa., 1963.

(11) "The Numbers of Specimens or Test of Concrete and Concrete Aggregates Required for Reasonable Accuracy of the Average," by R. W. Crum, Report on Significance of Tests of Concrete and Concrete Aggregates, American Society for Testing and Materials, 1935, pp. 111 to 120. (12) "Statistical Methods," by G. W. Snedcor, The Iowa State University Press, Ames, Iowa, 5th Ed. 1956, p. 246.

(13) "Experimental Statistics," by H. C. Fryer, Kansas State University, Manhattan, Kansas, 1964, pp. 221-242.

(14) "Effects of Aggregate Size on Properties of Concrete," by S. Walker and D. L. Bloem, Journal of the American Concrete Institute, September, 1960, pp. 283-298.

Specimen Identi-	Length inches	Breadth in	Area In south	Load in nounds	Stress in	Average stress in nounde	Standard deviation	Coefficient of variation
	Compiet	CONTRACTO	Inches	in the second	per square	per square	per square	in percent
(1)	(2)	(3)	(1)	(5)	(9)	(2)	(8)	(6)
	M	Molded Eleht Inch		ubesLoad	Ing Rate	CubesLoading Rate 120,000 16 /min.	./ain.	
222	900 000 000 000	7-94	64.00	299,500	4697 4697			
2즉정(2000	7.94	0000	2000 2000 2000 2000	4693	4620	OTT	2.38
25285	2020	66.0	000 000 000	282,200	26724	(%007)		
	8	wed Eleht	Inch	CubesLoading Rate	ng Rate	120,000 1b.	Jb. /ain.	
L L L L L L L L L L L L L L L L L L L		8.03 7.96 98	64-53 63-36 63-36 64-0000000000	287,000 274,500 284,000	4467 4332 4460 4138	14470	270	6.0t
B185	8773	66664	50000 50000 50000	2275 283 283 500 282 582 500 500 500 500 500 500 500 500 500 50	13799 13799	(96.8%)		

(6)		4.12		4.24		2•58
(8)	nin.	251	in.	227	lb./min.	170
(2)	70.000 lb./min.	6090 (131.8%)	rate 70,000 lb./min.	5360	30,000	6590 (1 ⁴ 2•6%)
(9)	Rate	6148 6475 6260 5383 5970 5974		5250 5343 5343 5589 5589 5589 5589 5589 5589 5589 558	Ing Rate	6474 6474 6463 6760 6847 6847
(2)	CubesLoading	219,000 2229,600 2221,400 231,400 218,100 218,100	CubesLosolns	196,000 183,500 1186,800 2112,000 2112,000 2112,000	CubesLoading	102,800 104,700 108,700 103,700 104,000
(4)	Inch	8078665764 8079665764 8079665764	Inch Cub	327.00 327.00 327.00 333.00 47.000 47.000 47.000 47.0000000000	Inch.	1156.080 110000000000000000000000000000
(3)	Molded Six	00000000000000000000000000000000000000	Sayred Six	000707000 211000000000000000000000000000	Molded Four	0.000000000000000000000000000000000000
(2)	Mc	77000777 28000000 2800000000000000000000	ŝ	00000000000000000000000000000000000000	Me	6000066 600066 Matateme
(1)		I I I I I I I I I I I I I I I I I I I		机动机动机器		机构和效率

(6)		1.28		7.43
(8)	ain.	CC CC	/min.	184
(2)	30.000 lb./min.	6390 (138.2%)	e 17.000 1b	(%0°141)
(9)	Rate	63381 63381 6579 6575 6575 63350 63350	Ing Rat	6499 6077 6077 60789 6070 6079 6077 7089 7089 7011 101 7011
(2)	CubesLoading	102,700 102,600 102,700 103,000 105,500	Molded Three Inch CubesLoading Rate 17.000 1b./min.	879.997.997.997.997.997.997.997.997.997.
(4)	Inch Cu	16.08 15.08 15.36 15.36	e Inch	80000000000000000000000000000000000000
(3)	Sawed Four	04 00 00 00 00 00 00 00 00 00 00 00 00 0	folded Thre	www.g.g.g.g.g.g.g.g.g.g.g.g.g.g.g.g.g.g
(2)	07	02000 020000 020000 02000000	~	98899999999999999999999999999999999999
(1)		机动气动机器		erennerga

-	-
5	
Ø	5
nd	ed
	uded
0	luded
5	cluded
0	ncluded
0	oncluded
5	Concluded
	(Concluded
	(Concluded
IΛ	VI (Concluded
E VI	E VI (Concluded
BLE VI	BLE VI (Concluded
ABLE VI	ABLE VI (Concluded

(6)		7.35
(8)	/min.	964
(2)	17,000 1b.	(145°5%)
(9)	ing Rate	66743 66769 7299 7299 7299 7299 7299 7299 729
(2)	Inch CubesLoading Rate 17.000 1b./min.	20000000000000000000000000000000000000
(4)	Inch	10220202000 10220202000 102202000
(3)	Sawed Three	NNWWWWWWWW 9999999999999999999999999999
(2)		20000000000000000000000000000000000000
(1)		LI L

Groateon	Tower	Runand th	0 mon	Load	Stroog	ÅVerepe	Standard	Coefficient
TISHTAAA	inches	inches	in square inches	pounds	tn pounds per	stress in pounds por	deviation in pounds per	of variation in per cent
(1)	(2)	(3)	(4)	(2)	1nch (6)	inch (7)	Ínch (8)	(6)
	M	Molded Four	Inch	CubesLond Lo		Rate 30,000 1b.	1b./ain.	
Har	0000	345 000 345 000 375 000	16.00 16.20 15.20	64,700 68,300 66,800	4216 4216 4216			
2010	0000	8880 1444	16.00	63 2000 63 2000	3930	(%0.001) (100.0%)	273	6.67
0.00	00138 074	666 ***	16.20	27 000 58 200 68 200	2010 2010 2010 2010 2010 2010 2010 2010			
	62	Sawed Four		Inch Cubes-Loading	ing Rate	30,000 lb./	/min.	
HQr	0000 m.t.a	100 100 100 100 100 100	123.00	63,400 64,000 66,400	6404 12171			
27 500	062 062	1000	000 000 000	64,1000	1224	4240 (103.8%)	211	2.75
0 ~~ 00			12.500	68 800 64 7000 64 7000	4158 4158			
	19.4							

I

ŧ

(2)	(3)	(4)	(2)	(9)	(2)	(8)	(6)
e.	Molded Th	Three Inch.	CubesLoading	2 1	Rate 17,000 lb./min.	./min.	
		9.43 9.18	36,100	4679 3932 4462			
		810	41,300	11198	4390 (107.3%)	344	7.84
2288 9998	4 4 M M	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0000 0000 0000 0000 0000 0000 0000 0000 0000	4689 49759 4284			
	leved Thru	se Inch	Saved Three Inch Cubes-Loading	ding Rate	17,000 Ib./min.	/min.	
			41,600 37,900	4653 4387			
			0000 00100 00100 00100	43566 43566	4380 (107.0%)	131	2.76
NUCLO NO OC	10000 10000	00000	200000 200000 200000000000000000000000	1960 1980 1980 1980 1980 1980 1980 1980 198			

TABLE VII (Continued)

(2)	(3)	(4)	(2)	(9)	(2)	(8)	(6)
M	0	Inch	lded Two Inch Cutes-Loading Rate 7500 lb./min.	s Rate	7500 1b./min.		
		1+.00	18,200	4550			
2.99	2.00	3.98	18,200	4573			
		00.4	18,000	4100			
- #		すつき	17,800	4406	11580	107	2.34
		00°*+1	18,500	4625	(112.0%)		
		+0.+1	18,500	4579			
		4.06	19,000	4680			
		12.000	19,100	4775			
S	aved	inch C	Two Linch Curan-Touding	Refig	7500 lb./min.		
	2.00	3.92	16.000	4301			
	2.01	68	15,500	4212			
	2.00	3.96	15,200	3838			
	1.86	3.72	16,000	1+301	1200	208	56.4
	1.67	3.74	15,500	ちちいち	(%2.301)		
	200 100 100	3.72	16,300	4382			
88	26.T	06.00	0000 T	2244			
	00+T	いい	T++0000	2774			

TABLE VII (Continued)

101	(3)	(+)	(2)	(9)	(2)	(8)	(6)
	Molded	ans and pu	to-bull flach.	Cubes	Cubes-Loading Rate 4,000 15./ft	a 4,000 1b.	lft.
1111111	000040 100000 100000 100000	55555555555555555555555555555555555555	11,850 10,900 11,300 11,300	5232 1857 1857 1989 1989	5050 (123•5%)	266	5.27
	Saved o	one and one	-half Inch	Cubes-L	one-half inch CubesLoading Rate 4,000 lb./ft.	4.000 1b./.	ſ ĉe
20000000000000000000000000000000000000		03300000000000000000000000000000000000	10000000000000000000000000000000000000	2000 2000 2000 2000 2000 2000 2000 200	4940 (120.8%)	210	4.25

TABLE VII (Concluded)

DARD DEVIATIONS	
G, STA	TON
STRENGTHS	P VARIATI
ICOMPRESSIVE	COEFFICIENTS OF
VIII,SERIES II	AND
TABLE	

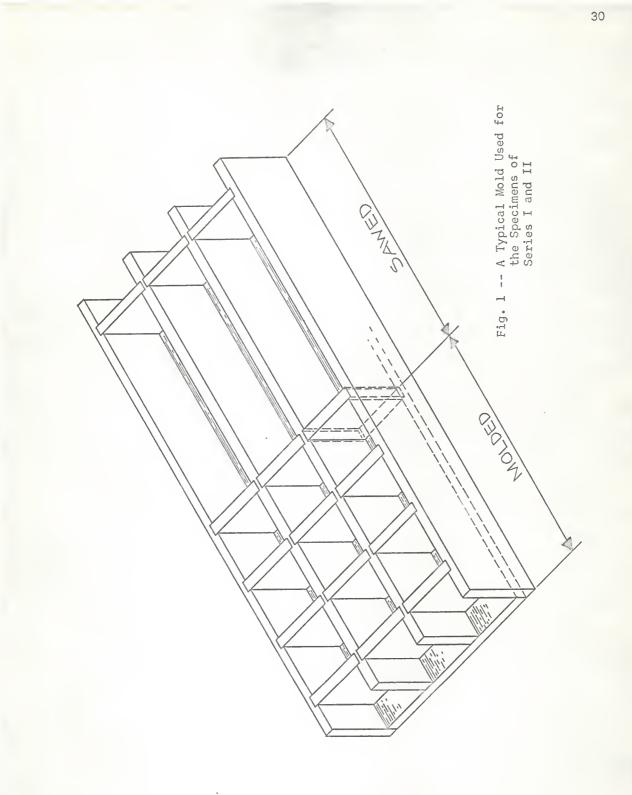
men men	Speci- Length men inches	Breaûth In Inches	Height in inches	Ratio height to least width (1/d)	Area In Square Inches	Load 1n pounds	Stress In pounds per square Inch	Correc- tion factor	Stress correct- ed to 1/d = 2.00	Average stress in pounds por square inch	Stand- ard devia- tion in pounds	Coeff- icient of varia- tion per- cent
(3)	(2)	(3)	(4)	(5)	(9)	(2)	(8)	(6)	(01)	(11)	inch	(13)
			liolded	Four I	en Cube	sLoad	Inc Rat	te 40.00	ded Four Inch CubesLoading Rate 40,000 lb./hln.			
NW NE	3.97	3.98	4.13 4.13	400 	15.76	61,700	3909	0.87	3400 3400	00.10	90	74 0
NS.	4.03	3.98	4.10	1.03	16.04	63,100	393 ^{b.}	0.87	3420	0400 1300 04	02	01.0
200	3.97	4.01	11.03	1.03	15.92	61,400	3857	0.87	3360	NONT I		
			Sallod	Four In	h Cube		Inch Cubes-Loading Rate	10,000	40.000 lb./min.			
NW	4.06 4.08	4.03 4.18	4.02	1.01	16.28	60,700 60,700	3729	0.85 0.85	3170 2990	0.000	ů (r	1
SW	10.4	14.06	4.10	1.02	16.28	58,800	3612	0.86	3110	5040 (BO 114)	CZT	4.14
SE	4.06	4.00	1:-07	1.02	16.24	54.500	3356	0.86	2890	Ret to		

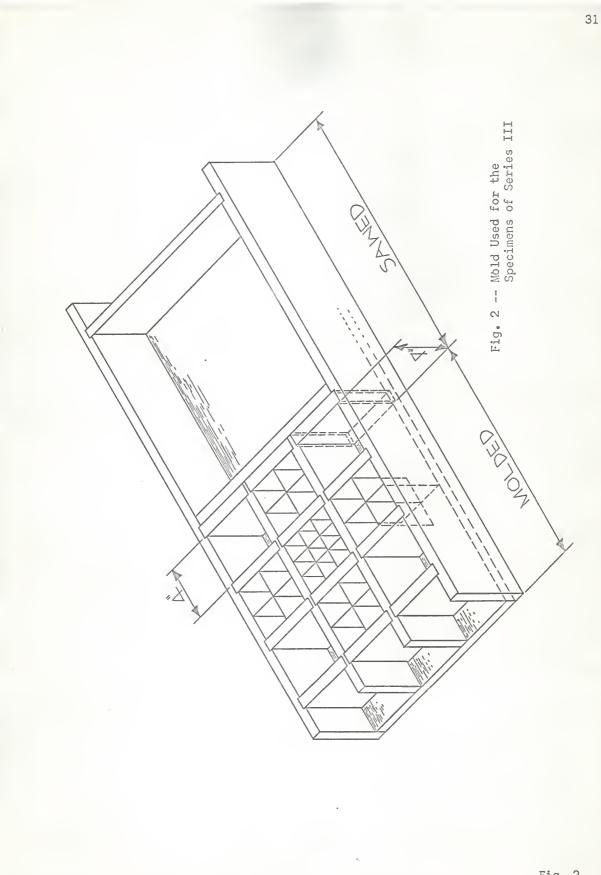
UTW/ OT OO OT	hate	hate	hate		CLOX COLUCITIES SAL TOUCION AN			by 2 by 4 in. Molded FrismsLoading Hate
		ł.		0235	AND SHTDDOR- SHETT I DONTOH .IIT	A TIL MULTUROTSESTIA DODICU . TIL + XC 2	2 by 2 by 4 in. Molded Prisms Loading Rate 10	
		rie	,220 2907 1.	.86 11,220 2907 1.	·12 3.86 11,220 2907 1.	•14 2.12 3.86 11.220 2907 1.	-95 4.14 2.12 3.86 11.220 2907 1.	98 1.95 4.14 2.12 3.86 11.220 2907 1.
			060 2895 1.	-04+ T0-4440 2719 T-	12 3.64 10,4440 2719 1.	14 2.12 3.64 10,440 2719 1.	95 4.14 2.12 3.82 11.060 2895 1.	96 1.95 4.15 2.12 3.64 10,440 2719 1.
	1 10	-	.040 3087 1.	.90 12.040 3087 1.	.09 3.90 12.040 3087 1.	.12 2.09 3.90 12.040 3087 1.	.98 4.12 2.09 3.90 12.040 3087 1.	97 1.98 4.12 2.09 3.90 12.040 3087 1.
3110	55	1.01	660 3021 1.01	•90 12,000 3077 1.01 •86 11,660 3021 1.01	•09 3.90 12.000 3077 1.01 •09 3.86 11.660 3021 1.01	13 2.09 3.90 12,000 3077 1.01 13 2.09 3.86 11,660 3021 1.01	-97 4.13 2.09 3.90 12,000 3077 1.01 -96 4.13 2.09 3.86 11,660 3021 1.01	98 1.97 4.13 2.09 3.90 12,000 3077 1.01 97 1.96 4.13 2.09 3.86 11,660 3021 1.01
3010	1.01 3	•07 3	1.01 3	,820 2985 1.01 3	.96 11,820 2985 1.01 3	•09 3.96 11,820 2985 1.01 3	•13 2.09 3.96 11,820 2985 1.01 3	2.01 4.13 2.09 3.96 11,820 2985 1.01 3
	01	1.01	•680 3170 1.01	•00 12.680 3170 1.01	•07 4.00 12.680 3170 1.01	13 2.07 h.00 12.680 3170 1.01	•00 h•13 2.07 h•00 12.680 3170 1.01	00 2.00 h.13 2.07 h.00 12.680 3170 1.01
	TO	1.01	101 3129 1.01	-88 12,140 3129 1.01	·10 3.88 12,140 3129 1.01	12 2.10 3.88 12,140 3129 1.01	.96 h.12 2.10 3.88 12,140 3129 1.01	98 1.96 4.12 2.10 3.88 12,140 3129 1.01
3040	TO		040 3087 1.01	88 12 040 3087 1.01	-09 3.90 12.040 3087 1.01	-13 2.09 3.90 12.040 3087 1.01	08 1, 13 2.09 3.90 12,040 3087 1.01	98 1.97 4.13 2.09 3.90 12.040 3087 1.01
	TO	TOT	TO T COOP 000"	*00 TT*000 3005 T*0T	TO 3-00 TT-000 3003 TOT	T3 5°T0 3°00 TT 000 TO TO	-98 4-13 2-10 3-86 11.660 3005 1.01	40 T-38 4-13 2-10 3-88 11-860 3003 1-0T
	10	10.1	040 3087 1.01 660 3005 1.01	.90 12,040 3087 1.01 .88 11.660 3005 1.01	-09 3.90 12.040 3087 1.01 -10 3.88 11.660 3005 1.01	13 2.09 3.90 12.040 3087 1.01 13 2.10 3.88 11.660 3005 1.01	-97 h-13 2-09 3-90 12-040 3087 1-01 -98 h-13 2-10 3-88 11-660 3005 1-01	98 1.97 4.13 2.09 3.90 12.040 3087 1.01 96 1.98 4.13 2.10 3.88 11.660 3005 1.01
		deddae e ddae	220 2907 0440 22719 0660 28955 0660 3021 660 3021 11 820 2985 11 140 3129 040 3087 11 140 3129 11 140 3087 11 140 3087 11 140 3087 11 140 3087 11 140 3087 11 12 12 12 12 12 12 12 12 12 12 12 12	86 11,220 2907 87 10,440 2719 82 11,060 2895 90 12,040 3087 90 12,040 3087 96 11,820 2985 96 11,820 3087 98 11,660 3021 90 12,040 3087 91 12,040 3087 90 12,040 3087 12,040 3129 1	12 3.86 11,220 2907 12 3.84 10,440 2719 12 3.82 11,060 2895 09 3.90 12,040 3087 09 3.96 11,660 3087 09 3.96 11,660 3087 09 3.96 11,660 3077 09 3.96 11,660 3077 10 3.98 11,660 3021 10 3.98 12,600 3077 10 3.98 12,600 3077 10 3.98 12,600 3071 10 3.98 12,600 3071	.14 2.12 3.86 11,220 2907 .15 2.12 3.86 11,220 2907 .12 2.12 3.86 11,060 2895 .13 2.09 3.90 12,000 3077 1 .13 2.09 3.96 11,660 3087 1 .13 2.09 3.96 11,660 3087 1 .13 2.09 3.96 11,660 3087 1 .13 2.09 3.96 11,660 3021 1 .13 2.09 3.96 11,660 3087 1 .13 2.09 3.96 11,660 3021 1 .13 2.09 3.96 12,600 3087 1 .13 2.09 3.98 12,040 3087 1	95 h.1h 2.12 3.86 11.220 2907 97 h.1h 2.12 3.86 11.220 2907 97 h.1f 2.12 3.86 11.220 2907 96 h.1f 2.12 3.86 11.660 2895 96 h.13 2.09 3.90 12.000 3077 11. 96 h.13 2.09 3.96 11.660 3087 11. 97 h.13 2.09 3.96 11.660 3021 11. 96 h.13 2.09 3.96 11.820 2985 11. 97 h.13 2.09 3.96 11.820 2985 11. 97 h.13 2.09 3.96 12.660 3021 11. 96 h.13 2.09 3.98 12.140 3129 11. 97 h.13 2.09 3.98 12.140 3087 11.	98 1.95 h.14 2.12 3.86 11.220 2907 97 1.97 h.14 2.12 3.86 11.220 2907 97 1.96 h.15 2.12 3.86 11.960 2897 97 1.96 h.15 2.12 3.86 11.960 2719 97 1.96 h.13 2.09 3.90 12.000 3077 11. 97 1.96 h.13 2.09 3.96 11.660 3087 11. 98 1.97 h.13 2.09 3.96 11.660 3087 11. 98 1.97 h.13 2.09 3.96 11.820 2985 11. 98 1.97 h.13 2.00 3.96 12.60 3087 11. 98 1.96 1.182 2.09 3.98 12.140 3129 11. 98 1.97 3.88 12.140 3087 11. 12.040 3087 11. 98 1.96 3.98 12.140 3087 11.

TABLE VIII (Continued)

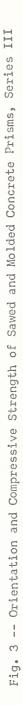
(6)	(0)			(1) (0)	(4) (2) (6) (4)
ing Rate 10,000	adi	fismsLoading	Sawed PrismsLo	4 in. Saved Pri	in. Sawed Pri
eti	058	,660	114 12,660	·0+ 4.14 12,660	·03 2.04 4.14 12,660
	720	260	11,260	•03 4.14 11.260	03 2.03 4.14 11.260
1 1	100	200	94 10,200	09 3.94 10.200	05 2.09 3.94 10.200
100.1 1.001	3059	380		90 11,540 72 11,380	06 3.72 11,540
1.01	2920	0+25*	240	·61 10°540	.08 2.11 3.61 10,540
	500	120	024 11 420	-07 3.74 11.420	·06 2.07 3.74 11.420
10.1	2892	140		05 11 740	00 4.02 11.740
-	96	,560	24 12,560	.95 4.24 12,560	·01 1.95 4.24 12,560
erl.	す	CO1.	CO4. 11 400	.00 3.74 11. 100	·02 2.08 3.74 11.400
rt:	63	250	08 11.550	.05 4.08 11.550	·10 2.05 4.08 11,550
r-1	238	,760	86 10,760	.14 3.86 10,760	•07 2.14 3.86 10,760
	6	220	.08 12,220	.02 4.08 12,220	10 2.02 4.08 12,220
	22	,920	026'0T 20'	.15 3.62 LU,920	•00 2.15 3.62 10,920

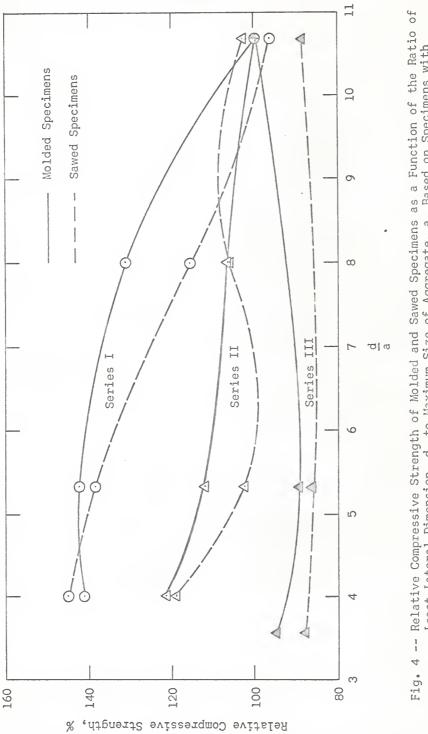
TABLE VIII (Continued)

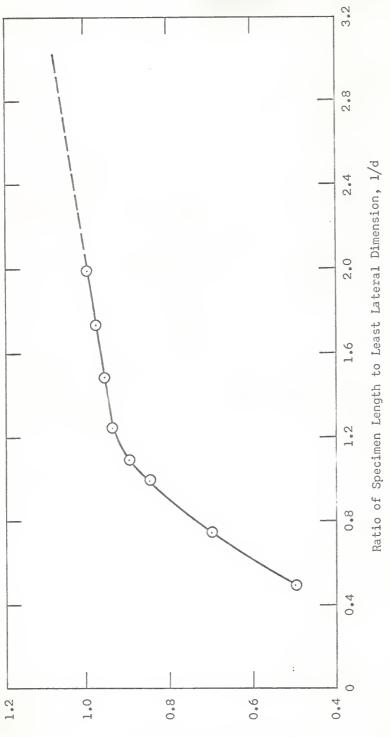

27


TABLE VIII (Continued)

	(3)	(1)	(2)	0	(9	(2)	(6) (8) (2) (9)	(6)	(01)	0	(11)	(21)	(12) (13)
33	by	1.33 by	r 4.00	in.	Molded	Pris	msLoc	1.33 by 1.33 by 4.00 in. Molded PrismsLoading Rate 4500 lb./min.	te 4500	1b./	.ufu		
30	-	t.15			36	358							
	227		200 200 200	1.65		2955a 4805 4975	2912 3090	1.10	3200				
e	60	4.16	3.27	1.69		4970	1462	1.10	3240		3250	133	t+.09
	32	4.15	10 0	1.69		4820	2852	1.10	3140		(%0*66)		
	1•30	11.4	3.24	1.73		5365	TOTE	J.10	3410				
	1.32	4.13	01.2	1.73		1+860	2809	1.10	3090				


		(+)	(2)	(9)	(4)	(8)	111	(01)	(77)	1461	1071
1.33	by.	1.33 by	•ni cc.4 vd		dLoad	SawedLoading Rate 4500 lb./min.	1+500	lb./min.			
	•32	4.07	3.63	1.48	5175	3497	HI.I	3984b			
38		1.10	3.10	1.82	3900	2143	60°T	2340p			
1.37	1.40	t.02	2.97	1.92	5540	2885	1.08	3120	0005	500	6 66
1.4.1 1	8T.	h.06	3.44	1.66	5564	2985	1.12	3340	180 041	102	
	1. TO	4.07	3.30	1.75	1+750	2714	TT.T	3010	100.601		
	1-1-1-		200 100 100 100	1-72	4770	10420 10220		00200 00200 00200			


TABLE VIII (Concluded)



ç	3	2940		0760	0011	C	0.440	A
	5	2920			0770	Ċ	о Т	
3110	3050					3160	3120	led
3010	3200	3140 3200	3410 3400		3090 3240	3040	3180	Molded
	2	3010			3010	-	0	
C	3420	2880		0	3010		00 2360	A
	2	3060		0	2720		06	
	3170	2950			2610		2990	
2990	2990 3090		0720 0722		3040	2860	2890	pe
2950	3080	2710 3120 3984	3050 3340		2840 3010 3040	2960	3080	Sawed
		2960 27			2820			-
	3110	3000			2880		2890	

Strength Correction Factor

Strength Correction Factors From ASTM Designation: C 42 - 49, Standard Methods of Securing, (10) Preparing, and Testing Specimens from Hardened Concrete for Compressive and Flexural Strength ٠ Fig. 5 --

34

Fig. 5

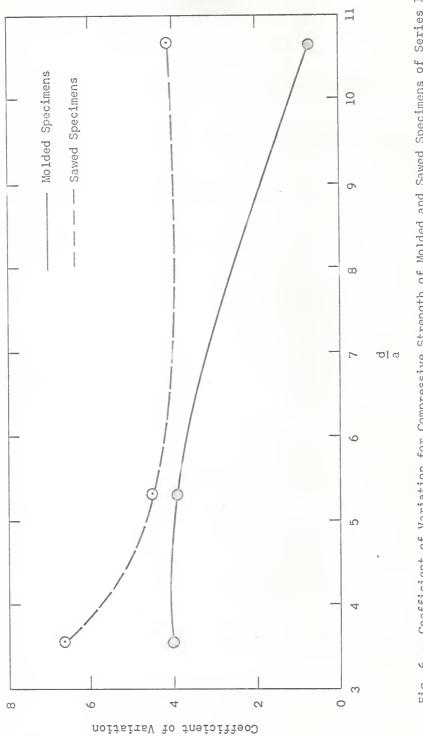


Fig. 6

Size Kind	4-in.	2-in.	1.33-in.	Total Of
(1)	(2)	(3)	(4)	Each Row
Molded	3400 3400 3420 3360	2940 2750 2950 3120 3110 3020 3010 3200 3160 3120	3200 3400 3240 3140 3410 3090	
	<u>13580</u>	3040 3180 3010 2880 3010 48510	19480	81570
Sawed	3170 2990 3110 2890	3060 2720 2950 2610 2990 3090	3040 3120 3340 2710 3050 2840	
	12160	2950 3080 2860 2890 2960 3080 2960 2820 3000 2880 46900	18100	77160
Total Of Each Column	25740	95410	37580	158730

Table IX -- Nested Classification.

RECOMMENDATIONS FOR FUTURE RESEARCH

1. Experimental Design.

Four 4-in. cubes, sixteen 2by 2 by 4-in., nine 1.33 by 1.33 by 4-in. prisms and a slab were cast for series III. The slab was then sawed into various sizes as has been shown in Fig.6. Both unequal numbers and different error variances for the three sizes made a two-way analysis of variance, which would be desireable, difficult to interpret for the strength test data.

It would be desireable to increase the number of specimens for all sizes; however, it may still be desireable to use unequal numbers to gain the same precision for all comparisons. The analysis of variance technique would be complicated by the inhomogeneity of variances which equal numbers for each size would not overcome. Further investigation is needed on the relationship between variance (or coefficient of variation) and diameter to validate the quote from Tucker by Mather.⁽⁷⁾ 2. Mix Design

A more comprehensive study in this field will be to compare the strengths of molded and sawed specimens by varying the concrete mix design variables such as water-cement ratio, cement factor, ratio d/a etc. COMPARISON OF COMPRESSIVE STRENGTHS OF MOLDED AND SAWED CONCRETE SPECIMENS

by

MOHAN SITALDAS JETHWANI

B. S., Kansas State University, 1964

AN ABSTRACT OF MASTER'S THESIS submitted in partial fulfillment of the requirements for the degree MASTER OF SCIENCE Department of Civil Engineering KANSAS STATE UNIVERSITY

MANHATTAN, KANSAS

When standard concrete test cylinders fail to yield the specified 28-day compressive strength, it is the usual practice to test cores or prisms taken from the concrete in place to confirm that results previously obtained were not chance events.

There is only a limited amount of data on the relationship between compressive strengths of cores and molded cylinders in the literature. These data show considerable conflict. Some show that cores are stronger than molded cylinders; others show that they are weaker.

So far there is no generally accepted method of correlating the strengths of cores or sawed prisms and molded specimens. It is, therefore, essential that the relationship between their strengths be established, so that the results can be interpreted correctly.

The work reported here was designed to compare the compressive strengths of sawed and molded concrete prisms that were cast, cured, and tested under similar conditions.

Opportunity also existed to investigate the relationship between the ratio of prism width, d, to maximum size of coarse aggregate, a, and the strength of the test specimen.

The experiment was conducted in three series. For the first two series, three beams, and as many as nine molded cubes were cast for every size. Only one mold was used for series III, and a slab, four 4-in. cubes, sixteen 2 by 2 by 4-in. prisms and nine 1.33 by 1.33 by 4-in. prisms were cast. The beams of series I and II and the slab of series III were sawed into various sizes of cubes and prisms. All the specimens were tested in accordance with ASTM Designation: C 39. The results for series III were corrected to a ratio of length to diameter of 2.00.

All the conclusions have been drawn from the results of series III, as some of the variables inherent in first two series were eliminated in this series.

The results indicate that the 4-in. sawed specimens are significantly weaker than 4-in. molded specimens; the strengths of 2-in. specimens do not differ significantly; and the 1.33-in. sawed specimens have lower strengths at $\approx -.05$ and the strengths of 1.33-in. molded and sawed specimens do not differ significantly at $\approx -.025$; provided, that the concrete mix design remained fixed with cement factor of 5.5 sacks per cu. yd.; the water- cement ratio was 0.53; aggregate gradation was fixed; and, molding and fabricating procedures were held constant.