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Abstract

Several methods for a stable solution to the equation F (u) = f have been developed.

Here F : H → H is an operator in a Hilbert space H , and we assume that noisy data fδ,

‖fδ − f‖ ≤ δ, are given in place of the exact data f .

When F is a linear bounded operator, two versions of the Dynamical Systems Method

(DSM) with stopping rules of Discrepancy Principle type are proposed and justified math-

ematically.

When F is a non-linear monotone operator, various versions of the DSM are studied. A

Discrepancy Principle for solving the equation is formulated and justified. Several versions of

the DSM for solving the equation are formulated. These methods consist of a Newton-type

method, a gradient-type method, and a simple iteration method. A priori and a posteriori

choices of stopping rules for these methods are proposed and justified. Convergence of the

solutions, obtained by these methods, to the minimal norm solution to the equation F (u) =

f is proved. Iterative schemes with a posteriori choices of stopping rule corresponding to

the proposed DSM are formulated. Convergence of these iterative schemes to a solution to

the equation F (u) = f is proved.

This dissertation consists of six chapters which are based on joint papers by the author

and his advisor Prof. Alexander G. Ramm. These papers are published in different journals.

The first two chapters deal with equations with linear and bounded operators and the last

four chapters deal with non-linear equations with monotone operators.
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Chapter 1

Dynamical systems gradient method
for solving ill-conditioned linear
algebraic systems.

Published in Acta Appl. Math., 111, N2, (2010), 189-204.
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Dynamical systems gradient method for solving

ill-conditioned linear algebraic systems

N. S. Hoang†∗ A. G. Ramm†‡

†Mathematics Department, Kansas State University,

Manhattan, KS 66506-2602, USA

Abstract

A version of the Dynamical Systems Method (DSM) for solving ill-conditioned linear algebraic

systems is studied in this paper. An a priori and a posteriori stopping rules are justified. An

algorithm for computing the solution using a spectral decomposition of the left-hand side matrix

is proposed. Numerical results show that when a spectral decompositon of the left-hand side

matrix is available or not computationally expensive to obtain the new method can be considered

as an alternative to the Variational Regularization.

Keywords. Ill-conditioned linear algebraic systems , Dynamical Systems Method (DSM),

Variational Regularization

MSC: 65F10; 65F22

1 Introduction

The Dynamical Systems Method (DSM) was systematically introduced and investigated in [19] as

a general method for solving operator equations, linear and nonlinear, especially ill-posed operator

equations (see also [20]-[23]). In several recent publications various versions of the DSM, proposed

in [19], were shown to be as efficient and economical as variational regularization methods (see [4]-

[10], [15]). This was demonstrated, for example, for the problems of solving ill-conditioned linear

algebraic systems (cf. [2]), and stable numerical differentiation of noisy data (see [16], [17], [3]).

The aim of this paper is to formulate a version of the DSM gradient method for solving ill-posed

linear equations and to demonstrate numerical efficiency of this method. There is a large literature

∗Email: nguyenhs@math.ksu.edu
‡Corresponding author. Email: ramm@math.ksu.edu
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on iterative regularization methods. These methods can be derived from a suitable version of the

DSM by a discretization (see [19]). In the Gauss-Newton-type version of the DSM one has to invert

some linear operator, which is an expensive procedure. The same is true for regularized Newton-

type versions of the DSM and of their iterative counterparts. In contrast, the DSM gradient method

we study in this paper does not require inversion of operators.

We want to solve equation

Au = f, (1)

where A is a linear bounded operator in a Hilbert space H. We assume that (1) has a solution,

possibly nonunique, and denote by y the unique minimal-norm solution to (1), y ⊥ N := N (A) :=

{u : Au = 0}, Ay = f . We assume that the range of A, R(A), is not closed, so problem (1) is

ill-posed. Let fδ, ‖f − fδ‖ ≤ δ, be the noisy data. We want to construct a stable approximation

of y, given {δ, fδ , A}. There are many methods for doing this, see, e.g., [11], [12], [13], [19], [25],

to mention a few books, where variational regularization, quasisolutions, quasiinversion, iterative

regularization, and the DSM are studied.

The DSM version we study in this paper consists of solving the Cauchy problem

u̇(t) = −A∗(Au(t) − f), u(0) = u0, u0 ⊥ N, u̇ :=
du

dt
, (2)

where A∗ is the adjoint to operator A, and proving the existence of the limit limt→∞ u(t) = u(∞),

and the relation u(∞) = y, i.e.,

lim
t→∞

‖u(t)− y‖ = 0. (3)

If the noisy data fδ are given, then we solve the problem

u̇δ(t) = −A∗(Auδ(t)− fδ), uδ(0) = u0, (4)

and prove that, for a suitable stopping time tδ, and uδ := uδ(tδ), one has

lim
δ→0

‖uδ − y‖ = 0. (5)

In Section 2 these results are formulated precisely and recipes for choosing tδ are proposed.

The novel results in this paper include the proof of the discrepancy principle (Theorem 3), an

efficient method for computing uδ(tδ) (Section 3), and an a priori stopping rule (Theorem 2).

Our presentation is essentially self-contained.

Our results show that the DSM provides a method for solving a wide range of ill-posed prob-

lems, which is quite competitive with other methods, currently used. The DSM yields sometimes
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better accuracy and stability than variational regularization, and is simple in computational im-

plementation.

2 Results

Suppose A : H → H is a linear bounded operator in a Hilbert space H. Assume that equation

Au = f (6)

has a solution not necessarily unique. Denote by y the unique minimal-norm solution i.e., y ⊥

N := N (A). Consider the following Dynamical Systems Method (DSM)

u̇ = −A∗(Au− f),

u(0) = u0,

(7)

where u0 ⊥ N is arbitrary. Denote T := A∗A, Q := AA∗. The unique solution to (7) is

u(t) = e−tTu0 + e−tT

∫

t

0
esTdsA∗f.

Let us show that any ill-posed linear equation (6) with exact data can be solved by the DSM.

2.1 Exact data

Theorem 1 Suppose u0 ⊥ N . Then problem (7) has a unique solution defined on [0,∞), and

u(∞) = y, where u(∞) = limt→∞ u(t).

Proof. Denote w := u(t)− y, w0 = w(0). Note that w0 ⊥ N . One has

ẇ = −Tw, T = A∗A. (8)

The unique solution to (8) is w = e−tTw0. Thus,

‖w‖2 =

∫ ‖T‖

0
e−2tλd〈Eλw0, w0〉.

where 〈u, v〉 is the inner product in H, and Eλ is the resolution of the identity of the selfadjoint

operator T . Thus,

‖w(∞)‖2 = lim
t→∞

∫ ‖T‖

0
e−2tλd〈Eλw0, w0〉 = ‖PNw0‖

2 = 0,

where PN = E0 − E−0 is the orthogonal projector onto N . Theorem 1 is proved. 2
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2.2 Noisy data fδ

Let us solve stably equation (6) assuming that f is not known, but fδ, the noisy data, are known,

where ‖fδ − f‖ ≤ δ. Consider the following DSM

u̇δ = −A∗(Auδ − fδ), uδ(0) = u0.

Denote

wδ := uδ − y, T := A∗A, wδ(0) = w0 := u0 − y ∈ N⊥.

Let us prove the following result:

Theorem 2 If limδ→0 tδ = ∞, limδ→0 tδδ = 0, and w0 ⊥ N , then

lim
δ→0

‖wδ(tδ)‖ = 0.

Proof. One has

ẇδ = −Twδ + ηδ, ηδ = A∗(fδ − f), ‖ηδ‖ ≤ ‖A‖δ. (9)

The unique solution of equation (9) is

wδ(t) = e−tTwδ(0) +

∫

t

0
e−(t−s)T ηδds.

Let us show that limt→∞ ‖wδ(t)‖ = 0. One has

lim
t→∞

‖wδ(t)‖ ≤ lim
t→∞

‖e−tTwδ(0)‖ + lim
t→∞

∥

∥

∥

∥

∫

t

0
e−(t−s)T ηδds

∥

∥

∥

∥

. (10)

One uses the spectral theorem and gets:

∫

t

0
e−(t−s)T dsηδ =

∫

t

0

∫ ‖T‖

0
dEληδe

−(t−s)λds

=

∫ ‖T‖

0
e−tλ e

tλ − 1

λ
dEληδ =

∫ ‖T‖

0

1− e−tλ

λ
dEληδ.

(11)

Note that

0 ≤
1− e−tλ

λ
≤ t, ∀λ > 0, t ≥ 0, (12)

since 1− x ≤ e−x for x ≥ 0. From (11) and (12), one obtains

∥

∥

∥

∥

∫

t

0
e−(t−s)T dsηδ

∥

∥

∥

∥

2

=

∫ ‖T‖

0

∣

∣

1− e−tλ

λ

∣

∣

2
d〈Eληδ, ηδ〉

≤ t2
∫ ‖T‖

d〈Eληδ, ηδ〉

= t2‖ηδ‖
2.

(13)
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Since ‖ηδ‖ ≤ ‖A‖δ, from (10) and (13), one gets

lim
δ→0

‖wδ(tδ)‖ ≤ lim
δ→0

(

‖e−tδTwδ(0)‖ + tδδ‖A‖

)

= 0.

Here we have used the relation:

lim
δ→0

‖e−tδTwδ(0)‖ = ‖PNw0‖ = 0,

and the last equality holds because w0 ∈ N⊥. Theorem 2 is proved. 2

From Theorem 2, it follows that the relation tδ = C

δγ
, γ = const, γ ∈ (0, 1) and C > 0 is a

constant, can be used as an a priori stopping rule, i.e., for such tδ one has

lim
δ→0

‖uδ(tδ)− y‖ = 0. (14)

2.3 Discrepancy principle

Let us consider equation (6) with noisy data fδ, and a DSM of the form

u̇δ = −A∗Auδ +A∗fδ, uδ(0) = u0. (15)

for solving this equation. Equation (15) has been used in Section 2.2. Recall that y denotes the

minimal-norm solution of equation (6).

Theorem 3 Assume that ‖Au0 − fδ‖ > Cδ. The solution tδ to the equation

h(t) := ‖Auδ(t)− fδ‖ = Cδ, 1 < C = const, (16)

does exist, is unique, and

lim
δ→0

‖uδ(tδ)− y‖ = 0. (17)

Proof. Denote

vδ(t) := Auδ(t)− fδ, T := A∗A, Q = AA∗

and

wδ(t) := uδ(t)− y, w0 := u0 − y.

One has

d

dt
‖vδ(t)‖

2 = 2Re〈Au̇δ(t), Auδ(t)− fδ〉

= 2Re〈A[−A∗(Auδ(t)− fδ)], Auδ(t)− fδ〉

= −2‖A∗vδ(t)‖
2 ≤ 0.

(18)
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Thus, ‖vδ(t)‖ is a nonincreasing function. Let us prove that equation (16) has a solution for C > 1.

Recall the known commutation formulas:

e−sTA∗ = A∗e−sQ, Ae−sT = e−tQA.

Using these formulas and the representation

uδ(t) = e−tTu0 +

∫

t

0
e−(t−s)TA∗fδds,

one gets:

vδ(t) = Auδ(t)− fδ

= Ae−tTu0 +A

∫

t

0
e−(t−s)TA∗fδds − fδ

= e−tQAu0 + e−tQ

∫

t

0
esQdsQfδ − fδ

= e−tQA(u0 − y) + e−tQf + e−tQ(etQ − I)fδ − fδ

= e−tQAw0 + e−tQf − e−tQfδ.

(19)

Note that

lim
t→∞

e−tQAw0 = lim
t→∞

Ae−tTw0 = APNw0 = 0.

Here the continuity of A, and the following relations

lim
t→∞

e−tTw0 = lim
t→∞

∫ ‖T‖

0
e−stdEsw0 = (E0 − E−0)w0 = PNw0,

were used. Therefore,

lim
t→∞

‖vδ(t)‖ = lim
t→∞

‖e−tQ(f − fδ)‖ ≤ ‖f − fδ‖ ≤ δ, (20)

because ‖e−tQ‖ ≤ 1. The function h(t) is continuous on [0,∞), h(0) = ‖Au0−fδ‖ > Cδ, h(∞) ≤ δ.

Thus, equation (16) must have a solution tδ.

Let us prove the uniqueness of tδ. Without loss of generality we can assume that there exists

t1 > tδ such that ‖Auδ(t1)− fδ‖ = Cδ. Since ‖vδ(t)‖ is nonincreasing and ‖vδ(tδ)‖ = ‖vδ(t1)‖, one

has

‖vδ(t)‖ = ‖vδ(tδ)‖, ∀t ∈ [tδ, t1].

Thus,
d

dt
‖vδ(t)‖

2 = 0, ∀t ∈ (tδ , t1). (21)

7



Using (18) and (21) one obtains

A∗vδ(t) = A∗(Auδ(t)− fδ) = 0, ∀t ∈ [tδ, t1].

This and (15) imply

u̇δ(t) = 0, ∀t ∈ (tδ, t1). (22)

One has

u̇δ(t) = −Tuδ(t) +A∗fδ

= −T

(

e−tTu0 +

∫

t

0
e−(t−s)TA∗fδds

)

+A∗fδ

= −Te−tTu0 − (I − e−tT )A∗fδ +A∗fδ

= −e−tT (Tu0 −A∗fδ).

(23)

From (23) and (22), one gets Tu0 −A∗f = etT e−tT (Tu0 −A∗f) = 0. Note that the operator etT is

an isomorphism for any fixed t since T is selfadjoint and bounded. Since Tu0 − A∗f = 0, by (23)

one has u̇δ(t) = 0, uδ(t) = uδ(0), ∀t ≥ 0. Consequently,

Cδ < ‖Auδ(0)− fδ‖ = ‖Auδ(tδ)− fδ‖ = Cδ.

This is a contradiction which proves the uniqueness of tδ.

Let us prove (17). First, we have the following estimate:

‖Au(tδ)− f‖ ≤ ‖Au(tδ)−Auδ(tδ)‖+ ‖Auδ(tδ)− fδ‖+ ‖fδ − f‖

≤

∥

∥

∥

∥

e−tδQ

∫

tδ

0
esQQds

∥

∥

∥

∥

‖fδ − f‖+ Cδ + δ.
(24)

Let us use the inequality:

∥

∥e−tδQ

∫

tδ

0
esQQds

∥

∥ = ‖I − e−tδQ‖ ≤ 2,

and conclude from (24), that

lim
δ→0

‖Au(tδ)− f‖ = 0. (25)

Secondly, we claim that

lim
δ→0

tδ = ∞. (26)

Assume the contrary. Then there exist t0 > 0 and a sequence (tδn)
∞
n=1, tδn < t0, such that

lim
n→∞

‖Au(tδn)− f‖ = 0. (27)
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Analogously to (18), one proves that
d‖v‖2

dt
≤ 0,

where v(t) := Au(t)− f . Thus, ‖v(t)‖ is nonincreasing. This and (27) imply the relation ‖v(t0)‖ =

‖Au(t0)− f‖ = 0. Thus,

0 = v(t0) = e−t0QA(u0 − y).

This implies A(u0 − y) = et0Qe−t0QA(u0 − y) = 0, so u0 − y ∈ N . Since u0 − y ∈ N⊥, it follows

that u0 = y. This is a contradiction because

Cδ ≤ ‖Au0 − fδ‖ = ‖f − fδ‖ ≤ δ, 1 < C.

Thus, limδ→0 tδ = ∞.

Let us continue the proof of (17). Let wδ(t) := uδ(t)−y. We claim that ‖wδ(t)‖ is nonincreasing

on [0, tδ ]. One has

d

dt
‖wδ(t)‖

2 = 2Re〈u̇δ(t), uδ(t)− y〉

= 2Re〈−A∗(Auδ(t)− fδ), uδ(t)− y〉

= −2Re〈Auδ(t)− fδ, Auδ(t)− fδ + fδ −Ay〉

≤ −2‖Auδ(t)− fδ‖

(

‖Auδ(t)− fδ‖ − ‖fδ − f‖

)

≤ 0.

Here we have used the inequalities:

‖Auδ(t)− fδ‖ ≥ Cδ > ‖fδ −Ay‖ = δ, ∀t ∈ [0, tδ ].

Let ǫ > 0 be arbitrary small. Since limt→∞ u(t) = y, there exists t0 > 0, independent of δ, such

that

‖u(t0)− y‖ ≤
ǫ

2
. (28)

Since limδ→0 tδ = ∞ (see (26)), there exists δ0 > 0 such that tδ > t0, ∀δ ∈ (0, δ0). Since ‖wδ(t)‖ is

nonincreasing on [0, tδ ] one has

‖wδ(tδ)‖ ≤ ‖wδ(t0)‖ ≤ ‖uδ(t0)− u(t0)‖+ ‖u(t0)− y‖, ∀δ ∈ (0, δ0). (29)

Note that

‖uδ(t0)− u(t0)‖ = ‖e−t0T

∫

t0

0
esTdsA∗(fδ − f)‖ ≤ ‖e−t0T

∫

t0

0
esTdsA∗‖δ. (30)

9



Since e−t0T
∫

t0

0 esTdsA∗ is a bounded operator for any fixed t0, one concludes from (30) that

limδ→0 ‖uδ(t0)− u(t0)‖ = 0. Hence, there exists δ1 ∈ (0, δ0) such that

‖uδ(t0)− u(t0)‖ ≤
ǫ

2
, ∀δ ∈ (0, δ1). (31)

From (28)–(31), one obtains

‖uδ(tδ)− y‖ = ‖wδ(tδ)‖ ≤
ǫ

2
+
ǫ

2
= ǫ, ∀δ ∈ (0, δ1).

This means that limδ→0 uδ(tδ) = y. Theorem 3 is proved. 2

3 Computing uδ(tδ)

3.1 Systems with known spectral decomposition

One way to solve the Cauchy problem (15) is to use explicit Euler or Runge-Kutta methods with a

constant or adaptive stepsize h. However, stepsize h for solving (15) by explicit numerical methods

is often smaller than 1 and the stopping time tδ = nh may be large. Therefore, the computation

time, characterized by the number of iterations n, for this approach may be large. This fact is also

reported in [2], where one of the most efficient numerical methods for solving ordinary differential

equations (ODEs), the DOPRI45 (see [1]), is used for solving a Cauchy problem in a DSM. Indeed,

the use of explicit Euler method leads to a Landweber iteration which is known for slow convergence.

Thus, it may be computationally expensive to compute uδ(tδ) by numerical methods for ODEs.

However, when A in (15) is a matrix and a decomposition A = USV ∗, where U and V are

unitary matrices and S is a diagonal matrix, is known, it is possible to compute uδ(tδ) at a speed

comparable to other methods such as the variational regularization (VR) as it will be shown below.

We have

uδ(t) = e−tTu0 + e−tT

∫

t

0
esTdsA∗fδ, T := A∗A. (32)

Suppose that a decomposition

A = USV ∗, (33)

where U and V are unitary matrices and S is a diagonal matrix is known. These matrices possibly

contain complex entries. Thus, T = A∗A = V S̄SV ∗ and eT = eV S̄SV ∗
. Using the formula

eV S̄SV ∗
= V eS̄SV ∗, which is valid if V is unitary and S̄S is diagonal, equation (32) can be rewritten

as

uδ(t) = V e−tS̄SV ∗u0 + V

∫

t

0
e(s−t)S̄SdsS̄U∗fδ. (34)

10



Here, the overbar stands for complex conjugation. Choose u0 = 0. Then

uδ(t) = V

∫

t

0
e(s−t)S̄SdsS̄hδ, hδ := U∗fδ. (35)

Let us assume that

δ < ‖f‖. (36)

This is a natural assumption. Let us check that

A∗fδ 6= 0. (37)

Indeed, if A∗fδ = 0, then one gets

〈fδ, f〉 = 〈fδ, Ay〉 = 〈A∗fδ, y〉 = 0. (38)

This implies

δ2 ≥ ‖f − fδ‖
2 = ‖f‖2 + ‖fδ‖

2 > δ2. (39)

This contradiction implies (37).

The stopping time tδ we choose by the following discrepancy principle:

‖Auδ(tδ)− fδ‖ =

∥

∥

∥

∥

∫

tδ

0
e(s−tδ)S̄SdsS̄Shδ − hδ

∥

∥

∥

∥

= ‖e−tδ S̄Shδ‖ = Cδ.

where 1 < C.

Let us find tδ from the equation

φ(t) := ψ(t)− Cδ = 0, ψ(t) := ‖e−tS̄Shδ‖. (40)

The existence and uniqueness of the solution tδ to equation (40) follow from Theorem 3.

We claim that equation (40) can be solved by using Newton’s iteration (48) for any initial value

t0 such that φ(t0) > 0.

Let us prove this claim. It is sufficient to prove that φ(t) is a monotone strictly convex function.

This is proved below.

Without loss of generality, we can assume that hδ (see (40)) is a vector with real components.

The proof remained essentially the same for hδ with complex components.

First, we claim that

√

S̄Shδ 6= 0, and ‖
√

S̄Se−tS̄Shδ‖ 6= 0, (41)

so ψ(t) > 0.

11



Indeed, since e−tS̄S is an isomorphism and e−tS̄S commutes with
√
S̄S one concludes that

‖
√
S̄Se−tS̄Shδ‖ = 0 iff

√
S̄Shδ = 0. If

√
S̄Shδ = 0 then S̄hδ = 0, and, therefore,

0 = S̄hδ = S̄U∗fδ = V ∗V S̄U∗fδ = V ∗A∗fδ. (42)

Since V is a unitary matrix, it follows from (42) that A∗fδ = 0. This contradicts to relation (37).

Let us now prove that φ monotonically decays and is strictly convex. Then our claim will be

proved.

One has
d

dt
〈e−tS̄Shδ , e

−tS̄Shδ〉 = −2〈e−tS̄Shδ, S̄Se
−tS̄Shδ〉.

Thus,

ψ̇(t) =
d

dt
‖e−tS̄Shδ‖ =

d

dt
‖e−tS̄Shδ‖

2

2‖e−tS̄Shδ‖
= −

〈e−tS̄Shδ, S̄Se
−tS̄Shδ〉

‖e−tS̄Shδ‖
. (43)

Equation (43), relation (41), and the fact that 〈e−tS̄Shδ, S̄Se
−tS̄Shδ〉 = ‖

√
S̄Se−tS̄Shδ‖

2 imply

ψ̇(t) < 0. (44)

From equation (43) and the definition of ψ in (40), one gets

ψ(t)ψ̇(t) = −〈e−tS̄Shδ, S̄Se
−tS̄Shδ〉 (45)

Differentiating equation (45) with respect to t, one obtains

ψ(t)ψ̈(t) + ψ̇2(t) = 〈S̄Se−tS̄Shδ, S̄Se
−tS̄Shδ〉+ 〈e−tS̄Shδ, S̄SS̄Se

−tS̄Shδ〉

= 2‖S̄Se−tS̄Shδ‖
2.

This equation and equation (43) imply

ψ(t)ψ̈(t) = 2‖S̄Se−tS̄Shδ‖
2 −

〈e−tS̄Shδ, S̄Se
−tS̄Shδ〉

2

‖e−tS̄Shδ‖2
≥ ‖S̄Se−tS̄Shδ‖

2 > 0. (46)

Here the inequality: 〈e−tS̄Shδ, S̄Se
−tS̄Shδ〉 ≤ ‖e−tS̄Shδ‖‖S̄Se

−tS̄Shδ‖ was used. Since ψ > 0,

inequality (46) implies

ψ̈(t) > 0. (47)

It follows from inequalities (44) and (47) that φ(t) is a strictly convex and decreasing function on

(0,∞). Therefore, tδ can be found by Newton’s iterations:

tn+1 = tn −
φ(tn)

φ̇(tn)

= tn +
‖e−tnS̄Shδ‖ − Cδ

〈S̄Se−tnS̄Shδ, e−tnS̄Shδ〉
‖e−tnS̄Shδ‖, n = 0, 1, ...,

(48)
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for any initial guess t0 of tδ such that φ(t0) > 0. Once tδ is found, the solution uδ(tδ) is computed

by (35).

Remark 1 In the decomposition A = V SU∗ we do not assume that U, V and S are matrices with

real entries. The singular value decomposition (SVD) is a particular case of this decomposition.

It is computationally expensive to get the SVD of a matrix in general. However, there are many

problems in which the decomposition (33) can be computed fast using the fast Fourier transform

(FFT). Examples include image restoration problems with circulant block matrices (see [14]) and

deconvolution problems. (see Section 4.2).

3.2 On the choice of t0

Let us discuss a strategy for choosing the initial value t0 in Newton’s iterations for finding tδ. We

choose t0 satisfying condition:

0 < φ(t0) = ‖e−t0S̄Shδ‖ − δ ≤ δ (49)

by the following strategy

1. Choose t0 := 10‖hδ‖
δ

as an initial guess for t0.

2. Compute φ(t0). If t0 satisfying (49) we are done. Otherwise, we go to step 3.

3. If φ(t0) < 0 and the inequality φ(t0) > δ has not occurred in iteration, we replace t0 by t0
10

and go back to step 2. If φ(t0) < 0 and the inequality φ(t0) > δ has occurred in iteration, we

replace t0 by t0
3 and go back to step 2. If φ(t0) > δ, we go to step 4.

4. If φ(t0) > δ and the inequality φ(t0) < 0 has not occured in iterations, we replace t0 by 3t0

and go back to step 2. If the inequality φ(t0) < 0 has occured in some iteration before, we

stop the iteration and use t0 as an initial guess in Newton’s iterations for finding tδ.

4 Numerical experiments

In this section results of some numerical experiments with ill-conditioned linear algebraic systems

are reported. In all the experiments, by DSMG we denote the version of the DSM described in

this paper, by VR we denote the Variational Regularization, implemented using the discrepancy

principle, and by DSM-[2] we denote the method developed in [2].

13



4.1 A linear algebraic system for the computation of second derivatives

Let us do some numerical experiments with linear algebraic systems arising in a numerical experi-

ment of computing the second derivative of a noisy function.

The problem is reduced to an integral equation of the first kind. A linear algebraic system is

obtained by a discretization of the integral equation whose kernel K is Green’s function

K(s, t) =







s(t− 1), if s < t

t(s− 1), if s ≥ t
.

Here s, t ∈ [0, 1]. Using AN from [2], we do some numerical experiments for solving uN from the

linear algebraic system ANuN = bN,δ. In the experiments the exact right-hand side is computed

by the formula bN = ANuN when uN is given. In this test, uN is computed by

uN :=
(

u(tN,1), u(tN,2), ...., u(tN,N )
)T
, tN,i :=

i

N
, i = 1, ..., N,

where u(t) is a given function. We use N = 10, 20, ..., 100 and bN,δ = bN+eN , where eN is a random

vector whose coordinates are independent, normally distributed, with mean 0 and variance 1, and

scaled so that ‖eN‖ = δrel‖bN‖. This linear algebraic system is mildly ill-posed: the condition

number of A100 is 1.2158 × 104.

In Figure 1, the difference between the exaction and solution obtained by the DSMG, VR and

DSM-[2] are plotted. In these experiments, we used N = 100 and u(t) = sin(πt) with δrel = 0.05

and δrel = 0.01. Figure 1 shows that the results obtained by the VR and the DSM-[2] are very close

to each other. The results obtained by the DSMG are much better than those by the DSM-[2] and

by the VR.

Table 1 presents numerical results when N varies from 10 to 100, u(t) = sin(2πt), and t ∈ [0, 1].

In this experiment the DSMG yields more accurate solutions than the DSM-[2] and the VR. The

DSMG in this experiment takes more iterations than the DSM-[2] and the VR to get a solution.

In this experiment the DSMG is implemented using the SVD of A obtained by the function

svd in Matlab. As already mentioned, the SVD is a special case of the spectral decomposition

(33). It is expensive to compute the SVD, in general. However, there are practically important

problems where the spectral decomposition (33) can be computed fast (see Section 4.2 below).

These problems consist of deconvolution problems using the Fast Fourier Transform (FFTs).

The conclusion from this experiment is: the DSMG may yield results with much better accuracy

than the VR and DSM-[2]. Numerical experiments for various u(t) show that the DSMG competes

favorably with the VR and the DSM-[2].
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Figure 1: Plots of differences between the exact solution and solutions obtained by the DSMG, VR

and DSM-[2].

4.2 An application to image restoration

The image degradation process can be modeled by the following equation:

gδ = g + w, g = h ∗ f, ‖w‖ ≤ δ, (50)

where h represents a convolution function that models the blurring that many imaging systems

introduce. For example, camera defocus, motion blur, imperfections of the lenses, all these phe-

nomenon can be modeled by choosing a suitable h. The functions gδ, f , and w are the observed

image, the original signal, and the noise, respectively. The noise w can be due to the electronics

used (thermal and shot noise), the recording medium (film grain), or the imaging process (photon

noise).

In practice g, h and f in equation (50) are often given as functions of a discrete argument and

equation (50) can be written in this case as

gδ,i = gi + wi =
∞
∑

j=−∞

fjhi−j + wi, i ∈ Z. (51)

Note that one (or both) signals fj and hj have compact support (finite length). Suppose that signal

f is periodic with period N , i.e., fi+N = fi, and hj = 0 for j < 0 and j ≥ N . Assume that f is

represented by a sequence f0, ..., fN−1 and h is represented by h0, ..., hN−1. Then the convolution

15



Table 1: Numerical results for computing second derivatives with δrel = 0.01.

DSM DSM-[2] VR

N niter
‖uδ−y‖2

‖y‖2

nlinsol
‖uδ−y‖2

‖y‖2

nlinsol
‖uδ−y‖2

‖y‖2

20 9 0.0973 3 0.1130 6 0.1079

30 5 0.0831 4 0.1316 6 0.1160

40 7 0.0488 4 0.1150 6 0.1045

50 9 0.0614 4 0.1415 6 0.1063

60 6 0.0419 4 0.0919 6 0.0817

70 9 0.0513 4 0.0961 6 0.0842

80 6 0.0418 4 0.1225 6 0.0981

90 7 0.0287 4 0.0919 7 0.0840

100 7 0.0248 5 0.0778 7 0.0553

h ∗ f is periodic signal g with period N , and the elements of g are defined as

gi =

N−1
∑

j=0

hjf(i−j)modN , i = 0, 1, ..., N − 1. (52)

Here (i− j)modN is i− j modulo N . The discrete Fourier transform (DFT) of g is defined as the

sequence

ĝk :=

N−1
∑

j=0

gje
−i2πjk/N , k = 0, 1, ..., N − 1.

Denote ĝ = (ĝ0, ...., ĝN−1)
T . Then equation (52) implies

ĝ = f̂ ĥ, f̂ ĥ := (f̂0ĥ0, f̂1ĥ1, ..., f̂N−1ĥN−1)
T . (53)

Let a = (a0, ..., aN−1)
T and diag(a) denote a diagonal matrix whose diagonal is (a0, ..., aN−1) and

other entries are zeros. Then equation (53) can be rewritten as

ĝ = Af̂, A := diag(ĥ). (54)

Since A is of the form (33) with U = V = I and S = diag(ĥ), one can use the DSMG method to

solve equation (54) stably for f̂ .

The image restoration test problem we use is taken from [14]. This test problem was developed

at the US Air Force Phillips Laboratory, Lasers and Imaging Directorate, Kirtland Air Force Base,

New Mexico. The original and blurred images have 256 × 256 pixels, and are shown in Figure 2.

These data has been widely used in the literature for testing image restoration algorithms.
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Original Blurred noisy image

Figure 2: Original and blurred noisy images.

Figure 3 plots the regularized images by the VR and the DSMG when δrel = 0.01. Again, with

an input value for δrel, the observed blurred noisy images is computed by

gδ = g + δrel
‖g‖

‖err‖
err,

where err is a vector with random entries normally distributed with mean 0 and variance 1. In this

experiment, it took 5 and 8 iterations for the DSMG and the VR, respectively, to yield numerical

results. From Figure 3 one concludes that the DSMG is comparable to the VR in terms of accuracy.

The time of computation in this experiment is about the same for the VR and DSMG.

VR DSM

Figure 3: Regularized images when noise level is 1%.

Figure 4 plots the regularized images by the VR and the DSMG when δrel = 0.05. It took 4

and 7 iterations for the DSMG and the VR, respectively, to yield numerical results. Figure 4 shows

that the images obtained by the DSMG and the VR are about the same.
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VR DSM

Figure 4: Regularized images when noise level is 5%.

The conclusions from this experiment are: the DSMG yields results with the same accuracy as

the VR, and requires less iterations than the VR. The restored images by the DSM-[2] are about

the same as those by the VR.

Remark 2 Equation (50) can be reduced to equation (53) whenever one of the two functions f

and h has compact support and the other is periodic.

5 Concluding remarks

A version of the Dynamical Systems Method for solving ill-conditioned linear algebraic systems is

studied in this paper. An a priori and a posteriori stopping rules are formulated and justified. An

algorithm for computing the solution in the case when a spectral decomposition of the matrix A

is available is presented. Numerical results show that the DSMG, i.e., the DSM version developed

in this paper, yields results comparable to those obtained by the VR and the DSM-[2] developed

in [2], and the DSMG method may yield much more accurate results than the VR method. It is

demonstrated in [14] that the rate of convergence of the Landweber method can be increased by

using preconditioning techniques. The rate of convergence of the DSM version, presented in this

paper, might be improved by a similar technique. The advantage of our method over the steepest

descent in [14] is the following: the stopping time tδ can be found from a discrepancy principle

by Newton’s iterations for a wide range of initial guess t0; when tδ is found one can compute the

solution without any iterations. Also, our method requires less iterations than the steepest descent

in [14], which is an accelerated version of the Landweber method.
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Abstract

A version of the Dynamical Systems Method (DSM) for solving ill-conditioned linear algebraic

systems is studied in this paper. An a priori and a posteriori stopping rules are justified. An

iterative scheme is constructed for solving ill-conditioned linear algebraic systems.

Keywords. Ill-posed problems, Dynamical Systems Method, Variational Regularization

1 Introduction

We want to solve stably the equation

Au = f, (1)

where A is a linear bounded operator in a real Hilbert space H. We assume that (1) has a solution,

possibly nonunique, and denote by y the unique minimal-norm solution to (1), y ⊥ N := N (A) :=

{u : Au = 0}, Ay = f . We assume that the range of A, R(A), is not closed, so problem (1) is

ill-posed. Let fδ, ‖f − fδ‖ ≤ δ, be the noisy data. We want to construct a stable approximation

of y, given {δ, fδ , A}. There are many methods for doing this, see, e.g., [4]–[6], [7], [14], [15], to

mention some (of the many) books, where variational regularization, quasisolutions, quasiinversion,

and iterative regularization are studied, and [7]-[12], where the Dynamical Systems Method (DSM)

is studied systematically (see also [1], [14], [13], and references therein for related results). The basic

∗Email: nguyenhs@math.ksu.edu
‡Corresponding author. Email: ramm@math.ksu.edu
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new results of this paper are: 1) a new version of the DSM for solving equation (1) is justified; 2) a

stable method for solving equation (1) with noisy data by the DSM is given; a priori and a posteriori

stopping rules are proposed and justified; 3) an iterative method for solving linear ill-conditioned

algebraic systems, based on the proposed version of DSM, is formulated; its convergence is proved;

4) numerical results are given; these results show that the proposed method yields a good alternative

to some of the standard methods (e.g., to variational regularization, Landweber iterations, and some

other methods).

The DSM version we study in this paper consists of solving the Cauchy problem

u̇(t) = −P (Au(t)− f), u(0) = u0, u0 ⊥ N , u̇ :=
du

dt
, (2)

and proving the existence of the limit limt→∞ u(t) = u(∞), and the relation u(∞) = y, i.e.,

lim
t→∞

‖u(t)− y‖ = 0. (3)

Here P is a bounded operator such that T := PA ≥ 0 is selfadjoint, N (T ) = N (A).

For any linear (not necessarily bounded) operator A there exists a bounded operator P such

that T = PA ≥ 0. For example, if A = U |A| is the polar decomposition of A, then |A| := (A∗A)
1

2

is a selfadjoint operator, T := |A| ≥ 0, U is a partial isometry, ‖U‖ = 1, and if P := U∗, then

‖P‖ = 1 and PA = T . Another choice of P , namely, P = (A∗A+ aI)−1A∗, a = const > 0, i s used

in Section 3. For this choice Q := AP ≥ 0.

If the noisy data fδ are given, ‖fδ − f‖ ≤ δ, then we solve the problem

u̇δ(t) = −P (Auδ(t)− fδ), uδ(0) = u0, (4)

and prove that, for a suitable stopping time tδ, and uδ := uδ(tδ), one has

lim
δ→0

‖uδ − y‖ = 0. (5)

An a priori and an a posteriori methods for choosing tδ are given.

In Section 2 these results are formulated and recipes for choosing tδ are proposed. In Section 3

a numerical example is presented.

2 Formulation and results

Suppose A : H → H is a linear bounded operator in a real Hilbert space H. Assume that equation

(1) has a solution not necessarily unique. Denote by y the unique minimal-norm solution i.e.,
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y ⊥ N := N (A). Consider the DSM (2) where u0 ⊥ N is arbitrary. Denote

T := PA, Q := AP. (6)

The unique solution to (2) is

u(t) = e−tTu0 + e−tT

∫

t

0
esTdsPf. (7)

Let us first show that any ill-posed linear equation (1) with exact data can be solved by the DSM.

We assume below that P = (A∗A+ aI)−1A∗, where a = const > 0. With this choice of P one has

N (T ) = N (A), ‖T‖ ≤ 1.

2.1 Exact data

The following result is known (see [7]) but a short proof is included for completeness.

Theorem 1 Suppose u0 ⊥ N and T ∗ = T ≥ 0. Then problem (2) has a unique solution defined

on [0,∞), and u(∞) = y, where u(∞) = limt→∞ u(t).

Proof. Denote w := u(t)− y, w0 := w(0) = u0 − y. Note that w0 ⊥ N . One has

ẇ = −Tw, T := PA, w(0) = u0 − y. (8)

The unique solution to (8) is w = e−tTw0. Thus,

‖w‖2 =

∫ ‖T‖

0
e−2tλd〈Eλw0, w0〉.

where 〈u, v〉 is the inner product in H, and Eλ is the resolution of the identity of T . Thus,

‖w(∞)‖2 = lim
t→∞

∫ ‖T‖

0
e−2tλd〈Eλw0, w0〉 = ‖PNw0‖

2 = 0,

where PN = E0 − E−0 is the orthogonal projector onto N . Theorem 1 is proved. 2

2.2 Noisy data fδ

Let us solve stably equation (1) assuming that f is not known, but fδ, the noisy data, are known,

where ‖fδ − f‖ ≤ δ. Consider the following DSM

u̇δ = −P (Auδ − fδ), uδ(0) = u0. (9)

Denote

wδ := uδ − y, T := PA, wδ(0) = w0 := u0 − y ∈ N⊥.

Let us prove the following result:
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Theorem 2 If T = T ∗ ≥ 0, limδ→0 tδ = ∞, limδ→0 tδδ = 0, and w0 ∈ N⊥, then

lim
δ→0

‖wδ(tδ)‖ = 0.

Proof. One has

ẇδ = −Twδ + ζδ, ζδ = P (fδ − f), ‖ζδ‖ ≤ ‖P‖δ. (10)

The unique solution of equation (10) is

wδ(t) = e−tTwδ(0) +

∫

t

0
e−(t−s)T ζδds.

Let us show that limδ→0 ‖wδ(tδ)‖ = 0. One has

lim
t→∞

‖wδ(t)‖ ≤ lim
t→∞

‖e−tTwδ(0)‖ + lim
t→∞

∥

∥

∥

∥

∫

t

0
e−(t−s)T ζδds

∥

∥

∥

∥

. (11)

Let Eλ be the resolution of identity corresponding to T . One uses the spectral theorem and gets:

∫

t

0
e−(t−s)T dsζδ =

∫

t

0

∫ ‖T‖

0
dEλζδe

−(t−s)λds

=

∫ ‖T‖

0
e−tλ e

tλ − 1

λ
dEλζδ =

∫ ‖T‖

0

1− e−tλ

λ
dEλζδ.

(12)

Note that

0 ≤
1− e−tλ

λ
≤ t, ∀λ > 0, t ≥ 0, (13)

since 1− x ≤ e−x for x ≥ 0. From (12) and (13), one obtains

∥

∥

∥

∥

∫

t

0
e−(t−s)T dsζδ

∥

∥

∥

∥

2

=

∫ ‖T‖

0

∣

∣

1− e−tλ

λ

∣

∣

2
d〈Eλζδ, ζδ〉

≤ t2
∫ ‖T‖

0
d〈Eλζδ, ζδ〉

= t2‖ζδ‖
2.

(14)

This estimate follows also from the inequality: ‖e−(t−s)T ‖ ≤ 1, which holds for T ∗ = T ≥ 0 and

t ≥ s. Indeed, one has ‖
∫

t

0 e
−(t−s)T ds‖ ≤ t, and estimate (14) follows.

Since ‖ζδ‖ ≤ ‖P‖δ, from (11) and (14), one gets

lim
δ→0

‖wδ(tδ)‖ ≤ lim
δ→0

(

‖e−tδTwδ(0)‖+ tδδ‖P‖

)

= 0.

Here we have used the relation:

lim
δ→0

‖e−tδTwδ(0)‖ = ‖PNw0‖ = 0,

and the last equality holds because w0 ∈ N⊥. Theorem 2 is proved. 2
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From Theorem 2, it follows that the relation

tδ =
C

δγ
, γ = const, γ ∈ (0, 1)

where C > 0 is a constant, can be used as an a priori stopping rule, i.e., for such tδ one has

lim
δ→0

‖uδ(tδ)− y‖ = 0. (15)

2.3 Discrepancy principle

In this section we assume that A is a linear finite-rank operator. Thus, it is a linear bounded

operator. Let us consider equation (1) with noisy data fδ, and a DSM of the form

u̇δ = −PAuδ + Pfδ, uδ(0) = u0, (16)

for solving this equation. Equation (16) has been used in Section 2.2. Recall that y denotes the

minimal-norm solution of equation (1), and that N (T ) = N (A) with our choice of P .

Theorem 3 Let T := PA, Q := AP . Assume that ‖Au0 − fδ‖ > Cδ, Q = Q∗ ≥ 0, T ∗ = T ≥ 0,

and T is a finite-rank operator. Then the solution tδ to the equation

h(t) := ‖Auδ(t)− fδ‖ = Cδ, C = const, C ∈ (1, 2), (17)

does exist, is unique, limδ→0 tδ = ∞, and

lim
δ→0

‖uδ(tδ)− y‖ = 0, (18)

where y is the unique minimal-norm solution to (1).

Proof. Denote

vδ(t) := Auδ(t)− fδ, w(t) := u(t)− y, w0 := u0 − y.

One has

d

dt
‖vδ(t)‖

2 = 2〈Au̇δ(t), Auδ(t)− fδ〉

= 2〈A[−P (Auδ(t)− fδ)], Auδ(t)− fδ〉

= −2〈AP (Auδ − fδ), Auδ − fδ〉 ≤ 0,

(19)

where the last inequality holds because AP = Q ≥ 0. Thus, ‖vδ(t)‖ is a nonincreasing function.
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Let us prove that equation (17) has a solution for C ∈ (1, 2). One has the following commutation

formulas:

e−sTP = Pe−sQ, Ae−sT = e−sQA.

Using these formulas and the representation

uδ(t) = e−tTu0 +

∫

t

0
e−(t−s)TPfδds,

one gets:

vδ(t) = Auδ(t)− fδ

= Ae−tTu0 +A

∫

t

0
e−(t−s)TPfδds− fδ

= e−tQAu0 + e−tQ

∫

t

0
esQdsQfδ − fδ

= e−tQA(u0 − y) + e−tQf + e−tQ(etQ − I)fδ − fδ

= e−tQAw0 − e−tQfδ + e−tQf = e−tQAu0 − e−tQfδ.

(20)

Note that

lim
t→∞

e−tQAw0 = lim
t→∞

Ae−tTw0 = APNw0 = 0.

Here the continuity of A and the following relation

lim
t→∞

e−tTw0 = lim
t→∞

∫ ‖T‖

0
e−stdEsw0 = (E0 − E−0)w0 = PNw0,

were used. Therefore,

lim
t→∞

‖vδ(t)‖ = lim
t→∞

‖e−tQ(f − fδ)‖ ≤ ‖f − fδ‖ ≤ δ, (21)

where ‖e−tQ‖ ≤ 1 because Q ≥ 0. The function h(t) is continuous on [0,∞), h(0) = ‖Au0 − fδ‖ >

Cδ, h(∞) ≤ δ. Thus, equation (17) must have a solution tδ.

Let us prove the uniqueness of tδ. If tδ is non-unique, then without loss of generality we can

assume that there exists t1 > tδ such that ‖Auδ(t1)− fδ‖ = Cδ. Since ‖vδ(t)‖ is nonincreasing and

‖vδ(tδ)‖ = ‖vδ(t1)‖, one has

‖vδ(t)‖ = ‖vδ(tδ)‖, ∀t ∈ [tδ, t1].

Thus,
d

dt
‖vδ(t)‖

2 = 0, ∀t ∈ (tδ , t1). (22)
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Using (19) and (22) one obtains

‖
√
AP (Auδ(t)− fδ)‖

2 = 〈AP (Auδ(t)− fδ), Auδ(t)− fδ〉 = 0, ∀t ∈ [tδ, t1],

where
√
AP = Q

1

2 ≥ 0 is well defined since Q = Q∗ ≥ 0. This implies Q
1

2 (Auδ − fδ) = 0. Thus

Q(Auδ(t)− fδ) = 0, ∀t ∈ [tδ, t1]. (23)

From (20) one gets:

vδ(t) = Auδ(t)− fδ = e−tQAu0 − e−tQfδ. (24)

Since Qe−tQ = e−tQQ and e−tQ is an isomorphism, equalities (23) and (24) imply

Q(Au0 − fδ) = 0.

This and (24) imply

AP (Auδ(t)− fδ) = e−tQ(QAu0 −Qfδ) = 0, t ≥ 0.

This and (19) imply
d

dt
‖vδ‖

2 = 0, t ≥ 0. (25)

Consequently,

Cδ < ‖Auδ(0)− fδ‖ = ‖vδ(0)‖ = ‖vδ(tδ)‖ = ‖Auδ(tδ)− fδ‖ = Cδ.

This is a contradiction which proves the uniqueness of tδ.

Let us prove (18). First, we have the following estimate:

‖Au(tδ)− f‖ ≤ ‖Au(tδ)−Auδ(tδ)‖+ ‖Auδ(tδ)− fδ‖+ ‖fδ − f‖

≤

∥

∥

∥

∥

e−tδQ

∫

tδ

0
esQQds

∥

∥

∥

∥

‖fδ − f‖+ Cδ + δ,
(26)

where u(t) solves (2) and uδ(t) solves (9). One uses the inequality:

∥

∥e−tδQ

∫

tδ

0
esQQds

∥

∥ = ‖I − e−tδQ‖ ≤ 2,

and concludes from (26), that

lim
δ→0

‖Au(tδ)− f‖ = 0. (27)

Secondly, we claim that

lim
δ→0

tδ = ∞.
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Assume the contrary. Then there exist t0 > 0 and a sequence (tδn)
∞
n=1, tδn < t0, limn→∞ δn = 0,

such that

lim
n→∞

‖Au(tδn)− f‖ = 0. (28)

Analogously to (19), one proves that
d

dt
‖v‖2 ≤ 0,

where v(t) := Au(t)− f . Thus, ‖v(t)‖ is nonincreasing. This and (28) imply the relation ‖v(t0)‖ =

‖Au(t0)− f‖ = 0. Thus,

0 = v(t0) = e−t0QA(u0 − y).

This implies A(u0 − y) = et0Qe−t0QA(u0 − y) = 0, so u0 − y ∈ N . Since u0 − y ∈ N⊥, it follows

that u0 = y. This is a contradiction because

Cδ ≤ ‖Au0 − fδ‖ = ‖f − fδ‖ ≤ δ, 1 < C < 2.

Thus,

lim
δ→0

tδ = ∞. (29)

Let us continue the proof of (18). From (20) and the relation ‖Auδ(tδ)− fδ‖ = Cδ, one has

Cδtδ = ‖tδe
−tδQAw0 − tδe

−tδQ(fδ − f)‖

≤ ‖tδe
−tδQAw0‖+ ‖tδe

−tδQ(fδ − f)‖

≤ ‖tδe
−tδQAw0‖+ tδδ.

(30)

We claim that

lim
δ→0

tδe
−tδQAw0 = lim

δ→0
tδAe

−tδTw0 = 0. (31)

Note that (31) holds if T ≥ 0 has finite rank, and w0 ∈ N⊥. It also holds if T ≥ 0 is compact and

the Fourier coefficients w0j := 〈w0, φj〉, Tφj = λjφj , decay sufficiently fast. In this case

‖Ae−tTw0‖
2 ≤ ‖T

1

2 e−tTw0‖
2 =

∞
∑

j=1

λje
−2λjt|w0j |

2 := S = o(
1

t2
), t → ∞,

provided that
∑∞

j=1 |w0j |λ
−2
j

< ∞. Indeed,

S =
∑

λj≤
1

t
2

3

+
∑

λj>
1

t
2

3

:= S1 + S2.

One has

S1 ≤
1

t2

∑

λj≤t
− 2

3

|w0j |
2

λ2
j

= o(
1

t2
), S2 ≤ ce−2t

1

3 = o(
1

t2
), t → ∞,
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where c > 0 is a constant.

From (31) and (30), one gets

0 ≤ lim
δ→0

(C − 1)δtδ ≤ lim
δ→0

‖tδe
−tδQAw0‖ = 0.

Thus,

lim
δ→0

δtδ = 0 (32)

Now, the desired conclusion (18) follows from (29), (32) and Theorem 2. Theorem 3 is proved. 2

2.4 An iterative scheme

Let us solve stably equation (1) assuming that f is not known, but fδ, the noisy data, are known,

where ‖fδ − f‖ ≤ δ. Consider the following discrete version of the DSM:

un+1,δ = un,δ − hP (Aun,δ − fδ), uδ,0 = u0. (33)

Let us denote un := un,δ when δ 6= 0, and set

wn := un − y, T := PA, w0 := u0 − y ∈ N⊥.

Let n = nδ be the stopping rule for iterations (33). Let us prove the following result:

Theorem 4 Assume that T = T ∗ ≥ 0, h‖T‖ < 2, limδ→0 nδh = ∞, limδ→0 nδhδ = 0, and w0 ∈

N⊥. Then

lim
δ→0

‖wnδ
‖ = lim

δ→0
‖unδ

− y‖ = 0. (34)

Proof. One has

wn+1 = wn − hTwn + hζδ, ζδ = P (fδ − f), ‖ζδ‖ ≤ ‖P‖δ, w0 = u0 − y. (35)

The unique solution of equation (35) is

wn+1 = (I − hT )n+1w0 + h

n
∑

i=0

(I − hT )iζδ.

Let us show that limδ→0 ‖wnδ
‖ = 0. One has

‖wn‖ ≤ ‖(I − hT )nw0‖+

∥

∥

∥

∥

h

n−1
∑

i=0

(I − hT )iζδ

∥

∥

∥

∥

. (36)
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Let Eλ be the resolution of the identity corresponding to T . One uses the spectral theorem and

gets:

h

n−1
∑

i=0

(I − hT )i = h

n−1
∑

i=0

∫ ‖T‖

0
(1− hλ)idEλ

= h

∫ ‖T‖

0

1− (1− λh)n

1− (1− hλ)
dEλ =

∫ ‖T‖

0

1− (1− λh)n

λ
dEλ.

(37)

Note that

0 ≤
1− (1− hλ)n

λ
≤ hn, ∀λ > 0, t ≥ 0, (38)

since 1− (1− α)n ≤ αn for all α ∈ [0, 2]. From (37) and (38), one obtains

∥

∥

∥

∥

h

n−1
∑

i=0

(I − hT )iζδ

∥

∥

∥

∥

2

=

∫ ‖T‖

0

∣

∣

1− (1− λh)n

λ

∣

∣

2
d〈Eλζδ, ζδ〉

≤ (hn)2
∫ ‖T‖

0
d〈Eλζδ, ζδ〉

= (nh)2‖ζδ‖
2.

(39)

Alternatively, this estimate follows from the inequality ‖(I −hT )i‖ ≤ 1, provided that 0 ≤ hT < 2.

Indeed, in this case one has ‖
∑

n−1
i=0 (I − hT )i‖ ≤ n, and this implies estimate (39).

Since ‖ζδ‖ ≤ ‖P‖δ, from (36) and (39), one gets

lim
δ→0

‖wnδ
‖ ≤ lim

δ→0

(

‖(I − hT )nδwδ(0)‖ + hnδδ‖P‖

)

= 0.

Here we have used the relation:

lim
δ→0

‖(I − hT )nδwδ(0)‖ = ‖PNw0‖ = 0,

and the last equality holds because w0 ∈ N⊥. Theorem 4 is proved. 2

From Theorem 4, it follows that the relation

nδ =
C

hδγ
, γ = const, γ ∈ (0, 1)

where C > 0 is a constant, can be used as an a priori stopping rule, i.e., for such nδ one has

lim
δ→0

‖unδ
− y‖ = 0. (40)
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2.5 An iterative scheme with a stopping rule based on a discrepancy principle

In this section we assume that A is a linear finite-rank operator. Thus, it is a linear bounded

operator. Let us consider equation (1) with noisy data fδ, and a DSM of the form

un+1 = un − hP (Aun − fδ), u0 = u0, (41)

for solving this equation. Equation (41) has been used in Section 2.4. Recall that y denotes the

minimal-norm solution of equation (1). Example of a choice of P is given in Section 3.

Note that N := N (T ) = N (A).

Theorem 5 Let T := PA, Q := AP . Assume that ‖Au0 − fδ‖ > Cδ, Q = Q∗ ≥ 0, T ∗ = T ≥ 0,

h‖T‖ < 2, h‖Q‖ < 2, and T is a finite-rank operator. Then there exists a unique nδ such that

‖Aunδ
− fδ‖ ≤ Cδ < ‖Aunδ−1 − fδ‖, C = const, C ∈ (1, 2). (42)

For this nδ one has:

lim
δ→0

‖unδ
− y‖ = 0. (43)

Proof. Denote

vn := Aun − fδ, wn := un − y, w0 := u0 − y.

From (41), one gets

vn+1 = Aun+1 − fδ = Aun − fδ − hAP (Aun − fδ) = vn − hQvn.

This implies

‖vn+1‖
2 − ‖vn‖

2 = 〈vn+1 − vn, vn+1 + vn〉

= 〈−hQvn, vn − hQvn + vn〉

= −〈vn, hQ(2 − hQ)vn〉 ≤ 0

(44)

where the last inequality holds because AP = Q ≥ 0 and ‖hQ‖ < 2. Thus, (‖vn‖)
∞
n=1 is a

nonincreasing sequence.

Let us prove that equation (42) has a solution for C ∈ (1, 2). One has the following commutation

formulas:

(I − hT )nP = P (I − hQ)n, A(I − hT )n = (I − hQ)nA.
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Using these formulas, the representation

un = (I − hT )nu0 + h

n−1
∑

i=0

(I − hT )iPfδ,

and the identity (I −B)
∑

n−1
i=0 Bi = I −Bn, with B = I − hQ, I −B = hQ, one gets:

vn = Aun − fδ

= A(I − hT )nu0 +Ah

n−1
∑

i=0

(I − hT )iPfδ − fδ

= (I − hQ)nAu0 +

n−1
∑

i=0

(I − hQ)ihQfδ − fδ

= (I − hQ)nAu0 − (I − (I − hQ)n)fδ − fδ

= (I − hQ)n(Au0 − f) + (I − hQ)n(f − fδ)

= (I − hQ)nAw0 + (I − hQ)n(f − fδ).

(45)

If V = V ∗ ≥ 0 is an operator with ||V || ≤ 2, then ||I − V || = sup0≤s≤2 |1− s| ≤ 1.

Note that

lim
n→∞

(I − hQ)nAw0 = lim
n→∞

A(I − hT )nw0 = APNw0 = 0,

where PN is the orthoprojection onto the null-space N of the operator T , and the continuity of A

and the following relation

lim
n→∞

(I − hT )nw0 = lim
n→∞

∫ ‖T‖

0
(1− sh)ndEsw0 = (E0 − E−0)w0 = PNw0, 0 ≤ sh < 2,

were used. Therefore,

lim
n→∞

‖vδ(t)‖ = lim
n→∞

‖(I − hQ)n(f − fδ)‖ ≤ ‖f − fδ‖ ≤ δ, (46)

where ‖I − hQ‖ ≤ 1 because Q ≥ 0 and ‖hQ‖ < 2. The sequence {‖vn‖}
∞
n=1 is nonincreasing with

‖v0‖ > Cδ and limn→∞ ‖vn‖ ≤ δ. Thus, there exists nδ > 0 such that (42) holds.

Let us prove (43). Let un,0 be the sequence defined by the relations:

un+1,0 = un,0 − hP (Aun,0 − f), u0,0 = u0.

First, we have the following estimate:

‖Aunδ ,0 − f‖ ≤ ‖Aunδ
−Aunδ,0‖+ ‖Aunδ

− fδ‖+ ‖fδ − f‖

≤

∥

∥

∥

∥

nδ−1
∑

i=0

(I − hQ)ihQ

∥

∥

∥

∥

‖fδ − f‖+Cδ + δ.
(47)
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Since 0 ≤ hQ < 2, one has ||I − hQ|| ≤ 1. This implies the following inequality:

∥

∥

∥

∥

nδ−1
∑

i=0

(I − hQ)ihQ

∥

∥

∥

∥

= ‖I − (I − hQ)nδ‖ ≤ 2,

and one concludes from (47) that

lim
δ→0

‖Aunδ ,0 − f‖ = 0. (48)

Secondly, we claim that

lim
δ→0

hnδ = ∞.

Assume the contrary. Then there exist n0 > 0 and a sequence (nδn)
∞
n=1, nδn < n0, such that

lim
n→∞

‖Aunδ ,0 − f‖ = 0. (49)

Analogously to (44), one proves that

‖vn,0‖ ≤ ‖vn−1,0‖,

where vn,0 = Aun,0 − f . Thus, the sequence ‖vn,0‖ is nonincreasing. This and (49) imply the

relation ‖vn0,0‖ = ‖Aun0,0 − f‖ = 0. Thus,

0 = vn0,0 = (I − hQ)n0A(u0 − y).

This implies A(u0 − y) = (I − hQ)−n0(I − hQ)n0A(u0 − y) = 0, so u0 − y ∈ N . Since, by the

assumption, u0 − y ∈ N⊥, it follows that u0 = y. This is a contradiction because

Cδ ≤ ‖Au0 − fδ‖ = ‖f − fδ‖ ≤ δ, 1 < C < 2.

Thus,

lim
δ→0

hnδ = ∞. (50)

Let us continue the proof of (43). From (45) and ‖Aunδ
− fδ‖ = Cδ, one has

Cδnδh = ‖nδh(I − hQ)nδAw0 − nδh(I − hQ)nδ (fδ − f)‖

≤ ‖nδh(I − hQ)nδAw0‖+ ‖nδh(I − hQ)nδ (fδ − f)‖

≤ ‖nδh(I − hQ)nδAw0‖+ nδhδ.

(51)

We claim that if w0 ∈ N⊥, 0 ≤ hT < 2, and T is a finite-rank operator, then

lim
δ→0

nδh(I − hQ)nδAw0 = lim
δ→0

nδhA(I − hT )nδw0 = 0. (52)
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From (51) and (52) one gets

0 ≤ lim
δ→0

(C − 1)δhnδ ≤ lim
δ→0

‖nδh(I − hQ)nδAw0‖ = 0.

Thus,

lim
δ→0

δnδh = 0 (53)

Now (43) follows from (50), (53) and Theorem 4. Theorem 5 is proved. 2

3 Numerical experiments

3.1 Computing uδ(tδ)

In [3] a DSM (9) was investigated with P = A∗ and the singular value decomposition (SVD)

of A was assumed known. In general, it is computationally expensive to get the SVD of large

scale matrices. In this paper, we have derived an iterative scheme for solving ill-conditioned linear

algebraic systems Au = fδ without using SVD of A.

Choose P = (A∗A + a)−1A∗ where a is a fixed positive constant. This choice of P satisfies all

the conditions in Theorem 3. In particular, Q = AP = A(A∗A+ aI)−1A∗ = AA∗(AA∗ + aI)−1 ≥ 0

is a selfadjoint operator, and T = PA = (A∗A+ aI)−1A∗A ≥ 0 is a selfadjoint operator. Since

‖T‖ =

∥

∥

∥

∥

∫ ‖A∗A‖

0

λ

λ+ a
dEλ

∥

∥

∥

∥

= sup
0≤λ≤‖A∗A‖

λ

λ+ a
< 1,

where Eλ is the resolution of the identity of A∗A, the condition h‖T‖ < 2 in Theorem 5 is satisfied

for all 0 < h ≤ 1. Set h = 1 and P = (A∗A+ a)−1A∗ in (41). Then one gets the following iterative

scheme:

un+1 = un − (A∗A+ aI)−1(A∗Aun −A∗fδ), u0 = 0. (54)

For simplicity we have chosen u0 = 0. However, one may choose u0 = v0 if v0 is known to be

a better approximation to y than 0 and v0 ∈ N⊥. In iterations (54) we use a stopping rule of

discrepancy type. Indeed, we stop iterations if un satisfies the following condition

‖Aun − fδ‖ ≤ 1.01δ. (55)

The choice of a affects both the accuracy and the computation time of the method. If a is too

large, one needs more iterations to approach the desired accuracy, so the computation time will be

large. If a is too small, then the results become less accurate because for too small a the inversion
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of the operator A∗A+aI is an ill-posed problem since the operator A∗A is not boundedly invertible.

Using the idea of the choice of the initial guess of the regularization parameter in [2], we choose a

to satisfy the following condition:

δ ≤ φ(a) := ‖A(A∗A+ a)−1A∗fδ − fδ‖ ≤ 2δ. (56)

This can be done by using the following strategy:

1. Choose a := δ‖A‖2

3‖fδ‖
as an initial guess for a.

2. Compute φ(a). If a satisfies (56), then we are done. Otherwise, we go to step 3.

3. If c = φ(a)
δ

> 3, we replace a by a

2(c−1) and go back to step 2. If 2 < c ≤ 3, then we replace a

by a

2(c−1) and go back to step 2. Otherwise, we go to step 4.

4. If c = φ(a)
δ

< 1, we replace a by 3a. If the inequality c < 1 has occured in an earlier iteration,

we stop the iterations and use 3a as our choice for a in iterations (54). Otherwise we go back

to step 2.

In our experiments, we denote by DSM the iterative scheme (54), by VRi a Variational Reg-

ularization method (VR) with a as the regularization parameter, and by VRn the VR in which

Newton’s method is used for finding the regularization parameter from a discrepancy principle. We

compare these methods in terms of relative error and number of iterations, denoted by niter.

All the experiments were carried in double arithmetics precision environment using MATLAB.

3.2 A linear algebraic system related to an inverse problem for the heat equa-

tion

In this section, we apply the DSM and the VR to solve a linear algebraic system used in [2]. This

linear algebraic system is a part of numerical solutions to an inverse problem for the heat equation.

This problem is reduced to a Volterra integral equation of the first kind with [0, 1] as the integration

interval. The kernel is K(s, t) = k(s− t) with

k(t) =
t−3/2

2κ
√
π
exp(−

1

4κ2t
).

Here, we use the value κ = 1. In this test in [2] the integral equation was discretized by means of

simple collocation and the midpoint rule with n points. The unique exact solution un is constructed,

and then the right-hand side bn is produced as bn = Anun (see [2]). In our test, we use n =
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10, 20, ..., 100 and bn,δ = bn+en, where en is a vector containing random entries, normally distributed

with mean 0, variance 1, and scaled so that ‖en‖ = δrel‖bn‖. This linear system is ill-posed: the

condition number of A100 obtained by using the function cond provided in MATLAB is 1.3717×1037 .

This number shows that the corresponding linear algebraic system is severely ill-conditioned.

Table 2: Numerical results for the inverse heat equation with δrel = 0.05, n = 10i, i = 1, 10.

DSM VRi VRn

n niter
‖uδ−y‖2

‖y‖2

niter
‖uδ−y‖2

‖y‖2

niter
‖uδ−y‖2

‖y‖2

10 3 0.1971 1 0.2627 5 0.2117

20 4 0.3359 1 0.4589 5 0.3551

30 4 0.3729 1 0.4969 5 0.3843

40 4 0.3856 1 0.5071 5 0.3864

50 5 0.3158 1 0.4789 6 0.3141

60 6 0.2892 1 0.4909 6 0.3060

70 7 0.2262 1 0.4792 8 0.2156

80 6 0.2623 1 0.4809 7 0.2600

90 5 0.2856 1 0.4816 7 0.2715

100 7 0.2358 1 0.4826 7 0.3405

Table 2 shows that the results obtained by the DSM are comparable to those by the VRn in

terms of accuracy. The time of computation of the DSM is comparable to that of the VRn. In some

situations, the results by VRn and the DSM are the same although the VRn uses 3 more iterations

than does the DSM. The conclusion from this Table is that DSM competes favorably with the VRn

in both accuracy and time of computation.

Figure 5 plots numerical solutions to the inverse heat equation for δrel = 0.05 and δrel = 0.01

when n = 100. From the figure one can see that the numerical solutions obtained by the DSM

are about the same those by the VRn. In these examples, the time of computation of the DSM is

about the same as that of the VRn.

The conclusion is that the DSM competes favorably with the VRn in this experiment.

4 Concluding remarks

Iterative scheme (54) can be considered as a modification the Landweber iterations. The difference

between the two methods is the multiplication by (A∗A + aI)−1. Our iterative method is much

faster than the conventional Landweber iterations. Iterative method (54) is an analog of the
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Figure 5: Plots of solutions obtained by DSM, VR for the inverse heat equation when n = 100,

δrel = 0.05 (left) and δrel = 0.01 (right).

Gauss-Newton method. It can be considered as a regularized Gauss-Newton method for solving

ill-conditioned linear algebraic systems. The advantage of using (54) instead of using (4.1.3) in [2]

is that one only has to compute the lower upper (LU) decomposition of A∗A + aI once while the

algorithm in [2] requires computing LU at every step. Note that computing the LU is the main cost

for solving a linear system. Numerical experiments show that the new method competes favorably

with the VR in our experiments.
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Abstract

A discrepancy principle for solving nonlinear equations with monotone operators given noisy

data is formulated. The existence and uniqueness of the corresponding regularization parameter

a(δ) is proved. Convergence of the solution obtained by the discrepancy principle is justified.

The results are obtained under natural assumptions on the nonlinear operator.
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1 Introduction

Consider the equation:

F (u) = f, (1)

where F is a monotone operator in a real Hilbert space H. Monotonicity is understood in the

following sense:

〈F (u)− F (v), u − v〉 ≥ 0, ∀u, v ∈ H. (2)

Here 〈·, ·〉 denotes the inner product in H. Assume that F is continuous.

Equations with monotone operators are important in many applications and were studied ex-

tensively, see, for example, [1]–[3], [9], [10], [12], and references therein. There are many technical

‡Corresponding author. Email: ramm@math.ksu.edu
∗Email: nguyenhs@math.ksu.edu
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and physical problems leading to equations with such operators in the cases when dissipation of

energy occurs. For example, in [5] and [4], Chapter 3, pp.156-189, a wide class of nonlinear dissi-

pative systems is studied, and the basic equations of such systems can be reduced to equation (1)

with monotone operators. Many examples of equations with monotone operators can be found in

[2] and in references mentioned above. In [6] and [7] it is proved that any solvable linear operator

equation with a closed densely defined operator in a Hilbert space H can be reduced to an equation

with a monotone operator and solved by a convergent iterative process.

In this paper, apparently for the first time, a discrepancy principle for solving equation (3) with

noisy data (see Section 2) is proved under natural assumptions. No smallness assumptions on the

nonlinearity, no global restrictions on its growth, or other special properties of the nonlinearity,

except the monotonicity and continuity, are imposed. No source-type assumptions are used. Our

result is widely applicable. It is well known that without extra assumptions, usually source-type

assumption concerning the right-hand side, or some equivalent assumption concerning the smooth-

ness of the solution, one cannot get a rate of convergence even for linear ill-posed equations (see,

for example, [9]). On the other hand, such assumptions are usually not algorithmically verifiable

and often they do not hold. By this reason we do not make such assumptions and do not give

estimates of the rate of convergence.

In [11] a stationary equation F (u) = f with a nonlinear monotone operator F was studied.

The assumptions A1-A3 on p.197 in [11] are more restrictive than ours, and the Rule R2 on

p.199, formula (4.1) in [11], for the choice of the regularization parameter is more difficult to use

computationally: one has to solve nonlinear equation (4.1) in [11] for the regularization parameter.

Moreover, to use this equation one has to invert an ill-conditioned linear operator A + aI for

small values of a. Assumption A1 in [11] is not verifiable, because the solution x† is not known.

Assumption A3 in [11] requires F to be constant in a ball Br(x
†) if F ′(x†) = 0. Our discrepancy

principle does not require these assumptions, and, in contrast to equation (4.1) in [11], it does not

require inversion of ill-conditioned linear operators.

The novel results in our paper include Theorem 5 in Section 3 and Theorem 7 in Section 4. In

Theorem 5 a new discrepancy principle is proposed and justified assuming only the monotonicity and

continuity of F . Implementing the discrepancy principle in Theorem 5 requires solving equation (3)

and then solving nonlinear equation (15) for the regularization parameter a(δ). Theorem 7 allows

one to solve equations (3) and (15) approximately. Thus, when δ is not too small one can save a

large amount of computations in solving equations (3) and (15) by applying Theorem 7 and using
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our new stopping rule. Our results allow one to solve numerically stably equation (1) if F is locally

Lipschitz and monotone. Based on Theorem 7, an algorithm for stable solution of equation (1) is

formulated for locally Lipschitz monotone operators.

2 Auxiliary results

Let us consider the following equation

F (Vδ,a) + aVδ,a − fδ = 0, a > 0, (3)

where a = const. It is known (see, e.g., [9, p.111]) that equation (3) with monotone continuous

operator F has a unique solution for any fδ ∈ H.

Throughout the paper we assume that F is a monotone continuous operator and the inner

product in H is denoted 〈u, v〉. Below the word decreasing means strictly decreasing and increasing

means strictly increasing.

Recall the following result from [9, p.112]:

Lemma 1 Assume that equation (1) is solvable, y is its minimal-norm solution, assumption (2)

holds, and F is continuous. Then

lim
a→0

‖Va − y‖ = 0, (4)

where Va solves equation (3) with δ = 0.

Lemma 2 Assume ‖F (0) − fδ‖ > 0. Let a > 0, and F be monotone. Denote

ψ(a) := ‖Vδ,a‖, φ(a) := aψ(a) = ‖F (Vδ,a)− fδ‖,

where Vδ,a solves (3). Then ψ(a) is decreasing, and φ(a) is increasing.

Proof. Since ‖F (0) − fδ‖ > 0, one has ψ(a) 6= 0, ∀a ≥ 0. Indeed, if ψ(a)
∣

∣

a=τ
= 0, then Vδ,a = 0,

and equation (3) implies ‖F (0)− fδ‖ = 0, which is a contradiction. Note that φ(a) = a‖Vδ,a‖. One

has

0 ≤ 〈F (Vδ,a)− F (Vδ,b), Vδ,a − Vδ,b〉

= 〈−aVδ,a + bVδ,b, Vδ,a − Vδ,b〉

= (a+ b)〈Vδ,a, Vδ,b〉 − a‖Vδ,a‖
2 − b‖Vδ,b‖

2.

(5)
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Thus,

0 ≤ (a+ b)〈Vδ,a, Vδ,b〉 − a‖Vδ,a‖
2 − b‖Vδ,b‖

2

≤ (a+ b)‖Vδ,a‖‖Vδ,b‖ − a‖Vδ,a‖
2 − b‖Vδ,b‖

2

= (a‖Vδ,a‖ − b‖Vδ,b‖)(‖Vδ,b‖ − ‖Vδ,a‖)

= (φ(a) − φ(b))(ψ(b) − ψ(a)).

(6)

If ψ(b) > ψ(a) then (6) implies φ(a) ≥ φ(b), so

aψ(a) ≥ bψ(b) > bψ(a).

Therefore, if ψ(b) > ψ(a) then b < a.

Similarly, if ψ(b) < ψ(a) then φ(a) ≤ φ(b). This implies b > a.

Suppose ψ(a) = ψ(b), i.e., ‖Vδ,a‖ = ‖Vδ,b‖. From (5) one has

‖Vδ,a‖
2 ≤ 〈Vδ,a, Vδ,b〉 ≤ ‖Vδ,a‖‖Vδ,b‖ = ‖Vδ,a‖

2.

This implies Vδ,a = Vδ,b, and then equation (3) implies a = b.

Therefore φ is increasing and ψ is decreasing. 2

Lemma 3 If F is monotone and continuous, then ‖Vδ,a‖ = O( 1
a
) as a→ ∞, and

lim
a→∞

‖F (Vδ,a)− fδ‖ = ‖F (0) − fδ‖. (7)

Proof. Rewrite (3) as

F (Vδ,a)− F (0) + aVδ,a + F (0)− fδ = 0.

Multiply this equation by Vδ,a, use the monotonicity of F and get:

a‖Vδ,a‖
2 ≤ 〈aVδ,a + F (Vδ,a)− F (0), Vδ,a〉 = 〈fδ − F (0), Vδ,a〉 ≤ ‖fδ − F (0)‖‖Vδ,a‖.

Therefore, ‖Vδ,a‖ = O( 1
a
). This and the continuity of F imply (7). 2

Remark 1 If ‖F (0) − fδ‖ > Cδγ , 0 < γ ≤ 1 then relation (7) implies

‖F (Vδ,a)− fδ‖ ≥ Cδγ , 0 < γ ≤ 1, (8)

for sufficiently large a > 0.

Lemma 4 Let C > 0 and γ ∈ (0, 1] be constants such that Cδγ > δ. Suppose that ‖F (0) − fδ‖ >

Cδγ . Then, there exists a unique a(δ) > 0 such that ‖F (Vδ,a(δ))− fδ‖ = Cδγ .
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Proof. We have F (y) = f , and

0 =〈F (Vδ,a) + aVδ,a − fδ, F (Vδ,a)− fδ〉

=‖F (Vδ,a)− fδ‖
2 + a〈Vδ,a − y, F (Vδ,a)− fδ〉+ a〈y, F (Vδ,a)− fδ〉

=‖F (Vδ,a)− fδ‖
2 + a〈Vδ,a − y, F (Vδ,a)− F (y)〉+ a〈Vδ,a − y, f − fδ〉

+ a〈y, F (Vδ,a)− fδ〉

≥‖F (Vδ,a)− fδ‖
2 + a〈Vδ,a − y, f − fδ〉+ a〈y, F (Vδ,a)− fδ〉.

Here the monotonicity of F was used. Therefore

‖F (Vδ,a)− fδ‖
2 ≤ −a〈Vδ,a − y, f − fδ〉 − a〈y, F (Vδ,a)− fδ〉

≤ a‖Vδ,a − y‖‖f − fδ‖+ a‖y‖‖F (Vδ,a)− fδ‖

≤ aδ‖Vδ,a − y‖+ a‖y‖‖F (Vδ,a)− fδ‖.

(9)

Also,

0 = 〈F (Vδ,a)− F (y) + aVδ,a + f − fδ, Vδ,a − y〉

= 〈F (Vδ,a)− F (y), Vδ,a − y〉+ a‖Vδ,a − y‖2 + a〈y, Vδ,a − y〉+ 〈f − fδ, Vδ,a − y〉

≥ a‖Vδ,a − y‖2 + a〈y, Vδ,a − y〉+ 〈f − fδ, Vδ,a − y〉,

where the monotonicity of F was used again. Therefore,

a‖Vδ,a − y‖2 ≤ a‖y‖‖Vδ,a − y‖+ δ‖Vδ,a − y‖.

This implies

a‖Vδ,a − y‖ ≤ a‖y‖+ δ. (10)

From (9), (10), and an elementary inequality ab ≤ ǫa2 + b2

4ǫ , ∀ǫ > 0, one gets:

‖F (Vδ,a)− fδ‖
2 ≤ δ2 + a‖y‖δ + a‖y‖‖F (Vδ,a)− fδ‖

≤ δ2 + a‖y‖δ + ǫ‖F (Vδ,a)− fδ‖
2 +

1

4ǫ
a2‖y‖2,

(11)

where ǫ > 0 is arbitrary small, fixed, independent of a, and can be chosen arbitrary small. Let

aց 0. Then (11) implies lima→0(1− ǫ)‖F (Vδ,a)− fδ‖
2 ≤ δ2 < (Cδγ)2. Thus,

lim
a→0

‖F (Vδ,a)− fδ‖ < Cδγ , C > 0, 0 < γ ≤ 1.

This, the continuity of F , the continuity of Vδ,a with respect to a ∈ [0,∞), and inequality (8),

imply that equation ‖F (Vδ,a)− fδ‖ = Cδγ must have a solution a(δ) > 0. 2
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Remark 2 Let Va := Vδ,a|δ=0, so F (Va) + aV − f = 0. Let y be the minimal-norm solution to

equation (1). We claim that

‖Vδ,a − Va‖ ≤
δ

a
. (12)

Indeed, from (3) one gets

F (Vδ,a)− F (Va) + a(Vδ,a − Va) = f − fδ.

Multiply this equality by (Vδ,a − Va) and use (2) to obtain

δ‖Vδ,a − Va‖ ≥ 〈f − fδ, Vδ,a − Va〉

= 〈F (Vδ,a)− F (Va) + a(Vδ,a − Va), Vδ,a − Va)〉

≥ a‖Vδ,a − Va‖
2.

This implies (12).

Let us derive a uniform with respect to a bound on ‖Va‖. From the equation

F (Va) + aVa − F (y) = 0,

and the monotonicity of F one gets

0 = 〈F (Va) + aVa − F (y), Va − y〉 ≥ a〈Va, Va − y〉.

This implies the desired bound:

‖Va‖ ≤ ‖y‖, ∀a > 0. (13)

Similar arguments one can find in [9, p. 113].

From (12) and (13), one gets the following estimate:

‖Vδ,a‖ ≤ ‖Va‖+
δ

a
≤ ‖y‖+

δ

a
. (14)

3 A discrepancy principle

Our standing assumptions are the monotonicity and continuity of F and the solvability of equation

(1). They are not repeated below. We assume without loss of generality that δ ∈ (0, 1).

Theorem 5 Let γ ∈ (0, 1] and C > 0 be some constants such that Cδγ > δ. Assume that ‖F (0)−

fδ‖ > Cδγ . Let y be its minimal-norm solution. Then there exists a unique a(δ) > 0 such that

‖F (Vδ,a(δ))− fδ‖ = Cδγ , (15)
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where Vδ,a(δ) solves (3) with a = a(δ).

If 0 < γ < 1 then

lim
δ→0

‖Vδ,a(δ) − y‖ = 0. (16)

Proof. The existence and uniqueness of a(δ) follow from Lemma 4. Let us show that

lim
δ→0

a(δ) = 0. (17)

The triangle inequality, inequality (12) and equality (15) imply

a(δ)‖Va(δ)‖ ≤ a(δ)
(

‖Vδ,a(δ) − Va(δ)‖+ ‖Vδ,a(δ)‖
)

≤ δ + a(δ)‖Vδ,a(δ)‖ = δ + Cδγ .

(18)

From inequality (18), one gets

lim
δ→0

a(δ)‖Va(δ)‖ = 0. (19)

It follows from Lemma 2 with fδ = f , i.e., δ = 0, that the function φ0(a) := a‖Va‖ is nonnegative

and strictly increasing on (0,∞). This and relation (19) imply:

lim
δ→0

a(δ) = 0. (20)

From (15) and (14), one gets

Cδγ = a‖Vδ,a‖ ≤ a(δ)‖y‖ + δ. (21)

Thus, one gets:

Cδγ − δ ≤ a(δ)‖y‖. (22)

If γ < 1 then C − δ1−γ > 0 for sufficiently small δ. This implies:

0 ≤ lim
δ→0

δ

a(δ)
≤ lim

δ→0

δ1−γ‖y‖

C − δ1−γ
= 0. (23)

By the triangle inequality and inequality (12), one has

‖Vδ,a(δ) − y‖ ≤ ‖Va(δ) − y‖+ ‖Va(δ) − Vδ,a(δ)‖ ≤ ‖Va(δ) − y‖+
δ

a(δ)
. (24)

Relation (16) follows from (23), (24) and Lemma 1. 2

Instead of using (3), one may use the following equation:

F (Vδ,a) + a(Vδ,a − ū)− fδ = 0, a > 0, (25)
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where ū is an element of H. Denote F1(u) := F (u + ū). Then F1 is monotone and continuous.

Equation (3) can be written as:

F1(Uδ,a) + aUδ,a − fδ = 0, Uδ,a := Vδ,a − ū, a > 0. (26)

By applying Theorem 5 with F = F1 one gets the following result:

Corollary 6 Let γ ∈ (0, 1] and C > 0 be some constants such that Cδγ > δ. Let ū ∈ H and z be

the solution to (1) with minimal distance to ū. Assume that ‖F (ū)− fδ‖ > Cδγ. Then there exists

a unique a(δ) > 0 such that

‖F (Ṽδ,a(δ))− fδ‖ = Cδγ , (27)

where Ṽδ,a(δ) solves the following equation:

F (Ṽδ,a) + a(δ)(Ṽδ,a − ū)− fδ = 0.

If γ ∈ (0, 1) then this a(δ) satisfies

lim
δ→0

‖Ṽδ,a(δ) − z‖ = 0. (28)

Remark 3 It is an open problem to choose γ and C optimal in some sense.

Remark 4 Theorem 5 and Theorem 7 do not hold, in general, for γ = 1. Indeed, let Fu = 〈u, p〉p,

‖p = 1‖, p ⊥ N (F ) := {u ∈ H : Fu = 0}, f = p, fδ = p + qδ, where 〈p, q〉 = 0, ‖q‖ = 1, Fq = 0,

‖qδ‖ = δ. One has Fy = p, where y = p, is the minimal-norm solution to the equation Fu = p.

Equation Fu + au = p + qδ, has the unique solution Vδ,a = qδ/a + p/(1 + a). Equation (15) is

Cδ = ‖qδ+(ap)/(1+ a)‖. This equation yields a = a(δ) = cδ/(1− cδ), where c := (C2− 1)1/2, and

we assume cδ < 1. Thus, limδ→0 Vδ,a(δ) = p+ c−1q := v, and Fv = p. Therefore v = limδ→0 Vδ,a(δ)

is not p, i.e., is not the minimal-norm solution to the equation Fu = p. Similar arguments one can

find in [8, p. 29].

4 Applications

In this section we discuss methods for solving equations (3) and (1) using the new discrepancy

principle, i.e., Theorem 5. Implementing this principle, i.e., solving equation (15), requires solving

equation (3). If F is linear, then equation (3) has the form:

(F + aI)u = fδ. (29)
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Since F ≥ 0 the operator F + aI is boundedly invertible, ‖(F + aI)−1‖ ≤ 1
a
, and equation (29)

is well-posed if a > 0 is not too small. There are many methods for solving efficiently well-posed

linear equations with positive-definite operators. For this reason we mainly discuss some methods

for stable solution of equation (1) with nonlinear operators. In this section a method is developed

for a stable solution of equation (1) with locally Lipschitz monotone operator F , so we assume that

‖F (u) − F (v)|| ≤ L||u− v||, u, v ∈ B(u0, R) := {u : ‖u− u0‖ ≤ R}, L = L(R). (30)

Here u0 ∈ H is an arbitrary fixed element. Consider the operator

G(u) := u− λ[F (u) + au− fδ], λ > 0.

We claim that G is a contraction mapping in H provided that λ is sufficiently small. Let F1 :=

F + aI. Then (30) implies ‖F1(u) − F1(v)‖ ≤ (a + L)‖u − v‖. Using the monotonicity of F , one

gets

‖G(u) −G(v)‖2 = ‖(u− v)− λ
(

F1(u)− F1(v)
)

‖2

= ‖u− v‖2 − 2λ〈u − v, F1(u)− F1(v)〉+ λ2‖F1(u)− F1(v)‖
2

≤ ‖u− v‖2[1− 2λa+ λ2(a+ L)2].

(31)

This implies that G is a contraction mapping if

0 < λ <
2a

(a+ L)2
.

For these λ the solution Vδ,a of equation (3) can be found by the following iterative process:

un+1 = un − λ[F (un) + aun − fδ], u0 := u0. (32)

After finding Vδ,a, one finds a(δ) from the discrepancy principle (15), i.e., by solving the nonlinear

equation:

φ(a(δ)) := ‖F (Vδ,a(δ))− fδ‖ = Cδγ . (33)

There are many methods for solving this equation. For example, one can use the bisection method

or the golden section method. If a(δ) is found, one solves equation (3) with a = a(δ) for Vδ,a(δ) and

takes its solution as an approximate solution to (1).

Although the sequence un, defined by (32), converges to the solution of equation (3) at the

rate of a geometrical series with a denominator q ∈ (0, 1), it is very time consuming to try to
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solve equation (3) with high accuracy if q is close to 1. Theorem 7 (see below) allows one to stop

iterations (32) at the first value of n which satisfies the following condition:

‖F (un) + aun − fδ‖ ≤ θδ, θ > 0, (34)

where θ is a fixed constant. This saves the time of computation.

Theorem 7 Let δ, F, fδ, and y be as in Theorem 5 and 0 < γ < 1. Assume that vδ ∈ H and

α(δ) > 0 satisfy the following conditions:

‖F (vδ) + α(δ)vδ − fδ‖ ≤ θδ, θ > 0, (35)

and

C1δ
γ ≤ ‖F (vδ)− fδ‖ ≤ C2δ

γ , 0 < C1 < C2. (36)

Then one has:

lim
δ→0

‖vδ − y‖ = 0. (37)

Proof. Let u and v be arbitrary elements in H. By the monotonicity of F one gets

a‖u− v‖2 ≤ 〈u− v, F (u) − F (v) + au− av〉

≤ ‖u− v‖‖F (u) − F (v) + au− av‖, ∀a > 0.
(38)

This implies

a‖u− v‖ ≤ ‖F (u) − F (v) + au− av‖, ∀v, u ∈ H, ∀a > 0. (39)

Using inequality (39) with v = vδ and u = Vδ,α(δ), equation (3) with a = α(δ), and inequality (35),

one gets

α(δ)‖vδ − Vδ,α(δ)‖ ≤ ‖F (vδ)− F (Vδ,α(δ)) + α(δ)vδ − α(δ)Vδ,α(δ)‖

= ‖F (vδ) + α(δ)vδ − fδ‖ ≤ θδ.

(40)

Therefore,

‖vδ − Vδ,α(δ)‖ ≤
θδ

α(δ)
. (41)

Using (14) and (41), one gets:

α(δ)‖vδ‖ ≤ α(δ)‖Vδ,α(δ)‖+ α(δ)‖vδ − Vδ,α(δ)‖ ≤ θδ + α(δ)‖y‖ + δ. (42)

From the triangle inequality and inequalities (35) and (36) one obtains:

α(δ)‖vδ‖ ≥ ‖F (vδ)− fδ‖ − ‖F (vδ) + α(δ)vδ − fδ‖ ≥ C1δ
γ − θδ. (43)
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Inequalities (42) and (43) imply

C1δ
γ − θδ ≤ θδ + α(δ)‖y‖ + δ. (44)

This inequality and the fact that C1 − δ1−γ − 2θδ1−γ > 0 for sufficiently small δ and 0 < γ < 1

imply
δ

α(δ)
≤

δ1−γ‖y‖

C1 − δ1−γ − 2θδ1−γ
, 0 < δ ≪ 1. (45)

Thus, one obtains

lim
δ→0

δ

α(δ)
= 0. (46)

From the triangle inequality and inequalities (35), (36) and (41), one gets

α(δ)‖Vδ,α(δ)‖ ≤ ‖F (vδ)− fδ‖+ ‖F (vδ) + α(δ)vδ − fδ‖+ α(δ)‖vδ − Vδ,α(δ)‖

≤ C2δ
γ + θδ + θδ.

(47)

This inequality implies

lim
δ→0

α(δ)‖Vδ,α(δ)‖ = 0. (48)

The triangle inequality and inequality (12) imply

α‖Vα‖ ≤ α
(

‖Vδ,α − Vα‖+ ‖Vδ,α‖
)

≤ δ + α‖Vδ,α‖.
(49)

From formulas (49) and (48), one gets

lim
δ→0

α(δ)‖Vα(δ)‖ = 0. (50)

It follows from Lemma 2 with fδ = f , i.e., δ = 0, that the function φ0(a) := a‖Va‖ is nonnegative

and strictly increasing on (0,∞). This and relation (50) imply

lim
δ→0

α(δ) = 0. (51)

From the triangle inequality and inequalities (41) and (12) one obtains

‖vδ − y‖ ≤ ‖vδ − Vδ,α(δ)‖+ ‖Vδ,α(δ) − Vα(δ)‖+ ‖Vα(δ) − y‖

≤
θδ

α(δ)
+

δ

α(δ)
+ ‖Vα(δ) − y‖,

(52)

where Vα(δ) solves equation (3) with a = α(δ) and fδ = f .

The conclusion (37) follows from inequalities (46), (51), (52) and Lemma 1. Theorem 7 is

proved. 2
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Remark 5 Inequalities (35) and (36) are used as stopping rules for finding approximations:

α(δ) ≈ a(δ), and v(δ) ≈ Vδ,a(δ).

Remark 6 By the monotonicity of F one gets

‖F (u)− F (v)‖2 ≤ 〈F (u) − F (v), F (u) − F (v) + a(u− v)〉

≤ ‖F (u) − F (v)‖‖F (u) − F (v) + a(u− v)‖, ∀u, v ∈ H, ∀a > 0.

This implies

‖F (u)− F (v)‖ ≤ ‖F (u) − F (v) + a(u− v)‖, ∀u, v ∈ H, a > 0. (53)

Fix δ > 0 and θ > 0. Let C be as in Theorem 5. Choose C1 and C2 such that

C1δ
γ + θδ < Cδγ < C2δ

γ − θδ. (54)

Suppose αi and vi, i = 1, 2, satisfy condition (35) and

‖F (v1)− fδ‖ < C1δ
γ , C2δ

γ < ‖F (v2)− fδ‖. (55)

Let us show that

αlow := α1 < a(δ) < α2 := αup, (56)

where a(δ) satisfies conditions of Theorem 5. Using inequality (53) for vi and Vδ,αi
, i = 1, 2, and

inequality (35), one gets

‖F (vi)− F (Vδ,αi
)‖ ≤ ‖F (vi)− F (Vδ,αi

) + αivi − αiVδ,αi
‖

≤ ‖F (vi) + αivi − fδ‖ ≤ θδ.

(57)

From inequalities (55), (57) and the triangle inequality, one derives:

‖F (Vδ,α1
)− fδ‖ < C1δ

γ + θδ and C2δ
γ − θδ < ‖F (Vδ,α2

)− fδ‖. (58)

Recall that ‖F (Vδ,a(δ)) − fδ‖ = Cδγ . Inequality (56) is obtained from inequalities (54), (58) and

the fact that the function φ(α) = ‖F (Vδ,α)− fδ‖ is strictly increasing (see Lemma 2).

Let fδ, F, C, θ, γ, and δ be as in Theorem 5 and 7, and C1 and C2 satisfy inequality (54). Let us

formulate an algorithm (see Algorithm 1 below) for finding α(δ) ≈ a(δ) and v(δ) ≈ Vδ,a(δ), using

the bisection method and assuming that F is a locally Lipschitz monotone operator and αlow and

αup are known. By Theorem 7, v(δ) can be considered as a stable solution to equation (1).

Algorithm 1: Finding α(δ) ≈ a(δ) and vδ ≈ Vδ,a(δ) given αlow and αup.
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1. Let a :=
αup+αlow

2 and u0 be an initial guess for Vδ,a. Compute un by formula (32) and stop

at nstop, where nstop is the smallest n > 0 for which condition (35) is satisfied. Then go to

step 2.

2. If C2δ
γ < ‖F (unstop)− fδ‖, then set αup := a and go to step 4. Otherwise, go to step 3.

3. If C1δ
γ ≤ ‖F (unstop)− fδ‖, then stop the process and take v(δ) := unstop as a solution to (1).

If ‖F (unstop)− fδ‖ < C1δ
γ , then set αlow := a and go to step 4.

4. Check if ‖a−αlow‖ is less than a desirable small value ǫ > 0. If it is, then take v(δ) := unstop

as a solution to (1). If is is not, then go back to step 1.

Let us formulate algorithms for finding αup and αlow.

Algorithm 2: Finding αup.

1. Let a = α be an initial guess for α(δ) and u0 be an initial guess for vδ. Compute un by

formula (32) with a and stop at nstop, the smallest n > 0 for which condition (35) is satisfied.

Then go to step 2.

2. If condition (36) holds for vδ := unstop , then stop the process and take unstop as a solution to

(1). Otherwise, go to step 3.

3. If C2δ
γ < ‖F (unstop)− fδ‖, then set αup := a. Otherwise, set α := 2a and go back step 1.

Algorithm 3: Finding αlow.

1. Let a = α be an initial guess for α(δ) and u0 be an initial guess for vδ. Compute un by

formula (32) with a and stop at nstop, the smallest n > 0 for which condition (35) is satisfied.

Then go to step 2.

2. If condition (36) holds for vδ := unstop , then stop the process and take unstop as a solution to

(1). Otherwise, go to step 3.

3. If ‖F (unstop)− fδ‖ < C1δ
γ , then set αlow := a. Otherwise, set α := a

2 and go back step 1.

In practice these algorithms are often implemented at the same time to avoid repetition calcu-

lations.

Remark 7 The sequence (‖un − Vδ,a(δ)‖)
∞
n=0, where un is computed by formula (32) and Vδ,a(δ)

is the solution to (3) with a = a(δ), is decreasing. Thus, the sequence un will stay inside a ball

B(0, R) assuming that R > 0 is chosen sufficiently large, so that y, u0 ∈ B(0, R).
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Remark 8 Theorem 7 and the above algorithms are not only useful for solving nonlinear equations

with monotone operators but also for solving linear equations with monotone operators. If one uses

iterative methods to solve equation (29) then, by using Theorem 7, one can stop iterations whenever

inequality (35) holds. By using stopping rule (35) one saves time of computations compared to

solving (29) exactly. If F is a positive matrix then one can solve (29) by conjugate gradient, or

Jacobi, or Gauss-Seidel, or successive over-relaxation methods, with stopping rule (35).

Remark 9 If F is twice Fréchet differentiable, there are more options for solving equations (3)

and (33): they can be solved by gradient-type methods, Newton-type methods, or a combination

of these methods.

References

[1] K. Deimling, Nonlinear functional analysis, Springer Verlag, Berlin, 1985.

[2] J. L. Lions, Quelques methodes de resolution des problemes aux limites non lineaires, Dunod,

Gauthier-Villars, Paris, 1969.

[3] D. Pascali and S. Sburlan, Nonlinear Mappings of Monotone Type, Noordhoff, Leyden, 1978.

[4] A. G. Ramm, Theory and applications of some new classes of integral equations, Springer-

Verlag, New York, 1980.

[5] A. G. Ramm, Stationary regimes in passive nonlinear networks, in the book Nonlinear Elec-

tromagnetics, Ed. P.Uslenghi, Acad. Press, New York, 1980, pp. 263-302.

[6] A. G. Ramm, Iterative solution of linear equations with unbounded operators, J. Math. Anal.

Appl., 1338-1346.

[7] A. G. Ramm, On unbounded operators and applications, Appl. Math. Lett., 21, (2008), 377-

382.

[8] A. G. Ramm, Inverse problems, Springer, New York, 2005.

[9] A. G. Ramm, Dynamical systems method for solving operator equations, Elsevier, Amsterdam,

2007.

55



[10] I. V. Skrypnik,Methods for Analysis of Nonlinear Elliptic Boundary Value Problems, American

Mathematical Society, Providence, RI, 1994.

[11] U. Tautenhahn, On the method of Lavrentiev regularization for nonlinear ill-posed problems,

Inverse Probl., 18, (2002), 191-207.

[12] M. M. Vainberg, Variational methods and method of monotone operators in the theory of

nonlinear equations, Wiley, London, 1973.

56



Chapter 4

Dynamical systems method for
solving non-linear equations with
monotone operators

Published in Math. Comp., 79, (2010), 239–258

57



MATHEMATICS OF COMPUTATION

Volume 00, Number 0, Pages 000–000

S 0025-5718(XX)0000-0

DYNAMICAL SYSTEMS METHOD FOR SOLVING NONLINEAR EQUATIONS

WITH MONOTONE OPERATORS

N. S. HOANG AND A. G. RAMM

Abstract. A version of the Dynamical Systems Method (DSM) for solving ill-posed nonlinear

equations with monotone operators in a Hilbert space is studied in this paper. An a posteriori

stopping rule, based on a discrepancy-type principle is proposed and justified mathematically. The

results of two numerical experiments are presented. They show that the proposed version of DSM

is numerically efficient. The numerical experiments consist of solving nonlinear integral equations.

1. Introduction

In this paper we study a Dynamical Systems Method (DSM) for solving the equation

(1.1) F (u) = f,

where F is a nonlinear twice Fréchet differentiable monotone operator in a real Hilbert space H,

and equation (1.1) is assumed solvable. Monotonicity means that

(1.2) 〈F (u)− F (v), u − v〉 ≥ 0, ∀u, v ∈ H.

Here, 〈·, ·〉 denotes the inner product in H. It is known (see, e.g., [8]), that the set N := {u :

F (u) = f} is closed and convex if F is monotone and continuous. A closed and convex set in a

Hilbert space has a unique minimal-norm element. This element in N we denote y, F (y) = f . We

assume that

(1.3) sup
‖u−u0‖≤R

‖F (j)(u)‖ ≤Mj(u0, R), 0 ≤ j ≤ 2,

where u0 ∈ H is an element of H, R > 0 is arbitrary, and f = F (y) is not known; but fδ, the noisy

data, are known and ‖fδ − f‖ ≤ δ. If F ′(u) is not boundedly invertible, then solving for u given

noisy data fδ is often (but not always) an ill-posed problem. When F is a linear bounded operator
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many methods for a stable solution of (1.1) were proposed (see [4]–[8] and the references therein).

However, when F is nonlinear then the theory is less complete.

The DSM for solving equation (1.1) was extensively studied in [8]–[15]. In [8] the following

version of the DSM for solving equation (1.1) was studied:

(1.4) u̇δ = −
(

F ′(uδ) + a(t)I
)−1(

F (uδ) + a(t)uδ − fδ
)

, uδ(0) = u0.

Here F is a monotone operator, and a(t) > 0 is a continuous function, defined for all t ≥ 0, strictly

monotonically decaying, limt→∞ a(t) = 0. These assumptions on a(t) hold throughout the paper

and are not repeated. Additional assumptions on a(t) will appear later. Convergence of the above

DSM was proved in [8] for any initial value u0 with an a priori choice of stopping time tδ, provided

that a(t) is suitably chosen.

The theory of monotone operators is presented in many books, e.g., in [1], [7], [16]. Most of the

results of the theory of monotone operators, used in this paper, can be found in [8]. In [6] methods

for solving nonlinear equations in a finite-dimensional space are discussed.

In this paper we propose and justify a stopping rule based on a discrepancy principle (DP) for

the DSM (1.4). The main result of this paper is Theorem 3.1 in which a DP is formulated, the

existence of the stopping time tδ is proved, and the convergence of the DSM with the proposed

DP is justified under some natural assumptions apparently for the first time for a wide class of

nonlinear equations with monotone operators.

These results are new from the theoretical point of view and very useful practically. The auxiliary

results in our paper are also new and can be used in other problems of numerical analysis. These

auxiliary results are formulated in Lemmas 2.2–2.4, 2.7, 2.10, 2.11, and in the remarks. In particular,

in Remark 3.3 we emphasize that the trajectory of the solution stays in a ball of a fixed radius R

for all t ≥ 0.

In Section 4 the results of two numerical experiments are presented. In the second experiment we

demonstrate numerically that our method for solving equation (1.1) can be used even for a wider

class of equations than the basic Theorem 3.1 guarantees.

2. Auxiliary results

Let us consider the following equation:

(2.1) F (Vδ,a) + aVδ,a − fδ = 0, a > 0,

where a = const. It is known (see, e.g., [8]) that equation (2.1) with monotone continuous operator

F has a unique solution for any fδ ∈ H.
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Let us recall the following result from [8, p. #112]:

Lemma 2.1. Assume that equation (1.1) is solvable, y is its minimal-norm solution, and assump-

tions (1.2) and (1.3) hold. Then

lim
a→0

‖V0,a − y‖ = 0,

where V0,a solves (2.1) with δ = 0.

Lemma 2.2. If (1.2) holds and F is continuous, then ‖Vδ,a‖ = O( 1
a
) as a→ ∞, and

(2.2) lim
a→∞

‖F (Vδ,a)− fδ‖ = ‖F (0) − fδ‖.

Proof. Rewrite (2.1) as

F (Vδ,a)− F (0) + aVδ,a + F (0)− fδ = 0.

Multiply this equation by Vδ,a, use inequality 〈F (Vδ,a)− F (0), Vδ,a − 0〉 ≥ 0 from (1.2) and get:

a‖Vδ,a‖
2 ≤ 〈aVδ,a + F (Vδ,a)− F (0), Vδ,a〉 = 〈fδ − F (0), Vδ,a〉 ≤ ‖fδ − F (0)‖‖Vδ,a‖.

Therefore, ‖Vδ,a‖ = O( 1
a
). This and the continuity of F imply (2.2). �

Let a = a(t), 0 < a(t) ց 0, and assume a ∈ C1[0,∞). Then the solution Vδ(t) := Vδ,a(t) of (2.1)

is a function of t. From the triangle inequality one gets

‖F (Vδ(0)) − fδ‖ ≥ ‖F (0) − fδ‖ − ‖F (Vδ(0))− F (0)‖.

From Lemma 2.2 it follows that for large a(0) one has

‖F (Vδ(0)) − F (0)‖ ≤M1‖Vδ(0)‖ = O

(

1

a(0)

)

.

Therefore, if ‖F (0)− fδ‖ > Cδ, then ‖F (Vδ(0))− fδ‖ ≥ (C − ǫ)δ, where ǫ > 0 is sufficiently small,

for sufficiently large a(0) > 0.

Below the words decreasing and increasing mean strictly decreasing and strictly increasing.

Lemma 2.3. Assume ‖F (0) − fδ‖ > 0. Let 0 < a(t) ց 0, and let F be monotone. Denote

φ(t) := ‖F (Vδ(t))− fδ‖, ψ(t) := ‖Vδ(t)‖,

where Vδ(t) solves (2.1) with a = a(t). Then φ(t) is decreasing, and ψ(t) is increasing.
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Proof. Since ‖F (0) − fδ‖ > 0, it follows that ψ(t) 6= 0, ∀t ≥ 0. Note that φ(t) = a(t)‖Vδ(t)‖. One

has

0 ≤ 〈F (Vδ(t1))− F (Vδ(t2)), Vδ(t1)− Vδ(t2)〉

= 〈−a(t1)Vδ(t1) + a(t2)Vδ(t2), Vδ(t1)− Vδ(t2)〉

= (a(t1) + a(t2))〈Vδ(t1), Vδ(t2)〉 − a(t1)‖Vδ(t1)‖
2 − a(t2)‖Vδ(t2)‖

2.

(2.3)

Thus,

0 ≤ (a(t1) + a(t2))〈Vδ(t1), Vδ(t2)〉 − a(t1)‖Vδ(t1)‖
2 − a(t2)‖Vδ(t2)‖

2

≤ (a(t1) + a(t2))‖Vδ(t1)‖‖Vδ(t2)‖ − a(t1)‖Vδ(t1)‖
2 − a(t2)‖Vδ(t2)‖

2

= (a(t1)‖Vδ(t1)‖ − a(t2)‖Vδ(t2)‖)(‖Vδ(t2)‖ − ‖Vδ(t1)‖)

= (φ(t1)− φ(t2))(ψ(t2)− ψ(t1)).

(2.4)

If ψ(t2) > ψ(t1), then (2.4) implies φ(t1) ≥ φ(t2), so

a(t1)ψ(t1) ≥ a(t2)ψ(t2) > a(t2)ψ(t1).

Thus, if ψ(t2) > ψ(t1), then a(t2) < a(t1) and, therefore, t2 > t1, because a(t) is decreasing.

Similarly, if ψ(t2) < ψ(t1), then φ(t1) < φ(t2). This implies a(t2) > a(t1), so t2 < t1.

If ψ(t2) = ψ(t1), then (2.3) implies

‖Vδ(t1)‖
2 ≤ 〈Vδ(t1), Vδ(t2)〉 ≤ ‖Vδ(t1)‖‖Vδ(t2)‖ = ‖Vδ(t1)‖

2.

This implies Vδ(t1) = Vδ(t2), and then a(t1) = a(t2). Hence, t1 = t2, because a(t) is decreasing.

Therefore, φ(t) is decreasing and ψ(t) is increasing. �

Lemma 2.4. Suppose that ‖F (0) − fδ‖ > Cδ, C > 1, and a(0) is sufficiently large. Then, there

exists a unique t1 > 0 such that ‖F (Vδ(t1))− fδ‖ = Cδ.

Proof. The uniqueness of t1 follows from Lemma 2.3. We have F (y) = f , and

0 =〈F (Vδ) + aVδ − fδ, F (Vδ)− fδ〉

=‖F (Vδ)− fδ‖
2 + a〈Vδ − y, F (Vδ)− fδ〉+ a〈y, F (Vδ)− fδ〉

=‖F (Vδ)− fδ‖
2 + a〈Vδ − y, F (Vδ)− F (y)〉+ a〈Vδ − y, f − fδ〉

+ a〈y, F (Vδ)− fδ〉

≥‖F (Vδ)− fδ‖
2 + a〈Vδ − y, f − fδ〉+ a〈y, F (Vδ)− fδ〉.
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Here the inequality 〈Vδ − y, F (Vδ)− F (y)〉 ≥ 0 was used. Therefore,

‖F (Vδ)− fδ‖
2 ≤ −a〈Vδ − y, f − fδ〉 − a〈y, F (Vδ)− fδ〉

≤ a‖Vδ − y‖‖f − fδ‖+ a‖y‖‖F (Vδ)− fδ‖

≤ aδ‖Vδ − y‖+ a‖y‖‖F (Vδ)− fδ‖.

(2.5)

On the other hand, we have

0 = 〈F (Vδ)− F (y) + aVδ + f − fδ, Vδ − y〉

= 〈F (Vδ)− F (y), Vδ − y〉+ a‖Vδ − y‖2 + a〈y, Vδ − y〉+ 〈f − fδ, Vδ − y〉

≥ a‖Vδ − y‖2 + a〈y, Vδ − y〉+ 〈f − fδ, Vδ − y〉,

where the inequality 〈Vδ − y, F (Vδ)− F (y)〉 ≥ 0 was used. Therefore,

a‖Vδ − y‖2 ≤ a‖y‖‖Vδ − y‖+ δ‖Vδ − y‖.

This implies

(2.6) a‖Vδ − y‖ ≤ a‖y‖+ δ.

From (2.5) and (2.6), and an elementary inequality ab ≤ ǫa2 + b2

4ǫ , ∀ǫ > 0, one gets

‖F (Vδ)− fδ‖
2 ≤ δ2 + a‖y‖δ + a‖y‖‖F (Vδ)− fδ‖

≤ δ2 + a‖y‖δ + ǫ‖F (Vδ)− fδ‖
2 +

1

4ǫ
a2‖y‖2,

(2.7)

where ǫ > 0 is fixed, independent of t, and can be chosen arbitrarily small. Let t → ∞ and

a = a(t) ց 0. Then (2.7) implies lim supt→∞(1− ǫ)‖F (Vδ)− fδ‖
2 ≤ δ2. This, the continuity of F ,

the continuity of Vδ(t) on [0,∞), and the assumption ‖F (0) − fδ‖ > Cδ, where C > 1, imply that

equation ‖F (Vδ(t))− fδ‖ = Cδ must have a solution t1 > 0. �

Remark 2.5. Let V := Vδ(t)|δ=0, so F (V ) + a(t)V − f = 0. Let y be the minimal-norm solution to

F (u) = f . We claim that

(2.8) ‖Vδ − V ‖ ≤
δ

a
.

Indeed, from (2.1) one gets

F (Vδ)− F (V ) + a(Vδ − V ) = f − fδ.
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Multiply this equality by (Vδ − V ) and use (1.2) to obtain

δ‖Vδ − V ‖ ≥ 〈f − fδ, Vδ − V 〉

= 〈F (Vδ)− F (V ) + a(Vδ − V ), Vδ − V 〉

≥ a‖Vδ − V ‖2.

This implies (2.8).

Similarly, from the equation

F (V ) + aV − F (y) = 0,

one can derive that

(2.9) ‖V ‖ ≤ ‖y‖.

From (2.8) and (2.9), one gets the following estimate:

(2.10) ‖Vδ‖ ≤ ‖V ‖+
δ

a
≤ ‖y‖+

δ

a
.

Let us recall the following lemma, which is basic in our proofs.

Lemma 2.6 ([8], p. 97). Let α(t), β(t), γ(t) be continuous nonnegative functions on [τ0,∞), τ0 ≥ 0

is a fixed number. If there exists a function µ := µ(t),

µ ∈ C1[τ0,∞), µ(t) > 0, lim
t→∞

µ(t) = ∞,

such that

0 ≤ α(t) ≤
µ(t)

2

[

γ −
µ̇(t)

µ(t)

]

, u̇ :=
du

dt
,(2.11)

β(t) ≤
1

2µ(t)

[

γ −
µ̇(t)

µ(t)

]

,(2.12)

µ(τ0)g(τ0) < 1,(2.13)

and g(t) ≥ 0 satisfies the inequality

(2.14) ġ(t) ≤ −γ(t)g(t) + α(t)g2(t) + β(t), t ≥ τ0,

then

(2.15) 0 ≤ g(t) <
1

µ(t)
→ 0, as t→ ∞.

If inequalities (2.11)–(2.13) hold on an interval [τ0, T ), then g(t), the solution to inequality (2.14),

exists on this interval and inequality (2.15) holds on [τ0, T ).
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Lemma 2.7. Suppose M1, c0, and c1 are positive constants and 0 6= y ∈ H. Then there exist λ > 0

and a function a(t) ∈ C1[0,∞), 0 < a(t) ց 0, such that the following conditions hold:

M1

‖y‖
≤ λ,(2.16)

c0

a(t)
≤

λ

2a(t)

[

1−
|ȧ(t)|

a(t)

]

,(2.17)

c1
|ȧ(t)|

a(t)
≤
a(t)

2λ

[

1−
|ȧ(t)|

a(t)

]

,(2.18)

‖F (0) − fδ‖ ≤
a2(0)

λ
.(2.19)

Proof. Take

(2.20) a(t) =
d

(c+ t)b
, 0 < b ≤ 1, c ≥ max

(

2b, 1
)

.

Note that |ȧ| = −ȧ. We have

(2.21)
|ȧ(t)|

a(t)
=

b

c+ t
≤
b

c
≤

1

2
, ∀t ≥ 0.

Hence,

(2.22)
1

2
≤ 1−

|ȧ(t)|

a(t)
, ∀t ≥ 0.

Take

(2.23) λ ≥
M1

‖y‖
.

Then (2.16) is satisfied.

Choose d such that

(2.24) d ≥ max

(

√

c2bλ‖F (0) − fδ‖, 4bλc1

)

.

From equality (2.20) and inequality (2.24) one gets

(2.25)
|ȧ(t)|

a2(t)
=

b

d(c+ t)1−b
≤
b

d
≤

1

4λc1
, ∀t ≥ 0.

This and inequality (2.21) imply inequality (2.18). It follows from inequality (2.24) that

(2.26) ‖F (0)− fδ‖ ≤
d2

c2bλ
=
a2(0)

λ
.

Thus, inequality (2.19) is satisfied.

Choose κ ≥ 1 such that

(2.27) κ > max

(

4c0
λ
, 1

)

.
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Define

(2.28) ν(t) := κa(t), λκ := κλ.

Note that inequalities (2.16), (2.18), (2.19) and (2.21) still hold for a(t) = ν(t) and λ = λκ.

Using the inequalities (2.27) and c ≥ 1 and the definition (2.28), one obtains

(2.29)
c0

ν(t)
≤

λκ

4ν(t)
≤

λκ

2ν(t)

[

1−
|ν̇|

ν

]

.

Thus, one can replace the function a(t) by ν(t) = κa(t) and λ by λ = λκ to satisfy inequalities

(2.16)–(2.19). �

Remark 2.8. In the proof of Lemma 2.7 a(0) and λ can be chosen so that a(0)
λ

is uniformly bounded

as δ → 0 regardless of the rate of growth of the constant M1 = M1(R) from formula (1.3) when

R→ ∞, i.e., regardless of the strength of the nonlinearity F (u).

Indeed, to satisfy (2.23) one can choose λ = M1

‖y‖ . To satisfy (2.24) one can choose

d = max

(

√

c2bλ‖fδ − F (0)‖, 4bλc1

)

≤ max

(

√

c2bλ(‖f − F (0)‖ + 1), 4bλc1

)

,

where we have assumed, without loss of generality, that 0 < δ < 1. With this choice of d and λ,

the ratio a(0)
λ

is bounded uniformly with respect to δ ∈ (0, 1) and does not depend on R.

Indeed, with the above choice one has a(0)
λ

= d

cbλ
≤ c̃(1 +

√
λ−1) ≤ c̃, where c̃ > 0 is a constant

independent of δ, and one can assume that λ ≥ 1 without loss of generality.

This remark is used in Remark 3.3, where we prove that the trajectory of uδ(t), defined by (3.1),

stays in a ball B(u0, R) for all 0 ≤ t ≤ tδ, where the number tδ is defined by formula (3.3) (see

below), and R > 0 is sufficiently large. An upper bound on R is given in Remark 3.3.

Remark 2.9. It is easy to choose u0 ∈ H such that

(2.30) g0 := ‖u0 − Vδ(0)‖ ≤
‖F (0) − fδ‖

a(0)
.

Indeed, if, for example, u0 = 0, then by Lemmas 2.2 and 2.3 one gets

g0 = ‖Vδ(0)‖ =
a(0)‖Vδ(0)‖

a(0)
≤

‖F (0) − fδ‖

a(0)
.

If (2.19) and (2.30) hold, then g0 ≤
a(0)
λ
. Inequality (2.30) also holds if ||u0 − Vδ(0)|| is sufficiently

small.

Lemma 2.10. Let p, b and c be positive constants. Then

(2.31)

(

p−
b

c

)
∫

t

0

eps

(s+ c)b
ds <

ept

(c+ t)b
, ∀c, b > 0, t > 0.
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Proof. One has

d

dt

(

ept

(c+ t)b

)

=
pept

(c+ t)b
−

bept

(c+ t)b+1

≥

(

p−
b

c

)

ept

(c+ t)b
, t ≥ 0.

Therefore,

(

p−
b

c

)
∫

t

0

eps

(s+ c)b
ds ≤

∫

t

0

d

ds

eps

(c+ s)b
ds

≤
ept

(c+ t)b
−

1

cb
≤

ept

(c+ t)b
.

Lemma 2.10 is proved. �

Lemma 2.11. Let a(t) = d

(c+t)b
where d, c, b > 0, c ≥ 6b. One has

(2.32) e−
t
2

∫

t

0
e

s
2 |ȧ(s)|‖Vδ(s)‖ds ≤

1

2
a(t)‖Vδ(t)‖, t ≥ 0.

Proof. Let p = 1
2 in Lemma 2.10. Then

(2.33)

(

1

2
−
b

c

)
∫

t

0

e
s
2

(s+ c)b
ds <

e
t
2

(c+ t)b
, ∀c, b ≥ 0.

Since c ≥ 6b or 3b
c
≤ 1

2 , one has

1

2
−
b

c
≥

2b

c
≥

2b

c+ s
, s ≥ 0.

This implies

(2.34) a(s)

(

1

2
−
b

c

)

=
d

(c+ s)b

(

1

2
−
b

c

)

≥
2db

(c+ s)b+1
= 2|ȧ(s)|, s ≥ 0.

Multiplying (2.34) by e
s
2‖Vδ(s)‖, integrating from 0 to t, using inequality (2.33) and the fact that

‖Vδ(s)‖ is nondecreasing, one gets

e
t
2 a(t)‖Vδ(t)‖ >

∫

t

0
e

s
2 ‖Vδ(t)‖a(s)

(

1

2
−
b

c

)

ds ≥ 2

∫

t

0
e

s
2 |ȧ(s)|‖Vδ(s)‖ds, t ≥ 0.

This implies inequality (2.32). Lemma 2.11 is proved. �
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3. Main result

Denote

A := F ′(uδ(t)), Aa := A+ aI,

where I is the identity operator, and uδ(t) solves the following Cauchy problem:

(3.1) u̇δ = −A−1
a(t)[F (uδ) + a(t)uδ − fδ], uδ(0) = u0.

We assume below that ||F (u0)− fδ|| > C1δ
ζ , where C1 > 1 and ζ ∈ (0, 1] are some constants. We

also assume, without loss of generality, that δ ∈ (0, 1).

Assume that equation F (u) = f has a solution, possibly nonunique, and y is the minimal norm

solution to this equation. Let f be unknown, but fδ be given, ‖fδ − f‖ ≤ δ.

Theorem 3.1. Assume a(t) = d

(c+t)b
, where b ∈ (0, 1], c, d > 0 are constants, c > 6b, and d is

sufficiently large so that conditions (2.17)–(2.19) hold. Assume that F : H → H is a monotone

operator, twice Fréchet differentiable, supu∈B(u0,R) ‖F
(j)(u)‖ ≤ Mj(u0, R), 0 ≤ j ≤ 2, B(u0, R) :=

{u : ‖u− u0‖ ≤ R}, u0 is an element of H, satisfying inequality (2.30) and

(3.2) ‖F (u0) + a(0)u0 − fδ‖ ≤
1

4
a(0)‖Vδ(0)‖,

where Vδ(t) := Vδ,a(t) solves (2.1) with a = a(t). Then the solution uδ(t) to problem (3.1) exists on

an interval [0, Tδ ], limδ→0 Tδ = ∞, and there exists a unique tδ, tδ ∈ (0, Tδ) such that limδ→0 tδ = ∞

and

(3.3) ‖F (uδ(tδ))− fδ‖ = C1δ
ζ , ‖F (uδ(t))− fδ‖ > C1δ

ζ , ∀t ∈ [0, tδ),

where C1 > 1 and 0 < ζ ≤ 1. If ζ ∈ (0, 1) and tδ satisfies (3.3), then

(3.4) lim
δ→0

‖uδ(tδ)− y‖ = 0.

Remark 3.2. One can choose u0 satisfying inequalities (2.30) and (3.2) (see also (3.34) below).

Indeed, if u0 is a sufficiently close approximation to Vδ(0), the solution to equation (2.1), then

inequalities (2.30) and (3.2) are satisfied. Note that inequality (3.2) is a sufficient condition for

(3.35) to hold. In our proof inequality (3.35) is used at t = tδ. The stopping time tδ is often

sufficiently large for the quantity e−
tδ
2 h0 to be small. In this case inequality (3.35) with t = tδ is

satisfied for a wide range of u0. For example, in our numerical experiment in Section 4 the method

converged rapidly when u0 = 0. Condition c > 6b is used in the proof of Lemma 2.11.
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Proof of Theorem 3.1. Denote

(3.5) C :=
C1 + 1

2
.

Let

w := uδ − Vδ, g(t) := ‖w‖.

One has

(3.6) ẇ = −V̇δ −A−1
a(t)

[

F (uδ)− F (Vδ) + a(t)w
]

.

We use Taylor’s formula and get

(3.7) F (uδ)− F (Vδ) + aw = Aaw +K, ‖K‖ ≤
M2

2
‖w‖2,

where K := F (uδ) − F (Vδ) − Aw, and M2 is the constant from the estimate (1.3). Multiplying

(3.6) by w and using (3.7) one gets

(3.8) gġ ≤ −g2 +
M2

2
‖A−1

a(t)‖g
3 + ‖V̇δ‖g.

Let t0 be such that

(3.9)
δ

a(t0)
=

1

C − 1
‖y‖, C > 1.

This t0 exists and is unique since a(t) > 0 monotonically decays to 0 as t→ ∞.

Since a(t) > 0 monotonically decays, one has

(3.10)
δ

a(t)
≤

1

C − 1
‖y‖, 0 ≤ t ≤ t0.

By Lemma 2.4, there exists t1 such that

(3.11) ‖F (Vδ(t1))− fδ‖ = Cδ, F (Vδ(t1)) + a(t1)Vδ(t1)− fδ = 0.

We claim that t1 ∈ [0, t0].

Indeed, from (2.1) and (2.10) one gets

Cδ = a(t1)‖Vδ(t1)‖ ≤ a(t1)

(

‖y‖+
δ

a(t1)

)

= a(t1)‖y‖+ δ, C > 1,

so

δ ≤
a(t1)‖y‖

C − 1
.

Thus,
δ

a(t1)
≤

‖y‖

C − 1
=

δ

a(t0)
.

Since a(t) ց 0, one has t1 ≤ t0.
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Differentiating both sides of (2.1) with respect to t, one obtains

Aa(t)V̇δ = −ȧVδ.

This implies

‖V̇δ‖ ≤ |ȧ|‖A−1
a(t)Vδ‖ ≤

|ȧ|

a
‖Vδ‖ ≤

|ȧ|

a

(

‖y‖+
δ

a

)

≤
|ȧ|

a
‖y‖

(

1 +
1

C − 1

)

, ∀t ≤ t0.

(3.12)

Since g ≥ 0, inequalities (3.8) and (3.12) imply

(3.13) ġ ≤ −g(t) +
c0

a(t)
g2 +

|ȧ|

a(t)
c1, c0 =

M2

2
, c1 = ‖y‖

(

1 +
1

C − 1

)

.

Here we have used the estimate

‖A−1
a ‖ ≤

1

a

and the relations

Aa := F ′(u) + aI, F ′(u) := A ≥ 0.

Inequality (3.13) is of the type (2.14) with

γ(t) = 1, α(t) =
c0

a(t)
, β(t) = c1

|ȧ|

a(t)
.

Let us check assumptions (2.11)–(2.13). Take

µ(t) =
λ

a(t)
,

where λ = const > 0 and satisfies conditions (2.11)–(2.13) in Lemma 2.7. Since u0 satisfies

inequality (2.30), one gets g(0) ≤ a(0)
λ

, by Remark 2.9. This, inequalities (2.11)–(2.13), and Lemma

2.6 yield

(3.14) g(t) <
a(t)

λ
, ∀t ≤ t0, g(t) := ‖uδ(t)− Vδ(t)‖.

Therefore,

‖F (uδ(t))− fδ‖ ≤‖F (uδ(t))− F (Vδ(t))‖ + ‖F (Vδ(t))− fδ‖

≤M1g(t) + ‖F (Vδ(t))− fδ‖

≤
M1a(t)

λ
+ ‖F (Vδ(t))− fδ‖, ∀t ≤ t0.

(3.15)

It is proved in Section 2, Lemma 2.3, that ‖F (Vδ(t))− fδ‖ is decreasing. Since t1 ≤ t0 , one gets

(3.16) ‖F (Vδ(t0))− fδ‖ ≤ ‖F (Vδ(t1))− fδ‖ = Cδ.
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This, inequality (3.15), the inequality M1

λ
≤ ‖y‖ (see (2.23)), the relation (3.9), and the definition

C1 = 2C − 1 (see (3.5)), imply

‖F (uδ(t0))− fδ‖ ≤
M1a(t0)

λ
+Cδ

≤
M1δ(C − 1)

λ‖y‖
+ Cδ ≤ (2C − 1)δ = C1δ.

(3.17)

Thus, if

‖F (uδ(0))− fδ‖ > C1δ
γ , 0 < γ ≤ 1,

then, by the continuity of the function t→ ‖F (uδ(t))− fδ‖ on [0,∞), there exists tδ ∈ (0, t0) such

that

(3.18) ‖F (uδ(tδ))− fδ‖ = C1δ
γ

for any given γ ∈ (0, 1], and any fixed C1 > 1.

Let us prove (3.4).

From (3.15) with t = tδ, and from (2.10), one gets

C1δ
ζ ≤M1

a(tδ)

λ
+ a(tδ)‖Vδ(tδ)‖

≤M1
a(tδ)

λ
+ ‖y‖a(tδ) + δ.

Thus, for sufficiently small δ, one gets

C̃δζ ≤ a(tδ)

(

M1

λ
+ ‖y‖

)

, C̃ > 0,

where C̃ < C1 is a constant. Therefore,

(3.19) lim
δ→0

δ

a(tδ)
≤ lim

δ→0

δ1−ζ

C̃

(

M1

λ
+ ‖y‖

)

= 0, 0 < ζ < 1.

We claim that

(3.20) lim
δ→0

tδ = ∞.

Let us prove (3.20). Using (3.1), one obtains

d

dt

(

F (uδ) + auδ − fδ
)

= Aau̇δ + ȧuδ = −
(

F (uδ) + auδ − fδ
)

+ ȧuδ.

This and (2.1) imply

(3.21)
d

dt

[

F (uδ)− F (Vδ) + a(uδ − Vδ)
]

= −
[

F (uδ)− F (Vδ) + a(uδ − Vδ)
]

+ ȧuδ.

Denote

v := v(t) := F (uδ(t))− F (Vδ(t)) + a(t)(uδ(t)− Vδ(t)), h := h(t) := ‖v‖.
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Multiplying (3.21) by v, one obtains

hḣ = −h2 + 〈v, ȧ(uδ − Vδ)〉+ ȧ〈v, Vδ〉

≤ −h2 + h|ȧ|‖uδ − Vδ‖+ |ȧ|h‖Vδ‖, h ≥ 0.
(3.22)

Thus,

(3.23) ḣ ≤ −h+ |ȧ|‖uδ − Vδ‖+ |ȧ|‖Vδ‖.

Since 〈F (uδ)− F (Vδ), uδ − Vδ〉 ≥ 0, one obtains from the two equations

〈v, uδ − Vδ〉 = 〈F (uδ)− F (Vδ) + a(t)(uδ − Vδ), uδ − Vδ〉

and

〈v, F (uδ)− F (Vδ)〉 = ‖F (uδ)− F (Vδ)‖
2 + a(t)〈uδ − Vδ, F (uδ)− F (Vδ)〉,

the following two inequalities:

(3.24) a‖uδ − Vδ‖
2 ≤ 〈v, uδ − Vδ〉 ≤ ‖uδ − Vδ‖h

and

(3.25) ‖F (uδ)− F (Vδ)‖
2 ≤ 〈v, F (uδ)− F (Vδ)〉 ≤ h‖F (uδ)− F (Vδ)‖.

Inequalities (3.24) and (3.25) imply

(3.26) a‖uδ − Vδ‖ ≤ h, ‖F (uδ)− F (Vδ)‖ ≤ h.

Inequalities (3.23) and (3.26) imply

(3.27) ḣ ≤ −h

(

1−
|ȧ|

a

)

+ |ȧ|‖Vδ‖.

Since 1− |ȧ|
a

≥ 1
2 because c ≥ 2b, inequality (3.27) holds if

(3.28) ḣ ≤ −
1

2
h+ |ȧ|‖Vδ‖.

Inequality (3.28) implies

(3.29) h(t) ≤ h(0)e−
t
2 + e−

t
2

∫

t

0
e

s
2 |ȧ|‖Vδ‖ds.

From (3.29) and (3.26), one gets

(3.30) ‖F (uδ(t))− F (Vδ(t))‖ ≤ h(0)e−
t
2 + e−

t
2

∫

t

0
e

s
2 |ȧ|‖Vδ‖ds.
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Therefore,

‖F (uδ(t))− fδ‖ ≥ ‖F (Vδ(t))− fδ‖ − ‖F (Vδ(t))− F (uδ(t))‖

≥ a(t)‖Vδ(t)‖ − h(0)e−
t
2 − e−

t
2

∫

t

0
e

s
2 |ȧ|‖Vδ‖ds.

(3.31)

From the results in Section 2 (see Lemma 2.11), it follows that there exists an a(t) such that

(3.32)
1

2
a(t)‖Vδ(t)‖ ≥ e−

t
2

∫

t

0
e

s
2 |ȧ|‖Vδ(s)‖ds.

For example, one can choose

(3.33) a(t) =
d

(c+ t)b
, 6b < c,

where d, c, b > 0. Moreover, one can always choose u0 such that

(3.34) h(0) = ‖F (u0) + a(0)u0 − fδ‖ ≤
1

4
a(0)‖Vδ(0)‖,

because the equation F (u0) + a(0)u0 − fδ = 0 is solvable. If (3.34) holds, then

h(0)e−
t
2 ≤

1

4
a(0)‖Vδ(0)‖e

− t
2 , t ≥ 0.

If 2b < c, then (3.33) implies

e−
t
2 a(0) ≤ a(t).

Therefore,

(3.35) e−
t
2h(0) ≤

1

4
a(t)‖Vδ(0)‖ ≤

1

4
a(t)‖Vδ(t)‖, t ≥ 0,

where we have used the inequality ‖Vδ(t)‖ ≤ ‖Vδ(t
′)‖ for t < t′, established in Lemma 2.3 in

Section 2. From (3.18) and (3.31)–(3.35), one gets

C1δ
ζ = ‖F (uδ(tδ))− fδ‖ ≥

1

4
a(tδ)‖Vδ(tδ)‖.

Thus,

lim
δ→0

a(tδ)‖Vδ(tδ)‖ ≤ lim
δ→0

4C1δ
ζ = 0.

Since ‖Vδ(t)‖ increases (see Lemma 2.3), the above formula implies limδ→0 a(tδ) = 0. Since 0 <

a(t) ց 0, it follows that limδ→0 tδ = ∞, i.e., (3.20) holds.

It is now easy to finish the proof of the Theorem 3.1.

From the triangle inequality and inequalities (3.14) and (2.8) one obtains

‖uδ(tδ)− y‖ ≤ ‖uδ(tδ)− Vδ(tδ)‖+ ‖V (tδ)− Vδ(tδ)‖+ ‖V (tδ)− y‖

≤
a(tδ)

λ
+

δ

a(tδ)
+ ‖V (tδ)− y‖.

(3.36)
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Note that V (tδ) = V0,a(tδ) (see equation (2.1)). From (3.19), (3.20), inequality (3.36) and Lemma 2.1,

one obtains (3.4). Theorem 3.1 is proved. �

Remark 3.3. The trajectory uδ(t) remains in the ball B(u0, R) := {u : ‖u−u0‖ < R} for all t ≤ tδ,

where R does not depend on δ as δ → 0. Indeed, estimates (3.14), (2.10) and (3.10) imply

‖uδ(t)− u0‖ ≤ ‖uδ(t)− Vδ(t)‖+ ‖Vδ(t)‖+ ‖u0‖

≤
a(0)

λ
+
C‖y‖

C − 1
+ ‖u0‖ := R, ∀t ≤ tδ.

(3.37)

Here we have used the fact that tδ < t0 (see the proof of Theorem 3.1). Since one can choose

a(t) and λ so that a(0)
λ

is uniformly bounded as δ → 0 and regardless of the growth of M1 (see

Remark 2.8) one concludes that R can be chosen independent of δ and M1.

4. Numerical experiments

4.1. An experiment with an operator defined on H = L2[0, 1]. Let us do a numerical exper-

iment solving nonlinear equation (1.1) with

(4.1) F (u) := B(u) +
(

arctan(u)
)3

:=

∫ 1

0
e−|x−y|u(y)dy +

(

arctan(u)
)3
.

Since the function u→ arctan3 u is increasing on R, one has

(4.2) 〈
(

arctan(u)
)3

−
(

arctan(v)
)3
, u− v〉 ≥ 0, ∀u, v ∈ H.

Moreover,

(4.3) e−|x| =
1

π

∫ ∞

−∞

eiλx

1 + λ2
dλ.

Therefore, 〈B(u− v), u− v〉 ≥ 0, so

(4.4) 〈F (u)− F (v), u − v〉 ≥ 0, ∀u, v ∈ H.

Thus, F is a monotone operator. Note that

〈
(

arctan(u)
)3

−
(

arctan(v)
)3
, u− v〉 = 0 iff u = v a.e.

Therefore, the operator F , defined in (4.1), is injective and equation (1.1), with this F , has at most

one solution.

The Fréchet derivative of F is

(4.5) F ′(u)w =
3
(

arctan(u)
)2

1 + u2
w +

∫ 1

0
e−|x−y|w(y)dy.

If u(x) vanishes on a set of positive Lebesgue measure, then F ′(u) is not boundedly invertible. If

u ∈ C[0, 1] vanishes even at one point x0, then F
′(u) is not boundedly invertible in H.
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In numerical implementation of the DSM, one often discretizes the Cauchy problem (3.1) and

gets a system of ordinary differential equations (ODEs). Then, one can use numerical methods for

solving ODEs to solve the system of ordinary differential equations obtained from discretization.

There are many numerical methods for solving ODEs (see, e.g., [2]).

In practice one does not have to compute uδ(tδ) exactly but can use an approximation to uδ(tδ)

as a stable solution to equation (1.1). To calculate such an approximation, one can use, for example,

the iterative scheme

un+1 = un − (F ′(un) + anI)
−1(F (un) + anun − fδ),

u0 = 0,
(4.6)

and stop iterations at n := nδ such that the following inequality holds:

(4.7) ‖F (unδ
)− fδ‖ < Cδγ , ‖F (un)− fδ‖ ≥ Cδγ , n < nδ, C > 1, γ ∈ (0, 1).

The existence of the stopping time nδ is proved in [3, p. 733] and the choice u0 = 0 is also justified

in this paper. Iterative scheme (4.6) and stopping rule (4.7) are used in the numerical experiments.

We proved in [3, p. 733] that unδ
converges to u∗, a solution of (1.1). Since F is injective as

discussed above, we conclude that unδ
converges to the unique solution of equation (1.1) as δ tends

to 0. The accuracy and stability are the key issues in solving the Cauchy problem. The iterative

scheme (4.6) can be considered formally as the explicit Euler’s method with the stepsize h = 1 (see,

e.g., [2]). There might be other iterative schemes which are more efficient than scheme (4.6), but

this scheme is simple and easy to implement.

Integrals of the form
∫ 1
0 e

−|x−y|h(y)dy in (4.1) and (4.5) are computed by using the trapezoidal

rule. The noisy function used in the test is

fδ(x) = f(x) + κfnoise(x), κ > 0.

The noise level δ and the relative noise level are defined by the formulas

δ = κ‖fnoise‖, δrel :=
δ

‖f‖
.

In the test κ is computed in such a way that the relative noise level δrel equals some desired value,

i.e.,

κ =
δ

‖fnoise‖
=

δrel‖f‖

‖fnoise‖
.

We have used the relative noise level as an input parameter in the test.

In all the figures the x-variable runs through the interval [0, 1], and the graphs represent the

numerical solutions uDSM(x) and the exact solution uexact(x).
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In the test we took h = 1, C = 1.01, and γ = 0.99. The exact solution in the test is

(4.8) ue(x) =







0 if 1
3 ≤ x ≤ 2

3 ,

1 otherwise,

here x ∈ [0, 1], and the right-hand side is f = F (ue). As mentioned above, F ′(u) is not boundedly

invertible in any neighborhood of ue.

It is proved in [3] that one can take an = d

1+n
, and d is sufficiently large. However, in practice, if

we choose d too large, then the method will use too many iterations before reaching the stopping

time nδ in (4.7). This means that the computation time will be large in this case. Since

‖F (Vδ)− fδ‖ = a(t)‖Vδ‖,

and ‖Vδ(tδ)− uδ(tδ)‖ = O(a(tδ)), we have

Cδγ = ‖F (uδ(tδ))− fδ‖ ≤ a(tδ)‖Vδ‖+O(a(tδ)),

and we choose

d = C0δ
γ , C0 > 0.

In the experiments our method works well with C0 ∈ [7, 10]. In numerical experiments, we found

out that the method diverged for smaller C0. In the test we chose an by the formula an := C0
δ0.99

n+1 .

The number of nodal points, used in computing integrals in (4.1) and (4.5), was N = 100. The

accuracy of the solutions obtained in the tests with N = 30 and N = 50 was slightly less accurate

than the one for N = 100.

Numerical results for various values of δrel are presented in Table 3. In this experiment, the

noise function fnoise is a vector with random entries normally distributed, with mean value 0 and

variance 1. Table 3 shows that the iterative scheme yields good numerical results.

Table 3. Results when C0 = 7, N = 100 and u = ue.

δrel 0.02 0.01 0.005 0.003 0.001

Number of iterations 57 57 58 58 59

‖uDSM−uexact‖
‖uexact‖

0.1437 0.1217 0.0829 0.0746 0.0544

Figure 6 presents the numerical results when N = 100 and C0 = 7 with δrel = 0.01 and δrel =

0.005. The numbers of iterations for δ = 0.01 and δ = 0.005 were 57 and 58, respectively.

Figure 7 presents the numerical results when N = 100 and C0 = 7 with δ = 0.003 and δ = 0.001.

In these cases, it took 58 and 59 iterations to get the numerical solutions for δrel = 0.003 and

δrel = 0.001, respectively.
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Figure 6. Plots of solutions obtained by the DSM when N = 100, δrel = 0.01 (left)

and δrel = 0.005 (right).
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Figure 7. Plots of solutions obtained by the DSM when N = 100, δrel = 0.003

(left) and δrel = 0.001 (right).

We also carried out numerical experiments with u(x) ≡ 1, x ∈ [0, 1], as the exact solution. Note

that F ′(u) is boundedly invertible at this exact solution. However, in any arbitrarily small (in L2

norm) neighborhood of this solution, there are infinitely many elements u at which F ′(u) is not

boundedly invertible, because, as we have pointed out earlier, F ′(u) is not boundedly invertible if

u(x) is continuous and vanishes at some point x ∈ [0, 1]. In this case one cannot use the usual

methods like Newton’s method or the Newton-Kantorovich method. Numerical results for this

experiment are presented in Table 4.

From Table 4 one concludes that the method works well in this experiment.
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Table 4. Results when C0 = 4, N = 50 and u(x) ≡ 1, x ∈ [0, 1].

δrel 0.05 0.03 0.02 0.01 0.003 0.001

Number of iterations 28 29 28 29 29 29

‖uDSM−uexact‖
‖uexact‖

0.0770 0.0411 0.0314 0.0146 0.0046 0.0015

4.2. An experiment with an operator defined on a dense subset of H = L2[0, 1]. Our

second numerical experiment with the equation F (u) = f deals with the operator F which is not

defined on all of H = L2[0, 1], but on a dense subset D = C[0, 1] of H:

(4.9) F (u) := B(u) + u3 :=

∫ 1

0
e−|x−y|u(y)dy + u3.

Therefore, the assumptions of Theorem 3.1 are not satisfied. Our goal is to show by this numerical

example, that numerically our method may work for an even wider class of problems than that

covered by Theorem 3.1.

The operator B is compact in H = L2[0, 1]. The operator u 7−→ u3 is defined on a dense subset

D of L2[0, 1], for example, on D := C[0, 1]. If u, v ∈ D, then

(4.10) 〈u3 − v3, u− v〉 =

∫ 1

0
(u3 − v3)(u− v)dx ≥ 0.

This and the inequality 〈B(u− v), u− v〉 ≥ 0, followed from equality (4.3), imply

〈F (u)− F (v), u − v〉 ≥ 0, ∀u, v ∈ D.

Note that the equal sign of inequality (4.10) happens iff u = v a.e. in Lebesgue measure. Thus, F

is injective. Therefore, the element unδ
obtained from the iterative scheme (4.6) and the stopping

rule (4.7) converges to the exact solution ue as δ goes to 0.

Note that D does not contain subsets open in H = L2[0, 1], i.e., it does not contain interior points

of H. This is a reflection of the fact that the operator G(u) = u3 is unbounded on any open subset

of H. For example, in any ball ‖u‖ ≤ C, C = const > 0, where ‖u‖ := ‖u‖L2[0,1], there is an element

u such that ‖u3‖ = ∞. As such an element one can take, for example, u(x) = c1x
−b, 1

3 < b < 1
2 .

Here c1 > 0 is a constant chosen so that ‖u‖ ≤ C. The operator u 7−→ F (u) = G(u) + B(u) is

maximal monotone on DF := {u : u ∈ H, F (u) ∈ H} (see [1, p. #102]), so that equation (2.1) is

uniquely solvable for any fδ ∈ H.

The Fréchet derivative of F is

(4.11) F ′(u)w = 3u2w +

∫ 1

0
e−|x−y|w(y)dy.
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If u(x) vanishes on a set of positive Lebesgue measure, then F ′(u) is obviously not boundedly

invertible. If u ∈ C[0, 1] vanishes even at one point x0, then F
′(u) is not boundedly invertible in

H.

We also use the iterative scheme (4.6) with the stopping rule (4.7).

We use the same exact solution ue as in (4.8). The right-hand side f is computed by f = F (ue).

Note that F ′ is not boundedly invertible in any neighborhood of ue.

In experiments we found that our method works well with C0 ∈ [1, 4]. Indeed, in the test we

chose an by the formula an := C0
δ0.9

n+6 . The number of node points used in computing integrals in

(4.1) and (4.5) was N = 30. In the test, the accuracy of the solutions obtained when N = 30,

N = 50 were slightly less accurate than the one when N = 100.

Numerical results for various values of δrel are presented in Table 5. In this experiment, the

noise function fnoise is a vector with random entries normally distributed of mean 0 and variance

1. Table 5 shows that the iterative scheme yields good numerical results.

Table 5. Results when C0 = 2 and N = 100.

δrel 0.02 0.01 0.005 0.003 0.001

Number of iterations 16 17 17 17 18

‖uDSM−uexact‖
‖uexact‖

0.1387 0.1281 0.0966 0.0784 0.0626

Figure 8 presents the numerical results when fnoise(x) = sin(3πx) for δrel = 0.02 and δrel = 0.01.

The number of iterations when C0 = 2 for δrel = 0.02 and δrel = 0.01 were 16 and 17, respectively.
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Figure 8. Plots of solutions obtained by the DSM with fnoise(x) = sin(3πx) when

N = 100, δrel = 0.02 (left) and δrel = 0.01 (right).
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Figure 9 presents the numerical results when fnoise(x) = sin(3πx) with δrel = 0.003 and δrel =

0.001. We also used C0 = 2. In these cases, it took 17 and 18 iterations to give the numerical

solutions for δrel = 0.003 and δrel = 0.001, respectively.
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Figure 9. Plots of solutions obtained by the DSM with fnoise(x) = sin(3πx) when

N = 100, δrel = 0.003 (left) and δrel = 0.001 (right).

We have included the results of the numerical experiments with u(x) ≡ 1, x ∈ [0, 1], as the exact

solution. The operator F ′(u) is boundedly invertible in L2([0, 1]) at this exact solution. However,

in any arbitrarily small L2-neighborhood of this solution, there are infinitely many elements u at

which F ′(u) is not boundedly invertible as was mentioned above. Therefore, even in this case

one cannot use the usual methods such as Newton’s method or the Newton-Kantorovich method.

Numerical results for this experiment are presented in Table 6.

Table 6. Results when C0 = 1, N = 30 and u(x) = 1, x ∈ [0, 1].

δrel 0.05 0.03 0.02 0.01 0.003 0.001

Number of iterations 7 8 8 9 10 10

‖uDSM−uexact‖
‖uexact‖

0.0436 0.0245 0.0172 0.0092 0.0026 0.0009

From the numerical experiments we can conclude that the method works well in this experiment.

Note that the function F used in this experiment is not defined on the whole space H = L2[0, 1]

but defined on a dense subset D = C[0, 1] of H.
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Abstract.

An iterative scheme for solving ill-posed nonlinear operator equations with monotone operators is introduced

and studied in this paper. A discrete version of the Dynamical Systems Method (DSM) algorithm for stable

solution of ill-posed operator equations with monotone operators is proposed and its convergence is proved.

A discrepancy principle is proposed and justified. A priori and a posteriori stopping rules for the iterative

scheme are formulated and justified.

AMS subject classification (2000): 47J05, 47J06, 47J35, 65R30.

Key words: Dynamical systems method (DSM), nonlinear operator equations, monotone operators, dis-

crepancy principle..

1 Introduction

In this paper we study a discrete version of the Dynamical Systems Method (DSM) for solving

the equation

(1.1) F (u) = f,

where F is a nonlinear twice Fréchet differentiable monotone operator in a real Hilbert space H,

and equation (1.1) is assumed solvable. Monotonicity is understood in the following sense:

(1.2) 〈F (u)− F (v), u − v〉 ≥ 0, ∀u, v ∈ H.

Here 〈u, v〉 denotes the inner product in H. It is known (see, e.g., [6]), that the set N := {u :

F (u) = f} is closed and convex if F is monotone and continuous. A closed and convex set in a

Hilbert space has a unique minimal-norm element. This element in N we denote by y, F (y) = f .

We assume that

(1.3) sup
‖u−u0‖≤R

‖F (j)(u)‖ ≤ Mj = Mj(u0, R), 0 ≤ j ≤ 2,
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where F (j)(u) is the j−th Fréchet derivative of F at the point u ∈ H, u0 ∈ H is an element of H,

R > 0 is arbitrary, and f = F (y) is not known but fδ, the noisy data, are known and ‖fδ − f‖ ≤ δ.

If F ′(u) is not boundedly invertible then solving for u given noisy data fδ is often (but not always)

an ill-posed problem.

Our goal is to develop an iterative process discrepancy principle type for a stable solution of

equation (1.1), given noisy data fδ, ‖f − fδ‖ ≤ δ. In [6] a general approach to construction of

convergent iterative processes for solving (1.1) on the basis of the DSM is developed. Some results

on the DSM and its applications one finds in [2], [6]–[13]. In [3]–[6] and references therein methods

for solving ill-posed problems are discussed.

Although the DSM is presented in detail in the monograph [6], we briefly give its main idea for

convenience of the reader. The idea of solving equation (1.1) by a version of the DSM consists of

finding a nonlinear map Φ(t, u), such that:

a) The Cauchy problem:

u̇(t) = Φ(t, u), u(0) = u0,

has a unique global solution,

b) There exists the limit:

lim
t→∞

u(t) := u(∞),

and this limit solves (1.1):

c)

F (u(∞)) = f.

Several versions of DSM were proposed and justified mathematically in [6]–[12].

In this paper the following iterative scheme for stable solution to (1.1) is investigated:

un+1 = un −A−1
n [F (un) + anun − fδ], An := F ′(un) + anI, u0 = u0.

For this iterative scheme we formulate and justify an a posteriori stopping rule based on a discrep-

ancy principle:

‖F (unδ
)− fδ‖ ≤ C1δ

γ , C1δ
γ < ‖F (un)− fδ‖, ∀n < nδ,

where C1 > 1, 0 < γ ≤ 1. The existence of nδ and the convergence of unδ
to a solution of equation

(1.1) are justified provided that u0 and an are suitably chosen (see Theorem 2.6).

The novel points in this paper are formulated in Lemmas 2.1, 2.3, 2.4, 2.5, and in Theorem 2.6.

The ideas of the proofs of these results are new and these results have no intersection with the results

in the published literature and with the results in the papers, mentioned in the references. The new

discrepancy principle, stated in Theorem 2.6 and justified in the proof of this main Theorem may
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look similar to the well-known Morozov’s discrepancy principle (with γ = 1) for linear equations,

but in fact it is a completely different principle both in its proof and in its numerical application.

Its proof is completely different from the proof of Morozov’s principle because we do not use

variational regularization, and our problem is fully nonlinear in the sense that no restriction on the

global growth of the nonlinearity are made. The essential practical difference of our discrepancy

principle from Morozov’s principle consists of the following: in Morozov’s principle one has to solve

a nonlinear equation for the regularization parameter, while in our principle the ”stopping rule”,

that is, the choice of nδ is made automatically. Our results are new not only for nonlinear equations

but for linear equations as well. Note that solving the nonlinear equation for the regularization

parameter in Morozov’s principle is by itself a non-trivial and time consuming task.

If γ = 1, then, in general, one cannot prove convergence to the minimal-norm solution y even for

linear equations Au = f regularized by the method (A+ a)u = f , where A ≥ 0 is a linear operator

in H and a > 0 is the regularization parameter (see [5, p. 29]).

2 Auxiliary and main results

2.1 Auxiliary results

Let us consider the following equation:

(2.1) F (Ṽa,δ) + aṼa,δ − fδ = 0, a > 0.

It is known (see, e.g., [1] and [6]) that equation (2.1) with monotone continuous operator F has a

unique solution for any fixed a > 0 and fδ ∈ H.

Lemma 2.1. If (1.2) holds and F is continuous, then ‖Ṽa,δ‖ = O( 1
a
) as a → ∞, and

(2.2) lim
a→∞

‖F (Ṽa,δ)− fδ‖ = ‖F (0) − fδ‖.

Proof. Rewrite (2.1) as

F (Ṽa,δ)− F (0) + aṼa,δ + F (0)− fδ = 0.

Multiply this equation by Ṽa,δ, use the inequality 〈F (Ṽa,δ)−F (0), Ṽa,δ − 0〉 ≥ 0, which follows from

(1.2), and get:

a‖Ṽa,δ‖
2 ≤ 〈aṼa,δ + F (Ṽa,δ)− F (0), Ṽa,δ〉 = 〈fδ − F (0), Ṽa,δ〉 ≤ ‖fδ − F (0)‖‖Ṽa,δ‖.

Therefore, ‖Ṽa,δ‖ = O( 1
a
). This and the continuity of F imply (2.2).

Let us recall the following result (see Lemma 6.1.7 [6, p. 112]):

84



Lemma 2.2. Assume that equation (1.1) is solvable. Let y be its minimal-norm solution. Assume

that conditions (1.2) and (1.3) hold. Then

lim
a→0

‖Ṽa − y‖ = 0,

where Ṽa := Ṽa,0 which solves (2.1) with δ = 0.

Let us consider the following equation

(2.3) F (Vn,δ) + anVn,δ − fδ = 0, an > 0,

and denote Vn := Vn,δ when δ 6= 0. From the triangle inequality one gets:

‖F (V0)− fδ‖ ≥ ‖F (0) − fδ‖ − ‖F (V0)− F (0)‖.

From the inequality ‖F (V0)−F (0)‖ ≤ M1‖V0‖ and Lemma 2.1 it follows that for large a0 one has:

‖F (V0)− F (0)‖ ≤ M1‖V0‖ = O

(

1

a0

)

,

where V0 = Ṽa0,δ. Therefore, if ‖F (0) − fδ‖ > Cδ, then ‖F (V0) − fδ‖ ≥ (C − ǫ)δ, where ǫ > 0 is

arbitrarily small for sufficiently large a0 > 0.

Lemma 2.3. Suppose that ‖F (0) − fδ‖ > Cδ, C > 1. Assume that 0 < (an)
∞
n=0 ց 0, and a0 is

sufficiently large. Then, there exists a unique nδ > 0, such that

(2.4) ‖F (Vnδ
)− fδ‖ ≤ Cδ < ‖F (Vn)− fδ‖, ∀n < nδ.

Proof. We have F (y) = f , and

0 =〈F (Vn) + anVn − fδ, F (Vn)− fδ〉

=‖F (Vn)− fδ‖
2 + an〈Vn − y, F (Vn)− fδ〉+ an〈y, F (Vn)− fδ〉

=‖F (Vn)− fδ‖
2 + an〈Vn − y, F (Vn)− F (y)〉+ an〈Vn − y, f − fδ〉

+ an〈y, F (Vn)− fδ〉

≥‖F (Vn)− fδ‖
2 + an〈Vn − y, f − fδ〉+ an〈y, F (Vn)− fδ〉.

Here the inequality 〈Vn − y, F (Vn)− F (y)〉 ≥ 0 was used. Therefore

‖F (Vn)− fδ‖
2 ≤ −an〈Vn − y, f − fδ〉 − an〈y, F (Vn)− fδ〉

≤ an‖Vn − y‖‖f − fδ‖+ an‖y‖‖F (Vn)− fδ‖

≤ anδ‖Vn − y‖+ an‖y‖‖F (Vn)− fδ‖.

(2.5)
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On the other hand, one has:

0 = 〈F (Vn)− F (y) + anVn + f − fδ, Vn − y〉

= 〈F (Vn)− F (y), Vn − y〉+ an‖Vn − y‖2 + an〈y, Vn − y〉+ 〈f − fδ, Vn − y〉

≥ an‖Vn − y‖2 + an〈y, Vn − y〉+ 〈f − fδ, Vn − y〉,

where the inequality 〈Vn − y, F (Vn)− F (y)〉 ≥ 0 was used. Therefore,

an‖Vn − y‖2 ≤ an‖y‖‖Vn − y‖+ δ‖Vn − y‖.

This implies

(2.6) an‖Vn − y‖ ≤ an‖y‖+ δ.

From (2.5) and (2.6), and an elementary inequality ab ≤ ǫa2 + b2

4ǫ , ∀ǫ > 0, one gets:

‖F (Vn)− fδ‖
2 ≤ δ2 + an‖y‖δ + an‖y‖‖F (Vn)− fδ‖

≤ δ2 + an‖y‖δ + ǫ‖F (Vn)− fδ‖
2 +

1

4ǫ
a2n‖y‖

2,

(2.7)

where ǫ > 0 is fixed, independent of n, and can be chosen arbitrary small. Let n → ∞ so an ց 0.

Then (2.7) implies lim supn→∞(1−ǫ)‖F (Vn)−fδ‖
2 ≤ δ2, ∀ ǫ > 0. This implies lim supn→∞ ‖F (Vn)−

fδ‖ ≤ δ. This, the assumption ‖F (0) − fδ‖ > Cδ, and the fact that ‖F (Vn)− fδ‖ is nonincreasing

(see Lemma 2.4), imply that there exists a unique nδ > 0 such that (2.4) holds. Lemma 2.3 is

proved.

Remark 2.1. Let V0,n := Vδ,n|δ=0. Then F (V0,n) + anV0,n − f = 0. Note that we have

(2.8) ‖Vδ,n − V0,n‖ ≤
δ

an
.

Indeed, from (2.1) one gets

F (Vδ,n)− F (V0,n) + an(Vδ,n − V0,n) = f − fδ.

Multiply this equality with (Vδ,n − V0,n) and use (1.2) to get:

δ‖Vδ,n − V0,n‖ ≥ 〈f − fδ, Vδ,n − V0,n〉

= 〈F (Vδ, n)− F (V0,n) + an(Vδ,n − V0,n), Vδ,n − V0,n〉

≥ an‖Vδ,n − V0,n‖
2.

This implies (2.8). Similarly, from the equation

F (V0,n) + anV0,n − F (y) = 0,
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one can derive that

(2.9) ‖V0,n‖ ≤ ‖y‖.

Similar arguments one can find in [6].

From (2.8) and (2.9), one gets the following estimate:

(2.10) ‖Vn‖ ≤ ‖V0,n‖+
δ

an
≤ ‖y‖+

δ

an
, Vn := Vδ,n.

Lemma 2.4. Assume ‖F (0) − fδ‖ > 0. Let 0 < an ց 0, and F be monotone. Denote

hn := ‖F (Vn)− fδ‖, kn := ‖Vn‖, n = 0, 1, ...,

where Vn solves (2.3). Then hn is decreasing, and kn is increasing.

Proof. Since ‖F (0)− fδ‖ > 0, it follows that kn 6= 0, ∀n ≥ 0. Note that hn = an‖Vn‖. One has

0 ≤ 〈F (Vn)− F (Vm), Vn − Vm〉

= 〈−anVn + amVm, Vn − Vm〉

= (an + am)〈Vn, Vm〉 − an‖Vn‖
2 − am‖Vm‖2.

(2.11)

Thus,

0 ≤ (an + am)〈Vn, Vm〉 − an‖Vn‖
2 − am‖Vm‖2

≤ (an + am)‖Vn‖‖Vm‖ − an‖Vn‖
2 − am‖Vm‖2

= (an‖Vn‖ − am‖Vm‖)(‖Vm‖ − ‖Vn‖)

= (hn − hm)(km − kn).

(2.12)

If km > kn then (2.12) implies hn ≥ hm, so

ankn ≥ amkm > amkn.

Thus, if km > kn then am < an and, therefore, m > n, because an is decreasing.

Similarly, if km < kn then hn ≤ hm. This implies am > an, so m < n.

If km = kn then (2.11) implies

‖Vm‖2 ≤ 〈Vm, Vn〉 ≤ ‖Vm‖‖Vn‖ = ‖Vm‖2.

This implies Vm = Vn, and then an = am. Hence, m = n, because an is decreasing.

Therefore hn is decreasing and kn is increasing. Lemma 2.4 is proved.
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Remark 2.2. From Lemma 2.1 and Lemma 2.4 one concludes that

an‖Vn‖ = ‖F (Vn)− fδ‖ ≤ ‖F (0) − fδ‖, ∀n ≥ 0.

Lemma 2.5. Suppose M1, c0, and c1 are positive constants and 0 6= y ∈ H. Then there exist

λ > 0 and a sequence 0 < (an)
∞
n=0 ց 0 such that the following conditions hold

an ≤ 2an+1,(2.13)

‖fδ − F (0)‖ ≤
a20
λ
,(2.14)

M1

λ
≤ ‖y‖,(2.15)

an − an+1

a2
n+1

≤
1

2c1λ
,(2.16)

c0
an

λ2
+

an − an+1

an+1
c1 ≤

an+1

λ
.(2.17)

Proof. Let us show that if 0 < a0 is sufficiently large then the following sequence

(2.18) an =
a0

1 + n
,

satisfy conditions (2.13)–(2.17). One has

an

an+1
=

n+ 2

n+ 1
≤ 2, ∀n ≥ 0.

Thus, inequality (2.13) is obtained.

Choose

(2.19) λ ≥
M1

‖y‖
.

Then inequality (2.15) is satisfied.

Inequality (2.14) is obtained if a0 is sufficiently large. Indeed, (2.14) holds if

(2.20) a0 ≥
√

λ‖fδ − F (0)‖.

Let us check inequality (2.16). One has

an − an+1

a2
n+1

=

(

a0

1 + n
−

a0

2 + n

)

(n+ 2)2

a20
=

n+ 2

a0(n+ 1)
≤

2

a0
, n ≥ 0.

Thus, (2.16) holds if

(2.21)
2

a0
≤

1

2c1λ
,
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i.e., if a0 is sufficiently large.

Let us verify inequality (2.17). Assume that (an)
∞
n=0 and λ satisfy (2.13)–(2.16) and (2.18).

Choose κ ≥ 1 such that

(2.22)
2c0
κλ

≤
1

2
.

Consider the sequence (bn)
∞
n=0 := (κan)

∞
n=0 and let λκ := κλ. Using inequalities (2.13), (2.16) and

(2.22), one gets

c0
bn

λ2
κ

+
bn − bn+1

bn+1
c1 =

2c0
κλ

an

2λ
+

an − an+1

an+1
c1

≤
1

2

an+1

λ
+

an+1

2λ
=

an+1

λ
=

bn+1

λκ

.

Thus, inequality (2.17) holds for an replaced by bn = κan and λ replaced by λκ = κλ, where

κ ≥ max(1, 4c0
λ
) (see (2.22)). Inequalities (2.13)–(2.16) hold as well under this transformation.

Thus, the choices an = a0κ

n+1 and λ := κM1

‖y‖ , κ ≥ max(1, 4c0‖y‖
M1

), satisfy all the conditions of

Lemma 2.5.

Remark 2.3. Using similar arguments one can show that the choices λ > 0, an = d0

(n+1)b
, d0 ≥ 1,

0 < b ≤ 1, satisfy all conditions of Lemma 2.5 provided that d0 is sufficiently large and λ is chosen

so that inequality (2.19) holds.

Remark 2.4. In the proof of Lemma 2.5 a0 and λ can be chosen so that a0
λ

is uniformly bounded

as δ → 0 regardless of the rate of growth of the constant M1 = M1(R) from formula (1.3) when

R → ∞, i.e., regardless of the strength of the nonlinearity F (u).

Indeed, to satisfy (2.19) one can choose λ = M1

‖y‖ . To satisfy (2.20) and (2.21) one can choose

a0 = max

(

√

λ‖fδ − F (0)‖, 4c1λ

)

≤ max

(

√

λ(‖f − F (0)‖ + 1), 4c1λ

)

,

where we have assumed without loss of generality that 0 < δ < 1. With this choice of a0 and λ,

the ratio a0
λ

is bounded uniformly with respect to δ ∈ (0, 1) and does not depend on R.

Indeed, with the above choice one has a0
λ

≤ c(1+
√
λ−1) ≤ c, where c > 0 is a constant independent

of δ, and one can assume that λ ≥ 1 without loss of generality.

This Remark is used in the proof of main result in Section 2.2. Specifically, it will be used to

prove that an iterative process (2.24) generates a sequence which stays in a ball B(u0, R) for all

n ≤ n0+1, where the number n0 is defined by formula (2.33) (see below), and R > 0 is sufficiently

large. An upper bound on R is given in the proof of Theorem 2.6, below formula (2.46).

Remark 2.5. It is easy to choose u0 ∈ H such that

(2.23) g0 := ‖u0 − V0‖ ≤
‖F (0) − fδ‖

a0
.
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Indeed, if, for example, u0 = 0, then by Remark 2.2 one gets

g0 = ‖V0‖ =
a0‖V0‖

a0
≤

‖F (0) − fδ‖

a0
.

If (2.14) and (2.23) hold then g0 ≤
a0
λ
.

2.2 Main result

Recall that Vn := Vn,δ, and

F (Vn,δ) + anVn,δ − fδ = 0.

Consider the following iterative scheme:

un+1 = un −A−1
n [F (un) + anun − fδ], An := F ′(un) + anI, u0 = u0,(2.24)

where u0 is chosen so that inequality (2.23) holds. Note that F ′(un) ≥ 0 since F is monotone.

Thus, ‖A−1
n ‖ ≤ 1

an
.

Let an and λ satisfy conditions (2.13)–(2.17). Assume that equation F (u) = f has a solution

y ∈ B(u0, R), possibly nonunique, and y is the minimal-norm solution to this equation. Let f be

unknown but fδ be given, and ‖fδ − f‖ ≤ δ. We have the following result:

Theorem 2.6. Assume an = d0

(d+n)b
where d ≥ 1, 0 < b ≤ 1, and d0 is sufficiently large so that

conditions (2.13)–(2.17) hold. Let un be defined by (2.24). Assume that u0 is chosen so that (2.23)

holds and ‖F (u0) − fδ‖ > C1δ
γ > δ. Then there exists a unique nδ, depending on C1 and γ (see

below), such that

(2.25) ‖F (unδ
)− fδ‖ ≤ C1δ

γ , C1δ
γ < ‖F (un)− fδ‖, ∀n < nδ,

where C1 > 1, 0 < γ ≤ 1.

Let 0 < (δm)∞m=1 be a sequence such that δm → 0. If N is a cluster point of the sequence nδm

satisfying (2.25), then

(2.26) lim
m→∞

unδm
= u∗,

where u∗ is a solution to the equation F (u) = f . If

(2.27) lim
m→∞

nδm = ∞,

where γ ∈ (0, 1), then

(2.28) lim
m→∞

‖unδm
− y‖ = 0.
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Proof. Denote

(2.29) C :=
C1 + 1

2
.

Let

zn := un − Vn, gn := ‖zn‖.

We use Taylor’s formula and get:

(2.30) F (un)− F (Vn) + anzn = Aanzn +Kn, ‖Kn‖ ≤
M2

2
‖zn‖

2,

where Kn := F (un)−F (Vn)−F ′(un)zn and M2 is the constant from (1.3). From (2.24) and (2.30)

one obtains

(2.31) zn+1 = zn − zn −A−1
n K(zn)− (Vn+1 − Vn).

From (2.31), (2.30), and the estimate ‖A−1
n ‖ ≤ 1

an
, one gets

(2.32) gn+1 ≤
M2g

2
n

2an
+ ‖Vn+1 − Vn‖.

Since 0 < an ց 0, for any fixed δ > 0 there exists n0 such that

(2.33)
δ

an0+1
>

1

C − 1
‖y‖ ≥

δ

an0

, C > 1.

By (2.13), one has an
an+1

≤ 2, ∀n ≥ 0. This and (2.33) imply

(2.34)
2

C − 1
‖y‖ ≥

2δ

an0

>
δ

an0+1
>

1

C − 1
‖y‖ ≥

δ

an0

, C > 1.

Thus,

(2.35)
2

C − 1
‖y‖ >

δ

an
, ∀n ≤ n0 + 1.

The number n0, satisfying (2.35), exists and is unique since an > 0 monotonically decays to 0 as

n → ∞. By Lemma 2.3, there exists a number n1 such that

(2.36) ‖F (Vn1+1)− fδ‖ ≤ Cδ < ‖F (Vn1
)− fδ‖,

where Vn solves the equation F (Vn) + anVn − fδ = 0. We claim that n1 ∈ [0, n0]. Indeed, one has

‖F (Vn1
)− fδ‖ = an1

‖Vn1
‖, and ‖Vn1

‖ ≤ ‖y‖+ δ

an1

(cf. (2.10)), so

(2.37) Cδ < an1
‖Vn1

‖ ≤ an1

(

‖y‖+
δ

an1

)

= an1
‖y‖+ δ, C > 1.

Therefore,

(2.38) δ <
an1

‖y‖

C − 1
.
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Thus, by (2.34),

(2.39)
δ

an1

<
‖y‖

C − 1
<

δ

an0+1
.

Here the last inequality is a consequence of (2.34). Since an decreases monotonically, inequality

(2.39) implies n1 ≤ n0. One has

an+1‖Vn − Vn+1‖
2 = 〈(an+1 − an)Vn − F (Vn) + F (Vn+1), Vn − Vn+1〉

≤ 〈(an+1 − an)Vn, Vn − Vn+1〉

≤ (an − an+1)‖Vn‖‖Vn − Vn+1‖.

(2.40)

By (2.10), ‖Vn‖ ≤ ‖y‖+ δ

an
, and, by (2.35), δ

an
≤ 2‖y‖

C−1 for all n ≤ n0 + 1. Therefore,

(2.41) ‖Vn‖ ≤ ‖y‖

(

1 +
2

C − 1

)

, ∀n ≤ n0 + 1,

and, by (2.40),

(2.42) ‖Vn − Vn+1‖ ≤
an − an+1

an+1
‖Vn‖ ≤

an − an+1

an+1
‖y‖

(

1 +
2

C − 1

)

, ∀n ≤ n0 + 1.

Inequalities (2.32) and (2.42) imply

(2.43) gn+1 ≤
c0

an
g2n +

an − an+1

an+1
c1, c0 =

M2

2
, c1 = ‖y‖

(

1 +
2

C − 1

)

,

for all n ≤ n0 + 1.

By Lemma 2.5 and Remark 2.3, the sequence (an)
∞
n=1, satisfies conditions (2.13)–(2.17), provided

that d0 is sufficiently large and λ > 0 is chosen so that (2.19) holds. Let us show by induction that

(2.44) gn <
an

λ
, 0 ≤ n ≤ n0 + 1.

Inequality (2.44) holds for n = 0 by Remark 2.5. Suppose (2.44) holds for some n ≥ 0. From

(2.43), (2.44) and (2.17), one gets

gn+1 ≤
c0

an

(

an

λ

)2

+
an − an+1

an+1
c1

=
c0an

λ2
+

an − an+1

an+1
c1

≤
an+1

λ
.

(2.45)

Thus, by induction, inequality (2.44) holds for all n in the region 0 ≤ n ≤ n0 + 1.

From Remark 2.1 one has ‖Vn‖ ≤ ‖y‖+ δ

an
. This and the triangle inequality imply

(2.46) ‖u0 − un‖ ≤ ‖u0‖+ ‖zn‖+ ‖Vn‖ ≤ ‖u0‖+ ‖zn‖+ ‖y‖+
δ

an
.
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Inequalities (2.41), (2.44), and (2.46) guarantee that the sequence un, generated by the iterative

process (2.24), remains in the ball B(u0, R) for all n ≤ n0 + 1, where R ≤ a0
λ
+ ‖u0‖ + ‖y‖ + δ

an
.

This inequality and the estimate (2.35) imply that the sequence un, n ≤ n0 + 1, stays in the ball

B(u0, R), where

R ≤
a0

λ
+ ‖u0‖+ ‖y‖+ ‖y‖

C + 1

C − 1
.

By Remark 2.4, one can choose a0 and λ so that a0
λ

is uniformly bounded as δ → 0 even if

M1(R) → ∞ as R → ∞ at an arbitrary fast rate. Thus, the sequence un stays in the ball B(u0, R)

for n ≤ n0 + 1 when δ → 0. An upper bound on R is given above. It does not depend on δ as

δ → 0.

One has:

‖F (un)− fδ‖ ≤‖F (un)− F (Vn)‖+ ‖F (Vn)− fδ‖

≤M1gn + ‖F (Vn)− fδ‖

≤
M1an

λ
+ ‖F (Vn)− fδ‖, ∀n ≤ n0 + 1,

(2.47)

where (2.44) was used and M1 is the constant from (1.3). Since ‖F (Vn)− fδ‖ is nonincreasing, by

Lemma 2.4, and n1 ≤ n0, one gets

(2.48) ‖F (Vn0+1)− fδ‖ ≤ ‖F (Vn1+1)− fδ‖ ≤ Cδ.

From (2.15), (2.47), (2.48), the relation (2.33), and the definition C1 = 2C − 1 (see (2.29)), one

concludes that

‖F (un0+1)− fδ‖ ≤
M1an0+1

λ
+ Cδ

≤
M1δ(C − 1)

λ‖y‖
+Cδ ≤ (2C − 1)δ = C1δ.

(2.49)

Thus, if

‖F (u0)− fδ‖ > C1δ
γ , 0 < γ ≤ 1,

then one concludes from (2.49) that there exists nδ, 0 < nδ ≤ n0 + 1, such that

(2.50) ‖F (unδ
)− fδ‖ ≤ C1δ

γ < ‖F (un)− fδ‖, 0 ≤ n < nδ,

for any given γ ∈ (0, 1], and any fixed C1 > 1.

Let us prove (2.26). If n > 0 is fixed, then uδ,n is a continuous function of fδ. Denote

(2.51) ũN = lim
δ→0

uδ,N ,

where N < ∞ is a cluster point of nδm , so that there exists a subsequence of nδm , which we denote

by nm, such that

lim
m→∞

nm = N.
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From (2.51) and the continuity of F , one obtains:

‖F (ũN )− f‖ = lim
m→∞

‖F (unδm
)− fδm‖ ≤ lim

m→∞
C1δ

γ
m = 0.

Thus, ũN is a solution to the equation F (u) = f , and (2.26) is proved.

Let us prove (2.28) assuming that (2.27) holds. From (2.25) and (2.47) with n = nδ − 1, and

from (2.50), one gets

C1δ
γ ≤ M1

anδ−1

λ
+ anδ−1‖Vnδ−1‖ ≤ M1

anδ−1

λ
+ ‖y‖anδ−1 + δ.

If 0 < δ < 1 and δ is sufficiently small, then

C̃δγ ≤ anδ−1

(

M1

λ
+ ‖y‖

)

, C̃ > 0,

where C̃ is a constant. Therefore, by (2.13),

(2.52) lim
δ→0

δ

2anδ

≤ lim
δ→0

δ

anδ−1
≤ lim

δ→0

δ1−γ

C̃

(

M1

λ
+ ‖y‖

)

= 0, 0 < γ < 1.

In particular, for δ = δm, one gets

(2.53) lim
δm→0

δm

anδm

= 0.

From the triangle inequality, inequalities (2.8) and (2.44), one obtains

‖unδm
− y‖ ≤ ‖unδm

− Vnδm
‖+ ‖Vnδm

− Vnδm ,0‖+ ‖Vnδm ,0 − y‖

≤
anδm

λ
+

δm

anδm

+ ‖Vnδm ,0 − y‖.
(2.54)

Recall that Vn,0 = Ṽan . From (2.27), (2.53), inequality (2.54) and Lemma 2.2, one obtains (2.28).

Theorem 2.6 is proved.

Remark 2.6. It is practically convenient to choose u0 = 0. In this case inequality (2.23) holds

and we assume that ‖F (0) − fδ‖ > C1δ
γ > δ.

Remark 2.7. It follows from inequality (2.54) that the following rule:

(2.55) anδ
= O(δη), 0 < η < 1,

can be used as an a priori choice of stopping rule for nδ. Indeed, if nδ is chosen as in equation

(2.55) then, by inequality (2.54) with nδm = nδ, one gets

(2.56) lim
δ→0

‖unδ
− y‖ = 0.
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3 Numerical experiments

Let us present a numerical experiment solving nonlinear integral equation (1.1) with

(3.1) F (u) := B(u) + u2 arctan(u) :=

∫ 1

0
e−|x−y|u(y)dy + u2 arctan(u).

The operator B is compact in H = L2[0, 1]. The operator u 7−→ u2 arctan(u) is defined on a dense

subset D of of L2[0, 1], for example, on D := C[0, 1]. If u, v ∈ D, then

〈u2 arctan u− v2 arctan v, u− v〉 =

∫ 1

0
(u2 arctan u− v2 arctan v)(u− v)dx ≥ 0.

Here we have used the fact that the function: x2 arctan(x) is increasing on R. Moreover,

e−|x| =
1

π

∫ ∞

−∞

eiλx

1 + λ2
dλ.

Therefore, 〈B(u− v), u− v〉 ≥ 0, so

〈F (u)− F (v), u − v〉 ≥ 0, ∀u, v ∈ D.

The Fréchet derivative of F is:

(3.2) F ′(u)h =

(

u2

1 + u2
+ 2u arctan(u)

)

h+

∫ 1

0
e−|x−y|h(y)dy.

If u(x) vanishes on a set of positive Lebesgue’s measure, then F ′(u) is not boundedly invertible. If

u ∈ C[0, 1] vanishes even at one point x0, then F ′(u) is not boundedly invertible in H.

Let us use the iterative process (2.24):

un+1 = un − (F ′(un) + anI)
−1(F (un) + anun − fδ),

u0 = 0.
(3.3)

We stop iterations at n := nδ such that the following inequality holds

(3.4) ‖F (unδ
)− fδ‖ < Cδγ , ‖F (un)− fδ‖ ≥ Cδγ , n < nδ, C > 1, γ ∈ (0, 1).

Integrals of the form
∫ 1
0 e−|x−y|h(y)dy in (3.1) and (3.2) are computed by using the trapezoidal

rule. The noisy function used in the test is

fδ(x) = f(x) + κfnoise(x), κ = κ(δ) > 0.

The noise level δ and the relative noise level are defined by

δ = κ‖fnoise(x)‖, δrel :=
δ

‖f‖
.
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In the test κ is computed in such a way that the relative noise level δrel equals to some desired

value, i.e.,

κ =
δ

‖fnoise(x)‖
=

δrel‖f‖

‖fnoise‖
.

We have used the relative noise level as an input parameter in the test.

In all figures the x-variable runs through the interval [0, 1], and the graphs represent the numerical

solutions uDSM(x) and the exact solution uexact(x).

In the test we have used C = 1.01 and γ = 0.9. As we have proved, the iterative scheme converges

when an = d

1+n
, and d is sufficiently large. However, in practice, if we choose d too large, then

the method will use too many iterations before reaching the stopping time nδ in (3.4). This means

that the computation time will be large in this case. Since

‖F (Vnδ
)− fδ‖ = anδ

‖Vnδ
‖,

and ‖Vnδ
− unδ

‖ = O(anδ
), we have

Cδγ = ‖F (unδ
)− fδ‖ ∼ anδ

.

Thus, we choose

d = C0δ
γ , C0 > 0.

In experiments we found that our method works well with C0 ∈ [1, 4]. Indeed, in the test we chose

an by the formula an := C0
δ0.9

n+6 . The number of node points used in computing integrals in (3.1)

and (3.2) was N = 100. In all experiments, the noise function fnoise is a vector with random entries

normally distributed of mean 0 and variance 1.

Numerical results for various values of δrel are presented in Table 7. Table 7 shows that the

iterative scheme yields good numerical results.

Table 7: Results when C0 = 1.

δrel 0.05 0.03 0.02 0.01 0.003 0.001

Number of iterations 10 10 10 10 11 11

‖uDSM−uexact‖
‖uexact‖

0.0458 0.0273 0.0189 0.0094 0.0027 0.0009

Figure 10 plots the numerical results when relative noise levels are δrel = 0.01 and δrel = 0.003.

Figure 11 plots the numerical results when the noise levels are δrel = 0.05 and δrel = 0.02.

In computations the functions u, f and fδ are vectors in R
N where N is the number of nodal

points. The norm used in computations is the 2-norm of RN .

From the numerical results we conclude that the proposed stopping rule yields good results in

this problem.
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Figure 10: Plots of solutions obtained by the DSM when N = 100, δrel = 0.01 (left) and δrel = 0.003 (right).
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Figure 11: Plots of solutions obtained by the DSM when N = 100, δrel = 0.05 (left) and δrel = 0.02 (right).
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Abstract

A version of the Dynamical Systems Method for solving ill-posed nonlinear monotone operator

equations is studied in this paper. A discrepancy principle is proposed and justified. A numer-

ical experiment was carried out with the new stopping rule. Numerical experiments show that

the proposed stopping rule is efficient.
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1 Introduction

In this paper we study a version of the Dynamical Systems Method (DSM) for solving the equation

F (u) = f, (1)

where F is a nonlinear, Fréchet differentiable, monotone operator in a real Hilbert space H, and

equation (1) is assumed solvable, possibly nonuniquely. Monotonicity means that

〈F (u)− F (v), u − v〉 ≥ 0, ∀u, v ∈ H. (2)

∗Email: nguyenhs@math.ksu.edu
‡Corresponding author. Email: ramm@math.ksu.edu
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It is known (see, e.g., [7]), that the set N := {u : F (u) = f} is closed and convex if F is monotone

and continuous. A closed and convex set in a Hilbert space has a unique minimal-norm element.

This element in N we denote by y, F (y) = f , and call it the minimal-norm solution to equation

(1). We assume that

sup
‖u−u0‖≤R

‖F ′(u)‖ ≤M1(R), (3)

where u0 ∈ H is an element of H, R > 0 is arbitrary, and f = F (y) is not known but fδ, the noisy

data, are known, and ‖fδ − f‖ ≤ δ. If F ′(u) is not boundedly invertible then solving equation

(1) for u given noisy data fδ is often (but not always) an ill-posed problem. When F is a linear

bounded operator many methods for stable solution of (1) were proposed (see [5]–[7] and references

therein). However, when F is nonlinear then the theory is less complete.

DSM consists of finding a nonlinear map Φ(t, u) such that the Cauchy problem

u̇ = Φ(t, u), u(0) = u0,

has a unique solution for all t ≥ 0, there exists limt→∞ u(t) := u(∞), and F (u(∞)) = f ,

∃! u(t) ∀t ≥ 0; ∃u(∞); F (u(∞)) = f. (4)

Various choices of Φ were proposed in [7] for (4) to hold. Each such choice yields a version of the

DSM.

The DSM for solving equation (1) was extensively studied in [7]–[14]. In [7], the following

version of the DSM was investigated for monotone operators F :

u̇δ = −
(

F ′(uδ) + a(t)I
)−1(

F (uδ) + a(t)uδ − fδ
)

, uδ(0) = u0. (5)

The convergence of this method was justified with some a apriori choice of stopping rule. A DSM

gradient method was formulated and justified in [4].

In this paper we consider a version of the DSM for solving equation (1):

u̇δ = −
(

F (uδ) + a(t)uδ − fδ
)

, uδ(0) = u0, (6)

where F is a monotone operator.

The advantage of this version compared with (5) is the absence of the inverse operator in the

algorithm, which makes the algorithm (6) less expensive than (5). On the other hand, algorithm

(5) converges faster than (6) in many cases. The algorithm (6) is cheaper than the DSM gradient

algorithm proposed in [4].
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The convergence of the method (6) for any initial value u0 is proved for a stopping rule based

on a discrepancy principle. This a posteriori choice of stopping time tδ is justified provided that

a(t) is suitably chosen.

The advantage of method (6), a modified version of the simple iteration method, over the Gauss-

Newton method and the version (5) of the DSM is the following: neither inversion of matrices nor

evaluation of F ′ is needed in a discretized version of (6). Although the convergence rate of the

DSM (6) maybe slower than that of the DSM (5), the DSM (6) might be faster than the DSM (5)

for large-scale systems due to its lower computation cost.

In this paper we investigate a stopping rule based on a discrepancy principle (DP) for the DSM

(6). The main results of this paper are Theorem 17 and Theorem 19 in which a DP is formulated,

the existence of a stopping time tδ is proved, and the convergence of the DSM with the proposed

DP is justified under some natural assumptions.

2 Auxiliary results

The inner product in H is denoted 〈u, v〉. Let us consider the following equation

F (Vδ) + aVδ − fδ = 0, a > 0, (7)

where a = const. It is known (see, e.g., [7], [15]) that equation (7) with monotone continuous

operator F has a unique solution for any fδ ∈ H.

Let us recall the following result from [7]:

Lemma 1 Assume that equation (1) is solvable, y is its minimal-norm solution, assumption (2)

holds, and F is continuous. Then

lim
a→0

‖Va − y‖ = 0,

where Va solves (7) with δ = 0.

Clearly, under our assumption (3), F is continuous.

Lemma 2 If (2) holds and F is continuous, then ‖Vδ‖ = O( 1
a
) as a→ ∞, and

lim
a→∞

‖F (Vδ)− fδ‖ = ‖F (0)− fδ‖. (8)

Proof. Rewrite (7) as

F (Vδ)− F (0) + aVδ + F (0)− fδ = 0.
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Multiply this equation by Vδ, use inequality 〈F (Vδ)− F (0), Vδ − 0〉 ≥ 0 and get:

a‖Vδ‖
2 ≤ ‖fδ − F (0)‖‖Vδ‖.

Therefore,

‖Vδ‖ = O(
1

a
).

This and the continuity of F imply (8). 2

Let a = a(t) be a strictly monotonically decaying continuous positive function on [0,∞), 0 <

a(t) ց 0, and assume a ∈ C1[0,∞). These assumptions hold throughout the paper and often are

not repeated. Then the solution Vδ of (7) is a function of t, Vδ = Vδ(t). From the triangle inequality

one gets:

‖F (Vδ(0)) − fδ‖ ≥ ‖F (0) − fδ‖ − ‖F (Vδ(0))− F (0)‖.

From Lemma 2 it follows that for large a(0) one has:

‖F (Vδ(0)) − F (0)‖ ≤M1‖Vδ(0)‖ = O

(

1

a(0)

)

.

Therefore, if ‖F (0) − fδ‖ > Cδ, then ‖F (Vδ(0)) − fδ‖ ≥ (C − ǫ)δ, where ǫ > 0 is sufficiently small

and a(0) > 0 is sufficiently large.

Below the words decreasing and increasing mean strictly decreasing and strictly increasing.

Lemma 3 Assume ‖F (0) − fδ‖ > 0. Let 0 < a(t) ց 0, and F be monotone. Denote

ψ(t) := ‖Vδ(t)‖, φ(t) := a(t)ψ(t) = ‖F (Vδ(t))− fδ‖,

where Vδ(t) solves (7) with a = a(t). Then φ(t) is decreasing, and ψ(t) is increasing.

Proof. Since ‖F (0) − fδ‖ > 0, one has ψ(t) 6= 0, ∀t ≥ 0. Indeed, if ψ(t)
∣

∣

t=τ
= 0, then Vδ(τ) = 0,

and equation (7) implies ‖F (0) − fδ‖ = 0, which is a contradiction. Note that φ(t) = a(t)‖Vδ(t)‖.

One has

0 ≤ 〈F (Vδ(t1))− F (Vδ(t2)), Vδ(t1)− Vδ(t2)〉

= 〈−a(t1)Vδ(t1) + a(t2)Vδ(t2), Vδ(t1)− Vδ(t2)〉

= (a(t1) + a(t2))〈Vδ(t1), Vδ(t2)〉 − a(t1)‖Vδ(t1)‖
2 − a(t2)‖Vδ(t2)‖

2.

(9)
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Thus,

0 ≤ (a(t1) + a(t2))〈Vδ(t1), Vδ(t2)〉 − a(t1)‖Vδ(t1)‖
2 − a(t2)‖Vδ(t2)‖

2

≤ (a(t1) + a(t2))‖Vδ(t1)‖‖Vδ(t2)‖ − a(t1)‖Vδ(t1)‖
2 − a(t2)‖Vδ(t2)‖

2

= (a(t1)‖Vδ(t1)‖ − a(t2)‖Vδ(t2)‖)(‖Vδ(t2)‖ − ‖Vδ(t1)‖)

= (φ(t1)− φ(t2))(ψ(t2)− ψ(t1)).

(10)

If ψ(t2) > ψ(t1) then (10) implies φ(t1) ≥ φ(t2), so

a(t1)ψ(t1) ≥ a(t2)ψ(t2) > a(t2)ψ(t1).

Thus, if ψ(t2) > ψ(t1) then a(t2) < a(t1) and, therefore, t2 > t1, because a(t) is strictly decreasing.

Similarly, if ψ(t2) < ψ(t1) then φ(t1) ≤ φ(t2). This implies a(t2) > a(t1), so t2 < t1.

Suppose ψ(t1) = ψ(t2), i.e., ‖Vδ(t1)‖ = ‖Vδ(t2)‖. From (9), one has

‖Vδ(t1)‖
2 ≤ 〈Vδ(t1), Vδ(t2)〉 ≤ ‖Vδ(t1)‖‖Vδ(t2)‖ = ‖Vδ(t1)‖

2.

This implies Vδ(t1) = Vδ(t2), and then equation (7) implies a(t1) = a(t2). Hence, t1 = t2, because

a(t) is strictly decreasing.

Therefore φ(t) is decreasing and ψ(t) is increasing. 2

Lemma 4 Suppose that ‖F (0) − fδ‖ > Cδ, C > 1, and a(0) is sufficiently large. Then, there

exists a unique t1 > 0 such that ‖F (Vδ(t1))− fδ‖ = Cδ.

Proof. The uniqueness of t1 follows from Lemma 3 because ‖F (Vδ(t)) − fδ‖ = φ(t), and φ is

decreasing. We have F (y) = f , and

0 = 〈F (Vδ) + aVδ − fδ, F (Vδ)− fδ〉

= ‖F (Vδ)− fδ‖
2 + a〈Vδ − y, F (Vδ)− fδ〉+ a〈y, F (Vδ)− fδ〉

= ‖F (Vδ)− fδ‖
2 + a〈Vδ − y, F (Vδ)− F (y)〉+ a〈Vδ − y, f − fδ〉+ a〈y, F (Vδ)− fδ〉

≥ ‖F (Vδ)− fδ‖
2 + a〈Vδ − y, f − fδ〉+ a〈y, F (Vδ)− fδ〉.

Here the inequality 〈Vδ − y, F (Vδ)− F (y)〉 ≥ 0 was used. Therefore

‖F (Vδ)− fδ‖
2 ≤ −a〈Vδ − y, f − fδ〉 − a〈y, F (Vδ)− fδ〉

≤ a‖Vδ − y‖‖f − fδ‖+ a‖y‖‖F (Vδ)− fδ‖

≤ aδ‖Vδ − y‖+ a‖y‖‖F (Vδ)− fδ‖.

(11)
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On the other hand, we have

0 = 〈F (Vδ)− F (y) + aVδ + f − fδ, Vδ − y〉

= 〈F (Vδ)− F (y), Vδ − y〉+ a‖Vδ − y‖2 + a〈y, Vδ − y〉+ 〈f − fδ, Vδ − y〉

≥ a‖Vδ − y‖2 + a〈y, Vδ − y〉+ 〈f − fδ, Vδ − y〉,

where the inequality 〈Vδ − y, F (Vδ)− F (y)〉 ≥ 0 was used. Therefore,

a‖Vδ − y‖2 ≤ a‖y‖‖Vδ − y‖+ δ‖Vδ − y‖.

This implies

a‖Vδ − y‖ ≤ a‖y‖+ δ. (12)

From (11) and (12), and an elementary inequality ab ≤ ǫa2 + b2

4ǫ , ∀ǫ > 0, one gets:

‖F (Vδ)− fδ‖
2 ≤ δ2 + a‖y‖δ + a‖y‖‖F (Vδ)− fδ‖

≤ δ2 + a‖y‖δ + ǫ‖F (Vδ)− fδ‖
2 +

1

4ǫ
a2‖y‖2,

(13)

where ǫ > 0 is fixed, independent of t, and can be chosen arbitrary small. Let t → ∞ and

a = a(t) ց 0. Then (13) implies

limt→∞(1− ǫ)‖F (Vδ)− fδ‖
2 ≤ δ2.

This, the continuity of F , the continuity of Vδ(t) on [0,∞), and the assumption ‖F (0)− fδ‖ > Cδ

imply that equation ‖F (Vδ(t)) − fδ‖ = Cδ must have a solution t1 > 0. The uniqueness of this

solution was already established. 2

Remark 5 From the proof of Lemma 4 one obtains the following result:

If tn ր ∞ then there exists a unique n1 > 0 such that

‖F (Vn1+1)− fδ‖ ≤ Cδ < ‖F (Vn1
)− fδ‖, Vn := Vδ(tn).

Remark 6 From Lemma 2 and Lemma 3 one concludes that

an‖Vn‖ = ‖F (Vn)− fδ‖ ≤ ‖F (0) − fδ‖, an := a(tn), ∀n ≥ 0.

Remark 7 Let V := Vδ(t)|δ=0, so

F (V ) + a(t)V − f = 0.

105



Let y be the minimal-norm solution to equation (1). We claim that

‖Vδ − V ‖ ≤
δ

a
. (14)

Indeed, from (7) one gets

F (Vδ)− F (V ) + a(Vδ − V ) = f − fδ.

Multiply this equality with (Vδ − V ) and use the monotonicity of F to get

a‖Vδ − V ‖2 ≤ δ‖Vδ − V ‖.

This implies (14).

Similarly, multiplying the equation

F (V ) + aV − F (y) = 0,

by V − y one derives the inequality:

‖V ‖ ≤ ‖y‖. (15)

Similar arguments one can find in [7].

From (14) and (15), one gets the following estimate:

‖Vδ‖ ≤ ‖V ‖+
δ

a
≤ ‖y‖+

δ

a
. (16)

Lemma 8 Suppose a(t) = d

(c+t)b
, ϕ(t) =

∫

t

0
a(s)
2 ds where b ∈ (0, 12 ], d and c are positive constants.

Then
d

2

(

1−
2b

cθd

)
∫

t

0

eϕ(s)

(s+ c)2b
ds <

eϕ(t)

(c+ t)b
, ∀t > 0, θ = 1− b > 0. (17)

Proof. We have

ϕ(t) =

∫

t

0

d

2(c+ s)b
ds =

d

2(1 − b)

(

(c+ t)1−b − c1−b

)

= p(c+ t)θ −C3, (18)

where θ := 1− b, p := d

2θ , C3 := pcθ. One has

d

dt

ep(c+t)θ

(c+ t)b
=

pθep(c+t)θ

(c+ t)b+1−θ
−

bep(c+t)θ

(c+ t)b+1

=
ep(c+t)θ

(c+ t)b

(

d

2(c + t)b
−

b

c+ t

)

≥
ep(c+t)θ

(c+ t)b
d

2(c + t)b

(

1−
2b

cθd

)

.
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Therefore,

d

2

(

1−
2b

cθd

)
∫

t

0

ep(c+s)θ

(s+ c)2b
ds ≤

∫

t

0

d

ds

ep(c+s)θ

(c+ s)b
ds

≤
ep(c+t)θ

(c+ t)b
−
epc

θ

cb
≤
ep(c+t)θ

(c+ t)b
.

Multiplying this inequality by e−C3 and using (18), one obtains (17). Lemma 8 is proved. 2

Lemma 9 Let a(t) = d

(c+t)b
and ϕ(t) :=

∫

t

0
a(s)
2 ds where d, c > 0, b ∈ (0, 12 ] and c

1−bd ≥ 6b. One

has

e−ϕ(t)

∫

t

0
eϕ(s)|ȧ(s)|‖Vδ(s)‖ds ≤

1

2
a(t)‖Vδ(t)‖, t ≥ 0. (19)

Proof. From Lemma 8, one has

1

2

(

1−
2b

cθd

)
∫

t

0
eϕ(s)

d2

(s+ c)2b
ds < eϕ(t)

d

(c+ t)b
, ∀c, b ≥ 0, θ = 1− b > 0. (20)

Since c1−bd ≥ 6b or 6b
cθd

≤ 1, one has

1−
2b

cθd
≥

4b

cθd
≥

4b

(c+ s)1−bd
, s ≥ 0.

This implies

a2(s)

2

(

1−
2b

cθd

)

=
d2

2(c+ s)2b

(

1−
2b

cθd2

)

≥
4db

2(c + s)b+1
= 2|ȧ(s)|, s ≥ 0. (21)

Multiplying (20) by ‖Vδ(t)‖, using inequality (21) and the fact that ‖Vδ(t)‖ is increasing, one gets,

for all t ≥ 0, the inequalities:

eϕ(t)a(t)‖Vδ(t)‖ >

∫

t

0
eϕ(s)‖Vδ(t)‖

a2(s)

2

(

1−
2b

cθd

)

ds ≥ 2

∫

t

0
eϕ(s)|ȧ(s)|‖Vδ(s)‖ds.

This implies inequality (19). Lemma 9 is proved. 2

Let us recall the following lemma, which is basic in our proofs.

Lemma 10 ([7], p. 97) Let α(t), β(t), γ(t) be continuous nonnegative functions on [t0,∞), t0 ≥

0 is a fixed number. If there exists a function

µ ∈ C1[t0,∞), µ > 0, lim
t→∞

µ(t) = ∞,

such that

0 ≤ α(t) ≤
µ

2

[

γ −
µ̇(t)

µ(t)

]

, µ̇ :=
dµ

dt
, (22)

β(t) ≤
1

2µ

[

γ −
µ̇(t)

µ(t)

]

, (23)

µ(0)g(0) < 1, (24)
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and g(t) ≥ 0 satisfies the inequality

ġ(t) ≤ −γ(t)g(t) + α(t)g2(t) + β(t), t ≥ t0, (25)

then g(t) exists on [t0,∞) and

0 ≤ g(t) <
1

µ(t)
→ 0, as t→ ∞. (26)

If inequalities (22)–(24) hold on an interval [t0, T ), then g(t) exists on this interval and inequality

(26) holds on [t0, T ).

Lemma 11 Suppose M1 and c1 are positive constants and 0 6= y ∈ H. Then there exist a number

λ > 0 and a function a(t) ∈ C1[0,∞), 0 < a(t) ց 0, such that

|ȧ(t)| ≤
a2(t)

2
,

and the following conditions hold

M1

‖y‖
≤ λ, (27)

0 ≤
λ

2a(t)

[

a(t)−
|ȧ(t)|

a(t)

]

, (28)

c1
|ȧ(t)|

a(t)
≤
a(t)

2λ

[

a(t)−
|ȧ(t)|

a(t)

]

, (29)

λ

a(0)
g(0) < 1. (30)

Proof. Take

a(t) =
d

(c+ t)b
, 0 < b ≤

1

2
, 2b ≤ c1−bd, c ≥ 1. (31)

Note that |ȧ| = −ȧ. We have

|ȧ|

a2
=

b

d(c+ t)1−b
≤

b

dc1−b
≤

1

2
.

Hence,
a(t)

2
≤ a(t)−

|ȧ(t)|

a(t)
. (32)

Thus, inequality (28) is satisfied. Take

λ ≥
M1

‖y‖
, (33)

then (27) is satisfied. For any given g(0), choose a(0) sufficiently large so that

λ

a(0)
g(0) < 1.
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Therefore, inequality (30) is satisfied.

Choose κ ≥ 1 such that

κ > max

(

4λc1b

d2
, 1

)

. (34)

Define

ν(t) := κa(t) λκ := κλ. (35)

Note that (28) holds for a(t) = ν(t), λ = λκ since (32) holds as well under this transformation, i.e.,

ν(t)

2
≤ ν(t)−

|ν̇(t)|

ν(t)
. (36)

Using the inequalities (34) and c ≥ 1 and the definition (35), one obtains

4λκc1
|ν̇(t)|

ν3(t)
= 4λc1

b

κd2(c+ t)1−2b
≤ 4λc1

b

κd2
≤ 1.

This implies

c1
|ν̇|

ν(t)
≤
ν2(t)

4λκ
≤
ν(t)

2λκ

[

ν −
2|ν̇|

ν

]

.

Thus, one can replace the function a(t) by ν(t) = κa(t) and λ by λκ = κλ in the inequalities

(27)–(30). 2

Lemma 12 Suppose M1, c1 and α̃ are positive constants and 0 6= y ∈ H. Then there exist a

number λ > 0 and a sequence 0 < (an)
∞
n=0 ց 0 such that the following conditions hold

an

an+1
≤ 2, (37)

‖fδ − F (0)‖ ≤
a20
λ
, (38)

M1

λ
≤ ‖y‖, (39)

an

λ
−
α̃a2n
λ

+
an − an+1

an+1
c1 ≤

an+1

λ
. (40)

Proof. Let us show that if a0 > 0 is sufficiently large, then the following sequence

an =
a0

(1 + n)b
, b =

1

2
, (41)

satisfies conditions (38)–(40) if

λ ≥
M1

‖y‖
. (42)

Condition (37) is satisfied by the sequence (41). Inequality (39) is satisfied since (42) holds. Choose

a(0) so that

a0 ≥
√

‖fδ − F (0)‖λ, (43)
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then (38) is satisfied.

Assume that (an)
∞
n=0 and λ satisfy (37), (38) and (39). Choose κ ≥ 1 such that

κ ≥ max

(

1

α̃a0
√
2
,
λc1

α̃a20

)

. (44)

It follows from (44) that
1

κa0
√
2
≤ α̃,

λc1

κa20
≤ α̃. (45)

Define

(bn)
∞
n=0 := (κan)

∞
n=0, λκ := κλ. (46)

For all n ≥ 0 one has

an − an+1

a2n
=

a2n − a2n+1

a2n(an + an+1)
≤
a2n − a2n+1

2an+1a2n
=

a2
0

n+1 −
a2
0

n+2

2 a0√
n+2

a2
0

n+1

=
1

a02
√
n+ 2

≤
1

a02
√
2
. (47)

Since an is decreasing, one has

an − an+1

a2nan+1
=

a2n − a2n+1

a2nan+1(an + an+1)

≤
a2n − a2

n+1

2a2na
2
n+1

=

a2
0

n+1 −
a2
0

n+2

2
a2
0

n+2
a2
0

n+1

≤
1

2a20
, ∀n ≥ 0.

(48)

Using inequalities (47) and (45), one gets

2(an − an+1)

κa2n
≤

1

κa0
√
2
≤ α̃. (49)

Similarly, using inequalities (48) and (45), one gets

2λ(an − an+1)c1
κa2nan+1

≤
λc1

κa20
≤ α̃. (50)

Inequalities (49) and (50) imply

bn − bn+1

λκ
+
bn − bn+1

bn+1
c1 =

an − an+1

λ
+
an − an+1

an+1
c1

=
κa2n
2λ

2(an − an+1)

κa2n
+
κa2n
2λ

2λ(an − an+1)c1
κa2nan+1

≤
κa2n
2λ

α̃+
κa2n
2λ

α̃ =
κa2nα̃

λ
=
α̃b2n
λκ

.

Thus, inequality (40) holds for an replaced by bn = κan and λ replaced by λκ = κλ, where κ satisfies

(44). Inequalities (37)–(39) hold as well under this transformation. Thus, the choices an = bn and

λ := κM1

‖y‖ , where κ satisfies (44), satisfy all the conditions of Lemma 12. 2
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Remark 13 The constant c1, used in Lemmas 11 and 12, will be used in Theorems 17 and 19.

This constant is defined in equation (62). The constant α̃, used in Lemma 12, is the one from

Theorem 19. This constant is defined in equation (89).

Remark 14 Using similar arguments one can show that the sequence an = d

(c+n)b
, where c ≥ 1,

0 < b ≤ 1
2 , satisfy all conditions of Lemma 4 provided that d is sufficiently large and λ is chosen so

that inequality (42) holds.

Remark 15 In the proof of Lemmas 11 and 12 the numbers a0 and λ can be chosen so that a0
λ

is uniformly bounded as δ → 0 regardless of the rate of growth of the constant M1 = M1(R) from

formula (3) when R→ ∞, i.e., regardless of the strength of the nonlinearity F (u).

To satisfy (42) one can choose λ =M1
1

‖y‖ . To satisfy (43) one can choose

a0 =
√

λ(‖f − F (0)‖ + ‖f‖) ≥
√

λ‖fδ − F (0)‖,

where we have assumed without loss of generality that 0 < ‖fδ − f‖ < ‖f‖. With this choice of a0

and λ, the ratio a0
λ

is bounded uniformly with respect to δ ∈ (0, 1) and does not depend on R. The

dependence of a0 on δ is seen from (43) since fδ depends on δ. In practice one has ‖fδ − f‖ < ‖f‖.

Consequently,
√

‖fδ − F (0)‖λ ≤
√

(‖f − F (0)‖ + ‖f‖)λ.

Thus, we can practically choose a(0) independent of δ from the following inequality

a0 ≥
√

λ(‖f − F (0)‖ + ‖f‖).

Indeed, with the above choice one has a0
λ

≤ c(1+
√
λ−1) ≤ c, where c > 0 is a constant independent

of δ, and one can assume that λ ≥ 1 without loss of generality.

This Remark is used in the proof of the main result in Section 3. Specifically, it is used to

prove that an iterative process (88) generates a sequence which stays in the ball B(u0, R) for all

n ≤ n0 + 1, where the number n0 is defined by formula (99) (see below), and R > 0 is sufficiently

large. An upper bound on R is given in the proof of Theorem 19, below formula (112).

Remark 16 One can choose u0 ∈ H such that

g0 := ‖u0 − V0‖ ≤
‖F (0) − fδ‖

a0
. (51)

Indeed, if, for example, u0 = 0, then by Remark 6 one gets

g0 = ‖V0‖ =
a0‖V0‖

a0
≤

‖F (0) − fδ‖

a0
.

If (38) and (51) hold then g0 ≤
a0
λ
.

111



3 Main results

3.1 Dynamical systems method

Assume:

0 < a(t) ց 0, lim
t→∞

ȧ(t)

a(t)
= 0,

|ȧ(t)|

a2(t)
≤

1

2
. (52)

Let uδ(t) solve the following Cauchy problem:

u̇δ = −[F (uδ) + a(t)uδ − fδ], uδ(0) = u0. (53)

Theorem 17 Assume that F : H → H is a monotone operator, condition (3) holds, and u0 is

an element of H, satisfying inequality (83) (see below). Let a(t) satisfy conditions of Lemma 11.

For example, one can choose a(t) = d

(c+t)b
, where b ∈ (0, 12 ], c ≥ 1 and d > 0 are constants,

and d is sufficiently large. Assume that equation F (u) = f has a solution y ∈ B(u0, R), possibly

nonunique, and y is the minimal-norm solution to this equation. Let f be unknown but fδ be given,

‖fδ − f‖ ≤ δ. Then the solution uδ(t) to problem (53) exists on an interval [0, Tδ ], limδ→0 Tδ = ∞,

and there exists tδ, tδ ∈ (0, Tδ), not necessarily unique, such that

‖F (uδ(tδ))− fδ‖ = C1δ
ζ , lim

δ→0
tδ = ∞, (54)

where C1 > 1 and 0 < ζ ≤ 1 are constants. If ζ ∈ (0, 1) and tδ satisfies (54), then

lim
δ→0

‖uδ(tδ)− y‖ = 0. (55)

Remark 18 One can easily choose u0 satisfying inequality (83). Note that inequality (83) is a

sufficient condition for (86) to hold. In our proof inequality (86) is used at t = tδ. The stopping

time tδ is often sufficiently large for the quantity e−ϕ(tδ)h0 to be small. In this case inequality (86)

with t = tδ is satisfied for a wide range of u0.

Proof. [Proof of Theorem 17] Denote

C :=
C1 + 1

2
. (56)

Let

w := uδ − Vδ, g(t) := ‖w‖.

One has

ẇ = −V̇δ −
[

F (uδ)− F (Vδ) + a(t)w
]

. (57)
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Multiplying (57) by w and using (2) one gets

gġ ≤ −ag2 + ‖V̇δ‖g. (58)

Let t0 > 0 be such that
δ

a(t0)
=

1

C − 1
‖y‖, C > 1. (59)

This t0 exists and is unique since a(t) > 0 monotonically decays to 0 as t → ∞. By Lemma 4,

there exists t1 such that

‖F (Vδ(t1))− fδ‖ = Cδ, F (Vδ(t1)) + a(t1)Vδ(t1)− fδ = 0. (60)

We claim that t1 ∈ [0, t0].

Indeed, from (7) and (16) one gets

Cδ = a(t1)‖Vδ(t1)‖ ≤ a(t1)

(

‖y‖+
δ

a(t1)

)

= a(t1)‖y‖+ δ, C > 1,

so

δ ≤
a(t1)‖y‖

C − 1
.

Thus,
δ

a(t1)
≤

‖y‖

C − 1
=

δ

a(t0)
.

Since a(t) ց 0, the above inequality implies t1 ≤ t0. Differentiating both sides of (7) with respect

to t, one obtains

Aa(t)V̇δ = −ȧVδ, A := F ′(Vδ), Aa := A+ aI.

This implies

‖V̇δ‖ ≤ |ȧ|‖A−1
a(t)Vδ‖ ≤

|ȧ|

a
‖Vδ‖ ≤

|ȧ|

a

(

‖y‖+
δ

a

)

≤
|ȧ|

a
‖y‖

(

1 +
1

C − 1

)

, ∀t ≤ t0. (61)

Since g ≥ 0, inequalities (58) and (61) imply

ġ ≤ −a(t)g(t) +
|ȧ(t)|

a(t)
c1, c1 = ‖y‖

(

1 +
1

C − 1

)

. (62)

Inequality (62) is of the type (25) with

γ(t) = a(t), α(t) = 0, β(t) = c1
|ȧ(t)|

a(t)
.

Let us check assumptions (22)–(24). Take

µ(t) =
λ

a(t)
, λ = const.
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By Lemma 11 there exist λ and a(t) such that conditions (22)–(24) hold. Thus, Lemma 10 yields

g(t) <
a(t)

λ
, ∀t ≤ t0. (63)

Therefore,

‖F (uδ(t))− fδ‖ ≤‖F (uδ(t))− F (Vδ(t))‖ + ‖F (Vδ(t))− fδ‖

≤M1g(t) + ‖F (Vδ(t))− fδ‖

≤
M1a(t)

λ
+ ‖F (Vδ(t))− fδ‖, ∀t ≤ t0.

(64)

It follows from Lemma 3 that ‖F (Vδ(t))− fδ‖ is decreasing. Since t1 ≤ t0, one gets

‖F (Vδ(t0))− fδ‖ ≤ ‖F (Vδ(t1))− fδ‖ = Cδ. (65)

This, inequality (64), the inequality M1

λ
≤ ‖y‖ (see (33)), the relation (59), and the definition

C1 = 2C − 1 (see (56)) imply

‖F (uδ(t0))− fδ‖ ≤
M1a(t0)

λ
+Cδ

≤
M1δ(C − 1)

λ‖y‖
+ Cδ ≤ (2C − 1)δ = C1δ.

(66)

Thus, if

‖F (uδ(0)) − fδ‖ ≥ C1δ
ζ , 0 < ζ ≤ 1,

then there exists tδ ∈ (0, t0) such that

‖F (uδ(tδ))− fδ‖ = C1δ
ζ (67)

for any given ζ ∈ (0, 1], and any fixed C1 > 1.

Let us prove (55). If this is done, then Theorem 17 is proved.

First, we prove that limδ→0
δ

a(tδ)
= 0.

From (64) with t = tδ, and from (16), one gets

C1δ
ζ ≤M1

a(tδ)

λ
+ a(tδ)‖Vδ(tδ)‖

≤M1
a(tδ)

λ
+ ‖y‖a(tδ) + δ.

Thus, for sufficiently small δ, one gets

C̃δζ ≤ a(tδ)

(

M1

λ
+ ‖y‖

)

, C̃ > 0,
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where C̃ < C1 is a constant. Therefore,

lim
δ→0

δ

a(tδ)
≤ lim

δ→0

δ1−ζ

C̃

(

M1

λ
+ ‖y‖

)

= 0, 0 < ζ < 1. (68)

Secondly, we prove that

lim
δ→0

tδ = ∞. (69)

Using (53), one obtains:

d

dt

(

F (uδ) + auδ − fδ
)

= Aau̇δ + ȧuδ = −Aa

(

F (uδ) + auδ − fδ
)

+ ȧuδ,

where Aa := F ′(uδ) + a. This and (7) imply:

d

dt

[

F (uδ)− F (Vδ) + a(uδ − Vδ)
]

= −Aa

[

F (uδ)− F (Vδ) + a(uδ − Vδ)
]

+ ȧuδ. (70)

Denote

v := F (uδ)− F (Vδ) + a(uδ − Vδ), h = ‖v‖.

Multiplying (70) by v and using monotonicity of F , one obtains

hḣ = −〈Aav, v〉 + 〈v, ȧ(uδ − Vδ)〉+ ȧ〈v, Vδ〉

≤ −h2a+ h|ȧ|‖uδ − Vδ‖+ |ȧ|h‖Vδ‖, h ≥ 0.
(71)

Again, we have used the inequality 〈F ′(uδ)v, v〉 ≥ 0 which follows from the monotonicity of F .

Thus,

ḣ ≤ −ha+ |ȧ|‖uδ − Vδ‖+ |ȧ|‖Vδ‖. (72)

Since 〈F (uδ)− F (Vδ), uδ − Vδ〉 ≥ 0, one obtains two inequalities

a‖uδ − Vδ‖
2 ≤ 〈v, uδ − Vδ〉 ≤ ‖uδ − Vδ‖h, (73)

and

‖F (uδ)− F (Vδ)‖
2 ≤ 〈v, F (uδ)− F (Vδ)〉 ≤ h‖F (uδ)− F (Vδ)‖. (74)

Inequalities (73) and (74) imply:

a‖uδ − Vδ‖ ≤ h, ‖F (uδ)− F (Vδ)‖ ≤ h. (75)

Inequalities (72) and (75) imply

ḣ ≤ −h

(

a−
|ȧ|

a

)

+ |ȧ|‖Vδ‖. (76)

115



Since a− |ȧ|
a

≥ a

2 by the last inequality in (52), it follows from inequality (76) that

ḣ ≤ −
a

2
h+ |ȧ|‖Vδ‖. (77)

Inequality (77) implies:

h(t) ≤ h(0)e−
∫ t
0

a(s)

2
ds + e−

∫ t
0

a(s)

2
ds

∫

t

0
e
∫ s
0

a(ξ)

2
dξ|ȧ(s)|‖Vδ(s)‖ds. (78)

Denote

ϕ(t) :=

∫

t

0

a(s)

2
ds.

From (78) and (75), one gets

‖F (uδ(t))− F (Vδ(t))‖ ≤ h(0)e−ϕ(t) + e−ϕ(t)

∫

t

0
eϕ(s)|ȧ(s)|‖Vδ(s)‖ds. (79)

Therefore,

‖F (uδ(t))− fδ‖ ≥ ‖F (Vδ(t)) − fδ‖ − ‖F (Vδ(t))− F (uδ(t))‖

≥ a(t)‖Vδ(t)‖ − h(0)e−ϕ(t) − e−ϕ(t)

∫

t

0
eϕ(s)|ȧ|‖Vδ‖ds.

(80)

From Lemma 9 it follows that there exists an a(t) such that

1

2
a(t)‖Vδ(t)‖ ≥ e−ϕ(t)

∫

t

0
eϕ(s)|ȧ|‖Vδ(s)‖ds. (81)

For example, one can choose

a(t) =
d

(c+ t)b
, b ∈ (0,

1

2
], dc1−b ≥ 6b, (82)

where d, c > 0. Moreover, one can always choose u0 such that

h(0) = ‖F (u0) + a(0)u0 − fδ‖ ≤
1

4
a(0)‖Vδ(0)‖, (83)

because the equation

F (u0) + a(0)u0 − fδ = 0

is solvable.

If (83) holds, then

h(0)e−ϕ(t) ≤
1

4
a(0)‖Vδ(0)‖e

−ϕ(t), t ≥ 0. (84)

If (82) holds, c ≥ 1 and 2b ≤ d, then it follows that

e−ϕ(t)a(0) ≤ a(t). (85)
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Indeed, inequality a(0) ≤ a(t)eϕ(t) is obviously true for t = 0, and
(

a(t)eϕ(t)
)′

t
≥ 0, provided that

c ≥ 1 and 2b ≤ d.

Inequalities (84) and (46) imply

e−ϕ(t)h(0) ≤
1

4
a(t)‖Vδ(0)‖ ≤

1

4
a(t)‖Vδ(t)‖, t ≥ 0. (86)

where we have used the inequality ‖Vδ(t)‖ ≤ ‖Vδ(t
′)‖ for t ≤ t′, established in Lemma 3. From (67)

and (80)–(86), one gets

Cδζ = ‖F (uδ(tδ))− fδ‖ ≥
1

4
a(tδ)‖Vδ(tδ)‖.

Thus,

lim
δ→0

a(tδ)‖Vδ(tδ)‖ ≤ lim
δ→0

4Cδζ = 0.

Since ‖Vδ(t)‖ is increasing, this implies limδ→0 a(tδ) = 0. Since 0 < a(t) ց 0, it follows that (69)

holds.

From the triangle inequality and inequalities (63) and (14) one obtains:

‖uδ(tδ)− y‖ ≤ ‖uδ(tδ)− Vδ‖+ ‖V (tδ)− Vδ(tδ)‖+ ‖V (tδ)− y‖

≤
a(tδ)

λ
+

δ

a(tδ)
+ ‖V (tδ)− y‖.

(87)

From (68), (69), inequality (87) and Lemma 1, one obtains (55). Theorem 17 is proved. 2

3.2 An iterative scheme

Let Vn,δ solve the equation:

F (Vn,δ) + anVn,δ − fδ = 0.

Denote Vn := Vn,δ.

Consider the following iterative scheme:

un+1 = un − αn[F (un) + anun − fδ], u0 = u0, (88)

where u0 is chosen so that inequality (51) holds, and {αn}
∞
n=1 is a positive sequence such that

0 < α̃ ≤ αn ≤
2

an + (M1 + an)
, M1 = sup

u∈B(u0,R)
‖F ′(u)‖. (89)

It follows from this condition that

‖1− αn(Jn + an)‖ = sup
an≤λ≤M1+an

|1− αnλ| ≤ 1− αnan. (90)
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Here, Jn is an operator in H such that Jn ≥ 0 and ‖Jn‖ ≤M1, ∀u ∈ B(u0, R). A specific choice of

Jn is made in formula (96) below.

Let an and λ satisfy conditions (37)–(40). Assume that equation F (u) = f has a solution

y ∈ B(u0, R), possibly nonunique, and y is the minimal-norm solution to this equation. Let f be

unknown but fδ be given, and ‖fδ − f‖ ≤ δ. We prove the following result:

Theorem 19 Assume an = d

(c+n)b
where c ≥ 1, 0 < b ≤ 1

2 , and d is sufficiently large so that

conditions (37)–(40) hold. Let un be defined by (88). Assume that u0 is chosen so that (51) holds.

Then there exists a unique nδ such that

‖F (unδ
)− fδ‖ ≤ C1δ

ζ , C1δ
ζ < ‖F (un)− fδ‖, ∀n < nδ, (91)

where C1 > 1, 0 < ζ ≤ 1.

Let 0 < (δm)∞m=1 be a sequence such that δm → 0. If the sequence {nm := nδm}
∞
m=1 is bounded,

and {nmj
}∞
j=1 is a convergent subsequence, then

lim
j→∞

unmj
= ũ, (92)

where ũ is a solution to the equation F (u) = f . If

lim
m→∞

nm = ∞, (93)

where ζ ∈ (0, 1), then

lim
m→∞

‖unm − y‖ = 0. (94)

Proof. Denote

C :=
C1 + 1

2
. (95)

Let

zn := un − Vn, gn := ‖zn‖.

One has

F (un)− F (Vn) = Jnzn, Jn =

∫ 1

0
F ′(u0 + ξzn)dξ. (96)

Since F ′(u) ≥ 0, ∀u ∈ H and ‖F ′(u)‖ ≤M1,∀u ∈ B(u0, R), it follows that Jn ≥ 0 and ‖Jn‖ ≤M1.

From (88) and (96) one obtains

zn+1 = zn − αn[F (un)− F (Vn) + anzn]− (Vn+1 − Vn)

= (1− αn(Jn + an))zn − (Vn+1 − Vn).
(97)

118



From (97) and (90), one gets

gn+1 ≤ gn‖1− αn(Jn + an)‖+ ‖Vn+1 − Vn‖

≤ gn(1− αnan) + ‖Vn+1 − Vn‖.
(98)

Since 0 < an ց 0, for any fixed δ > 0 there exists n0 such that

δ

an0+1
>

1

C − 1
‖y‖ ≥

δ

an0

, C > 1. (99)

By (37), one has an
an+1

≤ 2, ∀n ≥ 0. This and (99) imply

2

C − 1
‖y‖ ≥

2δ

an0

>
δ

an0+1
>

1

C − 1
‖y‖ ≥

δ

an0

, C > 1. (100)

Thus,
2

C − 1
‖y‖ >

δ

an
, ∀n ≤ n0 + 1. (101)

The number n0, satisfying (101), exists and is unique since an > 0 monotonically decays to 0 as

n→ ∞. By Remark 5, there exists a number n1 such that

‖F (Vn1+1)− fδ‖ ≤ Cδ < ‖F (Vn1
)− fδ‖, (102)

where Vn solves the equation F (Vn) + anVn − fδ = 0.

We claim that n1 ∈ [0, n0].

Indeed, one has ‖F (Vn1
)− fδ‖ = an1

‖Vn1
‖, and ‖Vn1

‖ ≤ ‖y‖+ δ

an1

(cf. (16)), so

Cδ < an1
‖Vn1

‖ ≤ an1

(

‖y‖+
δ

an1

)

= an1
‖y‖+ δ, C > 1. (103)

Therefore,

δ <
an1

‖y‖

C − 1
. (104)

Thus, by (100),
δ

an1

<
‖y‖

C − 1
<

δ

an0+1
. (105)

Here the last inequality is a consequence of (100). Since an decreases monotonically, inequality

(105) implies n1 ≤ n0. One has

an+1‖Vn − Vn+1‖
2 = 〈(an+1 − an)Vn − F (Vn) + F (Vn+1), Vn − Vn+1〉

≤ 〈(an+1 − an)Vn, Vn − Vn+1〉

≤ (an − an+1)‖Vn‖‖Vn − Vn+1‖.

(106)
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By (16), ‖Vn‖ ≤ ‖y‖+ δ

an
, and, by (101), δ

an
≤ 2‖y‖

C−1 for all n ≤ n0 + 1. Therefore,

‖Vn‖ ≤ ‖y‖

(

1 +
2

C − 1

)

, ∀n ≤ n0 + 1, (107)

and, by (106),

‖Vn − Vn+1‖ ≤
an − an+1

an+1
‖Vn‖ ≤

an − an+1

an+1
‖y‖

(

1 +
2

C − 1

)

, ∀n ≤ n0 + 1. (108)

Inequalities (98) and (108) imply

gn+1 ≤ (1− αnan)gn +
an − an+1

an+1
c1, ∀n ≤ n0 + 1, (109)

where the constant c1 is defined in (62).

By Lemma 4 and Remark 14, the sequence (an)
∞
n=1, satisfies conditions (37)–(40), provided that

a0 is sufficiently large and λ > 0 is chosen so that (42) holds. Let us show by induction that

gn <
an

λ
, 0 ≤ n ≤ n0 + 1. (110)

Inequality (110) holds for n = 0 by Remark 16. Suppose (110) holds for some n ≥ 0. From (109),

(110) and (40), one gets

gn+1 ≤ (1− αnan)
an

λ
+
an − an+1

an+1
c1

= −
αna

2
n

λ
+
an

λ
+
an − an+1

an+1
c1

≤
an+1

λ
.

(111)

Thus, by induction, inequality (110) holds for all n in the region 0 ≤ n ≤ n0 + 1.

From (16) one has ‖Vn‖ ≤ ‖y‖+ δ

an
. This and the triangle inequality imply

‖u0 − un‖ ≤ ‖u0‖+ ‖zn‖+ ‖Vn‖ ≤ ‖u0‖+ ‖zn‖+ ‖y‖+
δ

an
. (112)

Inequalities (107), (110), and (112) guarantee that the sequence un, generated by the iterative

process (88), remains in the ball B(u0, R) for all n ≤ n0 + 1, where R ≤ a0
λ

+ ‖u0‖ + ‖y‖ + δ

an
.

This inequality and the estimate (101) imply that the sequence un, n ≤ n0 + 1, stays in the ball

B(u0, R), where

R ≤
a0

λ
+ ‖u0‖+ ‖y‖+ ‖y‖

C + 1

C − 1
. (113)

By Remark 15, one can choose a0 and λ so that a0
λ

is uniformly bounded as δ → 0 even if M1(R) →

∞ as R → ∞ at an arbitrary fast rate. Thus, the sequence un stays in the ball B(u0, R) for

n ≤ n0 + 1 when δ → 0. An upper bound on R is given above. It does not depend on δ as δ → 0.
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One has:

‖F (un)− fδ‖ ≤‖F (un)− F (Vn)‖+ ‖F (Vn)− fδ‖

≤M1gn + ‖F (Vn)− fδ‖

≤
M1an

λ
+ ‖F (Vn)− fδ‖, ∀n ≤ n0 + 1,

(114)

where (110) was used and M1 is the constant from (3). Since ‖F (Vn) − fδ‖ is decreasing, by

Lemma 3, and n1 ≤ n0, one gets

‖F (Vn0+1)− fδ‖ ≤ ‖F (Vn1+1)− fδ‖ ≤ Cδ. (115)

From (39), (114), (115), the relation (99), and the definition C1 = 2C − 1 (see (95)), one concludes

that

‖F (un0+1)− fδ‖ ≤
M1an0+1

λ
+ Cδ

≤
M1δ(C − 1)

λ‖y‖
+Cδ ≤ (2C − 1)δ = C1δ.

(116)

Thus, if

‖F (u0)− fδ‖ > C1δ
ζ , 0 < ζ ≤ 1,

then one concludes from (116) that there exists nδ, 0 < nδ ≤ n0 + 1, such that

‖F (unδ
)− fδ‖ ≤ C1δ

ζ < ‖F (un)− fδ‖, 0 ≤ n < nδ, (117)

for any given ζ ∈ (0, 1], and any fixed C1 > 1.

Let us prove (92).

If n > 0 is fixed, then uδ,n is a continuous function of fδ. Denote

ũ := ũN = lim
δ→0

uδ,nmj
, (118)

where

lim
j→∞

nmj
= N.

From (118) and the continuity of F , one obtains:

‖F (ũ)− fδ‖ = lim
j→∞

‖F (unmj
)− fδ‖ ≤ lim

δ→0
C1δ

ζ = 0.

Thus, ũ is a solution to the equation F (u) = f , and (92) is proved.

Let us prove (94) assuming that (93) holds.
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From (91) and (114) with n = nδ − 1, and from (117), one gets

C1δ
ζ ≤M1

anδ−1

λ
+ anδ−1‖Vnδ−1‖ ≤M1

anδ−1

λ
+ ‖y‖anδ−1 + δ.

If δ > 0 is sufficiently small, then the above equation implies

C̃δζ ≤ anδ−1

(

M1

λ
+ ‖y‖

)

, C̃ > 0,

where C̃ < C1 is a constant. Therefore, by (37),

lim
δ→0

δ

2anδ

≤ lim
δ→0

δ

anδ−1
≤ lim

δ→0

δ1−ζ

C̃

(

M1

λ
+ ‖y‖

)

= 0, 0 < ζ < 1. (119)

In particular, for δ = δm, one gets

lim
δm→0

δm

anm

= 0. (120)

From the triangle inequality, inequalities (14) and (110), one obtains

‖unm − y‖ ≤ ‖unm − Vnm‖+ ‖Vn − Vnm,0‖+ ‖Vnm,0 − y‖

≤
anm

λ
+

δm

anm

+ ‖Vnm,0 − y‖.
(121)

From (93), (120), inequality (121) and Lemma 1, one obtains (94). Theorem 19 is proved. 2

4 Numerical experiments

Let us do a numerical experiment solving nonlinear equation (1) with

F (u) := B(u) +
u3

6
:=

∫ 1

0
e−|x−y|u(y)dy +

u3

6
, f(x) :=

13

6
− e−x −

ex

e
. (122)

One can check that u(x) ≡ 1 solves the equation F (u) = f . The operator B is compact in

H = L2[0, 1]. The operator u 7−→ u3 is defined on a dense subset D of of L2[0, 1], for example, on

D := C[0, 1]. If u, v ∈ D, then

〈u3 − v3, u− v〉 =

∫ 1

0
(u3 − v3)(u− v)dx ≥ 0.

Moreover,

e−|x| =
1

π

∫ ∞

−∞

eiλx

1 + λ2
dλ.

Therefore, 〈B(u− v), u− v〉 ≥ 0, so

〈F (u)− F (v), u − v〉 ≥ 0, ∀u, v ∈ D.
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Note that D does not contain subsets, open in H = L2[0, 1], i.e., it does not contain interior

points of H. This is a reflection of the fact that the operator G(u) = u3

6 is unbounded on any

open subset of H. For example, in any ball ‖u‖ ≤ C, C = const > 0, where ‖u‖ := ‖u‖L2[0,1],

there is an element u such that ‖u3‖ = ∞. As such an element one can take, for example,

u(x) = c1x
−b, 1

3 < b < 1
2 . here c1 > 0 is a constant chosen so that ‖u‖ ≤ C. The operator

u 7−→ F (u) = G(u) +B(u) is maximal monotone on DF := {u : u ∈ H, F (u) ∈ H} (see [2, p.102]),

so that equation (7) is uniquely solvable for any fδ ∈ H.

The Fréchet derivative of F is:

F ′(u)h =
u2h

2
+

∫ 1

0
e−|x−y|h(y)dy. (123)

If u(x) vanishes on a set of positive Lebesgue’s measure, then F ′(u) is obviously not boundedly

invertible. If u ∈ C[0, 1] vanishes even at one point x0, then F
′(u) is not boundedly invertible in

H.

Let us use the iterative process (88):

un+1 = un − αn(F (un) + anun − fδ),

u0 = 0.
(124)

We stop iterations at n := nδ such that the following inequality holds

‖F (unδ
)− fδ‖ < Cδζ , ‖F (un)− fδ‖ ≥ Cδζ , n < nδ, C > 1, ζ ∈ (0, 1). (125)

Integrals of the form
∫ 1
0 e

−|x−y|h(y)dy in (122) and (123) are computed by using the trapezoidal

rule. The noisy function used in the test is

fδ(x) = f(x) + κfnoise(x), κ > 0.

The noise level δ and the relative noise level are determined by

δ = κ‖fnoise‖, δrel :=
δ

‖f‖
.

In the test, κ is computed in such a way that the relative noise level δrel equals to some desired

value, i.e.,

κ =
δ

‖fnoise‖
=

δrel‖f‖

‖fnoise‖
.

We have used the relative noise level as an input parameter in the test.
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The version of DSM, developed in this paper and denoted by DSMS, is compared with the

version of DSM in [3], denoted by DSMN. Indeed, the DSMN is the following iterative scheme

un+1 = un −A−1
n (F ′(un) + anun − fδ), u0 = u0, n ≥ 0, (126)

where an = a0
1+n

. This iterative scheme is used with a stopping time nδ defined by (91). The

existence of this stopping time and the convergence of the method is proved in [3].

As we have proved, the DSMS converges when an = a0

(1+n)b
, b ∈ (0, 12 ], and a0 is sufficiently

large. However, in practice, if we choose a0 too large then the method will use too many iterations

before reaching the stopping time nδ in (125). This means that the computation time is large.

Since

‖F (Vδ)− fδ‖ = a(t)‖Vδ‖,

and ‖Vδ(tδ)− uδ(tδ)‖ = O(a(tδ)), we have

Cδζ = ‖F (uδ(tδ))− fδ‖ ∼ a(tδ).

Thus, we choose

a0 = C0δ
ζ , C0 > 0.

The parameter a0 used in the DSMN is also chosen by this formula.

In all figures, the x-axis represents the variable x. In all figures, by DSMS we denote the

numerical solutions obtained by the DSMS, by DSMN we denote solutions by the DSMN and by

exact we denote the exact solution.

In experiments, we found that the DSMS works well with a0 = C0δ
ζ , C0 ∈ [0.5, 2]. Indeed, in

the test the DSMS is implemented with an := C0
δ0.99

(n+1)0.5
, C0 = 1 while the DSMN is implemented

with an := C0
δ0.99

(n+1) , C0 = 1. For C0 > 3 the convergence rate of DSMS is much slower while the

DSMN still works well if C0 ∈ [1, 4]. In all experiments, the noise function fnoise is a vector with

random entries normally distributed of mean 0 and variant 1.

Figure 12 plots the solutions using relative noise levels δ = 0.01 and δ = 0.001. The exact

solution used in these experiments is u = 1. In the test the DSMS is implemented with αn = 1,

C = 1.01, ζ = 0.99 and αn = 1, ∀n ≥ 0. The number of iterations of the DSMS for δ = 0.01 and

δ = 0.001 were 98 and 99 while the number of iteration for the DSMN are 10 and 10, respectively.

The CPU time for the DSMS are 0.0139 and 0.0147 second while the CPU time for the DSMN are

0.0153 and 0.0169 corresponding to δrel = 0.01 and δrel = 0.001. The number of node points used
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Figure 12: Plots of solutions obtained by the DSMN and DSMS when N = 100, u = 1, x ∈ [0, 1],

δrel = 0.01 (left) and N = 100, u = 1, x ∈ [0, 1], δrel = 0.001 (right).

in computing integrals in (122) and (123) was N = 100. Figure 12 shows that the solutions by the

DSMN and DSMS are nearly the same in this figure.

Figure 13 presents the numerical results when N = 100 with δ = 0.01 u(x) = sin(2πx), x ∈ [0, 1]

(left) and with δ = 0.001, u(x) = sin(πx), x ∈ [0, 1] (right). In these cases, the DSMN took 10 and

12 iterations to give the numerical solutions while the DSMS took 56 and 67 iterations for δ = 0.01

and δ = 0.001, respectively. The computation time for the DSMS are 0.0102 and 0.0132 second

while those for the DSMN are 0.0169 and 0.0186 second for δ = 0.01 and δ = 0.001, respectively.

For larger number of node points experiments show that the DSMS is much faster than the DSMN.

Figure 13 show that the numerical results of the DSMS are better than those of the DSMN.

In our experiments, the DSMS requires about the same or less time of computation than the

DSMN. For larger number of node points, we found out that the DSMS runs faster than the DSMN.

Moreover, the DSMS yields numerical results with the same accuracy as the DSMN does.

All the computations were carried out using MATLAB in double-precision arithmetic on a PC

computer with an Intel Centrino Duo CPU of 1.62 GHz and 3 GB RAM.
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Figure 13: Plots of solutions obtained by the DSMN and DSMS when N = 100, u(x) = sin(2πx),

x ∈ [0, 1], δrel = 0.01 (left) and N = 100, u(x) = sin(πx), x ∈ [0, 1], δrel = 0.001 (right).

5 Concluding remarks

Numerical experiments agree with the theory that the convergence rate of the DSMS is slower

than that of the DSMN. This is because the rate of decay of the sequence { 1

(1+n)
1

2

}∞n=1 is much

slower than that of the sequence { 1
1+n

}∞n=1. However, since the cost of one iteration of the DSMS

is O(N2), and is much smaller than that of the DSMN (the cost of one iteration of the DSMN is

O(N3)), the DSMS requires less time to get a numerical result than the DSMN. Here, N is the

number of the nodal points. Thus, for large scale problems, the DSMS may be an alternative to

the DSMN. Also, as it is shown in Figure 13, the DSMS may yield more accurate solutions.

Experiments show that the DSMN still works with an = a0

(1+n)b
for 1

2 ≤ b ≤ 1. So, in practice

one may use faster decaying sequence an to reduce the time of computation.

From the numerical results we conclude that the proposed DSM with the discrepancy-type

stopping rule is a good alternative for the DSMN for large scale problems.

Remark. After the completion of this work, we saw the paper [1] in which an iterative process

for solving equation (1) with monotone operator is proposed. In [1] some unnatural assumptions

are made. For example, assumption (2.4) in [1] implies that the growth of the nonlinearity is not

faster than linear, assumption (2.5) is not verifiable practically, in Theorem 2.1 the existence of

N(δ) is not proved, so the result is actually not proved. A ”generalized discrepancy principle” (2.8)
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in [1] is therefore not justified.
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