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Abstract

The depletion of groundwater stocks reduces the flow of economic value and the produc-

tion of goods from the resource. This dissertation quantifies these effects in the context of the

High Plains Aquifer in the central US. One particular challenge in estimating these effects

that we overcome is that feedback effects from irrigation behavior affect resource conditions,

which creates an endogeneity concern. We also provide new insights on the potential of col-

lective efforts by irrigators to manage the resource. We study how heterogeneity in resource

and user characteristics affect their individuals’ willingness to support efforts to collectively

reduce water use.

The first chapter estimates how changes in groundwater stocks affect the returns to

agricultural land. We avoid bias from feedback effects by exploiting hydrologic variation in

pre-development saturated thickness that was determined by natural processes in previous

geological eras. Simulation results reveal that the average annual present value of returns to

land are expected to decrease in the High Plains region by $120.6 million in 2050, and by

$250.5 million in 2100. The most severe decreases in returns to land are expected to occur

in Texas, Kansas, and Colorado. When the initial saturated thickness is less than 70 feet,

most of the economic impact (63%) of a decrease in the stock of groundwater occurs through

an adjustment in irrigated acreage (extensive margin), while 37% occurs through reduced

irrigated rental rates (intensive margin). When saturated thickness is larger, nearly all of

the response is at the extensive margin.

The second chapter examines how observed differences in the stock of groundwater affect

corn production. To account for the endogeneity of groundwater stock, we exploit varia-

tion in current saturated thickness due to variation in pre-development saturated thickness.

Simulation results reveal that the annual production of corn would decrease by 48.1 million

bushels in the north portion of the High Plains Aquifer due to a uniform 10 ft decrease in



saturated thickness, whereas the annual production of corn would decrease by 15.7 million

bushels in the south. Further, we find that when initial saturated thickness is less than 70

ft, most of the impact on corn production of a decrease in the stock of groundwater occurs

through an adjustment in irrigated acres in both the north and the south. When saturated

thickness is larger than 70 ft, then the adjustment is mostly through a change in cropping

patterns on irrigated land in the south but still through irrigated acres in the north.

The third chapter uses unique data obtained from consequential stated preference surveys

in Kansas to explore the factors that influence farmers preferred reductions in groundwa-

ter use through a water conservation program implemented by a Groundwater Management

District. Our results reveal that farmers located in areas where the aquifer is more depleted

support larger reductions in groundwater use. But we also find that characteristics of the

users matter as much or more than the status of the aquifer in determining support. Op-

position to reductions in water use are strongest among farmers who strongly agree that

water rights are a private property, landlords and those who irrigate a larger proportion of

their farm. Further, we evaluate farmers’ preferences for the methods of assigning water

allocations. We find that none of the options are preferred by a majority of farmers and

there is no clear evidence that aquifer characteristics or observed farmer characteristics are

the key factors affecting the probability that a farmer ranks a method as the best option.

This makes it difficult for groundwater managers to identify which method is more likely to

be considered fair by farmers. Our results are informative for managers of water throughout

Kansas, the High Plains and other regions where conserving water resources is a high priority

and localized and stakeholder-driven conservation plans could be a solution.
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Abstract

The depletion of groundwater stocks reduces the flow of economic value and the produc-

tion of goods from the resource. This dissertation quantifies these effects in the context of the

High Plains Aquifer in the central US. One particular challenge in estimating these effects

that we overcome is that feedback effects from irrigation behavior affect resource conditions,

which creates an endogeneity concern. We also provide new insights on the potential of col-

lective efforts by irrigators to manage the resource. We study how heterogeneity in resource

and user characteristics affect their individuals’ willingness to support efforts to collectively

reduce water use.

The first chapter estimates how changes in groundwater stocks affect the returns to

agricultural land. We avoid bias from feedback effects by exploiting hydrologic variation in

pre-development saturated thickness that was determined by natural processes in previous

geological eras. Simulation results reveal that the average annual present value of returns to

land are expected to decrease in the High Plains region by $120.6 million in 2050, and by

$250.5 million in 2100. The most severe decreases in returns to land are expected to occur

in Texas, Kansas, and Colorado. When the initial saturated thickness is less than 70 feet,

most of the economic impact (63%) of a decrease in the stock of groundwater occurs through

an adjustment in irrigated acreage (extensive margin), while 37% occurs through reduced

irrigated rental rates (intensive margin). When saturated thickness is larger, nearly all of

the response is at the extensive margin.

The second chapter examines how observed differences in the stock of groundwater affect

corn production. To account for the endogeneity of groundwater stock, we exploit varia-

tion in current saturated thickness due to variation in pre-development saturated thickness.

Simulation results reveal that the annual production of corn would decrease by 48.1 million

bushels in the north portion of the High Plains Aquifer due to a uniform 10 ft decrease in



saturated thickness, whereas the annual production of corn would decrease by 15.7 million

bushels in the south. Further, we find that when initial saturated thickness is less than 70

ft, most of the impact on corn production of a decrease in the stock of groundwater occurs

through an adjustment in irrigated acres in both the north and the south. When saturated

thickness is larger than 70 ft, then the adjustment is mostly through a change in cropping

patterns on irrigated land in the south but still through irrigated acres in the north.

The third chapter uses unique data obtained from consequential stated preference surveys

in Kansas to explore the factors that influence farmers preferred reductions in groundwa-

ter use through a water conservation program implemented by a Groundwater Management

District. Our results reveal that farmers located in areas where the aquifer is more depleted

support larger reductions in groundwater use. But we also find that characteristics of the

users matter as much or more than the status of the aquifer in determining support. Op-

position to reductions in water use are strongest among farmers who strongly agree that

water rights are a private property, landlords and those who irrigate a larger proportion of

their farm. Further, we evaluate farmers’ preferences for the methods of assigning water

allocations. We find that none of the options are preferred by a majority of farmers and

there is no clear evidence that aquifer characteristics or observed farmer characteristics are

the key factors affecting the probability that a farmer ranks a method as the best option.

This makes it difficult for groundwater managers to identify which method is more likely to

be considered fair by farmers. Our results are informative for managers of water throughout

Kansas, the High Plains and other regions where conserving water resources is a high priority

and localized and stakeholder-driven conservation plans could be a solution.
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Chapter 1

The Economic Cost of Groundwater

Depletion in the High Plains Aquifer

1.1 Introduction

Groundwater use for irrigation offers a substantial source of water to supplement insufficient

growing season rainfall in semi-arid areas around the world. However, the extraction of

groundwater for irrigation at rates greater than natural recharge has led to persistent aquifer

depletion in many countries (Richey et al., 2015). Stressed aquifer conditions are especially

important in the central and southern portion of the High Plains Aquifer (HPA) in the

United States where water levels have been declining rapidly (Scanlon et al., 2012; Steward

and Allen, 2016). While the change in groundwater stocks is relatively well established, there

is much less evidence on the loss in economic value from the change in groundwater stocks.

Accurately estimating the economic value of the stock of groundwater is challenging for

two main reasons. First, it is difficult to directly observe the marginal value of groundwater

used for irrigation since the market for water is in general thin and has large frictions. Second,

the existence of feedbacks across social and environmental dimensions of complex systems

makes it difficult to support assumptions about excludability and the absence of interference

required for causal inference (Ferraro et al., 2019). For example, current aquifer conditions
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depend on the behavior of users because as farmers increase groundwater extraction, the

stock of groundwater decreases.

One approach to estimate the value of the stock of groundwater is to use revealed pref-

erence methods such as the hedonic price model, which obtains an implicit valuation of

groundwater irrigation using information from well-functioning markets. As an example,

the market value for irrigated and nonirrigated land provides information about the addi-

tional value created by groundwater used for irrigation. Hornbeck and Keskin (2014) find

that aquifer access resulted in a $25 billion increase in land values, while Sampson et al.

(2019) find that agricultural land values are about 53% higher for irrigated parcels than

similar nonirrigated parcels in the Kansas portion of the HPA. Yet these studies do not esti-

mate the annual economic cost of a change in the stock of groundwater, which is a measure

of key importance to stakeholders who are considering policies to address the depletion of

groundwater.

Our paper quantifies the economic value of groundwater stocks using data on cash rental

rates for irrigated versus nonirrigated land and the number of irrigated acres. We avoid

bias from feedback effects by exploiting hydrologic variation in pre-development saturated

thickness that is unrelated to irrigation behavior. Pre-development saturated thickness was

determined by the structure and features of the pre-Ogallala surface roughly 5 to 24 million

years ago, which led to variation in the availability of groundwater across the HPA today.

Intuitively, our empirical strategy compares counties within the same state for a given year,

with similar climatic, soil, and aquifer characteristics that have a different amount of cur-

rent saturated thickness because of differences in pre-development saturated thickness. We

investigate the use of county fixed effects but the results indicate that there is insufficient

variability in saturated thickness remaining after including county fixed effects compared to

the preferred specification.

Two-stage least square (2SLS) models of irrigated acres and irrigated cash rental rates

on saturated thickness, controlling for other confounders are estimated. Pre-development

saturated thickness is used as an instrument for current saturated thickness. The validity

of the exclusion restriction is supported by conducting a falsification test to evaluate if pre-
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development saturated thickness is correlated with unobserved land productivity as reflected

in nonirrigated rental rates. The parameter estimates are then used to simulate the economic

impacts of projected aquifer depletion. The simulation results reveal that the average annual

present value of returns to land are expected to decrease in the High Plains region by $120.6

million in 2050 and by $250.5 million in 2100. However, the economic impact of the projected

decrease in saturated thickness varies significantly across regions of the HPA.

Our paper provides three main contributions. First, we estimate the economic value of

groundwater stocks, rather than the value of access to groundwater. Measuring the value of

the stock is important for estimating the economic value of different scenarios of resource

depletion. For example, Hornbeck and Keskin (2014) compare land values in counties over the

HPA aquifer with nearby similar counties to estimate the value of access to water. Edwards

and Smith (2018) measure the effect of access to irrigation on land values throughout the

entire western United States. Blakeslee et al. (2020) estimate the impact of groundwater

access on various economic outcomes in India. One exception is that Sampson et al. (2019)

estimate the effect of groundwater stocks on irrigated land values in Kansas. An advantage

of our approach to using annual rental rates rather than land values is that annual rental

rates do not reflect expectations of future changes in groundwater stocks.

The second contribution is that we use initial resource conditions as an instrument to

reduce potential bias from feedback effects. Our approach is similar in spirit to Hornbeck and

Keskin (2014) and Blakeslee et al. (2020) in that we exploit plausibly exogenous hydrologic

variation. Hornbeck and Keskin (2014) utilize the plausibly exogenous boundary of the High

Plains Aquifer. Blakeslee et al. (2020) compare households in India whose first borewell failed

to those for whom it is still working within the same village. Blakeslee et al. (2020) argue that

the failure of the first borewell is related to hydrologic factors that are exogenous to economic

outcomes. However, our approach is different from these studies in that our approach allows

us to estimate the value of groundwater stocks and not just access to groundwater. Our

approach is also likely relevant to natural resources other than groundwater.

Third, we estimate the economic value of the stock of groundwater across the HPA

region using observed irrigated acreage and rental market data. A large literature exists in

3



hydrology that quantifies the extent of HPA depletion and projected aquifer conditions in

the future, but without estimating economic impacts (Haacker et al., 2016; Scanlon et al.,

2012; Steward et al., 2013). There is also a set of economic literature that uses programming

models to simulate the economic impact of aquifer depletion, but is not validated with real-

world data on farmer behavior (Ding and Peterson, 2012; Foster et al., 2017, 2015, 2014;

Manning and Suter, 2019). Fenichel et al. (2016) model the value of natural capital with

an application to groundwater stocks in Kansas, where the groundwater valuation model

uses expenses from university crop budget and assumes that crop yields are not affected by

groundwater stocks. Manning et al. (2020) use willingness to pay for well capacity from a

contingent valuation survey to value groundwater stocks in an integrated assessment model.

Our approach values groundwater stocks using rental market data and allows groundwater

stocks to potentially affect irrigated acres, crop mix, and crop yield.

1.2 Background

The High Plains Aquifer (HPA) comprises 118.8 million acres over portions of eight states

in the U.S.A: Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas,

and Wyoming (McGuire, 2017). It supplies over 30% of the total groundwater used for

irrigation in the US (Steward et al., 2013), and it is the principal source of irrigation in a

major agricultural producing region where crop yields are limited by precipitation (McGuire

et al., 2003). However, the extraction of groundwater for irrigation at higher rates than

natural recharge has led to persistent aquifer depletion, as in many other parts of the world

(Richey et al., 2015; Scanlon et al., 2012; Steward and Allen, 2016)

A rapid and substantial increase in groundwater irrigation occurred after the adoption

of center pivot technology during the 1960s. Estimated groundwater withdrawals increased

from 4 to 19 million acre-feet between 1949 and 1974, while estimated irrigated acreage

increased from 2.1 million acres in 1940 to 13.7 million acres in 1980 (McGuire et al., 2003).

Water-level declines became evident in many areas of the HPA soon after this substantial

increase in groundwater irrigation. By 1980, water levels had declined by more than 100 ft in

4



portions of Kansas, New Mexico, Oklahoma, and Texas (McGuire et al., 2003). Depletion is

much greater in the Central and Southern High Plains compared to depletion in the Northern

portions. For instance, average water-level change from pre-development to 2015 ranged from

a decline of 41.1 feet in Texas to a decline of only 0.9 feet in Nebraska (McGuire, 2017). In the

period 2000 to 2020, the Central and Southern regions have shown a significant contraction

in irrigated area attributable to increasingly scarce groundwater resources (Hrozencik and

Aillery, 2021).

The saturated thickness is a measure of the vertical distance between the water table

and the base of the aquifer, and thus reflects the resource stock. Current saturated thickness

is influenced by pre-development saturated thickness, aquifer recharge, and extraction for

irrigation. Pre-development saturated thickness is the estimated saturated thickness that

existed before any effects imposed by human activity, and in our study, it is represented by

a measure of saturated thickness in 19301. The pre-development thickness of the Ogallala

formation—the principal geologic unit of the HPA—was determined by the structure and

features of the Ogallala geological setting formed roughly 5 to 24 million years ago, and the

greatest thickness occurs where sediments have filled previously eroded drainage channels

(NPGCD, 2021). Therefore, the pre-development saturated thickness was shaped by the

structure of the pre-Ogallala surface that existed long before human settlement, so it is

unrelated to human activity.

It is apparent in figure 1.1 that the geographic patterns of saturated thickness in 2017

resemble the pattern of pre-development saturated thickness in 1930. In general, the great-

est contemporaneous saturated thickness occurs in those areas where the initial saturated

thickness was also the largest.

1See Haacker et al. (2016) for more discussion on the pre-development date.
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Figure 1.1: (A) Saturated thickness in 1930 (B) Saturated thickness 2017

The variability in current saturated thickness is also driven by variations in groundwater

recharge from precipitation (Scanlon et al., 2012). Recharge is the natural movement of

surficial water into an aquifer and is mainly determined by climate, soil, vegetation, land use,

and depth to the water table (Sophocleous, 2005). The surficial rivers incise the Ogallala

formation and hydrologicially separate the HPA into three units that are hydrologically

disconnected. Much of the northern area of the aquifer consists of renewable groundwater

formations with larger rates of recharge. The Central and Southern parts of the aquifer,

however, consist primarily of nonrenewable or fossil groundwater with little recharge (Scanlon

et al., 2012).
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1.3 Conceptual Model

We explore the role of variation in groundwater stocks on irrigation decisions using saturated

thickness information. Groundwater depletion affect farmers’ economic benefits through two

main mechanisms: decreasing well yields and increasing pumping costs. The well yield places

an upper limit on the rate of groundwater extraction and is impacted by the saturated

thickness and hydraulic conductivity. The cost of pumping increases with groundwater

depletion since it requires more energy to pump the water from greater depths. We do not

separately estimate these two different mechanisms, but instead we use reduced form models

to estimate the overall impact of a change in saturated thickness.

The economic value of the stock of groundwater is reflected in the returns to land and

modeled as

Bit(STit) = Φirr
it (STit)R

irr
it (STit) + (1 − Φirr

it (STit) − Φpast
it )Rnon

it + Φpast
it Rpast

it ,

where Bit is the return to land per acre of the county overlying the aquifer for county i in

year t, Φirr
it is the proportion of acres in the county that are irrigated, Φpast

it is the proportion

of acres in the county that are pastureland, and (1−Φirr
it −Φpast

it ) is the proportion of acres in

the county that are nonirrigated. Economic variables Rirr
it , Rnon

it and Rpast
it are the irrigated,

nonirrigated and pastureland cash rental rates, and STit is the saturated thickness.

We assume that when saturated thickness decreases, farmers switch to nonirrigated crop-

land as the next most productive use of land after irrigated cropland. Consequently, the ex-

tensive margin response may be underestimated if some farms convert from irrigated cropland

to pasture. Deines et al. (2020) estimate that 87% of lost irrigated area through 2100 could

support nonirrigated crop production and 13% was better suited to pasture use. In areas

where farms switch to pasture rather than nonirrigated cropland, the rental rate of nonir-

rigated cropland is likely similar to the rental rate for pasture. Therefore, the assumption

that irrigated cropland converts to nonirrigated cropland rather than pasture is a reasonable
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assumption for our study area.

A change in returns to land due to an exogenous change in saturated thickness is separated

into two components:

∂Bit

∂STit
=
∂Φirr

it

∂STit
(Rirr

it −Rnon
it )

Extensive Margin

+
∂Rirr

it

∂STit
Φirr

it

Intensive Margin

,

since farmers may respond to increased water scarcity along adjustments in the extensive

and intensive margins. Farmers are assumed to maximize their utility subject to the con-

straint that well yield imposes on instantaneous application rates (Foster et al., 2014). When

saturated thickness is above a certain level, well yield is not a binding constraint and dif-

ferent levels of saturated thickness may have minimal impact on producer behavior. But

for lower saturated thickness where well yields become constraining, farmers adjust their

behavior through the extensive or intensive margins. On the extensive margin, the farmer

decides what proportion of the field to plant with nonirrigated and irrigated crops. The

intensive margin response captures two main adjustments: a reduction in water intensity for

the proportion of the field that is irrigated that could affect crop yield, and a switch from

relatively water intensive crops (e.g., corn) towards less water-intensive crops (e.g., wheat).

The latter two adjustments will be reflected in farmers paying lower rental rates for irrigated

land.

The objective of our empirical model is to estimate the nonlinear functions in saturated

thickness of Φirr
it (STit) and Rirr

it (STit) controlling for other explanatory variables, and then

use the parameter estimates to simulate the economic impact of different scenarios of aquifer

depletion. We allow a nonlinear relationship between saturated thickness on the output of

interest based on recent studies where declines in well yield may have negative nonlinear

impacts on irrigated area. Foster et al. (2014) and Foster et al. (2015) predict large reduc-

tions in irrigated area when well yield is limiting due to intraseasonal groundwater supply

constraints.

Data is not directly available on depth to water table—the vertical distance from the
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land surface to water table—to explicitly control for differences in the cost of pumping.

Instead, since saturated thickness and depth to water table are highly directly correlated, the

estimated impact of saturated thickness on the outputs reflects the total impact of depletion

through changes in well yields and cost of pumping (Rouhi Rad et al., 2021). Furthermore,

a large literature examines how pumping costs affect water use indicating that the price

elasticity of irrigation water demand is, in general, inelastic (e.g., Hendricks and Peterson,

2012; Mieno and Brozović, 2017; Pfeiffer and Lin, 2014; Scheierling et al., 2006; Schoengold

et al., 2006). Recent studies have also shown how reductions in well yield negatively impact

economic outputs (e.g., Foster et al., 2017, 2015, 2014; Hrozencik et al., 2017; Manning and

Suter, 2019; Peterson and Ding, 2005; Rouhi-Rad et al., 2020). In particular, Foster et al.

(2015) suggest that well yield has larger impacts on irrigated production areas and profits

than depth to groundwater and pumping costs.

1.4 Empirical Strategy

The objective of our econometric model is to estimate the impact of saturated thickness on ir-

rigated acres and irrigated cash rental rates. Even after controlling for relevant confounders,

our estimates are subject to potential bias from feedback effects between saturated thickness

and irrigation behavior. The feedback effect is evident between irrigated acres and saturated

thickness which would bias our estimates downward—as farmers expand irrigated acres, ex-

traction of groundwater increases and saturated thickness decreases. Pre-development satu-

rated thickness is used as an instrument to obtain a source of plausibly exogenous variation

in saturated thickness.

1.4.1 Econometric Model

Two-stage least square (2SLS) models are estimated for irrigated acres and irrigated cash

rental rates. The nonlinear relationship between saturated thickness on the output of interest

is represented using linear spline regression which is a piecewise linear function that fits a
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line in each segment of the saturated thickness space defined by the knots while requiring

continuity at the knot (Harrell, 2001).

The second-stage equation is:

Yit = β0 + β1[(1 −Dit)STit +DitK] + β2Dit(STit −K) + αXit + δg + γrt + εit, (1.1)

where K is the location of spline knot, and

Dit =


0 if STit < K

1 if STit ≥ K.

The variable Yit reflects either the percentage of acres irrigated of the total county area over

the aquifer—note that we scale the dependent variable to Φirr
it × 100 for ease of interpreting

marginal effects2—or the irrigated rental rate (Rirr
it ) in county i at time t; STit is the average

saturated thickness in the county; [(1−Dit)STit +DitK] and Dit(STit−K) are linear spline

functions of saturated thickness; Xit is a vector of controls (i.e., climatic variables, aquifer

characteristics, and soil suitability for corn and soybeans); δg is the fraction of county area

in each soil group; γrt are state-by-year fixed effects for state r and year t; and εit are

idiosyncratic errors.

The coefficients of interest throughout the paper are β1 and β2. The estimated β1 can be

interpreted as the effect of saturated thickness on agricultural outcomes when the level of

saturated thickness is less than K, while the estimated β2 is the effect of saturated thickness

on agricultural outcomes when the level of saturated thickness is greater than K. Based

on exploratory analysis of our data and previous studies described above, we allow for one

spline knot location (K = 70).

The linear spline functions of saturated thickness in equation 1.1 are treated as endoge-

2Even though our dependent variable (percentage of acres irrigated) is constrained to be between 0 and
100, we use a 2SLS model that treats the dependent variable as continuous since all values are in the interior
(see table 1.1).
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nous and, we use linear spline functions of pre-development saturated thickness as instru-

ments. The first stage regressions are defined as:

[(1 −Dit)STit +DitK] = θ10 + θ11[(1 −D
′

i)ST1930i +D
′

iK
′
] + θ12D

′

i(ST1930i −K
′
)+

+ φ1Xit + δ1g + γ1rt + v1it,

and

(STit −K) = θ20 + θ21[(1 −D
′

i)ST1930i +D
′

iK
′
] + θ22D

′

i(ST1930i −K
′
)+

+ φ2Xit + δ2g + γ2rt + v2it,

where K
′

is the spline knot and

D
′

i =


0 if ST1930i < K

′

1 if ST1930i ≥ K
′
.

It is important to note that there are two endogenous explanatory variables ([(1−Dit)STit +

DitK] and (STit−K)), and our two instruments are [(1−D′
i)ST1930i+D

′
iK

′
] andD

′
i(ST1930i−

K
′
). The variable ST1930i is pre-development saturated thickness and the instruments, [(1−

D
′
i)ST1930i +D

′
iK

′
] and D

′
i(ST1930i −K

′
), are linear spline functions of pre-development

saturated thickness with K
′
= 90. Since pre-development saturated thickness is larger than

current saturated thickness, the selected knot for the instrument is also larger.

For the statistical inference, the standard errors are clustered at the agricultural district

level to adjust for heteroskedasticity, within-county correlation over time and spatial cor-

relation between counties within a district. We follow Bester et al. (2011), who propose

clustering by spatial groups as a simple and flexible method to account for spatial correla-

tion, under the assumption that in most observations are far from borders and uncorrelated

with observations in other groups. Bester et al. (2011) show that clustering results in valid
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inference if cluster-level averages are approximately independent.

1.4.2 Controlling for Potential Confounders

We explicitly include several variables to account for cross-sectional heterogeneity between

counties in equation 1.1. Since the irrigated acreage information is based on the harvested

acres, we include the contemporaneous cumulative measures for precipitation and reference

evapotranspiration demand within the growing season (April 1 - September 30) to isolate

contemporaneous weather effects. For example, drought conditions could induce some farm-

ers to irrigate more acres than in previous years. We also include four long-run climate

variables to describe the climate in each county: average precipitation, average reference

evapotranspiration, the average number of growing degree days between 10◦C and 30◦C, and

the average number of degree days greater than 32◦C. This average number of growing degree

days between 10◦C and 30◦C measures the exposure to heat within a range of temperatures

considered beneficial to crop growth, and the average number of degree days greater than

32◦C measures the exposure to heat levels that are detrimental to crop growth (Schlenker

et al., 2006).

To account for the aquifer’s characteristics in each county, we include three variables:

hydraulic conductivity, specific yield and natural recharge. Hydraulic conductivity is a mea-

sure of the rate at which water can move laterally to a well, and specific yield is the volume

of water per unit volume of aquifer that can be extracted by pumping. Where hydraulic

conductivity and specific yield have higher values, we expect a reduction in pumping costs

as water moves more readily to a well. Furthermore, hydraulic conductivity is also a mea-

sure of the shared nature of an aquifer. In regions with larger hydraulic conductivity, more

water can be lost from a given well to the common pool, increasing the incentive to pump

more water (Edwards, 2016). Natural recharge is the seepage of water into an aquifer, not

including return flows from irrigation. It controls for changes in agricultural outcomes as a

consequence of different expected rates of aquifer depletion that affect expectations of future

aquifer stocks. Finally, to adjust for the effect of different soil characteristics on agricultural
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production, we control for major soil groups, and we also include a national commodity crop

productivity index for corn and soybeans to account for the soil’s suitability for corn and

soybeans.

Our specification also includes state-by-year fixed effects to control for spatial-temporal

variation, and allow for a separate effect for each possible combination of state and year. The

state-by-year fixed effects absorb the effects of any arbitrary shock, including technological

change, variation in commodity price and groundwater laws, which is specific to a state in

any given year. For example, Nebraska uses correlative rights, and Kansas and Colorado both

use prior appropriation rights, while in Texas groundwater is governed by the rule of capture.

Intuitively, the empirical strategy compares counties within the same state for a given year,

with similar climatic, soil, and aquifer characteristics that have a different amount of current

saturated thickness caused by variation in pre-development saturated thickness. We also

employ robustness tests in which we control for groundwater management districts-by-year

fixed effects which show similar results to our preferred estimates.

To investigate the use of county fixed effects, we regress saturated thickness on various

sets of fixed effects and then capture the standard deviation of the residuals which reflect

the remaining saturated thickness variation (Fisher et al., 2012). The residual standard

deviation of saturated thickness is equal to 102.4 when saturated thickness is regressed on

an intercept, while it drops to 11.3 when county fixed effects are included. We also regress

saturated thickness on all covariates and controls used in the main model specification,

and the residual standard deviation of saturated thickness is equal to 68.3. These results

indicate that there is insufficient variability in saturated thickness remaining after including

county fixed effects compared to the preferred specification. Furthermore, we estimate our

main model of interest including county fixed effects but the impact of saturated thickness

on the outcomes is implausibly large (Table 1.6, section 1.6.4). Another justification for

not including county fixed effects is that we need to find a new instrument because pre-

development saturated thickness is invariant over time3.

3The use of county fixed effects do not resolve the endogeneity from feedback effects since a change in
irrigated acres affects the change in the stock of groundwater.
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1.4.3 IV Assumptions

To identify β1 and β2 in the second stage (equation 1.1), the instruments must account for the

saturated thickness variation. There is little doubt that the current saturated thickness is cor-

related with saturated thickness in 1930. As described in section 1.2, it is apparent that the

geographic patterns of saturated thickness in 2017 resemble the pattern of pre-development

saturated thickness in 1930 (figure 1.1). In general, the greatest contemporaneous satu-

rated thickness occurs in those areas where initial saturated thickness was also the largest.

Figure 1.2 provides a scatter plot of the relationship between pre-development saturated

thickness and current saturated thickness. Again, this relationship shows that counties with

low pre-development saturated thickness have substantially less saturated thickness today.
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Figure 1.2: Relationship between pre-development saturated thickness and current
saturated thickness

Identification also requires the exclusion restriction to be met. The exclusion restriction

implied by our instrumental variable regression is that, conditional on the controls included

in the regression, the pre-development saturated thickness has no effect on the percentage
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of acres irrigated or irrigated cash rents, other than its effect through the current saturated

thickness. That is, unobservable effects that impact irrigated acres or irrigated rents are not

correlated with variation in pre-development saturated thickness. Our exclusion restriction

is plausible since, as explained in section 1.2, the pre-development saturated thickness was

shaped by the structure and features of the Ogallala geological formations that existed long

before human settlement, and so it is unrelated to human activity.

This exclusion restriction implies that pre-development saturated thickness is not spuri-

ously correlated with productivity of the land today. In this case, the instrumental variable

estimates may be assigning the effect of land productivity on outcomes to the effect of sat-

urated thickness. This is unlikely to be the case since the ancient structure of the buried

Ogallala geological formations has no inherent relationship with the agricultural productiv-

ity of the current land surface. Instead, the soil and climate controls are included in our

models to address potential spurious correlations between pre-development saturated thick-

ness and current land productivity, which affects irrigated acres and rents. Results from a

falsification test are presented later to evaluate whether pre-development saturated thickness

is correlated with unobserved land productivity.

1.5 Data and Study Area

Our study area includes 141 counties in six states overlying the HPA: Colorado, Kansas,

Nebraska, New Mexico, Texas and Wyoming. We restrict the analysis to counties with a

proportion of their total area over the aquifer greater than 60% to ensure the availability of

groundwater for irrigation. The area of the sand hills in Nebraska overlies the aquifer but

has minimal irrigation because the sandy soil makes the region unsuitable for crop farming

(Peterson et al., 2016; USDA-NRCS, 2006). Therefore, we exclude from our analysis counties

with greater than 55% of their total area in the sand hills. Table 1.1 shows summary statistics

of the variables used in each econometric model. Next, we describe each source of data.

Irrigated areas at the county-level are available every five years from the US Census of

Agriculture. We calculate the percentage of acres irrigated by dividing the irrigated acres
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by the total land area of the county overlying the aquifer. The empirical analysis of the

extensive margin focuses on a balanced panel of 141 counties over the HPA from 1982 to

2017, resulting in a total of 1,128 observations. Annual data on irrigated cash rental rates for

cropland at the county-level are obtained from the National Agricultural Statistics Service

(NASS). These data are available from 2008 except for 2015 and 2018, and 2008 is excluded

because the number of reported counties is small. In this case, the empirical analysis of the

intensive margin focuses on an unbalanced panel of 141 counties over the HPA from 2009 to

2017, resulting in a total of 1,269 observations.

Table 1.1: Summary statistics for variables in the econometric analysis

Extensive
Margin Sample

Intensive
Margin Sample

Variables Mean Std. Dev. Mean Std. Dev.

Percentage of Acres Irrigated 18.34 15.41 – –
Cash Irrigated Rent ($/acre) – – 151.64 69.58
Saturated Thickness (ft) 149.69 102.50 141.29 102.76
Growing Season Precipitation (in) 15.85 4.84 17.34 5.82
Growing Season Evapotranspiration (in) 34.46 2.89 34.79 3.41
Predevelopment Saturated Thickness (ft) 172.50 103.54 172.50 103.54
30-yr Avg. Precipitation (in) 16.31 3.10 16.31 3.10
30-yr Avg. Evapotranspiration (in) 34.56 2.60 34.56 2.60
30-yr Avg. Growing Degree Days (hundreds) 18.36 2.60 18.36 2.60
30-yr Avg. Extreme Degree Days 32.33 17.57 32.33 17.57
Hydraulic Conductivity (ft/day) 81.40 47.14 81.40 47.14
Specific Yield (fraction) 0.16 0.02 0.16 0.02
Natural Recharge (in) 2.62 2.13 2.62 2.13
Crop Productivity Index (fraction) 0.30 0.14 0.30 0.14
N 1,128 1,269

Daily gridded weather data are obtained from PRISM and aggregated to the county

level. We calculate the cumulative measure for precipitation and reference evapotranspira-

tion demand within the growing season (April 1 - September 30) for each year. Reference

evapotranspiration is a measure of the evaporative demand independent of crop characteris-

tics and soil factors within a county. It is calculated using the reduced-set Penman-Monteith

method following Hendricks (2018). We also construct four long-run climate variables: aver-
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age precipitation, average reference evapotranspiration, the average number of degree days

between 10◦ and 30◦, and the average number of degree days greater than 32◦. We calculate

the cumulative measure for each of these four variables within the growing season (April 1 -

September 30) for each year and then calculate the 30-year average (1987-2017).

Hydrologic characteristics of the HPA are obtained from two different sources. Pre-

development saturated thickness, the average annual saturated thickness and the projected

saturated thickness—values of saturated thickness up to 2100—are obtained from Steward

and Allen (2016). Hydraulic conductivity, specific yield and natural recharge are obtained

from the US Geological Survey. This hydraulic conductivity data set consists of contours and

polygons that we aggregate to the county level (USGS, 1998). We use a raster of the average

specific yield for the HPA and aggregate it to the county level (McGuire et al., 2012; USGS,

2012). Natural recharge data are also obtained from a raster and aggregated at county level

(Houston et al., 2013; USGS, 2011). The average 2000-09 recharge is estimated by USGS

using the Soil-Water Balance (SWB) model which assumes that irrigation systems are 100%

efficient and there is no surplus irrigation water for recharge. Thus, natural recharge does

not include return flows from irrigation (Stanton et al., 2011).

Major soil groups are obtained from Hornbeck and Keskin (2014). For example, soil

groups appearing within the HPA include: alluvial, brown, chernozem, and chestnut4. The

national commodity crop productivity index for corn and soybeans is obtained from the Soil

Survey Geographic database (SSURGO). This variable ranges from 0.01 (low productivity)

to 0.99 (high productivity). The maps in Figure 1.3 show the percentage of acres irrigated

and irrigated rental rates in 2017. The spatial distributions of irrigated acres and irrigated

rental rates appear to be related to the groundwater availability in the aquifer. In general,

irrigated acres are largest in the north-east and decline moving south-west, where saturated

thickness is lower and recharge from precipitation is less than groundwater demand for

irrigation. Similarly, rental rates are largest in the Northern High Plains and decline moving

south into the more arid region.

4A map can be found in the Hornbeck and Keskin (2014)’s online Appendix: https://assets.aeaweb.
org/asset-server/articles-attachments/aej/app/app/0601/2012-0256_app.pdf
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Figure 1.3: (A) Percentage of acres irrigated in 2017 (B) Irrigated rental rates in 2017

1.6 Results and discussion

1.6.1 2SLS Regressions Results

Estimates are presented next using the econometric models described in the previous section,

which regress each of the outcomes of interest—percentage of acres irrigated or irrigated

rental rates—on saturated thickness. These parameter estimates provide the information

required to simulate the impact of the projected saturated thickness in the future. Our focal

variables throughout the analysis are the saturated thickness linear splines.

The main results of the regression of percentage of acres irrigated are shown in table 1.2.

In column 1, OLS estimates show a positive and significant relationship between irrigated
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acres and saturated thickness. However, this result cannot be interpreted as causal because

the estimates are subject to bias due to feedback effects. Since larger irrigated acres reduce

saturated thickness through the hydrologic feedback, we expect the coefficients on saturated

thickness to be biased downward. The corresponding 2SLS estimates are shown in column

2. The coefficients on the saturated thickness linear splines are significant at the 5% level

and larger than the OLS estimates. We also report the Wu-Hausman test statistic, which

examines the null hypothesis that the spline saturated thickness variables are exogenous.

The test statistic (11.10) is significant at the 1% level indicating that the downward bias

of OLS from the feedback effect is statistically significant. Furthermore, the value of F-

statistics testing the null hypothesis that the instruments are equal to zero in the first stage

regressions are greater than 10 (65.70 and 106.61). Therefore, weak instruments are not a

concern (Staiger and Stock, 1997).

The coefficient on the first saturated thickness linear spline indicates that when the level

of saturated thickness is less than 70 ft, a 1 ft decrease in saturated thickness results in

a 0.211 percentage point decrease in the area of the county that is irrigated (column 2 of

table 1.2). This reflects approximately 2.1% decrease in irrigated acres since 10.24% of a

county is irrigated on average when saturated thickness is less than 70 ft. By contrast, when

the level of saturated thickness is greater than 70 ft, a 1 ft decrease in saturated thickness

results in a 0.044 percentage point decrease in the area of the county that is irrigated. This

result reflects about 0.22% decrease in irrigated acres since 21.04% of a county is irrigated

on average if saturated thickness is greater than 70 ft. As expected, the effect of a decrease

in saturated thickness is larger if the initial saturated thickness is already small.

The magnitude of the average effect of a decrease in saturated thickness in terms of

irrigated acres is illustrated using two examples: Wichita County in Kansas and Dallam

County in Texas. Saturated thickness in Wichita County has declined from 46 ft in 1982 to

26 ft in 2017. Our results indicate that this decrease of 20 ft in saturated thickness decreased

acres irrigated from 65,696 to 46,288 (30% reduction). By comparison, saturated thickness

in Dallam has declined from 153 ft in 1982 to 77 ft in 2017. In this case, our results show

that the decrease of 76 ft in saturated thickness decreased acres irrigated from 186,135 to
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153,919 (17% reduction).

Table 1.2: OLS and 2SLS Regression of Percentage of Acres Irrigated

OLS 2SLS
(1) (2)

[(1 −Dit)STit +DitK] 0.133∗∗ 0.211∗∗

(0.057) (0.098)
Dit(STit −K) 0.035∗∗∗ 0.044∗∗∗

(0.011) (0.014)
Growing Season Precipitation -0.174∗ -0.152

(0.100) (0.096)
Growing Season Evapotranspiration -1.192∗∗ -1.220∗∗∗

(0.446) (0.468)
30-yr Avg. Precipitation -2.566∗∗∗ -2.372∗∗∗

(0.744) (0.786)
30-yr Avg. Evapotranspiration 2.790∗∗∗ 3.135∗∗∗

(0.690) (0.703)
30-yr Avg. Growing Degree Days 5.083∗∗∗ 5.539∗∗∗

(0.880) (0.707)
30-yr Avg. Extreme Degree Days -0.782∗∗∗ -0.823∗∗∗

(0.093) (0.098)
Hydraulic Conductivity 0.005 0.016

(0.025) (0.024)
Specific Yield 63.199 52.986

(44.801) (44.954)
Natural Recharge 5.076∗∗∗ 4.912∗∗∗

(0.993) (1.010)
Crop Productivity Index -13.639 -12.415

(13.941) (14.175)
Soil groups Yes Yes
State-by-year FE Yes Yes

F-statistics for IVs in first stage 65.70
106.61

Wu-Hausman test 11.10∗∗∗

N 1112 1112

Standard errors clustered by agricultural district are reported in parentheses.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Other covariates in the regression of percentage irrigated acres are also significant. The

long-term precipitation and evapotranspiration are both significant and show the expected
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signs. Since precipitation and evapotranspiration are measures of natural water supply

and water demand, irrigation is more valuable—and thus irrigated acres are larger—when

precipitation is low and evapotranspiration is large. More drought-prone conditions due to

climate change would increase the percentage of irrigated acres which would increase the use

of groundwater for irrigation. Natural recharge is associated with increases in the percentage

of acres irrigated. If a county has greater recharge, then farmers might expect less future

depletion which could lead them to invest in irrigation infrastructure, increasing irrigated

acres. The crop productivity index is insignificant. However, we also capture the variation

in climatic factors and soil productivity affecting crop productivity by including the climatic

variables and soil groups.

The main results of the regression of irrigated cash rents are summarized in Table 1.3.

We expect that if groundwater is constrained, farmers either switch to less profitable crops

or may irrigate less per acre, and this could affect crop yields and net returns on land

remaining in irrigation. The feedback between irrigated rents and saturated thickness is less

obvious than when considering irrigated acres but is still a concern. Intuitively, it could be

that frmers operating in more productive land with higher rental rate have higher incentives

to develop irrigation, but the use of more water on this land decreases current saturated

thickness. The OLS estimated coefficients on the saturated thickness linear splines are

lower than the corresponding 2SLS coefficients, and the Wu-Hausman test statistic (3.64) is

significant at the 5% level indicating that the bias of OLS is statistically significant. Table 1.3

also presents the values of the F-statistics (33.03 and 60.08) for the first stage model, which

provides support regarding the strength of our instruments.

The 2SLS coefficients on the saturated thickness linear splines show the expected sign, but

only the coefficient for the first segment is significant at the 5% level (column 2 of table 1.3).

Therefore, when the level of saturated thickness is less than 70 ft, a 1 ft decrease in saturated

thickness results in a $0.72/acre decrease in irrigated cash rent. This effect represents 0.71%

of the average irrigated cash rental rate ($102/acre) in a county with saturated thickness

less than 70 ft. By contrast, saturated thickness does not significantly impact irrigated cash

rents for levels greater than 70 ft. We also use Wichita and Dallam counties as examples
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to illustrate the impact of saturated thickness on irrigated rents. Results indicate that a

decrease of 20 ft in saturated thickness since 1982 in Wichita County decreased irrigated

rental rates from $102/acre to $87/acre (14% reduction). By contrast, results show that a

decrease of 76 ft in saturated thickness in Dallam County decreased irrigated rental rates

from $101/acre to $100.2/acre, but this impact is not statistically different from zero.
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Table 1.3: OLS and 2SLS Regression of Irrigated Rental Rates

OLS 2SLS
(1) (2)

[(1 −Dit)STit +DitK] 0.510∗∗ 0.723∗∗

(0.228) (0.294)
Dit(STit −K) 0.002 0.010

(0.030) (0.029)
Growing Season Precipitation 0.773∗ 0.815∗∗

(0.389) (0.357)
Growing Season Evapotranspiration 0.758 0.784

(1.491) (1.336)
30-yr Avg. Precipitation -6.497∗∗ -6.210∗∗∗

(2.476) (2.321)
30-yr Avg. Evapotranspiration -10.525∗∗∗ -9.777∗∗∗

(3.524) (3.409)
30-yr Avg. Growing Degree Days 4.299 5.551

(3.844) (3.912)
30-yr Avg. Extreme Degree Days -0.474 -0.585

(0.491) (0.467)
Hydraulic Conductivity -0.003 0.019

(0.038) (0.038)
Specific Yield -28.002 -46.783

(148.839) (149.472)
Natural Recharge 3.550∗∗ 3.309∗∗

(1.448) (1.338)
Crop Productivity Index 129.681∗∗ 130.946∗∗∗

(48.428) (46.301)
Soil groups Yes Yes
State-by-year FE Yes Yes

F-statistics for IVs in first stage 33.03
69.08

Wu-Hausman test (p-value) 3.64∗∗

N 819 819

Standard errors clustered by agricultural district are reported in parentheses.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Our results also highlight the role of other covariates in determining irrigated cash rents

and the coefficient estimates generally follow intuition. We find that growing season precip-

itation positively affects irrigated rents—when growing season precipitation is larger, then

a farmer may pump less water so irrigation costs decrease and rent increases. Results also
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show that a larger crop productivity index is associated with increases in irrigated rents.

This result also aligns with intuition given that more productive land for high-value crops

may result in higher yield and higher rents.

We use the parameters estimates to estimate the average economic impact of a 1 ft

decrease in saturated thickness on returns to land along the extensive and intensive margins

(Table 1.4). To estimate uncertainty due to regression estimation, we use the wild cluster

bootstrap (WCB) with 1,000 replications which preserves the regressors but resamples the

residuals which are used to define new values of the dependent variable following Cameron

et al. (2008) and Roodman et al. (2019).

For ease of interpretation, we discuss the average economic impact of a 10 ft decrease

in saturated thickness. Our results indicate that a 10 ft decrease in saturated thickness

decreased the average returns to land by $2.27/acre of land overlying the aquifer with initial

saturated thickness less than 70 ft. This effect represents a 7.9% decrease in the average

returns per acre of cropland5. Additionally, 63% of the economic impact corresponds to

adjustment through reduced irrigated acreage (extensive margin) ($1.43/acre) while 37%

occurs through reduced irrigated rental rates (intensive margin) ($0.84/acre).

By contrast, when saturated thickness is greater than 70 ft, a 10 ft decrease in saturated

thickness decreased the average returns to land by $0.46/acre of land overlying the aquifer.

This effect represents a 0.9% decrease in the average returns per acre of cropland. Most of

the economic impact occurs at the extensive margin ($0.43/acre) while adjustments at the

intensive margin do not have a statistically significant impact on returns to land.

5We estimate the change in returns to land per acre of cropland overlying the aquifer as ∂B̂it

∂STit
× Atot.aq

Acropl.aq ,

where Atot.aq is total area of the county overlying the aquifer, and Acropl.aq is total cropland area overlying
the aquifer. Alternatively, this calculation can be interpreted as the marginal effect per acre of total land
divided by the total land that is cropland. To put this marginal effect in relative terms, we divide by
the weighted average cropland rental rate (area of cropland irrigated times irrigated rent plus the area of
cropland nonirrigated times nonirrigated rent).
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Table 1.4: Marginal Economic Impact of a Decrease in
Saturated Thickness

Margin of Adjustment Marginal Effect

Saturated thickness less than 70 ft

Extensive -0.143∗∗∗

(0.052)
Intensive -0.084∗∗

(0.034)
Total -0.227∗∗∗

(0.051)
Saturated thickness greater to 70 ft

Extensive -0.043∗∗∗

(0.012)
Intensive -0.002

(0.007)
Total -0.046∗∗∗

(0.015)

Bootstrap standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

1.6.2 Projections of Future Economic Returns

The economic impact of projected decreases in saturated thickness across the HPA is esti-

mated next . Parameter estimates are used to simulate how projected changes in saturated

thickness impact irrigated acres and irrigated rental rates for each county in our sample,

while holding other variables constant. We use the projected values of saturated thickness

in 2050 and 2100 from Steward and Allen (2016) to calculate a change from current values

in 2020.

As figures 1.4 and 1.5 show, saturated thickness is projected to decrease more rapidly in

the central and southern portions of the HPA. The simulation results show that, on average,

the two future saturated thickness scenarios result in more severe reductions in annual returns

to land in the Central and Southern portions of the HPA. Saturated thickness is projected

to decrease on average by 21 ft, 21 ft and 20 ft in Texas, Kansas and Colorado respectively,

from 2020 to 2050. Simulation results show that the annual present value of returns to
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land decrease on average by $53.5, $34.1 and $15.7 million in Texas, Kansas and Colorado,

respectively. These effects represent about 11.6%, 5.3% and 7.7% of the current predicted

returns to cropland. In addition, irrigated acres are expected to decrease by 20.5%, 13.5%

and 23.2% by 2050. By contrast, saturated thickness is projected to decrease on average only

by 5 ft in Nebraska which implies an average reduction in the annual present value of returns

to land of $10.9 million which represents about 0.42% of the current predicted returns to

land. This decrease in saturated thickness would reduce irrigated acres by 1% in 2050.

(A)

Feet 
 Declines

More than 50
25 to 50
10 to 25
0 to 10
Rises
Out of sample

(B)

Million USD 
 Declines

More than 5
2 to 5
0.5 to 2
0 to 0.5
Rises
Out of sample

Figure 1.4: (A) Change in saturated thickness 2020 to 2050 (B) Annual change in returns
to land
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(B)

Million USD 
 Declines

More than 5
2 to 5
0.5 to 2
0 to 0.5
Rises
Out of sample

Figure 1.5: (A) Change in saturated thickness 2020 to 2100 (B) Annual change in returns
to land

During the longer time period from 2020 to 2100, saturated thickness is projected to

decrease on average by 38 ft, 40 ft and 47 ft in Texas, Kansas and Colorado, respectively.

In this case, the average annual present value of returns to land are expected to decrease

on average by $84.3, $86.3 and $35.0 million in Texas, Kansas and Colorado. These effects

represent about 18.3%, 13.4% and 17.2% of the current predicted returns to cropland. In

this case, irrigated acres are expected to decrease by 35.8%, 32.7% and 47.3% by 2100. In

Nebraska, saturated thickness is projected to decrease on average only by 15 ft in Nebraska

which implies an average reduction in the average annual present value of returns to land of

$32.2 million which represents about 1.3% of the current predicted returns to land. Irrigated

acres are expected to decrease by 3%.

Across the entire High Plains Aquifer region, the average annual present value of returns
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to land are projected to decrease by $120.6 million as a result of a projected average decrease

in saturated thickness of 14 ft from 2020 to 2050. This effect represents about 3.0% of the

current predicted returns to cropland and irrigated acres are expected to decrease by 8.4%

by 2050. Similarly, saturated thickness is projected to decrease on average by 29 ft from

2020 to 2100 in the HPA which decreases average annual present value of returns to land

by $250.5 million, representing about 6.3% of the current predicted returns to cropland.

Irrigated acres are expected to decrease by 17.0% by 2100.

Finally, figure 1.6 shows the trend of projected annual change in returns to land by state

for the period 2030-2100 compared to returns in 2020. Kansas and Texas show the strongest

downward trend in returns to land. Even though the changes in returns to land are smaller

in magnitude in Colorado and Nebraska, these states also show a decreasing trend. Note

that these findings extrapolate existing economic conditions and policies into the future in

order to isolate the impact of projected declines in groundwater resources alone.
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Figure 1.6: Annual change in returns to land compared to 2020
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1.6.3 Falsification Test

The purpose of the falsification test is to evaluate the validity of the exclusion restriction. We

estimate a reduced form regression using an alternative outcome that should not be affected

by pre-development saturated thickness but would be affected by potential confounders. We

select nonirrigated cash rental rates as an alternative outcome. The nonirrigated cash rental

rates likely reflect the productive ability of the climate and soils and it would violate the

exclusion restriction if unobserved productivity is correlated with predevelopment saturated

thickness. The results in table 1.5 support the exclusion restriction since pre-development

saturated thickness has a statistically insignificant relationship with nonirrigated rents.

29



Table 1.5: OLS Regression of Nonirrigated Rental Rates

OLS

[(1 −D
′
it)ST1930it +D

′
itK

′
] 0.152

(0.151)
D

′
it(ST1930it −K

′
) -0.018

(0.035)
Growing Season Precipitation 0.404

(0.276)
Growing Season Evapotranspiration -0.818

(2.331)
30-yr Avg. Precipitation -1.254

(2.246)
30-yr Avg. Evapotranspiration -9.886∗∗

(4.341)
30-yr Avg. Growing Degree Days 3.297

(4.124)
30-yr Avg. Extreme Degree Days -0.298

(0.516)
Hydraulic Conductivity 0.096∗

(0.049)
Specific Yield -335.762∗∗

(130.868)
Natural Recharge 5.377∗∗

(2.535)
Crop Productivity Index 171.924∗∗∗

(52.942)
Soil groups Yes
State-by-year FE Yes

R2 0.87
N 935

Standard errors clustered by agricultural district are reported in parentheses.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

1.6.4 Robustness Checks

In this section, we examine whether estimates from our main model specification are sensitive

to the inclusion of different fixed effects and to alternative splines’ knot locations.

First difference estimator

In Table 1.6 we report coefficient estimates from regressions that include county fixed effects.
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The coefficients on saturated thickness are larger than the same coefficients in our main

specification. In particular, the effect of saturated thickness on the irrigated rental rates

is implausibly large. The use of county fixed effects do not resolve the endogeneity from

feedback effects since, for example, a change in irrigated acres affects the change in the stock

of groundwater. The effect of saturated thickness on the outcomes of interest becomes even

larger when we account for the feedback bias using 2SLS.

Table 1.6: First Difference Regression Results

Percentage of
Irrigated Acres

Irrigated
Rental Rates

OLS OLS

[(1 −Dit)STit +DitK] 0.376∗∗∗ 9.182∗∗∗

(0.090) (1.753)
Dit(STit −K) 0.168∗∗∗ 3.493∗∗∗

(0.022) (0.642)
Growing Season Precipitation 0.072∗∗ -0.125

(0.032) (0.320)
Growing Season Evapotranspiration 0.318∗∗ 0.322

(0.152) (0.714)
Year FE Yes Yes

R2 0.228 0.313
N 987 515

Standard errors clustered by agricultural district are reported in parentheses.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

GMDs-by-year fixed effects and alternative splines’ knot locations

Policies regarding groundwater use not only vary by state but also within states. Local gov-

ernance institutions that collectively manage the aquifer have been developed as a potential

solution to promote water conservation. Colorado, Kansas, Nebraska and Texas use some

type of local management district to regulate groundwater use. In Colorado, there are eight

Designated Groundwater Basins with 13 groundwater management districts within these

basins. Kansas has 5 Groundwater Management Districts with the authority to implement

corrective measures for water conservation for a particular region. Nebraska has 23 Natural

Resources Districts governed by a publicly-elected board of directors. There are 16 ground-
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water management areas in Texas and all groundwater conservation districts are part of

at least one groundwater management area. In general, groundwater management districts

(GMDs) are local districts with additional administrative authority to act on the behalf of

local water users. However, the design and implementation of corrective measures for water

conservation are heterogeneous across groundwater management districts (Schoengold and

Brozovic, 2018).

In our preferred specification, we control for state-by-year fixed effects. However, dif-

ferences between how each groundwater management district choose to design policy might

affect the outcomes of interest. Table 1.7, Panel A, reports the results of regressions that

include groundwater management districts (GMDs) by year fixed effects. The pattern of the

results is unchanged, perhaps because many policy changes were only implemented in the

HPA recently (see Schoengold and Brozovic (2018) for a detailed discussion). For instance,

Kansas established the first Local Enhanced Management Area (LEMA), Sheridan 6, in 2013

which covers a local township sized portion of the GMD to reduce water allocations. Other

groundwater management plans in Kansas have not substantially reduced water use during

our sample period (Perez-Quesada and Hendricks, 2021).

Table 1.7, Panels B and C, report the results of regressions for different locations of the

spline knots. We increase (decrease) by 10 ft both the saturated thickness spline knot (K)

and the predevelopment saturated thickness spline knot (K
′
). The similarity of the estimates

of the percentage of irrigated acres and irrigated rental rates regressions to those obtained

with the previous knots suggests that our results are robust to changes in the optimal knot.

The coefficient of the saturated thickness linear spline is larger (smaller) than before when

the new threshold is smaller (larger), which may impose a larger (smaller) restriction on well

yield.
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Table 1.7: Regression Results based on GMDs-by-year Fixed Effects and Alternative Spline
Knot

Percentage of
Irrigated Acres

Irrigated
Rental Rates

2SLS 2SLS

Panel A: Results with GMDs-by-year FE

[(1 −Dit)STit +DitK] 0.211∗∗∗ 0.610∗∗∗

(0.073) (0.150)
Dit(STit −K) 0.044∗∗∗ -0.031

(0.015) (0.026)
GMDs-by-year FE Yes Yes
F-statistic for IVs in first stage 43.38 46.39

73.13 49.19
Wu-Hausman test 20.31∗∗∗ 1.83

Panel B: Results with K = 60 and K
′
= 80

[(1 −Dit)STit +DitK] 0.241∗ 1.064∗∗

(0.124) (0.448)
Dit(STit −K) 0.046∗∗∗ 0.011

(0.015) (0.030)
GMDs-by-year FE Yes Yes
F-statistic for IVs in first stage 46.90 36.84

97.88 62.36
Wu-Hausman test 11.32∗∗∗ 5.69∗∗

Panel C: Results with K = 80 and K
′
= 100

[(1 −Dit)STit +DitK] 0.191∗∗ 0.543∗∗

(0.086) (0.225)
Dit(STit −K) 0.041∗∗∗ 0.008

(0.014) (0.030)
GMDs-by-year FE Yes Yes
F-statistic for IVs in first stage 59.96 24.31

108.22 72.07
Wu-Hausman test 10.91∗∗∗ 2.30

Standard errors clustered by agricultural district are reported in parentheses.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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1.7 Conclusions

In this paper, we estimate how changes in groundwater stocks affect the returns to agri-

cultural land in the High Plains Aquifer of the central US. We address feedback effects by

exploiting hydrologic variation in pre-development saturated thickness formed during natu-

ral processes in a previous geological era. Ignoring the feedback effect results in significant

downward bias.

We find that 63% of the economic impact of a decrease in the stock of groundwater

corresponds to adjustment through reduced irrigated acreage (extensive margin), and 37%

occurs through reduced irrigated rental rates (intensive margin) when saturated thickness is

less than 70 feet, and nearly all of the response is at the extensive margin when saturated

thickness is larger. The simulation results show that the economic impact of the projected

decrease in saturated thickness varies significantly across regions of the HPA. The most

substantial decrease in returns to land are expected to occur in the Central and Southern

portions of the aquifer. There, the annual present value of returns to land are expected

to decrease on average by $53.5, $34.1 and $15.7 million by 2050 and by $84.3, $86.3 and

$35.0 million by 2100 in Texas, Kansas and Colorado, respectively. Furthermore, the average

annual present value of returns to land are expected to decrease in the High Plains region

by $120.6 million by 2050 and by $250.5 million by 2100.

The results of this study provide useful information for the management of groundwater.

We estimate the economic impact of varying groundwater stocks and, as a result, we are able

to predict the impact of a projected change due to aquifer depletion. These results inform

groundwater managers about the projected magnitude of reductions in returns under the

existing policy framework and potential gain from implementing policies that could preserve

the stock of groundwater.

34



Chapter 2

Corn Production and Groundwater

Scarcity in the US High Plains

2.1 Introduction

Groundwater irrigation has enhanced both the productivity and profitability of the agricul-

tural sector in many arid regions worldwide. Irrigated agriculture contributes 40% of total

global food production (Mrad et al., 2020) but it is depleting groundwater resources in many

regions, including the Central Valley of California and the High Plains of the United States,

South America, the North China Plain and in many parts of India (Famiglietti, 2014; Richey

et al., 2015). One estimate is that these water limitations could require the transition of

20-60 Mha of cropland from irrigated to nonirrigated management by 2100 (Elliott et al.,

2014).

The High Plains Aquifer (HPA) in the United States is a major source of water for irri-

gated crop production and contributes significantly to related sectors (Edwards and Smith,

2018). In 2015, groundwater withdrawals from the HPA represented about 47% of the total

water used for irrigation in the US (Dieter et al., 2018). However, groundwater resources

are significantly depleted in some areas of the HPA which can make continued irrigation

inviable (Mrad et al., 2020; Scanlon et al., 2012). For example, Haacker et al. (2016) con-
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sider that irrigated crop production is impractical once saturated thickness is less than 30

ft and predict that 25 to 40% of the aquifer will be under this threshold between 2012 and

2100. Deines et al. (2020) estimate that 24% of currently irrigated lands in the HPA will

not support irrigated agriculture by 2100.

Total US corn production represents about 31% of global corn production (USDA, 2022).

The High Plains region is responsible for about 25% of the total US corn production, and

approximately 46% of the total corn production in the High Plains comes from irrigated

agriculture (USDA-NASS). Moreover, corn production contributes significantly to the High

Plains livestock, food processing and energy sectors that depend on corn as a key input of

their products. In general, the production of corn has increased in the High Plains over time

(Figures A.2- A.7, Appendix) due to the improvements in corn yield. However, we should

not conclude from this trend that depletion has no impact on production since production of

corn could have increased even more in a counterfactual scenario with no aquifer depletion.

Current literature on the potential impact of aquifer depletion on corn production remains

limited to the use of model simulations that impose restrictive assumptions on irrigator

behavior. Steward et al. (2013) project the impact of declining groundwater levels on corn

production but they assume that irrigated corn production is a fixed proportion of pumped

groundwater. Cotterman et al. (2018) evaluate the combined effects of climate change and

aquifer depletion on corn production using a mechanistic crop simulation model. A recent

study by Lopez et al. (2022), show the impact on US corn production of limiting groundwater

use to available recharge assuming that the only strategy for decreasing water use is by

reducing production through the use of land fallowing. Mrad et al. (2020) estimate peak crop

production for the High Plains using a dynamic system that was calibrated using historical

time series data on irrigated area, volume of irrigation, and aggregated crop production.

Most relevant to our paper, two recent studies in India use econometric models to estimate

the impacts of declining groundwater levels on staple grain production and cropping intensity

(Bhattarai et al., 2021; Jain et al., 2021). In particular, Bhattarai et al. (2021) estimate the

impact of well depth on cropland and crop yield but they do not account for potential

endogeneity of well depth due to bias from feedback effects of irrigated crop production
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affecting resource conditions.

Our paper estimates how differences in the stock of groundwater across the aquifer affect

corn production in the High Plains region using observed data on groundwater stocks and

corn production. Bias from feedback effects might arise because as farmers extract more

water to irrigate corn, the stock of groundwater decreases. We avoid this bias by exploiting

variation in pre-development saturated thickness that is unrelated to irrigation behavior

since it was determined by the structure and features of the pre-Ogallala surface roughly 5

to 24 million years ago.

Farmers may adjust corn production in response to saturated thickness in several different

ways. Thus, we allow for different margins of adjustment. First, changes in corn production

when a field is converted from irrigated to nonirrigated. Second, changes in corn production

when farmers reduce the proportion of corn acres on irrigated land by switching to less

water intensive crops. Third, changes in corn yield as less water is applied to irrigated fields.

We use county-level datasets on acres irrigated and corn yield to examine the impact of

changes in the stock of groundwater on (i) irrigated acres and (ii) corn yield, whereas we

use field-level crop data derived from satellite imagery to estimate (iii) the change in corn

production when a field is irrigated rather than nonirrigated, and the impact of changes in

the stock of groundwater on (iv) the probability of planting corn. These data are combined

with hydrologic characteristics of the aquifer, irrigation status of each field, and climatic and

soil characteristics.

We find that the annual production of corn would decrease by 20.1, 19.3, 7.5 and 1.2

million bushels in Kansas, Nebraska, Colorado and Wyoming due to a uniform 10 ft decrease

in saturated thickness. These decreases in annual corn production represent 6.6%, 1.6%, 7.3%

and 17.7% of the 2010-2019 average corn production across counties overlying the aquifer in

each state. Similarly, the annual production of corn is expected to decrease by 1.1 and 14.6

million bushels in Oklahoma and Texas. These reductions in corn production represent 5.3%

and 9.2% of the 2010-2019 average corn production across counties overlying the aquifer in

each state.

Our paper provides two main contributions. First, our paper is the first to use econometric
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models to estimate how depleting groundwater stocks will affect corn production. Second,

we improve on existing studies in different regions by estimating crop production impact

using initial groundwater conditions as an instrument to reduce bias from feedback effects.

Although our empirical analysis focuses on the High Plains in the US, our empirical strategy

could be used to estimate how changes in the stock of groundwater affect corn production

in other regions.

2.2 Decomposition of the Impact of Groundwater Avail-

ability on Corn Production

Reductions in groundwater availability impact production of corn through two main mecha-

nisms: decreasing well yields and increasing pumping costs. Reductions in well yields occur

because reduced saturated thickness is no longer sufficient to support high pumping rates.

The cost of pumping increases with reduced saturated thickness since more energy is re-

quired to pump groundwater from greater depths. We do not separately estimate these two

different mechanisms, but instead we use reduced form models to estimate the overall impact

of a change in saturated thickness.

Farmers may adjust corn production in response to saturated thickness in several different

ways. To understand these different margins of adjustment, the production of corn per acre

of cropland (Fct) in county c and year t is modeled as a function of saturated thickness using

the following equation:

Fct(STct) = ϕct(STct)ψ
irr
ct (STct)Υ

irr
ct (STct) + (1 − ϕct(STct))ψ

non
ct Υnon

ct ,

where STct is saturated thickness which reflects groundwater stock, ϕct is the proportion of

cropland area that is irrigated, ψirr
ct (ψnon

ct ) is the share of irrigated (nonirrigated) cropland

planted to corn, and Υirr
ct (Υnon

ct ) is the yield of irrigated (nonirrigated) corn. Therefore, the

first first term represents corn production on irrigated cropland and the second term is corn

38



production on nonirrigated cropland. Total production of corn in the county is obtained by

multiplying the equation times the total acres of cropland in the county. Equation 2.1 shows

how farmers adjust their corn production decisions as a response to an exogenous change in

groundwater availability:

∂Fct(STct)

∂STct
=

A︷ ︸︸ ︷
∂ϕct(STct)

∂STct
(a.1)

[
ψirr
ct (STct)Υ

irr
ct (STct) − ψnon

ct Υnon
ct

]
(a.2)

+

B︷ ︸︸ ︷
∂ψirr

ct (STct)

∂STct
(b)

ϕct(STct)Υ
irr
ct (STct) +

C︷ ︸︸ ︷
∂Υirr

ct (STct)

STct
(c)

ϕct(STct)ψ
irr
ct (STct) .

(2.1)

Farmers are assumed to maximize their utility subject to the constraint that well yield im-

poses on instantaneous application rates (Foster et al., 2014). When saturated thickness is

above a certain level, well yield is not a binding constraint and different levels of saturated

thickness may have minimal impact on producer behavior. But for lower saturated thickness

where well yields become constraining, farmers adjust their behavior through the extensive

or intensive margins. Component A (i.e., extensive margin) reflects how corn production

changes when a field is converted from irrigated to nonirrigated due to a change in saturated

thickness. Component a.1 is the change in irrigated cropland area and this is multiplied by

the difference in corn production on an acre of irrigated versus nonirrigated cropland (com-

ponent a.2). Component B (i.e., the crop switching margin) captures how corn production

changes when farmers reduce the proportion of corn acres on irrigated land by switching to

less water intensive crops. Component C (i.e., the corn yield margin) accounts for changes

in corn yield as less water is applied to irrigated fields.
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2.3 Empirical Strategy and Data

To examine the impact of a change in saturated thickness on corn production, we separately

estimate each subcomponent (a.1), (a.2), (b) and (c) of equation 2.1 using different model

specifications and several sources of data. Even after controlling for relevant confounders,

our estimates of subcomponent (a.1), (b) and (c) are subject to potential bias from feedback

effects between saturated thickness and irrigation behavior. Therefore, we use the empirical

strategy implemented in chapter 1 where pre-development saturated thickness—the satu-

rated thickness that existed before any effects imposed by human activity—is used as an

instrument to obtain a source of plausibly exogenous variation in saturated thickness. We

consider a nonlinear relationship between saturated thickness and corn production since

previous studies show that declines in well yield may have negative nonlinear impacts on

irrigated area (Foster et al., 2015, 2014).

The study area includes 141 counties in six states overlying the HPA—Colorado, Kansas,

Nebraska, Oklahoma, Texas and Wyoming. We restrict the sample to counties with a pro-

portion of their total area over the aquifer greater than 60% to ensure the availability of

groundwater for irrigation. The area of the sand hills in Nebraska overlying the aquifer

has minimal irrigation because the sandy soil makes the region unsuitable for crop farming

(Peterson et al., 2016; USDA-NRCS, 2006). Therefore, counties with greater than 55% of

their area in the sand hills are excluded from the analysis. Next, we describe each model

and sources of data.

2.3.1 Impact of Saturated Thickness on Irrigated Acres (a.1)

Econometric Model

To estimate the impact of saturated thickness on irrigated acres, we use the econometric

model described below in equation 2.2. Our estimates are subject to downward bias due to

the feedback effect between saturated thickness and irrigated acres. This occurs since extrac-

tion of groundwater increases and saturated thickness decreases as farmers expand irrigated
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acres. Therefore, a two-stage least square (2SLS) model is estimated for irrigated acres using

pre-development saturated thickness as an instrument. The nonlinear relationship between

saturated thickness on irrigated acres is represented using linear spline regression, which is

a piecewise linear function that fits a line in each segment of the saturated thickness space

defined by the knots while requiring continuity at the knot (Harrell, 2001).

The second-stage equation is:

ϕirr
ct = β0 + β1[(1 −Dct)STct +DctK] + β2Dct(STct −K)+

α
′
Xct + τ

′
Zc + δg + γrt + εct,

(2.2)

where K is the location of the spline knot, and

Dct =


0 if STct < K

1 if STct ≥ K.

The variable ϕirr
ct denotes the percentage of acres irrigated of the cropland over the aquifer in

county c at time t, STct is the average saturated thickness in the county, and [(1−Dct)STct+

DctK] and Dct(STct −K) are linear spline functions of saturated thickness. The vector Xct

contatins two time-variant explanatory variables. We include the contemporaneous cumula-

tive measures for precipitation and reference evapotranspiration demand within the growing

season (April 1 - September 30) to isolate contemporaneous weather effects. The vector Zc

includes several time-invariant variables described next.

We include four long-run climate variables to describe the climate in each county: average

precipitation, average reference evapotranspiration, the average number of growing degree

days between 10◦C and 30◦C, and the average number of degree days greater than 32◦C. To

account for the aquifer’s characteristics in each county, we include three variables: hydraulic

conductivity, specific yield and natural recharge. Hydraulic conductivity is a measure of the

rate at which water can move laterally to a well, and specific yield is the volume of water
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per unit volume of aquifer that can be extracted. Where hydraulic conductivity and specific

yield have higher values, we expect an increase in the well yield as water moves more readily

to a well. Natural recharge is the seepage of water into an aquifer, not including return flows

from irrigation. It controls for changes in agricultural outcomes as a consequence of different

expected rates of aquifer depletion that affect expectations of future aquifer stocks. Finally,

we include a national commodity crop productivity index for corn and soybeans to account

for the soil’s suitability for corn and soybeans.

The fraction of county area in each soil group is represented by δg; γrt are state-by-year

fixed effects for state r and year t which absorb the effects of any arbitrary shock, including

technological change, variation in commodity price and groundwater laws, which is specific

to a state in any given year; and εct are idiosyncratic errors. Based on exploratory analysis

of our data and previous studies described above, we allow for one spline knot location

(K = 70).

The first stage regressions are defined as:

[(1 −Dct)STct +DctK] = θ10 + θ11[(1 −D
′

c)ST1930c +D
′

cK
′
] + θ12D

′

c(ST1930c −K
′
)+

+ φ1
1Xct + φ1

2Zc + δ1g + γ1rt + v1ct,

and

(STct −K) = θ20 + θ21[(1 −D
′

c)ST1930c +D
′

cK
′
] + θ22D

′

c(ST1930c −K
′
)+

+ φ2
1Xct + φ2

2Zc + δ2g + γ2rt + v2ct,

where K
′

is the spline knot and

D
′

c =


0 if ST1930c < K

′

1 if ST1930c ≥ K
′
.
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It is important to note that there are two endogenous explanatory variables ([(1−Dct)STct+

DctK] and (STct−K)), and our two instruments are [(1−D′
c)ST1930c+D

′
cK

′
] andD

′
c(ST1930c−

K
′
). The variable ST1930c is pre-development saturated thickness (i.e., the saturated thick-

ness in 1930) and the instruments, [(1 − D
′
c)ST1930c + D

′
cK

′
] and D

′
c(ST1930c −K

′
), are

linear spline functions of pre-development saturated thickness with K
′

= 90. Since pre-

development saturated thickness is larger than current saturated thickness, the selected

knot for the instrument is also larger.

For the statistical inference, the standard errors are clustered at the agricultural dis-

trict level to adjust for heteroskedasticity, within-county correlation over time and spatial

correlation between counties within a district. We follow Bester et al. (2011), who propose

clustering by spatial groups as a simple and flexible method to account for spatial correlation.

Bester et al. (2011) show that clustering results in valid inference if cluster-level averages are

approximately independent.

IV Assumptions

To identify β1 and β2 in equation 2.2, the instruments must account for the saturated thick-

ness variation. As shown in chapter 1, it is apparent that the geographic patterns of saturated

thickness in 2017 resembles the pattern of pre-development saturated thickness in 1930. In

general, the greatest contemporaneous saturated thickness occurs in those areas where initial

saturated thickness was also the largest.

Identification also requires satisfying the exclusion restriction. The exclusion restriction

is that conditional on the controls included in the regression, the pre-development saturated

thickness has no effect on the percentage of acres irrigated other than its effect through the

current saturated thickness. This exclusion restriction is plausible since the pre-development

saturated thickness was shaped by the structure and features of the Ogallala geological

formations that existed long before human settlement, so it is unrelated to human activity

(see chapter 1 for a detailed explanation).
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Data

Table 3.2 displays descriptive statistics for the variables in our model. The variables used in

the model are obtained from a variety of sources. Irrigated area and total cropland area at the

county-level are available every five years from the US Census of Agriculture. Cropland area

over the aquifer is calculated as the total cropland area in the county times the share of the

county overlying the aquifer. We calculate the percentage of acres irrigated by dividing the

irrigated acres by the total cropland area of the county overlying the aquifer. We construct

a balanced panel of 141 counties over the HPA from 1982 to 2017, resulting in a total of

1,128 observations.

Table 2.1: Summary statistics for variables in the econometric analysis

Variables Mean Std. Dev.

Percentage of Acres Irrigated 30.61 20.33
Predevelopment Saturated Thickness (ft) 172.50 103.54
Saturated Thickness (ft) 149.69 102.50
Growing Season Precipitation (in) 15.85 4.84
Growing Season Evapotranspiration (in) 34.46 2.89
30-yr Avg. Precipitation (in) 16.31 3.10
30-yr Avg. Evapotranspiration (in) 34.56 2.60
30-yr Avg. Growing Degree Days (hundreds) 18.36 2.60
30-yr Avg. Extreme Degree Days 32.33 17.57
Hydraulic Conductivity (ft/day) 81.40 47.14
Specific Yield (prop.) 0.16 0.02
Natural Recharge (in) 2.62 2.13
Crop Productivity Index (prop.) 0.30 0.14

Daily gridded weather data are obtained from PRISM and aggregated to the county

level. We calculate the cumulative measure for precipitation and reference evapotranspira-

tion demand within the growing season (April 1 - September 30) for each year. Reference

evapotranspiration is a measure of the evaporative demand independent of crop characteris-

tics and soil factors within a county. It is calculated using the reduced-set Penman-Monteith

method following Hendricks (2018). We also construct four long-run climate variables: aver-

age precipitation, average reference evapotranspiration, the average number of degree days
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between 10◦C and 30◦C, and the average number of degree days greater than 32◦C. We

calculate the cumulative measure for each of these four variables within the growing season

(April 1 - September 30) for each year and then calculate a 30-year average (1987-2017).

Hydrologic characteristics of the HPA are obtained from two different sources. Pre-

development saturated thickness and the average annual saturated thickness are obtained

from Steward and Allen (2016). Hydraulic conductivity, specific yield and natural recharge

are obtained from the US Geological Survey. This hydraulic conductivity data set consists of

contours and polygons that we aggregate to the county level (USGS, 1998). We use a raster

of the average specific yield for the HPA and aggregate it to the county level (McGuire et al.,

2012; USGS, 2012). Natural recharge data are also obtained from a raster and aggregated

to the county level (Houston et al., 2013; USGS, 2011). The average 2000-09 recharge is

estimated by USGS using the Soil-Water Balance (SWB) model which assumes that irrigation

systems are 100% efficient and there is no surplus irrigation water for recharge. Thus, natural

recharge does not include return flows from irrigation (Stanton et al., 2011).

Major soil groups are obtained from Hornbeck and Keskin (2014). For example, soil

groups appearing within the HPA include: alluvial, brown, chernozem, and chestnut1. The

national commodity crop productivity index for corn and soybeans is obtained from the Soil

Survey Geographic database (SSURGO). This variable ranges from 0.01 (low productivity)

to 0.99 (high productivity).

2.3.2 Change in Corn Production when Field is Irrigated rather

than Nonirrigated (a.2)

Econometric Model

We use linear regression to estimate the following statistical model:

ψitΥit = β0r + β1rIit + τ
′

rZi + µscr + γltr + εit, (2.3)

1A map can be found in the Hornbeck and Keskin (2014)’s online Appendix: https://assets.aeaweb.
org/asset-server/articles-attachments/aej/app/app/0601/2012-0256_app.pdf
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where the dependent variable ψitΥit is the per acre corn production in field i in year t, which

is calculated as whether or not field i is planted to corn (ψit) times the corn yield (Υit).

We estimate this regression separately for the northern and southern portions of the HPA

to account for heterogenous effects across regions. Therefore, each of the parameters have

an r subscript to denote that they differ between the northern and southern regions. The

northern regions includes Colorado, Kansas, Nebraska and Wyoming, while the southern

includes Oklahoma and Texas.

Iit is a dummy variable equal to 1 if field i is irrigated. Zi is a vector which includes

precipitation and temperature normals during the growing season to control for long-run

climate variation. µscr are soil-county fixed effects capturing time-invariant soil and county

characteristics. γltr are state-by-year fixed effects for state l and year t which control for

spatial-temporal variation and allow for a separate effect for each possible combination of

state and year, and εit are idiosyncratic errors. The standard errors are clustered at the soil-

county level to adjust for heteroskedasticity, within-field correlation over time and spatial

correlation between fields within a soil-county group.

Data

Table 2.2 presents summary statistics of the variables used in model estimation. Production

of corn per acre used as the dependent variable in equation 2.3, is equal to irrigated corn

yield if corn was planted in field i in year t, equal to nonirrigated corn yield if nonirrigated

corn was planted and equal to zero if another crop was planted. To identify what crop

is grown in each field, we use crop data from the Cropland Data Layer (CDL) developed

by the National Agricultural Statistics Service (NASS) of the United States Department of

Agriculture (USDA)2. The CDL provides annual information on what crop is being grown

at every 30-by-30 meter pixel in the US from 1997 to 2021. Our analysis uses field crop

data from 2008-2017 in 141 counties that overlay the High Plains Aquifer. We use Common

Land Unit (CLU) boundaries in 2007 from Farm Service Agency to approximate “field”

2The CDL can be downloaded at https://nassgeodata.gmu.edu/CropScape/. See Boryan et al. (2011)
for details on the CDL methodology.
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boundaries3. The CLU data were obtained from Woodard (2016). We define a point near

to the centroid of the CLU as our unit of analysis4 (Appendix, Figure A.1).

Data on where and when irrigation occurs is obtained from Annual Irrigation Maps -

High Plains Aquifer (AIM-HPA). This dataset was produced from Landsat satellite data in

(Deines et al., 2019) and provides moderately high resolution (30 m) irrigation map time

series from 1984 to 2017 over the aquifer5. We combine the CDL and AIM-HPA datasets to

classify a field as irrigated corn, nonirrigated corn, or other. We also use AIM-HPA irrigation

classification as our key explanatory variable.

Table 2.2: Summary statistics for variables in the econometric analysis

North South

Variables Mean Std. Dev. Mean Std. Dev.

Corn Production (ψitΥit) 71.25 89.90 17.94 55.31
Proportion of Corn within irrigated fields 0.61 0.49 0.24 0.42
Proportion of Corn within nonirrigated fields 0.22 0.42 0.009 0.092
Irrigated Corn Yield (Bu/acre) 192.32 18.44 179.17 31.27
Nonirrigated Corn Yield (Bu/acre) 96.96 44.53 53.25 23.51
Precipitation Normals (in) 18.15 3.15 13.39 1.40
Temperature Normals (degrees) 19.11 1.22 21.87 0.99

Annual data on irrigated and nonirrigated corn yields at the county-level are obtained

from the National Agricultural Statistics Service (NASS) for the period 2008-2017. Since

the number of reported counties is small for some states during the 2008-2017 period, we

use corn yield at the agricultural district level to fill missing values. We link yield and CDL

data to assign yield values to each field.

Climate information is summarized by climate normals defined by the National Oceanic

and Atmospheric Administration (NOAA) as “three-decade averages of climatological vari-

ables including tempreature and precipitation.” Monthly long-term average gridded precipi-

3A CLU is the smallest contiguous unit of agricultural land under common land cover, land manage-
ment, and ownership. See here for more details https://www.fsa.usda.gov/programs-and-services/

aerial-photography/imagery-products/common-land-unit-clu/index
4Only points corresponding to CLU larger or equal to 15 acres are included in the analysis.
5The AIM-HPA can be downloaded at https://www.hydroshare.org/resource/

a371fd69d41b4232806d81e17fe4efcb/
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tation and temperature data are obtained from PRISM. We use the current PRISM normals

which covers the period 1991-2020. We calculate the long-term average precipitation and

temperature during the growing season (April 1 - September 30) for each field in the sample.

We collected soil data from Soil Survey Geographic (SSURGO) database from NRCS,

which includes data on physical and chemical soil properties6. We use map units provided

by the SSURGO data to create the soil fixed effects.

2.3.3 Impact of Saturated Thickness on the Probability of Plant-

ing Corn (b)

Econometric Model

We expect that if groundwater is constrained, farmers may switch from corn towards less

water intensive crops. To estimate the impact of saturated thickness on the share of irrigated

corn acres we use the same empirical strategy as we use to estimate subcomponent (a.1) since

feedback effects between the share of irrigated corn acres and saturated thickness could bias

our estimates. Intuitively, it could be that farmers operating in more productive lands

have higher incentives to plant corn and develop irrigation which will impact groundwater

stocks. Thus, a 2SLS model is estimated for the share of irrigated corn acres using the same

instrument, pre-development saturated thickness, that we use in section 2.3.1.

The second-stage equation is:

ψirr
it = β0r + β1r[(1 −Di)STi +DiK] + β2rDi(STi −K) + τ

′

rZi + αrc + γrt + εit, (2.4)

where the dependent variable ψirr
it is a dummy equal to 1 if corn is planted in year t conditional

on field i being irrigated. STi is the average saturated thickness in 2015. [(1−Di)STi+DiK]

and Di(STi −K) are linear spline functions of saturated thickness defined in section 2.3.1.

The vector Zi includes climate and soil variables which are time-invariant. Given that farmers

6https://websoilsurvey.sc.egov.usda.gov/App/WebSoilSurvey.aspx
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decide what crops to plant prior to the start of the growing season, we include precipitation

and temperature normals during the growing season to capture their expectation of weather

conditions during the next growing season. We include the following five soil characteristics

as controls: the national commodity crop productivity index for corn, electrical conductivity,

soil organic carbon, the percentage of clay soil and the percentage of silty soil. αrc are county

fixed effects to control for any common time-invariant characteristics such as geographic

locations, climate and soil quality for each county. γrt are year fixed effect to control for any

common weather shocks, technological progress, and policy changes within each year, and

εit are idiosyncratic errors.

Similarly to the estimation of subcomponent (a.2), we allow each coefficient to vary

between the northern and southern regions as denoted by the subscript r. The effect of

saturated thickness on the probability of planting corn might differ across the regions with

different cropping practices. In particular, cotton is a viable and popular crop alternative in

the south, but not the north. The standard errors are clustered at the county level to adjust

for heteroskedasticity, within-field correlation over time and spatial correlation between fields

within a county.

Data

We use the same data that we use to estimate subcomponent (a.2) described in section 2.3.2.

Table 2.3 shows summary statistics of the variables used in model estimation. In addi-

tion, data on pre-development and average saturated thickness at the field-level comes from

McGuire et al. (2012), McGuire (2013) and McGuire (2017). These data are time-invariant

and we extract the saturated thickness values from raster to the field level.

The soil characteristics included in the regression as controls are obtained from SSURGO.

The national commodity crop productivity index for corn ranges from 0.01 (low productiv-

ity) to 0.99 (high productivity). Electrical conductivity is an indicator of salinity and the

amount of nutrients available. Soil organic carbon is important for plant growth since it pro-

vides a source of energy for soil microorganisms and impacts nutrient availability through
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mineralization. The percentage of clay soil and the percentage of silty soil represent the

percentage of each type of soil on the total clay, silty and sandy soils.

Table 2.3: Summary statistics for variables in the econometric analysis

North South

Variables Mean Std. Dev. Mean Std. Dev.

Proportion of Corn within irrigated fields 0.61 0.49 0.24 0.42
Predevelopment Saturated Thickness (ft) 209.80 128.17 177.41 98.82
Saturated Thickness (ft) 200.71 128.67 96.22 76.41
Precipitation Normals (in) 19.02 2.93 13.15 1.21
Temperature Normals (degrees) 18.86 1.03 21.59 0.90
Crop Productivity Index Corn (prop) 0.48 0.19 0.23 0.038
Electrical conductivity 0.48 0.63 0.86 0.43
Soil organic carbon (kg/m2) 11.36 4.45 8.96 3.71
Percentage of Clay Soil 21.95 7.87 25.83 10.76
Percentage of Silty Soil 50.17 19.41 29.33 13.61

The Figure 2.1 shows the frequency of corn planted in a 4-years period (2014-207). In gen-

eral, irrigated corn is more frequently planted in the northern High Plains and the frequency

declines moving south into the more arid region.
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Figure 2.1: Frequency of Corn Planted in Irrigated Fields during 2008-2017

2.3.4 Impact of Saturated Thickness on Irrigated Corn Yield (c)

Econometric Model

We expect that reductions in saturated thickness may impact corn yield as less water is

applied to irrigated fields. In this case, we are also concerned that potential feedback effects

between saturated thickness and irrigated corn yield could bias our estimates. This occurs

as farmers operating in more productive (i.e., higher yielding) lands have higher incentives

to plant corn and develop irrigation which will impact groundwater stocks. To estimate the

impact of saturated thickness on irrigated corn yield we follow the same empirical strategy

implemented to estimate subcomponent (a.1) described in section 2.3.1. Thus, a two-stage

least square (2SLS) model is estimated for irrigated corn yield using pre-development satu-
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rated thickness as an instrument.

The second-stage equation is:

Υirr
ct = β0 + β1[(1 −Dct)STct +DctK] + β2Dct(STct −K)+

α
′
Xct + τ

′
Zc + δg + γrt + εct,

(2.5)

where the dependent variable Υirr
ct reflects irrigated corn yield in county c in year t and [(1−

Dct)STct +DctK] and Dct(STct −K) are linear spline functions of saturated thickness. The

vector Xct contatins time-variant explanatory variables. We include the contemporaneous

cumulative measures for precipitation within the growing season (April 1 - September 30),

the average number of growing degree days between 10◦C and 30◦C, and the average number

of degree days greater than 32◦C to isolate contemporaneous weather effects. Precipitation

squared controls for nonlinear effects of precipitations on corn yield.

The vector Zc includes several time-invariant variables. We include three long-run climate

variables to describe the climate in each county: average precipitation, the average number

of growing degree days between 10◦C and 30◦C, and the average number of degree days

greater than 32◦C. Hydraulic conductivity, specific yield and natural recharge account for

different aquifer’s characteristics in each county. The national commodity crop productivity

index for corn accounts for the soil’s suitability for corn. The fraction of county area in

each soil group is represented by δg; γrt are state-by-year fixed effects for state r and year t

which absorb the effects of any arbitrary shock, including technological change, variation in

commodity price and groundwater laws, which is specific to a state in any given year; and

εct are idiosyncratic errors.

Data

Table 2.4 presents descriptive statistics for the variables in our model. Annual data on

irrigated corn yield at the county-level are obtained from the National Agricultural Statistics

Service (NASS). We construct an unbalanced panel of 141 counties over the HPA from 1982
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to 2017, resulting in a total of 5,076 observations. The explanatory variables included in

equation 2.5 are derived from the same sources described in section 2.3.1.

Table 2.4: Summary statistics for variables in the econometric analysis

Variables Mean Std. Dev.

Irrigated Corn Yield 158.79 28.58
Predevelopment Saturated Thickness (ft) 172.50 103.54
Saturated Thickness (ft) 149.72 102.40
Growing Season Precipitation (in) 16.19 5.22
Growing Degree Days 18.32 2.82
Extreme Degree Days 32.36 24.47
30-yr Avg. Precipitation (in) 16.31 3.10
30-yr Avg. Growing Degree Days (hundreds) 18.36 2.60
30-yr Avg. Extreme Degree Days 32.33 17.56
Hydraulic Conductivity (ft/day) 81.40 47.14
Specific Yield (prop.) 0.16 0.02
Natural Recharge (in) 2.62 2.13
Crop Productivity Index (prop.) 0.30 0.14

The maps in Figure 2.2 show the levels of saturated thickness in 2017 and the 1982-2017

average irrigated corn yield. In general, the spatial distribution of irrigated corn yield is

related to the groundwater availability in the aquifer. Irrigated corn yields are largest in the

northern High Plains and decline moving south into the more arid region.
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(A)

Feet

0 to 50
50 to 100
100 to 150
150 to 200
200 to 250
250 to 300
300 or more
Out of sample

(B)

Bu/acre

0 to 140
140 to 150
150 to 160
160 to 165
165 to 170
170 to 180
Out of sample

Figure 2.2: (A) Saturated thickness in 2017 (B) 1982-2017 Average Irrigated Corn Yield

2.4 Results

2.4.1 Impact of Saturated Thickness on Irrigated Acres (a.1)

The results from the 2SLS regression described in equation 2.2 are displayed in Table 2.5.

The Wu-Hausman test statistic (12.48) is significant at the 1% level which provides evidence

that the saturated thickness is an endogenous variable. The value of F-statistics testing

the null hypothesis that the instruments are equal to zero in the first stage regressions are

greater than 10 (64.92 and 105.67). Therefore, weak instruments are not a concern (Staiger

and Stock, 1997).

The coefficient on the first saturated thickness linear spline indicates that when the level
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of saturated thickness is less than 70 ft, a 1 ft decrease in saturated thickness results in a

0.381 percentage point decrease in the cropland area that is irrigated. By contrast, when the

level of saturated thickness is greater than 70 ft, a 1 ft decrease in saturated thickness results

in a 0.080 percentage point decrease in the cropland area that is irrigated. As expected, the

effect of a decrease in saturated thickness is larger if the initial saturated thickness is already

small.
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Table 2.5: 2SLS Regression Results for Impact of Saturated Thickness on Irrigated Acres

OLS 2SLS
(1) (2)

[(1 −Dit)STit +DitK] 0.219∗∗ 0.381∗∗∗

0.085 (0.136)
Dit(STit −K) 0.072∗∗∗ 0.080∗∗∗

0.011 (0.013)
Growing season Precipitation -0.075 -0.052

(0.120) (0.115)
Growing season Evapotranspiration -1.367∗∗ -1.466∗∗

(0.542) (0.605)
30-yr Avg. Precipitation -3.641∗∗∗ -3.320∗∗∗

(0.949) (0.971)
30-yr Avg. Evapotranspiration 4.376∗∗ 5.136∗∗∗

(1.646) (1.734)
30-yr Avg. Growing Degree Days 4.942∗∗ 5.562∗∗∗

(1.412) (1.174)
30-yr Avg. Extreme Degree Days -0.966∗∗∗ -1.021∗∗∗

(0.217) (0.210)
Hydraulic Conductivity 0.015 0.031

(0.044) (0.040)
Specific Yield 133.158∗∗ 116.596∗∗

(56.193) (57.889)
Natural Recharge 4.691∗∗∗ 4.435∗∗∗

(1.095) (1.133)
Crop Productivity Index -32.216∗∗ -30.257∗

(14.986) (15.651)
Soil groups Yes Yes
State-by-year FE Yes Yes

F-statistics for IVs in first stage - 64.92
- 105.67

Wu-Hausman test - 12.48∗∗∗

N 1,096 1,096

Standard errors clustered by agricultural district are reported in parentheses.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

One potential concern with the model specification in equation 2.2 is that cropland area

is in the denominator of the dependent variable so it is possible that the share of cropland

irrigated could change as saturated thickness changes in part due to changes in total cropland

area. To alleviate concerns regarding that cropland area varies with saturated thickness, we
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also estimate the effect of saturated thickness on the percentage of total county acres irrigated

and then scale the coefficient to represent the percentage of cropland acres irrigated. To do

this, we scale the coefficients from chapter 1: β̂1 × Atot.aq

Acropl.aq and β̂2 × Atot.aq

Acropl.aq , where Atot.aq

is total area of the county overlying the aquifer, and Acropl.aq is the total cropland area

overlying the aquifer, and β̂1 and β̂2 are parameter estimates from equation 3 in chapter 1

that uses percent of total county acres irrigated as the dependent variable. We obtain similar

coefficients estimates to those shown in Table 2.5. The scaled coefficients on the first and

second saturated thickness linear spline are 0.372 and 0.086.

Other covariates in the regression of percentage of cropland acres irrigated are also sig-

nificant. The long-term precipitation and evapotranspiration are both significant and show

the expected signs. Since precipitation and evapotranspiration are measures of natural water

supply and water demand, irrigation is more valuable—and thus irrigated acres are larger—

when precipitation is low and evapotranspiration is large. If drought events become more

frequent due to climate change, we would expect an increase in the acreage irrigated and

an increase in the extraction of groundwater for irrigation. Natural recharge is associated

with increases in the percentage of acres irrigated. If a county has greater recharge, then

farmers might expect less future depletion which could lead them to invest in irrigation

infrastructure, increasing irrigated acres.

2.4.2 Change in Corn Production when Field is Irrigated rather

than Nonirrigated (a.2)

Table 2.6 shows the estimates of the average effect of irrigation status on per acre production

of corn obtained using equation 2.3. In the north region, results show that the per acre corn

production in an irrigated field is on average 75.15 bushels higher than the per acre corn

production in a nonirrigated field, holding other variables constant (column 1 of Table 2.6).

In the southern portion of the HPA, the per acre corn production increases on average by

20.42 bushels when a field is irrigated compared to when is nonirrigated (column 2 Table 2.6).

The smaller effect in the south region is mostly explained because the difference in probability
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of planting corn between irrigated and nonirrigated is smaller in the south.

Table 2.6: Regression Results for Impact of Irrigation Status on per Acre Corn Production

North South
(1) (2)

Irrigation 75.62∗∗∗ 40.93∗∗∗

(1.381) (3.109)
Precipitation Normals -0.537 -2.970∗∗

(0.679) (1.188)
Temperature Normals -2.353 -1.995

(1.435) (2.477)
Soil-county FE Yes Yes
State-by-year FE Yes Yes

R2 0.358 0.251
N 2,402,637 243,879

Standard errors clustered by soil-county group are reported in parentheses.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

2.4.3 Impact of Saturated Thickness on the Probability of Plant-

ing Corn (b)

Table 2.7 reports the regression results for the average impact of saturated thickness on the

probability of planting corn in the northern and southern portions of the HPA described

in equation 2.4. First, we describe the estimation results for the north region. The Wu-

Hausman test statistic (9.37) is significant at the 1% level indicating that the spline saturated

thickness variables are not exogenous. The values of F-statistics are greater than 10 (1,553.62

and 1,682.68) so weak instruments are not a concern.

The 2SLS coefficients on the saturated thickness linear splines show the expected sign,

but only the coefficient for the first segment is significant at the 5% level (column 1 of

Table 2.7). Thus, when the level of saturated thickness is less than 70 ft, a 1 ft decrease in

saturated thickness decreases the probability of planting corn by 0.0028 in an irrigated field.

By contrast, saturated thickness does not significantly impact the probability of planting

corn in an irrigated field for levels greater than 70 ft.
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Table 2.7: 2SLS Regression Results for the Impact of Saturated Thickness on the
Probability of Planting Corn

North South

OLS 2SLS OLS 2SLS

[(1 −Dit)STit +DitK] 0.0026∗∗∗ 0.0028∗∗∗ 0.0003 -0.0003
(0.0004) (0.0005) (0.0004) (0.0004)

Dit(STit −K) 0.0001 0.0001 0.0005∗∗∗ 0.0009∗∗∗

(0.00005) (0.00006) (0.0001) (0.0003)
Precipitation Normals -0.025∗∗ -0.025∗∗ -0.034∗ -0.036∗

(0.0120) (0.0120) (0.020) (0.0201)
Temperature Normals 0.028 0.034 -0.137∗∗ -0.145∗∗∗

(0.024) (0.024) (0.049) (0.051)
Crop Productivity Index Corn -0.065∗∗ -0.066∗∗∗ 0.289∗∗ 0.333∗∗

(0.020) (0.020) (0.131) (0.138)
Electrical conductivity -0.008 -0.008 -0.019 -0.020

(0.006) (0.006) (0.017) (0.017)
Soil organic carbon 0.001∗∗ 0.001∗∗∗ -0.001 -0.002

(0.0005) (0.0005) (0.0017) (0.0015)
Percentage of Clay Soil 0.0005 0.0005 0.0018∗∗ 0.0019∗∗∗

(0.0006) (0.0006) (0.0006) (0.0007)
Percentage of Silty Soil -0.0006 -0.0006 0.0003 0.0004

(0.0002) (0.0002) (0.0009) (0.001)
County FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes

F-statistics for IVs in first stage - 1,553.62 - 201.09
- 1,682.68 - 27.93

Wu-Hausman test - 9.37∗∗∗ - 3.22∗∗

N 1,170,585 1,170,585 184,934 184,934

Standard errors clustered by county are reported in parentheses.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

The estimation results for the south region are shown in column 2 of Table 2.7. The

Wu-Hausman test statistic (3.22) is significant at the 5% level indicating that saturated

thickness is an endogenous variable. Since the F-statistics are greater than 10 (201.09 and

27.93), weak instruments are not a concern. We find that saturated thickness does not

significantly impact the probability of planting corn in an irrigated field for levels below 70

ft. The predominance of cotton planted in areas where the aquifer is more depleted might

explain this result. However, when the level of saturated thickness is greater than 70 ft, a 1
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ft decrease in saturated thickness decreases the probability of planting corn by 0.0009 in an

irrigated field.

Other covariates are also significant in the north and south regressions. However, the

coefficients on other covariates do not always show the expected sign. The county fixed

effects included in the regression might explain this result since the remaining variation in

climate and soil variables is likely to be small within a county.

2.4.4 Impact of Saturated Thickness on Irrigated Corn Yield (c)

The results from the 2SLS regression described in equation 2.5 are presented in Table 2.8.

The Wu-Hausman test statistic (3.44) is significant only at the 10% level, suggesting that

we have less confidence in endogeneity bias in the yield equation than the acreage equations.

The F-statistics are greater than 10 (126.74 and 455.68) so weak instruments are not a

concern.

We find that when the level of saturated thickness is less than 70 ft, a 1 ft decrease in

saturated thickness results in a 0.279 bushel decrease in irrigated corn yield. Similarly, when

the level of saturated thickness is greater than 70 ft, a 1 ft decrease in saturated thickness

decreases the irrigated corn yield by 0.023 bushels. The average irrigated corn yield is 158.79

bushels per acre, so the impact of a 1 ft decline in saturated thickness is roughly a 0.18%

decrease in corn yield when initial saturated thickness is less than 70 ft and a 0.014% decrease

for greater than 70 ft.
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Table 2.8: 2SLS Regression Results for Impact of Saturated Thickness on Irrigated Corn
Yield

OLS 2SLS
(1) (2)

[(1 −Dit)STit +DitK] 0.221∗∗ 0.279∗∗∗

(0.076) (0.103)
Dit(STit −K) 0.020∗∗ 0.023∗∗∗

(0.008) (0.008)
Growing Season Precipitation 1.483∗ 1.505∗∗

(0.714) (0.685)
Growing season Precipitation Squared -0.050∗∗ -0.051∗∗∗

(0.0166) (0.016)
Growing Degree Days -2.430 -2.419

(1.740) (1.653)
Extreme Degree Days -0.358∗∗ -0.359∗∗∗

(0.108) (0.103)
30-yr Avg. Precipitation -2.050∗ -1.921∗

(1.150) (1.101)
30-yr Avg. Growing Degree Days 11.971∗∗∗ 11.971∗∗∗

(2.628) (2.374)
30-yr Avg. Extreme Degree Days -0.215 -0.180

(0.230) (0.218)
Hydraulic Conductivity 0.004 0.013

(0.023) (0.023)
Specific Yield 72.295 64.553

(48.775) (49.094)
Natural Recharge 0.407 0.347

(0.438) (0.430)
Crop Productivity Index 18.267 18.775

(17.035) (16.661)
Soil groups Yes Yes
State-by-year FE Yes Yes

F-statistics for IVs in first stage - 126.74
- 455.68

Wu-Hausman test - 3.44∗

N 3,283 3,283

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Our results also highlight the role of other covariates in determining irrigated corn yield

and the coefficient estimates generally follow intuition. We find that growing season precip-
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itation positively affects irrigated corn yield but at decreasing rate. Results also show that

the average number of degree days greater than 32◦ have a negative impact on irrigated corn

yield. Furthermore, the long-run average number of growing degree days between 10◦C and

30◦C is positively associated with corn yield.

2.4.5 Total Impact of Groundwater Stocks on Corn Production

Decomposition of the Marginal Effect of Saturated Thickness on Corn Produc-

tion

Parameters estimates from equations 2.2, 2.3, 2.4 and 2.5 are used to estimate the average

impact of a 1 ft decrease in saturated thickness on production of corn per acre of cropland.

Our results indicate that in the north region, a 1 ft decrease in saturated thickness decreased

the average production of corn per acre of cropland by 0.296 bushels when saturated thickness

is less than 70 ft (Table 2.9). Most of the impact in corn production occurs through an

adjustment in irrigated acres, representing 72.6% of the total impact, while the adjustments

through a reduction in the proportion of corn acres on irrigated land or reductions in corn

yield represent 21.6% and 5.8%. In contrast, for levels of saturated thickness greater than 70

ft, a 1 ft decrease in saturated thickness decreased the average production of corn per acre

of cropland by 0.095 bushels. A reduction of irrigated acres represents the main adjustment

(82.1%) followed by a reduction in corn acres on irrigated land (9.5%) and a reduction in

irrigated corn yield (8.4%).
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Table 2.9: Decomposition of the Marginal Effect of Saturated Thickness on Corn
Production

Marginal Effect

Margin of Adjustment North South

Saturated thickness less than 70 ft

Irrigated acres (A) 0.215 0.156
Corn acres on irrigated land (B) 0.064 0.018
Corn yield on irrigated land (C) 0.017 0.005
Total 0.296 0.179

Saturated thickness greater to 70 ft

Irrigated acres (A) 0.078 0.034
Corn acres on irrigated land (B) 0.009 0.038
Corn yield on irrigated land (C) 0.008 0.002
Total 0.095 0.074

In the south region, we find a smaller impact of saturated thickness on corn production.

A 1 ft decrease in saturated thickness decreased the average production of corn per acre of

cropland by 0.179 bushels when saturated thickness is less than 70 ft (Table 2.9). Most of

the adjustments also occurs through irrigated acres (87.2%), while the adjustments through

a reduction in the proportion of corn acres on irrigated land or reductions in corn yield

represent 10.1% and 2.7%. Similarly, for levels of saturated thickness greater than 70 ft,

a 1 ft decrease in saturated thickness decreased the average production of corn per acre of

cropland by 0.074 bushels. However, the major adjustment occurs through reductions in

corn acres on irrigated land, representing 51.4% of the total change in production.

Impact of a uniform 10 ft decrease in saturated thickness on corn production

The impact of a 10 ft decrease in saturated thickness on the annual corn production is

estimated across the HPA. Parameters estimates from equations 2.2, 2.3, 2.4 and 2.5 are

used to simulate how a uniform 10 ft decrease in saturated thickness impacts annual corn

production for each county in our sample, while holding other variables constant.

The annual production of corn would decrease by 20.1, 19.3, 7.5 and 1.2 million bushels
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in Kansas, Nebraska, Colorado and Wyoming. These decreases in annual corn production

represent 6.6%, 1.6%, 7.3% and 17.7% of the 2010-2019 average corn production across coun-

ties overlying the aquifer in each state. Similarly, the annual production of corn is expected

to decrease by 1.1 and 14.6 million bushels in Oklahoma and Texas. These reductions in

corn production represent 5.3% and 9.2% of the 2010-2019 average corn production across

counties overlying the aquifer in each state (Figure 2.3, Panel B).

Similarly, the simulation results also show that the annual production of corn decreases on

average by 48.1 million bushels across all counties in the north region. This effect represents

about 3.0% of the 2010-2019 average corn production across counties overlying the aquifer in

the north region. In the south region, the simulation results show that the annual production

of corn decreases on average by 15.7 million bushels across all counties, which represents

about 9% of the 2010-2019 average corn production across counties overlying the aquifer in

the south portion.
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(A)

Feet 
 Declines

More than 10
0 to 10
Rises
Out of sample

(B)

Million Bushels 
 Declines

More than 0.8
0.8 to 0.5
0.3 to 0.5
0.2 to 0.3
0 to 0.2
Rises
Out of sample

Figure 2.3: (A) 2017-2050 Projected change in ST (B) Annual change in corn production
due to 10 ft decrease in ST

By 2050, 37.4% of the counties over the aquifer are projected to lose 10 ft or more

of saturated thickness (Figure 2.3, Panel A). The simulation results show that the annual

production of corn would decrease by 28.0 million bushels in these counties due to a 10 ft

decrease in saturated thickness. This reduction in corn production represents about 5% of

the 2010-2019 average corn production across these counties.

Price response to a change in the supply of corn due to a decrease in groundwater

stock

We can use the change in corn production to estimate the effect of aquifer depletion on

corn prices. We estimate the response of corn future prices to the projected change in

corn supply due to a 10 ft decrease in saturated thickness using the corn price flexibility
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estimates provided by Adjemian and Smith (2012). The price flexibility is the inverse of

the total demand elasticity and reflects how much price increases when supply decreases.

Adjemian and Smith (2012) examine how monthly changes in World Agricultural Supply

and Demand Estimates (WASDE) estimates of US corn production impact changes in the

futures price for harvest delivery.

The medium-run corn price flexibility reflects the impact on the futures price of harvest

delivery one year after the supply shock. Therefore, the medium-run corn price flexibility

accounts for adjustments that corn consumers and producers make over time in response to

a higher price. The medium-run corn price flexibility is more reasonable for our study than

the short-run corn price flexibility because corn consumers and foreign producers will adjust

to a persistent reduction in corn supply in the US.

The simulation results obtained in the previous section show that the annual production

of corn decreases on average by 63.8 million bushels across all counties in the High Plains

region when saturated thickness decreases by 10 ft. This change represents a 0.45% decrease

in the average 2019-2021 US corn supply. We use the medium-run corn price flexibility of -

0.60 estimated by Adjemian and Smith (2012). This flexibility implies a 0.27% price increase

in response to the supply shock due to a uniform 10 ft decrease in staurated thickness in the

HPA.

2.5 Conclusion

The primary contribution of this paper is to estimate how differences in the stock of ground-

water affect corn production in the High Plains using observed data on groundwater stocks

and corn production. Another important contribution is that we estimate crop production

impact using initial groundwater conditions as an instrument to reduce potential bias from

feedback effects. Lastly, we use the change in corn production to estimate effect on corn

prices.

We find that the annual production of corn would decrease by 20.1, 19.3, 7.5 and 1.2

million bushels in Kansas, Nebraska, Colorado and Wyoming due to a 10 ft decrease in
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saturated thickness. These decreases in annual corn production represent 6.6%, 1.6%, 7.3%

and 17.7% of the 2010-2019 average corn production across counties overlying the aquifer in

each state. Similarly, the annual production of corn would decrease by 1.1 and 14.6 million

bushels in Oklahoma and Texas, representing 5.3% and 9.2% of the 2010-2019 average corn

production across counties overlying the aquifer in each state. We also find that the corn

price will increase by 0.27% in response to the supply shock due to a uniform 10 ft decrease

in staurated thickness in the HPA.
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Chapter 3

The role of user and resource

characteristics on support for

collective groundwater management

3.1 Introduction

Assigning property rights to common pool resources incentivizes sustainable use. Thus,

where property rights are weak or nonexistent, natural resources tend to be overused. For

example, irrigated agriculture is depleting groundwater resources in many regions (Famigli-

etti, 2014; Richey et al., 2015) since the common pool nature of groundwater resources and

the absence of well-defined property rights create limited incentives for farmers to conserve

water over time. Furthermore, in most countries farmers do not pay for the cost of water

they use and the lack of well-functioning water markets prevents using water more efficiently.

Our empirical analysis focuses on the Kansas portion of the High Plains Aquifer in the

US where water levels are rapidly falling and threaten the viability of irrigated agriculture

(McGuire, 2017; Mrad et al., 2020; Steward et al., 2013). In 1945, Kansas defined property

rights to extract groundwater under the doctrine of prior appropriations. However, the

system of priority has not avoided excessive depletion or the efficient allocation of water for
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several reasons. First, a permit to divert water could be denied only by the reasonable use

rule, which allowed the use of any groundwater with an economic purpose. The reasonable

use rule resulted in water rights being overappropriated. Second, there is a large cost to social

capital from individuals protecting their senior rights by filing impairment complaints on

their neighbors with junior rights. Third, imposing restrictions by seniority would be highly

costly in the absence of a competitive water market (Burness and Quirk, 1979; Libecap,

2011). Much of the state is now closed to new appropriations and there are well-spacing

requirements to prevent further overappropriation (Edwards, 2016), but there remains a

challenge of reducing water use by existing water rights.

In theory, the economically efficient solution to constrain water demand would be through

prices or other market-based regulations. However, the practical implementation of these

solutions is difficult because of political opposition, high transaction costs and high informa-

tion requirements. Incentive-based programs that compensate water users for the voluntary

retirement of their water rights (e.g. Manning et al., 2020; Rosenberg, 2020; Rouhi Rad

et al., 2021; Tsvetanov and Land, 2020) or groundwater extraction fees (Smith et al., 2017)

have been used in an effort to conserve water. However, localized groundwater management

through a bottom-up process is often more feasible than top-down regulations and garner

more support among users by allowing more homogeneous stakeholders to design new rules

(Guilfoos et al., 2016; Ostrom, 1990).

An example of stakeholder driven water conservation programs that has received sig-

nificant interest are Local Enhanced Management Areas (LEMAs) in Kansas. A LEMA

provides an alternative scheme for assigning water allocations that allows farmers to work

with local and state officials to define multi-year quantity allocations for water rights within

a defined boundary and the state provides regulatory oversight. The Sheridan 6 LEMA led

to substantial reductions in water use with the general support among local farmers (AAAS,

2019; Deines et al., 2019; Drysdale and Hendricks, 2018). Despite general agreement about

the need for groundwater conservation, the implementation of LEMAs has not been without

controversy everywhere. For example, a group of water rights holders in northwest Kansas

filed a case for judicial review of the district-wide LEMA to challenge the validity of the
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LEMA statutory provisions.

Our paper estimates the role of resource and user characteristics in determining the pref-

erences of farmers for reductions in groundwater use through a LEMA. We exploit unique

data obtained from consequential stated preference surveys to gain insights about how char-

acteristics of the farmers and water rights and attributes of the aquifer affect preferences

of farmers for groundwater management. The surveys are consequential because they were

conducted in cooperation with the Groundwater Management Districts (GMDs) and thus,

farmers were aware that their responses could influence future actions by their GMD. Carson

et al. (2014) argue that respondents have an incentive to respond honestly as long as they

perceive a positive probability of their response having some consequence on real-world out-

comes. The consequentiality of our survey means that it is likely to reveal true preferences

and not suffer from hypothetical bias (Vossler et al., 2012).

Using an interval regression model, we find that farmers located in areas where the aquifer

is more depleted support larger reductions in groundwater use through the establishment

of a LEMA. However, ignoring the effect of other factors such as characteristics of the

farmers can prevent collective action efforts since farmers who strongly agree that water

rights are a private property, landlords and those who irrigate a larger proportion of their

farm are less supportive for reductions in water use. Therefore, local groundwater managers

might need to devote special attention to these types of farmers to garner more support to

establish a LEMA. We further evaluate farmers’ preferences for the methods of assigning

water allocations using a rank-ordered probit model. We find that there is no method that

is preferred by a majority of farmers and there is no clear evidence of what are the main

factors determining the preferred method of assigning water allocations, which can make it

difficult for groundwater managers to identify which method is more likely to be considered

fair by farmers.

Our paper also contributes to the extensive literature focused on the understanding of

factors that facilitate or prevent collective action for the management of common pool re-

sources (Baland and Platteau, 1996; Ostrom, 1990; Wade, 1988). However, rather than

relying on case studies or laboratory experiments (Fischer et al., 2004; Margreiter et al.,
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2005; Suter et al., 2012) in developing countries, we exploit real-world data from surveys

conducted in a developed country. Lastly, previous studies suggests that the number and

heterogeneity of resource users affect contracting costs and prevent agreement on resource

extraction (Coase, 1960; Wiggins and Libecap, 1985). Ayres et al. (2018) provide empirical

evidence that contracting costs over groundwater governance regimes in California ground-

water basins rise with basin size, the number and heterogeneity of users, and variance in

resource characteristics. Different from Ayres et al. (2018), our study includes a richer set

of users’ characteristics to explore which characteristics of the resource and users are more

relevant for creating heterogeneity that prevents agreement on water conservation programs.

3.2 Background

The agricultural economy of western Kansas is dependent on groundwater which is the

primary source of water for irrigation. In 2015, groundwater provided 96% of irrigation water

and irrigated agriculture was the largest consumer of water (Dieter et al., 2018). Western

Kansas is a semiarid region with high evapotranspiration, where natural recharge rates are

lower than the extraction rates of groundwater for irrigation, leading to persistent aquifer

depletion (Sophocleous, 2005). From pre-development to 2015, the average water level has

decreased by 26.2 feet in Kansas (McGuire, 2017). This stressed aquifer condition raises

concerns to the long-term viability of irrigated crop production and associated industries

(Deines et al., 2020; Mrad et al., 2020; Scanlon et al., 2012). Steward et al. (2013) show that

reducing water use now by 20%, Kansas could extend the time to peak production to the

2070’s. But avoiding any sort of peak altogether would require drastic measures.

The State of Kansas enacted the Water Appropriation Act in 1945, establishing the

doctrine of prior appropriation to regulate groundwater rights. This act states that all the

groundwater is owned by the state and dedicated to the use of citizens as specified in the

state’s water appropriation act (K.S.A. 82a-701)1. To obtain a right to divert water, for any

1https://agriculture.ks.gov/docs/default-source/statues-water/kswaterappropriationact82a_

701.pdf?sfvrsn=bbdeaac1_32
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purpose other than domestic use, a prospective groundwater user must obtain a permit from

the Chief Engineer of the Division of Water Resources (DWR) of the Kansas Department of

Agriculture (KDA). Each water right is assigned a maximum annual quantity of water that

can be extracted and a specified place of use. The prior appropriation doctrine embodies

the concept of “first in time - first in right.” Thus, the date that the permit is authorized

defines the priority of the right, with older rights having seniority. Therefore, if pumping by

a junior water right holder impairs the ability of a senior water right holder to exercise its

right, then the junior can be required to reduce withdrawals. Only 334 permit applications

were filed from 1945 to 1950. However, consistent with the adoption of new technology to

pump water in Kansas, the number of permit applications increased to 5,730 in the 1950’s

and to 6,433 in the 1960’s (Peck, 2006). Moreover, a farmer’s decision to obtain a permit

to divert water for irrigation, was influenced by the adoption decisions of his or her peers

(Sampson and Perry, 2019).

By the late 1960s, water-level declines had become evident in many areas of the state as

consequence of the rapid and substantial increase in groundwater for irrigation. The system

of priority was not able to avoid excessive depletion for several reasons. First, a permit

to divert water could be denied only by the reasonable use rule, which allowed the use of

any groundwater with an economic purpose. As an example, groundwater permits were

obtained by almost anyone who requested them during the 1970’s (Pfeiffer and Lin, 2012).

The reasonable use rule resulted in water rights being overappropriated. Second, there was a

large cost to social capital from individuals protecting their senior rights by filing impairment

complaints on their neighbors with junior rights. Third, imposing restrictions by seniority

would be highly costly in the absence of a competitive water market (Burness and Quirk,

1979; Libecap, 2011).

In response to depleting groundwater resources, a new legislation was passed in 1972

to enable the formation of groundwater management districts (GMDs) (Peck, 2006). As

a result, five GMDs were created to provide some degree of local control over the ground-

water depletion problems. All districts correspond to major portions of the HPA where

groundwater is mainly used for irrigation (Figure 3.1). GMDs have the authority to estab-
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lish management plans and create and enforce policies subject to the approval by the Chief

Engineer of the Kansas Division of Water Resources, but they have mainly implemented

policies limiting new appropriations. This includes minimum well spacing requirements and

closing the district to further drilling. However, GMDs had never restricted water use on

existing wells before 2013.

In 2012, GMDs were granted the authority to recommend the approval of Local En-

hanced Management Areas (LEMAs). The GMD board of directors, elected water right

owners (usually farmers) representing different counties within a GMD, develops a LEMA

proposal which is approved by the Chief Engineer. A LEMA proposal includes the proposed

restrictions on water use, sanctions for non-compliance, and could include other types of

measures such as allowing trading of water rights within the LEMA. Once the LEMA pro-

posal is considered acceptable by the Chief Engineer, an initial public hearing is held to

go over initial questions to discuss whether a LEMA meets specific statutory requirements.

Subsequent hearings are held to gather further input from the public. Once the LEMA is

implemented, it is monitored and enforced by the Kansas Department of Agriculture.

There are currently three LEMAs implemented in western Kansas. The first LEMA

became effective in the 2013 crop year in a High Priority Area of Sheridan County (an

area roughly 6x15 miles) in GMD4. The Sheridan 6 LEMA set a goal of reducing water

withdrawals by 20% over the five-year (2013-2017) period relative to 2002-2012 levels. The

reduction was implemented by restricting irrigators to an allocation of 55 inches per autho-

rized acre over a 5-year period. In 2017, stakeholders voted to renew the Sheridan 6 LEMA

and a new allocation was approved for the 2018-2022 period2. Drysdale and Hendricks (2018)

find that farmers reduced water use by 26% due to the restrictions on water use imposed

by the LEMA primarily by reducing irrigation intensity on existing crops and with minimal

reductions in irrigated acres.

The second LEMA is the GMD4 district-wide LEMA in Northwest Kansas that began in

20183. This district-wide LEMA sets a 5-year allocation for pumping, where the allocation

2https://agriculture.ks.gov/divisions-programs/dwr/managing-kansas-water-resources/

local-enhanced-management-areas/sheridan-county-6-lema
3https://agriculture.ks.gov/divisions-programs/dwr/managing-kansas-water-resources/
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is defined for each township (approximately 6 miles × 6 miles) in the district. The LEMA

was ultimately approved and implemented in 2018 but was not without controversy. After

two public hearings held by the Chief Engineer, a group of water rights holders filed a case

for judicial review of the LEMA. Petitioners challenged whether the reductions in water use

can be made without those cuts being based on priority and generally challenged the validity

of the LEMA statutory provisions. In October 2019, the district court upheld the authority

of the GMD to implement a LEMA.

Recently, the Wichita County LEMA was approved to reduce water use by 25% over the

five-year (2021-2025) period relative to 2009-2015 levels4. The reduction was implemented

by restricting each point of diversion to an allocation of 25% of historical usage defined as

the average quantity of authorized water used by a point of diversion during the 2009-2015

period.

3.3 Data

3.3.1 Preferences for Irrigation Water Management

We conducted a survey to measure preferences of farmers for mandatory reductions in water

use through the establishment of a LEMA. The survey was sent to every individual who

either filed a water use report or owns a water right in GMD 3 in the spring of 2019, and

in GMD 1 in the spring of 2021 (Figure 3.1). In GMD 3 (GMD 1), the survey was mailed

to 3,961 (832) individuals and a total of 706 (184) responded to the survey (18% (22%)

response rate), but only 653 (170) surveys were usable because of incomplete answers. The

surveys are consequential because they were conducted in cooperation with GMDs and thus

farmers were aware that their responses could influence future actions by their GMD. The

consequentiality of our surveys means that it is likely to reveal true preferences and not

suffer from hypothetical bias (Vossler et al., 2012).

local-enhanced-management-areas/gmd4-district-wide-lema
4https://agriculture.ks.gov/divisions-programs/dwr/managing-kansas-water-resources/

local-enhanced-management-areas/wichita-county-lema
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Figure 3.1: Average 2017-19 saturated thickness and irrigation wells of survey respondents
indicated in black

In the first part of the survey, respondents were asked about their preferences regarding

LEMAs characteristics. The two main questions we analyze ask each respondent to indicate

the best and worst options for how much water use should be reduced on average in the area

where he irrigates and the best and worst methods to use when calculating the allocated

quantity of water use for each water right within an area. This latter question differs between

the survey conducted in the GMD1 and GMD 3. While ideally the survey questions could

have been the same in both districts and conducted in the same year, we felt that it was

important to work with each GMD board of directors on the survey design and this caused

some differences in questions.

Figure 3.2 shows question 1 on the survey where the water reduction goal is expressed

as a percent reduction in area-wide average use. This does not necessarily mean that each

water right in the area would be required to reduce water use by that percentage. How much

each water right must reduce water use depends on the method of assigning the allocations

described in question 2. Data from question 1 are not continuous but the underlying variable

(the percentage) is technically measured on a ratio scale (e.g., 0% has a meaning). We only

use the answers for the best option as a dependent variable in the econometric model.
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Figure 3.2: Question 1 for GMD 1 and GMD 3.

Figure 3.3 shows how preferences for groundwater reduction vary among respondents.

Most of them indicate that they prefer no change (0%) in average water use as the best

option. This implies that 33.1% of the total respondents would not support the LEMA

implementation. However, 35.5% support a reduction between 2.5 and 10% while 31.4%

support a reduction of 15% or more.
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Figure 3.3: Best and worst option for water reduction.
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Panel (a) of Figure 3.4 shows the question related to the method of assigning allocations

in GMD 1 and panel (b) shows the analogous question for GMD 3. Each method of assigning

allocations described in the second question can be implemented to give the same area-wide

average reduction in water use, but the volume of water that each water right is allocated

depends on the method used to assign these allocations (Table 3.1).

(a) GMD 1

(b) GMD 3

Figure 3.4: Question 2.

To pool responses from the two GMDs survey, we only consider the best and the worst

options and we combine the second question into three methods (Table 3.1). Thus, individ-

uals are asked to select their best and worst options out of a set of three different methods
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to use when calculating the allocated quantity of water use for each water right. Therefore,

a complete ranking of alternative is given, and rank-ordered data are obtained.

Table 3.1: Method of assigning allocations

Consolidated Allocation
Method

GMD Survey Method Description

Percent of Historical Water
Use (Historical)

GMD 1 & GMD 3 Percent reduction from an individual’s
historical use

Every water right in area
receives the same allocation
(inches/acre) (Inches)

GMD 1 Inches using average irrigated acres
GMD 1 Inches using maximum irrigated acres
GMD 1 Inches using water right authorized ir-

rigated acres
GMD 3 Every water right in area receives the

same allocation

Water Right
GMD 1 Percent of water right authorized

quantity
GMD 3 Senior water rights receive a larger al-

location

Figure 3.5 shows that there is no method that is preferred by a majority. However, we can

observe that 47% of the respondents indicate “Inches” as the best alternative while about

38% selected “Water right” as the worst alternative.
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Figure 3.5: Best and worst methods to calculate the allocated quantity of water use for
each water right.

3.3.2 Explanatory Variables

The explanatory variables included in the econometric models and their sources are described

next. Summary statistics for the explanatory variables are displayed in Table 3.2.

Aquifer Characteristics

Saturated thickness of the aquifer is a measure of the vertical height of the aquifer and, thus,

reflects the resource stock at a given location. Saturated thickness and the depth to water

table are interpolated from monitoring well data provided by KGS. We include wells with

average winter water level (December to April 15) measurements from 2000 to 2019. We use

the inverse distance weighted (IDW) interpolation method to predict values in space where

no measurements have been made. IDW measures values at unmeasured locations using the

values of the nearest surrounding measured locations, where each point has an influence on

the unmeasured value that diminishes as a function of distance. Thus, weights assigned to
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data points are proportional to the inverse of the distance (between the data point and the

prediction location) raised to the power value p. We set p = 2, a common value used in

practice, which means that the weights for distant points decrease rapidly. The 2017-2019

average saturated thickness across wells in our sample is 122.80 ft with a maximum of 377.63

ft, while the 2017-2019 average depth to water across wells is 172.57 ft with a maximum of

313.84 ft (Table 3.2).

Hydraulic conductivity is a measure of the rate at which water can move laterally to a

well. The hydraulic conductivity data are obtained from KGS. This data set is time invariant

at the section level. We obtain well-level hydraulic conductivity data by extracting the value

at the location of each well. The average value of hydraulic conductivity of the wells managed

by the respondents is 77 ft/day (Table 3.2).

Natural recharge is the seepage of water into an aquifer, not including return flows from

irrigation. Data are obtained from Houston et al. (2013) and extracted from a raster using

well location. In general, natural recharge from precipitation is low in Kansas but there is

significant variation within the state (Sophocleous, 2005). The average natural recharge in

our sample is 1.83 inches (Table 3.2), with an average of 0.99 inches in GMD 1 and 2.07

inches in GMD3.

In addition, we use the parameter estimates from chapter 1 to estimate how the change

in saturated thickness from 2000 to 2019 impacted the returns per acre of land that was

initially irrigated5. As table 3.2 indicates, the returns per acre of land that was initially

irrigated decreased on average by $17.76 in our sample, with a maximum decrease of $87.33.

5We consider the returns on 1 acre that was irrigated in 2000 with returns equal to Rirr
2000(ST ), where

Rirr
2000(ST ) is the irrigated cash rental rate in 2000. The same acre in 2019 has returns per acre of land

that was initially irrigated equal to
[

Φirr
2019(ST )

Φirr
2000(ST )

×Rirr
2019(ST ) +

(
1 − Φirr

2019(ST )

Φirr
2000(ST )

×Rnon
2019

)]
, where Φirr

2019(ST ),

Φirr
2000(ST ) are the proportion of acres in the county that are irrigated, and Rirr

2019(ST ), Rnon
2000(ST ) are the

irrigated and nonirrigated cash rental rates. Thus, the change in returns per acre of land that was irrigated

in 2000 is equal to
[

Φirr
2019(ST )

Φirr
2000(ST )

×Rirr
2019(ST ) +

(
1 − Φirr

2019(ST )

Φirr
2000(ST )

×Rnon
2019

)]
−Rirr

2000(ST ).
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Table 3.2: Summary Statistics for Variables Used in the Econometric Models

N Mean Std. Dev. Min Max

Aquifer Characteristics

Saturated thickness (ft) 809 122.80 69.58 6.74 377.62
Change in saturated thickness 2000-2019 (ft) 749 -26.73 12.96 -64.37 -1.47
Depth to water (ft) 809 172.57 54.10 23.16 313.84
Hydraulic conductivity (ft/day) 793 77.00 24.81 0.00 119.50
Natural Recharge (in) 817 1.83 1.65 0.00 8.25
Change in returns to land ($/acre) 646 -17.76 18.72 -87.33 -0.91

Water Use, Water Rights and Farm Characteristics

Historical intensity of irrigation (in) 764 -0.22 2.50 -18.07 11.21
Density of wells 819 25.70 12.30 0 89.97
Proportion of farm irrigated 655 0.42 0.31 0 1
Total cropland (acres/′000) 694 3.19 5.45 0 73.60
Average water right number (′000) 822 0.30 0.16 0 1
Crop Productivity Index (fraction) 822 0.27 0.10 0.08 0.52

Individual Characteristics

Proportion of acres owner-operator 626 0.41 0.43 0 1
Proportion of acres tenant 626 0.27 0.38 0 1
Proportion of acres local landlord 626 0.22 0.40 0 1
Proportion of acres not local landlord 626 0.10 0.30 0 1
Expect younger family to farm (binary) 737 0.58 0.49 0 1
Proportion of income from farming 703 0.68 0.33 0 1
Farmer age 735 67.35 13.94 25.00 97.00
High education level (binary) 741 0.49 0.50 0 1
Water rights are a private property right

Neutral, disagree or Strongly disagree 745 0.29 0.46 0 1
Agree 745 0.31 0.46 0 1
Strongly Agree 745 0.40 0.49 0 1

Water Use, Water Rights and Farm Characteristics

Further information is obtained matching respondents to records in the Water Information

Management and Analysis System (WIMAS) data set from Kansas Geological Survey (KGS).

To link the data, we used a mailing address list obtained from KDA where each address has

an identifying number attached to it that can be matched to well records in the WIMAS

data. WIMAS provide spatial, well-level data on water use, water rights and irrigated acres.

The period of WIMAS data that we use in this study is between 2000 and 2019. We calculate
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the 2000-2019 average of each variable at the well-level in WIMAS and then we aggregate

them to the respondent level. Historical intensity of irrigation is defined as the difference

between the water applied per acre and the average water applied per acre in the respective

township. On average, respondents in the survey apply close to the average applied in the

township (Table 3.2). We also calculate the historical density of wells as the average number

of neighboring wells in a radius of 2 miles that each well has. Table 3.2 shows that each

well that the respondent manages has on average about 26 neighboring wells. Finally, there

are data on the water right number which is a sequential priority number assigned to each

right as water right applications are received by KDA-DWR. The lower the number, the

more senior the right. For each respondent we calculate the average water right number

among his wells. For ease of interpretation, we divide the average water right number by its

maximum value. Therefore, an average water right of 1 is the most junior and closer to 0 is

more senior.

In the survey, respondents were asked to report the proportion of acres that are irrigated

in the farm and the total acres of cropland. The summary statistics reveal that the proportion

of acres that are irrigated is on average 0.43 across respondents, and the average size of a

farm in terms of cropland is 3,190 acres.

The national commodity crop productivity index for corn and soybeans is obtained from

the Soil Survey Geographic database (SSURGO). This variable ranges from 0.01 (low produc-

tivity) to 0.99 (high productivity), with an average value in our sample of 0.27 (Table 3.2).

Individual Characteristics

The survey also includes questions about characteristics of the farmers. They reported the

proportion of acres associated with water rights under different respondents’ role (e.g., owner-

operator, tenant and landlord). Using this information and Zip code boundaries obtained

from the Data Access and Support Center (DASC) created by the State of Kansas, we classify

landlords as local if the mailing address was in one of the counties of western Kansas. As

shown in Table 3.2, on average the proportion of acres under the owner-operator role is 0.41,

while the proportion of acres under tenant, local landlord and non-local landlord roles is

0.27, 0.22 and 0.10.
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Respondents reported whether they expect a younger family member to continue farming

and the proportion of their household income that comes from farming. On average, the

proportion of respondents that expect a younger family member to continue farming after

they retire is 0.58. Similarly, the proportion of the total household income that comes from

farming is 0.68 indicating a high dependency on agricultural production. Additionally, there

are data available on respondents’ age and education. The average age across respondents

is 67 years and less than half of them have a bachelor or graduate degree. Respondents also

stated their degree of agreement with different statements related to groundwater manage-

ment. In particular, we analyze whether they agree or not with the following statement:

“Water rights are a private property right”. As Table 3.2 shows about 70% of them agree

or strongly agree with this statement.

3.4 Empirical Specification

3.4.1 Econometric Model of Preferred Reduction in Water Use

The preferences of farmers for a reduction in water use through a LEMA are analyzed in this

section. The question 1 (best option) in the survey provides the data for this analysis. As

we described before, data from question 1 is not continuous but the underlying variable (the

percentage) is technically measured on a ratio scale (e.g., 0% has a meaning). Thus, the data

are converted to interval censored data to implement an interval regression model. As an

alternative to interval regression, we can create preferred water use reduction brackets and

consider this variable as an ordered categorical outcome to be estimated using an ordered

logistic or probit model. However, interval regression provides a more convenient interpre-

tation of the marginal effect for our study. The marginal effect in the interval regression

reflects the change in the preferred reduction in water use, whereas the marginal effect of

the order logit or probit reflects the change in the probability of selecting a given bracket.

Interval regression can fit models for data where each observation represents interval data,

left-censored data, right-censored data, or point data. Thus, it requires two variables—a
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lower and upper bound for each observation, to represent the values of the response variable.

Table 3.3 shows how we specify the bounds for each category in the survey. Together they

represent the range in which the value falls. This estimation method is a generalization of

the Tobit model for data observed in intervals (Cameron and Trivedi, 2010). The interval

regression model assumes normality and uses maximum likelihood to obtain the parameter

estimates.

Table 3.3: Dependent variable for the interval regression

Reduction in
water use

Lower
bound

Upper
bound

Type of
data

0% . 2.5 left-censored
2.5% 2.5 5 interval
5% 5 10 interval
10% 10 15 interval
15% 15 20 interval
20% 20 25 interval
25% 25 25 point
> 25% 25 . right-censored

The estimating equation for the preferred reduction in water use for farmer i is:

Yi = β0 + β1[(1 −Di)STi +DiK] + β2Di(STi −K) + γ
′
Hi + θ

′
Fi + α

′
Xi + εi (3.1)

where Yi is the best percent reduction in water use, K is the location of the spline knot, and

Dit =


0 if STit < K

1 if STit ≥ K.

We assume a nonlinear relationship between saturated thickness and the preferred reduction

which is represented using linear spline regression.

A linear spline is a piecewise linear function that fits a line in each segment of the

saturated thickness space defined by the knot while requiring continuity at the knot (Har-
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rell, 2001). STi is the average 2017-2019 saturated thickness across all wells that farmer

i manages, [(1 − Di)STi + DiK] and Di(STi − K) are linear spline functions of saturated

thickness. Based on exploratory analysis of our data and previous studies, we allow for one

spline knot location (K = 70). The term Hi is a vector of control variables that include

other location-specific hydrologic characteristics of the aquifer, Fi is a vector of variables

capturing water use, water right and farm characteristics, and Xi is a vector that includes

individual characteristics. A detail description of these variables is provided in the next

section. β0, β1, β2, γ
′
, θ

′
, α

′
are the parameters to be estimated. The term εi is a random

error term.

As a separate specification, we include the change in returns per acre of land that was

initially irrigated due to a change in saturated thickness from 2000 to 2019 in equation 3.1 but

we drop saturated thickness and depth to water variables because the mechanism through

which they affect the preferred reduction is through the change in returns.

3.4.2 Expected Signs of Coefficients in Model of Preferred Reduc-

tion in Water Use

Saturated thickness is a measure of the groundwater stock and affects the extraction rate of

wells such that as saturated thickness decreases, well yield decreases. Well yield imposes a

constraint on the rate at which water may be pumped and applied for irrigation affecting

farmers’ economic benefits. We allow a nonlinear relationship between saturated thickness

and preferences for water reduction since when saturated thickness is large the economic

gains from imposing pumping restrictions can be negligible (Foster et al., 2017). This differ-

ent impact might create different incentives across farmers to support a LEMA. Intuitively,

when saturated thickness is above a certain level, a decrease in saturated thickness may

have minimal effect on producer behavior since well yield is not a binding constraint. How-

ever, once the saturated thickness declines below a certain level, the well yield may become

constraining and farmers may adjust their behavior by either reducing irrigated acres or

reducing irrigation intensity. We expect farmers with less saturated thickness to be more
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concerned about groundwater scarcity and its impact on their production. Thus, they would

expect larger benefits from groundwater management. Consequently, we expect they would

prefer larger reductions in groundwater use.

Reductions in groundwater availability also affect farmers’ economic benefits through

increasing pumping costs. Thus, to capture the impact of reduced groundwater stock on

pumping cost, we include the depth to water table (included in Hi). The pumping cost is

greater for farmers with greater depth to water, so these farmers might experience larger

benefits from groundwater management. In the alternative model specification, we include

the change in returns per acre of land that was initially irrigated but we drop saturated thick-

ness and depth to water because the change in returns is the main mechanism through which

they affect the preferred reduction in water use. We expect gains from the implementation

of a LEMA may be larger where the returns to land are declining more rapidly.

Other location-specific hydrologic characteristics of the aquifer are also included in the Hi

vector to explain differences in the preferred reduction in water use. The change in saturated

thickness between 2000 and 2019 controls for changes in the stock of groundwater available

for use and reflects the depletion rate. In places where the depletion rate is larger, farmers

might be more concerned with future water availability and be more likely to support larger

reductions in water use.

Like saturated thickness, wells with higher hydraulic conductivity have higher well yield,

which would reduce farmers support for water reductions. However, hydraulic conductivity

is also a measure of how shared the aquifer is in each location. Thus, higher hydraulic

conductivity may also increase farmers preferences for groundwater management if they

believe other users’ pumping is affecting the future groundwater stock more than his own

pumping. Natural recharge controls for different expected rates of aquifer depletion that

affect expectations of future aquifer stocks. We expect that farmers located in portions of

the aquifer with lower recharge rates would benefit more from groundwater management and

are more likely to support reductions in water use.

The vector Fi includes water use, water rights and farm characteristics that might affect

the preferred reduction in water use. The proportion of acres irrigated of the total farm
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acres, the total cropland in the farm and the historical intensity of irrigation tend to capture

the importance of the aquifer for the farmer. These variables could have either a positive

or a negative impact on farmers’ preferences for water reduction. For example, farmers who

apply more water may be more willing to support management to conserve water for the

future, but also, they may have the most to lose in the short run from a restriction on water

use.

Similar to hydraulic conductivity, well density also reflects the spatial extent to which one

farmer’s pumping affects his neighbors pumping. As well density increases, it is more likely

that groundwater pumping by neighbors affects a farmer’s pumping through overlapping

cones of depression which reduce the water table and increase pumping cost. Thus, gains

from the implementation of a LEMA may be larger where well density is larger. We also

include the water right number to reflect the seniority of the water right. We expect that

more senior water right holders would prefer lower or no reduction in water use because they

can protect their right based on seniority. Finally, to capture soil characteristics we include

national commodity crop productivity index for corn and soybeans. If more productive land

increases the returns from irrigation, then farmers could either support larger reductions in

water use to ensure future water availability or support smaller reductions because of its

impact on the short-term returns. Therefore, the expected sign of the coefficient on soil

productivity is indeterminate.

The last set of variables we include in the model are individual characteristics (Xi).

Differences in preferences for water reduction could also differ across farmers due to how they

discount future benefits and how much they rely upon groundwater to sustain their farms. We

expect that farmers who are owner-operators are more likely to support a LEMA compared

with tenants because owner-operator farmers might have a greater incentive to preserve

future economic value. Similarly, landlords might be less concerned about groundwater

management since they tend to have a more diverse source of income. We include two

additional variables, a dummy variable to capture whether a younger family member is

expected to continue farming and the percent of income from farming to further measure

the farmer’s dependence on the aquifer. As the farm is more dependent on the groundwater,
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we expect higher preferences for water reduction to extend the life of the aquifer.

We expect that more educated farmers are more likely to support larger reductions in

water use through a LEMA. When farmers have a good understanding of the characteristics

of the aquifer and how their actions affect it, they may perceive lower costs of investing time

to participate in the design of a LEMA and greater gains from management. We also include

farmer’s age, but the expected sign might be positive or negative. Older farmers may not

value conservation that creates value beyond their lifespan. On the other hand, older farmers

may be less concerned with current economic impacts of reductions and place greater value

on preserving the resource for future generations.

Lastly, to capture differences in beliefs and ideology among farmers we include a variable

that captures respondents’ agreement with the following statement: “Water rights are a

private property right.” We expect that farmers who agree or strongly agree with this

statement are less likely to support larger reductions in water use than those who disagree

because agreement may reflect a personal opinion that LEMA allocations are a type of

takings of existing water rights. While a recent court ruling supports the legal authority of

a LEMA, there are likely some farmers that disagree with the court ruling.

3.4.3 Econometric Model of Preferred Method of Assigning Allo-

cations

In this section, we develop a model to analyze the preferences of farmers for the methods to

use when calculating the allocated quantity of water use for each water right. The responses

to the ranking of three consolidated methods shown previously in Table 3.1 provide the data

for this analysis.

The most commonly used models for rank-order data are the multinomial logit model

(McFadden, 1974) and the rank-ordered logit (ROL) model (Beggs and Cardell, 1981). Since

the ROL considers the full ranking of the alternatives which contains more information than

only the most preferred choice, it provides more efficient parameters estimates than the

multinomial logit model. However, previous studies have raised concerns about the use of
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the ROL because they have shown that individuals’ responses at lower ranking levels are

not reliable (Foster and Mourato, 2002; Hausman and Ruud, 1987). This finding implies

that the coefficient estimates attenuate toward zero when more rank levels are used in the

ROL model. More recently, Yan and Yoo (2014) show that the attenuation of parameter

estimates at higher rank depth is specific to the ROL model. The ROL model assumes a type

1 extreme-value (EV) distribution for its utility error term which relies on the independence

of irrelevant alternatives (IIA) property. The IIA property implies that the conditional

probability that an alternative is chosen at each rank is independent of the probability that

another alternative has already been chosen at the earlier rank. However, with ordered

alternatives, one alternative is similar to those close to it and less similar to those further

away, which is a violation of the IIA assumption.

As an alternative to the ROL model, we estimate a rank-ordered probit (ROP) model

which assumes a normal distribution of the utility error (Train, 2009). The ROP model is a

more flexible behavioral structure to deal with rank-ordered data than the ROL model since it

relaxes the IIA assumption. The ROP accounts for the correlations between choices among

rank levels by estimating covariances between the error terms for the alternatives which

reduces the attenuation of coefficients (Nair et al., 2019). One reason for the continued

use of ROL for ranked data is that ROP can be computationally difficult to estimate in

the presence of many alternatives. The likelihood function of the ROP model entails the

evaluation of an analytically-intractable integral. Thus, the ROP uses maximum simulated

likelihood (MSL) techniques to approximate the integral which has no closed-form solution

and the computational cost to ensure good estimates was previously prohibitive. However,

the availability of new analytical and simulation methods makes the estimation of the ROP

model no longer intractable (Bhat, 2011, 2018).

Equation 3.2 describes the ROP model to be estimated:

Pr(Methodji ) = Φ[βj
0+βj

1[(1−Di)STi+DiK]+βj
2Di(STi−K)+γ

′jHi+θ
′jFi+α

j′Xi], (3.2)
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where the Φ is assumed to be a normal cumulative distribution function. The dependent

variable is the probability of ranking method j as the best method by farmer i with j =

Historical, Inches and Water Right. All of the explanatory variables are the same as in

equation 3.1.

3.4.4 Expected Sign of Coefficient in Model of Preferred Method

of Assigning Allocations

In general, we expect that a method of allocation will receive greater support by a farmer if

it results in a smaller reduction from historical pumping and it is perceived as fair. However,

making hypotheses about the expected sign of the variables affecting the preferred method

is more challenging. One expectation could be that larger farms might be less willing to

support a reduction based on water right characteristics because larger farms likely have

a more diverse set of water rights and will have some that are harmed significantly more

than others. We also expect that senior water rights will prefer the method that assigns

allocations based on the water right. However, we have no a priori expectation on the sign

of other variables included in the model.

3.5 Results

3.5.1 Evaluating the Preferred Reduction in Water Use

Table 3.4 shows the interval regression estimates for the preferred reduction in water use

through the establishment of a LEMA. Column 1, shows the regression results when all of

the variables capturing the aquifer characteristics are included in the model. The results show

that a decrease in saturated thickness of 1 ft increases the average preferred water reduction

by 0.22 percentage points when saturated thickness is lower than 70 ft. By contrast, when

the level of saturated thickness is greater than 70 ft, a 1 ft decrease in saturated thickness has

no significant impact on preferences. We also find that an increase in depth to water of 1 ft,

90



increases the average preferred water reduction by 0.024 percentage points. However, we find

no statistically significant impact of hydraulic conductivity or recharge on the preferences

for reductions in water use.

Column 2, shows the results when we include the change in returns per acre of land

that was initially irrigated as an explanatory variable instead of saturated thickness and

depth to water. The coefficient on the change in returns to land that was initially irrigated

indicates that a decrease in returns to land of $1 per acre increases the average preferred

water reduction by 0.11 percentage points.
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Table 3.4: Interval Regression Estimates for Preferred Reduction in Water Use

(1) (2)

[(1 −Dit)STit + DitK] -0.224∗∗∗

(0.067)
Dit(STit −K) -0.004

(0.013)
Change in saturated thickness 0.003

(0.080)
Depth to water 0.024∗

(0.013)
Change in returns to land -0.110∗∗

(0.050)
Hydraulic conductivity 0.020 0.033

(0.026) (0.029)
Natural Recharge -0.350 -0.081

(0.396) (0.460)
Historical intensity of irrigation -0.469 -0.489

(0.292) (0.321)
Density of wells 0.128∗ 0.070

(0.066) (0.059)
Proportion of farm irrigated -5.508∗∗ -5.843∗∗

(2.154) (2.331)
Total cropland -0.102 -0.117

(0.108) (0.114)
Average water right number 0.169 -2.246

(4.326) (4.517)
Crop Productivity Index 2.677 -0.960

(6.333) (6.756)
Proportion of acres owner-operator 6.442∗∗∗ 6.698∗∗

(2.386) (2.693)
Proportion of acres tenant 1.795 2.584

(2.493) (2.851)
Proportion of acres local landlord 3.326 3.913

(2.367) (2.677)
Expect younger family to farm -1.813 -1.509

(1.305) (1.407)
Proportion of income from farming 1.879 2.114

(2.069) (2.240)
Farmer age 0.024 0.030

(0.047) (0.053)
High education level 0.959 1.448

(1.224) (1.318)
Water rights private property: Agree -3.719∗∗ -3.716∗∗

(1.526) (1.653)
Water rights private property: Strongly Agree -8.721∗∗∗ -8.725∗∗∗

(1.423) (1.549)

N 402 372

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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The coefficient estimates for other explanatory variables are similar for the two models

presented in columns 1 and 2. Thus, we describe the results in column 1. Across all of the

variables capturing characteristics of the water rights and farm, we find that only coefficients

on the density of wells and the proportion of the farm that is irrigated are significant. Results

show that an additional well in a radius of 2 miles increases the average preferred water

reduction by 0.13 percentage points. We also find that an increase in the proportion of the

farm irrigated by 0.1 decreases the preferred water reduction by 0.55 percentage points.

Lastly, we describe the coefficient estimates for the variables capturing farmers’ charac-

teristics. We find that an owner-operator prefers a 6.44 percentage point larger reduction

in water use than a non-local landlord. Results also highlight the role of ideological differ-

ences among farmers in determining the preferences for reductions in water use. Farmers

who agree or strongly agree that water rights are a private property right prefer about 3.72

and 8.72 percentage point smaller reductions in water use than those who disagree with the

statement. We estimate equation 3.1 including all the explanatory variables except for this

variable capturing differences in beliefs and we find similar results which reduces concerns

that including this variable could give rise to misleading results due to multicollinearity with

other variables.

To analyze what explanatory variables matter the most to explain the preferred reduction

in water use we estimate a model with standardized variables. Since our model involves vari-

ables in different units of measurement, it is not possible to compare the relative importance

of each coefficient using the regression results shown in Table 3.4. Each explanatory vari-

able is standardized by subtracting the mean from each and then dividing by the standard

deviation. Thus, standardized coefficients reflect the impact of a one standard deviation

change in the variable and are useful for comparing the relative importance of the different

explanatory variables on the preferred reduction in water use.

As column 1 in Table 3.5 shows, the explanatory variables that are most important to

explain the preferred reduction in water use are: whether farmers strongly agree that water

rights are a private property right, saturated thickness lower than 70 ft and the proportion

of acres under owner-operator role. The alternative model specification in column 2, shows
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similar results but the second most important variable is the proportion of acres under

owner-operator role followed by the change in returns to land that was initially irrigated.
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Table 3.5: Standardized Interval Regression Estimates Preferred Reduction in Water Use

(1) (2)

[(1 −Dit)STit + DitK] -3.025∗∗∗

(0.909)
Dit(STit −K) -0.234

(0.829)
Change in saturated thickness 0.045

(1.035)
Depth to water 1.290∗

(0.725)
Change in returns to land -2.058∗∗

(0.944)
Hydraulic conductivity 0.508 0.820

(0.639) (0.719)
Natural Recharge -0.577 -0.134

(0.652) (0.758)
Historical intensity of irrigation -1.170 -1.222

(0.729) (0.801)
Density of wells 1.576∗ 0.856

(0.811) (0.731)
Proportion of farm irrigated -1.718∗∗ -1.823∗∗

(0.672) (0.727)
Total cropland -0.554 -0.637

(0.591) (0.620)
Average water right number 0.027 -0.353

(0.681) (0.711)
Crop Productivity Index 0.266 -0.095

(0.629) (0.671)
Proportion of acres owner-operator 2.795∗∗∗ 2.906∗∗

(1.035) (1.168)
Proportion of acres tenant 0.683 0.983

(0.948) (1.085)
Proportion of acres local landlord 1.316 1.548

(0.936) (1.059)
Expect younger family to farm -0.895 -0.745

(0.644) (0.695)
Proportion of income from farming 0.624 0.702

(0.687) (0.744)
Farmer age 0.338 0.412

(0.660) (0.734)
High education level 0.480 0.725

(0.612) (0.659)
Water rights private property: Agree -1.717∗∗ -1.716∗∗

(0.705) (0.763)
Water rights private property: Strongly Agree -4.268∗∗∗ -4.270∗∗∗

(0.696) (0.758)

N 402 372

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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We further explore which group of variables, either the characteristics of the aquifer or

the characteristics of the farms and wells or the characteristics of the farmers, are the most

important to explain the preferred reduction in water use. The partial R2 is useful to answer

this question if a OLS regression is implemented but is not possible to estimate with an

interval regression. Therefore, we follow an alternative method where for each group of

variables we use the estimates from the interval regression model to predict the preferred

reduction in water use setting all of the variables except the ones included in the group equal

to their mean. Then, we estimate the standard deviation of the prediction which reflects the

variation predicted by each group of variables.

The results show that the individual characteristics are the most important variables to

explain the variation of the preferred reduction in water use (SD = 4.16), followed by the

characteristics of the aquifer (SD = 3.31) and the characteristics of the water rights and

farms (SD = 2.47).

3.5.2 Evaluating the Preferred Method of Assigning Allocations

This section provides results for the analysis of the preferred method of assigning water

allocations for each water right if the LEMA were implemented. The coefficient estimates

for the ROP model can be difficult to interpret because of the normalization for location

and scale. Thus, Table 3.6 shows the average marginal effects of the ROP regression. In

general, the results indicate little effects of aquifer characteristics on the preferred method

of allocations. A decrease in saturated thickness of 1 ft increases the probability of ranking

the method “Water Right” as first on average by 0.0008 when saturated thickness is greater

than 70 feet.

Larger farms are more likely to rank the method “Historical” as first while they are less

likely to select method “Water Right” as their most prefer option. For example, an additional

1,000 cropland acres increases the probability of ranking the method “Historical” as first on

average by 0.007 and decreases the probability of ranking the method “Water Right” as first

on average by 0.010. As expected, more senior water right holders are more likely to select
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“Water Right” as the best method. As results show, the probability of ranking the method

“Water Right” as first increases on average by 0.248 when the water right is senior compared

with junior water rights.
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Table 3.6: Average Marginal Effects of ROP Regression of Preferred Method of
Assigning Allocations

Variables Historical Inches Water Right

[(1 −Dit)STit + DitK] 0.001 0.0003 -0.001
(0.002) (0.003) (0.002)

Dit(STit −K) 0.0005 0.0003 -0.0008∗∗

(0.0005) (0.0005) (0.0004)
Change in saturated thickness 0.002 -0.001 -0.001

(0.003) (0.003) (0.002)
Depth to water -0.00001 0.0003 -0.0002

(0.0005) (0.0005) (0.0004)
Hydraulic conductivity 0.001 -0.0001 -0.001

(0.0009) (0.001) (0.0008)
Natural Recharge -0.009 0.017 -0.008

(0.014) (0.016) (0.012)
Historical intensity of irrigation -0.013 0.017 -0.004

(0.010) (0.012) (0.009)
Density of wells -0.003 0.004 -0.002

(0.002) (0.003) (0.002)
Proportion of farm irrigated 0.112 -0.064 -0.048

(0.078) (0.090) (0.066)
Total cropland 0.007∗∗ 0.003 -0.010∗∗∗

(0.004) (0.004) (0.004)
Average water right number -0.038 0.286 -0.248∗

(0.153) (0.175) (0.130)
Crop Productivity Index -0.221 0.069 0.152

(0.228) (0.262) (0.191)
Proportion of acres owner-operator -0.070 0.040 0.030

(0.083) (0.096) (0.071)
Proportion of acres tenant 0.049 -0.106 0.057

(0.089) (0.103) (0.075)
Proportion of acres local landlord 0.075 -0.011 -0.065

(0.080) (0.093) (0.068)
Expect younger family to farm -0.028 0.025 0.004

(0.047) (0.054) (0.039)
Proportion of income from farming -0.098 0.222∗∗∗ -0.124∗∗

(0.075) (0.085) (0.063)
Farmer age 0.003∗ -0.003 -0.00002

(0.0017) (0.0020) (0.0014)
High education level -0.033 -0.053 0.085∗∗

(0.043) (0.050) (0.036)
Water rights private property: Agree -0.036 -0.029 0.065∗

(0.059) (0.064) (0.040)
Water rights private property: Strongly Agree -0.123∗∗ -0.041 0.165∗∗∗

(0.053) (0.060) (0.040)

Notes: Standard errors in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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An increase of 0.1 in the proportion of income from farming increases the probability of

ranking the method “Inches” as first on average by 0.022 while decreases the probability of

ranking the method “Water Right” as the best alternative on average by 0.012. One year

increase in the age of farmers increases the probability of ranking the method “Historical”

as first on average by 0.003. The probability of a farmer ranking method “Water Right”

as first increases by 0.085 when their highest level of education is a bachelor or graduate

degree. As expected, farmers who agree or strongly agree with the statement “water rights

are a private property” rank method “Water Right” higher. The probability of ranking the

method “Water Right” as first increases on average by 0.065 when farmers agree compared

with those who disagree. Similarly, when farmers strongly agree with the statement, the

probability of ranking method “Water Right” as the best option increases on average by

0.165, while the probability of ranking method “Historical” as the best option decreases on

average by 0.123.

We also estimate an alternative ROP model specification including the change in returns

per acre of land that was initially irrigated as an explanatory variable instead of saturated

thickness and depth to water. We obtain very similar results to our main specification and

for sake of space the table with results is included in the Appendix, Table B.1. We find

that the change in returns per acre of land that was initially irrigated due to a change in

saturated thickness is statistically insignificant to explain the preferred method of allocation.

Next, we examine what explanatory variables matter the most to explain the preferred

method of allocation. We find that the most important variables to explain the probability

of ranking the method “Historical” as the first are whether farmers strongly agree that water

rights are a private property, farmer’s age and the size of the farm captured by the total

cropland area. Similarly, the most important variables to explain the probability of ranking

the method “Water Right” as the best method are whether farmers strongly agree that water

rights are a private property, the size of the farm captured by the total cropland area and

saturated thickness when it is initially greater than 70 ft.

99



Table 3.7: Standardized Average Marginal Effects of ROP Regression of
Preferred Method of Assigning Allocations

Variables Historical Inches Water Right

[(1 −Dit)STit + DitK] 0.015 0.0036 -0.019
(0.032) (0.037) (0.026)

Dit(STit −K) 0.032 0.017 -0.049∗∗

(0.030) (0.034) (0.025)
Change in saturated thickness 0.029 -0.014 -0.015

(0.037) (0.042) (0.031)
Depth to water -0.0006 0.014 -0.013

(0.026) (0.030) (0.021)
Hydraulic conductivity 0.024 -0.0028 -0.021

(0.023) (0.026) (0.019)
Natural Recharge -0.015 0.027 -0.013

(0.023) (0.027) (0.020)
Historical intensity of irrigation -0.033 0.042 -0.01

(0.026) (0.030) (0.021)
Density of wells -0.032 0.054 -0.021

(0.029) (0.033) (0.024)
Proportion of farm irrigated 0.035 -0.020 -0.015

(0.024) (0.028) (0.021)
Total cropland 0.040∗∗ 0.017 -0.057∗∗∗

(0.020) (0.023) (0.021)
Average water right number -0.006 0.045 -0.039∗

(0.024) (0.028) (0.020)
Crop Productivity Index -0.022 0.007 0.015

(0.023) (0.026) (0.019)
Proportion of acres owner-operator -0.030 0.017 0.013

(0.036) (0.042) (0.031)
Proportion of acres tenant 0.019 -0.040 0.022

(0.033) (0.039) (0.029)
Proportion of acres local landlord 0.030 -0.004 -0.026

(0.032) (0.037) (0.027)
Expect younger family to farm -0.014 0.012 0.0017

(0.023) (0.027) (0.019)
Proportion of income from farming -0.032 0.074∗∗∗ -0.041∗∗

(0.025) (0.028) (0.021)
Farmer age 0.041∗ -0.040 -0.0002

(0.024) (0.038) (0.020)
High education level -0.016 -0.026 0.042∗∗

(0.021) (0.025) (0.018)
Water rights private property: Agree -0.018 -0.017 0.035

(0.025) (0.029) (0.021)
Water rights private property: Strongly Agree -0.061∗∗ -0.021 0.082∗∗∗

(0.025) (0.029) (0.021)

Notes: Standard errors in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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3.6 Discussion

In general, we observe that as the aquifer is more depleted farmers support larger reductions

in water use. These results are consistent with previous studies on collective action and

benefits from management showing that collective action among water users is difficult unless

they perceive that the aquifer is moderately depleted (e.g., Araral, 2009; Bardhan, 1993).

Intuitively, farmers may have little incentive to support groundwater management when the

resource is abundant. Specifically, we find that when initial saturated thickness is lower

than 70 feet, the preferred reduction in water use is larger for smaller amounts of saturated

thickness. However, when saturated thickness is greater than 70 feet, there is no impact

of saturated thickness on the preferred reduction in water use. This result aligns with

simulations conducted by Foster et al. (2017) that show areas with too large of a saturated

thickness have smaller gains from pumping restrictions because the negative impacts of

depletion are not imminent. Similarly, we find that as the returns to land are more negatively

impacted by changes in saturated thickness, farmers prefer larger reductions in water use.

Edwards (2016) shows that counties with greater hydraulic conductivity and lower recharge

benefit most after groundwater management is implemented relative to other counties. How-

ever, we find no significant impact of hydraulic conductivity or recharge on the preferred

reduction in water use.

We show that some characteristics of water rights and the farm explain the preferred

reduction in water use. The density of wells reflects how shared the aquifer is in a given

location. For example, Pfeiffer and Lin (2012) find evidence of spatial externalities between

neighboring groundwater users that result in increased groundwater extraction. Our results

show some evidence that the density of wells might have an impact on the preferred reduction

in water. Thus, these findings support our expectation that benefits from management

increase with well density as the marginal externality imposed on neighboring wells decreases

with distance. Furthermore, we show that as farmers irrigate a larger proportion of their

land, they are less likely to support a large reduction in water use. This result may indicate

that farmers that are more dependent on the aquifer tend to avoid short run declines in
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benefits from a restriction on water use.

Moreover, our results highlight the role of individuals characteristics in determining the

preferences for reductions in water use. For example, owner-operator farmers are more likely

to support larger reductions in water use than absentee landlords. As we expected, owner-

operator farmers may be on average more forward-looking and more careful of their own

resources than landlords. Furthermore, we find that differences in the preferences for water

reduction are also explained by ideological differences among farmers. Farmers who strongly

believe that water rights are a private property tend to support smaller reductions in water

use. This result is consistent with a recent study by Perez-Quesada and Hendricks (2021)

which concludes that ideological differences among farmers are likely to explain water users

support to management plans.

When we consider the relative importance of each variable, we find that the most impor-

tant variables determining the preferred reductions in water use are whether farmers strongly

agree that water rights are a private property, the saturated thickness and the proportion of

land under owner-operator role. Alternatively, when we consider the relative importance of

different set of variables, we find that the set of variables reflecting individuals’ characteristics

explains most of the variation in the preferred water reductions.

These findings provide useful policy insight to better understand under what conditions

local groundwater management is most likely to succeed. First, farmers located in areas

where the aquifer is more depleted are more likely to support reductions in groundwater use

through the establishment of a LEMA. Second, even though the depletion of the aquifer plays

an important role explaining differences in the preferred reductions in water use, ignoring

the effect of characteristics of the users can hinder collective action efforts. For example,

to garner more support to establish a LEMA, groundwater managers might need to devote

special attention to farmers who strongly agree that water rights are a private property,

landlords and those who irrigate a larger proportion of their farm as opposition to reductions

in water use are strongest among them.

The method of assigning allocations has a significant impact on the distribution of benefits

and costs and can be a key impediment to obtain support among users. For example, Perez-
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Quesada and Hendricks (2021) argue that the definition of individual groundwater allocations

is a central issue in the LEMA negotiations. The methods that assign water allocations for

each water right in the area where the LEMA is implemented should be considered fair by

farmers and consider local conditions to garner more support among them (Ostrom, 2002).

We find no clear evidence of what are the main factors determining the preferred method

of assigning water allocations which can make it difficult for local groundwater managers to

identify which method is more likely to be considered fair by farmers. In general, the results

indicate little effects of aquifer characteristics on the preferred method of allocations. Thus,

it might be challenging for groundwater managers to identify, for example, which method is

the most preferred where the aquifer is more depleted. Among all the characteristics of the

water rights and the farm, only the size of the farm affects the preferred allocation method.

Our results suggest that larger farms are more likely to rank the method “Historical” as first.

Contrary, as the farm size increase, they are less likely to rank the method “Water Right” as

the best option. This finding is consistent with our expectation that larger farms might be

less willing to support a reduction based on water right characteristics because they likely

have a more diverse set of water rights and will have some that are harmed significantly

more than others.

As expected, farmers who strongly agree that water rights are a private property are more

likely to rank the method “Water Right” as first, whereas they are less likely to rank the

method “Historical” as the best option. We also find evidence that more educated farmers

with a smaller proportion of their income coming from farming are more likely to rank the

method “Water Right” as the best. In contrast, those whose income is obtained mostly from

farming are more likely to select “Inches” as the most preferred method.

3.7 Conclusion

This study uses unique data obtained from consequential stated preferences surveys in the

Kansas portion of the High Plains Aquifer to evaluate the factors that influence farmers

preferred reductions in groundwater use through a localized and collaborative water conser-
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vation program.

Results indicate that farmers located in areas where the aquifer is more depleted are more

likely to support larger reductions in groundwater use through the establishment of a LEMA.

But we also find that ignoring the effect of characteristics of the users can prevent collective

action efforts. Farmers who strongly agree that water rights are a private property, landlords

and those who irrigate a larger proportion of their farm are less supportive for reductions

in water use. Therefore, local groundwater managers might need to devote special attention

to these types of farmers to garner more support to establish a LEMA. Further, the article

analyzes farmers’ preferences for the methods of assigning water allocations for each water

right. We find that none of the methods are preferred by a majority of users and there is no

clear evidence of what are the main factors determining the preferred method of assigning

water allocations which can make it difficult for groundwater managers to identify which

method is more likely to be considered fair by farmers.

The results of this article inform groundwater managers about the alternative factors

they should consider to garner support among local water users for the implementation of

a LEMA. This is relevant and insightful to managers of water throughout Kansas, the High

Plains and other regions where conserving water resources is a high priority and localized

and stakeholder-driven conservation plans could be a solution.
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Appendix A

Appendix to Chapter 2

Figure A.1: Example of Cropland Data Layer with the points used as the unit of analysis
for the econometric model.
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Figure A.2: Corn Production by Agricultural District in Colorado (1990-2019)
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Figure A.3: Corn Production by Agricultural District in Kansas (1990-2019)
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Figure A.4: Corn Production by Agricultural District in Nebraska (1990-2019)
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Figure A.5: Corn Production by Agricultural District in Oklahoma (1990-2019)
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Figure A.6: Corn Production by Agricultural District in Texas (1990-2019)
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Figure A.7: Corn Production by Agricultural District in Wyoming (1990-2019)
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Table B.1: Average Marginal Effects of ROP Regression of Preferred Method of
Assigning Allocations

Methods
Variables Historical Inches Water Right

Change in returns to land 0.0003 0.0009 -0.0012
(0.0017) (0.0020) (0.0014)

Hydraulic conductivity 0.001 -0.001 -0.0003
(0.0010) (0.0011) (0.0008)

Natural Recharge -0.013 0.021 -0.007
(0.015) (0.018) (0.013)

Historical intensity of irrigation -0.016 0.023∗ -0.007
(0.011) (0.013) (0.009)

Density of wells -0.002 0.003 -0.0007
(0.0020) (0.0023) (0.0017)

Proportion of farm irrigated 0.086 -0.017 -0.069
(0.079) (0.093) (0.068)

Total cropland 0.008∗∗ 0.0023 -0.011∗∗∗

(0.0038) (0.0043) (0.0040)
Average water right number 0.072 0.222 -0.294∗∗

(0.150) (0.177) (0.134)
Crop Productivity Index -0.212 -0.076 0.288

(0.223) (0.265) (0.193)
Proportion of acres owner-operator -0.101 0.038 0.066

(0.086) (0.102) (0.075)
Proportion of acres tenant -0.013 -0.053 0.066

(0.093) (0.110) (0.081)
Proportion of acres local landlord -0.017 0.054 -0.037

(0.084) (0.099) (0.074)
Expect younger family to farm -0.057 0.052 0.005

(0.047) (0.056) (0.041)
Proportion of income from farming -0.096 0.207∗∗ -0.111∗

(0.077) (0.089) (0.066)
Farmer age 0.003 -0.003 -0.0005

(0.0018) (0.0021) (0.0015)
High education level -0.028 -0.074 0.102∗∗∗

(0.044) (0.052) (0.038)
Water rights private property: Agree -0.035 -0.014 0.048

(0.060) (0.068) (0.042)
Water rights private property: Strongly Agree -0.104∗ -0.051 0.155∗∗∗

(0.054) (0.063) (0.043)

Notes: Standard errors in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table B.2: Standardized Average Marginal Effects of ROP Regression of
Preferred Method of Assigning Allocations

Variables Historical Inches Water Right

Change in returns to land 0.005 0.017 -0.022
(0.031) (0.037) (0.027)

Hydraulic conductivity 0.033 -0.026 -0.007
(0.024) (0.027) (0.029)

Natural Recharge -0.022 0.034 -0.012
(0.025) (0.030) (0.022)

Historical intensity of irrigation -0.039 0.057∗ -0.018
(0.026) (0.032) (0.023)

Density of wells -0.030 0.038 -0.008
(0.025) (0.029) (0.021)

Proportion of farm irrigated 0.027 -0.005 -0.022
(0.024) (0.029) (0.022)

Total cropland 0.046∗∗ 0.013 -0.058∗∗∗

(0.021) (0.023) (0.022)
Average water right number 0.011 0.035 -0.046∗∗

(0.024) (0.028) (0.021)
Crop Productivity Index -0.021 -0.007 0.029

(0.022) (0.026) (0.019)
Proportion of acres owner-operator -0.044 0.016 0.028

(0.037) (0.044) (0.033)
Proportion of acres tenant -0.005 -0.020 0.025

(0.035) (0.042) (0.031)
Proportion of acres local landlord -0.007 0.021 -0.015

(0.033) (0.039) (0.029)
Expect younger family to farm -0.028 0.026 0.002

(0.023) (0.028) (0.020)
Proportion of income from farming -0.032 0.069∗∗ -0.037∗

(0.025) (0.030) (0.022)
Farmer age 0.036∗ -0.042 -0.006

(0.025) (0.030) (0.021)
High education level -0.014 -0.037 0.050∗∗∗

(0.022) (0.026) (0.019)
Water rights private property: Agree -0.017 -0.009 0.026

(0.026) (0.031) (0.023)
Water rights private property: Strongly Agree -0.051∗∗ -0.026 0.076∗∗∗

(0.026) (0.031) (0.022)

Notes: Standard errors in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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