HIMICS: A VIRTUAL HEMORY ENVIRONMENT FOR MINI-COMPUTERS AND A
DESCRIFTION OF ITS LZVEL 2 PROCESSCR

by
ARLAN E, BENTZ

B,5., Kansas State Universi

n
[T
ct
]
-
p
D
byl
e

A MASTER'S REPORT

submitted in partial fulfiliment 5f the

requirements for the degree

MASTER OF SZIENCE

Department of Computer Sciernce

KANSAS STATE UNIVERSITY

Manhattan, Kansas

1975

Approved by:

THIS BOOK
CONTAINS
NUMEROUS PAGES
WITH THE ORIGINAL
PRINTING BEING
SKEWED
DIFFERANTLY FROM
THE TOP OF THE
PAGE TO THE
BOTTOM.

THIS IS AS RECEIVED
FROM THE
CUSTOMER.

LD
2L6F

R

1478

E45 TABLE OF CONTENTS
G2

[hxunﬂaf+

SECTION KNAME CHAPTER ONE

%3
1.4
1.5

1.6

1,7

1.8

1.9

1.10

2,1

2.2

INTRODUCTlON LRCEE LAY B B N B B B B B BRI R T B R B O B R B BB B A A BN R B A N

TECHNIQUES FOR PECURRENT USE OF MEMORY ,uvvvvevovaansosonsces
L.2.1 OVERLAY STRUCTUBES pwuussmmnisss mareke s sassuss s sou
YudiZ VIRTUAL: MEMORY ;iaciies s s o @ b b o 56 so0aed v § 55

1.2.2,1 VIRTUAL MEMORY TECHNIQUES ..veesesoesoseees
1.2,2,2 ADVANTAGES OF VIRTUAL MEMORY .evcocevcnaasse

SUPPGRT FOR EMUI-’ATCRS LB B BN BB B B BB I A BN B B B BN B BN BN BN BT BN B B B R BN BN N BN N AN B 4
INPTER-EML]IJATOR COM}iU?;I(:ATION LI R A I B B B R BB B B B B B B B I B B
MANAGE'ABLE SOFTHARE U B I B B B B O B A BB B B B B B AR B A B R N BC B AN B B B RO B RN A)

INS'I‘RLTMENTATION LR B B DA B N BB B B BN B BN B RN BN BN B B BN BN R AN BN B BN BN BN BN BN BN B BN BN BN BN B BN AN A]
1' 6! 1 RECORDED CGUNTS L B B B B R BN R AR K B B OB BN BN N BN BTN BN BN B R A B BN BN R A)
1. 6. 2 ”ORKING SET OPTIONS LA A BB B R O B B B BN BN BN B B L BN RN B B R N B

OVERVIEW OF THE SYSTEM L I I O I B B I A B B N I I O A S NI A SR A A R Y
1-7.1 ADVAN-TAGES OF THE SYSTEM PEs NS eI NRIIARINUESEEAORORGIS
1-7.2 EXPLANATIDN OF LEVELS PEe PR RSP PRI SRR ONRIRIRITRPRLE

IMPLEMENTATION L .uvuevuvnnnoosocorosesonsoseascsnssoacnsasns
1,8,1 HARDWARE ALLOCATION ,.ccocccsnanacosvanansossvasoss
1,8,2 MEMORY LEVELS ,ieucvvceveassossoascsnnennansssnsssns
1,8:3 TIDCATIBN OF SOFTHARE .iusecessesnamuss ymoumun s pummese ¢

SU}{HARY LA L LRI I BB B BB I A B B B BT R B R B R B A B A R R A AR R R A A

INTRODUCTORY DESCRIPTION OF REMAINING CHAPTERS ,.vuvovevosss

CHAPTER TWO
ImODUCTION l'lI".ll.l‘l'l'.ll"ll'.lll.."'.ll..ll..lllll

PAGE MNAGEMENT .I.l.lll'llI-.I!ll.llIIA‘I.II‘IIO'.I.I!I.I--'

2,2,1 THRASHING IN PAGED MEMORY SYSTEMS Creressesnracnnns
2,2,2 PAGING OPTIONS I
2,2,3 WORKING SET SIZE I R R S P,
2,2,4 PAGING TRANSFER FLOW PATTERNS cesdetvssrecsrarancias
+2,4,1 TRANSFER FLOW PATTEEN 1 ..uvvevevecssasenns
€ TRANSFER FLOH PATTERR 2 .. vwwsinw s svines s o
3 TRANSFER FLOW PATTERN 3 tresesretsannstaaas
4 TRANSFER FLOW PATTERN 4 ,uvvvevevevononcnas

2,4
-2.“
2.4

PAGE

p=

S I~ S e

11
13
15

16
17
17
22

23

24

26

26
26
27
30
30
34
34
35
36

23

2.4

3.1

3.2

3.3
3.4
3.5
3.6
3.7
3.8

3.9

SECTION NAME

2,2,5 PAGING ALCCRITHMS USED IN SYSTEM vveeescecoscasses
2.2,5.1 PAGING ALGORITHM DISCUSSION

FOR OPTIONI LB B B 2 BN BN BE N BN BN BE B BE B BN B BN BN BN B BN RN BN BN BN N
2,2,5,2 PAGING ALGORITHM DISCUSSION

FOR OPTIONz LR 20 BN 20 BN BN BN BN BE BN BN BN BE AR NN AR BN DR BN B BN NCNN BN B A)
2,2,5.3 PAGING ALGORITHM DISCUSSION

FOR OPTION3I.llllll!"'.lt.lllltil‘-!‘

2,2,6 THRASHING AS RELATED TO PAGING OPTIONS ..veeecoves

0 FOR SYSTEM N R NN RN RN NERE RN NN NN
2-3.1 SPOOLIm OF IIO S AP IR S PP I LI I ERPIB RPN SR PErT RGN
2,3,2 PR(X;RAM REQUESTED IIO T E P E IR PSR IO NRTERNRITERE

1/

FILE MAHAGE}{ENT LRI I A A IR I I B R I R O B BB U RN A U R RE BT AR BN B I R R A A
2.".1 DATA BASB FOR FILE MANAGEHENT sbdeePd N b oot at

CHAPTER THREE
INTRODUCTION suseensesvonnooneosasvossroscasasversssovesesa
ALGORITHM 1: MAIN DRIVER FOR NOVA ROUTINES ..ivvevvonesase
ALGORLITHM 21 GENERATES THE SYSTEM. ... cumwes s muwes o 8 cenvss
ALGORITHM 3: MAIN INPUT/OUTPUT DRIVER ,uvveesvonsonconcass
AIGORITHM 49 THPUT DRIVER.), vuwumuns s vumnmn s v eownn o § $paans
ALGORITHM 5: OUTPUT DRIVER ,.4veeeseavcsconnocsscoscsoanse
ALGORITHM 6: TRANSFERS DATA TO INPUT ADDRESS ..evecevsasas
ALGORITHM 7¢ TRANSFERS DATA TO QUTPUT FILE ,.vvceosscessnses

ALGORITHM 8: TRANSLATES NOVA I/0 ERROR CODE ,.uvvvvcaveonne

3,10 ALGORITHM 9: PAGE OPTION 1 MAIN ROUTINEceoeccovncarse

3,11 ALGORITHM 10: PAGE OPTION 1 INITIAL ROUTINE ,,veveveroacres

3.12

3.13

AMORITHH 11; PAGE OPTION 2 }‘AIN ROUTISE oo Bt 0B repnid b

ALGORITHM 12: PAGE OPTION 2 INITIAL ROUTINE ..eevevcscaspss

3.1" AmORIT}U‘I 13‘ PAGE OPTION 3 MJ"“I}: ROUTINE T e &8P IV Pt

3. 15

ALGORITHM 14t PAGE OPTION 3 INITIAL ROUTIFE ,.uvvevevunoese

ii

PAGE

37
39

§2

45
45
46
46

47
48

55
55
61
61
68
70
71
74
74
76
84
85
83
90

90

SECTION NAME

3,16
3,17
3,18
3,19
3,20

3,21
3,22

3,23
3,24
3,25
3,26
3,27
3.28
3,29

3.30

3.31

4,1

4,2

SYSTEM MODIFICATION ,,.,.,

4,2,1 1I/0 FILES

. .
L]

2

2I
21
2,

Rl R~ -

PRIORITY

INDEPENDENCY

ALGORITHM 15t RETRLEVE PAGE iy gveserrommnns pogmune sy pownn
ALGORITHM 16: END OF JOB ,..c0vsesvovsesssncssaarsannncas
ALGORITHM 17: LEVEL 3 MEMORY TO LEVEL 2 MEMORY ,suuveaves
ALGORITHM 18% LEVEL 3 MEMORY TO LEVEL 1 MEMORY ... 00000
ALGORITHM 19: LEVEL 2 MEMORY TO LEVEL 3 MEMORY ..ivceeacse
ALGCRITHM 20: LEVEL 1 MEMORY TC LEVEL 2 MEMORY

UKDER OPTIONS 1 AKD 2 ,..cuvevocarccacse
'ALGORITHM 21: LEVEL 1 MEMORY TO LEVEL 2 MEMORY

UNDER OFTION 3 i isswwimesi winvos s sy
ALGORITHM 22: LEVEL 1 MEMORY TC LEVEL 3 MEMORY ,,s6c0c000e
ALGORITHM 23: LEVEL 2 MEMORY TO LEVEL 1 MEMORY ,.evecesee
ALGORITHM 24: INPUT SPOOLING .ieveevoonssonnsosasascaonsns
ALGORITHM 25¢ .JOB QUEUE SEARCE ,uwsis s s wesws 5§ pausis § iy
ALGORITHM 263 OBJECT DECK FILE NAME ,..eeecevavavnsacasncs
ALGORITHM 27: RETRIEVE OBJECT DECK FILE NAME ,..vevucoves
ALGORITHM 28: CREATE OUTPUT FILE NAME ,.vveessceossccnves
ALGORITHM 29: LIST STACK DEPTH COUNTS FOR PAGE

OPTIONS 1 OR 3 siivesivransis erbndidnnes
ALGORITHM 30: LIST STACK DEPTH COUNTS FOR PAGE

OFTION 2 4y o wamasnn ¢ ¢ wamesd § e o o 9%

CHAPTER FOUR

INTRODUCTION

(RN R R R N R N NN EEEE]

L N I A A BN B R BRI BN YO R RN R AR R)

LA L L B R B I B B B O O I B B R B B B R R R B N R A B R I O R]

2 ROLLIN AND ROLLOUT
3 MULTI-TASKING
4
5

L RN RN R R R A RN I R R A RN A)

LR R AR RN A B AN BN R A R A I B A A]

PARAMETER PASSING FOR SUBROUTINE

LER L B A L B O B BN BN O R BN BN R B B B O BN B R I I)

B

LA I L B A BB B B RN BN AN I I BB R RN R BN N A B B NS A I)

PAGE

91

g2
93

93

93

94
94
95
95
98
98
98

99

99

100

101

101
101
103
104
104

104

SECTION NAME PAGE

- 4,3 TESTING OF ALGORITHMScvovvvnnenn cresreseatraterrannns 105
4.4 CONCLUSION ..cicivsvevoisassvnmesnsnnanamensssavnenys s TR Y § ¥ 110
4.4.1 THEORETIC TIME ADVANTAGE «vvvmnnsnnnsos A RIS 110

4.4.2 SUGGESTED SYSTEM LOADS FOR SYSTEM
PERFORMANCE EVALUATION ...vvriiiennnienninnnnnans 115
4.4,3 COST OF MEMORY e 116

APPENDICES

APPENDIX A: ALGORITHMS ...viiiiniiniiinnrnnirnncasnnns § wmon s n s . 117

APPENDIX B: SYSTEM CONFIRURATION FOR PAGE OPTION 1 160
APPENDIX C: SYSTEM CONFIGURATION FOR PAGE OPTION 2 wwesaw JBE
APPENCIX D: SYSTEM CONFIGURATION FOR PAGE OPTION 3 162
APPENDIX E: SUBROUTINE CALLING ORDER Sarieetirearaaaas 163

iv

FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE

FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE

FIGURE
FIGURE
FIGURE
FIGURE

FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE

FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE

FIGURE

D) T -t et
[I - SR, L PV N

NOR
LI
W N

2-4

vy
~ oW

ILLUSTRATIONS

OVERLAY STRUCTURE TEEI TP SIS TSNP PP PRI PN IR N
VIRTUAL MEMORY STRUCTURE T LA PO CRERRI NI RNBOEIRT PRI RTY
FIXED WORKING SET OPTIONS e.veveovesronccosansencars
HIERARCHICAL STRUCTURE L A I I I IR RO I B O I AT RO I B A
HARDWARE VIEW OF HIERARCHICAL STRUCTURE ,...co0vvaes
ALTERNATE VIEW OF SYSTEH LEVELS ,,eevvevcerasvencuss
LEVELS OF MEMORY IK THE SYSTEM ...evesencesscancnrans
LEVEL 2 MEMORY LAYOUT FOR VARIOUS

PAGE U?TIONS cevvsaecrrdtaenssceneetoandrd Rttt
HORKING SET STIZE LR R I A B A R R I A A I I I R AU I A AU B I O NI B]
TRANSFER FLOW PATTERN 1 tesgrresrreesesuerndrrRanty
TRANSFER FLOW FATTERN 2 IR RN NN REER NI RN NN
TRANSFER FLOW PATTERN 3 ,.0vesvsvencesoccesnrassoese
TRANSEER PLOW BATTERN & ., emyumre o s comvongo spmwns s on
MEMORY DOMINATION UNDER THE COMPETITIVE

VARIABLE WORKING SET SIZE OPTION ..veevevvaacocass
SPOOL TABLE R N N O NN I A N I I I I R I I I]
CISK USAGE SECTOR TABLE (DUST) .veeseresereacacosars
FILE MANAGEMENT TABLES PR A s o r R AR eU TR RREEIrERSOORONY
LOCATING REQUESTED PAGES IN THE

LEVEL 2 PROCESSOR LR I I RO BRI B IR R B A S S B A BN R
JOB PAGE CONTROL BLOCK ...vuvsvveossoonassrscnasnanne
USER PARAMETER BLOCK LI B I R A R N I A A B O A I I I I B O I O Y
SYSTEM GENERATED PARAMETER BLOCK .swemsdoisevainiss
INTERDATA FUNRCTION CODES FOR I/0 ,icvvsccercosssssns
INTERDATA I/0 ERROR CODES ,,..ievvvveecrasasaanneens
EXAMPLE OF I/0 SPLIT ACRCSS PAGE BOUNDARIES .evevees
EXAMPLE OF PAGE MAPPING

(512 BYTES VS 256 HORDS) FR PP AN T IEN RPN R I OO Pt
CONTIGUOUSLY ORGANIZED FILES ,,.uiuevevnonccescansses
NOVA IIO ERROR CODES P ECEI N AeNAPEGIBENRTAaRRERRETD U N
STACK DEPTH COUNTS LR R I I A A A O I O I A AR I R A
EXTEXDED PAGE FAULT TABLEcvvuvececnracecsavons
SEQUENTIALLY ORGANIZED FILES ,..vuvevevoccavorsances
EXAMPLE OF ALGORITHM TESTING ,.uveevevooccaccocacses

MINIMUM PAGE FAULT TIME FOR SINGLE CPU ,,,00vveecces

PAGE

12
14
18
19
21

29
31
32
32
33
33

43
49
49
51

53
57
63
63
64
&5
69

73
75
77
81
39
97
107
108
109
111
114

The HIMICS system is a hierarchical virtual memory system
for a hierarchy of interconnected mini-computers, This paper
describes the design of the software system, The software system
design in this paper is a hierarchical design with two major
‘processor levels, An overall description of both processors is
given ahd then a detailed description of its level 2 processor is
presented, The detailed description includes the algorithms,
written in a dialect of PL/1, along with a written description of
them, The HIMICS system will provide a virtual memory system for
a network of mini-computers and also allow the emulation of high
level languages, The implementation of this system should result

in an increase of processor efficiency and system throughput for

the mini-computers involved in the network, The paper is concluded

with a dialectic comparison of a single processor system versus a

multi-processor system,

CHAPTER ONE

1.1 INTRODUCTION

In this paper we propose a design for a hierarchical mini-
computer system called HIMICS (Hierarchical multI-tasking MinI-
computer Computer System). The system is designed with five major
objectives in mind. These objectives are:

(1) To provide virtual memory capability.

(2) To provide support for emulators.

(3) To provide inter-emulator communication.

(4) To provide manageable software.

(5) To provide sufficient instrumentation and monitor

capabilities in order to encourage meaningful
system evaluations and comparisons.

A general discussion of each of these objectives will be

given before we present the actual design of the system.

1.2 TECHNIQUES FOR RECURRENT USE OF HMELORY

There are several techniques that are commonly used in
godern day computers to execute programs which have a larger address
space than the primary memory availabie to them. Two o the nore
commonly used techniques are overlay structures (1,6,12) and virtual

memory (2,12).

1.2.1 OVERLAY STRUCTURES
With overlay structures, segments of the program are kept
on secondary storage and brought into main memory in an hier-

archical sequence as they are needed. Pre-specified segments

may be overuritten by incoming segments. This is illustrated in
Figure 1-1. Here the user has a 520K program to be run in a
320K address space. Segments A, B and C are first loaded and
execution begins. As soon as segment B is no longer needed,
segments D an& E can be overwritten in B's address space. The
same process happens when C and E are no longer nceded. They
can be overuvritten by F,

From this illustration it is apparent that the user must
have a knowledge as to what segments are to be overwritten. It
is the user's responsibility to issue orders for the overlay to
occur., This is the major disadvgntage of the overlay techniaue,
The second technique, virtual memory, does not require the user

to have this additional knowledge. .

-1.2.2 VIRTUAL MEMORY

The key to virtual memory relies on the fact that, for an
instruction in a program to be executed, only the instruction and
the data thet it cperater on rced be in primary memery. From
the instruction's point of view the rest of the program may
be located on any level of memory. This removes the require-
ment that the job's entire address space be in physical memory
at once. Because this physical restraint is removed, the
operating ﬁrogram has the illusion that it has an extremely
large memory, thés the term "virtual memory". Since a job's

entire address space need not all be in primary memory at once,

THIS BOOK
CONTAINS
NUMEROUS PAGES
WITH DIAGRAMS
THAT ARE CROOKED
COMPARED TO THE
REST OF THE
INFORMATION ON
THE PAGE.

THIS IS AS
RECEIVED FROM
CUSTOMER.

80

400

Operating

Systen

SPRUIDY N———

Overlay Structure

. User Core

Memory
320 K

User's Program 520K

60K

A
60K
B
140K
i
|
c 1
80K

Figure 1-1

60K

i

120K

the sum of the address spaces of the jobs being multiprogrammed
is permittéd to exceed the physical size of main memory. This
is 1llustrated in Figure 1-2, All three jobs are being exe-
cuted in a physical memory space of 280K. The total sum of
all three jobs is 460K.

The major cpnstraint as to the size of the wvirtual space
is limited by the hardware configuration. The hardware limits
the number of addressable cells. The limiting factor is the
number of bits used for an address. Fﬁr example, if the hardware
allows 8 bits for an address, then there are 256 addressable
cells. The addresses would range from 0 to 255. This limits
the virtual memory to this same size of sﬁace. The virtual
space is usually cbnsiderably larger than the available primary

memory of the machine.

1.2,2.1 VIRTUAL MEMORY TECHNIQUES

Two major virtual memory techniques are, demand-paged
memory mansgement (1,7) and segmented mewory mancgement (1).
As was stated previously, virtual memory requires that the
instruction and data to be operated on be located in primary
memory. Lf this were to be done one instruction at a time it
would be too time consuning, Instead they are retrieved in
sections uﬁon demand. If the sections are all equally divided
into the same length, they are individually referred to as a

page. This is the orgin of the term "demand-paged" memory,

Virtual Memory Structure

JOB1 Page-Blk-Status
0 |— | 0
40 — |1
40 — |2
- — {3
80 : Block #
JOB2 Operating
22 Y 0 System |1
4 = :
¢ I—> 2 3
60 ;
—>1 3 4
59 — | & 5
00
. 6
0 JOB3 7
25 —>10 |14 | ¥ 18
l— |1 |a |y i
40 : g '
l— | 2 N 10
a0 . N i
122 —>4 1o v 12
120 | _‘_% 5 N . ;13
o 16 N 114
140 T ‘
=217 N {15
160 | \ s
! — 8 10 ;Y 16
280 —3.9 11 !¢ ! 17
" — 10 2 [v -
220 —1 13 ";‘:// Physical lMemory
240 : : >
| — 12 N |
260 r : :
| e N
280 * :)

Virtual Address Space Page HMap
Tables

Figure 1-2

If the sections are unequal in length they are called segments,
"hence "segmented" memory. This paper will only be concerned with
the former, demand-paged memory.

At the start of execution of a user's program, the first
page is brought into primary memory. This is done by the virtual
memory module, which will be explained in sextion l1.7.2. As
each instruction is executed, the virtual memory module checks
to make sure that all the address space referenced is in
primary memory. If the address space is not in primary memory
an interrupt, called a page fault (2), is generated. Tﬁe
operating system then processes th}s interrupt. This is done
by loading the required page into primary memory. The process
is then restarted from the point of the interrupt. Each addi-
tional required page is brought into primary memory upon request.

This can obviously lead to the point where primary memory
is full when a new page is being requested by the virtual mem-
ory module to be brought into primary memory. To alleviate
this situationr page replazement {1} is necessarv., This con-
sists of removing from primary memory a page that does not have a
high probability of being referenced in the near future. This
page is then placed in secondary memory while the nevly re-

quested page is moved into primary memory.

1.2.2.2 ADVANTAGE OF VIRTUAL MEMORY

Virtual memory is commeonly used today by many 1arge computers.
There are many advantages to be gained by using virtual memory.
Some of these advantages include:

(1) 1Increase in the number of programs that can be
multiprogrammed in a system.

(2) Capability of running a program whose address space
exceeds the primary memory spaca currently availatle,
if less than the maximum addressable memory.

(3) Makes programs more portable from large machines to
; small machines.

(4) Helps eliminate fragmentation of dynamic storage
allocation.

These are especially appealing to mini-computers since mini-computers

by nature have a smaller primary memory space.

1.3 SUPPORT FOR EMULATORS

For use in this paper, we will define an emulator to be a
firmware interpreter. This interpreter will convert a user pro=-
gram from the origiral language, instruction by instruction,
into the desired computer actions. &n emulator written for this
system must be aware of the manner in which to access fhe
virtual addressing system of the host processor. An emulator
will not create a machine language program. Instead, it will in
effe;t execute a small microprogram for each instruction of the
original language. The result of this activity will be the
execution of the original instruction.

The host machine's user assembler language itself will be

emulated by HIMICS to alleow virtual nmenory capabilities. HIMICS will

also allow "high-level” Languages to be emulated. Languages such as
 PL/1, APL, and COBOL are likely candidates for emulation. These
languages will require-a large amount of space for their emulators,
but due to the virtual stcrage capabilities of the system, this

space requirement does not present a problem.

1.4 INTER-EMULATOR COMMUNICATION

In many proarsameing situations, it is desirable te use
different languages for different modules of the program. For
example, one might want the processing portion of his algorithm
to be coded in an assembler language, and the input/output
sections written in s high-level'language. Such process linkage
will be allowed in this system. Interpreccess communication will
also be allowed in this system due to the capatilities of the
.host machine's operating system. A task or emulatéd process
can start another task executing. After starting another task,
the calling task may wait until the named task terminates. The
czlling task on the other hand wmay also continue processing
and test for the called task's compietion when necessary. A
task can also cancel another task which is executing. This
kind of communication is solely dependent upon the functions

of the host operating system.

1.5 MAFAGEABLE SOFTUARE

The key to manageable software is to keep it simple. This

can be accomplished by using a structured design (3). In this

°
approach a complex system is divided into small independent modules.
. This allows one to comprehend each module without keeping the de-
tails of the entire system in mind. Furthermore, modifications to
the system are simplified since a module can be changed or added
without affecting other modules.

A part of this structured design is provided by the operating
systeins of the host proca=ssors. Even if the operatinz systems
have to be modified to run in a virtual memory paging enviromment,
it is worth the trade-off. These modules are not only structured,
they will be almost error free from the start, and thus more manage-
able. Obviously it would require a great deal of time to produce

the equivalent modules from scratch.

"l.6 INSTRUMENTATION

1.6.1 RECORDED COUNTS
In order to evaluate a system's efficiency it is necessary

to employ techniques to record the specific actions taken by the
system. An obvious method of insvrumentation is to keep a count
of how many times a pre-specified eﬁent occurs. By knowing the
system input, and the actions caused, it is possible to evaluate
the systenm.

' There are two counts which must be tzken for every instruction.
The first is a count for each unique operation code. Uhen evaluating
the system, the frequency of execution of each kind of instruction

is essential. The second count records the number of tires each

10

page is referenced. This will be used to evaluate the performance

of the system under different paging options.

1.6.2 WORKING SET OPTIONS

Built into the system at system generation time is the ability
to perform paging under one of three options. These three options
have been choosen to yield different working set (1,8,9) sizes in
order to evaluate the system under various work loads for maximum
efficiency. In this paper, working set size refers to the number
of pages contained in Level 1 and Level 2 memory. This composes
a collection of the program's most recently used pages (11).
The terms Level 1 memory and Level 2 memory will be explained
in detail in section 1.8.2 of this chapter. The first optiocn
operates under a non-competitive fixed partitioned working set
size. The second option will allow the system to operate with
a competitive variable working set size based on a lecczl paging
rate. The third option, which operates on a competitive variable
working set size also, is based on a global scale and allocates
secondary memory using the LRU stack (1,10) principle.

Under option one, the total amount of secondary memory
will be divided_by the total number of jobs allowed to be multi-
programmed. This will be set at system generation time. Each

Joo will then have a fixed working set the same size as any

1

.
other job. For example, if there are 180 page frames and 3 jobs,
. each job will have 60 page frames for its use. (See Figure 1-3A).
Under option two the size of the working set for a job will be
adjusted to approach maximum efficiency as best as can be deter-
mined. This will be based on a competitive paging ratio computed
on a per-job paging rate over a given time period. Jobs having
high paginz rates tend to increase their vorking set size while
low:paging jobs decrease their working set eize.

Option three will take the entire working set ava;lable and
let all jobs have the space needed on a first come first use basis.
This treats the Level 2 memorf on, 2 global basis, whereas under
option one it was treated on a per-job basis or local level. This
will allow, for exémple, two jobs, job 1 needing 20 page frames
and job 2 needing 120 page frames, to be completely contained in
-Level 2 memory at once. (Sece Figure 1-3B). Under option one
above, the fixed size per job, job 2 could only have 60 of its
120 pages in Level 2 memorv at once.

Obviously in order to tell which of the abeve three mathods
is the best, monitoring of the different options is necessary.
This will include a count of the number of page faults occurring
out of cach memory level for each job under the given option.

There will also be an option to turn monitoring on or off.

1.7 OVERVIEY OF TLE SYSTEN

The HIUICS system may be viewed as a hierarchical structure

(4,11). A structure of this nature consists of modules located

80

140

200

260

12

Fixed Working Set Options

Operating Operating
System System

80

60 Page Frames , 100 - — — — — — — = —

Job 2: 120 Pages

60 Page Frames

220

60 Page Frames
Unused

260

Figure 1-3A 7 Figure 1-3B

Figure 1-3

13

*
on differert hierarchical levels (See .Figure 1-4). This type of
structure id called "layered insensitivity" (4,11). The levels
are insensitive because each level is allowed to call upon the
services of‘levels immediately above or below it in the structure,
but not those ievels farther than one level away. This means that
each level is not concerned about how or where things are done
in the levels above it or subordinate to it, and treats them all as
one level. Each level may be referenced by the level above or
below it in the hierarchy, but no level maybe dependent on a level
wﬁich is not a logically sequential level in the hierarchy structure.
For example, level 4 of the HIMICS system will interface with tie
file management system level 5, and virtual storage managemsnt

level 3, but level 4 may not call upon levels 1, 2, or 6.

1.7.1 ADVANTAGES OF SYSTEM DESIGN

There are several advantages to this type of design.

(1} The system is easier to understand.

(2) ERach mocule is easier to implemert.

(3) The verification of the entire system is accomplished
by verifying each individual level in-a bottom-up
fashion,

(4) Hodification of the system is simplified.

(5) The software system is relatively portable (i.e. inter-

facing with different hardware requires only the lowest

level of the system to be compatible, and the upper levels
do not require modification).

Hierarchical Structure

User Process

Virtual Processors

Virtual Storage lanagement

Processor Resource Allocation and
Synchronization and liessage

Handler - Multiplexing

File Management System

Peripheral lanagement

Figure 1-4

Level 1

Level 2

Level 3

Level &4

Level 5

Level 6

14

15

1.7.2 EXPLANATION.OF LEVELS

A short explanation of what is contained in each module follows.
Level 1 contains the user processes thch are interpreted and
executed in the primary memory of the host machine. These user
programs may be written in any language supported by an emulator
on the HIMICS system.

Contained in Level 2 are the virtual processors. This is the
system of emulators which execute one instruction of the user's
program at a time. DBefore each instruction is executed the current
real address of the virtually addressed operands must be retrieved.
Therefore all memory references must be detected and sent to level
3 to be converted before the emulation of the instruction may occur.

Level 3 contains the virtual storage management system. This
system must detect any page faults which are generated from the
virtual addresses of the instruction's operands. The virtual
addresses of the operands must be converted to real machine addresses.
This of course requires the page to be located in primary memory.
This managerent sysiem must interact with the file manageitent svstem
through the message handler in levei 4 to retrieve pages to primary
memory.

The message handler and resource allocation systems in level
4 are intermeshed deeply with the operating system of its host

machine. The message handler is responsible for the generation

16

and control of all information transfe; from the file-management
_system. This communication will consist of I/0 messages to and
from level 6, page requests from secondary memcry in level 5,
and the current state of the system (i.e. Yrequest page", "page
being transfeéred"). This message exchange coordinates the acti-
vities of levels 5 and 6 with the upper 4 levels of the system.

The file management svstem will reside at level 5. It will
handle all page requests bLetween secondary and primary storage.
All. input and output messages will be processed by the file
ménagement system upon request.',Incldded in the file management
module will be tables'which contain the current location of each
job's pages. These tables are initialized whan the job is started,
and are updated as pages are moved from one 1Q§el of memory to another.
Level 4 will send page requests and.I/O messages through the message
handler requesting pages to satisfy page faults and I/0 requests
when needed.

Level 6 is the peripheral management module., This module
will handle the interfuce with 211 peripherzl devices connected
to the system. This may include printers, card readers, tele-
types, display terminals, or whatever hardware is available to

interface with the system.

1.8 IMPLEMENTATION

We have just presented a machine independent description of

the virtual addressing system for a mini-computer system. Now a

more detailed description of the implementation of the system at

. Kansas State University will be presented.

1,8.1 HARDWARE ALLOCATION

The layered insensitivity graph in Figure 1-5 makes the
allocation of duties to actual hardware transparent. As can be
seen, the upper four modules will be located in an Interdata
85 computer. The lower two levels will ke located in a Hova com-
putér.

The upper four lgvels are located in the Interdata machine
because of its greater processing speeds. The extensive software
required by the HIMICS system fo; each user instruction requires
a fast processor. The Interdata cycle time of 270 nanoseconds
meets these general speed requirements. The ﬁcva machine is used
-as a peripheral processor. This prﬁcessor will have more time
to perform its duties, and yet removes a great processing overhead
from the Interdata. This setup lets each machine do what it
does best, and 21lows a wore officient and faster system. Using
two CPU's in effect allows parallel processing. Real I/0 may
be supervised by the Nova while the Interdata is processing a
user's program. Another view of the system design is given in

Figure 1-6. The system shown is based on a multiprogramming

environment of three users.

1.8.2 MEMORY LEVELS

It is apparent from Figure 1-6 that the use of two separate

CPU's primary memory, and disk memory creates three levels of

17

18

Hardware View of Hierarchical Structure

Level 1

Level 2

Interdata 85

Level 3

Level &

Level 5

Nova

[}

Level

Figure 1-5

19

Alternate View of System Levels

Fes User 1 User 2 User 3
Yaterdaia s Interface Interface Interface
 Frfmary Block Block Block
Memory Operating | __ __ t+ __ __— 41 __ _— _4
Syst User 1 User 2 User 3
Bhen Extended Extended Extended
Operating Cperating Operating
System System Systenm
F g, Paper Tape I/0O g Control Panel
]
User 1
File - - - = — — — /7
Management User 2
Nova Systen
P e —— ——mer — — Ll R -—1
Fluaxy User 3
Hemory ——
Operating System

Nova Disk \l’
™~ ’ Output
/////’ — T ™~ Device
User 2 -

-///;er 1 \ User 3

Input
Devize

I —

uddress y \‘User 1
; Space v
! Input I User 2
‘ - Spool / } T~ Input
\ Output / Buffer
) Buffer] /
/ \ \ User 3
‘User 3 User 1 ¢

™~ User 2 _ 7

20

memory. These thr;e levels will be referred to as Level 1,

- Level 2 and Level 3 memory in the remainder of this paper (see
Figure 1-7). The Nova disk is the léwest level of memory or
Level 3 memory. Each user's program upon entry to the system
is spooled to an input file in this third level of memory by
the Nova. When the user's job is set to running, the program is
put into his address space, also located on Nova disk, Level 3
memory. The data input is stored in his input file. Any out-
put generated by his program will be spooled onto his cutput
file for printing when his job terminates.

Nova primary is the second level of memory for this sys-
tem. The management system which controls all page traffic in
the Nova is located here. This file system receives page traffic.
from the Interdata, and using its own paging algorithm, re-
arranges the user's pages in the extended page space in the
Nova's Level 2 memory. If a page is being transferred to Level
3 memory (i.e. paged out of Level 2 memory), it is copied back
to the address spcce only if it is an originzl psge. If = page
in Level 2 memory is requested by tﬁe Interdata to satisfy a
page fault, a bit is kept to record whether or not this page is
original to the address space in Level 3 memory. If it is, then
the page must be copied back to the user's address space before

being overwritten when paged out of the lova's Level 2 MEROTY .

21
Levels of Memory In The System

Interdata MOS

Operating System

JOB 1

Level 1 Memory
JOB 2

JOB 3

Nova Core

Operating Systen

JOB 1

Level 2 Memory

JOB 2

JOB 3

Fova Disk

Level 3 liemory

Figure 1-7

22

This file management system must have tables which keep
“track of the pages located in its Levgl 2 memory and Interdata
Level 1 memory and all of the user's files located in Level

3 memory. This management system must also interact with the
Interdata. All I/0 communication and messages must be received
and handled by this system.

The first level of memory is locsted in the Interdata.
Located in Level 1 memory will be the user's FCB (Process
Control Block). Each user will have space for a fixed number
of pages of his program, along with a.page table containing

information necessary to handle page faults and address mapping.

1.8.3 LOCATIGN OF SOFTWARE

1{0 SVC parameter blocks are created in the user's extended
operating system in Level 1 memory. These parameter blocks are
needed to inform the peripheral processor of the type of I/0
which is to be done. Also the task idéntification, virtual page
nuﬁber, interval timer and starting and erding location muct be
included in the parameter block. These parameter blocks are
built and then passed to the Nova system.

The FCS (fixed control store) is read only memory which
contains the Interdata machine language instruction interpreter.
The I/0 instructions will not be interpreted by an emulator as are

other instructions, but will be interpreted by the program located

23

.
in the FCS., The dynamic control store (DCS) will contain the
language emulator. The address translator, which recognizes and
handles page faults and virtual to real‘address translations,
will also be stored in the DCS portion of the Interdata Level

1 memory. The proposed design may be likened to that of a
single system. Level 1 Interdata memory corresponds to primary
memory. Level 2 Nova core memory, and Levei 2 Nove disk memory

corresponids to secondary memory.

1.9 SUMMARY

In order to bring the overall picture of the HIMICS system
into focus a short summary of the system will be given. This
system will be in 2 multiprogramming envircrment. Each user
will initially have 64K of virtual address space at h;s dis-
_posal. All real I/O will occur in the Nova. A user's source
program will be spooled into an input buffer on the Nova's
disk. The source program will then be copied onto the user's
virtual address space also locatad on the Nova disk. The
user's data will be put in his input file on the Nova disk. The
user's source program will be divided into fixed length pages.
Each user's program will be given a starting virtual address
of zero. As soon as the user's job is set to running by the

Interdata operating system, a PCB is created in the Interdata

memory. The page table will be located in this PCB.

2l

This table will be empty when the job becomes running, A page
table is also set up in the Nova lLevel 2 memory,

Irmediately after a job is started, a page fault will be
generated in the Interdata, Page zero wili be requested, and
paged in from Level 3 memory to lLevel 1 memory, The system is
now teady to begin execution of the program, |

The emulator is given the current instruction to process,
All operands must be converted to real addresses, When the page
needed is not located in the Interdata, a page fault is generated
and processed, When all operands are mapped, the instruction may
be interpreted, The instruction counter is incremented, and the
next instruction is executed (unless the previous instruction
was a jump of some kind),

A special case is encountered when the end of a job is reached,
An I/0 SVC must be generated to the Nova to empty the output
buffer to the output device, Then a job termination message will
cause the address space, buffers, and Nova core page space to be
released, The Interdata extended operating system then terminates

the job in the Interdata, and a new user's job is initiated,

1,10 INTRODUCTORY DESCRIPTION OF REMAINING CHAPTERS

The remainder of this paper will be concerned with levels
five and six, which are the levels contained in the Nova, (See
Figure 1-5,} Levels one through four are included in a report

by Smith (5).

25

Chapter two will include a general discussion of the paging
algorithms, and page migration patterns. Chapter three will dwell
on the implementation of the system., This will include algo-
rithms and data structures for implementation. Chapter four
will be a short summary of the HIMICS system and a concluding

gurvey of future work which could be done on the systen.

CHAPTER TwWO

2,1 INTRCDUCTION

The three main functions the Nova performs in the system
are, page management, file management and Input/Output for the
system, In this chapter page management will be analyzed in detail,
Different page flow patterns will be traced through the system,
Three different paging options will be discussed and high level
algorithms will be given for their implementation, File management
and I/0 for a general system will be discussed, but not in detgil,
" since the operating system being used in this implementation will
handle most of this for the system, I/0 for this system will be

discussed in detail in Chapter Three,

2,2 PAGE MANAGEMENT

Programs executing in a virtual memory environment, using
demand-paging, are brought into main memory in fixed length blocks
called pages, Most systems use page sizes ranging from 256 to 1024
words, For the system being implemented in this paper a natural
choice for the page size is 256 words, This is because the
particular disk drive being used in this implementation reads and

writes in blocks of 256 words, with each word being 16 bits long.

2,2,1 THRASHING IN PAGED MEMORY SYSTEMS

Thrashing (8, 13) is a troublescme phenomenon which may
seriously interfere with the performance of paged memory systems,
It is characterized by too much paging. This causes the processor
to be idle a high percentage of the time while performing the actual

page transfers, This excessive overhead can cause severe performance

26

degradation or even collapse of the system, The prime cause of
paging's performance degradation is the large time required to
‘access a page stored in auxiliary memory, This is due to the
rotation and head positioning times associated with most secondary
me2mory devices,

In the implementation proposed in this paper the secondary
memory access time will be minimal or transparent to the overall
efficiency of the system, This is due te two main stratigies in
the design of the system, The first is in the use of three levels
of memory, see Figure 1-7, as opposed tc the normal two levels of
memory, In this proposed system the second level of memory will
be directly addressable core located in a Nova mini-computer,

Thus the page transfers between Level 1 memory and level 2 memory
will be much faster since they are a core tc core type transfer

as opposed to a rotational device to core transfer, The second
reason is the fact that this proposed system has a dedicated mini-
computer to handie the paging, This achieves parallel preccessing,
Thus when one task goes blocked because of a page fault, the host
machine can continue processing other tasks while the requested
page is being paged in by the second processor, Even if the
requested page is in the third level of storage, in effect we have
eliminated the wait time in the system since it continues to do

parallel processing,

2.2,2 PAGING OPTIONS
The Nova will handle paging for the system under one of three

options, The option the system will run under will be set at

27

28

system generation time, 7These options will include the ability to
Tun the system under:

(1) A competitive variable working set size based
on local paging rate,

(2) A competitive variable working set size based
p
on a global scale,

(3) A non-competitive fixed partitioned working
set size,

The system is being designed with these three options so that
statistical data of the system can be recorded and performance
evaluation analysis made of the system under the various options,
The layout of Level 2 memory for these options are shown in Figures
2-1A thru 2-1C,

Under Option 1, the competitive variable working set size based
on local paging rate, each job has a portion of Level 2 memory, See
Figure 2-1A, This portion of memory is variable as represented by
the wavy lines, The portion each job has depends upon that job's
paging rate and the availability of Level 2 memory, A job having a
high paging rate tends to increase its working set size while a job
with a low frequency paging rate will decrease its working set size,

In Figure 2-1B, Option 2, the competitive variable working set
size based on a global scale, a job is giveﬁ the next available
page frame when a page fault is encountered if one is available, If
all the page frames are in use, then the page that has been unused
the longest is paged out (LRU) (1), The job then uses this vacated
page frame, The LRU alg;rithm is applied globélly to determine

which page is to be removed if all page frames in Level 2 memory are

29

Level 2 Memory Layout For Various Page Options

Page Option 1

Operating System

Page Option 2

Operating System

Job 1

Job 2

Job 3 Pg. 0

Job 1 Pg. 1

Job 2 Pg.

Job 1 Pg.

Job

1

3
Job 3 Pg.

3

Job 3 Pg.

Job 3 Pg.

Job 3 Pg.

o O AW N O O

Job 3 Pg.

Job 3

Local

Figure 2-1A

Global
Figure 2-1B

Figure 2-1

Page Option 3

Operating System

Job 1

Job 2

Job 3

Fixed
Figure 2-1C

in use, Thus under this option a single job may use all of level

2 memory, This will be explained in detail in section 2,2,5,2,
Under Option 3, the non-competitive fixed partitioned working

set size, the arount of Level 2 memory is partitioned into areas of

equal size, See Figure 2-1C, The size of each area is determined

by dividing the total size of Tevel 2 memory by the number of

partitions, Any remaindar of page frames will be distributed by

adding to each job one page frame, starting with Job 1, until all

remaiﬁing page frames have been distributed, For example, if 5

jobs are to be multiprogrammed and there are 19 page frames

{19/5=3 remainder 4), the five partiticns would have 4, 4, 4, 4

and 3 page frames respectively, These calculations and allocacicns

of level 2 memory are set at system generation time and are static,

2.2,3 WORKING SET 5iZE

Working set size used above refers to the number of pages a
program has in Level 1 memory, plus the number of pages it has in
Level 2 memory at a given time, The working set sizé will therefore
be a variable with respect to time, For example, Job 1 may have
30 pages in Level 1 memory and 20 in Level 2 memory giving it a

working set size of 50 pages at some time (Ti)' At T.1+ it may

10
have 30 pages in Level 1 memory and 25 in Level 2 memory, giving it

& wvorking set of 55 pages, See Figure 2-2,

2,2,4 PAGING TRANSFER FLOW PATTERNS
Paging in the system can follow one of four transfer flow
patterns, These patierns, or sequences of page transfers are given

in Figures 2-3 thru 2-6,

30

31
KWorking Set:Size

Interdata Interdata
F‘—

Operating System Operating System
Job 1 30 pg. Job 1 3G pg
Job 2 25 pg. Level 1 Mesory Job 2 30 pa.
Job 3 30 pg. Job 3 30 pg.
Job 4 5 pg. Job 4 15 pg.

NOV&E Nova
Operating System Operating System
Job 1 20 pg. Job 1 25 pa.
Job 2 0 pg. : Job 2 5 pg.

M
Job 3 10 pg. Level 2 Memory Job 3 0 pg.
Job 4 O pg. Job 4 0 pg.

Working Set Size
(Level 1 + Level 2 Memory)
Job
Time T, Time Ti+10
1 50 55
2 25 35
3 40 30
4 5 ; 15

Figure 2-2

Transfer Flow Patterns

Flow Pattern 1
Level 1 Memory

Operating System

Job 1

(—-9 Job 2

Job 3

Level 2 Memory

) Operating System

w/

[~

N~

Figure 2-3

Flow Pattern 2
Level 1 Memory

32

Operating System

Job 1

1/ /777

N IIIIIID.

>,

Job 3

Level 2 Memory

:) Operating System C

N\

€

-Figure 2-4

33

Transfer Flow Patterns

Flow Pattern 3 Flow Pattern 4
Level 1 Memory ' Level 1 Memory
Operating System Operating System
Job 1 Job 1
| £/ /777777 T/ /7777
Job 2 ob 2

RYIIIIIIII 5-\ RSN

Job 3 Job 3

K Level 2 Memory }) \ Level 2 Memory

) Operating System C DOperating System q

//////////

V.
€

Level 3
Memory

Figure 2-5 Figure 2-6

2,2,4,1 TRANSFER FLOW PATTERN 1

The simplest transfer is shown in Figure 2-3, This transfer
is from Level 3 memory to Level 1 memory, All jobs will initially
start with this type of transfer, This is because all jobs are
initially spocoled to Level 3 memory and before execution can begin
the first page has to be transferred intoc the Interdata‘'s Level 1
memory, The Interdata will issue a request to start this transfer,
This type of transfer; Level 3 memory to Interdata Level 1 memory,
will continue for each page fault request by a job until that iob's
Level 1 memory Sp#ce partition in the Interdata is filled, This
partition size will be set at system generation time and will vary

depending on how many jobs are set to be multiprogrammed,

2,2,4,2 TRANSFER FLOW PATTERN 2

- This type of transfer is shown in Figure 2-4, It occurs when
a page fault is requested by a job and there are no page frames
available in that job's working set in the Interdata‘'s Level 1
memory, There is always one page frame available for the transfer,
but it is not counted in the job's working set, In this transfer
a page is transferred from Level 3 memory, to Level 1 memory. Since
this takes away the transfer page frame in ievel 1 memory, a page
has to be paged out of Level 1 memory, This is to allow future
page faults an empty page frame into which they can be transferred,
This is used for efficiency, If the extra pape frame was not
available, a page would %irst have to be transéerred out of Level 1
memory before the new page could be transferred in, With the extra

page frame, the page to be transferred out can be transferred after

the new page has been transferred in, This allows the process, that
caused the page fault, to continue executing in the Interdata while
-the outgoing page is being transferred to a lower level of memory by
the Nova, This flow pattern will continue until the job's Level 2
memory in the Nova is filled, or a page is requested that resides

in level 2 memory, Then flow pattern 3 or 4 will preside,

2.2,4,3 TRANSFER FLOW PATTERN 3

.This type of transfer is shown in Figure 2-5, It occurs
when a page fault is encountered by the Interdata and the page
requested is in the Nova's Level 2 memory. The transfer intc the
Interdata‘'s Level 1 memory is the same as under transfer flow
pattern 2, except the page is copied from the Nova's Level 2 memory
instead of from Level 3 memory., This core to core transfer is
much faster than the disk to core transfer, This is because the
dick to core time has to include a disk seek time for the Read/Write
heads on disk to be positioned in order to read a page from disk,
This ses2k time runs on the average of 50-100 milliseconds and is
very time consuming compared to the core to core transfer time of
approximately 250 microseconds, This is the main reason for the
extended page memory system being extended into the Neova's Level 2
memory.

The second part of the transfer, the paging out of Interdata
level 1 memory into Nova Level 2 memory introdures two new
possibilities, One is the possibility that the page to be paged
out alrsady has an identical copy existing in Level 2 memory, The

other is that there is not an identical copy of it. This includes

35

the case where there was an identical copy of the page to begin
with, but the page while in the Interdata was changed, hence two
‘jdentical copies do not exist, If the page has been changed in
the Interdata it is flagged as an origiral by the Interdata, If
the page to be paged out is an original it needs to be recopied,
If it is not an original it need not be recopied, If it does not
need to be recopied it saves the transfer time, These two
possibilities will always exist whenever a page fault is encountered
and a previous copy of the page existed in the lower of the two
levels of memory prior to the page fault, In this case lower
level memory being a higher level number (i.e, Level 1 memory is

the highest and Level 3 the lowest),

2,2,4,4 TRANSFER FLOW PATTERN 4

This is the most complex page flow pattern in the system,

It is shown in Figure 2-6, Before this type of flow can occur four
conditions must exist, First, the job creating the page fault must
have all its page frames in Level 1 memory in use, Second, all the
page frames available for that job in Level 2 memory must be in use,
Third, the page being paged out of lLevel 1 memory must not have an
identical copy residing in Level 2 memory. And fourth, the page
causing the page fault must reside in Level 3 memory.

As can be seen in Figure 2-6, the requested page is copied
from Level 3 memory into Interdata Level 1 memory, This takes the
transfer page from Level 1 memory in the Interdata, A page thus
has to be released to recreate the transfer page frame, A page is

selected by the Interdata to be paged out to the Nova Level 2 memory,

This frees up a page frame in the Interdata for the next transfer,
but in turn takes away the Nova's transfer page frame in Level 2
‘memory, It therefore has to select a page for removal, This page
is then moved to Level 3 memory, This releases a page frame from
the Nova's Level 2 memory to be used for the next page fault to
Level 1 memory, This completes the cycle,

The goal of this hierarchal memory system is to maximize the
number of times pages are in the faster memory levels when being
referrenced, This implies that flow pattern 3, Figure 2-5, is
the desired page flow pattern we wish to achieve in this system,
This is because the core to core transfer is much faster than the

disk to core transfer as noted previously,

2,2,5 PAGING ALGORITHMS USED IN SYSTEM

In this implementation, using two mini-computers and 3 levels
of memory, two paging systems will be used, One to handle the
paging between Level 1 and Level 2 memory and the other to handle
paging between level 2 and Level 3 memory, Paging between Level 1
and Level 2 memory will be handled by a Least Recently Used (LRU)
(1) approximation algorithm called a Not Used Recently (NUR) (1),
The algorithm will be implemented in the hoét machine, 1Its
implementation is dealt with in detail in a paper by Smith (5),
We will look briefly at its logic in order to better understand the
paging algorithm necessary between Level 2 and Level 3 memory, Also
the reason why the NUR wﬁs preferred over the LRU in the host

machine is discussed,

37

The LRU selects for removal the page that has not been
referenced for the longest period of time, It is based on the
‘theory that if a page is referenced, it is likely to be referenced
again soon, Conversely, if it has not been referenced for a long

time, it is unlikely to be needed in the near future, The LRU

implies that a time has to be recorded each time a page is referenced,

Then when a page is to be removed all these times have to be
compared to find which one has been present the longest, This is
too time consuming to be done using software and is the reason the
NUR is preferred for this implementation.

The NUR approximates an LRU by setting a reference bit
associated with the referenced page to 1 everytime the page is
referenced, Periodically the reference bits are reset to O, Thus
anytime a page has a 0 reference bit it is known the page has not
been referenced since the last time the bit was reset to 0, This
means the page has not been used recently and is a candidate for
removal, This in turn implies that at any given time, Level 1 will
contain the most recently used pages for that period of time, which
is the LRU approximation,

The pages that are removed from Level 1 memory are moved into
Level 2 memory. Thus Level 2 memory is an extension of Level 1
memory, and will at a given time still contain the most recently
used pages,

The paging algorithm being implemented between Level 2 and
Level 3 memory will be a true LRU and not an approximation, The

reason this can be done at this level and not above is that Level

38

39
2 memory is not directly addressable by the user's program, Thus
if a page in Level 2 memory is accessed, it is through the operatins
system, Each time a page is accessed it is moved out of Level 2
hemory and this eliminates the need to keep the access times associated
with the page, as was described above, Instead a First-in/First-Out
(FIF0) stack (1) is kept of all the pages in Level 2 memory, This
then is the LRU stack (10), Thus the first page paged into level 2
memory is the least recently used and will be paged out first when
Level 2 memory is full and a new page is to be moved from Level 1

memory to level 2 memory,

2,2,5,1 PAGING ALGORITHM DISCUSSION FOR OPTION 1

Under Option One, paging in the system will be based on 2
competitive variable working set size, This means that a job's
working set size is allowed to expand or contract, This size change
will occur in Level 2 memory, This is because Level 1 memory is a
fixed size for each job and is set at system generation time, The
determining factor as to whether a job's working set size is changed
is based upon its current paging rate compared to its past paging
rate, If its current paging rate is significantly slower, then one
page is paged out of its working set and the page frame put on a
free list for use by other programs, If its current rate is faster,
and there is a free page frame available, then its working set size
is increased by one page frame, Note, this implies one job may
never pre-empt a page frame from another job, It only gets a page
if there is one available, In other words the.algorithm is applied
on a “LOCAL" basis. This means a job's working set stays intact

despite the other programs paging a2ctivity with which it shares

memory, There is also the case where the past paging rate and
the current paging rate are about the-same, Irn this case the
working set size is not changed, In this initial design, if the
current paging rate is within plus or minus 10% of the previous
page rate, the working set size will not change, This will be
implemented so that it can be changed as the paging behavior will
have to be monitored in the system before an optimum range can be
determined,

Before presenting the hiznh level algorithm we will look again
at the hierarchy structure of the memory levels and make a few
notes, In Figure 1-7 we displayed the three levels of memory in
the system, Also it should be remembered that the working set size
was defined as the total sum of pages a job has in Level 1 memory
plus Level 2 memory, Figure 2-2, As noted above, Level 1 memory
is a fixed size, Thus looking back at the 4 transfer flow patterns
(Figures 2-3 thru 2-6) it can be seen that increasing a job's
working set size will only be effective in reducing the paging rate
in flow pattern 4, Figure 2-6, This is because in flow pattern 1
and 2, Level 2 memory for the job is not yet saturated and in flow
pattern 3 increasing the size of Level 2 memory for a job will not
reduce paging as the paging being done is already within the job's
working set, This leaves us to only be concerned with flow pattern
4,

The page fault rate is based on a time variable., This time
variable being the length of CPU time that has elapsed for the given
task between page faults, When a page fault occuré, this interval

time is saved to be compared against when the next page fault occurs,

Lo

Initially it will be set to zero, When a2 page fault occurs, the
current fault rate time is compared against 90% of the previous
-fault rate time to see if the rate of paging has increased by a
factor of at least 10%Z, This indicates a faster rate of paging,
If so a check is made to see if there is an available page frame
for use, If there is, then this task's working set size is
increased by one page, If the above tests fail, then a check is
made to see if the rate of peging has decreased by a factor of 10%,
This is done by comparing the current fault rate against 110% of
the preﬁious fault rate, If the current fault rate is greater
than 110% of the previous fault rate, indicating a slower paging
rate, then the working set size for the task is decreased by one-
page. If the fault rate has neither increased or decreased by
10%, then the task's working set size remains the same, The
current fault rate is then stored as the previous fault rate to be
used when the next page fault occurs,

The algorithm given below will be entered each time a page
migration between Level 2 and Level 3 occurs with the exception of
a page migration for I/0, I/O will be discussed in section 2,3,2,
It has no bearing on working set size but can cause page migrations
between memory levels,

High level Algorithm For Option 1

ENTER PG_OPTION 1(JOB ACC_TIME)

1, CURREN:_FAULT_BATE=JGB_ACC_IIHE-PREVIOUS_FAULI_RATE

2, 1IF CURRENTLFAULT;ﬁATE<PREVIDUS_EAUL?_BATE*QOE AND

THERE IS AN AVAILABLE PAGE FRAME THEN

e | INCREASE WORKING SET SIZE BY 1

42

3. ELSE IF CURRENT FAULT;BATE>PREVIDUS_?AULT_RATE*
110% THEN
3.1 DECREASE WORKING SET SIZE BY 1

4, PREVIOUS FAULT_BATE:CURRENT;?AULTLBATE
5 RETURN

6, END

2,2,5,2 PAGING ALGORITHM DISCUSSION FOR OPTICN 2

.Under this option, the competitive variable working set si:ze,
Level 2 memory is treated on a "GLOBAL®" scale, The algorithm is
implemented by using an LRU stack, When a page migration occurs
between Level 1 and Level 2 memory the job is given the next available
page frame if one exists, If Level 2 memory is saturated, then the
LRU stack is checked to see which page in Level 2 memory has been
unreferrenced the longest, This page is then paged out to Level 3
memory, regardless of which job it belongs to, and its vacated page
frame used by the requesting job,

For example, take 3 jobs, Job 1 has 80 pages in Level 2
memory, Job 2 has 39 and Job 3 has 1, See Figure 2-7, Llet the
number of page frames available be set to 120, Let the order of
request be such that Job 3's page is the oldest page, Let the next
page fault be issued by Job 2, This will cause Job 3 to lose its
only page in level 2 memory and Job 2's new page to be put on top
of the LRU stack,

This is shown to illustrate that 1 or 2 jobs may dominate the
Nova's Level 2 memory, This may be advantageous as some small

jobs, or jobs which display a high degree of locality (8,9) may

39
40

119
120

158
159

Memory Domination Under The Competitive
Variable Working Set Size Option

Level 1 Memory

0

Operating System
39
40

Job 1, 80 Pages

119
120

Job 2, 39 Pages
Job 3, 1 Page 159

Before Page Fault

Figure 2-7

Level 1 Memory

Operating System

Job 1, 80 Pages

Job 2, 40 Pages

After Page Fault

never need secondary storage, or at least not a large amount of it,

The high level algorithm for page Option 2 is presented next,

‘High Level Algorithm For Option 2

ENTER PG_ALG OPTIGN2(JOB#)

1, CHECK FOR EMPTY PAGE FRAME

2, IF¥ ONE EXISTS THEN

2,1 USE AVAILABLE PAGE FRAME

3. ELSE CHECK LRU STACK AND TRANSFER TO LEVEL 3 MEMORY
THE FAGE THAT HAS BEEN RESIDENT THE LONGEST IN
LEVEL 2 MEMORY AND USE THIS NEWLY RELEASED PAGE
FRAME

4, RETURN

2,2,5,3 PAGING ALGORITHM DISCUSSION FOR OPTION 3

Under this fixed size working set option, the total number
of page frames available will be divided by the number of jobs being
multiprogrammed, Each job will then have a fixed maximum number
of pages that it may use, For example, if there are 90 page frames
of Level 2 memory and 3 jobs are running, each job may have a
maximum of 30 pages of Level 2 memory (90/3=30), Each job will
then use its 30 pages as an LRU stack for paging operations, The
logic of the algorithm is the same as in option two, The difference
is that option two has a global pool of page frames and option three
has a local pool of page frames, The high level algorithm for

option 3 is given below,

45

High Level Algorithm For Option 3
ENTER PG_ALQ_QPTIONB(JOB#)
1, IF PG FRAMES IN USE(JOB#) = TOTAL AVAILABLE THEN
1,1 USE AVAILABLE PAGE FRAME
2, ELSE OBTAIN THE LEAST RECENTLY USED PAGE FROM LRU
STACK, MOVE THE LRU PAGE TO LEVEL 3 MEMORY AND
USE GIVER PAGE FRAME

3., RETURN

2,2,6 THRASHING AS REIATED TO PAGING OPTICNS

The least amount of thrashing should be exhibited by option
one, This is because of two things, First, the algorithm is
applied on a local basis, This means excessive paging by jobs in
the system will not influence the other job's paging rate, Second,
the working set size for a job is allowed to expand or contract if
its local pasing rate indicates it to be desirable, This will tend
to reduce thrashing caused by a fixed partitien size as in option
three, This is because the critical region causing thrashing may
be only 1 or 2 pages, Under the fixed option, the extra 1 or 2
pages can never be included in the job's working set, whereas under
option 3 the working set for the job will have the opportunity to
1ncrease its size the extra several pages it needs,

The most amount of thrashing should occur under cptien two,
the global competitive working set option, This is due to the
glotal nature of the algorithm, which means jobs will be pre-empting

pages from eacr otker, In order for a job te pre-empt a page frem

L6

another job, flow pattern 4 (Figure Z-6) must be the pattern
followed, This could cause severe CPﬁ wait time in the host
machine due to the high speed page transfer between Level 1 and
Level 2 memory and the slow speed between Level 2 and Level 3

memory, See Figure 2-6,

2,3 1/0 FOR SYSTEM

There will be two basic types of If0 processing handled by
the Nova for the system, The first will be the I/0 which will take
care of the spooling of jobs in the system, The second type will

handle program requested data transfers during program execution,

2,3,1 SPOOLING OF I/0

A user's program and unit record input data are initially
spocled to disk in the user's virtual address space, starting at
virtual address 0. The source program will be divided into fixed
length page segments of 256 words each as it is being spooled,
Upon completion of a job, all output for the job has been spocled
to diék. The Nova then dumps this output to the printer or other

output device as requested by the job,

2,3.2 PROGRAM REQUESTED I/0

Program requested input will be handled similar to a page
fault, When the user program request input, a message is sent to
the Nova by the Interdata, This message will include the starting
and ending virtual addresses of the area that the data is to be
read into, The Interdata will then lock the page or pages of the

I/0 data area in, in Levei 1 memory if they are currently residing

L7

in Level 1 memory. This is done so that the associated page(s) do
not become candidates for removal during I/0, Next the page that
contains the beginning virtual address of the I/0 area is located,

If it is in Level 1 or Level 2 memory, then the I/0 is performed to
its corresponding real addresses, Next its page map table entries
are updated, If the page is located in Level 3 memory, it first

has to be copied to an I/0 work buffer located in Level 2 memory.
Then the I/0 is performed to the work buffer and the page transferred
back to its Level 3 address, If the virtual addresses span more

than one page, then each succeeding page is treated in the same

manner as described above until all the I/O0 has been completed,

2,4 FILE MANAGEMENT

File management in this implementation will only be concarned
with that which is necessary to do the paging and the I/0 spooling,
The main reason for this restriction is hardware, The present
system only has one disk and it is being dedicated to I/0 spooling
énd Level 3 memory usage in the system,

The following file management system is described for a system
which allows dynamic allocation of core., Since the system being
used for the actual implementation of this system does not allow
dynamic allocation, the implementation version given in chapter
three will vary from the following description, This version is

included here as it is a more general version,

1418

2,4,1 DATA BASES FOR FILE MANAGEMENT

This system will use seven :ypeé of tables to handle the
‘file management and paging. They are:

(1) Spool Table (ST).

(2) Disk Usage Sector Table (DUST),

{3) Memory 2lock Table (MBT),

(4) Job Table (JT).

(5) Page Map Tahie (PMT),

(6) File Map Table (FMT).

(7) Extended Page Fault Table (EPFT).

The spool table (Figure 2-8), keeps track of the files
associated to a unique job, For initial implementation this tabie
will remain in Level 2 memory. In an actual production environment
it could become necessary to move it to Level 3 memory due to its
potential size, as every job entered in the system will have an
entry in the spool table, Entry one in the spool table contains
a unique job identification number for each job entering the
system, Entry two contains that job's source deck file name, Entry
three contains the file name of the job's data input, if any exist,
Entry four contains the file name of the job's object deck, Entry
five contains the job's output file name, This output file will be
dumped to the designated output device at the close of a job,

The Disk Usage Sector Table (DUST), Figure 2-9, is used to
Store the status of each sector of the disk, Each sector on disk
will have a corresponding bit in the DUST table to represent whether
the sector is in use or not, A 0 in the table means the sector is

not in use, A 1 indicates the sector is in use. A bit map (1)

ass N = W ™~ —t

100

Spcol Table

Source Deck Da£a Deck Obj. Deck Output
Job ID File ID File ID File ID File ID
J100 J101 J200 J98 Jliz
J71 J72 473 J74 J75
1 2 3 4 5
Figure 2-8
Disk Usage Sector Table (DUST)

0 1 2 3 4 &6 T 8 10 11 12 13 1.4 15
ol 2] 2:112] Of O 0] 1} 1 ojojo} ¥ 2]
6101 0jJ0} O} 2 111 PR S PO e PR e PR s PR s
32113121 12f 2} 2 02 I P i P ojojxrioOofljo
48
64
80
96

Figure 2-9

is used because it takes up less storzge in the system,

The Memory Block Table (MBT), Figure 2-10A, will consist
of two parts, A biock numbsr, one feor each 256 words of stcrage
in Level 2 memory, and the status of the block that is associated
with it, The status will tell if a given block is in use, and if
so who has it, There will be one MBT located in the system, It
is used for dynamic allocation of storage by the operating system
for the various tables,

The Job Table (JT), Figure 2-10B, will consist of four parts,
The first entry will contain a job number for each job running in
the system, The second entry will contain that job's starting
address of its page map table, The third entry will contain the
job's file map table starting address, The last entry will be the
job*s length in number of pages, There will be one JT for the
system, The JT's main use is to save core, If it were not used
each PMT and FMT for each job would have to be given a specific
location in core, Furthermore, they would each have to be allocated
to hold the maximum number of pages. With the job tabie, core for
the PMT and FMT can be allocated according to the length of the job
running,

There will be one Page Map Table {PMT), Figure 2-10C, per
job, It will consist of two entries, Entry one will be the address
where the page is located in memory, Entry two will be the status
of the page, This will indicate if the page is an original, An
original page is a page that has been changed in a higher level of

memory but net changed in its virtual address space in Level 3

50

File Management Tables 51

Job Tabl
Memory Block Table £ob 2ab1e Length
Blk. # Status Job # Loc. PMT Loc. FMT (pgs.)
0 Op. Sys. 1 2000 3103 1
1 Op. Sys. 2 1760 3100 3
2 Job 3 Pg. 1 3 1880 4000 2
3 Job 2 Pg. 1
4 Job 3 Pg. 0 Figure 2-10B
5 Job 1 Pg. O
6 Free
.
N
Paga Mop Table Extended Pg.
] Blk. # Status Fault Table
Figure 2-10A = =
0 0 Job 1 Pg. O
3 1 Job 3 Pg. O
0 0 Job 2 Pg. 1
File Map Table Job 3 Pg. 1
110
140 4 1
141 2 0
142
5 0
260
261

Figure 2-100 Figure 2-10C Figure 2-10E

memory, Hence it is an original since no two identical copies
exist, The beginning PMT address, plus a corresponding offset
‘equal to the desired page number, will be used to reference the
requested page, Hence the page number does not have to be stored,

The File Map Table (FMT), Figure 2-10D, performs a similar
function to the PMT, There will be one FMT per job, There will
be one entry in the FMT for each page a job has in Level 2 memory,
It will contain the address of where the corresponding page is
locatéd in Leveil 3 memory, The offset principle as described above
will be used to reference a particular page,

The Extended Page Fault Table (EPFT), Figure 2-10E, will
be used to implement the LRU paging algorithm in the system, It
amounts to a FIFC stack of all the pages in Level 2 memory, There
will be one EPFT per job,

Figure 2-11 shows how the above tables, used for paging,
relate to one another, When a page is requested a check is made to
the job table for the location of the page map table. Next the PMT
is looked at at the given address plus an offset equal to the
requested page number, The block number, first PMT entry, is then
checked to see if it is greater than zero, If zero, it implies the
page is not in Level 2 memory, If it is greater than zero, the
system transfers the given page from the block number, obtained
from the PMT, to Level 1 memcry. If the block number is zero, the
System obtains the starting address of the file map table from the

job table, and goes to the FMT to obtain the address of the desired

52

53
Locating Requested Pages In The Level 2 Processor

To Find Pg. 0 To Find Pg. 2
of Job 3 Job Table of Job 2 Memory
Job # PMT FMT Length i B1k. Table
1600 | 1 | 2000 3103 | 1 LD o] o sys.
il
1601 2 17'60l 42100.“__ 3 N 1 Op. Sys.
2 Job 3 Pg. 1

, 1602 __iJMSBD} 000 | 2
=~ ©

/

|
p 3 Job 2 Pg. 1
Pg. # Blk. # l Status l 4 Job 3 Pg. O
0 o | 0 5 Job 1 Pg. 0
1 t \
11 3 1 \ 6
2¥| o 4 0 \
. | N
L} /f §
PMT' (
MT's 1880 0 4 1 " -
1881 1 2 0 | Level 2 Processor
: } 0 Op. Sys.
2000 0 5 0 | 1 Op. Sys.
: 7
&'—“~—+—~——‘ 2 Job 3 Pg. 1
3100 0 | 110 3 Job 2 Pg. 1
3101 1 : 140 \>4 Job 3 Pg. 0
3102 2 4 141+~ 5 Job 1 Pg. 0
FM [
T'S 3103 0 142 p
' ' Extended Pg.
4000 0 260 | Fault Table
4001 ! 261 { Job 1 Pg. 0
: {
: Job 3 Pg. 0
{
/ Job 2 Pg. 1
f/(’ , Job 3 Pg. 1

Figure 2-11

page located in Level 3 memory,

3 memory to Level 1 memory,

It is then transferred from Level

Sk

CHAPTER THREE

3.1 INTRODUCTION

In this chapter we will present the algorithms necessary for
;he implementation of the HIMICS system in the level two processor,
This will mainly include three areas of algorithms, The first area
includes the algorithms necessary to do the I1/0 and to perform the
page transfers between levels of memory, The second area includes
the algorithms for system generation and initalization, The final
area includes the algorithms to run the system under one of the
three paging options, Examples of message exchanges will be given
in the description of the algorithms, The algorithms are written
in a dialect of PLf/I, They are intended as descriptive algorithms,
rather than actual code, It is recommended that as you read the

following algorithm descriptions that you follow along in the

algorithms given in appendix A,

3,2 ALGORITHM 1: MAIN DRIVER FOR NOVA ROUTINES

The driver for all of the Nova routines is given in appendix
A, as algorithm number one, Its main purpose is to call the
appropriate routines when passed a message by the Interdata, or upon
interrupt from the card reader, The messagés that it will receive
are:

(1) A call to generate the system,

(2) A call for a requested page to be sent to the Interdata,

(3) A call at the termination of a job.'

(4) A call to do input or output,

55

56

(5) A call to handle page removal from Level 1 memory.

{(6) A call to spool the program.

(7) A call to get the next job from the job queue.

{(8) A call to create an object deck file name,

(9) A call to retrieve a job's object deck file name,

(10) A call to create an output file name,
(11) A call to list stack depth counts,

The driver's secondary function is to provide for the data
bases.that are common to &ll the subroutines, This will include the
data base for page traffic, the data base for the spool table, and
the data base for instrumentation,

The page traffic data base will consist of a collection of
Page Map Tables (PMT'S), see Figure 3-1, This system will be
implemented for three users so three PMT'S will be allocated during
system generation, These three PMT'S compose a structure known to
the Nova as the Job's Page Control Block (JOB_PCB), which is used
for PMT qualification purposes, Since the user is limited to a
64K byte (8 bit byte) virtual address space (or 32K words of 16
bits each), the length of the PMT is set at 128 entries, This
allows each page an entry in the PMT, with each entry representing
256K words, or one page of the user's program, This system does
not allow for dynamic aliocation so the maximum size has to be
allocated, even though it may not be needed,

The first entry in the PMT will contain information as to
the loc2tion in memory of each page of a user's job in object deck
form, The job's page numbers will run from O to a maximum of 127.

Thus in order to find a job's particular page in the PMT, all that

57
Job Page Control Block

JOB_PCB(3)
1 2 3
l [] &
PG_LOC DUP_LOC ORG_BIT . .
1 100 & 0 dpositive value implies page
located in Level 1 memory.
2 -100 b 0 (Value is actual Level 1 addr.)
3 1024 -200 0 JgNegative value implies page
6 0 located in Level 2 memory.
4 0 (Value is Level 2 addr. times
5 | 3980 599 4 0 a -1)
£Zero implies page located in
Level 3 memory.
L] . L
dNegative value in DUP_LOC
. . . implies page in both Levei 1
and Level 2 memory.
' . . (Value is Level 2 addr. times
a -1)
126
127
128
0BJ DECK FILE
SPOOL_TABLE_IX
USER_JOB_ID

Figure 3-1

is needed is the user's System Job ID (SYS#JOB_;D), which will be
either 1, 2 or 3, and the page number. The Nova then uses the
"system job ID as the index into the job page control block (JOB PCB),
which will produce the correct PMT, (i,e, JOB_PCB(SYS JOB ID),

refer to data structure in algorithm 1, appendix A, Next a one

is added to the reguested page number and this value is used as

the index to the page's PMT entries, A one is added to the page
number to avoid zero as an index, Thus page zero is stored at
index one, For example, if the reguested page is page number 8
then, PG NUM will equal 8, and JOB PCB(SYS JOB ID),PG_LOC(PG_NUM+1),
will be its corresponding entry location in the PMT,

Each PMT will then have three entires, The first entry, PaGe
LoCation (PG_LOC), contains the necessary information needed to
find a page located in the system. If the page is lcocated in Level
3 memory, a zero is stored as its page location (PG_;OC). When
the Nova is searching for a page and finds a zero as the PG_LOC, it
then uses the FILE ID for that job and passes it and the page
number to the appropriate routine to retrieve the page, This page
retrieval method is explained in section 3,25, with the discussion
of “contiguously organized files”™ (16).

If the PG_LOC contains a negative number, this indicates the
page is stored in Level 2 memory, The negative number is the
address in Level 2 memory where the page is stored, that has been
multiplied by a negative one. Thus in order to retrieve the page,
the Nova multiplies PG_LOC by a negative one and uses this as the

page's real address in Level 2 memory,

If the PG_LOC contains a positive nupber, this indicates
the page is in Level 1 memory. The PQ_LOC will then represent the
‘address where it is stored in Level 1 memory, It can then be
retrieved directly from the address given in PG_LOC.

The second entry, DUPlicate LOCation (DUP LOC), is used by
the paging subroutines, It is used to check to see if a copy of a
page that is being paged out of lLevel 1 memory into Level 2 memory
already has a copy residing in Level 2 memory., This will be
explained in detail in section 3,10, This copy would exist from a
prior page migration from Level 1 memory to Level 2 memory,

The third entry in the PMT is the ORiGinal BIT (ORQ_BIT). If
it has.a value of zero, it indicates the page is not an original,
A value of one indicates the given page is an original,

The OBJec; DECK FILE (OB{_DECK;FILE), is used to store the
file ID of the object deck for a job. It is used by RDOS to do
page retrieval,

SPOOL TABLE IndeX (SPOOQ_TABLE_IX), contains the index into
a job's file entries in the spool table,

USER JOB ID (USERFJOQ_IDEN), contains the job’s system
created user job number,

The data base for the spool table is used to store a job's
"USER ID" number and all of the files connected with the job, See
chapter two, Figure 2-8, It will contain five entries, Entry one
is where the user ID number is stored, This number will be created
by the Nova at the time the job enters the system,

The second entry is the job's “SOURCE DECK FILE ID." If the

job contains a source deck upen input, the file ID will be created

59

and entered in the table at that time, If no source deck is
included, this entry will be ignored,

The third entry is the job's "DATA DECK FILE ID." If the
job contains data, a file ID is created and entered at the time of
job entry, If no data is present this entry will be ignored,

The fourth entry is the job's "OBJECT DECK FILE ID,* If the
job contains an object deck at the time of entry a file ID will be
created and entered at that time, If there is not an object deck
present, this entry will be ignored for the present, It will later
be filléd in by a subroutine which will create an object deck file
ID for a job when requested to do so by the Interdata, This will
happen during compilation of the source progranm,

The fifth entry in the spool table is the job's "QUTPUT FILE
ID," This will be created by a subroutine when called by the
Interdata, The PaGe TRAFfic TABle (PG_IRAE;IAB), is used as a data
base for part of the instrumentation, It is used to keep count of
all page transfers between any two levels of memory, (i,e, Level 2
to Level 1 memory), There are eight counts keep, Ome for eaéh
possible exchange of memory plus two additional counts, The two
additional counts, count page exchanges between Level 2 and Level 3
memory which are caused by requested 1/0, These along with the
total number of page faults will be printed upon termination of a
job,

This subroutine also intializes the spoql table at system
generation time, This amounts to setting the "USER ID" entry in

the spool table equal to 0, When a job is entered into the spool

table, the spool table is searched for a zero user ID number, This
then indicates an available entry for that job in the spool table,
The subroutine is interrupt driven by a message handler
located in the Interdata, All messages are blocked from entering
this subroutine until the previous message request has been fulfilled,
The function of the various calls in this subroutine will be

explained in the routines that are called by them,

3.3 ALGORITHM 23 GENERATES THE SYSTEM

Algorithm number 2, appendix A; subroutine SYS GEN, will be
the first subroutine called by the Interdata at system generation
time, Its main function is to calculate the free core memory in
the Néva, the core not being used by the operating system, and to
structure it in blocks of 256 words each, This then is known as
Level 2 memory and is used as an extension to Level 1 memory in
the Interdata for paging, Its second function is to call the
initial program for the page option being used, which will
initialize the data bases in the system, This will be explained
in detail when the initialization subroutines are discussed, Upon
completion of this routine the Nova system is ready for programs
to be entered, A message is sent to the Interdata informing it

that the Nova system has been initialized,

3.4 ALGORITHM 23 MAIN INPUT/OUTPUT DRIVER

Algorithm number 3, appendix A, subroutine INPUT/OUTPUT, is

called on for all I/0 operations, It contains the data bases used

62

for all I/0, Therefore ali the other I/0O subroutines are internal
to this subroutine in order to save passing the data bases and
‘redefining them in each subroutine called by this subroutine,

The data base consists of two parameter blocks, passed by the
Interdata when If0 is requested, Also a storage block of 256 words
is reserved for a page I/0 buffer for pages located in Level 3
memory, This is necessary because in the executahle form, the
program is stored as a "contiguously organized file," For a
detailed discussion of "contiguously organized files," see section
3,25, A contiguously organized file can only be accessed in blocks
of 256 words each, In this case each block corresponds to a page,
Thus in order to do I/0 to a partial page or across page boundaries,
the page, if in Level 3 memory, is moved to the buffer area, 1I/0
is done to the corresponding addresses in the buffer and the page
transferred back to Level 3 memory. See section 3,7 for a detailed
discussion of the transfer of data from input files to the executing
program and from the executing program to output files, The two
parameter blocks passed by the Interdata are shown in Figure 3-2A
and 3-23. Looking at Figure 3-2A, the function code is an eight
bit field which defines the type of If0 operation as defined in
Figure 3-3, The Logical Unit (LU) is the device code for the
requested I/0 device, The status and device address are used to
return the ending status upon completion of the I/0 operation, If
the Nova can complete the transfer as requested, it stores a zero
in this 16 bit word, If anything is wrong with the device before

the transfer or if anything goes wrong during the transfer, the

User Parameter Block

78

63

15

Function Code

Logical Unit

Status

Device Address

Starting Virtual Address

tnding Virtual Address

Relative Address

Hrite Key

Read Key

Figure 3-2A

System Generated Parameter Block

15

System Known Job I.D.

User Known Job I.D.

Accumulative Job Time Since Start of Job

Original Bits

Return Error Code

File Type

Figure 3-28

Interdata Function Codes For I/0

OPERATION BINARY HEX
Write ASCII and Proceed 0010 0000 20
Write Random and Proceed 0010 0100 24
Write ASCII and Wait 0010 1000 28
Write Random and Wait 0010 1100 2C
Write Binary and Proceed 0011 0000 30
Write Binary and Wait 0011 1000 38
Read ASCII and Proceed 0100 0000 40
Read Random and Proceed 0100 0100 Gé
Read ASCII and Wait 0100 1000 48
Read Random and Wait 0100 1100 4C
Read Binary and Proceed 0101 0000 50
Read Binary and Wait 0101 1000 58
Test and Set Random 0110 0100 54
Test and Set 0110 0000 60

Figure 3-3

Nova stores in the first 8 bits the Interdata error code (see
Figure 3-4), and the device address in the second 8 bits, This
actually takes place in another subroutine explained in section
3,5 and section 3,9, The next two parameters are the virtual
addresses which define the starting and ending address for the
I/0., As noted in the Interdata 0S/16-MT Reference Manual (17),
the starting address should be on an even byte boundary and the
ending address on an odd byte boundary, O0S/16-MT uses an eight

bit byte, This implies all I/0 should transfer a minimum of 16

bits or in multiples of 16 bits, This is important since cne word

of Nova storage is 16 bits as opposed to 8 bits in the Interdata,

The last two parameters are optional and will be ignored by the

Nova,

Interdata I/0 Error Codes

CONDITION BINARY HEX

_'T
ITlegal Function 1100 0000 X'co’
Device Unavailable 1010 0000 X'AQ'
End of Medium 1001 0000 X'90!
End of File 1000 1000 X'ag’
Unrecoverable Error 1000 0100 X'84'

Figure 3-4

65

The first word of the second parameter block (Figure 3-2B)
contains the job name known by GS/16-MT at system generation time,
The second word is the job ID created by the Nova when the job was
spooled. The next word is the job's CPU time used to this point,
This will be in microseconds, The next word contains the original
bits in the crder in which the pages appear in Level 1 memory.

Word five, (RETURE_ERROR_;ODE), will be used to convey error
messages detected by the Nova, If, upon checking the status in

the User Parameter Block {(UPB), the Interdata finds scme other
value tﬁan zero, it can output to the job's output file a message,
(i.,e, "Nova I/0 error") and then output the contents of word five
of the SGPB, which will contain a code for the error message, Word
five will have been set equal to register two of the Nova, RDOS
contains a routine that returns to register two, an error code upon
encountering an error during I/0, The user can then look this code
up in the RDOS Manual to see what caused the error, Word six will
contain the FILE TYPE (FILE TYPE), There will be four file types,
See chapter two, Figure 2-8, The (FILE TYPE) will be passed by the
Interdata so that the Nova can use it, along with the SPOOL TABLE
IndeX (SPOOL_TABLE_;X), as an index into the spool table, The spool
table index will have been obtained when the job was accessed from
the job queue, This will provide the Nova with the correct file
name, so that the given file can be accessed for the requested I/0,

Upon an I/0 request message from the Interdata the Nova checks
the beginning address to see if it is on an even boundary and the

ending address to see if it is on an odd boundary, If not, it

assigns the unrecoverable error code to the statgs, X*84*', and the
physical address of the device requested to the device address, and
.returns the parameters to the Interdata, If the boundaries are
correctly aligned, the Nova then calculates the number of 16 bit
words to be transferred, This is done by subtracting bits 7-15

of the starting virtual address from bits 7-15 of the ending virtual
address, adding one to the rvesulit and dividing the new result by
two, For example if the starting virtual address is 508 and the
ending virtual address is 511, the number of words to be transferred
is two, (511-508=3, 3+1=4, 4/2=2),

Next the starting and ending page numbers are calculated from
the starting and ending virtual addresses, This is done by using
the first 7 bits (bits 0-6) of the virtual address as the page
number, For a detailed discussion of virtual address to real
address translation in this system see the paper by Smith (5),

Next the function code is checked to see if it is an I/0 and
proceed, If so a message is passed back to the Interdata that the
I/0 has heen started, The function code is again checked to see
if the request is for input or output, If for input, the input
driver is calied. if for output, the output driver is called,
These two routines will be explained in the next two sections,

If the function code is neither for input or output, the
status is set to X'C0', illegal function, and the device address
is set to the physical zddress of the device requested, The

subroutine then returns,

67

3.5 ALGORITHM 4: INPUT DRIVER

The input driver, algorithm 4 appendix A, subroutine
‘DATA IN, is called whenever input is requested via the Input/Output
driver, The routine first calculates the offset from the beginning
of the starting virtual address, This will be used as the offset
to be added to the real address once the real address has been
calculated, This then is the beginning address where input will be
transferred to., Next the requested Interdata function code, passed
in the UPB, see Figure 3-2A, and 3-3, is converted to the eguivalent
Nova RDOS input command,

Next the starting and ending page number are checked to see
if they are equal, If so, the subroutine TRANS IN is called to
perform the actual transfer, TRANS IN will be explained in secticn
3,7. Passed with the call are the number of words to be transférred,
calculated by the previous subroutine, and the offset from the
beginning of the page that the data is to be transferred into,

If the input area is split across page boundaries, see Figure
3-5, then the TRANS IN subroutine has to be called once for each
page and or partial page, The offset and number of words has to
be calculated prior to each call and the page number incremented by
one each time, For example, if the input area is split across three
pages, as seen in Figure 3-5, the number of words to be transferred
the first time is calculated by subtracting bits 7-15 of the
starting virtual address from 512, the number of bytes per page, and
dividing the result by two, to give the number of 16 bit words,

For the example in Figure 3-5, this would be (512-510=2, 2/2=1 word).

Example of 1/0

Split Across Page Boundaries

69

PG_NUM OFF_SET Virtual Addresses
Bits 0-6 | Bits 7-15 - L
0000 0000 0000 0000 0 1
]
0 0 1 {5
[
¥
]
1
G 508 1509
Starting V.A. 5
tamngoéc}‘oo m 510 5511
0 510
512
{ 512 =513
(\
0000 _00}Q 0000 000 l
1 514 1515
|
516 517
[J
Sample Input|Area :
1020 '.1021
1
t’_\-g-z-zf—s - l
000 0031 1111 111 10 1023
1 510
Ending V.A. 1024 T
0000 0100 0000 000 1024 hozs
¥
? 1026 ho27
1028 h029
[]
[]
)
i
153 1532 :1533
600 0101 1111 1110 1534 ;1535
510

Figure 3-5

This number is then passed in the call to TRANS_;N and the first
partial page of the input is transferred,

The number of words just transferred is then subtracted from
the total number of words to be transferred, For the example in
Figure 3-5, this is (258-1=257), If this new value is greater than
or equal to 256 words, then a one is added to the page number and
a call is made to TRAKS IN again, with the offset equal to zero
and the number of words equal to 256, The offset is zero since a
full page is being transferred, This is repeated until the number
of words to be transferred is less than 256,

When this happens, if the number of words to be transferred
is greater than zero, the page number is again incremented by one
and TRANS_;N called, with an offset of zero and the remainder of
the words to be transferred in as the other parameter, For the
example Figure 3-5, this will be a one,

If no 1/0 errors occurred during transfers, then the routine

returns, If an I/0 error has occurred then the error code conversion

subroutine is called, This subroutine will be explained in section

3.9,

3.6 ALGORITHM 5: OUTPUT DRIVER

This subroutine, see appendix A algorithm 5, is identical to
the subroutine just described in section 3,5 with the exception it
calls the subroutine TRANS OUT instead of TRAKS IN, which handles
output instead of input, TRANS OUT will be explained in section
3.8, The two subroutines could be combined into one, but for

modularity purposes they have been kept separate,

70

71

3.7 ALGORITHM 6: TRANSFERS DATA To INPUT ADDRESS

This subroutine, see appendix A algorithm 6, is called by
‘the Subroutine DATA IN, described in sectioﬁ 3,5, to do the actual
transferring of input data, Its main purpose is to locate the page
the data is to be transferred into, use the passed offset to map
to the first word of the input area and then to transfer the
requested data starting at this address,

The first thing the subroutine does is to obtain the file
name of the input file, The file is obtained by indexing into the
spool table, To reference the correct file it needs to know, the
index to this job's spool table entries, the system job ID, and
the file type,

The index to the job's spool table is known as it has been
stored in the main procedure as (SPOOL_TABLE_;X) when the job was
retrieved from the job queue, see algorithm 25, appendix A, The
SYStem JOB ID (SYS_;OQ_ID), and the FILE TYPE (FILE TYPE) have
been passed as parameters in the SGPB, see algorithm 3, appendix A,
The file type is either type 2 for source deck, or type 3 for
data deck, Type 2, source deck, is used during compilaticn as the
source deck is then the input data, The file types correspond to
the files location in the spool table--see chapter two, Figure 2-8
(i.e, file type 3 is data deck), The file name is passed to RDOS
when the actual read is requested,

Kext the job's page table is checked for'the location of the
page in memory, As explained in section 3.2, a positive value is

Level 1 memory, a negative value indicates it is in Level 2 memory

and a zero indicates it is in Level 3 memory,

If the value in the PMT is positive this represerts the
page's veal address location in Level 1 memory, The OFFSET
(OFP_ﬁET) is then added to this address and the number of words to
be transferred in, are transferred beginring at this address,

If the requested page is located in Level 2 memoryv, indicated
by a negative PaGe LOCation (PQ_LOC) value in the PNMT, th{s value
must then be multiplied by a negative one and the result used as
the réal address of the beginning of that page in Level 2 memory,
The offset is then divided by two, added to that address (PG LOC)
and the number of words requested transferred in, beginning at
this address, The offset has to be divided by two since the
offset is calculated using half words, since each half word is
addressable in the Interdata, Dividing the offset by two and
adding it to the virtual address of a page composed of 256, 16
bit words will produce the equivalent address that would result
from adding the original offset to a virtual address composed of
512, 8 bit words, See Figure 3-6, After the transfer is complete,
the original bit for this page is set to one, The origiral bit
did not have to be set in the prior example since the Interdata
set its original bit for the page,

If the page is in Level 3 memory, the page first has to be
transferred to Level 2 memory before input can take place, This
is because any input will be to the object deck file, and this
file is stered as a "Contiguously Crganized F{le"™ so that it can

bte accessad randomly for page transfers, For a detailed description

12
txample of Page Mapping

Bits 7-15 of Virtual Address Bits 7-14 of Virtual Address
Corresponding (Has effect of dividing by 2)
1 I 2 , Addresses N 0
0 0000 0000 | O COOO ooO1f ™ 0 0000 000
3 | 4 _ \
0 0000 0010 ¢ 0 0000 0011 ~ < 1 0 0000 001
5 6 ps 2
! N ? | 0 0000 010
7 8 ” 3 3
0 Q000 0110 i 0 0000 0111} > 0 0000 011
|
[Same Relative
Location
|
|
[
» . ¥
|
¢ |) *
I
I [P
|
I .
| Same Relative
Location
|
______ |
508 I 509 255
| 1000 1 1111 1101 € ? 1171111 110
510 p > 256
1 1111 11100 1 1111 1111 A 1111 111
Interdata Nova
Level 1 Memory Level 2 Memory

Figure 3-6

Th

of a "Contiguously Organized File,'” see Figure 3-7 and section
3.25, The object deck file ID is stored in the main procedure
-when the Interdata first requested use of this file, see algorithm
27, appendix A, This file name is then retrieved and sent with

a request to transfer a page from Level 3 memory to Level 2 memory,
It is transferred into (PG_BUFF) which is an array of 256 words
reserved for this purpose, The algorithm that transfers the page
from level 3 to Level 2 memory will be explained in section 3,18,
see algorithm 17, appendix A, After the page has been transferred
into PG_BUFF, the offset is divided by two and one added to the
result, This is because the page addresses run from 0 to 127 and
PG _BUFF, addresses run from 1 to 128, This value is then used as
the index at which location the requested data is read into for
the given number of words, The page is then transferred back out

to its virtual address in Level 3 memory,

3.8 ALGCRITHM 7: TRANSFERS DATA TO OUTPUT FILE

This subroutine given as algorithm 7, appendix A, is almost
identical to the algorithm just described in section 3,7 with
several minor exceptions, First it does output instead of input,
Second, as a result of the first, the file type (FILE TYPE) will
always be type 5, output, Since the file is always output the

original bits do not have to be reset each time,

3,9 ALGORITHH‘ﬁz TRANSLATES NOVA I/0 ERROR CODE

This subroutine, see algorithm 8 appendix A, is called upon

when an error has been encountered during If0, It is used to

75
Contiguousiy Organized Files

Block Address N Block Address N+1 Block Address N+2

0

A1l 256 é) _

Words are . ’ *
Utilized

for Data . ' ¢
Storage

256
Relative Block Relative Block Relative Block
Number O Number 1 Number 2

Figure 3-7

translate Nova error code messages to the error codes that the
Interdata operating system can recognize, This is done so that
at the completion of an I1/0 instruction the Interdata knows if
the 1/0 was successful or not, RDOS automatically returns an
error code in accumulator two if anything goes wrong during 1/0,
This code will be passed to this subroutine when called, and the
subroutine will match it to the equivalent Interdata erreor code,
Any code that can not be matched will be set to the "unrecoverable"
Interdata error code, The codes the Nova can pass are given in
Figure 3-8, The Interdata codes were presented in Figure 3-4,
The illegal function code is not included here, because if it
occurs, it will be detected in algorithm 3, prior to this sub-

routine,

3.10 ALGORITHM 9: PAGE OPTION 1 MAIN ROUTINE

This subroutine, see algorithm 9 appendix A, is used to

implement page option one, Page option one is based on a

competitive variable working set size applied on a local scale, This

option has been described in section 2,2,2 of chapter two,

The data base for the subroutine consists of three identical
substructures which make up the Working Set-Control Block (WSCB),
one for each possible job in the system, and a stack which will
contain the AVAILable PaGe FRAMEs (AVAILL?Q_FRAME). The WSCB will
contain three variables and a substructure array, The first
variable, PREVious ACCuleative TIME (PREY_Acq;TIHE), will record
the job's total CFU time at the point of the job's previous page

fault, This value is initially set to zero, so upon the first page

76

Nova I/C Error Codes

T1

AC2 Explaination of Error
0 I11egal Channel Number
3 I1Tegal Command For Device
6 End of File
7 Attempt To Read A Read Protected File
15 Attempt To Reference File Not Open
26 File Read Error
30 Attempt To Read Into System
33 File Accessible By Direct Block I/0 Only
47 Simultaneous Reads On Same QTY Line
74 Address Outside Address Space
101 Ten Second Time-out Occurred
106 QTY/MCA Input Terminated By Channel Close

Figure 3-8

78

fault it will have a value of zero, The next variable, PREVicus
TIME SPAN (PREV_TIME SPAN), is used to record the elapsed time that
has occurred by a job between the two previous page faults, For
example, if the last three page faults occurred at time Ti-Z’
Ti-l’ and Ti’ then PREY_TIHE‘SPAN for the current page fault
occurring at Ti is Ti-l - Ti—z‘ PRE?_II}EL§PAN will have been
recorded in the previous call to this subroutine, Initially it
will be set to zero, This will cause the requesting job to be
given'a page frame in level ¢ memory upon the first page fault if
there is one available, The next variable, HEAD, is used as a
pointer to point to the top entry in the array used for the Extended
Page Fault Table (EFFT), The EPFT structure is used to implement
the LRU algorithm in the Nova and for instrumentation page level
depth counts in the LRU stack, Instrumentation depth counts wiil
be explained in detail later in this section,

This subroutine is called by the Interdata when it has a
page to be paged out of its Level 1 memory in order to free a page
frame for its next page fault, Upon entry the subroutine first
stores the page number that is to be paged out of Level 1 memory
into level 2 memory in a temporary location, This is to preserwve
its passed value so that it can be entered in the EPFT at the close
of this subroutine, The original value may be changed in the mean
time, depending upon which path is taken through this subroutine,
Next the CURRENT TIME SPAN (CURRENT;IINE_SPAN) is calculated, This
is the job's CPU time that has elapsed since the last page fault

occcurred to level 2 memory, This will be used later,

79

Next the subroutine checks to see if the page being paged
out of Level 1 memory already has a cbpy in Level Z memory, This
could have resulted from a previous page fault, This is done by
checking the given page number's DUPlicate LOCation (DUP LOC) in
the PMT, If this value is less than zero, then it has a copy in
Level 2 memory. DUP LOC will always be zero unless there is a
copy in both level 1 and Level 2 memory, The negative value in
DUE_LOC, is the given page's level 2 real address that has been
multiplied by a negative one,

If there is a copy of the page already in Level 2 memory, a
check is made to see if the page being paged out of Level 1 memory
is an original, If it is, then the page is recopied into the
avajlable page frame in Level 2 memory, by a call to the Level 1
TO Level 2 subroutine (L1 2 12 PG), See algorithm 20, appendix A,
The page's page map table entries are updated in the L1 2 12 PG
subroutine also, Next the page frame that the old copy is in, is
multiplied by a negative one to get its real Level 2 address, This
then becomes the next available, or current, page frame to be used
for the next page fault, The page's DUP 1OC in the PMT is then
set to zero, since there is no longer a copy in lLevel 1 memory.

If the page being paged out of Level 1 memory does have an
identical copy in Level 2 memory then it does not need to be
recopied, In either case, the Nova next sends the Interdata the
page transfer complete message, Next the index of the page that
was transferred from Level 2 to Level 1 memory is located in the LRU
stack {EPFT). This index represents the depth at wﬁich the page

had obtained in the LRU stack prior to being referrenced again in

Level 1 memory, A count for each depth that has been reached by

a page in the LRU stack prior to the page being requested back to
Level 1 memory is kept, It is accumulated at this point in the
algorithm, If the job being executed displays good locality, then
the depth counts should monctonically decrease as the stack depth
increases, See Figure 3-9, The LRU stack is next compressed to
fill the extracted page's page map table entries, The updated
page's page map table entries will later be placed on the top of
the stack, Next the job is checkad to see if it is a candidate
for a reduction in its working set size, This is done by
multiplying its previous time span by 110Z and comparing it against
its current time span, If its current time span is greater,
implying the time interval between the last page fault and the
previous page fault is greater by at least 10%, then the working
set size will be reduced by one page frame, providing it has at
least two pages currently in Level 2 memory. This is counting

the page just paged-in, If the job is a candidate for removal and
a page can be_removed, then a call to the internal subroutine,
DeCREASE Working Set Size (D CREASE WSS), is made, This subroutine
will be explained later in this section. An increase in working
set size does not have to be checked here because the above path
implies that an additional page frame is not needed as a result of
the page fault, This is due to the fact that there already is a
page frame available for the page migration if needed, since the
given page existed in Level 2 memory prior to the page fault, If

this path has been taken the working set control block (WSCB) time

80

81
Stack Depth Counts

LRU Stack (EPFT)
PG_NUM DEPTH_COUNT

i] Increasing
First Page Entered —> 40 0 4\
in Stack Depth Counts
20 5
10 4
9 12
100 24
14 20
13 20
16 30
Increasing
17 29 Stack|Depth
18 40 ‘ \
Last Page Entered —> 19 55

in Stack

Figure 3-9

variables are updated and the page that was paged out of Level
1 memory is placed on top of the LRU étack. The rcoutine now
returns,

The following sequence of events is executed as a result of
Level 2 memory not containing a copy of the page being paged out
of Level 1 memory, First the page is copied from Level 1 memory
to an empty page frame in level 2 memory, This empty frame was
made available either in thLe initial routine, or as a result of
a prior call to this subroutine, The Interdata is then sent a
message saying that the transfer has been completed, This is so
it can continue processing this task even though the Nova has more
cleanup work to do on the page fault request,

The variable size working set calculations are next applied,
This will determine if the requesting job's working set is entitled
to gain a page, lose a page or remain the same, The current time
span, calculated at the start of this subroutine, is multiplied by
90Z and compared against the elapsed time span that occurred
previous to the one just calculated, If the current time span is
less than 90% of the previous time span, this implies a faster
paging rate, As a result the job is entitled to an additional
page frame, The available page frame list is checked, and if one
is avajlable, it is used to replace the one taken as a result of
the current page fault, Next the pointer to the top of the LRU
Stack is advanced one so that when the page number of the page
that was jusc transferred in Level 2 memory is entered on the LRU

stack, it will point to the top, The LRU stack being the EPFT,

B2

83

If there was not an available page frame, then the job does

not receive another page, even though it was entitled to one, It
"is not allowed to pre-empt a page from another job,

At this point either the job was entitled to another page
frame and there was not one available, or else it was not entitled
to one, In either case, the job is checked to see if it is a
candidate for a reduction in its working set size, This calculation
is the same as the one described in a previous paragraph for page
reduction following the path where there was already a copy of the
page in Level 2 memory, If the page is a candidate for removal
and a page can be removed, then 'N' is set to two, If not, *'N'
is set to one, 'N' is a loop variable used to indicate how many
times the internal subroutine that removes a page from Level 2
memory is to be executed. Providing the subroutine reached this
point of execution, one page will always have to be removed, This
is because at this point, a page has been added, the one being
paged in, and none have been removed, If a job's working set size
is to be reduced by one, then two pages will have to be removed
for the same reason as given above,

The following internal subroutine is used to remove a page
from the job's working set, First the page number on the top of
the LRU stack is retrieved, Its original bit is then checked, If
a one, then the subroutine to recopy it back to Level 3 REenory is
called, If the original bit is a zero then it is not recopied,

In either case the page frame index is incremented by one and the

vacated page frame added to the list of available'page frames,

G

The page's PMT PG_LOC is then set to zero to represent that its
only copy is now in Level 3 memory, After the above is completed,
either once or twice, the CURRENT PG FRAME is set to the page frame
currently on top of the stack of available page frames, Next the
pointer to the top of the LRU stack is reduced by zero or one,
depending upon if one or two pages were removed, It will then
point to the page at the top of the LRU stack, which will be
added to the stack just prior to returning., This will be the
page Aumber of the page just naged into level 2 memory, The
decrease working set size subroutine now returns to the point of
call, The WSCB time variables are updated as they were described

for path one, and then the subroutine returns,

3,11 ALGORITHM 10: PAGE OPTION 1 INITIAL ROUTIEE

This subroutine, see algorithm 10 appendix A, is called to
initialize the data base used in algorithm 9, just described in
section 3,10, It is first called by the system generation subroutine,
algorithm 2, and thereafter by the end of job routine, algorithm
16, at the close of a job, The variables are therefore initialized
for a new job entering the active state,

The subroutine first resets all the page level transfer
counts to zero, Next it checks the job's PMT for all pages contained
in Level 2 memory, As it finds a page, the page frame index is
incremented by one and the page frame put back on the available list,
Also the DUP LOC is set to zero in case the page was located in
both Level 1 memory and Level 2 memory, Alone with this each PG_LOC
in the job's PMT and each LRU depth count is reset to zeroc., The

subroutine then returns,

3.12 ALGORITHM 11: PAGE OPTION‘E MAIN ROUTINE

This subroutine, see algorithm 11 appendix A, is used to
implement page option two, Page option two, a competitive variable
working set size based on a global scale, has been described in
section 2,2,2,

The data base for the subroutine consists of the Working
Set Control Block (WSCB), which contains the Extended Page Fault
Table (EPFT), the AVAILable PaGe FRAMES (AVAIL_PG_FRAME), the
index-into the available page frames and a pointer (HEAD), pointing
to the latest entry in the EPFT, The EPFT is used to implement
the LRU paging algorithm in the Nova for Level 2 memory. Since
this algorithm is applied on a global scale, it is necessary to
have two entries in the EPFT, The first entry is the Job ID
(JOQ_IDEN), which indicates whose page it is, The second entry
(PQ_NUM), is the actual page number of the page it represents, The
AVAILable PaGe FRAME array (AVAI;_PG_FRAME), contains all of the
starting addresses of the empty page frames in Level 2 memory,
AVAIL;PQ_E_INDEX is the current index into the preceding array,

This subroutine is called by the Interdata when it has a page
to be paged out of its Level 1 memory, The parameters passed to
the routine include the SYStem JOB ID (SYS_JOB_;D), which will be
either 1, 2 or 3, the job accumulation time to the point of interrupt
(JOB_ACQ_TIME), the page number of the page to be paged out of Level
1 memory (PG_NUM), the Level 1 address where this page is located
(LI_ADD), and the Interdata original bit set for this page (IORQ_BIT).
The JOﬁﬁACQ;TIHE is not used by this subroutine but is included in

the call so as to make all three page option subroutines call-able

by the same call routine, This is to make the subroutines
compatable so that they are interchangeable,

Upon éntry this subroutine first assigns the page number to
a temporary variable, This is to preserve its original value to
be entered in the EPFT at the end of the subroutine, Depending
upon which path is taken through the subroutine, the page number
may or may not be changed,

Next the page being transferred from Level 1 to Level 2
mEmor} is checked to see if it has an existing copy already in
Level 2 memory, This is done by checking DUP_LOC for a value of
less than zero, DUP LOC will always contain zero unless the page
has a copy both in Level 1 and Level 2 memory, If it has a copy
in Level 2 memory, the value contained in DUP LOC will be its
real level 2 address that has been multiplied by a negative one,
If a copy already exists in Level 2 memory, then the page being
transferred out of Level 1 memory is checked to see if it is an
original, (i,e, IORG BIT=1), If it is an original, then it has
to be recopied back into Level 2 memory, This is done by calling
the Level 1 to Level 2 subroutine, The page map table is also
updated in the called subroutine, See algorithm 20, appendix A,
The vacated page frame's starting address is then set to the
current page frame to be used for the next page fault, Next the
job's DUP LOC in the PMT is set equal to zero since the page no

longer has a copy in both Level 1 and Level 2 memory, The

Interdata is then sent a message that the page has been transferred

so that it can continue processing the task, even though the Nova

has not completed its cleanup of the page migration,

86

a7

If the original bit had been a zero, then the page being
transferred out of Level 1 memcry would have been identical teo the
‘copy already in lLevel 2 memory, This would save the transfer time
and the Interdata would have been sent the transfer completed
message right away, Next the Nova searches the EPFT for the job's
page number, Eince the EPFT is 2 global pool of pages from all
three jobs, both the PAGE_EUM anc JOB IDEN have to be compared,
Once the correct entries have been found, “I" will represent the
depth in the LRU stack where the page is located, The depth count
at this location is then incremented by one, Next the PAGE NUM
and JOQ_IDEN are removed from their location in the LRU stack,
(EPFT) the stack is compressed and then the entries re-entared at
the top of the stack, prior to the subroutine returning,

If after checking DUP_LOC for a copy of the page and finding
that a copy does not exist in Level 2 memory, then a call to
transfer the page from Level 1 memory to Level 2 memory can be
maGe immediately, Upon completion of the transfer, the Interdata
is sent the transfer complete message, The page map table is
updated in the L1 2 12 PG subroutine, algorithm 20, appendix A,

Next, a check is made to see if there are any available page
frames left in Level 2 memory, If so, the next available page
frame is assigned to the CERRENT_PQ_FRAME. It will then receive
the next page transfer when the subroutine is called again, The
pointer to the top of the LRU stack is incremented by one, so as
to continue to point to the top of the stack,

If there was not an available page frame for the next transfer,

88

then a page has to be transferred out of Level 2 memory in order
to make one, The page at the bottom of the stack, since it has
been resident the longest, is removed from Level 2 memory, It
first is checked to see if it is an original page, If so it is
recopied to Level 3 memory, If it is not an original, it is not
recopied, WNext its PMT PG 1LCC is set to zero to indicate that its
only copy is in Level 3 menmnory, The vacated page frame's address
is then assigned to the current page frame to be used for the next
requeét. Next, the LRU stack i& compressed to £ill the removed
page entry,

Before returning, the page that was paged out of Level 1
memory is entered, along with its JOB_ID, at the top of the LRU

stack,

3,13 ALGORITHM 12: PAGE OPTION 2 INITIAL ROUTINE

This subroutine, see algorithm 12 appendix A, is called to
initialize the variables used in algorithm 11 described in section
3. 12,

It first resets all of the instrumentation page migration
counts to zero, It then searches the extended page fault table for
all the pages belonging to the job being deleted, If an entry
(page) in the EPFT being checked belongs to the job being deleted,
the page frame that the page occupies is put back on the list of
available page frames, As these entries are deleted the EPFT is
compressed to fill the entries being deleted, See Figure 3-10,
After the deletions, the pointer to the top of the LRU stack (HEAD)

is reset to the value at the top of the stack so as to point to the

HEAD

SYS_JcB_ID PG_NUM ORG_BIT
1 14 0
2 2 1
2 20 1
3 3 0
1 1 1
2 3 1
3 2 1
1 40 0
3 14 1
1 1 0
1 18 0
2 3 1
2 14 0
3 17 1
3 i 0
1 15 1
2 7 0
1 9 1
3 9 1
1 39 1
2 13 0

Before

89

Extenced Page Fault Table (EPFT)

Showing before and after effect of
deleting a job from the system.

(i.e. Job 2)

SYS JOB_ID PG NUM ORG BIT

1 14 0
Deleted 3 3 0
Deleted 1 1 1
3 2 1
1 40 0
Deleted 3 14 1
| 1 0
1 18 0
3 17 1
3 1 o
p—
1 15 1
Deleted i 9 1
Deleted 3 9 1
HEAD 1 39 1
Deleted
Deleted
After

Figure 3-10

least recently used page, The subroutine then returns,

3,14 ALGORITHM Ezz PAGE OFTION 3 MAIN ROUTINE

| This subroutine, see algorithm 13 appendix A, is used to
implement page option three, Page option three, is based on a
non-competitive fixed partitioned working set size as described

in chapter two, section 2,2,2, Algorithm 13 is basically the same
as algorithm 11, described in section 3,12, The cnly difference
between the two are several minor changes in the data structure,
Instead of one structure composing the Working Set Control Block
(WSCB), there are three identical substructures, one for each job,
The substructures are as described in section 3,12, with these
exceptions, One, the EPFf only needs a single entry for the page
number since each job is allocated a private WSCB, Also, since
the algorithm is applied locally, each job must kéep a separate
variable for assignment to the CURRENT PaGe FRAME (CURREJ?_PQ_FRAME}.
The MAXimum PaGe Frame (MAX PG F), number is assigned at
initialization time to the number of page frames a job will have
in level 2 memory for its use, This is done in algorithm 2, see
appendix A, The logic of the algorithm is the same as algorithm 11
in fection 3.12, Again the difference between the two algorithms
is that in algorithm 11, the available page frames are in a global
pool, 1In this algorithm, algorithm 13, the available page frames

are in a local pool contained in the given job's fixed partition,

3,15 ALGORITHM 14: PAGE OPTION 3 INITIAL ROUTIXE

This subroutinre, see algorithm 14 appendix A; is used to

jnitialize the variables used for page option 3, algorithm 13, It
is first called by algorithm 2 during system generation time, It
‘is thereafter called by the "“END OF JOB" routine, algorithm 16, at
the close of 2 job, This then leaves the variables initialized
for the next job,

The subroutine first resets all the page counters back to
zero, Next it sets all the PaGe LOCations (PG_LOC), in the job's
page map table t¢ zero, to represent that the page is in Level 3
memorf. This is because all jobs start out located in Level 3
memory, All DUPlicate LOCations (DUP_LOC) and depth counts are

also reset to zero, The subroutine then returns,

3.16 ALGORITHM 15: RETRIEVE PAGE

This subroutine, see algorithm 15 appendix A, is called by
the Interdata whenever it encounters a page fault, The subroutine
first goes to the page map table and obtains the page's address
and or location, Remember a negative number here indicates level
2Imemory and a zero, Level 3 memory, The page has to be in either

Level 2 memory or Level 3 memory else the Interdata would not have

requested the page, Once the page has been located it is transferred

te the requested address in Level 1 memory and this Level 1 address
is then entered into the PMT as the current location for the
transferred page,

If a copy of the page existed in Level 2 memory prior to the
page fault, the negate of its Level 2 address is entered in the
pagefs duplicate location (DUE_LOC). This indicates that a copy of

the page now exist in both level 1 and Level 2 memory, It will

71

be used later when a page migration takes place between Level 1
and Level 2 memory, If there are dupiicate copies in Level 1 and
Level 2 memories then when a page migration occurs from Level 1 to
Level 2 memory the page does not have to be recopied, providing
the copy in Level 1 mémory is not an original, A message is then
sent to inform the Interdata of the transfer and the subroutine

returns,

3,17 ALGORITHM 16: END OF JOB

This subroutine, see algorithm 16 appendix A, is called by
the Interdata each time a job terminates, It firsf totals the'
page counts kept for instrumentation, Next the I/0 counts are
subtracted from their respective level counts so as not to appear
in the counts caused by page faults, This would result becauss the
level counts are taken in the page transfer subroutines, algorithm
17 thru 23, and both page fault routines and I/0 request use these
algorithms, The counts with appropriate headings are then added to
the job's output file, If requested the source program for the job
is then spocled to the output device, It is followed by the
command to spool its data output file, The_job's files are then
deleted from Level 3 memory by RDOS, Next the job's entry into the

Spool table is released, The Interdata is then sent a message

that the job has completed and the subroutine returns,

3,18 ALGORITHM 17: LEVEL 3 MEMORY TO LEVEL 2 °‘MEMORY

This subroutine, see algorithm 17 appendix A, is used to

transfer a page from Level 3 memory to Level 2 memory, Its main

23

use is to bring a page into Level 2 memory so that I/0 can be
performed on the page, The page is transferred into a 256 word

‘array called PG BUFF,

3.19 ALGORITHM 18: LEVEL 3 MEMORY TO LEVEL 1 MEMORY

This subroutine, see algorithm 18 appendix A, is used to
transfer a page from Level 3 memory into Level 1 memory., It is
used by the Interdata to get a pag2 from the user's source file
into its Level 1 memory via the PAGE IN subroutine, algorithm 15,
After the page has been transferred, its residing address in Level
1 memory is entered in the page map table for future reference, Its
original bit is set to zero and the subroutine returns te the point

of call,

3,20 ALGORITHM 19: LEVEL 2 MEMORY TO LEVEL 3 MEMORY

This subroutine, see algorithm 19 appendix A, transfers a
page from Level 2 memory to Level 3 memory, I£ is called by the
page option subroutines when Level 2 memory becomes saturated and
a page frame is needed for future page faults in Level 2 memory,

3.21 ALGORITHM 20: LEVEL 1 MEMORY TO LEVEL 2 MEMORY UNDER OPTIONS
1 AND 2 -

This subroutine, see algorithm 20 appendix A, is used under
paging options one and two to transfer a page from Level 1 memory
to Level 2 memory, After the page has been transferred, the original
bit associated to its Level 2 memory address is "OR'ED" to its
original bit it had in the Interdata, This is because any page that

is original in a higher level of memory, is also original tro each

lower level of memory, It might be noted here that it is necessary
to *OR” the two bits together rather than to just set the level 2
‘original bit equal to the level 1 original bit, This is bhecause

the page may have migrated between Level 1 and Level 2 memory
several times, If for example on the third migration the page did
not get changed in Level 1 memory, but had been an original in

Level 2 memory earlier, the Interdata would now indicate an original
bit of "0" for the page, Thus if the original bit in the page map
table‘is set equal to the Interdata's original bit, the fact that
the page is still an original to lLevel 3 memory will be lost,

Next the job's page map table (PG_LOC) entry is set equal to the
level 2 address of the page frame that it was recopied into and

then multiplied by a negative one, This indicates it is now 1qcated

in Level 2 memory,

3,22 ALGORITHM.EE: LEVEL 1 MEMORY TO0 LEVEL E_MEMORY UNDER OPTION 3

This subroutine, see algorithm 20 appendix A, transfers a
page from Level 1 memory to Level 2 memory when the paging is
performed under option three,

It is identical to algorithm 20 with the exception that the
page frame (CURREEI_PQ_FRAME), to be used for the next transfer needs
to be qualified for the particular task, This is because the
available page frames are kept in a task or local pool as opposed

to a global pool,

3,23 ALGGRITHH_EE: LEVEL 1 MEMORY TO LEVEL 3 MEMORY

This subroutine, see algorithm 22 appendix 4, is used to

Sk

95

transfer a page from Level 1 memory to Level 3 memory, As the
Nova routines stand now it is never called, It is included for
-future possibilities of rollin and reollout to be discussed in

chapter four,

3,24 ALGORITHM 233 LEVEL 2 MEMORY TO LEVEL 1 MEMORY

This subroutine, see algorithm 23 appendix A, is used to
transfer a page from level 2 memory to level 1 memory, Since the
transfer is a core to core transfer, all that is needed is the two
core locations, The Interdata passes its core location, The Nova
uses the SYS_JDB_ID and PG_NUM to index into the page map table to
find its core location., RDOS is then called upon to perform the

transfer,

3,25 ALGORITHM 24t INPUT SPOOLING

This subroutine, see algorithm 24 appendix A, is used to
spool all user jobs from the card reader to the disk, It first
checks the job spool table to make sure there is Toom to spool
another program to Level 3 memory, The spocl table is set for 100
entries, but can be changed to fit the environment of the operation,
If the spool table is full, a message to that effect is sent back to
the Interdata and the subroutine returns, If there is an available
location in the spool table, a job ID is created for the incoming
job and entered into the spool table, Next the JCL is checked for
the presence of a source deck, It might be noted here that as a
job is read in, the JCL is stripped off, later to be entered in the
job queue with the job's ID number, This is necessary so that the

Interdata can later reference the JCL when the program enters the

execution state, If a source deck is present, a unique file name
for it is created and entered in the spool table, The source deck
"is then read into a "sequentially organized file," as defined by
RDOS (16), see Figure 3-11, Sequentially organized files reserve
the last word of each 256 word block for use as a pointer to the
next block of 256 words, MWith sequentially organized files RDOS
handles all of the buffering automatically, This is the reason for
using sequential files for I/0, Next the JCL is checked for the
preseﬁce of an object deck, If an object deck is present a unique
file name is created for it and then entered in the spocl table,

The object deck is then read into a "contiguous}y organized file",
as defined by RDOS, Contiguously organized files are files whose
blocks may be accessed randomly and are composed of 2 fixed number
of disk blocks which are located at an unbroken series of disk block
addresses (see Figure 3-7), Since the data blocks are at sequential
logical block addresses, all that is needed to access a block
within a contiguious file is the address of the first block (or

the name of the file) and the relative block number within the file,
This relative block number within the file will correspond on 2

one for one basis to the page number, Thus if page four of the
object deck is requested, the file name and relative block number
(4), are sent as parameters and RDOS will retrieve page four, This
is the reason for using contiguously organized files for source
decks, Next the JCL is checked for the presence of any data, If
the job contains data, a data file name is created and entered in
the spool table, The data is then read into this "sequentically

organized file", After all the files have been read in, the job's

96

97

Sequentially Organized Files

| |
Logical Logical Logical
255 HWords Block Block Block
Used For Address Address Address
Data
32 1 48
Link Word 3 Link Word [Link Word
Relative Block Relative Block Relative Block
Number Q Number 1 Number 2

Figure 3-11

job number, spool table index, and JCL are entered into the job

queue to await call for execution,

‘3.26 ALGORITHM gi: JOB QUEUE SEARCH

This subroutine, see algorithm 25 appendix A, searches the
job queue for the next job to be run, It is called by the Interdata,
If the job gueue is empty, a message saying so is returned, If
not the job'!s ID in the job queue and its JCL are sent to the
Interdata, HNext the job's index into the file table is taken from
the job .queue and stored in the job's PCB in the Nova, This is so
the Nova can index into the job's spool table entry for its various

files when needed, The subroutine then returns,

3,27 ALGORITHM 26: OBJECT DECK FILE NAME

This subroutine, see algorithm 26 appendix A, is used to
create an cbject deck file name when requested by the Interdata,
After it has been created it is entered in the job's spool table
entry, This subroutine will get called by the Interdata prior to
a source program being compiled, This is necessary since the Nova
handles all I/0 files in the system and in the system's view the

object deck produced is a form of I/0,

3.28 ALGORITHM gz: RETRIEVE OBJECT DECK FILE NAME

This subroutine, see algorithm 27 appendix A, is used to
retrieve a job's object deck file name by the Interdata, It is
necessary for the Interdéta to have a job's object file name prior
to requesting its first page fault, This is because the file name

is used when retrieving pages from Level 3 memory, Therefore if

99

the Interdata has not used algorithm 26 to produce an object deck
file name as a result of compilation, it must retrieve the one that
was created as a result of the cbject deck being read in with the

user's program deck,

3.29 ALGORITHM 28: CREATE OUTPUT FILE NAME

This subroutine, see algorithm 28 appendix 4, is used to
create the output file name where a user's output will be stored,
This routine is called by the Interdata prior to doing output,
After the file name has been created, it is entered in the spool

table for future reference,

3,30 ALGORITHN 22: LIST STACK DEPTH COUNTS FOR PAGE OFTIQGNS 1 CR 3

This subroutine, see algorithm 25 appendix A, is called by
the Interdata whenever a stack depth ccunt is desired while running
under page option one or three, as described in section 3,10, for
a given job, This process will actually involve two calls, One to
this routine and the other to the I/0 driver,

First a call is made to this routine, This routine then
transfers the requested job's LRU depth counts to the page buffer
in Level 2 memory that has been reserved for an I/0 work buffer,
After the transfer, the depth counts are reset to zero, Next the
starting and ending address of this I/0C work buffer that is being
used are obtained. The subroutine then returns, passing these
addresses to the Interdata, The Interdata then has to issue a call
for I/0 and at which time the requested counts are transferred to

the job's output file to be printed at the t=rmination of the job,

100

3,31 ALGORITHM 29: LIST STACK DEPTH COUNTS FOR PAGE OPTION 2

This subroutine, see algorithm 30 appendix A, is identical
‘to algorithm 29 just described with the exception that the depth
count variable does not have to be qualified, This is because the
stack count is global and not local, It is used in place of

algorithm 29 while running under page option 2,

CHAPTER FOUR

4,1 INTRODUCTION

In this chapter we will discuss possible future modifications
to the HIMICS system, We will conclude with a summary of the

HIMICS system,

4,2 SYSTEM HMOLIFiCATION

Because of the modular design of this system, future changes
can easily be made, The following suggested modifications are
intended to make the present system design into a more desirable
and sophisticated system, Some of the suggestions may or may not
be able to be incorporated into a given system, This will obviously
depend upon the mini-computers beiné used and the sophistication
of their operating systems, i

The original operational design of the system was designed
with simplicity in mind, This was done so as to get an operational
version of the system tunning in as short of time period as
possible, As a result some rather primitive techniques have been
used, Further restrictions, as mentioned above, were related to
the characteristics of the operating system being used, The main
restriction here being that there is no dynamic allocation of in-

core memory,

4,2,1 1I/0 FILES
One obvious objection to the present system is that the

system is only set up to handle one input and one output file per

101

102

job, This is limited by the fixed size of the spool table, (See
Figure 2-10, chapter two,) This can easily be changed by a
modification to the zpool table, Either the spool table can be
expanded as an array similar te its present structure, or perhaps
a more desirable alternativé would be to construct the spool tabie
from a linked 1list, This way the spool table can be allocated on
the basis of need,

Another change dealing with I/0 concerns the locking in of
pages in Level 1 memory while I/0 is being performed, The
algorithms given in chapter three, locks pages in in Level 1 memory
for both input and output, They need to be locked in for output
but only the starting and ending page or pages need to be for input,

The alternative would be to only lock in the starting and
ending page(s) on input, Data to the starting and ending page(s)
would then be transferred directly to their Level 1 address, All
input to the page(s) lying between the starting and ending pages,
if any existed, would be input te Level 3 memory, These pages
would then be transferred back to Level 1 memory upecn demand,

There may be an advantage in doing this in that it frees up
some level 1 memory for other task, This advantage may however be
offset, This would result from having to have an extra routine to
search the extended pdge fault table and putting the released
page(s) found in Level 1 memory back on the list of available page
frames. This in itself should net be much of a disadvantage as it
is handled by the Level 2 processor and does not take CPU time away
from the host machine, The main disadvantage would extend from the

LRU theory itself, That is, the working set contains those pages

which are most likely to be referrenced next, It would appear that
if a request is made for input to a page or pages already in the
-working set, that that would tend to increase the possibility that
those pages will be referrenced soon, If this is the case it

would appear that locking the pages in and doing I/0 directly to
their Level 1 address would save time in the long run, This time
being the time to process the page faults to bring the pages back
into Level 1 memory from Level 3 memory. Only actual test runs
can be used to answer which way system performance would be

opticnal,

4,2,2 ROLLIN AND ROLLOUT

Rollout (1,15) involves swapping a program from m2in memory
onto secondary stofage. Rollin (1,15) is the process of bringing
the program back into main memory. It differs from paging in that
the whole program is swapped, not just one page,

Under the present system, Level 1 memory is divided into
fixed partitions which are set at system generation time, A future
consideration would be to apply the variable working set option
(page option 1, section 2,2,2 of chapter two) to Level 1 memory, If
this were done, it could become beneficial ar times to rollout a
job in Level 1 memory if paging becomes excessive, The excess
memory created by reolling out 2 3ob could then be redistributed to
jobs currently in Level 1 memory to reduce an excessive paging
rate, Later when the paging slowed down, the job roiled out could
be rolled back in, Also one might want the rollout and rollin

capabilities to handle high priority jobs, With rollout and rollin

103

capabilities, high priority jobs would enter the executable state
upon entry into the system, by rolling out a lower priority job

if one existed, #

4,2,3 MULTI-TASKING
As the system is generated in its present state it will

handle up to three jobs in a multi-tasking environment, A more
desirable system generation procedure would be one to include a
parameter that would generate the number of partitions, or level
of multi-tasking the user desired, To do this efficiently would
involve dynamic allocation of the various tables used by the file
management and paging routines, If this were done, the number of
tables needed for any number of jobs could be allocated with a

minimal use of memoty,

4,2,4 PRIORITY
Another desirable feature would include some form of

priority system, This way when jobs are spooled to the disk a

priority for that job could be entered into the system spool table,

Then when the job scheduler picks a job to run, the job with the

highest priority would be picked, This system could also have scme

scheme where jobs that have equal priorities are executed according

to which job has been spooled the longest,

4,2,5 PARAMETER PASSIXNG FOR SUBROUTINE INDEPENDENCY
The original intent in the design of this system was to make
each subroutine completely independent of all other routines, The

reason was to enhance system modification, As can be seen in

10h

105

aprendix B, C and D, this was not strictly feollowed, This could
be corrected by parameter passing between subroutines, to produce
‘the independency desired, Tnhis may be enhanced by some restructuring

of the existing data structures,

4,3 TESTING OF ALGORITHMS

A1l of the algorithms given in appendix A have been hand
simulated, This was done by generating all of the possible requests
that can be sent by the Interdata, and calling the routines necessary
to process the reauest, As each routine was called, the routine
was executed by hand, instruction by instruction, A "variable"
trace of the result of executing each instruction was kept, As the
instruction was executed the instruction was marked in order to
identify that it had been executed, It is necessary to mark the
instructions as some routines have multiple paths of execution
depending upon input parameters, These then have to be re-simulated
with different input parameters until each instruction has been
executed,

The hand simulation was done by writing all of the data
Structures and variable names out on a sheet of paper, As a
subroutine was called and executed, a variable trace through the
subroutine was made, That is, as each variable changed value, its
new value was recorded below its previous value and this value then
used as its current value, The results at the completion of
execution of the subroutine were then checked against the expected
results, If they match, the subroutine was accepted as performing

its assigned task,

For an example we will look at algorithm 15 in appendix A,

In order te check algorithm 15, all the algorithms that precede it
-in calling sequence have to be simulated first, This is necessary
in order to initialize the data structures it will use, HWe will
assume here that this has been done, The initialized values of
the variables that will be accessed by algorithm 15 are given in
Figure 4-1A, These are the values cobtained by executing preceding
algorithms in a normal calling sequence,

The next step is to construct some logical input parameters
for the subroutine, For this example the subroutine requires three
input parameters, We will let them have values as follows:

SYS JOB ID=2, PG_NUM=2, LI ADD=6144, The next step is to write
down the asserted values the routine should have upon completion
of execution with the given input parameters, These values are
shown in Figure 4-1C,

The hand execution as described above is next performed, As
the instructions are executed they are marked off as in Figure 4-1B,
The variables that change are shown crossed off in Figure 4-1D,
along with the new values written in below them. The new results,
upon completion of execution, are then compared to the asserted
results in Figure 4-1C, Since they match, we are confident that
the algorithm performed as expected,

Looking back at Figure 4-1B, it can be seen that not all the
instructions have been executed, Therefore a new set of input
parameters are generated to cause the flow of execution through the
subroutine to take the unexecuted path, For this éxample we will

let the new input parameters have the following values --

106

awan N = (9%} ~na

Algorithm Testing

J0B_PCB(2)
PG_LOC DUP_LOC ORG_BIT
J——
5120 0 .
5632 1 5120
-10368 0 5632
0 0 6144
-10240 1 6656
:
0BJ_DECK_FILE Job 2
SPOOL_TABLE_IX 4
USER_JOB_ID User 2

Level 1
Memory

Pg. 0

value

Figure 4-1A

10240
10368
10496
10624

1. ADD | L2_ADD

el

107

Level 2
Memory

Pg. 4

Pg. 2

any
value

AN S SO O T VO ¥

<

AR

Y

v

L

108
Algorithm Testing

ALGCRITHM 15: RETRIEVES PAGE RFQUESTED BY INTFRDATA

SUBROUTIMNE PG_IN{SYS_JCGB_IC,.PG_NUNM,L1_ACT};
IF JOCB_PCFISYS_JOB_I0).PG_LOCIPG_NUM+#1}1<C THEN
Dos
CALL LZ2_Z_L1(SYS_JCR_IDsPG_NUM,L1_ADD);
JOB_PCBISYS_Jad3_10) .PMTIPG_NUM+1) . CUP_LOC=
JOB_PCB(SYS_JNB_IN)FMT(PG_NUM+1) . PG_LOCS
JCB_PCBISYS_JOB_ID)PMTIPG_NUM+1).PG_LGC=L1_AuD3s
END;
ELSE
DI
FILE_IO=08J_DECK_FILE(SYS_JGC3_1I0D1};
CALL L3_2_LL1(SYS_JCA_ID,PG_NUM,FILE_ID,L1_ADD);
END 3
SEND INTERDATA MESSAGE "PAGE TRANSFERRED.™
RETURN;

END

Statements Executed For First Example

Statements Executed For Second Example

Figure 4-1B

JOB_PCB(2)

Algorithm Testing

109

Level 1 Level 2
PG LOC DUP LOC ORG BIT Memory Memory
1] 5120 0 . *
21| 5632 1 5120 Pg. 0 10240 Pg. 4
31 6144 -10368 0 5632 Pg. 1 10368 Pg. 2
4 0 0 6144 Pg. 2 10496
5 | -10240 1 6656 10624
[. .
. ; .
0BJ_DECK FILE Job 2
SPOOL_TABLE_IX 4 L1_ADD | L2_ADD
USER_JOB_ID User 2 6144 10368
Figure 4-1C
JOB_PCB(2) Level 1 Level 2
PG_LOC DUP_LOC ORG BIT Memory Memory
1| 5120 0 . :
2 | 5632 1 5120 Pg. 0 10240 Pg. 4
3 |- 6144 | -10368 0 5632 Pg. 1 10368 Pg. 2
4 0 0 6144 Pg. 2 10496
5 | -10240 1 6656 10624
‘ : "
¢ - .
0BJ_DECK_FILE Job 2
SPOOL_TABLE_IX 4 L1 ADD | L2 _ADD
USER_JOB_ID User 2 ;:%ﬂ; ;§%§;r
- 6144 10368
Input: SYS_JOB_ID=2, PG_NUM=2, L1_ADD=6144

Figure 4-1D

SYS_JOB ID=2, PG NUM=3, LI_ADD=6656, The asserted values are given
in Figure 4-1E, The values after exeéution are given in Figure
"4-1F, Again they are as expected, Looking at Figure 4-1B it can
be seen that all instructions have been executed, This completes
the check out for algorithm 15, All the other algorithms have

been verified in a like manner,

4,4 CONCLUSION

Since this system has not been implemented as of this writing,
no statistics of system performance can be given, It would appear
conceivable that a system as presented in this paper should increasa
throughput compared to a2 similar paging system running with only

one CPU,

4,4,1 THEORETIC TIME ADVANTAGE

For a theoretic comparison we will take two mini-computer
systems, Let one system consist of a single Interdata model 85
modified to run in a virtual environment. This means the system
will have incorporated in it a paging system and will use primary
and secondary memory, Primary memory being in-core memory in the
host machine and secondary memory being disk storage, For this
example an IBM 2315 disk cartridge is used, This is because the
Interdata 0S/16-MT Manual furnishes reference times for this
particular disk drive. Let the other system consist of an identical
machine as just described, but add to this system a second mini-
computer, For this example we will use a Nova computer, The KNova

in this case is used to handle all of the I/0 and ﬁaging for the

~

110

Algorithm Testing

JOB_PCB(2) Level 1
PG_LOC DUP_LOC ORG BIT Memory
1| 5120 0 p
2| 5632 1 5120 Pg. 0
3] 6144 | -10368 0 5632 Pg. 1
4] 6656 0 6144 Pg. 2
51 -10240 1 6656 Pg. 3
» [
= :
0BJ_DECK_FILE Job 2
SPOOL_TABLE_IX 4
USER_JOB_ID User 2
Figure 4-1E
JOB_PCB(2) Level 1
PG_LOC DUP_LOC ORG_BIT Memory
1] s120 0 ;
2| 5632 1 5120 Pg. 0
3] 6144 | -10368 0 5632 Pg. 1
<
51 -10240 1 6656 Pg. 3
v
[] -
. L]
0BJ_DECK_FILE Job 2
SPOOL_TABLE_IX 4
USER JOB ID User 2 B4
= 6656

Input:

102;0
10368
10496
10624

111

Level 2
Memory

Pg. 4

Pg. 2

L1_ADD | L2_ADD

10240

10368
10496

10€24

Level 2
Memory

Po. 4

Pg. 2

L1_ADD | L2 ADD

SYS_JOB_ID=2, PG_NUM=3, L1 _ADD=6656

Figure 4-1F

10368

host machine and to function as an extension to the host machine's
primary mem;ry. Therefore for the second system we will have
-three levels of memory, This will represent the system as
presented in this paper, For this example let both systems be
running under a maximum load, That is, each system has a backlog
of programs waiting to be run, Let both systems be generated to
multi-task among three user jobs at a time, Since each system is
running under a maXimum load, there will be three user jobs
currently competing for the CPU'S time in the multi-task environ-
ment, Now let a bage fault occur in each of the two systems,
Under the first system, with only one CPU, the task that was
executing has to be put in the wait state until the requested page
can be fetched. The time breakdown of the minimum events that
have to occur are as follows, First an immediate interrupt occurs,
This takes an average time of 4,42 microseconds, Next an inter-
leaved data channel read is issued taking an average time of 1,85
microseconds, Since secondary storage is on disk, this requires
a disk access, The average disk latency time is 20 milliseconds
or 20,000 microseconds, The average head positioning and settling
time takes another 70 milliseconds or 70,000 microseconds. Then
the actual data transfer time takes 2,77 microseconds, This comes
to a total of 90,00%2.04 microseconds, This would be the minimum
time required for any page fault, The reason it is a minimum time
is because for the times, given it is assumed that primary memory
is still unsaturated. A more realistic figure to use for compariscn

would be one that included two page transfers. This is because

113

once primary memory becomes saturated, for each page tvansferred
into primary memory, a page will have to be transferred back to
‘secondary memory., The minimum additional times required to

transfer a page to secondary memery are as follows, First an
interleaved data channel write is issued requiring 2.07 microseconds,
Again this requires disk access, so the latency time of 20
milliseconds and the disk seek time of 70 milliseconds are included,
The data transfer time for a page is again the same 2,77 microseconds,
The aﬁove adds an additional 90,004,84 microseconds te the previous
minimum time of 90,009,04 microseconds, This gives an average time
of 180,013,88 microseconds to process a page fault with the single
CPU once primary memory is saturated, The above figures are
tabulated in Figure 4-2,

Running under system two, the system as presented in this
paper under the same set of conditions as given above, the following
time is taken away from the host computer's CPU, The average time
required to process an immediate interrupt, which is 4,42 micro-
seconds, This is because once the interrupt has been processed,
the host machine can continue processing other task, This is made
possible as a result of parallel processing utilizing the second
CPU. The second CPU will handle all of the required page traffic
while the host machine continues to process other task., This
parallel processing in reality frees the host CPU to be used as a
dedicated arithmetic and logic unit., Thus we are looking at a
page fault rate time for a system as presented in this paper as

4.42 microseconds as compared to a similar single CPU virtual

Minium Page Fault Time For Single CPU

Page-in ‘ : Milliseconds ' Microseconds
Immediate Interrupt 4.42
Data Channel Read 1.85
Disk Latency Time 20 20,000.00
Disk Head Seek 70 70,000.00
Data Transfer ’ 2.7

Sub Total 90,009.04

Page-out
Data Channel Write 2.07
Disk Latency Time 20 20,000.00
Disk Head Seek 70 70,000.00
Data Transfer 2,77

Sub Total 90,004.84

Total 180,013.88

Figure-4-2

A]

115

address mini-computer system page fault rate time of 180,013,88
microseconds, This represents a savings of 180,009,46 microseconds
‘per page fault or a 997 plus savings in time, During the
additional time period of 180,009,46 microseconds required by the
stand-a-lone CPU, 178,227 addition instructions could have been
performed in the dual CPU system using parallel processing, This
not only holds true for page faults but also If0, since all I/0
is handled by the second CPU in a like manner to paging,

This level of parailel execution obviously can not be met
in a twé machine two level processor system. It could be achieved
if the sum of the distance (time) between page faults and I/0O
interrupts across all tasks is greater than the time required to
process one page fault or I/0 interrupt., This can be represented
as:iﬁ? T.l interrupt'>'Ti process interrupt, This implies that
there is always a task in the ready state whenever an executing
task is interrupted, Since the process times of present day
machines can not meet this demand, “N" number of processors would
have to be incorporated into a system network to keep up with the

host machine,

4,4,2 SUGGESTED SYSTEM LOADS FOR SYSTEM PEkFORHANCE EVALUATION
The actual performance gain of one system over the other can
only be proved by the actual running of programs under the two
operating systems and then comparing the execution times, Four
basic types of programs ghould be included in éhe test, The first

being small programs requiring little or no paging or 1/0,

Running under these conditions both systems would be expected to

perform about the same, The dual processor should be a little
faster as all programs will require I/C to read in the program
-and for iistings, The second type of programs should consist of
small programs containing lots of I/0 processing, This should
indicate the advantage of parallel prccessing to perform I/Q
operations, The third type of program should consist of large
programs designed to induce paging, but requiring little I/0
processing, This should indicate the advantage of parallel
proceésing to handle page fzaults, The fourth type of programs
should consist of large programs to induce paging and also designed
to induce I/0 processing, This should indicate the advantage cf
parallel processing to handle both I/0 and paging, The above
types of programs can be rurn in homogeneous and heterogeneous

groupings and evaluations made from the results,

4,4,3 COST CF MEMORY

The cost of hardware is often a determining factor in the
éesign of a computer system, MWith the design given in this paper
a slower speed processor can be used as extended memory and to
handle the I/0 and paging, thus reducing the high cost of high
speed in-core memory, and giving the system added capacity, In
this paper the Nova, used as the level two processor, is four times
cheaper per given core memory size as the host machine, Thus using
& multi-processor system more memory can be purchased for a given

price and still meet the needs of the overall system,

116

ALG.

G

10.

11.

12.

13.

14,

15.

lé.

17.

18.

APPENDTIX A
ALGCRITHM INDEX PAGE

MAIN CRIVER? MAIN CRIVER FOR NOVA ROUTINES.aeceeeeall®
SYS_CEN: GENERATES THE SYSTEM.esevsecsecsascsacsnnssl?l
INPUT_OUTPUT: HMAIN INPUT/SUTPUTY DRIVER.esseaneseessl?23
DATA_IN: INPUT DRIVER sseecasscessssssvsasssssensssenl??
DATA_CUT: OUTPUT DRIVER.ceevossoesesnsscsssscanssassl??
TRANS_IM: TRAASFERS CATA TO INPUT ADDRESSsaesesesaal2?®
TRANS_DUT: TRANSFERS DATA TC CUTPUT FILEdesessssasalll
ERRUOR_CCCE: TRANSLATES NOVA I/0 ERROR CUODFeaesseaesel33
PG_COPTICN: PAGE OPTICN 1 MAIN ROUTINFewaeesasssnsesléd
INIT_PG_CPTION: PACE CPTION 1 INITIAL RCUTINE,.....13%8
PG_CPTICN: PAGE CPTICN 2 MAIN QEUTI&E.....-........lBQ
INIT_PG_CPTION: PAGE CPTICN 2 INITIAL ROUTIMNEeeeesalsd?
PG_CPTICNK: PAGE CPTICN 3 MAIN ROUTINE cevsosassseasees L4%
INIT_PG_CPTICN: PAGE CPTION 3 INITIAL ROUTINC eeeeeelt?
PG_IN: RETRIEVES PAGE RFQUESTED BY IMTERCATAceeseeelaB
ENJ: ENRL OF JCB POUTINEwcasuvrcsnssvnavenssnasaansnald
L3_2_L2_PG: TRAMSFERS A PAGE FRGM LEVEL 3 MEMORY

TO LEVEL Z MEMORY yon wwsw os mv waw & 5w 550w 0 o5 we on we 15T
L3_2_L1_PG: TRANSFE2S A PAGE FRCM LEVEL 3 NEMORY

T LEVEL 1 MEMERY.adw sy sw on wm siws o 56 wa sawe 6 wnae s 191
L2_2_L2_PG: TRANSFERS A PAGE FRCM LEVFEL 2 MEMORY

le LEVFL ‘% ?"FMOR\{‘"..0..-."'."..‘.....'.l....."lr’g

ALG.

204

21,

22,

23.

2%,

26.

27.

H

L1_2_L2_PG: TRANSFERS A PAGE FRCM LEVEL 1 FEMCRY

PAGE

TC LEVEL 2 MEMORY UNDER PAGE OPTICNS 1 AND 2ese..152

Li_2_12_PG: TRANSFERS A PAGE FROM LEVEL 1 MEMORY

TC LEVEL 2 MEMORY UNDER PAGE OPTICN 3eacescsasseseal33

L1_2_L3_PG: TRANSFERS A PAGE FROM LEVEL | MEMORY
TO LEVEL 3 MEMORYeeeasceccacesscsccssscaaconcscses
L2_2_L1_PG: TRANSFERS A PAGE FRCM LEVEL 2 MEMDRY
TO LEVEL 1 MEMORY e: eeuoososnasencanascscnaanaces
SPOCL_SCURCE: SPOCLS JCB FRCM REACER essessvecncns
NEXT_JOB: SEARCHES JOB QUEUE FOR ANEXT JOBiesoeess
CREATE_ODF: CREATF OBJECT DECK FILE NAME.veeooeoe
GET_CDF: GETS THE CBJECT DECK FILE NAME FIR THE
BEGUETVED JUB i omvonis srem ey mis 5o srasems s £5 &85
CREATE_CUT_FILE: CREATE JO8 CUTPUT FILE NAME. eaus
STACK_DEPTH_CDUNTS: LIST STACK DEPTH COUNTS FCR
PAGE HETIONS 1 0% Fu swvs sw sniee vs 68 $isidanis 4 o

STACK_DEPTH_COUNTS: LIST STACK DEFTH COUMTS FOR

pAEE OPTIGN 2.........‘.".’._‘.....l..l...l..'..

.‘}.53

2e154

«a 155

.'15?

s 157

+s158

«« 158

«a 159

«215G

118

ALGORITHM 1: MAIN DRIVER FCR NCVA

MAIN CRIVER;

DCL 1 JOB_PCBI3),

2 PMT(L28),

3 PG_LCC,

3 puP_Loc,

3 0’G_BIT,
2 OBJ_DECK_FILE,
2 SPOOL_TABLE_IX,
2 USER_JOR_IDEN;

DCL 1 SPCOL_TAB(1G0,5) 3

DCL 1 PG_TRAF_TABI(3),

2 L2_2_i{2_CCUNT,
2 L3_2_L1_COUNT,

2 L2_2_L3_CCUNT,

2 L2_2_L1_CCUNT,

2 L1_2_L2_CCUNT,

2 L1_2_L3_CCUNT,

2 10_L3_2_L2_COUNT,
2 IC_L2_2_L3_CCUNT,
2 TOT_COUNT;

CC I=1 TO 120;
SPOOL_TAB(1,1)=0;
FAND;
SPCCL_TAB_INDEX=13;

2C FNABLE INTERRUPTS;

RGUT INES -

119

DC UNTIL
WALT FOR

END;

MESSAGE SENT BY INTERCATA OR READER INTERRUPT;

MESSAGES

CISABLE INTERRUPTS;

IF CASE (PMESSAGE_NUM);

1: CALL
2: CALL
3: CALL
4: CALL
5: CALL

L1_
&: CALL
7: CALL
8: CALL
S: CALL
10:

SYS_GEN{(PG_CPTICN);
PG_IN{SYS_JOB_TC+PG_NUNM,L1_ADD);
FCJ{SYS_J0OB_ID) 3

[NPtTfDUTPUT{UPE,SGPBJ:
PG_CPTION(SYS_JC3_ID.JO3_ACC_TIME,PG_NUM,
ACC,ORG_BIT)3

SFCCL_SOURCE;

NEXT_JO3(SYS_J0B_1IDJ;
CREATE_DDF{SYS_JCe_1D)3;

CET_CDF(SYS_JOo_IC);

CALL CREATE_OUT_FILEISYS_J03_10);

11: CAtLL STACK_DEPTH_COUNTSA{SYS_JO3_ID,RBEG_ACD,END_ACD);

END CASE;

ALL OTHER SUBROUTINES THAT ARE PART CF THE NOVA SYSTEA

WILL GO FERE AS THEY ARE ALL INTERNAL T0 THIS MAIN

RCUTINF. SAVES PASSINGC CATA 2ASF.

GO 10 203

END S

120

ALGORITHM 2: GENERATEZS THE SYSTEM

"SUBROUTINE SYS_GEN({PG_CPTICN);
L2_FREE_CCRE=LZ2_UPPER_DBOUND-L2_LCWER_BCLND+1;
1F PG_OPTICN=3 THEN
D03
TOT_USEC=03;
INTERGER_3RU=L2_FREE_LCCRE/3;
DO 1=1 TO 33
WSCBL{T} . MAX_PG_F=INTEGER_3RLT;
TOT_USED=TOT_USED+INTEGER_3RD;
END;
DO I=1 7O 2 WHILE TOVT_USEDKL2_FRFE_CCRE;
HSCB{T) MAX_PG_F=WSCBI{) .MAX_PG_F+1;
TOT_USED=TOT_USED+1;
END3
CO 1=1TC 3;
DO J=1 TG wSCR{I).NMAX_PG_F;
WSCB(I)LAVAIL_PG_FRAME{J)=CORE ADLRESS OF NEXT PAGE
ENDG 3
CALL INIT_PG_CPTICN({I};
END;
END;
ELSE IF PG_CPTION=2 TFEN
D03
DO I=1 TO L2_FRSE_CORE;

AVAIL_PG_FRAME(I)=CCORE ADDRFESS CF NEXT PAGE:

121

FRAMES

122

END 3
AVAIL_PG_F_INDEX=L2_FREE_CORE;
CURRENT_PG_FRAME=AVAIL_PG_FRAME(AVAIL_PG_F_INDEX)3
HEAC=03
END;
ELSE
DO
DC J=1 TO L2_FREE_CCRE;
AVAIL_PG_FRAME (J)=CCRE AL DRESS CF NEXT PAGE FRAME;
END;
AVAIL_PG_F_INDEX=L2_FREC_CORE;
CURRENT_PG_FRAME=AVAIL_PG_FRAME{AVAIL_PG_F_INDEX);
AVATIL_PG_F_INDEX=AVAIL_PG_F_INDEX-13
DC i=1 TO 3;
DG J=1 TQ 128;
JOB_PCR(I) PMT{J}.PG_LCC=93
END;
CALL INIT_PG_CPTICAN(I};
END;
END3
SEND INTFRDATA MESSAGE WSYSTEM REACY."
RETURN;

END;

ALGOTITHM

SUBRQUTINE INPUT_OUTPUTILPR,SGP3);

2: MAIN INPUT/CGUTPUT DRIVER

DCL 1 UPB,

2

WCRD_1,

2 FUNCT_CCGDE,

3 LU,
KORD_2,
3 STATUS,

3 DEV_ADD,
START_V_ADD,
ENC_V_ADD,
REL_ADD,
WORD_b6,

3 W_KEY,

3 R_KEY;

DCL 1 SCGP8,

2

2

SYS_Jn8_10,
USER_JOB_ID,
ACC_J0B_TIME,
CRG_BITS,
RETURN_ERROR_COBE,

FILE_TYPE;

DCL PG_BUFFI(2%6);

{F START_V_ADC NOT EVEN

ELSE [F

D323

END_V_ADRD AOT £DD THEN

123

STATLS=X'€41;
DEV_ACL=PHYSICAL ADDRFSS o# DEVICE REQUESTECD;
RETURN;
END
NUM_WRELS_2F_TRANS={ (END_V_ADC-START_V_ALC)+1)/2;
START_PG_NUM=START_V_ADDI(BITS 2-5);
END_PG_NUM=END_V_ADC(BITS C-6);
IF FUNCT_CCDE=20,24,30G,40,4%,5) THEN
SEND INTERDATA MESSAGE I/C STARTED:
IF FUNCT_CCDE=20,424,28,2C,30 02 38 THEN
DO
CALL CATA_DUT;
RETURN;
END3
ELSE IF FUNCT_CODE=40,44,4%,4C,50 OR £8 THEN
DO
CALL DATA_IN;
RETURN;
END;
ELSFE DC;
STATLS=X*'CO"*;
DEV_ADD=PHYSICAL ACDRSS (F DEVICF REQUESTED;
RETURN;

EMD 3

124

ALGORITHM 4: INPUT ECRIVER

'SUBRCULTINE CATA_IN;
OFF _SET=START_V_ADDIRITS 7-15);
CCNVERT INTERCATA FUNCTICN CCDE TC EQUIVALFAT ~OVA
INPUT CCMMAND.
IF START_PG_NLNM=END_PG_NUM THEN
CALL TRANS_IH(NFF_SET,NUN_WRDS_28_TRANS);
ELSE
NG;
NUM_WRDS={512-START_V_ADD, BITS 7-15)/2;
CALL TRANS_IN{OFF_SET,NUM_%RDS);
NUM_WRDS_28_TRANS=NUM_WROS_23_TRANS-AUM_WRDS;
DO WHILE NUM_WRDS_2R_TRANS>=256;
START_PG_NUM=START_PG_ANUM+13;
CALL TRANS_IN{Q,256);
NUM_WRDS_2B_TRANS=AUM_WRDS_22_TYRANS-2563
END 3
START_PG_NUN=START_PG_NUM+1;
IF NUN_WRDS_28_TRANSDD THEN
CALL TRAMS_IN[O,NUNM_»RDS_23_TRANS);
END;
1€ ERROR DURING 1/0 THEM
RS
RETURN_ERRCR_CANDE=AC2:
£LALL ERRCR_CCDE(AC2,STATLS,PEV_ACT):

END: -

M

(%))

126

ELSE WORD_2=0;
RETURN;

END:

127

ALGORITHM 5: CUTPUT CORIVER

_SUBROUTINE CATA_OUT;
OFF_SET=START_V_ADD(BITS 7-15);
CCNVERT INTERCATA CUTPUT FUNCTICN CODE TO EQUIVALENT NOVA
OUTPUT CCMMAND.
IF START_PG_NLM=END_PG_NUM THEN
CALL TRANS_DUTI(OFF_SETNUM_WKDS_23_TRANS) ;
ELSE
n0;
NUM_WRCS={512-START_V_ALC)/2;
CALL TRANS_OUT(CFF_SET,NUM_%RDS);
NUM_WRCS_28_TRANS=NUM_WRDS_23_TRANS-NUM_WRDS;
DO WHILE NUM_WRDS_28_TRANS>=256;
START_PG_NUM=START_PG_NUM+1;
CALL TRANS_DUT(D,2556);
NUM_WRDS_2B_TRANS=NUM_wRDS_2RB_TRANS-256}
END
START_PG_RUM=START_PG_AUM+1
IF NUM_WRDS_23_TRANS>0 THEN
CALL TRANS_DUTI(O,NUM_WROS_2R_TRAMS);
END;
IF ERRCR CURING [/0 THEN
ne;
RETURN_ERROR_CNNE=AC?;
CALL ERRCR_CODE(AC2,STATUS,DEV_ACED);

FNDS

128

ELSE WCREC_2=03
RETURN;

END;

126

ALGCRITHM 6: TRANSFERS DATA TO INPLT ACDRESS

-SUBROUTINE TRANS_INUIOFF_SET,ANUM_WRDS);
FILE_TDEN=SPOOL_TAB(JOB_PCR(SYS_JCS_1D).SPOCL_TYABLE_IX,FILE_TYPE};
FILE_IDEN=SPOOL_TAB(SPCOL_TABLE_IX{(SYS_JCB_ID) FILE_TYPE);
1F JOB_PCRBISYS_JUB_ID).PMT(START_PG_NUM+1)>0 THEN
D03
BEG_ADD=JUSB_PCB(SYS_JOB_IN).PMT(START_PG_NUM+1)}+CFF_SET;
REﬁﬁ‘f;—SEQUENTiALLY THE NUMBER OF WORCS (NUM_WRDS) FROM
THE GIVEN FILE (FILE_IDEN), INTO LEVEL 1 MEMCRY
BEGINNING AT ADDRESS {(BEG_ACD).
JOB_PCB{SYS_JC3_ID)PMT{START_PG_NUM+1},0RG_BIT=13
RETURN;
END;
ELSE IF JOB_PCB(SYS_JN8_ID).PMT{START_FG_NUNM+1)<0O THEN
LO;
BEG_ACC= -
(JOB_PCBISYS_JOR_ID) PMT{START_PG_NUM+L)=—1)+{0FF_SET/2);
READ IN SEQUENTIALLY THE NUMBER OF WCRDS (NUM_WRDS) FR0OM
THE GIVEN FILE (FILE_ICEN), INTO LEVEL 2 ¥EMORY
BEGINNING AT ACDRESS (BEG_ADD).
JOB_PCB{SYS_JUB_ID).PMT(START_PG_NUM+1)} ,ORG_BRIT=13;
RETURN
END;
EL SE
DG

FILE_ID=JC3_PCR(SYS_JCR_IC).C3J_DECK_FILE;

fa—
w
o]

CALL L3_2_L2_PG(SYS_JHB_I?1START_PG_NUM,F{LE_ID.PG“BUFFi:

REG_ACC=0FF_SET/2+1;

READ IN SEQUENTIALLY THE NUMBER CF WORDS {(NUM_WRDS),

FRCM THE GIVEN FILE (FILE_1CEN), INTOD (PG_BUFF)
BECINNING AT ADDRESS PG_BUFF(BEG_ADRC).

CALL RCCS TO TRANSFER 256 CONSECUTIVE WCROS REGINNING IN
LEVEL 2 MEMCRY AT ACCRESS ({(PG_RUFF), TQ FILE (FILE_ID),
AT RELATIVE BLCOCK ANUM3ER {PG_NUM).

RETURN;

END

131

ALGCRITH# 7: TRANSFERS CATA T0O OLTFUT FILE

CSUBRCUTINE TRANS_OUT(CFF_SET,NUM_®RDS);
OUT_FILE=SPOCL_TAB(SPOOL_TABLE_IX{SYS_JCB_ID),FILE_TYPE);
IF JOB_PCE(SYS_JOB_ID.PMT(START_PC_ANUM+1)>C THEN
Do
BEC_AOD=J0B_PC3{SYS_JUB_ID)PMT{START_PG_NUN+1)+0OFF_SET;
WRITE TC THE J2B'S CUTPUT FILE (CUT_FILE), SEQUENTIALLY
THE NUMBER OF WORDS RECUESTED {(NUM_WRDS), FRCH
LEVEL 1 MEMORY EBEGINNING AT ACDRESS {B8EG_ADD).
RETURN;
END;
ELSE IF J083_PC3(SYS_JOB_ID).PMT{START_PG_NUM+1})<0 THEN
DO
BEG_ADE=-
(JOR_PCR{SYS_JCB_ID).PMT(START_PG_NUM+L)*-1)+(0OFF_SET/2};
WRITE TO THE JOB'S OUTPUT FILE (CUT_FILE), SEQUCNTIALLY
THE MUMBER CF WCRDS QEQUESTEC (NUM_WRDS), FRCH
LEVEL 2 MEMORY BEGINNING AT ADDRESS {BEG_ACD).
RETURN;
END3
EL SE
D0;
FILE_ID=JOB_PCEB{SYS_JCB_IN).C3J_DECK_FILE;
CALL L3_2_L2_PGISYS_JOB_ID,START_PG_NUM,FILF_I1D,PG_BUFF);
BEG_ALIC=0FF_SFT/2+1;

WRITE TO THE JOB'S OUTPUT FILEZ (OUT_FILE), SCQUENTIALLY THE

132

NUMBER CF WCRLCS REQUESTED (NUM_WRDS), FRCM
LEVEL 2 MEMORY BEGINNING AT ADDRESS {(PG_BUFF(BEG_ADD)).
RETUPRN;

END 3

133

ALGORITHM 8: TRANSLATES NCVA [/ ERRCR CODE

T3 INTERCATA I/3 ERRCR COOE

SUBROLTINE ERRDOR_CODE(AC2,STATUS,DEV_ADD);
IF DEVICE UNAVAILASLE THEN STATUS=X'AQ';
ELSE IF END OF MEDIUM TEHEN STATUS=X'3Q0';
ELSE IF ENDO OF FILE THEN STATUS=X'88";
ELSE IF UNRECOVERARLE ERRCR THEN STATUS=X'E84"';
DEV_ADD=PHYSICAL ADDRESS OF DEVICE REQUESTED (8 BITS);
RETURN;

END;

ALGCRITHM G: PAGE OPTICN 1 MAIN ROUTINE

- SUSBROUTINE PG_CPTIONISYS_JCB_ID,JCB_ACC_TIME,PG_NUM,

L1_ADD, IORG_BIT):

DCL 1 WwSCBU2),

2

PREV_ACC_TIME,
PREV_TIME_SPAN,
READ,
EPFT(128),

3 PG_NUM,

3 DEPTH_COUNTS

DCL AVAIL_FC_F_INDEX;

DCL AVAIL_PG_FRAME(128);

TEMP_PG_NUN=PG_NUM3

CURRENT_TIME_SPAN=JOB_ACC_TIME-WSCR(SYS_J08_IL) .,PREV_ACC_TIME;

IF JOB_PCBISYS_JOB_ID).PMTIPG_NUM+1) . CUF_LCCLKO THEN

nCs3

IF ICRG_BIT=1 THEN

DO

CALL L1_2_L2_PG(SYS_JIB_ID,PG_NUN,L1_AD, 10RG_BIT);

134

CURRENT_PG_FRAME=J03_PCB(SYS_JC3_ID).PMTIPG_AUM),DUP_LCC%:-13

JOB_PCE(SYS_JOR_ID).FMT(PG_NUF+1).DUP_LCC=0;

END3

SEND INTERLCATA MESSAGE, "PAGE REMCVED FROM LEVEL 1 MEMORY.®

I=1;

DG WHILE WSCB{SYS_JOB_ID).EPFT{1).PC_NUMa=PG_NUM;

I=1+13

135

END;
hscatsvs_dna,loa.sppttII.DEETH_CGUNT=
WSCR(SYS_JOB_ID).EPFT(I) DEPTH_COUNT+1;
DC J=1 TO WSCB{SYS_JCB_ID).HEAD-13
KSCB{SYS_JOB_ID).EPFT(J).PG_NUVM=
WSCBISYS_JO3_1D) LEPFT{J+1).PG_NUMS
END;
IF CURRENT_TIME_SPANDWSCRISYS_JOB_ID} .PREV_TINME_SPANY¥1.10 &
hSCB(SYS*JQB_IDi.FEAD>l THEN
CALL C_CREASE_WSSI{1);
END;
ELSE
Dos;
DO
CALL L1_2_L2_PG(SYS_JDS_IB,PG_NUN;Ll_AD,[CPG_BITJ:
SEND INTERCATA MESSAGE, "PAGE REMCVED FRCM LEVEFL 1 MEMCRY.™
END;
1F CURRENT_TIME_SPANCWSCBI(SYS_JCB_IC).PREV_TINE_SPAN* .50 THEN
IF AVAIL_PG_F_INCEX>0 THEN
DCs
AVAIL_PG_F_INNEX=AVAIL_PS5_F_INDEX-13
CURRENT_PG_FRAME=AVAIL_PG_F2AME (AVAIL_PG_F_INNEX);
HEAD=FEAD+1;
ENDS
ELSE
no;

IF CURRENT_TIME_SPAND

ﬁSCB{SYS,JCB_[E}.PgEV_TIFE_SPAN*I.IO E
WSCBISYS_JO3_ID) .HEAD>L THEN
N=23
ELSE N=13
CALL D_CREASE_WSS(N);
END;

END;
WSCBISYS_JCB_10)<PREV_TINE_SPAN=CURRENT_TIME_SPAN;
WSCBISYS_JO3_ID).PREV_ACL_TIME=JOB_ACC_TIME;
WSCBISYS_JCB_1D)EPFT{HEAD)=TEMP_PG_NUM;

RETURN;
FRRGR ARk Ak kb ke A A kR Rk kA kR Ak ek kR ek k&
SUBROUTINE C_CREASE_WSS(N);
PO I=1 TO N;
PG_NUM=WSCR(SYS_JOB_1D).EPFT(1).PG_NUM;
IF J0%_PCA(SYS_JI3_1D).P¥T(PG_NUM+1}.CRC_3IT=1 TFEN
DC3;
FILE_ID=JOR_PCB(SYS_JCR_IC).0RJ_CECK_FILE;
CALL L2_2_L2_PGISYS_JO3_1D,PG_NUM,FILE_ID);
END;
AVATL_PG_F_INDEX=AVAIL_PC_F_INDEX+];
AVATL_PG_FPAME{AVAIL_PC_F_INDEX)=
JOB_PCBISYS_JN3_IN)PNT{PG_MNUM+1).PG_LCC*-13
JOB_PCB(SYS_JCB_ID) FMTIPG_MUM+1) PG_LOC=03
EAD;
CURQENT_PC_FRAME=AVAIL_PG_FR5“E(AVAIL_DG‘é_IVQEX3}

NO I=1 TC WSCR(SYS_JO3_IC)HEAD=N;

137

WSCB{SYS_JOR_ID)}JEPFT(1).PG_NUM=WSCA(SYS_JOB_ID)1.EPFT (T+N) . PG_N
END; |

HEAD=FEAD-N+13

RETURN

Mk ko ko ok ok ko ko A AR R ket g ok Rk ok ki # ok ok Ak

END;

ALGORITHM 10: PAGE CPTICN 1 INITIAL

SUBROUTINE INIT_PG_CPTICACI];
WSCR{1).HEAD=0;
WSCBI(I).PREV_ACC_TIME=0;
WSCBIT).PREV_TINE_SPAN=D;
L3_2_L2_CCUNT(I)=0
L3_2_L1_CCUNT(I)=C
L2_2_L3_CCULNT(I)=D
L2_2_L1_CCUNTII)=9
L1_2_L3_CCUNT(I)=0
L1_2_L2_CCUNT{1}=0
1/0_L3_2_12_CCUNT{1)=0;
1/70_12_2_L3_CCuUNT(1)=03
TCT_COUNT (13=03

DO J=1 IC 1283

IF JOB_PCR{I).PMT(J)}.PG_LCCCO THEW

DC3

RCUTINE

AVAIL_PG_F_INDEX=AVAIL_PG_F_INDEX+1;

AVAIL _PG_FRAME(AVAIL_PG_F_INDEX])=
JO3_PCBII)PMT(J)PG_LLCC=-13
JOB_PCB(I).PMT(J).DUP_LBC=C3

END;

JOB_PCATI).FMTIJ).PG_LCC=C3

WSCBISYS_JOA_IN) .EPFT(1) .DEPTH_COUNT=C}

EMD;S
RETURN;

END;

138

139

ALGCRITHM 11: PAGE COPTICN 2 MAIN RCUTINE

SUBROUTINE PG_OPTICGN{SYS_JGB_I1D,J0B_ACC_TIME,PG_NUM,
L1_ADD, I0RG_B1T};
DCL 1 WSCR,
2 EPFT(128),
3 PG_NUM,
3 DEPTH_CCUNT
2 AVAIL_PG_FRAME(128),
2 AVAIL_PG_F_INDEX,
2 HEAD,
TEMP_PG_NUM=PG_NUM;
IF JOB_PCE(SYS_JOB_ID).PMT{PG_NUM#1},DUP_LOCKD THEN
N0
IF I0RG_BIT=1 THEN

DO;
CALL L1_2_L2_PGISYS_JO03_T10,+PG_NUM,LL1_ADND,ICRG_BIT);
CURRENT_PG_FRAME=JCB_PCB(SYS_JOB_ID)PMTIPG_NUM)}.NDUP_LOC*~-13
JOB_PCB(SYS_JCB_IN).PMT(PG_NUNM+1) .CUP_LCC=0;
END 3
SENEC INTERDATA MESSAGE, "DAGE REMCVEL FROM LEVEL 1 MEMORY,"
I=13
DO WHILE EPFT{I).PG_NUM-=PG_NUMEEFFT{1}.J2B_IDEN-=SYS_J28_1ID
I=T+1;
END;
WSCREPETII) JDEPTH_CCUNT=WSCHLEPFT (1) .NEPTH_COUNT+13

OC J=1 7O HEAC-1;

EPFT(I).PG_NUM=EPFT(I+1).PG_ANUM;
EPFT{I).JOB_IDEN=EPFT{I+1}.JOB_IDEN;
ERD;
END;
ELSE
s H
CALL L1_2_L2_PGISYS_JOB_ID,PG_NUNLLI_AND,L,ICRG_31T7);
SEND INTERCATA MESSACE, "PAGE REMCVED FROM LEVEL 1 MEMORY,#
IF AV_PG_F_INDEX>] THEN
DC;
AV_PG_F_INDEX=AV_PG_F_INDEX-1;
CURRENT_PG_FRAME=AVAIL_PG_FRAME(AV_PG_F_INDEX);
HEAC=HEAD+1;
END ;
ELSE
DC;
PC_NUM=EPFTI{1).PG_NUNM;
PHMT_SYS_JDB_ID=EPFT(1).JC3_IDEN]
IF JOB_PCBI{PMT_SYS_JUCB_ID).FMT{FG_NUM+1).ORG_RIT=1 THEN
D03
FILE_ID=JOB_PCBISYS_JIB_ID) OEJ_CECK_FILE;
CALL L2_2_L3_PG{PMT_SYS_JCE_ILC,PG_NUMyFILE_ID);
ENE 3
JCB_PCEB(PMT_SYS_JOP_IC).PMTIPG_ANUM+L).PS_LOC=D3
CLRRENT_PG_FRAME=
JCB_PCR(PMT_SYS_JU3_ID).PMT{PG_NUM+1).PG_LOC*-13

GC 1=1 TC FEAD-1;

141

EPFTII).PG_NUM=EPFT(I+1).PG_NUV;
EPFT(1).J0B_IDEN=EPFT(1+1).J08_IDEN;
END 3
ENG;
END;

EPFT(HEAD) ,PG_NUM=TEMP_PG_NUN;

EPFT(HEAD) . JDB_IDEN=SYS_JCR_ID;

RETURN ;

EMD;

ALGCRITHM 12: PAGE CPTICN 2 INITIAL ROUTINE

 SUBROUTINE INIT_PG_CPTICA(I);
DCL 1 TEMP_EPFT(128),

2 PG_NUM,

2 JOB_IDEN;
L3_2_L2_CCULNT(I)=0
L3_2_L1_CCUNT(I)=0
L2_2_L3_CCUNT(I)=0
L2_2_L1_CCULAT(I)=0
L1_2_L3_CCUNT(I}=0
L1_2_L2_CCUNTI{I)=0
1/0_L3_2_L2_CCUNT{1)=0;
1/0_L2_2_L3_CCUNT(I)=0;
TOT_COUNT (1) =03
L=13

DO WHILE EPFT(L).JCA_IDEN-~=1;
L=L+1;
END;
DO K=L TC HEAD;
IF EPFT{K).JOB_INEN~=1 THEN
DO;
EPFT(L) «PG_NUM=EPFT{K).P3_NUM;
EPFT(L).JOB_IDEN=EPET(K).JI3_INEN;
L=L+1;
END 3

ELSE -

143

DC;
AVAIL_PG_F_INDEX=AVAIL_PG_F_INDEX+1;

PG_NUM=EPFT (K]} .PG_AUM;

~ AVAIL_PG_FRAME([AVAIL_PG_F_INDEX)=

END;

JOB_PCB{ 1) PMTIPG_NUM+1}.PG_LCC*-13;

END3

HEAD=L-1;

CURRENT_PG_FRAME=AVAIL_PGC_FrRAMEULAV_PG_F_INCEX];

RETURN;

END;

144

ALGCRITHM 13: PAGE CPTICN 3 MAIN RCUTINE

SUBROUTINE PG_OPTICN{SYS_JC3_TD,J02_ACC_TIME,PG_NUM,
L1_ACD,ICRG_BIT);
DCL 1 WSCB(3),
2 EPFT(123),
2 AVAIL_PG_FRAME(128},
2 AVAIL_PG_F_INCEX,
2 HEAD,
2 CURRENT_PG_FRAME,
2 MAX_PG_F,
2 DEPTH_CCUNT;
TEMP_PG_NLNM=PG_NUM;
IF JOR_PCEISYS_J0B8_IC).P¥T{PS_NUM+1).CUP_LCCKO THEN
DO
IF IORG_BIT=1 THEN
DO;
CALL L1_2_t2_PG(SYS_JUB_IN,PG_NUN,L1_ADD,ICRG_BITI);
WSCRISYS_JDR_ID) .CUFPRENT_PG_FRAME=
JOB_PCB{SYS_JCB_ID).FMT(PG_NUM+1} . CUP_LOC™=-1:
JOB_PCB{SYS_JOB_ID) PMTIPG_NUM+LI.OLF_LCC=0:;
END3
SEND INTERDATA MESSAGE, "PAGE REMCVED FRCM™ LEVEL 1 ME4]Aay.u
I=1;
DO WHILE wSCR(SYS_JCB_ID)LEPFT(I)~=PG_MNUM;
I=i+1;

END; <

145

WSCB(SYS_JOR_ID).DEPTH_CCUNT=WSC3{SYS_JCB_IC).DEPTH_COUNT+1;
DO J=1 TO KEAD-13;
WSCRISYS_JO3_ID)LEPFT(J)=
hSCE(SYS_JjB_ID).EPFT(J+1):
END;
END;
ELSE
DO3
CALL LI_2_L2_PGISYS_JUB_ID4PG_NLM,L1_ADD,ICRG_RIT);
SEND INTERDATA MESSACE, "PACE REMOVEL FRCM LEVEL 1 MEMORY.®
IF WSCB{SYS_JOB_ID).AVAIL_PG_F_INDEX>1 THEN
DC;
WSCR({SYS_JCR_ID).AVAIL_PG_F_INDEX=
WSCB(SYS_JOB_ID)AVAIL_PG_F_INDEX-1;
WSCE(SYS_J0B_ID).CURRENT_PG_FRAME=
WSCBUSYS_JO3_IN)AVATL_PG_FRAME (WSC2(SYS_JG3_1ID).
AVAIL_PG_F_INCEX);
WSCRB{SYS_JD3_ID) eHEAC=nSC3{SYS_JNB_IC).HEAC+1;
END3
ELSF;
DC3
PG_NUNM=WSC3(SYS_JU3_IN).EPFT(1);
IF JOB_PCB(SYS_JC3_ID) PMT(PC_NUM+1).2RG_3IT=1 THEN

Co;

m

FILE_1N=J08B_PCRA(SYS_JTB_ID).NBJ_DECK_FILE;

CALL L2_2_L3_PG(SYS_JCG3_I2,PG_NUMFILE_1D);

END;

146

WSCR(SYS_JOB_1D) .CURRENT_PG_FRAME=
JOB_PCBISYS_JN8_IC).PH¥T(PG_NUM+L) JPG_LOCK-13
JOB_PCBISYS_JNB_1D). F¥T{PG_NUM+1).PG_LCC=0;
LO I=1 TO HEAD-13
WSCRISYS_JOS_IC).EPFT (1)=hSCRISYS_JOB_ID) LEPFT(I+1}3
END 3 ‘
END;
END ;
WSCBISYS_JOR_1N)EPFT(HEAT)=TEMP_PG_NUM;
RETURN;

END 3

147

ALGORITHM 14: PAGE CPTICN 2 INITIAL RCLTINE

SUBROUTINE INIT_PG_CPTICAM(I)
WSC3(TI) AVAIL_PG_F_INNDEX=MAX_PG_F(11}3
WSCB(I)LHFAD=03
WSCB{T).CURRENT_PG_FRAME=WSC2(I).AVAIL_PG_FRAME(MAX_PG_F(I1)1};
L3_2_L2_CCUNT(1)=0
L3_2_L1_CCLNT(I)=0
L2 2 L3 _CCENT(I)=0
L2_2_L1_CCUANT(I)=0
LI_2_L3_CCUNT{I)}=90
L1_2_L2Z2_CCUNT[I}=D
1/0_L3_2_L2_CCUNT(I1=0;
1/70_12_2 _13_CCUNTUI}=0;
TOT_COUNTHLI)=0;3
DC J=1 TO 128;
JOB_PCR(1).FG_LOC{J)=D3
JOB_PCB(I).DUP_LOC(J)=Cs
WSCB{1)}.CEPTH_CCUNT=03
END:
RETURN ;

END;

148

ALGCRITHM 15: RFTRIEVES PAGE REQUESTED BY INTERDATA

. SUBROUTINE PG_IN(SYS_JCB_T10,PG_NUM,L1_ACL);
IF JOB_PCE(SYS_JOB_IC).PG_LGCI{PG_NUM+1)<0 THEN
no;
CALL L2_2_L1(SYS_JOR_ID,PG_NUM,L1_ADD);
JOB_PCR{SYS_JOB_ID)«PMT(PG_NUM+1),DUP_LOC=
JOB_PCBISYS_JOB_ID).FMT(PG_NUM#1).PC_LGC3
JOB_PCR(SYS_JOB_ID).PMT(PG_NUM+1).PG_LOC=L1_ADND;
END;
ELSE
D03
FILE_ID=08J_DECK_FILE(SYS_JCB8_1D);
CALL L3_2_L1{SYS_JCB_ID,PG_NUM,FILE_IN,L1_ADDI;
END
SEND INTERDATA MESSACE "PAGE TRANSFERREC,™
RETURN;

END ;

149

ALGORITHM 16: END OF JO8 RCUTINE

CSUBROUTINE ECJI(SYS_JCR_1D}Y3
TOT_CCUNT{SYS_JOB_ID)=L3_2_L2_CCUNT({SYS_JOR_ID)+
L3_2_L1_CCUNT(SYS_J0B_ID)+L2_2_L2_CCUNT(SYS_JDB_iGl+
L1_2_L2_CCUNT(SYS_JOB_ID)+L1_2_L3_COUNT{SYS_SYS_u03_In)+
L2_2_L1_CCUNT{SYS_JCR_ID);
L3_2_L2 _CCUNT(SYS_JNB_ID}=
L3 2_L2_CCUNT(SYS_JCEB_IN)-10_L3_2_L2_CCUNTI(SYS_Ju08_1D};
L2_2_L3_CCUNTI(SYS_JNB_ID}=
L2_2_L3_COUNT(SYS_JOB_ID)-IN_L12_2_L3_COUNTISYS_JtB_In);
CALL CN RDCS TDO ADD TC THE JCB'S CATA CUT FILF THE PAGE MIGPATIO
COUNTS, KITH HEADINGS AND GIVEN VALUES,
fI.E. LFVEL 3 TO LEVEL 2 CCUNT=8563).
THESE ARE THE PAGE CCUNTS CF PAGE TRANSFERS RETWEEN MEMORY
LEVELS, 10 ARE CCUNTS CAUSED BY I/C RECUEST,
IF SOURCE LISTING REQUESTEL THEN
DG3
SPCOL_DULT=SPOCL_TAB{SPCCL_TAB_IX(SYS_JC3_ID1,2)3
ISSUE RCCS THE COMMAND TC SPOCL TC CUTPUT THE JOB'S SOURCE
FILE (SPCCL_DUT).
END;
SPOCL_CUT =SPOCL_TA3(SPOOL_TABLE_IX(SYS_JC3_ID),5);
[SSUE PDOS THE CCMMAND TC SPCCL TO CUTPUT THE JCB'S OUTPUT
FILE (SEQUL_QUT}.
DC L=1 TC 5;

DELETE _FILE=SPOOL_TA3(SPCOL_TABLE_IX(SYS_JN3_IG),L);

CALL RDPOS TO DELEYE FILE (CELETE_FILE);
ENDS
.SPUEL“TAB{SPCEL_TABLE_IX(SYS_JOS_ID),1l=0;
CALL INIT_PG_CPTICNISYS_JoB_1In)s

SEND INTFRCATA MESSAGE *J0OB CCMPLETED.™
RETURN;

END;

150

ALGORITHM 17t TRANSFERS A PAGE FROM LEVEL 3 MEMORY

TO LEVEL 2 MEMORY

SUBROUTINE L3_2_L2_PG(SYS_JOB_ID,PG_NUM,FILE_ID.PG_3UFF);
CALL RDCS TO READ 256 COANSECULTIVE wGORDS FRCFM GIVEN

FILE (FILE_ID), AT RELATIVE BLCCK ANUMBER {PG_NUM),

INTO (PC_3UFF}.
RETLRN;

END;

ALGORITHM 18: TRANSFERS A PAGE FRCM LEVEL 3 MEMCRY

TO LEVEL 1 MFEMORY

SUBROUTINE L3_2_L1_PG(SYS_JCB_1D,PG_NU4,FILE_ID,L1_AGD};

CALL RDCS TO READ 256 CONSECUTIVE WORDS FRCM GIVEN FILFE
(FILE_IN), AT RELATIVE BLCCK NUMBER {PG_NUM), INTO
LEVEL 1 MEMCRY BEGINNING AT ACDRESS (L1_AECD).

JOB_PCB(SYS_JC3_ID) .P¥T(PG_NUM+1).PS_LOC=L1_ADD;

JO3_PCB(SYS_J0R_ID) PMT(PG_NUM+1) .CRG_BIT=03

RETURN

END;

151

152

ALGCRITHM 19: TRANSFERS A PAGE FRCY LEVEL 2 MEMCRY

TO LEVEL 3 MEMORY

SUPROUTINE L2_2_L3_PGISYS_JCB_ID,PG_NUM,FILE_ID);

L2_ADD=JOPR_PCR{SYS_JOB_ID) PMT{PG_ANUM+1).PG_LOC*-1;

CALL RDCS TO TRANSFER 25& CCNSECUTIVE WCRDS BEGINMNING IN
LEVEL 2 MEMURY AT ADDRESS (L2_ADD), TO FILE (FILE_ID),
AT RELATIVE BLGOCK NUMBER (PG_NUM).

RETURN;

END;

ALGCRITHM 20: TRANSFERS A PAGE FRCM LEVEL 1 MEMCRY

TO LEVEL 2 MFMORY UNDER PAGE CPTICAS 1 AND 2

SUBRCUTINE L1_2_L2_PGI(SYS_JC3_I10,PG_NUM,L1_ADD, ICRG_3IT);

L 2_ACD=CUFRENT_PG_FRAME;

CALL RDDS TO TRANSFER 256 CCNSECUTIVE wWCRDS BEGIMNING IN
LEVEL 1 MEMCRY AT ADDRESS (L1_ADD), TC LEVEL 2 MEMORY
REGINNING AT ADDRESS (L2_ACC).

JOB_PCBISYS_JOR_ID) JPYTIPG_NUM+1) .CRG_BIT=
JOR_PCBISYS_JCB_10) . PHT(PG_NUM+1) .CRG_BIT|I0RS_31T3

JGB_PCB{S?S_JCB_!D).PMT{PG_BEM+11.PG;LQC=L2_ADD*—i:

RETURNS ‘

END 3

ALGCRITHM 21: TRANSFERS A PAGE FRCM¥ LEVEL 1 MEMCRY

TO LEVEL 2 FMEMORY UNDER PACE CPTICN 3

SURROUT INE 1.1_2_L2_PG{SYS_JOR_ID,PG_NUM,L1_ADD,ICORG_BIT);

L2_ADD=WSCH(S¥S_JOB_ID).CURRENT_PC_FRAME;

CALL RDCS TC TRANSFER 256 CONSECUTIVE WCRDS 3EGIANING IN
LEVEL L MEFMCRY AT ANDRESS (L1_ACD), TC LEVEL 2 MEMORY
3EGINNING AT ADDRESS {L2_ALD),

JOB_PCB{SYS_JCB_ID) .PMTIPG_NUY+1).P5_LOC=L2_ADD%-13

JOBR_PCBISYS_JCA_IN) JPHT(PG_NLM+1).CRG_RIT=
JOB_PCB{SYS_JUB_ID}PAT(P5_NUM+1).CRG_BITIIORG_BIT;

RETURNS

END3

ALGCRITHM 22: TRANSFERS A PAGE FRGM LEVEL 1 MEMORY

TO LEVEL 3 MEMORY

SUBROUTINE L1_2_L3_PGI{SYS_JC2_TDPG_NUM,FILF_ID,L1_ADD);

CALL RNCS 7O TRANSFER 256 CCANSECUTIVE WwCRDS REGINNING 1IN
LEVEL 1 MEMCRY AT ADDRESS (L1_4ADD), TC FILE ({FILE_ID),
AT RELATIVE BLCOCK NUN3ER (PG_NUM).,

JOB_PCR{SYS_JOB_ID).PMT{PG_NUL“+1).P5_L0OC=0;

RETURN;

END S

ALGORITHM 23: TRANSFERS A PAGE FROM LEVFL 2 MEMORY

YO LEVEL 1 MEMORY

SUBRDUTINE L2_2_L1_PGI(SYS_JOJB_IDyPG_NUM,L1_ADD);

L2_ADD=J0R_PCR{SYS_JCR_IC).P¥T{PG_NUM+1).PG_LCC=-13

CALL RDCS TO TRANSFFR 25¢ CCANSECUTIVE WGRDS FRCM LEVEL 2
MEMCRY REGINNING AT ADDRESS (L2_ADD) TG LEVEL 1 MEMIRY
BEGINNING AT ADDRESS (L1_ADD).

RETURN;

END;

ALGORITHM 24: SPOOLS JCB FRCM REACER

SUBROUTINE SPCCL_SOURCE;
LIMIT=1;
DC UNTIL (SPGCL_TAB(SPCOL_TA3_INDEX,1)=C WHILE LIMIT<100;
SPOOL_TAB_INDEX=SPCCL_TAB_INDEX+13
IF SPOOL_TAB_INBEX>10C THEN SPOOL_TAB_INCEX=13
LIMIT=LIMIT+1;
END3
IF LIMIT=100 THEN
DC:
SEND INTERCATA MESSAGE, "SPOOL TABLE FULL, JO3 NOT SPCOLED.®
RETURN;
END;
CREATE UNICUE JGB ID {JCB_AUM):
SPCCL_TAB (SPCCL_TAB_INDEX) »1)=J08_NUM;
IF SOURCE CECK THEN
00;
CREATE UNIGLE SOURCE DECK FILE ID (SCF_IDJ;
SPCCL_T AR (SPOOL_TAB_INCFX) 42)=SDF_ID;
READ IN SOURCE DECK INTO A "SEQUENTICALLY GRGAN[ZED FILE.®
END;
ELSE IF CBJECT DECK TFEN
DO;
CPEATE UNIQUE ORJECT DECK FILE ID (CBJOF_ID);
SPCCL_TAR(SPCOL_TAB_INCEX) 4 1=C3JDF_1D;

READ IN CBJECT DECK INTC A “CCNTICUCUSLY CRGANIZED FILE.®

1

END3

IF CATA THEN:

. pos
CREATE UNIGUE DATA FILE IC (DF_ID);
SPOOL_TAR(SPOOL_TAR_INDEX) ,3)=0F_1D;
READ IN TCATA INTO A WSEQUENTICALLY ORGANIZED FILE "
END;

ENTER JOB'S JOB NUMBER (JN3_NUM) IN JCB QUEUE;

ENTER JDR*S SPCIIL TABLE INDEX {(SPCCL_TAE_INBEX) IN J{38 QUEYUE;:

ENTER JOB'S JCL IN JO3 QUFLE;

RETURN;

END s

ALGCRITHM 25: SEARCHKES JCB QUEUE FCR NEXT Ja3

. SUBROUTINE NEXT_JOBI(SYS_JC3_1ID)3

SEARCH J0OB QUEUE FOR NEXT JCB AND SAVE ITS
SPOOL TAPLE INDEX (SP_TB_INDEX).

iF JOB IN GQUELE THEN
(hinH
USER_JOB_TCENISYS_JCB_ID)=SPOCL_TAB(SP_TB_INDEX,1);
JOB_PCBISYS_JC3_ID).SPCCOL_TABLE_IX=SP_TR_INLCEX;
SEND INTERLCATA (USER_JCB_IDEN} AND THE J0OB'S JCL;
ELSE RETURN INTERDATA MESSAGE, "JCB GLEUE EMPTY."

RETURN;

END;

ALGORITHM 26: CREATE C3JECT DECK FILE MAME

SUBROUTINE CREATE_ODF{SYS_JC2_1I0);

CREATE UNICUE CBJECY DECK FILE ID (CBJDF_ID):

SPOOL_TAR{JG3_PC3(SYS_JGCB_1D).SPOCL_TABLE_IX,4)=0240F_10;

CBJ_DECK_FILEL(SYS_J03_ID)=CB8JCF_103
RETURN (DBJCF_ID);

END

157

158

ALGORITHM 272 GETS THE CBJECY DECK FILE NAME FCR THE

REQUESTEC 4B

SUBROUTINE GET_DBDF(SYS_JCB_1IN};
JOB_PCBISYS_JOB_ID).CBJ_DECK_FILE=

SPOOL_TAB(JCB_PCB(SYS_JC3_1D).SPCCL_TAEBLE_1IX44);
RETURN (CRJ_TECK_FILE);

END3

ALGCRITHM 2B: CREATE JC2 CUTPUT FILE NAME

SUBRCUTINE CREATE_OUT_FILE(SYS_JOR_ID);

CREATE UNICLE OUTPUT FILE ID (QUT_FILE);
SPOCL_TAB(SPCCL_TABLE_IX{SYS_JOB8_ID)45)=CUT_FILE;
RETURN (CLT_FILE);

END;

ALGCRITHM 29: LIST STACK CEPTH CCUNTS FCR PAGE CPTIONS 1 AND

 SUBRCUTINF STACK_DEPTH_CCUNTS{SYS_JOB_IL,BEG_ADD,END_ADD);
DO I=1 TO 1283
PE_BUFF(T)=wSCR{SYS_JCB_ID).EPFT(I).NEPTH_COUNT; -~
WSCBISYS_JUCA_ID)<EPFT(I) .DEPTH_CCUAT=0;

END3

BEEG_ADD=ACCRESS OF PG_BUFF(1);

END_ACT=ADCRESS OF PG_BUFF(128);

RETUEN;

END;

ALGORITHM 20: LIST STACK CEPTH CCUNTS FCR PAGE CPTION 2

SURROUTINE STACK_DEPTH_CCUNTS(SYS_JOB_IC,BEG_ACC,END_ADD);
DO I=1 70O 1233

PG_BUFF(I)=WSCB.EPFT{I).CEPTH_CCUNT;
WSCBL.EPFT(I).DEPTH_CCUNT=9;

END3

BEG_ADD=ACCRESS OF PG_RUFF({1)};

END_ACC=ALCCRESS OF PG_BUFF{123);

RETURN;

END;

159

3

APPENDIX B
(1) MAIN DRIVER

(9) PG QPTION

(2) SYS GEN

(10) INIT PG OPTION

i
[(16) EQJ
v {29) STACK DEPTH COUNTS
{3} INPUT OQUTPUT
(4) DATA IN
i
(5) DATA OUT
-
[(6) TRANS IN
(7) __TRANS QUT
—
(8) ERROR CODE
L
(15) PG IN
i
(17) L3 2 L2 PG
L
(18) L3 2 L1 PG
L
r (19) 12 2 L3 PG
(20) L1 2 L2 PG
L
r (22) 11 2 13 PG
r (23) 12 2 11 PG
r (24) SPOOL_SOURCE
(25) NEXT JOB
[
; (26) CREATE ODF
(273 GET QDF
|
(28) CREATE QUT FILE
|

System Configuration For Page Option 1

160

APPENDIX C

(1) MAIN DRIVER
(11) PG OPTION
) SE

¢ (2} sys —
(12) INIT PG QPTION

Ir 1

- (16) EQJ —

- (30) STACK DEPTH COUNTS g
(3) INPUT QUTPUT

¢ (4) DATA IN -
(5) DATA OUT

- 3
(6) TRANS IN "

.
(7) TRANS OUT \

L
(8) ERROR CODE

I J
(15) PG IN

C 3
(17) L3 2 L2 PG

L i |
(18) 13 2 L1 PG

L) |
(19) L2 2 L3 PG

L B |
(20) L1 2 L2 PG

C 1
(22) L1 2 L3 PG

C .
(23) L2 2 L1 PG

(= —1

1 (24) SPOOL SQURCE]
(25) NEXT JOB

C]
(26) CREATE OQDF

[1
(27) GET ODF

L J
(28) CREATE GUT FILE

L —]

System Configuration For Page Option 2

161

APPENDIX D

(1) MAIN DRIVER

(13) PG OPTION

(2) SYS GEN

r |
(14) INIT PG OPTION

[i |
(16) EOJ

. 1
(29) STACK DEPTH COUNTS -

r
(3) INPUT OQUTPUT
(4) DATA IN

i
(5) DATA OUT

f 3
(6) TRANS IN

. -]
7) TRANS OUT
(7) —

r (8) ERRCR CODE —
(15) PG IN

[1
(17) L3 2 12 PG

L 3
(18) L3 2 L1 PG

L 1
(19) L2 2 L3 PG

H 1
(20) L1 2 L2 PG

C = 1
(22) 11 2 L3 PG

[1
(23) L2 2 L1 PG

L]
(24) SPOOL SOURCE

[]
(25) MEXT JOB

—]
(26) CREATE ODF

L 1
(27) GET ODF

|]

= (28) CREATE QUT FILE]

162

System Configuration For Page Option 3

APPENDIX E 1053

Page Option 1 Calling Order

2&&;335@°®‘®‘@
HOL

Page Option 2 Calling Order

Jg;;eéb®@b@

Page Option 3 Ca]iing Order

2db;8;8@b@é@66

‘1)

2)

3)

4)

5)

6)

7)

8)

9)

10)

11)

12)

13)

14)

15)

REFERENCES

Madnick, Stuart E, and Donovan, John J,, Operating Systems,
MoGraw=Hill Computer Science Series, 1974,

Denning, Peter J,, "Virtual Memory", ACM Computing Surveys,
Vol, 2, No, 3, pp. 153-190, Sept, 1970,

Stevens, Myers, and Constantine, "Structured Design", IBM
Systems Journal, Vol, 13, WNo. 2,

Pijkstra, E, W, "The Structure of the T, H.E, Multiprogramming
System", CACM, Vol, 11, No, 5, pp. 341-346, May 1968,

Smith, Douglas E,, "HIMICS: A Virtual Memory Enviromnment for
Mini-Computers and a Description of its Level 1 Processor",
Computer Science Department, KSU, Manhattan, Kansas,

Pankhurst, R,J,, "Program Overlay Techniques," CACM, Vol, 11,
No, 2, pp. 119-125, Feb, 1968,

Randell, B, and Kuehner, C, J,, “Demand Paging in Perspective,"
Proceedings, AFIPS, 1968, FJCC, Veol, 33, Pt, 2, pp. 10i1-1018,

Denning, Peter J., "On Modeling Program Behavior," Spring
Joint Computer Conference, 1972,

Ferrari, Domenico, "Improving Locality by Critical Working
Sets,™ CACM, Vol, 17, No. 11, pp., 614-620, Nov. 1974,

Mattson, R, L., Gecsei, J,, Slutz, D, R,, and Traiges, I. L.,
“Evaluation Techniques for Storage Hierarchies," IBM Systems
Journal, Vol, 9, No, 2,, 1970,

Adnerson, Gary, "Hierarchical Structure," Computer Science
Department, Kansas State University, Manhattan, Kansas,

Katzan, H, Jr,, "Storage Hierarchy Stystes," Proceedings,
AFIPS, 1971, SJCC, Vol, 38, pp, 325-336,

Denning, P, J,, "The Working Set Model for Program Behavior,"
CACM, Vol, 11, No, 5, pp. 323-333, May 1968,

Denning, P. J,, "Thrashing: Its Causes and Prevention,"
Proceedings, AFIFS, 1968, FJCC, Vol, 33, .pp. 915-922,

Denring, P. J., "Properties of the Working Set Model,"™ CACM,
Vol, 15, No, 3, pp. 191-198, Mar. 1972,

16) Data General Corp, Manual, Real Time Disk Operating System
User's Manual (RDOS), Data General Corp, Publication
Number 093-000075-04, 1973,

"17) Interdata Inc, Manuali, 05/16 Multi-Tasking Operating System
Reference Manual, Interdata Inc, Publication Number
829-367, 1974,

HIMICS: A VIRTUAL MEMORY ENVIRONMENT FOR MINI-COMPUTERS AND A
DESCRITPION OF ITS LEVEL 2 PROCESSOR

by

ARLAN E, BENTZ

B.S., Kansas State University, 1968

AN ABSTRACT OF A MASTER'S REPCRT

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Computer Science

KARSAS STATE UNIVERSITY

Manhattan, Kansas

1975

The HIMICS system is a hierarchical virtual memory system
for a hierarchy of interconnected mini-computers, This paper
describes the design of the software system, The software system
design in this paper is a hierarchical design with two major
‘processor levels, An overall description of both processors is
given and then a detailed description of its level 2 processor is
presented, The detailed description includes the algorithms,
written in a dialect of PL{1l, along with a written description of
them, The HIMICS system will provide a virtual memory system for
a network of mini-computers and also allow the emulation of high
level languages, The implementation of this system should result

in an increase of processor efficiency and system throughput for

the mini-computers involved in the network, The paper is concluded

with a dialectic comparison of a2 single processor system versus a

multi-processor system,

