A Survey of Data Type Specification Methods

by

SHIOWJY FAN

B.S., Fu-Jen Catholic University(Taiwan, R.0.C.), 1979

A MASTER'S REPORT
submitted in partial fulfillment of the
requirements of the degree
MASTER OF SCIENCE
Department of Computer Science

KANSAS STATE URIVERSITY
Manhattan, Kansas

1982

Approved by:

Bnlg bt

Major Professor

SFEC

11200 1884L9 i

ACKEOWLEDGEHMENTS

I wish to express my sincere thanks to my advisor, Dr. David
A. Schmidt, for his valuable help, guidance, and
suggestions. Thanks are also given to the other members of
my committee, Dr. Paul S. Fisher and Dr. Rodney M. Bates.

1.0 Introduction .

2.0 What is a data type .

2.1 Approaches to define a type . .

2.2 Examples of the approaches to data type
definition

2.2.1 Syntactic . .

2.2.2 Value space .

2.2.3 Behavior .

-

2.2.4 Representation .

2.2.5 Representation plus behavior

3.0 Constructs for defining data types . .

3.1 Existing methods for defining data

3.2

definition .

3 3

- L]

of data type definition

3.4
3.5
3.6
3.7
3.8

4.0 Conclusion .

Type recursion .

Exception handling .

Constructs for type conversion

Representation plus behavior foras

-

types

Parameterization (generic procedures)

Representation approaches to data type

-

Behavior approach to data type defimnition .

10
10
11
13
15
16

21

21

23

30
49
57
59
61
€2

66

References

1.
12.
13
14.

15.

LIST OF FIGURES
Two examples for records « « « « « « « «

Example of Concurrent Pascal to define
adata tYpPe .« o « ¢ ¢ « o = s s e = = =

Example of Simula to define a data type .
Mesa's definition and program modules . .
Example of Alphard to define a data type
Example of CLU to define a data type . -
Example of Euclid to define a data type .
Example of Model to define a data type .
Example of Scheme to define a data type .

Example of algebric specification to
define a data tyYPe =« o = « « o o = =+ o o

Example of OBJ to define a data type .
Example of algebraic theory defimition .
Exanple of type conversion« .
Example of restriction specification . .

Example of error algebras . . . « « . « .

-

25

32

34
3€
38
41
43
u5

48

50
52
5¢€
€1
64
€5

CHAPTER I

INTRODUCTION

Most all programming languages provide constructs for
structuring the control flow of algorithas, but few
languages provide the capability for the users to define
their own data types, which can make the program shorter and
easier to understand. In particular, we are concerned with
using the representation information, or something in

connect ion with representation, in a nonintended way.

The key concept in this form of data type specification
is abstraction (26). Abstraction provides a mechanisnm for
separating those attributes of an object or event that are
relevant in a given context from those that are not.
Abstraction serves to reduce the amount of detail that must
be comprehended at any one time. One of the most significant
aids to abstraction in programming is the self-contained
subroutine (27). When one decides to invoke a subroutine,
it can be treated as a 'black box', the details of its
representation unimportant (and hidden) from its wuser. It

is the same idea that we wish to examine in data type

definition and use.

Since abstract data types are useful to programmers,
there are many computer scientists who are trying to extend
existing languages or design new languages in which
programmers can define their own data types. One view (35)
of the basic regquirements for abstract data types in

programming languages is:

1. access to am abstract data type is allowed only
through the operator set for the data type.

2. language constructs in the base 1language should be
extendable to abstract data types.

3. definitions of the abstract data types should allow
for formal parameters in their definitions.
Invocations through declarations of abstract data
types should allow for corresponding actual
parameters.

4. the definition of an abstract data type should be
implemented by the compiler as a truly nev data type.

5. operations on abstract data types should be

implemented efficiently.

These ideas are held by many researchers im the area, and ve
vill see these five concepts realized agaim and again in the

examples to follow.

5

This report is structured in four parts. The first part
is this introduction. Chapter 2 contains the five different
approaches to data type definitions. Chapter 3 reviews three
different methods used for coanstruct data type defimitions
and gives examples to explain the construction. TIype
recursion, constructs for type conversion, parameterization,
and exception handling are discussed in this chapter too.

Some conclusions and future trends are given in chapter 4.

CHAPTER II

WHAT IS A DATA TYPE

Different people have different concepts about data
types, so many definitions of data types are distinctive.
With two ways, we can specify the semantics of abstract data
type. One is operational specification. It begins with some
well-understood language or discipline and builds a model
for the type in terms of that discipline. The other is
definitional, axiomatic, or algebraic specification, which
includes two parts. The first part is a syntactic
specification, which provides the syntactic information that
many programming languages already require: names of
operators and the domains and ranje of the operation
associated with them. The second part gives a 1list of
relations which define the meanings of the operations by

stating their relationship to one another.

First, ve state five different approaches to defining a
data type, and then we use the approaches to organize the

different definitionms.

2.1 Approaches to define a type

Generally, there are five approaches to define a data

type (47 :

1.

Syntactic: A data type is described by the information
that one gives about a variable in a declaration, such
as VARIABLE X IS *%x%x, The k¥ represents
implementation-oriented attributes, such as number and
size of storage cells, methods of allocation and
deallocation. Sometimes built-in names associated
with specific attribute sets are used.

Value space: A type is defined by a set of possible
semantic values. For example, the set of integers is
a value space and thus a data type. Given some
existing types, set-theoretic union, cartesian
products, etc., can be used to form new types.
Behavior: A type is defined by a value space and a set
of operations on elements of the space. This is an
extension of 2, and is the widely accepted semantic
definition of data type. PFor example, the value space
of integers has the operations addition, subtraction,
etc.

Representation: A type is determined by the way that
it has been represented in terms of more primitive

computer-oriented types. Pascal's INTEGER is an

10
example. Hardware (or compilers) must have implemented
these primitive types. In this way, the definition of
conplex types can be understood in terms of computer
implementation.

5. Representation plus behavior: A type is determined by
a representation plus the set of operators that define
its behavior; these operators are defined in terms of

a set of procedures operating on the representation.

2.2 Examples of the approaches to data type definition

The following sections introduce the various research

ideas which support the different approaches of data type

definition.

2.2.1 Syntactic

PL/I and FORTRAN are standard programming languages which
approach the data types as tsyntactic'; type is the
definition that one gives about a variable in a declaration.

In PL/1, we can define:

DCL. SEMESTER DECIMAL FIXED (1) STATIC REAL;

DCL FLDA BINARY FIXED (3,2) EXTERNAL;

In the declaration, we (should) give all the information

11
that machine needs for allocation. Often default attributes
are applied when some of this information is omitted.

In Fortran, we can define:

INTEGER*2 JACK,BILL

REAL*8 B,DSQRT

In this declaration, we define storage size in bytes for the
variables (*8 means 8 Bytes for allocation) to control
actual allocation. These two languages emphasize the use of
machine based information. The types defined by them are

concrete, not abstract at all.

2.2.2 Value space

Hoare (31) defines data types as a value space, that is
a type is defined by a set of possible values. Some axiosms

of this version of type are:

1. A type determines the class of values which may be
assumed by a variable or expression.

2. Every value belongs to one and only one type.

3. The type of a value denoted by any constant, variable,
or expression may be deduced from its form or context,
without any knowledge of its value as computed at ran

time.

12

4. Each operator expects operands of some fixed type, and
delivers a result of some fixed type (usually the
same) .

5. The properties of the values of a type and of the
primitive operations defined over them are specified
by means of a set of axioms.

€. Type information is used im a high-level language both
to prevent or detect meaningless comnstructions in a
program and to determine the method of representing

and manipulating data on a computer.

As nmentioned earlier, based on sets of primitive value
spaces we can define compound value spaces using the set-
theoretic operations of union, discriminated union, powerset
construction, cartesian product, and function space.

Some examples are:

Cartesian Products:
comnplex = real * real
Discriminated Union:

exceptions = Parity-faultylelpty manual

Powerset:

type primary-color = (red,yellow,blue)

type color = powerset of primary-color

By first definition, each value of the type complex is a

13
structure with exactly two components. The first compoment
is real and second component is also real-- in other words,
an ordered pair of reals. The second defirition states that
type exception consists of exactly three values with the
names indicated and that every exception variable has one of
these three values. In the third example, we can get the

different mixed colors from the primary-color,

2.2.3 Behavior

In the behavior approach, a type is defined by a value
space and a set of operations on elements of that space.
This format is neatly su pported by the algebraic
specification and algebraic theory specification. These
representation forms usually consist of two parts:
'interface specification' and ‘behavioral specification'.
Interface specification consists of the name of the type,
and the names and types of the associated operations.
Behavioral specifications use the ‘'axiomatic specification®
and 'abstract model approach®. A convenient way of
syntactically describing the semantic propertities of a data
type algebra is by using an axiomatization (equation
specification). The idea is similiar to the use of a first
order theory in mathematical logic to describe the inherent
propertities of a model. (15)

Axiomatic specifications define the behavior of an

14
abstract data type by giving axioms describing the results
of applying operations to arguments. A simple example of

axiomatic descriptien of stack operations is:

pop(push(a,s)) = s

enpty? (push(a, s)) false

empty? {nullstack) true

However, a valid criticism of the approach is that only
properties of the operations are described the operations
themselves are left undefined. In the abstract model
approach, the objects of the data type are represented in
terms of other data abstractions with known properties
established by formal (probably axiomatic) specifications
given in advance. These ‘other abstractions' form a
programming language for data type definition. A good
example of this method is using Scott's LAMBDA to define the

denotational semantics of a data type (54).

A more powerful method for converting semantic properties
is through +theory representation (8); a signature together
with a set of egquations using the operators of the signature
and respecting their input and output sorts is used. The
signature is a set of sort names (names of semantic data
sets) and a set of operator symbols, each with a given

sequence of sorts for its arguments and a sequence of sorts

15

for its results.

In both the axiomatic and theory forms of representation,
universal algebra (24) is applied to determine that the
model represented by the specification is the initial
algebra (23) of the class of algebras satisfying the

specification.

2.2.4 Representation

When using the representation format, a type is
determined by the way that it has been represented in terms
of more primitive types. This approach is supported by
Pascal-like languages, such as PASCAL, and ALGOL 68. For

example PASCAL (25) has several notable kinds of data types:

1. the scalar data type:

an ordered set of values, such as

scalar = (red,yellow,blue,green)

2. the subrange type:

a subrange of any scalar type such as

digits = 1..9

Yg = yellow..green
3. the record type:

a structure comnsisting of a fixed number of

components, possibly of differeant types:

16
complex = rscord
rpart: integer
ipart: integer

end;

2.2.5 Represeatation plus behavior

A type is determined by a representation plus the set of
operators that define its behavior. Most newly developed
programming languages support this definition. The idea
originally stems from SIEOLA (1), and most of the versions

follow a similar syntax:

type <identifier> =
<definition of structures used internally
to hold data >
<subroutine-like definition for operation 1>

- mesesd a8 e

<subroutine-like definition for operation n >
end type

Most of the definitions of this form of data type (8, 10,
26, 27, 28, 30, 40, 42, 53) use a representation-independent
specification and a set of values and a set of operators:
together they introduce a new typ of data object that is
deemed useful in the domain of the problem being solved. At
the level of use, the programmer is concerned with the

behavior of these data objects, what kinds of information

17
can be stored in *hem and obtained from them. The prograamer
is not concerned with how the data objects are represented
in storage nor with the algorithms used to store and access
information in them. The programming languages, such as CLU,
ALPHARD, EUCLID, MODEL, etc., support the approach of
defining data type as representation plus behavior.
Concurrent Pascal and Simula €7 call this structure a class, .
but many other names are used as well-- those will be

explored in the next chapter.

Since this format is so widely used, we have a wide
number of opinions about its exact purpose. Flon (17)
describes that data type is amn arbitrarily complex form
which characterizes a certain kind of behavior. Type
definition is a representation for objects of the type and
the representation is known only to the definition itself.
(It is an algorithmic specification, the means by which that

behavior is accomplished.)

Parnas (47) describes types as classes of modes. Each
mode defines a simple class of variables such that variables
with the same type can be substituted for each other im any
context and not cause a compile-time error. 1A language

should allow programmers to define types as below:

1.

18
Specification-type (spec-type): a type coansisting of
modes with identical extermally visible behavior. For
any mode defined by a representation and a set of
permissible operators, one can describe the
characteristics of this mode by using the operators
provided. When a group of modes all have the same
characteristics with respect to these operators, this
group constitutes a spec-type. Modes having the same
spec-type can share operations originally defined for
the specific modes in the spec-type. Algol €8 has this

feature:

mode i = integer

var a:i; b:integer;

In this example, we can assign the value of b to a.
But this feature is not allowed in Pascal.
Representation-type (rep-type): a type comsisting of a
collection of modes with identical machine
representations. A user declares a rep-type as a
group of modes that have the same representation and
to define a set of operations omn variables of that
type in terms of the representation.

We see in PL/1:

19
dcl nine bit (9):

dcl nine binary fixed (9,0);

These two variables in the example have the same rep-
type.

Parameterized type (parm-type): a type consisting of
modes tﬁat are invocations of parameterized mode
description. Based on earlier defined ' mode-builder'
descriptions in vhich key information has been
abstracted as parameters, specific 'actual parameter®
modes are supplied to form an invocation and produce a
pare-type. This type should allow the user to declare
as members of the same type, mRodes that can be
generated by assigning values to the parameters of a
mode description. For example, programmers can convert
JIHNIEGER ARRAY { m:n3) to a mode-builder TYP ARRAY [m:n),
where TYP is the abstract mode.

Variant-types: a type consisting of modes with some
common properties. This type allows programmers to
exploit the same properties in different modes which
do not have identical specification, such as when the
programmer wants to extract the same attribute from
the different record structures imn the data base.
This abstract data types should allow the programmers
to define the type includes the 11l needed attributes.

This type is also defined by a specification, and the

20
operators specified to be common to all variables of
the wmode must be implemented for the new type in

accordance with those specifications.

21

CHAPTER III

CONSTRUCTS FOR DEFINING DATA TYPES

In this chapter we consider the available formats for
defining new data types. R large number of examples are
provided. Each one has its own format for definition, and

among similar methods are different mechanisas.

3.1 Existing methods for defining data types

In general, there are three methods used by computer
scientists to define data types(40). One is in extensible
languages, in which an existing 1language contains a
construct for extending its features in order to define a
new data type. This method is defining representations
rather than abstract data types, and it is impossible to
define all the operations characterizing an abstract data
type. This method uses the representation approach to type

definition.

The second approach is Simula-like. Inside the class,
there are subroutines to define the operations of this new

data type. Every attribute and function in a <class is

22
accessible in the block in which the class definition is
embedded. Therefore the actual form of the representation is
alwvays knowr to the user but can mnot be changed from

outside.

The final approach uses standard abstract operations
which define a set of abstract operators to create, access,
modify and destroy abstract data collections. 1A data
collection is a map from a set of selectors to a set of
values, and that operations on data collections are either
transformations on the map or use the map to access
elements. OBJ and CLEAR are languages which use this method

to express and execute algebraic specifications of programs.

Each language (58) has a different emphasis in its
constructs for defining data +types. Details of the basic
notion of type, objects vs. variable model, identification
with encapsulation instance, separation of specification and
implementation, the role of gemerics and parameterization,
closed vs. open scopes, generic instantiation, concurreancy,
mapping to/from the underlying representation of a type,
etc., form a number of variations. The following sections
discuss three methods for defining data types and their
supporting languages or theories. The later part of this
chapter will discuss type recursion, comstructs for type

conversion, parameterization and exception handling.

23

3.2 Representation approaches to data type definition

A Pascal-like language is a standard example using data
structures to defime a new data type. A language 1like
Pascal normally has a small number of built-in primitive
types. These can be scalar types, such as INTEGER and
BOOLEAN, or nonscalar, such as REAL. The methods (31) for
constructing new data types are:

1. arrays: A mapping from any finite scalar type to any
type at all. An example is declare A: arraycr n..m) of
integer; in Pascal the bounds are both fixed and part
of the type, but scalar types are allowed as
subscripts as well as integers. For example, var A:

==

array ([color) of integer is legal. 1If we have:
suit = (clubs,diamonds,hearts,spades) ;
card = record s:suit; value=1..13 end;
yar c:card
We can use these two notations (25):
(1) for<variable> in ordered <ordered set of values>
do s

{2) for <variable> in unordered <set of values> do s

to manipulate the iteration of FQR 1loops. From the

2%

above declarations, we can write:

for c.value in ordered 1..13 do
for c.s ip ordered suit do
for c ip unordered card do s
does not care about the order in which
values from card are used)

-

2. records: A record is a structure consisting of a

fixed number of compoments, called fields. Records
are used to group values of potentially differing

types:

declare r : record (f1:t1,f2:t2,....fn:tn);

Where f1,£2,..fn are variables and tt1,t2,...tn are
types. The figure 1 contains the example of record inm
PASCAL and ALSO0L €8 to define the variant fields of

male and female.

3-

25

— - — — -

PASCAL:

type person = record
name: string;
age: integer;
case seX: (male,female) of
male: (height ,weight: integer);
female: (size: arrayr 1..3)of integer);
end
end;

ALGOL 68:
mode male = gtruct (int height, weight);
mode female = struct ([1..3] int size) ;
mode sex = union(male,female);
mode person = struct(string name,int age,sex s);

Figure 1. Two examples for records

Enumeration types: A new data type is formed by
exhibiting the set of constants vwhich comprise its

value. For example:

type color = (red,yellow,blue,green) end;

In order to define a new enumeration type (16)
consistent with the rest of the language, we must
specify the set of constants of that type and the
associated primitive operators. In PASCAL, we can use

pred, succ, etc. in enumeration type. Using above

26
example, pred(blue) is yellow, succ(blue) is green,

and pred(blue) = succ(red).

Pointers: A reference value is a ‘'pointer! to an
object, with the restriction (in Pascal) that
reference variables can only reference objects of a

single type:

declare c: ref integer;

C«—newW integer; free c;

New allocates a new cell for integer, and free

deallocates the cell where ¢ points to.

Procedures: When treating procedure as a data type,
one can do some arithmetic operations in the body and
return a value from the <function (as in PASCAL).
Programmers can often overload the new data type with

(25) 2

(1) operator overloading: Assume data type conmplex is

a record containing two reals:

function + (x,y:complex) :complex;
hegip result.rpart:= x.rpart + y.rpart;
result.ipart:= x.ipart + y.ipart;
end

6.

27
Now + denotes both real and complex arithmetic

operations.

(2) procedure and function overloading: The returned

type of a function can be one of a set of parameter

types.

functiop sum (azarray of T,

n: integer):T;

;

i: integer; s: T;

:
.5.

s:= 0;

i

3

= 1 to n do s:= s+alil];

sum = S

4

Assuming T to be a data type which can change from
call to call, wvwe can use functiomn sum to total
arrays of type complex or real.

(3) Defining subtypes: Subroutines can be used to

output subtypes of an existing type:

function subtype(x:real) :complex;

subtype := complex(x,0);

We get the type of complex from real.

Files: These are understood inm the usuwal COBOL or

28

Pascal sense.

7. Sets: Sets are unordered compoand objects, similiar
in spirit to their mathematical counterparts. Of
course, sets can contain members from ordered types,
but the types are usually restricted to be scalars.

For example:

type primary = (red,yellow,blue) ;
type color = set of primary;

8. Subrange: Given a primitive type, it is possible to
define a type to be a subrange of the other type. For

example:

type digit= 0..9;
type highfrequencecolor = red..yellow;

Subranges of nonscalar and compound types are rarely

found.

Gries(25) describes two notions that can be used in
Pascal-like languages. The first one 1is array-like. An
array object is declared with an index set (subscript
values) , and the set of legal subscript values is a data

type. One should be able to declare variables of that type.

29

For example:

¥ar a: array C1..n] of integer;

yar i: domain(a); s:integer;

n

= 0;

h

or i in unordered domain(a) do s:= s+ ali)

handles the summing of array a.

If we define:

var suit = (club,diamonds, hearts,spades);

var ¢ = array (1..10,1..10,suit] of ...;

vyar k : domain (c);

yvar 1 :1..10;

vyar m : record compl1:1..10;comp2:1..10 end;
yar n : suit;

then cLkl,crli,l,spades),cfm,n\are all legal expressions.
The second notion generalizes procedures; the type of a
formal parameter of a procedure can depend on a particular

call of that procedure. For examples

(1) procedure x (var a:<z>)je..

(2) procedure x (¥ar a:array> .of <z>);....

(3) procedure x (var a: array“"” of integer);....

{(4) procedure x (var m: record cl:integer;c2:<z> end);
yYar n: <z>j..ce.

30
<> indicates the type will depend on the actual parameters
of call. Z stands for a type and n is an integer. With this
feature, we can define one procedure to handle variously-

typed arguments. For example:

procedure swap (¥ar a,b :<t>);

The example above is able to exchange values of tvwo
variables, regardless what the type of the formal parameters

are.

3.3 Representation plus behavior forms of data type

definition

Simola (1) and Concurrent Pascal (7) are the standard
examples of representation plus behavior method to define

new data types. They use the class construct to define new

data types. A class contains an internal data structure plus
subroutines defining operations on the structure.
Programeers can only access a class through the declared
procedures, and have no other names of accessing the class

internal structure.

Concurrent Pascal (7) is an extemsion of Pascal, having

31
features to define new data types and to perform Parallel
processing. The classes are used to define new data types.
The structure of a class is somewhat similar to a small
Pascal program. Operations camn only be accessed through the
procedure entries and the local variables of the class can
not be accessed by outside. Fiqure 2 contains the example

of Concurrent Pascal to define FIFO as a new data type.

32

type fifo = class (n:integer);
yar inp, oup,ct: integer;

function entry empty:boolean;
begin empty:= ct=0 end;

function entry full:boolean;
begin full:= ct=n end;

function entry arrival:integer;
begin arrival:= inp;
inp:= (inp +1) mod n;
ct:z:= succ(ct) ;
end;

function entry departure:integer;
begin departure:= out;
out:= (out +1) mod n;
ct:= pred|(ct)
end;
function entry count:integer;
begin count:= ct end;

procedure initial;
begin inp := 0;
out z= 0
ct = 0;

end

begin initial end:

Figure 2. Example of Concurrent Pascal to define a data type

The operations of FIFO are function eatries, such as
emapty, full, and departure. These operations defined by
function (procedure) entries are accessible by external
processes. Local procedures without entry, such as procedure

initial, can not be accessed by the outside environment.

33

Simula (1) is an other languaje which uses data

structures and subroutines to define data types. Simola is

based

on Algol 60 ; the basic concepts are extended in

Simula by:

1.

concatenation: propertities of two or more classes may
be fused together, minimizing textual description. In
general, if C1,C2,...Cn are classes such that C1 has
no prefix and Ck has the prefix Ck-1 (k= 2,3,...n)
then the suffix k is said to be the prefix level of
Ck. Cp is a sub-class of Cq if p>g. An object of a
class has a main part (the class declared at the
highest prefix level) and a prefix part (the remainder
of the chain). A statement at prefix 1level k has
direct access to all the attributes declared at the
prefix levels equal to or less tham k, except those
hidden by conflicting definitions. A statement at
prefix 1level k has access to attributes at higher
level only through the virtual mechanism.

extended binding rule: the binding rules of Algol are
extended enabling a semantic redefinition of
quantities valid at all levels in concatenated objects
by the virtual concept. Connection statements allovw
the temporary shifting of an enviroament.

block prefixing: classes may be used to prefix progranm

blocks, thus providing an environment in which to

34

operate. The occurrences of a class name in a prefix
makes all the attributes of that class accessible
within the prefixed class. When an attribute wants to
reference a variable, which is at the higher prefix
level. ¥We can use gua mechanism to get the
qualification of a reference variable and have the

coepile time checks it is valid or not.

The example of Simula's class is illustrated in figure 3.

- —————— . —————— -

class matrix;
begin class rectangular(a,m,n) j-...;
class column{a,B)seeces.;
class row(a,m) ;real array a;integer m;

virtual: real procedure norm;
begin real t; integer i
for i=1 step 1 until m do
t 3= t+atriyt2;
norm := sqri(t)
end of nornm;

procedure normalise;
begin real t; integer i;
t := norm;
if t # 0 then
begin t := 1.0/t;
for i := 1 step 1 until = do
agiy = t¥ari)
end

———

end of normalise;

end of row;

EE I B N]

end of matrix

Figure 3. Example of Simula to define a data type

35
In this example, class rectangular, column, rov are defined
local to class matrix. The procedure norm is yvirtmal, so it
can be redefined by the sub-class of class row and can have
external compilation. This sub-class can have all the
variables and procedures of class row plus those procedures
and variables declared in this sub-class. We can redefine

the body of procedure norm:

begin external class matrix;
matrix begim row class rowl;

begin real procedure norm;
begin integer i; real t;
t := t + abs(ari})):
norm := t
end of norm;

end of prefixed block

Row1 is a sub-class of row. After this redefinition of
procedure norm, rowl will get a different value of norm from
the other rows. This provides a feature for the user to
redefine certain segments. Through the <class structare,

programmers can have more protection in the data processing.

Mesa (21) expands on the class concept; it uses modules
to provide a capability for partitioning a large system into
manageable units. The modules can be used to encapsulate
abstractions and to provide a degree of protection. The

language includes definition module and program module

constructs., Definition modules

abstraction, and program
provide the concrete
Figure 4 gives

and implement a data type.

implementation of

36

define the interface to an
modules, called implementers,
an abstraction.

an example of how the two comsructs specify

— - ——— — T T — — —

Abstraction DEFINITIONS

—— — —— —

BEGINa«..
Lt:TYIPE = ceal TEETYPE = cvceless
P: PROCEDURE ;

P1: PROCEDURE INTEGER

Pi = PROCEDURE [it JRETURNSCTtY;
END

Ieplementer: PROGRAM IMPLEMENTING Abstraction

BEGIN

OPEN Abstraction:

I :INTEGER; ...

P: PUBLIC PROCEDURE = <co

-

de for p>;

P1: PUBLIC PROCEDURE = <code for p1>;

- 58 30 o

Pi: PUBLIC PROCEDURE[x:it) RETURNSLy:rt]l=

<code for pi>;

EWD

FPigure 4. Mesa's definitiom and program modules

There are two kinds of special

a private variable, visible omn

is declared and in any module

module. The other is a public

variables in Mesa. One is

ly in the module in which it
claiming to implement that

variable, which is visible in

37
any module that includes and opens the module in which it is
declared. These specifications of attributes can be used to
control intermodular access to identifiers. In figure 4,
Abstraction contains definitions of shared types and
enumerates the elements of a procedure interface.
Implementer uses those type definitions and provides the
bodies of the procedures; the compiler will check that an
actual procedure with the same name and type is supplied for
each public procedure declared in Abstraction. The Mesa

modules are also used in ADA (32).

Alphard uses a 'form' to define a new data type. The
generator construct is a special form which performs a
sequence of bindings to the control variable of a loop in
Alphard {52). 1t gives a convenient mechanism for
constructing for loops operating on mnew types. The basic

form to define a new data type is:

form istack (n:integer)=
beginform
specifications......;
representationS.cc.ca;:
implementations......;

endform

Inside a form definition, programmers can provide

38

verification information, suchk as pre and post 1logical

assertions. The example of form definition is illustrated
figure 5. This example defines the data type 'upto' as

intervall 1b..ubl for use in looping.

form upto(lb,ub:integer) extends k:integer=
beginform

specification

requires true;

inherits <allbute«>;

let upto = [lb..ub] where lb<ub< upto =

[1b..k-1]lk]lk+1..ub];

invariant true;

initially true;

function
€init (u:zupto) returns b:boolean

post (bslb%ub) A (bolb=k<ub) ;

tnext (u:upto) returns b:boolean

pre lb<¢k£ub
post (bz=k'42ub) A (b2>k=k'+1 A lb4k<ub);
representation
rep(k) = if lbscub ther (lb..k+1JklUk+1..ub]
else n;
invariant true;
implementation

body £imit out (bz1lb2ub)a (ba1lb=k<ub)=
(ad.kcu.lbibcu.lbzu.ub);
body &next in(lb<ktub)out (bzk'Zub)
A (bok=k'+1 A 1btk<ub) =
(u.kcu.k+1; bcu.k<u.ub);
endform

Figure 5. Example of Alphard to define a data type

{k'* denotes the value of k upon entry to &next)

in

an

39

The phrase <all but«> means that all integer functions
except & are applicable to the upto. This abstract
specifications describe an ‘'upto' as an interval [1lb..ub].
Function £init gives the initial value and function &next
gives the next value of the current counter. Pre and post
assertions guarantee the conditions before and after the
statements are true. The rep function in representation
shows how an interval is represented by its two endpoints
and the loop variables. Body &init and body &next perform
the actual implementation. In and out must match pre and

post assertions, respectively.

Another lanqguage widely studied for its structuring ideas
is CLU (42). The basic elements in CLU are objects, which
have a particular type, and variables, the name used in a

program to refer to objects. The two types of objects are:

1. mutable objects: may exhibit time-varging bebhavior,
may be modified by certain operators without changing
the identity of the object. A record is an example.

2. immutable objects: do not exhibit time-varying
behavior, such as booleans, integers, characters, and

strings.

A cluster (36) is used to define a new data type in CLU;

it has:

40
1. object representation of form:
rep f{(<rep-parameter>)} = <type-defimnition>
where rep is accessable only with +the cluster. The
braces {} make it possible to delay specifying some
aspects of the <type definition> until an instance of
the rep is created.
2. object creation: use 'create' to get the initial state
of cluster.
3. operation: are always specified as part of a cluster.

Operations always have at least one parameter.... of

type rep.

An example which defimes stack as an abstract data type is

illustrated in figure 6.

——— i ——————— ————— — ——————— —————

stack: cluster (element-type:type)
is push, pop, top, erasetop, empty;

41

rep (type-parm:type) = (tp:integer;
e-type:type;
stk:array £ 1..] of type-pare);
create
s:rep(element-type);
s.tp = 0;
s.e-type:= element-type;
return s ;
end

push: operation(s:rep,v:s.e-type);
S.tp := s.tp+1l;
s.stkls. tp) := v;

return;
end

pop: operation (s:rep) returns s.e-type;
if s.tp=0 then error;
s.tp := s.tp-1;
return s.stkis.tp+1};
end

top: operation (s:rep) returms s.e-type;
if s.tp=0 then error;
return s.stk(s.tp):;
end

erasetop: operation (s:rep):
if s.tp=0 then errors;
s.tp := s.tp-1 ;
Ireturp;
end

expty: operation (s:rep) returns boolean;
return s.tp=0 ;
end

end stack

Figure 6. Example of Clu to define a data

type

82

Stack is defined by the operations of push, pop, top,
etc. Create sets the initial state of stack. Rep specifies
the elements of stack. Each operation is specified to
operate the items defined by rep. In this example, the
value which the stack performs is depended on the type of

the actual parameters. The maximum size of this stack has

not been defined.

New data types special to EUCLID (3) are defined as
*modules'. A feature special to Buclid is the exports class,
which provides communication between module and outside
environment. A programmer may use the reserved vord
parameter to indicate elements which already have been

declared. Figure 7 contains the example of Euclid's module

to define new data types.

43

type stack = nle

exports (stk, pop, push)

type stk (stacksize:unsignedint) Iecord
var stackptr:0..stacksize := 0
yar body:array(t..stacksizelof signedint

end stk
procedure push (var istk:stk(paramster),
¥ar x:signedint) =
begin

procedure overflow = ...end overflow
if istk.stackptr = istkstacksize then
overflow

glse
istk.stackptr := istk.stackptr+1
istk.body (istk.stackptr) := x
end if
end push

procedure pop (var istk:stk (parameter),
var x:signedint) =
begin |
procedure underflow =end underflow
if istk.stackptr = 0 then
underflow
else
X:= istk.body(istk.stackptr)
istk.stackptr := istk.stackptr-1
end if

end pop
end stack

Figure 7. Example of Euclid to define a data type

This stack example defines the operations of pop and
push. Stk is used to define the elements that +this stack
has. After stk's definition, we can use reserved word

parameter to indicate the elements of stk. Stackptr is

b4
initiated to be 2zero in the begianing. This stack can only
store values of signed integer. Operation push has internal
procedure overflow, and operation pop has internal procedure

underflovw to handle the error conditions.

A 'space' is the basic form in Model (35) to defimne data
types. In Model, access to the representation of a new data
type is restricted to the operations and procedures declared
in the form. This can guarantee that the operations defined
for the space are not subverted. The example is given in

figure 8.

space intset {r} def concrset;

type concrset is record {size:sizerng;
iset:array r,arraybnd }

iype sizerng is [0...nbod r - lbnd r +1);

type arraybnd is (1...ubpd r - lbnd r +13;

type srchbnd is (1...0bnd r - lbnd r +21;

insert is <<
formal inset {r} a (varies); r i moresult;
$ add element i to set a
if not i in a then
sa.size :=%a.size +1:
ga.iset(wna.size)y := 1 ;

£i;
>3

has is <<
formal r i ; inset {r} a (varies) result boolean:
$ set membership predicate
srchbnd j;
boolean res;
res := false; j := 1 ;
repeat while j <=%a.size and not res do
if wa.size(jy = i then res := true fi;

J 3= 3+
od:
return res
>>;
dn def <<

formal r i ; intset {r} a result hoolean;
return has (i,a)
>>:

opunion is <<
formal intset {r} a (copied), b (copied)
result intset {r};
$union
r k;
intset {r} res;
if empty(a) them res := b
else
k = select(a);
res := opunion(a-k,b+k};
i
return res
>>;

Figure 8. Example of Model to define a data type

e
This example is part of definition for showing the
structure. ‘'intset {r}' represents an abstract data type
'set of integers'. The identifier r represents a formal
parameter which will take on a data +type 'value' vwhere
intset is used ia a declaration. For a declaration such as
intset{ 1...100 } a ;
the formal parameter r takes on the actual parameter valoe
"1...100'. ‘'Concrset' is the shorthand notation for the
concrete representation of an ‘'intset'. This representation
involves a 'record' of two items, a 'size' representing the
nunber of elements in the set and an 'iset' representing the
actual elements of the set as an array of integers. The
notation ¢ p...g)indicates the lower-bound is p and the
upper-bound is gq. The operator '% ' appearing in the
expression ta.size is termed a ‘'concretion! operator. The
operation followed by 'is', is defined as local to the space
definition. The operation followed by 'def!, is accessible
outside the space as an operation. Varies states that the
operation will change the content of the <formal parameter,
but copies will not. The operations defined inside the space

can reference to each other and can be recursive too.

Scheme (44), a notation and semantics for parameterized
implementation mechanisms, is built upon 5 basic notioas:
1. extendable data type

2. the ability to refer to the attributes of an object in

47
an uniform way
3. the ability to override the system-defined meaning of
attributes
4. the ability to encapsulate a set of definitions, and
5. the ability to control external access to the
attributes of an encapsulate set.

An example using Scheme is shown in Figure 9.

48

— — ——— R — . ——— —— — ———

scheme queune (type itemtype) = record

type head = record var fromt, rear = node.ref end;
type node = item :itemtype extended by private wyar
next = node.ref end;

procedure init (shared g:head);
{This will be invoked whenever a new head
is created}
begip g.front := pewW node;
g.rear := g.front
end;

function empty (gq:head) returns boolean;
{Test for the empty queue}
begin retucn (g.front = g.rear) end;

procedure add (gshared gd.head;item:itemtype);
{Add item to g, modifying g as a side effect}
begin g.rearf.item := item;
g.rear4.next := new node;
g.Trear := g.reart.next
end;

function remove (shared g:head) returns item:itemtype;
{Remove (and return) the first item froam q,
modifying q as a side effect}

:

if empty(g) then error;

item := g.reart.itenm;

g.front := g.front4.next
end ;

end queue

Figure 9. Example of scheme to define a data type

The operations of queue are init, empty, add and remove.
The value stored in queue is depended on the actual
parameter of call. New is used to create a new node.

Functions can return results, but not with procedures. This

49
queue is implemented by link list of nodes which hold quene
elements. If values o0f the parameters are changed by
assignments, then they must be specified by shared. Scheme

has not been implemented.

3.4 Behavior approach to data type defimnition

Algebraic specification (36), is a standard example of
using the behavior approach to defime new Jdata types. It
consists of a set of object declarations and a set of axioms
describing the behavior of these objects. Figure 10 is an

example of an algebraic specification to define stack.

50

type stack elementtypeztype
Syntax

newstack-—>stack,
push{stack,elementtype)— stack,

pop (stack})— stack,

top (stack)— elementtype u {UNDEFIRED},
isnew (stack)— boolean,

replace (stack,elementtype)- stack,

semantics
declare stk:stack,elm:elementtype;

pop (newstack) = newstack,
pop (push (stk,elm)) = stk,
top (newstack) = UNDEFINED,
top(push(stk,elm)) = elnm,
isnew (newstack) = true,
isnew (push(stk,elm)) = false,
replace (stk,elm) = push{pop(stk),eln),
Figure 10. Example of algebraic specification to define a

data type

This stack has newstack, push, pop, isnew, etc., as its
operations. The type of the formal parameter is not fixed.

Syntax defines the syntactic structure of stack and

—_———e =

One implementation language using algebric specification
is 0BJ. OBJ (22) is a language for writing and executing
abstract formal specification of programs. It is based omn an
algebraic model of. computation. OBJ can also be seen as a

rather inefficient but very high level programming language,

51
in which the programmer can define and then use
abstractions. There are two major syntactic units in O0BJ.
One is declaration, which enters definition into a data
base. The other is execution, which requires expressions,

using information from that data base.

The expression in OBJ has a very flexible syntax allowing
not only the usual prefix, postfix and infix notations, but
also what is called distributed fix notation, which peramits
an operator to have any desired distribution of key-words

and arguments.

if B then I else T
can be an expression. The eguations of 0BJ provide an
abstract semantics, through the initial algebra approach. It
uses rewrite rules, which cause a substitution instance of

left-hand sides by a corresponding substitution instance of

right-hand sides. Given axiom

if T then I else J =1
and expression

2% (if T then (1+1) else 3)

the latter can be simplified to 2#*(1+1}) (T stands for true).

Figure 11 shows an example in OBJ to define a 'data type' of

52

Greatest Common Divisor.

object gcd

sorts / int

ok-ops
gcd = int, int— int

ELIor-ops
neg-arg: int

vars i,j:int

ok-egqns

(gcd(i,i) = i)

(gcd(i,0) = i)

(gcd(0,i) = 1)

(gcd(i,dj) = gcd(i-j,J) if i>Jj)

(gcd(i,d) = gecd(i,j-i) if i<j)
error-egns

(gcd(i,J) = neg-arg if (i<0 + 3j<0))

tceijbo

Figure 11. Example of 0BJ to defime a data type

'+' is boolean disjunction (or)

Sorts define the type, in this example, is integer, +to be
manipulated. Ok-ops and ok-egns define the normal
operations and equations, respectively. error-ops and

error-eqns define the error operations and error eguations.

Another example of behavior approach to data type

definition is the use of algebraic theories (8), which is

53

implemented by CLEAR. To build an algebraic theory we need:

1. the ability to wvwrite explicit theories; the

structure is
theory sorts.....
opns.'I-.---.

€dNS.ecsces..endth

Sorts specify the data sets used in

the theory.

basic

Opns

are the representation of operations and egns list the

axioms describing properties of the

examnple:

The theory HNat0
theory sort nat
opns 0:—nat
succ: nat—=nat

egus endth

The theory Boolo
theory sort bool

opns true: -sbool
false: - bool
9: bool =bool
As bool,bool-> bool

egns “true = false
Gfalse = true
false A p = false
true o p = p endth

operations.

For

2. operations on theories to combine, enrich, induce, and

derive, which enable us to build up theory expressions

denoting complex theories. Combine is similar

to set

54
union; it combines two theories to be one. One can
comrbine boolean theory and natural number 0 theory to

form a bool+nat(C theory:

The theory Boolo+Natl
sorts bool,nat

opns true:- bool
false: ->bool
“: bool—=bool
Az bool,bool— bool
O:—nat
succ: nat—snat

egns 71 true = false
T false = true

false o p = false
true » p = p endth

Enrich is used to introduce more axioms to a theory:

The theory Natl
enrich Boolo+Natl by

opns ¢ : nat,nat- bool
eg: nat,nat-sbool

egns 0 £ n = true
succ(m) £0 = false
succ(m) € succ(n) = m £ n
eq(m,n) = m<nAn<n enden
Induce performs the transitive closure on the axiom
set of a theory. This is useful for developing

inductive properties of objects in a theory. For

example, Induce Natl adds these egmns to Watl1, allowing

us to explicitly reason about gesneral propertities of

members of Nat1l:

55
eq(n,n) = true
eqg(m,n) = eqg(n,m)
eq(l,m) Aeg(m,n)A neq(l,n) =false
Derive can be used to create a subtheory from some
existing theory. A subset of the sorts, operators,

and axioms are extracted and used to build +the new

theory. For example

The theory Hategual
sorts element,bool
opns equal, true, false

from Hat by
element is nat
bool is bool

equal is eq
true is true
false is false endde
3. procedures for theory-building:

(1) theory constants enable us to give a name to a
theory. The words with double underlining are
constants.

(2) theory procedures can take other theories as their
parameters and producing a theory as a result.
Their bodies use the primitive operations already

defined and may call other theory procedures. For

example:

56
constant pi =22/7
procedure f (x:number, b:boolean)=

if b then pi*x else 0
procedure g(y:nulber)=
let z = £(y*y,true) in z*z¥*z
We call g(2), then we can get g(2) = ((22/7)*(2*2) P
{3) local theory definitions, permitted in the bodies
of theory procedures:
let i = cuceee iDreens

The example of a theory specification is shown in Figure 12.

const tpiy - thenrx snzts_element endth
p;gg,stack {Iglgg

induce enrich x.a.‘l.nr_h.q.qlm.
sorts stack

opns nilstack:—stack
push: value,stack->stack
empty: stack-» bool
pop: stack—stack
top: stack—> value

erroropns underflow:- stack
undef:—->value

var v:value,s:stack

eqns empty(nilstack)=true
enpty({push (v,.s})) =false
pop(push (v,s)) =s
top(push (v,s))=v

erroregns pop (empty)=underflow
top {empty)=undef
pop{underflow)=underf low
enden

Figure 12. Example of algebraic theory definition

57

The value handled by stack is sort element defined by

triv with a serts statement. Stack is induced and enrichéd

from constants of value and boolean. OpeRs and egns define

the operations and egquations, respectivelly. erroropns and
erroregns -define the error operations and error equations.

3.5 Type recursion

Hoare (26, 27, 28) describes a recursive data type
definition as the occurrence of a type name inside its own
definition, denoting an occurrence of a (smaller) instance
of a value of that type as a component. A good example of

recursively typed objects is found in Lisp
type list = atom| list*list

Where a 1list is either an atom (defined elsewhere) or an
ordered pair, whose first and second components are
themselves lists. This recursive data type definition may
be used to present another data type. For example, Pascal

can be extended to allow recursive type definitions (29)

58
type tree-node = record
dataz t;
left-subtree: tree-node;
right-subtree: tree-node

end
in place of the usual pointer-oriented declarations:

type tree-pointer = tree-node;
tree-node = record
data: t;
left-subtree: tree-pointer;
right-subtree: tree-pointer

end

The latter is a special case which standard Pascal allows,
but it comtains rTecursion, too. It would be much more
convenient +to allow general recursion. Then Wwe can

abbreviate *infinite enumerations' like

type color = set of (red, orange,yellow, green,

blue, indigo, purple,....)
to

type color = redl yellowl blue ‘color*color

59
We can get the different colors without 1listing all the
colors in a set. But unfortunately, there is no well-known
programming language permits this simple use of recursion in

data type definition.

3.6 Constructs for type conversion

Flon {16) describes the term coercion as applied to the
general task of converting one type into another, usually in
relation to those conversions done implicitly by a language
translator when it finds an object of a different type than
it expects. Generally the coercions are widening, as in
changing integers to reals, and narecowing, as truncating
reals into integers. Algol €8 has a large number of built-in

type conversions, such as *voiding‘':

ipt x; real ijeeceXx2=ijecnas

In this example, x¥ gets the integer value of i, but i's
value and type will not change. Most commonly used
programming languages have a set of conversion rules for the
arithmetic and assignment operations. The rules are built-
in, and conversion occurs automatically.

In a lower-level view of coercion, Venema (57) states
that type converters allow breaches of the type system so

that a value of ome type can be used as a value of some

60
other type. To convert an object of one type to another,
both objects must have the same implementation word size and
be represented in the same internal format (e.g. twos-

complement, binary float).

Gries (25) believes that type conversions should allow
only explicit conversion from a specific type to another
type. This achieves the necessary flexiblity without
endangering transparency and understanding. Thus we should

provide procedures to do type conversion explicitly.

type complex = record
re: integer
im:integer
end;

function converfrominteger (x:integer)
: complex;
begin converfrominteger.re :=
converfrominteger.in :=
end;

oM

Still another viewpoint is that the langquage's compiler
should handle all type conversions, regardless of the
effort. Pigure 13 is an example of a type conversion which
illustrates wvhat a compiler should do in an implementation

if it allows implicit type conversion.

61

yar a,b: integer; c:real;
procedure p (var xs<typed>);
var y:type; begin...end;

p(a)sp{(a sp(b):

compiler should translate above code to be
var a,b: integer; c:real;
procedure p' {var x:integer) ;
yar y: integer; begip...end:;
procedure p (var x:real):
yar y: real; begin...end;

p'(a)splc):p' (b):

Figure 13. Example of type conversion

3.7 Parameterization (generic procedures)

In most all languages, programmers have to declare a
formal parameter with a fixed type in a procedure. It will
be very convenient if this restriction could be relaxed.
Parameterized types (48), which provide this feature, can
eliminate the need for writing repetitive code for similar
functions for different data types. Clusters in CLU,
formsin ALPHARD, Macro in BLISS have some parameterization

in their language designs:

62
type bag (t:iype) =
declare c:clist(t);

In this case, a programmer can use any data type as the

parameter.

The following example illustrates the feature of generic
procedures. <> indicates the types are dependent on the

actual parameters of the call, and n is an integer.

function subtype (x:<type>): array’" of <type>;
var i:domain(subtype) ;
begin for i in domain(subtype) do
subtype(il:= x
end;
The point we want to make imn this example is the dimension
of return type is varied too, which provides a more flexible

feature in parameterization.

3.8 Exception handling

When people design a programming language, they often
consider the normal conditions and forget the error (or
exceptions) conditions. It is assumed that a program should
only handle the normal, expected conditions, but error
conditions arise nonetheless. The properties of a language

{(5) should have the facility to handle exceptions.

63
ADA has a feature to aid in exception handling. In ADA

(32), we may define

function fromint (i:integer)
returpn intorunderflow is
begin return(isint=true, int=i)
end;
function fromunderflow (u:underflow)
return intorunderflow is
begip return(isint=false)
end;
to return an integer and boolean pair to handle exceptions.
The function fromint returns an integer-boolean pair
indicating that the argument is type correct and its value

is i. The second, however, sets the boolean to false to

indicate a run-time error.

Gaudel (20) discusses two ways of handling the errors in
algebraic specification. One is restriction specification,
defined by Guttag. This specification 4is illustrated in

figure 14, which defines a queue of maximun size 100.

€4

- —— ——— i —

type gueue,bool,int,iten;

operations
()= queuezenptyq;
{queune,item)— queuesappend;
{queue)— queuezrenove;
{queue)—item: first;
(queue)— bool: empty?;
(queue)—int: length;

axioms

declare qgegueune, iciten:

remove (append(g,i))= if empty?(q) then emptyg
else append (remove(qg,i));

first(append (g,i))= if empty?(q) then i
else first({qg);

enpt y? (emptyqg) = true;

empty? {(append(q,i)) = false;

length {emptyg) = 0;

length (append(g,i)) = length (g)+1;

restrictions
pre(remove,q)= " enpty? (q) ;
pre(first,q) =" empty?(q);
length (g) = 100 = failure (append (q,i));
en

ittty

Figure 14. Example of restriction specification

The other one is error algebras, which is defined by
Goguen. In this specification, error-operations and error-
axioms are specified. Figure 15 shows the same example of

restriction specification with error algebras.

65

o —— i ——— —— A . ——— — -

iype queue,bool,int,item;
operations

()— quene: emptyq;
{(queue,item) - queue: append;
(gqueue)— item: first;
(queue) —> boolean: emptyg?;
{(queue)—int: length;

error-operations
() » quene: underflow,overflow;
() >item: missing;

axioms

declare g ¢ queue, i€ itenm;
the same ones as in figure 14

error-axioas
rerove {emptyqg) = anderflow;
remove (underflow)= underflow;
append (overflow,i)= overflow;
first(emptyq)= missing;

others
append (g,i)= if length({g) = 100

then overflow

else append(q,i);
end.

Figure 15. Example of error algebras

Restriction specification sets the restriction rules to
prevent where errors which might happen. But error algebras
set the error-axioms which provide the error messages when
an error occurs. These two methods are different, bat the

result is the sanme.

66

CHAPTER IV

CONCLUSION

The basic requirements for a programming language are
simplicity, ease of understanding, and ease of
implementation. These are good requirements for the
constructs for building new data types, too. It should be
easy for programmers to learn bhow to build data types and to
understand the comnstructs which already have beer built.
The programmers should be able to ignore details and work
with simplified rules to design their own data types. Some
languages or concepts are too complicated for constructing a
data type. Space in Model and form in Alphard are difficult
for programmers to understand. Other programming languages
such as Concurrent Pascal, Clear, EBuclid are easier to
anderstand and to use. Controlling overall complexity can
aid in designing and implementing. Programmers should not
have to spend a lot of time in figuring out how data types
can be built, and they should be able to easily 1learn how
these type comnstructs work. Then they can use then

correctly.

Protection of the operations defined in the abstract data

€7
type is another important consideration. Those operations
defined for the data +type must not be changed by outside
environment, or the integrity of the type is 1lost. Some
programming languages have explicit protection, but some do
not. Module in Euclid has 'exports' and cluster in CLU have
tis' to specify the operatios which camn be accessed by
outside. In Concarrent Pascal, class- has procedure (or
fanction) entries which cam be accessed but camn not be
changed by outside of the class, and have intérnal procedure
(or function) which can not be accessed by outside of the
class at all. This is a good mechanism to protect the

operations of the abstract data types.

Host abstract data types cam handle different sizes
(passed from the parameters of each c¢all lower and upper
bounds can be varied). Some languages, such as Concurrent
Pascal and Euclid have thenm fixed. Some languages, such as
CLEAR, 0BJ and CLU have thenm paramaterized, so that the
types o2f formal parameters of a procedure can depend on a
particula call of the procedure. In the latter case, the
prograamer may define one abstract data type which can be
used by all the similar calls with different variable types.
The program size will be much smaller and the program will
easier to understand. After setting up these genmeric
procedures, the compiler must be able to check the type to

see whether variables match with the operations which

€8

accompany the type defimition.

Type conversion is a very convenient feature for
programmers, if it is implicitly defined in the languages.
But some restrictions for type conversion must exist.
Clearly we should not convert types boolean to integer,
especially when there are arithmetic operations on these

integers.

For a programmer, to choose a language which is simple
and easy to be understood is the first consideration. But
how to solve a number of technical problems affecting the
efficiency of generics and tasking, and how to develop the
technology of program specification and verification into a
usable abstract data type model, are the next problems for
the language designers. In the future, there will be more
programming languages providing abstract data type
constructs, and more programmers will get used to this
feature, too. So to develop a library of representations and
assistance with selection of which ones to use, and to mix
representations, and to have automatic conversion of
representations in a running system are the future tremnds

for abstract data type developers.

69

REFERENCES

2.

10.

itl.

12.

13.

Babcicky, K., and Birtwistle, G. M. Class Distinction
in Simula - Some Aspects of A General Programming
lanquage, Norwegian Computer Center, Oslo, Borway.

Bang, S. Y., and Yeh, R. T. ©Notes on Relational Data
Structures, in ggggggg Trends ;g Programming:
Hethodolegy, volume IV Data structurin Yeh, R.T.,
ed., Prentlce-ﬂall Inc., Englewooﬂ Cllffs, ¥.J., 1978,

PP- 24 1-262.

Barnard, T. D., Elliott, W. D., and Thompson, D. H.
EUOCLID and MODULA, Sigplan Notices, 12-3 (1973) 70-84.

Bergstra, Je. What is An Abstract Data Type?,
Information Processing-Letters, 7-1 (1978) u42-43.

Black, A. P. Exception Handling and Data Abstractionm,
Report RCB059, IBM, Thomas J. Watson Research Center,
Yorktown Heights, New York.

Brand, D. A FNote on Data Abstractions, Sigplan Notices,
13-1 (1978) 21-24.

Brinch Hansem, P. The Architecture of Ceoncarrent-
Programs, Prentice-Hall, Inc., 1977. :

Burstall, R., and Goguen, J. Putting Theories Together
to Hake Specifications, Proceedings of The 19717
International Joint Conference on Artifical
Intelllgence. 1977, pp.1045-1058.

Cassel, D. Programming Languages One, Reston Publishing
Company, Inc., Restomn, Va, 1972.

Chang E., Kadea, H. B., and Elliott W. D. Abstract Data
Types in EUCLID, Sigplan Notices, 12-3 (1978) 34-42.

Chaudhary, B. D.,and Sahasrabuddle, H. V. Suggestions
about A Specification Technique, Sigplan Notices, 13-12
(1978) 25-28.

Cress, P., Dirksen, P.,and Graham, J. W. FORTRAR IV
with WATFOR And WATFIV, Prentice-Hall Inc., Englewood
Cliffs,N.J., 1970.

Dahl, ©. J.,and Hoare, C.A.R. Hierarchical Progranm
Structures, in Structured Progqramming, Dahl, 0.J.,

Dijkstra, E. W.,and Hoare, C.A.R., eds., Academic Press,

14.

15.

1€.

17.

18.

19.

20'

21.

22.

23.

24,

25.

New York, 1972, pp. 175-220.

Demers, A., Donahue, J.,and Skirner, P. G. Data Types
As Values: Polymorphism, Type-Checking, Encapsulation,
Proceeding of 5th ACH Conference om Principles of
Programming Languages, Tucson, 1978, pp. 23-30.

Enderton, H. A Hathematical Imtroduction to Legic,
Addison Wesley, Reading, Mass., 1974.

Flon L. A Survey of Some Issues Concerning Abstract
Data Types, Dept. of Computer Science, Carnegie-Hellon
University, Pittsburgh, Pa 15213, 1974.

Flon, L. Program Design with Abstract Data Types, Dept.
of Computer Science, Carnegie-Mellon University,
Pittsburgh, Pa. 1975.

Gannon,; J. D., and Hormning, J. J. Language Design for
Programming Reliability, IEEE Transaction on Software
Engineering, 1-2 (1975) 179-191.

Gannon, J. D. An Experimental Evaluation of Data Type
Conventions, Communications of ACH, 20-8 (1977) 584-595.

Gaudel Marie-Claude, Algebraic Specification of Abstract
Data Types, Rapport de Recherche HNo. 360, INRIA, Le
Chesnay, France, 1979.

Geschke, C. B., Morris, J. B. Jr., and Satterthwaite E.
H. Early Experience with NESA, Communications of ACH,
20-8 (1977) 540-552.

Goguen J. A. Some Design Principles and Theory for O0BJ-
0o, A Language to Express and Execute Algebraic
Specificaions of Programs, Computer Science Department,
UCLA, L.3A., Cal.

Goguen, J., Thaitcher, J., and Wagner, E. G. An Initial
Algebra Approach to the Specification, Correctness, And
Implementation of Abstract Data Types, in Current Trends
in Programming Methodology, Yolume Iv: Data
Stcucturing, Yeh, R. T., ed., Prentice-Hall, Inc.,
Englevood Cliffs, N.J., 1978, pp. 80-149.

Gratzer, G. Universal Algebra, Van NRostrand, New York,

19€7.

Gries, D., and Gehani, N. Some Ideas on Data Types in
High-Level languages, Communications of ACHE, 20-6 (1977)
514-820.

26.

27.

28.

29-

30.

31.

32.

33.

34.

35.

36-

37.

38.

71

Guttag, J. V., and Horowitz, E., and Husser, D. R.
Abstract Data Types and Software validation,
Commupications of ACH, 21-12 (1978) 1048-1064.

Guttag, J. &bstract Data Types And The Development of
Data Structures, Commupications of ACHN, 20-6 (1977)
396-404.

Guttagq, J. V., Horowitz, E., ani Musser, D. R. The
Design of Data Type Specificatioams, in Current Trends in
Programming Methodology, VYolume IV: Data Structureing,
Yeh, R. T., ed., Prentice-Hall, Inc., Englewood Cliffs,
N- J-' 1978' ppo 60_79.

Hoare, C.A.B. Recursive Data Structures, Internatiopal
Journal of Computer Amrd Information Science, 4-2 (1975)
105-132.

Hoare, C.A.R. Data Structures, Current Trends in-
Programming Methodology, Veolume IV: Data Structuring,
Yeh, R. T., ed., Prentice-Hall Inc., Englewood Cliffs,

H.J-' 19?8' pp. 1-114-

Hoare, C.A.R. Notes on Data Structuring, in Structured.

Programming, Dahl, 0. J., Dijkstra, E. W., and Hoare,
C.2.R., eds., Academic Press, 1972, pp. 83-174.

Ichbiah, J. D., Heliard, J. C., Roubine, 0., Barnes, J.
G. P., Krieg-Brueckner, B., and Wichmann, B. A.
Rationale for The Design of The ADA programming
language, Sigplar Notices, 14-6, (1979).

Iglewski, M., HMadey, J., and Matwin, S. A Contribution
to An Improvement of PASCAL, Sigplan FNotices, 13-1
(1978) 48-58.

Jensen, K., and Wirth, H. PASCAL User Manual and
Report, Springer-Verlag, 1974

Johnson, R. T., and Horris, J. B. Abstract Data Types
in The MODEL Programming Language, Sigplan Notices, 8-2
(197¢ special issue } 36-4€.

Jones, D. %W. A Note on Some Limits of The Algebraic
Specification Method, Sigplan Notices, 13-4 (1978)
64-67.

Kamin, S. Some Definitions for Algebraic Data Type

Lampson, B., et al. Report on The Programming Language
EOCLID, Sigplan Botices, 12-2 (1977).

39.

40.

41.

42.

43.

u4s.

us.

46.

u?.

qs.

49.

50.

51-

72

Ledgard, H. F., and Taylor R. W. Two Views of Data
Abstraction, Communications of ACM, 20-6 (1977) 382-384.
Liskov, B., and Zilles, S. Progrmming with Abstract
Data Types, Sigplan Neotices, 9-4, (1974), 50-59.

Liskov, B. H., and Berzims V. An Appraisal of Program
specifications, im Research Directions im gSoftware
Technoloqy, Wagner, P., ed., MIT Press, Cambridge,
Mass. , 1979, pp. 276-301.

Liskov, B., Snjder A., Atkinson, R., and Schaffert, C.
Abstract Mechanisms ir CLU, Communications of ACH, 20-8
(1977) 564-576.

Mealy, G. H. ©Notions , in Current Trends in Programming
Methodology, Yolume IV: Data Stracturing, Yeh, BR. T.,
ed., Prentice-Hall Inc., Englewood Cliffs, ~HN.J., 1978,
pp- 12-29.

Mitchell, J. 6., and Wegbreit, B. Schemes: A High-lLevel
Data Structuring Concept, in Current Tremds in
Progeramming Methodology, Volume I¥: Data Structuring,
Yeh, B. T., ed., Prentice-Hall Inc., Englewood Cliffs,
N.J., 1978, pp. 150-184.

Morris, J. H. Jr. Types Are Not Sets, Proceeding l1st:

ACM symp oh Primciples of Programming languages, Boston,
1973, pp. 120-124.

Morris J. H. Jr. Protection in Programming Languages,
Compunications of ACM, 16-1 (1973) 15-21.

Parnes, D. L., Shore, J. E., and Weiss, D. Abstract
Types Defined As Classes of Variables, Sigplan Notices,
8-2 (197€ special issue) 149-154.

Rivers, J. D., and Spencer, H. Readability and
Writability 4in EUCLID, Sigplan Notices, 12-3 (1978)
495-56.

Ross D. T. Toward Foundations for The Understanding of
Type, Sigplan Notices, 8-2 (1976 special issue) €3-€5.

Schwartz J. T. Program Genesis And The Design of
Programming, im Currenmt Treads in Programming
Methodology, VYolume IV: Data Structuring, Yeh, R. T.,
ed., Prentice-Hall Inc., Englewood Cliffs, N.J., 1978,

pp. 185-215. .

Shaw, M. Research Directions in Abstract pata
Structures, Sigplan Notices, 8-2 (1976 special issue)

52.

53.

5“-

55.

5€.

57.

58.

59.

73
66-68.

Shaw, M., Wulf, ¥ A., and London. BR. L. Abstraction And
Verificatiomr in ALPHARD: Defining And Sspecifying
Iteration And Generations, Communications of ACM, 20-8
(1977) 553-564.

Standish, T.. &. Data Structures - An Axiomatic
Approach, in Current Iremds in Programming Nethodology,

Yolume IV: Data Structuring, Yeh, R. T., ed., Prentice-
Hall Inc., Eunglewood Cliffs, N.J. 1978, pp. 30-59.

Stoy, J. Denotational Semantics, MIT Press, Cambridge,
Mass. , 1977.

Tonenbaun, A. S. A Comparison of PASCAL and ALGOL 68,
The Computer Journal, 21-4 (1978) 31€-323.

Tennent R. D. On A VWNew Approach to Representation
Independent Data Classes, Acta Information, 8-4 (1977)
315-324.

Venema T., and Rivers, J. D. EUCLID And PASCAL, Sigplan
Hotices, 12-3 (1978) 57-€9.

Wulf W. A. Abstract Data Types: A Retrospective And
Prospective View, Computer Science Department, Carnegie
Mellon University, Pittsburgh, Pa, 1980.

Wulf, W. A., london, B. L.,and Shaw, M. An Introduction
to The Construction and Verification of Alphard
Programs, IEEE Transactions or Software Engineering, 2-4
(1976) 253-264.

A Survey of Data Type Specification Methods

by

SHICWJY FAN

B.S., Fu-Jen Catholic University(Faiwan, R.0.C.), 1979

AN ABSTRACT OF A MASTER'S REPOET

submitted in partial fulfillment of the

requirements of the degree

MASTER OF SCIENCE

Departeent of Computer Science

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1982

ABSTRACT

Different programming languages provide different
features for defining abstract data types. Some use the
existing language's structure to extend its features to
define a type, some use a data structures plus
subroutines package to define a type, and others provide
mechanisms using operators and equational axioas to

define a new data type.

This paper surveys five basic approaches to data type
definition and the programming languages and theories

which support these methods.

A large portion of tkis paper deals with the
representations of the methods for data type definition.
Exanmples are given to support these comstructions.
Relevant topics such as type recursion, constructs for
type conversion, paramaterization, and exception

handling are discussed as well.

In the 1last section some conclusions and futuore

trends are given.

