AN INVESTGATION OF UVE DOGR SURFACF TFMPERATUEES OF HOUSEHDLD GAS ANJ ELECTKIC NAVGES
by

CHRISTINE M. GFE
B.S. Kansas State University, 1972

A MASTER'S THESTS

subnitted in partial fulfillment of the
requirements for the degree

MASTER GE SCIERCE

Departmert of Family Ecomomics

Kansas State University
Manhattan, Kanses

1979

Approved by:

TABLE OF CONTENTS

PAGE

INTRODUCTION 1
REVIEW OF LITERATURE 4
Burn classifications 4
Thermal in july 5
Range design 12
Children's physiological and psychologicalcharacteristics14
Thermesthesioneter development 18
STANDARDS FOR HOUSEHOLD RANGES 20
History of standard development 20
Gas range standards 20
Electric range standards 21
American National Standards Institute 22
EXPERIMENTAL PROCEDURE 31
Fre-test procedures 31.
Instrumentation 33
Test procedures 35
RESULTS 38
Evaluation of compliance with standards, gas ranges 41
Evaluation of compliance with standards, electric ranges. 44
Absolute temperatures reached, gas ranges 53
Absolute temperatures reached, electric ranges 54
Historical patterns 74
Evaluation of quality control 83
Comparison with critical burn temperature 83
DISCUSSION AND CONCLUSIONS 87
ACKNOWLEDGEMENT 91
LITERATURE CITED 92
APPENDICES 95

LIST OF TABLES

TABLE PAGE

1. Material surface temperature limits 6
2. Burn rates per thousand per year for ages birth through 15 years 8
3. Degree of burn injury by cause 8
4. Distribution of burns for the first five years of
life by cause 9
5. Household gas range test standards for surface temperatures 24
6. Household electric range test standards for surface temperatures 29
7. Range groupings by applicable standards 39
8. Summary of temperatures allowed by standard,household gas ranges AGA/ANSI Z21.140
9. Sunmary of temperatures allowed by standard,
household electric ranges UL 858 40
10. Highest temperatures recorded on test areas, gas and electric ranges, degrees F. 74
11. Average doer temperatures of ranges with and
without windows, degrees F 83
12. Yercent of ranges over critical burn temperatures
by groupings 86

LIST OF FIGURES

FJGURE PAGE

1. Example of grid on oven door without window 32
2. Exanple of grid on oven door with window 32
3. Temperature measuring and accessibility probe 34
4. Order in which temperatures at points were measured
and recorded 37
5. Hottest point on window, degrees above or belowstandard, gas ranges42
6. Average of 4 highest points on window, degrees aboveor below standard, gas ranges43
7. Hottest point on porcelain door, degrees above or
beiow standard, gas ranges 45
8. Average of 4 highest points on porcelain door,degrees above or below standard, gas ranges 46
9. Average of all points on porcelain door, degrees aboveor belcw standard, gas ranges 47
10. Hottest point on door frame, degrees above or
below standard, gas ranges 48
11. Average of 4 highest points on door frame, degrees above or below standard, gas ranges 49
12. Averape of all points on door frame, degrees above
or belon standard, gas rarges 50
13. Hottest point on window, degrees above or below standard, electric ranges 51
14. Average of 4 highest points on window, degrees above or below standard, electric ranges 52
15. Hottest point on porcelain door, degrees above or below standard, electric ranges 54
16. Average oí 4 highest points on porcelain door, degrees above or below standard, electric ranges 55
17. Average of all points on porcelain door, degrees above or bel.ow standard, electric ranges. 56
18. Hottest point on door frame, degrees above or below standard, electric ranges 57
19. Average of 4 highest points on door frame, degrees above or below standard, electric ranges 58
20. Average of all points on door frame, degrees above or below standard, electric ranges 59
21. Hottest point on window, absolute temperature, gas ranges 60
22. Average of 4 highest points on window, absolute temperature, gas ranges 61
23. Hottest point on porcelain door, absolute temperature, gas ranges 62
24. Average of 4 highest points on porcelain door, aosolute temperature, gas ranges 6325. Average of all points on porcelain door, absolutetemperature, gas ranges 65
25. Hottest point on door frame, absolute temperature, gas ranges • • . 66
26. Average of 4 highest points on door frame, absolute temperature, gas ranges 67
27. Average of all points on door frame, absolute temperature, gas ranges 68
28. Hottest point on window, absolute temperature, electric ranges 69
29. Average of 4 highest points on window, absolute temperaturc, electric ranges 70
30. Hottest point on porcelain door, absolute temperature, electric ranges 71
31. Average of 4 highest points on porcelain door, absolute temperature, electric ranges 72
32. Average of all points on porcelain door, absolute temperature, electric ranges 73
33. Hottesi point on door frame, absolute temperature, electric ranges 75
34. Average of 4 highest points on door frame, absolute vemperature, electric ranges 76
35. Average of all points on door frame, absolute temperature, electric ranges 77
36. Gas ranges temperature, average of 4 highest points chronolozically grouped 78
37. Electric ranges temperature, average of 4 highestpoints, chronologically grouped80
38. Temperature history of Roper gas ranges 81
39. Temperature history of Tappan gas ranges 81
40. Temperature history of Westinghouse electric ranges 82
41. Temperature history of Frigidaire electric ranges 8243. Porcelain door, ratio (K_{1}) high point to average ofall points, chronologically grouped, gas ranges 8444. Porcelain door, ratio $\left(R_{2}\right)$ average 4 high points toaverage of all points, chronologically grouped, gasranges84
42. Porcelain door, ratio $\left(R_{1}\right)$ high point to average of
all points, chronologically grouped, electric ranges. 85
43. Porcelain door, ratio $\left(R_{2}\right)$ average 4 high points toaverage of all points, chronologically grouped,electric ranges 85

LIST OF APPENDICES

PAGE
A. Data sheet 96
B. Group G-1, temperatures reached and temperatures
allowed by standard and rom temperature 97
C. Group G-2, temperatures reached and temperatures
allowed by standard and room temperature 98
D. Groups E-1 and E-2, temperatures reached and
tenneratures allowed by standard and room temperature 99
E. Group E-3, temperatures reached and temperatures
allowed by standard and roon temperature 100
F. Degrees F above or below standard, gas ranges 102
G. Degrees F above or below standard, electric ranges
(groups E-1 and E-2) 103
H. Degrees above or below standard, electric ranges
(group E-3) 104
I. Door temperature ratios, chronologically by groups 105

INTRODUCTION

The home has been recognized as a potertially hazardous piace since early in time. The Book of Accidents, published for children in 1830 , warned young readers of dangers in and around the home one chapter noted that carelessness arourd cooking liquids might cause scalds [1] while another warned of the dangers of cpen fires [2].

Today, as then, bums are aromg the loading injuxies in the hore. According to the Department of lieaith: Education and Welfare estimates to the National Commission on Product Safery in 1963, appioximatexy 100s 000 persons suEfer bum injuries from gas anil aiectric cooining ranges each year $[3]$. Fron July 1969 to 1975 the National Electronic injury Surveillance System (NEISS) and its predecessors, the National Injuiy Surveillance System (NISS) and the Hospitat Emergency Rocm Injury Reporting System (HERIRS) have accumuiated reports orimore than 500 injuries associated with cooking ranges. While a variety of injuries related to rarges were reponted, burn injurjes were the most frequent [4] .

Many, if not most, of these injuries happen to chilrrer. Range manufacturers heve maintained that it is the parents responsibility to educate thein children as to the burn dangers of a hot range. However, parentes are aware that children old enough to toumh hot range surfaces camot be countcu inpon to corprenend the danger or rememiver the warnings. To a child under six, the world is not a dongerous place but an interesting one. Ha is lilely io be unware of potential dargers because his senses, his intuition and his scone or kohiodge are still in the early stages of development. The child must be protected fiom langers througt ciose supervision or by the ikvelcpment of safe products for tioe hone.

The young child who can pull himself up to a standing position and one who needs to grasp objects for support as he walks are particularly vulnerable to severe hazards. The oven door viewing window, being inset, provides a ledge to which the child can cling. Being curious, the child may desire to peer into the window to see what is inside or be attracted by the reflection in the glass, unaware of the potential danger of the hot oven door.

The severity of the child's burn may be increased because of longer contact time. The child, with an instinctive fear of falling, may be hesitant to release his support. He may be aware of the pain caused by the hot surface but not be certain how to make it stop. He may have a slower reaction time and probably a thinner skin thickness, both of which would contribute to a child being burned more severely than an adult under the same circumstances. These factors will be further discussed in the review of literature.

The National Commission on Product Safety sought to identify problem areas and find solutions to ensure a safe environment. Although manuíacturers have established standards for appliance safety, the exterior surface temperatures reached by household gas and electric ranges remains an area of concern.

The purpose of this study is to determine if ranges in normal use in homes today are reaching surface temperatures that could cause burns to humans. The study will seek to answer the following questions; 1) Are ranges meeting the guidelines established by industry safety standards?
2) Are newer ranges safer than those manufactured several years ago?
3) Are companies complying with standards better than they have in the past?
4) Does quality control, wilh respert to surface temperatures and
hot spots, appear to be improving? 5) Are the present standards adequate to protect both adults and young children?

REVIEW OF LITERATURE

Applicable literature was searched in regard to appliance design, results of touching hot surfaces made of various materials, variables relating to the severity of burns, children's skin thickness and responses to pain, recorded burn cases and appliance standards. Prior to 1975, very little information related directly to the problem of surface temperatures of ranges was available.

Burn classifications
Some understanding of the skin structure and the classification of burns by degree is necessary before discussion of other factors related to burns. W.A. Bullerick and D.E. Adams [5], in a Calspan Technical Report, describe skin as consisting of about a 80-100 micrometer epidermis layer over about a 2000 microncter layer of dernis, which in turn is over a much thicker fatty layer. Concerning burn classification, they describe a first degree burn of the mild type as having transient dilation of near surface blood vessels, i.e. a slight reddening. More severe first degree. burns were indicated by prolonged hypermia (reddening due to increased amount of blood), while the most severe first degree burns resulted in some exfoliation of the epidermis after a few days. Blistering followed by epidermis which could be removed by friction in a few days and by in encrustation within a week was an indication of at least a scemd degree burn. Whether a burn was second or third degree depended on the depth of penetration into the demal layer. A third degree burn is said to have occurred after a significant portion, 50 to 75 percent, of the dermis is irreversibly danaged. Reversible jnjuries are burns of the first degree
type and non-reversible injuries are burns of the second or third degree type.

Thermal injury
There are three different responses to be considered when hunan skin comes into contact with a hot surface. These are: 1) the sensation of warmth or coolness 2) the sensation of pain, and 3) the occurance of a burn. A study done by the Human Factors Section of the Kodak Company's Health and Safety Laboratory [6] investigated the physiological and psychological processes underlying these responses. The same group formulated guidelines [7] to control the hot surface problen.

Pain is felt when the appropriate sensory nerve endings in the skin are raised to a specific threshold temperature. Kodak researchers [7] established a number of factors that must be taken into consideration in the evaluation of pain. "The most important variables are the temperature of the material being touched and its thermal properties. Other important variables include duration of contact time, initial skin temperature and epidermal thickness (callusing)." They also indicated that reaction time when touching a hot surface is normally 0.2 to 1.0 seconds. By using a high initial skin temperature of $94^{\circ} \mathrm{F}$, a conservative epidermal thickness of 115 micrometers and a 5 th percentile threshold where only one in 20 contacts with a hot surface can be expected to elicit pain, the pain threshold (the temperature within the skin at the depth of the receptorg was calculated to be $108^{\circ} \mathrm{F}$. With this information it was possible for Kodak investigators $[7]$ to compute the temperature of a hot surface that will raise 115 microneter deep skin temperature to $108^{\circ} \mathrm{F}$ within one second contact time. The thernal properties of the various materials affect this calculation (metal is much better conductor of heat than glass, etc.)

Table 1 shows the pain and burn threshold temperature for varions materials. The conclusion reached by the Kodak researchers regarding pain was that "no surface, regardless of its composition, that might be frequently or continuously touched, should exceed $108^{\circ} \mathrm{F}^{\prime \prime}[7]$.

Source: [7]

Taking these calculations one step further, researchers at Kodak also investigated accidental contact with a hot surface which might result in a burn. The report used the least severe, first degree burn as the basis for the calculations. The assumptions made in these calculations were a contact time of 1.0 seconds, a very high skin temperature of $97^{\circ} \mathrm{F}$, a dermal-epidermal interface level of 80 microneters and a lst percentile threshold to ensure a higher degree of protection. The burn threshold 80 microneters below the skin surface was calculated as $133^{\circ} \mathrm{F}$ for this sct of conditions. The critical material temperatures that will result in this threshold being exceeded was calculated for materials whose thermal peoperties were known and resulte are shown in Table 1.

An important pioneer study of skin burns was that of Mortiz and Henriques [8] in 1947. In experiments on pigs and later on humans to determine time and temperature relationships of contact with a hot surface, the investigators established a threshold curve at which burns to human skin occur. After reviewing their own and cther research they concluded that $111^{\circ} \mathrm{F}$ is a critical temperature. Long exposure at this temperature will produce burns, but a lower temperatures burns will not be produced regardless of exposure time.

Wu [9] stated that there are three principle factors involved in the cause of thermal injury by heat conduction. They are temperature, time and type of material used in the heated surface touching the body, He concluded that a "metal (aluminum) surface with a temperature of $167^{\circ} \mathrm{F}$ or greater can be expected to burn human tissue with one second". Wu advised, however, that care should be exercised in the use of this value in actual application as a safety factor should be considered.

A September 1970 Consumer Reports [10] articie on product safety stated that "in order to avoid burns to small children, it would likely be necessary to limit metai temperature to maximum of $120^{\circ}-130^{\circ} \mathrm{F}^{\prime \prime}$.

Burn injuries and their causes have been recorded in a few studies in past years. Waller and Manheimer [11] published a study in 1964 in which 508 non-fatal burns to children were analyzed to determine causes, age relationships, sex reiationwhips, severity of burns and part of the body most comonly involved. The researchers evaluated medical records of children treated between April 1946 and June 1960 at the Kaiser Foundation Hospital in Dakland, California. It was found that the "non-fatal burn injury rates vary widely according to age. The risk of injury by burn during the first two years of life is 29.3 per thousand but it rapidly decreases
after this time. For children under tho, burns account for 13.5% of all noil-fatal injuries, whereas after the age of three they account for less than 2% of all injuries." Table 2 shows the burn rate for each year from age 0 through 15 as reported in this study.

Age	No. of burns	No. of children	Rate per 1,000/year
0 to 1	206	3,511	29.3
2 to 3	116	4,608	12.6
4 to 5	63	6,033	5.2
6 to 7	46	6,070	3.8
8 to 9	47	5,714	4.1
10 to 11	48	4,902	4.9
12 to 13	27	3,427	3.9
1.4 to. 15	13	2,075	3.1

Waller and Manheimer also note that "Stoves caused 8% of the burns investigated" and these tended to be the most severe, with 21% being of the third degree type. Table 3 shows the degree of burn injury for all burn causes encountered in their research.

Table 3. Degree of burn injury by cause.

Degree of burn injury	Floor heaters \%	$\begin{gathered} \text { Other } \\ \text { heaters } \\ \% \end{gathered}$	$\begin{gathered} \text { Scalds } \\ \% \end{gathered}$	Stoves \%	Elec. App. \%	Misc. $\%$	$\begin{gathered} \text { Unknown } \\ \% \end{gathered}$	$\begin{gathered} \text { Total } \\ \% \end{gathered}$
First degree	7	9	7	7	17	21	12	11
Second degree	81	70	84	69	68	52	65	71
Third degree	7	17	7	21	12	19	12	12
Unknown	5	4	2	3	3	8	11	6
Total	100	100	100	100	160	100	300	100
Total no. of birns	97	23	123	42	34	85	104	508

"As one night expect," they continue, "the child's lack of coordination plays an important role in burns to children under the age of five." Table 4 would indicate that a younger child is more likely to be injured by a stove, with those in the early walking stages encountering the greatest risk.

Table 4. Distribution of burns for first 5 years of life by cause.

Age in months	Floor heaters (\%)	Scalds (\%)	Stoves (\%)	Electrical Appliances (\%)	Misc. (\%)	Unikown (\%)	Total (\%)
C-11	9	26	27	14	21	19	18
12-23	69	45	36	34	11	45	47
24-35	18	12	14	33	16	13	16
36-47	3	11	15	13	27	18	13
48-59	1	6	8	6	25	5	6
Total	100	100	100	100	100	100	100

Source: [11]
The causes of these burns were also catagorized for this study. Burns from stoves are most likely to injure the hands and arms. Second degree burns were most cominon in the group of stove injuries, followed by third degree burns.

The U.S. Consumer Product Safety Commjssion $[12]$, stated that based on an analysis of over 3,000 cases of burns to the hands of children in the six NEISS product categories associated with ovens received in FY 1.974, they could "reasonably assure that thermal burns to the hands of children under four years of age (particularly to those under two years of age) were associated with either side panels or oven doors." The Commission did several indepth investigations of burns resulting from contact with a range surface while it was in operation. [4] In eight of the cases, outside temperature readings on the oven door were taken and ranged from $130^{\circ} \mathrm{F}$ to $220^{\circ} \mathrm{F}$. All of the burns occurred to the hand or forearm, with first and second degree burns being the diagnoses.

For the indepth investigation, no injuries that were a result of contact with flame, burners or burner areas, or the interior surfaces of the oven or broiler were included. The incidence of burns peaked during the late afternoon and early evening hours, those of maximum cooking activity. Small children can be expected to follow their mother closely at that time, as they are of ten tired and hungly, and will therefore more likely be in the kitchen while cooking is in progress and shortly thereafter. In 13 of the 16 indepth studies the victjm was in the toddler stage, the mean and median age for these 13 cases being Il months. Typically, the burn was to the palms and fingers. Following are descriptions of the cases used for the indepth review: [4]

Case 1. An 11. month-old girl suffered 1° and 2° burns to the right palm when she reached out to support her unstable "todide" and contacted the front of a hot oven door.

Case 2. A one year-old girl received 7° and 2° burns on the fingers and palms of both hands when she leaned against the oven door of a range several minutes after it had been turned off from one hour at $350^{\circ} \mathrm{F}$.

Case 3. An eight month-oid little boy tried to pull himself up by grabbing the edge of the oven door on a gas range which had been set at 500° for about 30 minutes. He suffered 2° burns to his left palm and to his right palm and finger.

Case 4. An 11 month-old girl received 1° and 2° burns to both hands when she supported herself, while walking, against the oven door of a gas range which had been set at 350° for about one hour.

Case 5. A one year-old boy fell against an oven door when he lost his balance, receiving a 2° burn to his left palm.

Case 6. A 65 year-old woman suffered 2° burns to her left forearm when she contacted the glass in her oven door as she tried to push it closed with her arm.

Case 7. A 13 month-old girl, walking from one supporting structure to another, received a 2° burn to the right palm when she tried to support herself against a hot oven door.

Case 8. A nine month-old boy: received 2° burns to his right palm and fincertips when he reached up to touch a hot oven door while crawling on the kitchen floor.

Case 9. A 10 month-old boy, trying to stand up, lost his balance and fell against a gas oven floor receiving 2° burns to both palms. The oven had been turned on and set at 450° less than $10 \mathrm{~min}-$ utes earlier.

Case 10: An 11 month-old boy leaned against the hot oven door of a gas range and suffered 1° and 2° burns to his right palm and forehead.

Case 11: An eight month-old boy, crawling in the kitchen, suffered 2° burns to his hand when he touched the top edge of the broiler door on a gas range which had been turned off about two hours earlier.

Case 12: A 72 year-old woman who suffered a dizzy spell and fell against the side of her hot stove received 2° burns to her right forearm.

Case 13: A 14 month-old boy, pulling himself to a standing position by grabbing the oven door of an electric ranee, set at 450°, received burns to both palms when he contacted the glass window of the oven door.

Case 14: A 13 month-old girl suffered 1° and 2° burns to the palns and fingers of both hands from an oven door when she pulled herself to a standing position.

Case 15: A 10 month-old girl suffered 2° burns to both palms when she touched the glass window of an oven door.

Case 16: A 15 year-old girl contacted the oven door of an electric range when she climbed on a stool to reach above the stove, receiving 2° burns to her left knee.

About half of the children involved in these cases had crawled over to the cooking range and stood or pulled themselves into a standing position or placed their harids against the range for balance. Contact with the hot cven door was typically rather brief as parents responded quickly to their cries of distress. In three cases the parent had left the kitchen, only to return to the child's cry, and found them with their hands still in contact with the hot oven door. The Commission stated that "since none of these children were known to suffer from reduced sensitivity to heat
sensation, it is assumed that they were unable to coordinate their movements well enough to react quickly once their pain threshold was reached". [4]

NEISS News [13]: a publication of the U.S. Consumer Product Safety Commission, reported that "Direct contact with the range exterior or inside the oven door injured children under two most often. Most of these injuries were to hands." It cited examples of injuries to children which indicated that they may have a relatively long response time in withdrawing from a hot surface. One 15 -month old girl pressed her hand for several seconds against an oven glass door which had reached a temperature of $200^{\circ} \mathrm{F}$. Another case involved an eight month old boy who kept slapping an open oven door until stopped by his mother.

Other cases of burn injuries have been reported in the press. In the July 4, 1973 Wichita Eagle Newspaper [14], a mother wrote in to report that her "nine month old daughter incurred second and third degree burns on her right hand as a result of touching the outside of the oven when it was set at $450^{\circ} \mathrm{F}^{\prime \prime}$. She had written to ask why all ovens are not insulated like the sel.f cleaning type and to alert other parents of the possible danger.

Range design
While insulation on the self cleaning type ranges is certainly better than on other types, it is by no means perfect. Consumer Reports [15] evaluated self cleaning ranges in July 1972 and reported that "during the cleaning cycle, one model never became hotter than $160^{\circ} \mathrm{F}$ on the outside, but most of the others had hot spots on the front of the oven door or the front of the cooktop that got up to around $180^{\circ}-200^{\circ} \mathrm{F}^{\prime \prime}$. A model that reached the highest inside temperature produced temperatures of $250^{\circ} \mathrm{F}$ just above the door handle while in operation. Metal parts on the underside of the ovens become very hot during the cleaning cycle as well, Here, temperatures of
$250^{\circ}-320^{\circ} \mathrm{F}$ were reached by the tested ranges.
Range manufacturers do try to prevent excessive heat loss from ovens by design and insulation techniques. Usually the frame of a range is made of steel or iron which is riveted or held together by screws. Panels of sheet metal are attached to the frame. The material used for insulation is usually rock wool or Fiberglas [16].

Some manufacturers make use of insulation and a design feature called an air wash. There are two panels on the door front with openings at the top and bottom. Air enters at the bottom and moves up in a chimney effect and out the top. The outside panel is kept cool by the moving air. Some manufacturers use this design with a black glass as the outside panel while others use a porcelain enamel on steel material. Kenneth Brow, President of Brown Stove Works in Cleveland, Tennesee, stated in an interview with Home Furnishings Daily in August., 1975, that they had been working for a year to reduce the outside window area temperature of their ranges. He explained that they would be using three panes of glass instead of two to meet the new standard requirements. The improved insulation and design used in the newer ranges to conform to the lowered exterior temperature safety requirements also conserves energy because the oven heat is retained better.

Consumer's Research (May 1976) [17], measured the exterior temperature of several ranges after two hours operation at $450^{\circ} \%$. Their report concluded that a major area of heat loss was the oven door, particularly a door with a window. The window "not only presents a burn hazard, particularly to small children who might touch the exterior surface of the glass in the window, but also makes for inefficient operation". Their researchers emphasized that determining at just what temperature a particular part of a range might constitute a burn hazard is a complex problem. They stated that factors ro
be considered are the material involved, the nature of its surface, its heat conductivity and the contact interval of the temperature sensor with the hot surface. Materials and finishes vary as to the hazard they present. A part made of stecl is much more hazardous at the same temperature than one made of plastic.

The article $[17]$ made reference to the new standard which set a temperature of $400^{\circ} \mathrm{F}$ as representative of the maximum temperature at which a home range oven will be operated for a prolonged time, but took exception to this as a standard temperature. "Unfortunately, the $400^{\circ} \mathrm{F}$ figure doesn't represent the maximum oven temperature that may be used (in fast-baking a turkey, for example) and therefore outer shells of ovens which pass the standards of testing organizations and carry their seals may still present a burn hazard under certain conditions of operation."

Children's physiological and psychological characteristics
The Calspan Corporation [18], made an investigation for the Consumer Product Safety Comnission to identify and classify potential hazards associated with the use of ranges and other home heating appliances. It looked at the buinn problem in gencral and burns of children, specifically. Researchers found a scarcity of literature studying causes and factors leading to burns of children and, also, no general agreement as to the thermal sensory mechanisns of children. It is known that a child's physical and psychological make-up is different than an adult's. Literature on general childhood accidents points to the "obvious fact that learning and perception are probably the most important factors involved in childhood accidents", noted the Calspan report. In addition, the lack of experience with the environment and the child's normal tendency to imitate parental and adult behavior may make him more of ten injured in the home than an older person. The child alsolacks
the abilit.y to recognize potential hazards of objects and behaviors. Education and supervision cannot be entirely responsible for children's behavior, but supervising adults must be made aware of the child's changing physical, cognitive and perceptual capabilities in order to better understand, maintain vigilance, supervise and train the child accordingly.

Calspan reported that it is known that "children tend to suffer more severe accidental burns than adults" $[18]$ and attempted to determine the reason for this. A consistant pattern found with respect to young children was the "nearly universal failure of the victim to remove himself rapidly from the hot surface when it was apparently within his power to do so". [19] As a result, the severity of the burn was increased. This response could be caused by misperception of the danger or inappropriate reaction to a perceived danger. In addition, "during exposure to extreme heat during unexpected or misperceived thermal contact, the slowed reaction can cause destruction of the skin's thermal and bright pain receptors. The deeper pain receptors, having slower response time, especially during certain childhood developmental stages, allows longer contact time before perception and sensation, therefore allowing more tissue damage to occur before reaction is initiated" [18]. In some instances the "contact times which produce injury are relatively short and may be at or below the response time of adults (about 1 second)". As children's response times are of ten longer than an acults's, a more severe burn would result. [18]

Gibson [20] gives two general causes for childhood accidents: the child's failure in perceiving and his failure in reacting. He writes that "in the case of a child, motor develoment may be immature. There may occur conflicting tendencies to react - that is, habit interference. There may sometimes be inhibitions of reaction hy fear. But the main reason is what.
is called insufficient motor skill. The essence of skill lies not so much in the connecting of single reactions to single stimuli as in the control of the flow of action and the co-ordering of output to input."

The Calspan study concluded that a child cannot be treated, or thought of, as a miniature adult. Cited in this area was research by Krech, et al (1969) [21] showing that a child differs from an adult in physical characteristics, neurological structure and, most importantly, in behavior potentials. By physical characteristics is meant size, abilities and body porportions. A child's neurological structure is undergoing development, with resulting changes in his organs and sensory mechanisms. A child goes through a maturation-learning process which involves learning to react to stimuli according to the stages of his developing sensory limits and limited perceptions. These stages include the cephalocaudal (head to foot) and proximodistal (center to periphery) neurological developments. These sequences are partially caused by the axon myelinizations of certain neurons which increases their transmission speed. What this means is that a child's reaction, both in time and behavior, is constantly changing and different during various stages of maturation and development.

Equally important is the child's learning process and perception of possibly dangerous situations. All perception depends on attention and past experience. The child observes his mother working around the range without harm and perceives this as a desireable situation. He may then try to imitate his mother's actions. Reaching for a pan on a hot burner or touching the pven door or handle is a normal desire. The child does not perceive the danger and his attention is on his desire to duplicate the parent's activity and not on any apparent danger. [21]

Calspan researchers also cited Ruch (1953) [21] who wrote that attention is a matter of both physiological and psychological seiectivity and can modify sensory and cognitive perceptions. Attention involves what an individual expects to hear, see or feel based on past experience or learning. This will modify an individual's reaction time to unexpected stimuli. The child touches the hot surface and does not imnediately react because he is not expecting to be harmed, especially doing something that seems to duplicate his parent's actions. Adding to the problem could be that the child's neurological structure and sensory mechanisms could be at a developmental stage which slows down physical reaction time.

In calculating safe surface temperatures, Calspan [18] noted that although temperatures in ANSI Standard 221.1 are measured at oven temperatures of $400^{\circ} \mathrm{F}$ except for self cleaning ovens, in operation oven temperatures may reach more than $400^{\circ} \mathrm{F}$. Sone cooking operations may have temperatures set at $450^{\circ} \mathrm{F}$ or above. Even more severe may be oven temperature during broiling. Lower temperature limits may need to be set to protect people from burns at all times during cooking operations, according to Calspan researchers.

As a recommendation to appliance designers, the investigators at Calspan stated that the engineer "must assume that areas of an appliance accessible to a child will de touched by a child since there is no inherent "fear factor". Secondly, the desjgner must take into account longer contact times for children than for adults as the withdrawal response in young children is not an instantaneous reflex action." [19]

The author's correspondence with several physicians indicated some disagreement as to whether 1) a child's skin is thinner than an adult's, and therefore would burn more easily and 2) a slower reaction time is comyon in children, since studies report that children do not react normally
when exposed to a hot surface. Dr. Hugh D. Peterson [22], DDS, MD of Brooke Army Medical Center at Fort Sam Houston replicd that, "There is no exact measurement of the thickness of the child's skin compared to an adult's skin. What can be said is that the skin of the palm and the soles of the feet are thicker than his other skin, but all skin of children less than five years old is markedly thinner than adult skin and therefore full thickness burns are more easily incurred." Dr. Peterson also wrote that "children from six months to two years are perhaps a bit more slow to react to pain than an adult because the pain message from the receptor to the reflex arc and back to the muscle is a little slower because of its conduction time." Dr. David W. Robinson [23], MD, University of Kansas Medical Center in Kansas City agreed, "Skin thickness in children is thinner than in adults". He explained that the thick kertin or horny layer adapted for protection of the hands is not developed in children so, therefore, their hands cannot withstand as much heat. He said, however, that in his opinion there is no difference in reaction time between children and adults, although coordination in children is not as developed.

Stoli [24] comments that the "thickness of the skin varies widely over the surface of the body. It may be more than 5 rm on the back and only .5 mm on the eyelids. The usual thickness is 1-2 mm."

Thermesthesiometer development

For researchers, one of the major problems in hot surface investigations was measuring the temperature of the surface and determining a safe temperature. It was done by a thermocouple, then calculations were made considering the material of the surface and its thermal properties to indicate a sare reading. A recent research program at the National Bureau of Standards in Washington, funded by the Consumer Product Safety Commission, has enabled

NBS scicntist Louis Marzetta to design and construct a new instrument to measure the burn hazard of the heated surfaces of consumer products. This instrument, called a thermesthesiometer, is intended to duplicate the temperature that would be experienced if human contact were made with the heated surface in question.

The thermesthesiometer consists of a measuring probe that is cylindrical in shape and made of silicone rubber. The thermal properties of this material are close to those of human tissue. The probe, which has been likened to a human finger, is attached by cable to an electronic unit that provides a digital reading of the contact temperature. The instrument contains a temperature controlling circuit that maintains the probe assembly at $33^{\circ} \mathrm{C}-$ the temperature of human finguer tissue. A measuring thermocouple is located just below the surface of the end of the probe at a depth equivalent to the dermal layer containing the nerve endings in human skin. [25]

The thermesthesiometer will automatically take into account all of the variables that effect the severity of a burn and give scientist an easy method of identifying hazardous surfaces. Use of this instrument is required in the 1980 range standards.

History of standard development

Voluntary standards have been developed for use by gas and electric range manufacturers to ensure quality construction, performance and safety. Most manufacturers readily support the developinent of voluntary safety standards because they realize that neither the retailer nor the consumer are able to adequately judge the sifety of products displayed in the marketplace. The voluntary system practically becomes a mandatory program, however, because local authorities having jurisdiction over installation of appliances usually require that appliances installed in their area be constructed in compliance with nationally recognized standards. The system is not without flaws, however. The testing laboratories or organizations do not require the testing of an entire line of products. Manufacturers submit those models they wish to have tested for certification and may hold back those that may be substandard. Another major problem is that not every product on the production line is tested, though all will be certified if the tested model passes the tests. While 100% inspection would be a difficult task, it would ensure total compliance. Third, it is the manufacturers themselves who have a major role in writing the standards by which they will be regulated [26]. There are several organizations which have or have had a significant part in the development of standards for household gas and electric ranges. Gas range standards

The first performance or construction standard for gas ranges was developed by the Philarelphia Gas Works in 1903. Shortly after this, proceedings of mestings of the Ancrican Gas Institute and the National

Comercial Gas Association show that they also considered specifications to De adopted for the building of gas ranges. In June 1918, these two organizations amalgamated to form the American Gas Association (AGA). A Subcomnittee on Approval Requirements for Domestic Gas Ranges was formed for the purpose of revising existing standards and placing them in a form which would meet industry needs and enable the AGA's newly created Testing Laboratories to enforce them. The first AGA Approval Requirements were published in 1926. On September 11, 1930, the AGA Approval Requirements Comnittee became a Sectional Committee Z21 of the American Standards Association. Temperature linits for surfaces of ranges were first included in the standard in 1942 and since that time 11 editions have been published with only one major temperature change. That change lowered temperature limits by $20^{\circ} \mathrm{F}$ for all surfaces on the range and took place in 1972. Freestanding and built-in range standards were separated in 1956 to allow for more specific requirements for each of these two types.

The testing and certification agency is the AGA Laboratory. If a product passes all tests, it is certified and listed in the AGA directory. Certified products may display the "Blue Star" seai. [27]

Electric range standards

Electric range manufacturers voluntarily submit their products to Underwriter's Laboratories (UL) for testing and certification. UL was founded in 1894 with its purpose to conduct product tests, publish standards for manufacturers of products and to certify qualifying products. Those passing the standards may display the UL seal.

The first UL Standard for Houschold Electric Ranges was published in 1919; however, no surface temperature limits appeared in the standard until
1971. Temperature 1 imits were 1 owered $20^{\circ} \mathrm{F}$ for the door and frame areas and $10^{\circ} \mathrm{F}$ for the window area in 1973. Limits were also set at this time for ovens operated on the self clean cycle. There have been a total of 12 editions of the standard from 1919 to 1978.

Industry and UL engineers are the major contributors in the process of development of a standard until the late stages, when conments from consumers and others are requested. Onl.y one of the nine categories of representatives on UL standards committees is directly representing the consumer, although consumer interests are covered indirectly through categories of Government agencies and public safety organizations.

At one time the National Electrical Manufacturer's Association (NEMA) also issued standards for household electric ranges. In the 1.950 edition of the NEMA standard, surface temperature limits were given for metallic and non-metallic surfaces that would be handled in the use of the appliance. About 1964 NEMA endorsed the UL standard for household electric ranges and dropped this part of its standard publication work.

NEMA is a trade association of manufacturers of almost every kind of equipment used for the generation, transmission, distribution and utilization of electric power. The organization is composed of subdivisions, called Sections, each representing a group of manufacturers of a certain class of products (e.g. water heaters, ranges, wire). NEMA has published over 150 separate standards for electrical equipment and cooperates with UL and the American National Standards Jnstitute in the development of standards [28].

American National Standards Institute

The American National Standards Institute (ANSI), formerly the American Standards Association (ASA) and the United States of America Standards Institule (USASI), serves as a national clearinghouse for standards and
provides machinery for developing and approving standards which are supported by a rational consensus. Basic principles which apply to all standardization work under ANSI are: 1) standardization is voluntary; 2) the committee to develop standards must be balanced among producers, consumers, general interests and regulatory bodies. Each standard must be reviewed every five years $[28]$.

Under ANSI is the Committee $Z 21$, which writes gas range standards and is composed of gas industry representatives, insurance industry representatives and members representing the government as well as many other concerned groups. The 221 Subcommittee on Standards for Domestic Gas Ranges does the major work of writing the standards.

The UL standards are also endorsed by ANSI.
Constant revisions to the standards, in temperature limits, testing method and instruments used have been made which would relate to this investigation. Tables 5 and 6 summarize requirements related to surface temperatures and measurement techniques for both gas and electric ranges under these standards.
Table 5. Household Gas Range Test Standards for Surface Temperatures.

Temperatures Allowed

The gas inprit to the oven shall be The (interfor) temperature reading regulated to maintain an oven temp. of shall be made with an indicating or Surface temps shall be taken 1 hour connected thermocouplcs, one located after a constant temp. has been reached at the center of the oven and the
The temp. readings shall be taken at center and the corners of the oven an the diagonals of a horizontal plane
through the center of the oven.
The surface temp. shall be det
The surface temp. shall be deter-
otentiometer and an iron-constantary thermocouple with its junction blazed
in the face of a copper plate $7 / 32$ in In the face of a copper plate $7 / 32$ in
in diameter +0.024 in. thick. Iron in diameter +0.024 in. thick. Iron junction shall be No. 24 AWG. the door panels. The top, back, door and sides shall each be divided into 16 similar and equal. Surface temps. on shall be taken along their center lines as intervals of 4 in . where door frames are not exposed to view or where they
are not used in the construction of doors, the surface on door panels bounded by each edge and a line parallel to and 1 in. from
each edge shall be considered as the door frame. The temps. of such surfaces shall be taken at 4 in . intervals along their
The temps. for each section shall be averaged and a weighted average calculated
on the basis of the area of the section. on the basis of the area of the section.
Temps. shall not be taken closer than
 come in contact with the products of comb-
ustion or the heated interior of the oven. Temps on the oven and broiler door hand-
les and on the thermostat knob shall be les and on the thermostat knob shall be
made by means of the surface temp. thermo couple described above. Temps. shall be taken on those portions of the handles or knobs normally touched in opening the doors
or setting the thernostat.

Effective Dates	Temperatures Allowed Rise above room ${ }^{\circ} \mathrm{F}$	Exceptions	Method of Test	Instruments Needed
Nov. 5, 1942		The gas inprit to the oven shall be regulated to maintain an oven temp. of $330^{\circ} \mathrm{F} \pm 5^{\circ}$ above room temp. Surface temps shall be taken 1 hour after a constant temp. has been reached in the oven. The temp. readings shall be taken at the conter of equal areas on the top, sides, back of the oven (broiler) and the door panels. The top, back, door and sides shall each be divided into 16 areas, all areas on the same sheet being similar and equal. Surface temps. on exposed door frames and front frames shall be taken along their center lines at intervals of 4 in . where door frames are not exposed to view or where they are not used in the construction of doors, the surface on door panels bounded by each edge and a line parallel to and 1 in . from each edge shall be considered as the door frame. The temps. of such surfaces shall be taken at 4 in . intervals along their center lines. The temps. for each section shall be averaged and a weighted average calculated on the basis of the area of the section. Temps. shall not be taken closer than 1 in. to objects such as thermostats which come in contact with the products of comb-1 ustion or the heated interior of the oven. Temps on the oven and broiler door handles and on the thermostat knob shall be made by means of the surface temp. thermocouple described above. Temps. shall be taken on those portions of the handles or knobs normally touched in opening the doors or setting the thernostat.	The gas inprt to the oven shall be regulated to maintain an oven temp. of $330^{\circ} \mathrm{F} \pm 5^{\circ}$ above room temp. Surface temps shall be taken 1 hour after a constant temp. has been reached in the oven. The temp. readings shall be taken at the center of equal areas on the top, sides, back of the oven (broiler) and the door panels. The top, back, door and sides shall each be divided into 16 areas, all areas on the same sheet being similar and equal. Surface temps. on exposed door frames and front frames shall be taken along their center lines at intervals of 4 in. where door frames are not exposed to view or where they are not used in the construction of doors, the surface on door panels bounded by each edge and a line parallel to and 1 in. from each edge shall be considered as the door frame. The temps. of such surfaces shall be taken at 4 in. intervals along their center lines. The temps. for each section shall be averaged and a weighted average calculated on the basis of the area of the section. Temps. shall not be taken closer than 1 in. to objects such as thermostats which come in contact with the products of combustion or the heated interior of the oven. Temps on the oven and broiler door handles and on the thermostat knob shall be made by means of the surface temp. thermococple described above. Temps. shall be taken on those portions of the handles or knobs normally touched in opening the doors or setting the thermostat.	The (interior) temperature reading shall be made with an indicating or recording potentiometer ! 5 parallelconnected thermocouplcs, one located at the center of the oven and the other 4 equally spaced between the center and the corners of the oven an the diagonals of a horizontal plane through the center of the oven. The surface temp. shall be determined by means of an indicating potentiometer and an iron-constantary thermocouple with its junction blazed in the face of a copper plate $7 / 32$ in in diameter +0.024 in. thick. Iron Constantan lead wires from the junction shall be No. 24 AWG.
(Part II, Z21.1 1942 Performance Requirements Natural and Manufactured Gases Sec. 243 pp. 49-50)				

Effective Dates	Temperatures Allowed Rlse above room ${ }^{\text {' } F}$	Exceptions	Method of Test	Instruments Needed
Nov. $\frac{8,1967}{(221,1967}$ Sec. 2.10 P. $38-39)$	No Change	*For combinations of top section and elevated oven or broller, surface temp. rises for oven or broiler metal or glazed door frames may exceed the applicable limits by no more than $30^{\circ} \mathrm{F}$ for areas that will be more than 4 ft . above floor level in the normally installed position except for such surfaces as must be contacted in use of the door handle.	No Change	No Change
Sept. 15, 1969 (221.1.20 1969 U'SA Standard for Domestic Gas Ranges Vol. I Free- standing Units Sec. 2.19 p. 7)	Max. metal deor panel temp.- 95° Max. glazed door panel temp* 110° Max. ext. sice, bark temp. -110° Max. frame temp. - - - - 125° Max. door handle temp. - - 40° Max. thermostat knob temp. - 40° Max. valve handle temp. - -40° Recommended: Max. timing device knob temp 40° Max. safety shutoff device button temp. - - - - - - 40° * temps shall not be taken closer than 1 in. to the opening framing the glazed panel.	No Change	No Change	No Change
$\begin{aligned} & \text { Jan. } 12,1972 \\ & \text { to Feb. } 12, \\ & \frac{1974 \text { (new }}{\text { range designs) }} \\ & \frac{\text { Sept. } 30,1975}{\text { (old range }} \\ & \frac{\text { designs) }}{\text { leng }} \end{aligned}$	Max. Surface Temps. Rise above Room Metal door panels $\quad \ldots \ldots 5^{\circ}$ Glass door panels *- - - - 90° Exterior side \& back - - - - 90° Frame- - - - . - - - - - 105°	No Change	An oven or a combination oven $\&$ broiler which is heated by the oven burner shall be tested with the thermostat set to maintain an oven temp. of $330^{\circ} F \pm 5^{\circ}$ above room temp.	

Door handle - - metal - -nonmetallic-	60°
Thermostat k	40°
	60°
Valve handle- - metal	40°
nonmetalli	60°
*Temps. shall not be taken closer than 1 in. to the opening framing the glass panel.	
Recommended:	
Timing device knobs and safety	
Shutoff device buttons metal - - - - - - - -	40°
nonmetallic - -	60

Effective
Method of Test
With the unit at room temp.
the gas shall be turned on, ignited
and the door closed. Surface temps and the door closed. Surface temps
temp. has been reached in the compart-
ment.
No Change

$$
\begin{aligned}
& \text { ment. } \\
& \quad \text { Surface temps. shall be taken at the } \\
& \text { center of equal areas on the door } \\
& \text { plate } 7 / 32^{\prime \prime} \text { In diameter and } 0.024 \\
& \text { ln. thick. Iron constantan leads } \\
& \text { panels }
\end{aligned}
$$

Surface temps. shall be determined by means of an indicating potentiometer and an iron constantan thermocouple with its junction

$$
\text { No. } 24 \text { AWG. }
$$

Table 6. Household Electric Range Test Standards for Surface Temperatures.

(For illustration see Fig. 10 in stanciaru)
 "be turried off.
Test 3-If the $\frac{\text { Test } 3-\text { If the uplfance included }}{\text { OT } 2 \text { pyrolytice self-clenain; ovens }}$ ile tosit is to be starled at room terip the ovin or ovens are togic clean of no
surface wienicnt is to bc operated.
surface menient is to bc uperated.
In a dual oven aprifance 1) the non-
obli cleaning oven is to remith de-solf-cleatidag avens nre to be oncraice
the comk-top
Tlie front The front
suänact bet-
ven doors 0
-1
$\frac{1}{3}$
C
-1
0
1
1
0
0
A conbination
tescribed in

 cuting tive cleanir:\% cojcle of a pyrolytie
seyf cleaning oven. "iem readings are to tic taken at the
conters of equat areas on the side pancls
of the zanse and on the dour panclis. (ror fllustriation see Fig. 10 an stanciari) -

EXPERIMENTAL PROCEDURE

The testing procedure was a composite developed from standards used for evaluating ranges submitted for UL or AGA listing. Ranges used for the study were located in the home economics teaching and research laboratories at Kansas State University and in the homes of community volunteers. A wide variety of brands and ages of ranges was used.

Pre-test procedures

Before each test, room temperature, time, address and range j.nfornation such as model number, serial number, brand, cleaning features, door and handle material was recorded for use during analysis and in case it was necessary to contact the volunteer again. The data sheet is located in the Appendix.

The oven door was cleaned with a damp cloth before testing to remove any grease or soil which might prevent good contact between the tenperature sensing probe and the door's surface. The door fit was checked to determine if there was any relationship to poor fitting door gaskets and hot spots on the surface. Van Zante [32] suggests that the fit of the oven door be checked by closing it upon a piece of paper, then attempting to withdraw the paper while the door remains closed. The paper will be tightly held by a well fitted door. This technique was adopted for the tests.

After cleaning, a gric was drawn on the door with a washable markcr, to indicate where temperatures would be taken. Fjgures 1 and 2 show the grid schematic. The grid included a one inch border around the outside frame area of the door. The border was marked for temperature measurement every four inches, begiming at the upper right onmer and proconcine down and

Figure 1: Example of grid on oven door without window.

Figure 2: Example of grid on oven door with window.

around the door．If the beginning and ending point on the strip were closer than one inch，the last point was not used．If the handle covered the strip and the temperatures could not be taken in the border area on the proper points，no readings were taken on the section．If the handle was attached so that readings could be taken normally under the handle，temperatures were recorded for the section．The centcr area of the oven door was divided into 16 equal areas with the temperatures taken in the center of cach．To locate the exact center and to be able to take the temperature at the same point with each trial，an X was drawn in the square．As can be noted on the drawings，the X does not intersect．It was left open in the center so that the marker lines would not prevent good contact betwcen the probe and the door surface．If the door had a window，it was divided into four equal areas and the temperature taken in the center of each．

Instrumentation

A thermocouple，shielded with foil，was placed in the center of the oven during preheating and operation for the test．This was to indicate if the oven was reaching the proper temperature during the test．The thermocouple was attached to a Rustrak recording potentiometer，model number 2155A． Temperature in the oven was to average $400^{\circ} \mathrm{F}$ and before the test began，the oven thernostat was adjusted so that the $400^{\circ} \mathrm{F}$ temperature was reached．The interior tempcrature of the range was not measured during the tests of the self cleaning ranges．

A temperature measuring probe was built according to specifications in UL 858 Standard for houschold Electric Ranges．A diagram for the probe is shown in Figure 3．It consisted of $⿰ ⿰ 三 丨 ⿰ 丨 三 一 24$ iron－constantan thermocouple wires that were draw throuch a wooden handle and silver soldered to a copper disk， $7 / 32^{\prime \prime} \times .020^{\prime \prime}$ ，imbedred in cork．A spring made it possible to calibrate the

Figure 3. Temperature-Measuring and Accessibility Probe
instrument so that an even five pound force would be exerted on each point during testing. The probe was attached to a Rustrak recording potentiometer model number 107. Other instruments used were a GiaLab universal timer, for measuring the seconds that the probe was held in contact with the door at each point, and a thermometer to measure rcom temperature. It was necessary to warm up the potentiometer for 30 minutes before each test for accurate readings. It and the probe were checked for proper calibration and operation periodically by checking room temperature and the temperature of boiling water.

Test procedures

The temperature setting for the oven and length of oven operation before the test were suggested by the UL and AGA standards. For self clearing ranges, the ovens were operated for two hours in the clearing cycle before the test began and were in this cycle the entire time the door tempenatures were taken. For the ranges tested on the bake cycle, the oven was brought to $400^{\circ} \mathrm{F}$ and operated for one hour at an average internal tempelature of $400^{\circ} \mathrm{F}$ before the testing began. The oven temperature was held at $400^{\circ} \mathrm{F}$ the entire time the door temperatures were being taken. The standards state, in some years, that this temperature should be $330^{\circ} \mathrm{F} \pm 5^{\circ} \mathrm{F}$ above room temperature: howevor, for this testing an oven temperature of $400^{\circ} \mathrm{F}$ was used without allowing for the variation in room temperature. None of the other units on the range was operated during the preheating or testing and the oven door was not opened after operation began.

A checklist of steps, developed by the investigator to ensure against omissions and guaranteo reproduceability is as fullows:

1. Plug in and warm up the recorder
2. Clean surface of oven door
3. Check door fit with paper
4. Record ail information at the top of data sheet
5. Place shielded thermocouple sensor in oven and preheat range
6. Draw grid on surface of oven door
7. Adjust interior oven temperature if necessary for $400^{\circ} \mathrm{F}$ average
8. Draw and number grid on data sheet
9. Measure and record temperatures

The grid on the data sheet was numbered sequentially so that the investigator took readings in the proper order and that order would be recorded.

The probe was preheated for $1 \frac{1}{2}$ minutes by holding it on the first point, before beginning the test. After that, the probe was preheated for 15 seconds on each point, five pounds of pressure was applied for 10 seconds, the reading was taken and five seconds was allowed for movenent to the next point.

The temperature of each point was taken three times in the sequence show in Figure 4. Temperatures were taken starting at the upper left corner and going across, then returning to the second row and working from left to right again. After all points were taken in rows left to right, the order was reversed and all points were taken a second time. For the third trial, temperatures were taken beginning at the upper left and working from top to bottom in columns. At the end of the three trials, if two readings differed more than $7.5^{\circ} \mathrm{F}$, a fourth reading was taken. Accuracy of readings was $\pm 3^{6} \mathrm{~F}$ 。

Figure 4: Order in which temperatures at points were measured \& recorded.

$$
\text { Begin } \longrightarrow
$$

Trial 1

Trial 2

\sim Begin

RESULTS

For this study 55 ranges were tested to detemine the temperatures of various surfaces on the oven door. Of these, 20 were gas ranges manufactured from 1948 through 1974 and 35 electric ranges produced from 1949 through 1974. Since annual modej. changes are not common in the major appliance industry, the exact dates of manufacture had to be obtained from each manufacturer using serial numbers.

For analysis, ranges of each type (gas or electric) were grouped by date of menufacturer and the standard in effect at the time of production, as seen in Table 7. No UL standard specifying maximum range surface temperatures were in effect prior to June 1, 1971. The first UL standard extant was applied when test results for ranges manufactured from 1949 through May 31, i971 were compared to standard requirements.

Several modes of comparison are appropriate or necessitated by the wording of the various standards. The standards specified different temperature limits for window area, frame area and porcelain door, so a range could be in noncompliance if a single temperature at any specified point was in excess of the appropriate limit. Such temperature limits, in terms of degrees Fahrenheit above room temperature, are tabulated in Tabie 8 for gas ranges and in Table 9 for electric ranges. Figures 5, 7 and 10 (for gas) and Figures 13, 15 and 18 (for electric) classify, in 10 -degree increments, the percentage of ranges in each group above and below the appropriate surface temperature limit specified in a standard.

Although the standards did not require it, the average of the four hot test points was determined for each area, in order to lend greater credance to judgements of noncompliance. lateral temperature gradients proved

Table 7. Range Groupings by Applicable Standards.

Gas Ranges
Group G-1 (1972-1975)
1974 Tappan
1974 Hardwick
1974 Hardwick
1974 Hardwick
1974 Roper
1974 Roper
1974 Firestone
1974 Penney's
1973 Tappan
1973 Magic Chef
1972 Tappan

Group G-2 (1948-1972)
1970 Royal Chef
1970 Whirlpool
1969 Tappan
1969 Sears
1969 Magic Chef
1961 Tappan
1955-62 Chanbers
1951 Roper
1948 Roper

Electric Ranges
Group E-1 (June 1, 1973-Sept. 30, 1975)
1974 Westinghouse
1974 Sears
1973 Frigidaire

Group E-2 (June 1, 1971-May 31, 1973)
1973 Corning
1973 Westinghouse
1972 Hotpoint
1972 Hotpoint
1972 Corning
1971-72 Frigidaire
1971-72 Frigidaire
1971-72 Frigidaire
1971 Sears

Group E-3 (before June 1, 1971-no standard in effect
1971 Hotpoint
1971 GE
1971. Hotpoint 1959 Westinghouse

1970 GE 1959 Frigidaire
1970 GE 1959 Kelvinator
1970 Hotpoint 1957 GE
1969 Sears 1956 Westinghouse
1965 GE 1956 GE
1964 Frigjdaire 1955 Westinghouse
1964 Frigidaire 3949 Frigidaire
1964 Hotpoint
1.964 Hutpoint

1963 Hotpoint

Table 8. Summary of Temperatures Allowed by Standard, Household Gas Ranges AGA/ANS1 221.1.

	Degrees above rooni temperature $1948-$ 1972	$1972-$ (Group (G-2)
Maximum metal door panel	$95^{\circ} \mathrm{F}$	$75^{\circ} \mathrm{F}$
Maximum window panel (glazed panel)	$110^{\circ} \mathrm{F}$	$90^{\circ} \mathrm{F}$
Maximum frame	$125^{\circ} \mathrm{F}$	$105^{\circ} \mathrm{F}$

Table 9. Summary of Temperatures Allowed by Standard, Household Electric Ranges UL, 858.

to be considereable, allowing small variations in grid delineation or sensor placement to appreciable affect reproducibility. Figures 6, 8 and 11 (for gas) and Figures 14,16 and 19 (for electric) compare the average temperature of the four hottest points with the appropriate standard. Since "hot spots" may be more an indication of careless assembly than inadequate design, the average of all temperatures measured on each area was determined for comparison. Figures 9 and 12 (for gas) and Figures 17 and 20 (for electric) show the relation between such averages and the standards in force. Since only four points were tested on each window, the average of the four hottest points was also an overall average.

At the bottom of each of the aforementioned figures is a plot of each data point included in the classified data. They show the actual data spread, although they do not lend themselves to histograph plotting.

Figures 21-36 present the data of Figures 5-20, classified in 10-degree increments, in absolute terms rather than in comparison to a standard. This allows for an historic perspective of the range industry's attitude toward and remedies for a serious safety problem.

Evaluation of compliance with standards

Gas Ranges. When considering the window at the hottest point (Figure 5): 88% (all except one range in group $G-1$) were above the standard. All ranges in group G-2, the older set, were above the prescribed temperature limits, indicating slightly better compliance in recent models. Averaging the four highest temperatures (Figure 6) brings the temperature closer to the AGA standard, but still only one G-1 range is within the limits. The same pattern is seen for the older models, G-2.

The hottest point on the porcelain door was above the standard for six of

Fig.. 5 Hottest point on window, degrees above or below standard, gas ranges

Fig. 6. Average of 4 highest points on window, degrees above or below

the nine ranges in group $G-1$, or 67% (Figure 7). One of these ranges had a temperature $69^{\circ} \mathrm{F}$ above the standard. The older ranges, group $\mathrm{G}-2$, were more in compliance, with only 22% above limits. When considering the average of the four highest points on the porcelain door (Figure 8), compliance improved slightly for both groups. Group G-1 still had one range more than $60^{\circ} \mathrm{F}$ over standard limits, but the percentage exceeding the limits had decreased from 88% to 67%. Group G-2 still had 22% above limits, but not by as much as nreviously. Averaging the readings from all points on the door brought 67% of the group G-1 and all of G-2 into compliance (Figure 9). It should be remembered, however, that the standard states that all points should be below the temperature limits, making no allowances for averaging any points. Comparison of the two groups for the hottest point on the frame (Fig. 10) shows almost equal compliance, $55-56 \%$. Averaging the four hottest points (Fig. 11) improves compliance to 64% for $\cdot \mathrm{G}-1$ and 89% for $\mathrm{G}-2$, indicating some slippage for newer ranges. After averaging all frame points (Fig. 12), 100% of the older G-2 ranges were well under the 1 imit, but 27% of the newer G-1 ones were still too hot.

Electric Ranges. Compliance with the electric range standard showed drastic improvement in recent years, as non-compiiance for the hottest window temperature dropped from 100% for groups E-2 and E-3 (Fig. 13) to 33% for group E-1. In this, as in all electric range comparisons, there was no range standard for surface temperatures during the period of group E-3 coverage, so the comparison shown (Fig. 13-20) is with the standard in force during group E-2 time period. The average temperatures of the four hottest points were out of compliance to the same degree as the single highest temperatures.

Fig. 7. Hottest point on porcelain door, degrees above or below standard.

Fig. 8. Average of 4 highest points on porcelain door, degrees above or below

Fig. 9. Average of all points on porcelain door, degrees above or below

Fig. 10. Hottest point on door frame, degrees above or below standard, cas

Fig. 12. Average of all points on door frame, degrees above or velow

Degrees F below standard
Degrees F above standard

Fig. 13. Hottest point on window, degrees above or below standard, electric

Determination of the hottest point on the porcelain door (Fig. 1.5) showed 67% of the E-1 ranges above standard, whereas only 33% of the E-2 and 22% of the E-1 ranges were above. It should be noted, however, that three group E-3 ranges were above the limit by 30° to $60^{\circ} \mathrm{F}$. Averaging the four highest points brought all but three ranges, all in group E-3, into compliance (Fig. 16). The overall door averages (Fig. 17) show further decline in temperatures for all groups, but two E-3 ranges were still too high in surface temperature.

The hottest point on the frame area shows significant improvement, with non-compliance decreasing from 13% for E-3 and 22% for E-2 to none for group E-1. Averaging the four hottest points had little effect on compliance, with only: group E-2 changing, from 22 to 11%. When all frame area temperatures were averaged, compliance for all groups was perfect, with all E-1 and E--2 points being well below standard (Fig. 20). One range in group E-2 reached $104^{\circ} \mathrm{F}$ below the temperature limits set by UL.

Absolute temperatures reached

Gas Ranges. The hottest point on the window area (Fig. 2I.) exceeded $140^{\circ} \mathrm{F}$ for all gas ranges and most reached above $180^{\circ} \mathrm{F}$. Group G-1 ranges, the newer models, did show somewhat lower temperatures than the older G-2 ranges. The average of the four highest points (Fig. 22) was slightly lower for both groups.

The highest single temperatures on porcelain doors (Fig. 23) ranged from $128^{\circ} \mathrm{F}$ to $217^{\circ} \mathrm{F}$ s with group G-1 showing a greater range of values. The highest: temperatures, a $191^{\circ} \mathrm{F}$ and a $217^{\circ} \mathrm{F}$, occurred with newer ranges. As the four highest were averaged (Fig. 24), temperatures decreased only slightly and G-1 ranges still produced values of $185^{\circ} \mathrm{F}$ and $210^{\circ} \mathrm{F}$. Looking at the average of

Fig. 15. Average of 4 highest points on porcelain door, degrees above or

Fig. 17. Averafe of all points on the porcelain door, degrees above or below

Fig. 18. Hottest point on door frame, degrees above or below standard,

Fig. 19. Average of 4 highest points on door frame, deprees above or below

Fig. 20. Avcrage of all peints on door frame, degrees above or below

Fig. 21. Hottest point on window, absolute temperature, eas ranges.

Fig. 22. Average of 4 highest points on window, absolute temperature, cas

Fig. 24. Average of 4 highest points on porceiain door, absolute temperaturs

all points on the doors (Fig. 25), temperatures decreased sonewhat but one G-1 range still yielded $186^{\circ} \mathrm{F}$. All methods of analyzing door data showed the newer models to be hotter, on the average, than the older ones.

The pattern revealed by the gas range frame area temperatures was much like that of the other areas. The hottest points (Fig. 26) exceeded those for the doors and windows, with eight out of twenty being over $200^{\circ} \mathrm{F}$ and two exceeding $220^{\circ} \mathrm{F}$. When averaging the four highest temperatures (Fig. 27), the range decreased only slightly, two ranges still exceeding $220^{\circ} \mathrm{F}$. When all frame points were averaged (Fig. 28), one of the G-2 ranges dropped to $120^{\circ} \mathrm{F}$ but a newer $\mathrm{G}-1$ range still attained $202^{\circ} \mathrm{F}$.

Electric Ranges. The hottest points on electric range windows (Fig. 23) exceeded those of gas ranges for older models, but were slightly better on newer models. There were three rarges in group E-3 and one in group $E-2$ that reached temperatures in excess of $220^{\circ} \mathrm{F}$. All ranges in those two groups exceeded $189^{\circ} \mathrm{F}$. The newest ranges, group $\mathrm{E}-1$, had window readings that were much cooler, ranging from $143^{\circ} \mathrm{F}$ to $175^{\circ} \mathrm{F}$. Averaging of the f our hottest window points reduced readings little, indicating only minor temperature gradients (Fig. 30). In groups E-2 and E-3, eleven of the twelve ranges still exceeded $190^{\circ} \mathrm{F}$. The improvement in newer ranges was still evident. Comparison of the high points on the door (Fig. 3J.) showed most grouped in the $120^{\circ} \mathrm{F}$ to $190^{\circ} \mathrm{F}$ range. Three group E-3 ranges were extremely hot, exceeding $210^{\circ} \mathrm{F}$, and one $\mathrm{E}-2$ range extrenely $\operatorname{cool}\left(93^{\circ} \mathrm{F}\right)$. The low value was measured on a self-cleaning range being tested at $400^{\circ} \mathrm{F}$ oven temperature. When averaging the four highest points, temperatures were lower (Fig. 32). Most of the improvement was in group E-2, with three of the E-3 ranges still exceeding $197^{\circ} \Gamma$. The averages of all door temperatures (Fit. 33) revealed less spread and al. 1 newer rances ($\mathrm{E}-1$ and $\mathrm{E}-2$) being below $1.40^{\circ} \mathrm{F}$.

Fig. 26. Hottest point on door frame, absolute temperature, gas ranges.

Fig. 27. Average of 4 highest points on door frame, absolute temperature,

Fig. 29. Hottest point on window, absolute temperature, electric ranses.

Fig. 30. Average of 4 highest points on window, absolute lemperature,

Fig. 31., Hottest point on porcelain door, absolute tenperature, electic

Fig. 32. Average of 4 highest points on porcelain door, absolute

Fif. 33. Average of all points on porcelain door, absolute temperature,

The frame temperature showed a wide variety of readings. The hottest point ranged from $101^{\circ} \mathrm{F}(\mathrm{F}-2)$ to $225^{\circ} \mathrm{F}(\mathrm{E}-3)$. Group $\mathrm{E}-1$ was the coolest, the worst range being $181^{\circ} \mathrm{F}$, whereas group $\mathrm{E}-3$ had three ranges exceeding $222^{\circ} \mathrm{F}$. Averaging the four hottest points (Fig. 35) evened the spread but lowered values only slightly. Group E-1 was again cooler than the older Erouped ranges: Ar overall lowering of temperatures occurred when all points on the frame were averaged (Fig. 36). In measuring these temperaitures it was usually found that the frame was hot.test at the top or bottom (including corner points), and was much cooler in the other areas.

There were some extremely hot temperatures rcached in each of the test areas by both gas and electric ranges. Table 10 shows the high temperatures for each area.

Table 10. Highest Temperatures Recorded on Test Areas, Gas and Electric Ranges, Degrees F.

Test Area	Gas	Electric
Window (glass)	208	3 pts. at $225+$
Door (porcelain enamel)	217	4 pts. over 210
Loor frame over 220		

Historical patterns

The data from the tested ranges was also analyzed to see if there was eviderce to indicate that ranges have been getting hotter in recent years. Using whe average of the highest four temperatures of the window, the docr and the rrame, the historical pattern was graphed from the oldest group of ranges to the newest. Becatise group $G-2$ covered such a long period of time, j: was divided into two smaller rrouns, each oovering approximately 10 years. Figure 37 shows that the temperatures of the gis wange window and the frame

Fig. 36. Average of all points on door frame, absolute temperature

Fig. 37. Gas range temperatures, average of 4 highest points, chronolocically

have decreased over the years while the temperature of the door area has increased over this period.

For electric ranges the same type of comparison was made. Because group E-3 was large and covered a long period of time, it was divided into three smaller groups. Each of these groups represented $5-10$ years and were kept fairly equal in size. Figure 38 shows that temperatures for electric ranges were generally increasing over the 1949 to 1971 period. The peak is from 1966 to 1971. The UL Stardard for Houschold Electric Ranges was adopted and went into effect on June 1 of 1971 and after this time the temperatures dropped dramatically for all areas of the range.

Another area to be investigated was the history of temperatures within a particular brand. There were four brands that were represented in the test sample several times over a number of years so it was possible to plot the average temperatures of the window area, the door and the frame of these ranges against the years of production.

Figures 39 and 40 show two brands of gas ranges and their temperature history. Although these were not the same model, they were the same brand. Neither show a definite trend for all areas except perhaps the Tappan a downard jump between 1969 and 1972. This coincides with a new, lower standard put into effect in 1972.

Figures 41 and 42 illustrate histories of electric ranges of two brands. The electric range standard went into effect in 1971 and a downward trend in temperatures can be noted in these brands close to this date.

The temperatures of doors with and without windows were also compared. Ranges were separated into gas and electric types and the averages of the highest four points on the door were averaged to calculate the total mean. The temperatures of dours of ranges with windows were generally 20° to 30° higher

than temperatures of doors of ranges without windows. Table 11 shows the results.

Table 11. Average Door Temperatures of Ranges hith and Without Windows, Degrees F .

	With Windows	Without Windows
Gas ranges	166.8	143.25
Eiectric ranges	159.8	133.5

Evaluation of quality control

To determine if the quality control with respect to hot spois was improving, the ratjc $\left(R_{2}\right)$ of the porcelain door high point to the average of all points on the door and the ratio $\left(R_{2}\right)$ of the average of the four highest points to the averagc of all points on the door were figured. The results were then piotted in Figures $43-46$ according to year of prociction in the same groups used for the chronological temperature average graphs. With both comparisons, gas range ratios began rather low, peaked during the 1962-72 period and then lowered somewhat during the 1972-74 period. For electric ranges, the ratios showed a drop during the $1960-65$ period then a steady rise. With bcth gas and electric ranges, the trend of the curves for both ratios was the same, but the ratio $\left(R_{2}\right)$ was smaller than R_{1} for both cases.

Comparison with critical burn temperatures

For determining a tomperature at which burns would cecur, the Kodak Laboratory report [6] was used. It gave a temperature for the material surface itself and took into considexation variables such as thermal properties of the slkin aid the naterial, initial skin tmperature, a one second contact time, skin thickness and a lst percentile burn theshold. While pain would be

Fig. 44. Porcelain door, ratio (R) average 4 high poines to average ort all

Prodaction Years

Fis. 45. Porcelain door ration (R_{p}) of high point to average of all points. ss...

Fig. 46. Porcelain, door ration (12- average 4 high points to aver age of

elicited by one second contact with glass at $129^{\circ} \mathrm{F}$, a first degree burn would not occur until it reached $180^{\circ} \mathrm{F}$. Temperature limits for steel were listed but porcelain enamel was not included in the findings.

A critical burn temperature for porcelain enamel was derived from a combination of information from the $\operatorname{Kodak}[6]$ and the Calspan $[18]$ studies. The Calspan report gave a thermal inertia for porcelain enamel (0.00167) that was mush closer to glass (0.0013) than to steel (0.092), so it was assumed that for a one second contact the temperature limit for porcelajn would be only slightly lower than that for glass. A $175^{\circ} \mathrm{F}$ temperature was interpolated as the critical temperature for burns from porcelain enamel for tinis comparison. The Kodak formula for computing the critical temperature for various materials was unusable for porcelain enamel as the Calspan report did not include individual values for the variables used in computing thermal inertia. Yorcelain enamel is also a bonding to two materials and the formula as written was for only one material and its properties. The thickness of porceìain enamel may vary from appliance to appliance as well.

By using these critical burn temperatures, it was possible to determine what percentage of ranges exceeded the safety limits by groups, as shown in Table 12.

Table 12. Fercent of Kanges Over Critical Burn Temperatures by Groupings.

Grory	Window	Door	Frame
G-1	25%	22%	33%
G-2	100%	0%	67%
I-1	0%	0%	0%
E-2	100%	0%	56%
E-3	100%	1.3%	22%

DISCLSSSION AND CONCIUSIONS

The informetion and data collected for this study and analysis of it have alloved several conelusions to be reached about trends in surface temperitures reached, industry compliance with standards and hatards presented by the hot oven door.

The ijrst objective of the research was to determine if marufacturers were meeting the industry safety standards for household gas and electric ranges. In this area it appeared that electric range manufacturers were doing a better iob than their counterparts in the gas range industry. Accordm ing to this sample, 88% of gas ranges in the newest group tested did not meet industry standards for the window or door areas and only about half ot the ranges compled with the franie temperature requirement. Electrie ranges had a mich better record of compliance for the iatest models.

The second objective was to determine if newer xanges are safer chan those manufactioed several years ago. Since both UL and AGA have lowereat al? owable temperatures for new ranges and electric ranges are complying wel! with ihis standard, it would be correct to assume that most new electric ranges are conler thar older models. This is also indieated by the chronolom gical iemperature average graph done for electic rarges which shows a lowering of temperatures fon all surfaces on the range. In looking ati the ainsolute temperatures rezcied the dom and frame areas of gas ranges were slightiy higher than in the past and the window slifinty lower, so safoty of these rames was no better than older models.

Electric a atee temporatures wore increasine from 1949 until 3971. Menafaturets may have beon aware of this increasjog bemperature moblem
through consumer complaints and their own quality control testing, and decided a range standard for surface temperatures was necessary. After the standard was put into effect, tenıperatures of all surfaces of the electric range exterior dropped dramatically. Manufacturers were technically able and willing Lo decrease temperatures. Further reduction took place with the reviscd standard of 1973. It is also interesting to note that the standard was put into effect only a short time after the Consumer Product Safety Commission had finished its investigation of produr: hazards. The report mentioned ranges in relation to burns.

The history of temperature fluctuations within brands show much the same pattern as the overall histories. Manufacturers have been able to reduce temperatures when changes in the standard demanded it, althoigh increased cost was perhaps a result. Because range standards are published several years in advance of their effective date, range designs and changes in temperature patterns are not always pin-pointed on the date of standard change.

The third objective was to determine if companies were complying with standards better than in the past. Electric ranges demonstrated improved compliance for new ranges compared to older ranges for the window area. Some improyement was also seen in the door temperature standard compliance and a slight improvement for the frame. Gas ranges did not fare as well in compliance with the standard. An approximatcly equal percentage complied for newer and older motcls in the window temperature area and compliance for newer models was wore for the door and frame area. It should ve noted that. for eroups E-I and $G-1$ the temperature limits were lowered for both gas and clectric ranges.

The fourth objective was to determine if quality control, with respect to surface temperatures and hot spots, was improving. For gas ranges, the newest group of ranges showed an improvement in the number and temperature of the hot areas on the door. For electric ranges, the quality control has been worse with newer ranges. Causes of this increase might be less care in the appíiration of insulation in the factory.

In trying to correlate gasket condition and hot spots, very few cases could be specifically identified of much higher temperatures in an area where there was poor door fit. Many ranges had poorly fitting doors, however. Finis may de an area which range manufacturers should investigate for heat 1 oss.

The fifth objective was to determine if present range standards are adequate to protect both children and adults. An absolute temperature should ve indicated as the standard because degrees above room temperature allows far too much variation and with an extremely high room temperature, the standard allowed might present a burn hazard. The $180^{\circ} \mathrm{F}$ for glass and $175^{\circ} \mathrm{F}$ for porcelain used in the comparisons as the critical burn temperature showid be the upper limit allowed. Surfaces at these temperatures could be painful to the touch and might burn a small child, as there is evidence ro sugsest that the child's skin is thinner and his reaction time longer.

The window was the most dangerous area, however the newer ranges were safei than older models. The frame area also had a high percentage of ranges ovel the crilical temperature. The door was a hot area for the newer group of gas ranges and the oldest group of electric ranges. The newest electric ranges had temperatures under the critical limit for all three test areas,
liane stanciords have, through the years, had a scparate temperature Bimit for the frame area than for the porcelain door even thoteh the surfaces
of bolh are porcelain. The rationale for this is questioned. Why is it less hazardous to reach a particular temperature on the frame than on the door? On one range tested, the frame area and the door averaged the same temperature, yet the frame was $22^{\circ} \mathrm{F}$ below standard and the door $8^{\circ} \mathrm{F}$ above. One can as easily come in contact with the frame surface as with the door surface, and the same temper ature will produce a burn in either case.

Other observations can also be made from the analysis of data. Windows are consistantly a problem area for both gas and electric ranges. On?y seven of the 27 ranges with windows met the standard. Also, oven doors with windows were'hotter than doors without windows. It was found that doors with met:al strips around the glass door portion were extremely hot, with temperatures of $216^{\circ} \mathrm{F}$ to over $225^{\circ} \mathrm{F}$.

There kere very hot and very cool models in each type, so statements must be made according to averages and general trends. Use of the thernesthesio... meter, with one allowable temperature and reaction like a human finger, will probably increase the effectiveness of the standard.

It is recommended to UL and AGA testing laboratories, that the initial model for testing for compliance with standards should be randomly selected from the manufacturer's assembly line and spot checks be made periodically from the assembly line and in homes of consumers.

In conclusion, it can be said that a significant portion of ranges in use in homes have exterior oven door temperatures which could cause burns to childien and adults under normal operating conditions.

ACKNOWLEDGEMENT

Sincere appreciation is expressed to Patty J. Annis, Assistant Professor, Department of Fanily Ecoromics, and to Dr. Jason C. Annis, former Associate Professor, Department of Mechanical Engineering, for their guidance and assistance during the investigative study and manuscript preparation.

Gratitude is also expressed to Dr. Richard L.D. Morse, Professor and Head, Department of Family Economics and to Dr. Stephan Konz: Professor, Department of Industrial Engineering, for their constructive criticism of the manuscript.

LITERATURE CITED

1. Cone, T.E. Jr. "Scalds from Cooking Liquids, Book of Accidents published in 1830." Pediatrics. September, 1971. Vol. 48, No. 3. p. 482.
2. Cone, T.E. Jr. "Playing with Fire, Book of Accidents published in 1830." Politrics. November, 1971. Vol. 48, No. 5. p. 839.
3. National Comission on Product Safety. "Hearing Proceedings." October, 1968. Vol. 1. pp. 1-43.
4. National Comission on Product Safety. "Cooking Range Exterior Surface Burns." 1973. pp. 1-3.
5. Bullerick, W.A. and Adams, D.E. "Investigation of Safety Standards for Flane Fired Space Heatcrs." Calspan Technical Report. February, 1976. Feporit 护 YG-5569-D-4. pp. 30-36.
6. Faulmer, Terience V. "Touching Hot Surfaces." Eastman Kodak Co., Luran Factors Section, Health and Safety Laboratory. July, 1974. No. HF-74- Z
7. Fulkner, Terrence W. "Comfort/Safety Guidelines for Touching Hot Surfaces." Eastmail Kodak Co., Human Factors Section, Health and Safety Latoratory. August, 1974.
8. Noritz, A.R. (MD) and Henriques, F.C. Jr. (PhD). "Studies of Therral lifury. Il, the Relativ Tmportance of Time and Surface Temperatire in the Causation of Cutaneous Burns." American Iournal of Pathology. 1947. Vol. 23
9. Wu, Yung-Chi. "Materials Properties Criteria for Thermaj Safety." Journal of Materials, JMLSA. December, 1972. Vo1. 7, No. 4. pp. 573-579.
10. \qquad - "Perspective on Product Safety." Consumer Reports. Soptenber, 1970. Vol. 35, No. 9. pp. 560-564.
11. Waller, Julian A. (MD, MPH) and Manheimer, Dean 1. (MA). "Nan-fatal Burns of Chiles on in a Well Defined Urban Population." Jounai of Podiatrics. December, 1964. Vol. 65, No. 6, part 1. pp. 863-869.
12. Verhalen, koiezt. Internal memorandum to Bennard Schwartz concerning petition CP-75-24, Oven Doors. National Comimsion on Product Safety. August 11, 1975.
13. U.S. Consumer Product, Safety Commission. "Ranges." NEISS News. Ap:il, 1975. Voa. 3, No. 5.
14. Mana, Marearet. "Consumers Ask Column." Wichitabacle Newspaper. Juy is 1973. －＂Ranges with Self Cleaning Ovens．＂Consumer Reports． July，1972．V̄ol．37，No．7．p． 439.

16．Ehrenkranz，Florence and Inman，Lydia．Equipment in the Home． 1966. New York：Harper and Row．p． 170.

18．Bulierick，W．A．，Adams，D．E．and Cozard，C．P．＂Investigation of Safety Standards for Flame－fired Furnaces，Hot Water Heaters，Clothes Dryers and Ranges．＂Calspan Informal Monthly Progress Report 㔞．January， 1975. Contract No．CPSC－C－74－131．pp．1－24．

19．Bullerick，W．A．and Adams，D．E．＂Identification and Classification of Potential Hazards Associated with the Use of Residential Plane－fired Furraces，Hot Water Heaters，Clothes Dryers and Range．＂Calspan Technical Repori．1975．Report 非 YG－5569－D－2．pp．10－13．

20．Jacobs，H．H．，et al．Behavorial Approaches to Accident Research． 1961. New York：Assuciation for the Aid of Crıppled Children．pp．85－86．

21．Cozard，C．P．＂Factors Leading to Accidental and Severe Contact Burns of Children．＂Calspan Monthly Report 非．January，1975．CPSC contract椥PSC－C－74－31．pp．2－8．

22．Fetersort，Hugh i）．（D．D．S．，M．D．）Written Correspondence．July 22． 1974. U．S．Army Institute of Surgical Research，Brooke Army Medical Center， Fort Sam Houston，Texas．

23．Robinson，David W．（M．D．）Written Correspondence．June 10，1974． University of Kansas Medical Center，Karısas City，Kansas．

24．Stoll，A．M．＂The Role of the Skin in Heat Transfer．＂Journal of Heat Transfer，Transactions of the ASME．August，1960．pp．239－242．

25．Institute of Applied Technology，National Bureau of Standards．＂The Thermesthesioncter－An Innovation in Heat Measurement．＂Lab Data． Winter 1975．Vol，6，No．1．pp．13－14．

26．Elkind，A．B．（chairman）．Final Report of the National Commission on product Safety．June，1970．Library of Congress Card $⿰ ⿰ 三 丨 ⿰ 丨 三 一$ 76－606753．pp．47－57．

27．GAMA Feport on Gas Range Safety，prepated for the National Commission on Froduct Safety．Warch 31，1975．pp．1－69．

28．Bonth，Sherman F．Standarization Activities in the United States，A Deseriptive Ditectoty．August 1,1960 ．Nashington； \bar{D} ． $\bar{C} . \overline{:}$ superintendent of Decurichts，U．S．Government Printing，office．U．S．Department of Comerce and Nat．ional Bureat of Standards，Misc．Pub．$\$ 230$ ．pi，49－52， 144－1／5 and 186－183．

29．American Gas Assoriation．＂Approval Requirements for Domestio Gas Ranges， 721．i＂．（see table 5 for further information．）
30. National Electrical Manufacturers Association. "American Standard for Household Electric Kanges". May 4, 1950. l'ub. No. ER-1-1950.
31. Underwriters Laboratory. "Standard for Safety, Household Electric Ranges." UL 858. (see table 6 for further information.)
32. Van Zante, Helen. Household Equipment Principles. 1964. Prentice-Hall. Jnc. pp. 282~283.
Appendix A. Data sheet.

Appendix B. Group G-1
Temperatures reached and temperatures allowed by standard and room temperature.

Year \& Brand	Window high point	Window avg. 4 high it:	Door hish point	$\left[\begin{array}{c} \text { Door } \\ \text { avg. } \\ \text { high pts } \end{array}\right]$	Door avg. all pts	Frame high point	$\begin{gathered} \text { Frame } \\ \text { avg. } 4 \\ \text { high pts } \\ \hline \end{gathered}$	Frame avg. all pt	Room temp ${ }^{\circ} \mathrm{F}$
1974 Tappan		w	15	15	153	18			78
$\begin{aligned} & 1974 \\ & \text { Hardwick } \end{aligned}$			170			185	198		80
1974 Hardwick			162	$\begin{aligned} & \text { door } \\ & 164 \\ & 162 \end{aligned}$		175 17		157	72
1974 Hardwick		171	151			/201		182	76
$\begin{aligned} & 1974 \\ & \text { Roper } \end{aligned}$		177	2 149			157		141	74
$\begin{aligned} & 1974 \\ & \text { Roper } \end{aligned}$		175	151			$161 / 181$		146	76
$\begin{aligned} & 1.974 \\ & \text { Firestone } \end{aligned}$			91 153						77.5
$\begin{aligned} & 1974 \\ & \text { Penney's } \end{aligned}$			18			2			74
$\begin{aligned} & 1973 \\ & \text { Tappan } \end{aligned}$		141	53 143		143	172		147	68
1973 Magic Chef			147			154		133	72
$\begin{aligned} & 3972 \\ & \text { Tappan } \end{aligned}$			7 151			181		153	76

Appendix C. Group G-2
Temperatures reached and temperatures allowed by standard and room temperature.

Year is Brand	Window high point	$\left\lvert\, \begin{gathered} \text { Window } \\ \text { ave. } 4 \\ \text { hich pt } \end{gathered}\right.$	Door high point	$\left\|\begin{array}{c} \text { Door } \\ \text { avg. } \\ \text { high } \end{array}\right\|$	Door avg. all pts	Frame high point	Frame avg. 4 high pt	Frame avg. all pt	$\begin{aligned} & \text { Room } \\ & \text { temp } \\ & { }^{n} \mathrm{~F} \end{aligned}$
1970 Royal Chef						164		127	73
1970 Whirlpool		18				161			73
$\begin{aligned} & 1969 \\ & \text { Tappan } \end{aligned}$		190	166	172				175	71
$\begin{aligned} & 1969 \\ & \text { Sears } \end{aligned}$		194	167			212		201	76
1969 Magic. Chef			180			219			74
$\begin{aligned} & 1951 \\ & \text { Tappan } \end{aligned}$			154		$1 / 140$	184		5	79
$1955-62$ Chambers			169					149	74
1951 Roper						1		204	79
1948 Roper						203		$1 / 200$	75

Appendix D. Group E-1 \& Group E-2
Temperatures reached and temperatures allowed by standard and room temperature.

Temperatures reached and temperatures allowed by standard and room temperature.

 Brand	Window higls point	$\begin{aligned} & \text { Window } \\ & \text { avg. } 4 \\ & \text { highpts } \end{aligned}$	Door high point	$\left\lvert\, \begin{gathered} \text { Door } \\ \text { avg. } 4 \\ \text { high pts } \end{gathered}\right.$	Door avg. all points	Frame high point	Frame avg. 4 high pt	Frame avg. al spoints	Roon temp ${ }^{\circ} \mathrm{F}$
1971 Hotpoint			212 180			0.5			85
$\begin{aligned} & 1971 \\ & \text { G.E. } \end{aligned}$									79
$\begin{aligned} & 1971 \\ & \text { Hotpoint } \end{aligned}$		182	9 177		181 177	207		207	82
$\begin{aligned} & 197 \mathrm{G} \\ & \mathrm{G} . \mathrm{E} \end{aligned}$			43 173			3 203			78
$\begin{aligned} & 1970 \\ & \text { G.E. } \end{aligned}$			1 171			201			76
1970 Hotpoint			8 166			2 196			71
1.969 Sears									70
$\begin{aligned} & 1965 \\ & \text { G.E. } \end{aligned}$			6						72.
1964 Frigidaire			73 167			82 197			72
1964 Frigidaire						1 200		200	75
1964 Hot.point			2 171			201			76
1964 Hotpoint			9 172			202			77

Appendix E. Group E-3 (con't)

Year \& Brand	Window high point	Windor avg. 4 high p	Door high point	$\left[\begin{array}{c} \text { Door } \\ \text { avg. } 4 \\ \text { high pts } \end{array}\right.$	$\left\|\begin{array}{c} \text { Door } \\ \text { avg. ali } \\ \text { points } \end{array}\right\|$	Frame high point	Frame avg. 4 high pts	Frame avg. point	
1963 Hotpoint	no w		165		165	195			70
$\begin{aligned} & 1962 \\ & \text { G.E. } \end{aligned}$			173	173		${ }_{203}^{161.5}$	${ }_{203}^{152}$		78
$\begin{aligned} & 1960 \\ & \text { Hotpoint } \end{aligned}$			6 169					15	74
1959 Westinghouse			52 169					$\begin{array}{r} 144 \\ 199 \end{array}$	74
$\begin{aligned} & 1959 \\ & \text { Frigid- } \\ & \text { aire } \end{aligned}$			31 166			$\int_{196}^{155.5}$		19	71.
$\begin{aligned} & 1.959 \\ & \text { Kelvina } \end{aligned}$			42 170			172.5			75
$\begin{aligned} & 1957 \\ & \text { G.E. } \end{aligned}$			5 167					197	72
1956 Westing- house	189		1 165					$\begin{array}{\|c} 131 \\ 195 \\ \hline \end{array}$	70
$\begin{aligned} & \text { J. } 956 \\ & \text { G.E. } \end{aligned}$			22 165			150.5		136	70
1955 Westing-- house		93 174	9 169	136				136	74
$\begin{aligned} & 1949 \\ & \text { Friçid- } \\ & \text { aize } \end{aligned}$			169					118	74

Apreendix 5 .
Degrees F arove (+) or below (-) standard, fas ranges.

Appendidx G.
nerroes F above (t) or zelow (-) stancari, electric ranges.

Appendiy H .
Degrees F ahove (r) or bel.cw (-) stanciard, electric rances.

105
Appendix I. Door tmperature ratios, chronologically by groups.

Gas	$\frac{\text { high point }}{\text { ave entire }}$	$\int \frac{a_{g} \cdot 4 \text { high }}{\text { points }}$	$\begin{aligned} & \text { Electric } \\ & \text { (cont. }) \end{aligned}$	$\frac{\text { high point }}{\text { avg dontire }}$	$\begin{aligned} & \text { avg } 4 \text { hir, } \\ & \text { ave ontsing } \end{aligned}$
$\begin{aligned} & 1974 \\ & \text { Tappan } \end{aligned}$	1.097	1.067	$\begin{aligned} & 1972 \\ & \text { Cornine } \end{aligned}$	1.368	1.271
$\begin{aligned} & 19 / 4 \\ & \text { Hardwick } \end{aligned}$	1.080	1.068	$1971-72$ Frigidaire	1.336	1.191
1974 Hardwick	1.086	1.080	$1971-72$ Frigidaire	1.110	1.068
1974 Hardwick	1.058	1.038	$1971-72$ Fripidaire	1.307	1.179
1974 Roper	1.246	1.138	1971 Sears	1.201	1.115
1974 Boner	1.196	1.123	1971 Hotpoint	1.225	1.139
1974 Firestone	1.098	1.063	1971	1.064	1.048
$\begin{aligned} & 1974 \\ & \text { Penney's } \end{aligned}$	1.172	1.129	1971 Hotnoint	1.210	1.166
1973	1.195	1.140	1970	1.036	1.000
1973	1.075	1.050	$\begin{aligned} & 1970 \\ & \text { G.E. } \end{aligned}$	1.076	1.046
1972	1.089	1.059	$\begin{aligned} & 1970 \\ & \text { Hotnoint } \end{aligned}$	1. 275	1.196
$\begin{aligned} & 1970 \\ & \text { noval Chef } \end{aligned}$	1.177	1.106	$\begin{aligned} & 1969 \\ & \text { Sears } \end{aligned}$	1.143	1.116
$\begin{aligned} & 1970 \\ & \text { Whirlpool } \\ & \hline \end{aligned}$	1.260	1.179	$\begin{aligned} & 1965 \\ & \text { G.E. } \end{aligned}$	1.220	1.140
$\begin{aligned} & 1969 \\ & \text { Tappan } \\ & \hline \end{aligned}$	1.161	1.110	$\begin{aligned} & 1.964 \\ & \text { Frigidaire } \end{aligned}$	1.263	1.182
$\begin{aligned} & 1969 \\ & \text { Sears } \end{aligned}$	1.128	1.095	$\begin{aligned} & 1964 \\ & \text { Frigidaire } \end{aligned}$	1.078	1.052
Ma69 Chef	1.154	1.115	1964 Hotpoint	1.080	1.061
$\begin{aligned} & 1961 \\ & \text { I2nnan } \end{aligned}$	1.100	1.079	1964 Hotpoint	1.103	1.068
1955-61	1.096	1.067	1903 Hotpoint	1.099	1.072
$\begin{aligned} & 1951 \\ & \text { nopare } \\ & \hline \end{aligned}$	1.076	1.070	1962	1.108	1.088
$\begin{aligned} & 1948 \\ & \text { Roper } \end{aligned}$	1.156	1.095	$\begin{aligned} & 1960 \\ & \text { Hotnoint } \end{aligned}$	1.086	1.069
Electric			$\begin{aligned} & 1959 \\ & \text { Westinghouse } \end{aligned}$	1.191	1.125
$\begin{aligned} & 1974 \\ & \text { Wostingholl } \end{aligned}$	1.282	1.154	$\begin{aligned} & 1959 \\ & \text { Frigidaire } \end{aligned}$	1.170	1.098
$\begin{aligned} & 1974 \\ & \text { Sesrs } \\ & \hline \end{aligned}$	1.229	1.146	$\begin{aligned} & 1959 \\ & \text { Kelvinator } \end{aligned}$	1.203	1.127
1973	1. 309	1.228	$\begin{aligned} & 1957 \\ & C_{1} . E_{1} \end{aligned}$	1.258	1.161
$\begin{aligned} & 1973 \\ & \hline \end{aligned}$	1.250	1.180	$\begin{aligned} & 1950 \\ & \text { Westinghouse } \end{aligned}$	1.198	1.1 .35
$\begin{array}{\|l\|} 1973 \\ \text { West inghous } \end{array}$	1.248	1.14 .7	$\begin{aligned} & 1956 \\ & \text { C.E. } \end{aligned}$	1.089	J. 054
$\begin{aligned} & 1972 \\ & \text { Hot point } \end{aligned}$	1. 104	1.074	$\begin{aligned} & 1955 \\ & \text { Westinchouse } \end{aligned}$	1.1 .03	1.079
$\begin{aligned} & 1972 \\ & \text { Hot point } \end{aligned}$	1.057	1.045	$\begin{aligned} & 1949 \\ & \text { Frifidaire } \end{aligned}$	1.107	1.072

an investigation of Oven door surface temperatures OF HOUSEHOLD GAS AND LLECTRIC RANGES
by
CHRTSTINE M. GEE
B.S. Kansas State University, 1972

AN ABSTRACT OF A MASTER'S THESIS
subinitted in partial fulfillment of the
requirements for the degree

MASTER OF SCIENCE

Department of Family Economics

Kansas State University Manhattan, Kansas

For this study 55 household ranges, both gas and electric, were tested to determine temperatures reacined on the exterior of the oven door during operation at 400 F and on the self clean cycle. These temperatures were then compared to temperatures which are allowed by the American Gas Association and Underwriter's Latoratories siardards for ranges and the temperatures that will cause burns to luman skin. Historical trends for temperature flucuations for gas and electric ranges were also traced from the data gathered.

The testing procedure and testing instrument used were taken from the AGA and UL standard test procedures for household ranges. Allowable temperatures were traced back through the years of standard development and ranges were compared to the standard of the year of their production. Variables to the severity of thermal injury were researched with rontact time, temperature and thermal properties of the surface being tounhés, initial skin temperature and skin thickness being the most juportant. Knowledge of children's physiological and psychological民haracteristics was important as burn case studies indicated responses Gifterent: from those of adults and a high percentage of child victims.

Results indicated that newer electric ranges complied with industry safety standards better than newer gas ranges. Over the period of 1948-74, electric ranges have demonstrated improved compliance in window area iemperatures with sone improvement in door temperature standard compliance and a slight improvement for the frame. During this period, an approximately equal fercentage of newer and older models of gas ranges complied with the stendard for the window area and newer models had less compliance for the dom end frame area. Electric range temperatures have decreased during the most recent period, while temperatures of gas ranges have increased.

Quality control with respect to extremely hot areas on the door has inproved for gas ranges while declining for electric ranges. Doors with windows were found to have higher temperature averages than doors without windons. There were a significant portion of the ranges tested, both gas and electric, that reached temperatures on the exterior oven door that would present a burn hazard to children and adults if contacted while in operation.

