NONPARAMETRIC STATISTICAL METHODS FOR THE RANDONLZED CONPLETE BLOCK DESIGI by 544
LI-CHUN TAO
4. .., Taiwan Provincial Chung-hsing University, 1954
\qquad

A MASTER'S REPORT
submitted in partial fulfillment of the requirements for the degree

MASTER OF SCIENCE

Department of Statistics and
Computer Science

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1968

Approved by:

4
26 2 LBLa of condings
2
2. ANTROD NCHON 1
2. BANDONIELD CONPLETE DLOCK ARZANGEMENT AND THE CONTINGENCY TABLE. 3
2.1 The Difference Between Randomized Complete Block Two Way Table and The Contingency Table. 3
2.? The Change from Mandomized Complete Block two Way Table into a Contingency Table. 3
3. INTERACTION AND INDEPEMDENCS. 7
4. TIEZ x^{2}-TEST FOR RAHDOMIZED COMPLSTE BIOCK DESIGNS 9
4.1 One Observation Per Cell. 9
4.1.2 Freidman's X^{2}-Test 10
4.1.2 Cochran's Q-Test 10
4.2 Kore Observations Per Cell. 11
5. EXTERSION OF RANDONIZED COMPLETE BLOCK DESIGN. 16
5.1 Randomezed Complete Block Design with Two Treatments With One Observation Per Cell. 16
5.2 Randomized Complete Block Design with Two Factors and no Combination. 18
5.3 Randomized Complete Block Design with Three Factors and no Combination 20
5.4 Randomized Complete Block Deaign with Four Factors and no Combination 20
5.5 Randomized Complete Block Design with Two Factors and with Each Cell Containing Nore Than One Osservation 20
 23
0.1 Tro-Way Classilication 23
E.1.1 'i' and ' j ' are Both 'Variates' 23
6.1. 'it is a 'Way of Clossification' ' j ' is a 'Variate' 28
Q.1.3 ' 1 ' and ' 5 ' are Both 'Ways of Classiffication' 29
6.2 Threc-Way Classification. 30
6.2.1 'i' 'j' and ' k ' are All 'Variates' 30
6.2 .2 ' i ', ' j ' are 'Variates' and ' k ' is a 'Way ofClassification'... 34
6.2 .3 ' i ' is a 'Variate' and ' J ' and ' k ' are 'Weys of
Classification' 36
7. NORNAL SCORE TRANSFORVATION. 39
8. x^{2}-TEST AND P-TEST 44
9. CONITNTS AND DISCUSSION. 46
9.1 Basic Technique. 46
9.2 Application of Mean and Median. 47
9.3 Individual Degrees of Freedom. 48
9.4 Sherfield's Comment 48
9.5 MciVemar's Comment 50
20. ACICNOHZEDGEMENT, 51
11. PIBFESENCES 52

 ahouruthon F-value in the sonventional F table. The theoretical F-values
 W-afoct of: freedos and the specified probabilities. The F-distribution 12 wountod under $v . .$. condition that the population is normal. So the Fapulation of the data in wirich the observed F-value is obtained should also be nomal. This is the assumption we need in the analysis of variance. In zair situations the population of the data may not meet this concivon. I' the shape of the population distribution function is known, S.en we can use the proper transformation to make the data satisfy this essential condition. Otherwise, many nomparametric methods can be used. This report will deal mainly with the chi-square test in the randomized complete block design case. A large sample is necessary for using this method and the minimum sample size can be reached by a working rule stated in Section 2.

In the second section we state the difference between a two-way randomized complete block arrangement table and a two-way contingency table, with the binomial transformation using the pooled median changing the former to the latter one.

The tiird section discusses the test of independence between two attributes in χ^{2}-test, which is comparable to testing the interaction of two attributes in the ar 2yeis of variance asse.

The fourth and farth sections deal with the methods to compute various x^{21} concemed with difzerent types of experimental data, in which, of
minnorin 2
Kho wall austion cutains the concopts Bbout the expected fregucuctua at $y^{2}-6 \operatorname{lic}$. In the soventh section appoars a normal score transTherwash. Wris is intivauced by Fisher and Yates (1943) and is used for $t h z$ monea doces. It we fransform the quantitative data into ranks at first, 3n. amerraal buta can also be analyzed by this method. The last two scectotit compare the nothod of X^{2}-test and F-test. The F-test is better for noz. populations and the χ^{2}-test needs larger samples to have the same power so the F-test. Some comments arose about Wilson's χ^{2}-test from Sherfield and NoNemar, who indicated that the χ^{2}-test has less power than F-test.

It ia true that if the population of the data is normal, the F-test is better than any other method; otherwise, if the data is not drawn from the normal population then the F-test is no longer the better one. The non-parametzic methods are like wearing loose suits made to cover most people but not giving them a good fit. The transformation is used in statistical methods to transform the data into a normal distribution to weet the test assumption. It seems to change people's weight to fit them into the proper suits. When all of these methods are used, we may certainly : ave something to gain and also something to lose. Therefore, if we can Ind the proper method of analysis for every kind of population, this is the best way to do our job.

1. flan omized Carplete 3lock Arrangement and the Contingency Table.
E. 1 Ctp Difference Between the Randomized Complete Block Two-Way Table and the Contingency Table.

The data of a randomized complete block deaign is generally of two way classification with one observation in each cell or plot. The observations in the cell are usually numerical measurements,

This dosign is devised to compare t treatments in n plots, with each treatment replicated in b plots, so that bt equals n. The n plots are divided into b blocks, such that within any block the plots are as homogeneous as possible, and the variation among blocks is known. The t treatments are randomly allocated to the t plots in each block. With b replications, we require b separate randomizations. A twoway classification table of such an arrangement for a randomized complete block design is given in rable 2.2.1.

If the observations in the two-way table of the randomized complete block design are replaced by frequencies, that table becomes a two-way frequency table. The treatment and block are two classified attributes. This is generaliy called a two-way $r x$ c contingency table, (Table 2.2.2).

2.2 The Change from Randomized Complete Block Two-Way Table into a Contingency Table.

A binomial transformation can be used to change the randomized complete block two-way table into a contingency table. Table $2,2.3$ for example, is the transf:rmed form of Table 2.2.1. The method of transformation is at first to find the median of each block end then replace each observation ove its respective block meaian by 1 and below or equal to its block

Table 2.2.1

Sto-way Classification Table of RCB Design

Where $y_{i j}$ is the observation of the $i^{\text {th }}$ treatment and the $j^{\text {th }}$ block
y_{i}. is the sum of the $i^{\text {th }}$ treatment
\vec{y}_{i}. Is the mean of the $i^{\text {th }}$ treatment
y. ${ }^{\text {i }}$ is the sum of the $f^{\text {th }}$ block
$\vec{y}_{. j}$ is the mean of the $j^{\text {th }}$ block
Y.. is the grand total of all n observations
$\bar{y}_{\text {. . is the grand mean of all } n \text { observations }}$

Table 2.2.2
Y \times c Contingency Table

Ircatment	H2ock						Total
	1	2	. . .	1	...	c	
1	n_{1}	n_{12}	\cdots	$n_{1 j}$	*	${ }^{n} 1 \mathrm{~b}$	${ }^{n} 1$.
2	n_{2}	n_{22}	\cdots	$\mathrm{n}_{2 j}$	\cdots	$\mathrm{n}_{2 \mathrm{~b}}$	n_{2}
!		\vdots		!		\vdots	\vdots
i	n_{i}	n_{12}	\cdots	$\mathrm{n}_{1 j}$	\cdots	$\mathrm{n}_{\text {ib }}$	n_{1}.
:		:				:	:
r	n_{r}	${ }^{n} r_{2}$	\cdots	$n_{r j}$	\cdots	n_{rb}	n_{r}.
Total	${ }^{2}$	${ }^{n} .2$	\cdots	${ }^{n} \cdot{ }^{\text {a }}$	\cdots	n.c	n..

Where $n_{1 j}$ is the number of observations of the $i^{\text {th }}$ treatment and the $J^{\text {th }}$ block
n.. is the total frequencies, or the total number of the observations in the design
n_{i}. is the sum of frequencies of the $1^{\text {th }}$ treatment
${ }^{n} \cdot J$ is the sum of frequencies of the $j^{\text {th }}$ block
mediss by 0 , then the number of 1 's for each treatment is considered to be the futquel -ies of the successes, af ${ }_{i}$, and that of $O^{\prime} s$ is considered that of tive fratitues, bf_{1}. Such a $2 \times \mathrm{r}$ contingency table is obtained from the dsta o: Madomized completc block design as in Table 2.2.3.

Table 2.2.3.
$2 \times$ I Contingency Table where 'a.' Means Above The Median and 'b' Neans Below or Equal to The Median

Variate	Classilication						Total
	1	2	...	i	.	r	
a	af_{1}	af_{2}	\cdots	af_{5}	\cdots	ar_{2}	n_{a}
b	$b 1_{1}$	bs_{2}	\cdots	br_{i}	\cdots	bf_{r}	n
Totel	n_{1}	n_{2}	\cdots	n_{1}	\cdots	n_{r}	n

where
' a ' means above the median
'b' means below or equal to the median
a_{i} is the number of observations above the median in the $i^{\text {th }}$ treatment
$b f_{i}$ is the number of observations below or equal to the Eedian or the $i^{\text {th }}$ treatment
n_{a} is the number of total observations of above the median n_{6} is tho number of total sbservations of below or equal to the median

I is the numer of total observations of all observations

In the two-way able of a randomized complete block design, if the numue of observations in each ccll is more than one, then the method of transformation is slightly different from the precedine one. That is, the median used here is the pooled median, Md, which is obtained from all the n observations instoad of from each block. The number of successes and failurcs for each treatment is deternined by counting the number of observations above and the number below or equal to the pooled median, Md.

The binomial transformation for a randomized complete block experiment can be used only if both t and D are large enough to make all the expected frequencies greater than or equal to 5 . That is, in binomial populations both $n p$ and $n(1-p)$ or nq should be Ereater than or equal to 5 . This is a vorking rule for making the transformation effectively.
3. Interaction and Independence.

An I X c two-way contingency table is usually constructed for the purpose of studying the relationship between two attributes. In particular, We may wish to test whether the two attributes are related and dependent. If the two attributes are not related to each other, this means they are independent. On the other hand, if the two-way table is numerical measurement data, independence indicates no interaction between these two attributes. Thus we test interaction between two attributes in numerical measurement data in the same sense as we test independence between two attributes in a $r x$ c contingency table. The following simple 2×2 table of artificial data is a numerical example to illustrate no interaction between two attributes, A and B.

Table 3.1
4×2 2able of Artificial Data

A	B		2
1	10	12	22
2	13	15	28
Total	23	27	50

To see this, we could check $10-12=13-15$ and $10-13=12-15$, this means that the difference between the observations corresponding to any two levels of A is the same for all levels of B, and the difference between the observations for two levels of B is the same for all levels of A. This means that there is no interaction between two attributes of A and B. On the other hond, if we consider a 2×2 contingency table and let A be the variate, in which A_{1} is "success" and A_{2} is "failure", then the data becomes a binomial form so that B_{1} and B_{2} are two binomial samples. Now we see that the two relative frequencies or two binomial sample means are approximately equal, or $10 / 23 \doteq 12 / 27 \doteq 22 / 50 \doteq 0.4$. Therefore, we would say that the two attributes A and B are independent or the two binomial sample means are approximately equal. The reason that they are not exactly equal is accounted for by the sampling variation. Nevertheless, from this point of view, we know that the purpose of testing hypotheses of interaction for numerical two-way data and that of independence for two-way cosingency data is the some.

4.1 The REservation Rep Cell.

The twi-square test in nonparametric methods may be used in many cases like the analysis of variance in parametric methods to tent the hypothesis that the r samples are drawn from the same population, or that the r population means are equal. The difference between them is that the x^{2} test deals with multinomial populations, while the analysis of variance deals with normal populations. Thus, for the non-paremetric analysis of randomized complete block experimental data, we may at first transform the two-way table of numerical observations into a $2 \times \mathrm{r}$ two-way frequency contingency table, which is shown in the Table 2.2.3.

After the $2 x$ r contingency table is obtained, we can compute the statistic χ^{2} as follows;

$$
\begin{align*}
& x^{2}=\sum_{i=1}^{r}\left[\frac{\left(a f_{i}-\frac{n_{i} n_{B}}{n}\right)^{2}}{\frac{n_{i} n_{i}}{n}}+\frac{\left(b f_{i}-\frac{n_{i} n_{b}}{n}\right)^{2}}{\frac{n_{i} n_{0}}{n}}\right] \\
&=\frac{\left(a f_{1}\right)^{2}}{n_{1}}+\frac{\left(a f_{2}\right)^{2}}{n_{2}}+\ldots+\frac{\left(a r_{i}\right)^{2}}{n_{i}}+\ldots+\frac{\left(a f_{r}\right)^{2}}{n_{r}}-\frac{\left(n_{a}\right)^{2}}{n} \tag{4.1,1}\\
& \frac{n_{a}}{n} \cdot \frac{n_{0}}{n}
\end{align*}
$$

which is ouproximately chi-square with $(r-1)$ degrees of freedom, where all the notations in the formula (4.1.1) are the same as in Table 2.2.3.

As we mentioned in the previous section, the binomial transformation for a randomized complete block experiment in many cases can be used only If both r end b are large. If r, the number of treatments, is small, the x^{2}-value needs to be corrected. The corrected value is

$$
\begin{equation*}
\frac{z}{c}=\left(\frac{r-1}{3}\right) x^{2} . \tag{4.1.2}
\end{equation*}
$$

Mala corruction tern orisinated from the relation between the chisquare toat of ludapendence and the analysis of variance.
4.1.1 Prieuras.'s x^{2}-Test.

For the case or one observation per cell in randomized complete block desiga, Friedman (1937) suggested that a quick method to test the same hypothesis that r population means are equal is at first to rank the observations in each block from 1 to b. Let R_{i}. be the sum of the ranks of the observations from the $1^{\text {th }}$ treatment, we may compute

$$
\begin{equation*}
x_{F}^{2}=\frac{12}{b r(r+1)} \sum_{i=1}^{r}\left(R_{i,}\right)^{2}-3 b(r+1) \tag{4.1.1.1}
\end{equation*}
$$

Where b is the number of blocks or replicates
r is the number of treatments
R_{i}. is the sum of ranks in the $i^{\text {th }}$ treatment.
Under the null hypothesis, this statistic, x_{F}^{2}, is distributed approximately as X^{2} aistribution with $(r-1)$ degrees of freedom.

The integers 12 and 3 in the formula are constants, not dependent on the size of the experiment. This approximation is poor for small velues of r and b. Friedman has prepared tables (Siegel 1956) of the exact distribution of X_{p}^{2} for some pairs of snall values of r and b.
4.1.2 Cochran's Q-Test

Another mechod for the same case contributed by Cochran (Siegel 1956) is the Q-tost. This test is particularly suitable when the data are in a
zonayl or abhotomitec ordinal scalc, anch as 'yes' or 'no'; 'alive' or 'band! ' Nown' w" "tithlure', and so on. Phis test determines whether ten r rel.wed waytes wode from the same population with respect to the trasuency of auculduos 17 the various somples.

The steps for this test arc at first in the two-way table, to assika a ' 2 ' to each 'success' and a '0' to each 'f'silure', and then to determine the statistic Q by substituting the observed values into the following formula;

$$
\begin{equation*}
Q=\frac{(r-1)\left[r \sum_{i=1}^{r} G_{i}^{2}-\left(\sum_{i=1}^{r} G_{i}\right)^{2}\right]}{r \sum_{j=1}^{b} L_{j}-\sum_{j=1}^{b} L_{j}^{2}} . \tag{4.1.2.1}
\end{equation*}
$$

Where G_{i} is the totsl number of 'successes' in the $i^{\text {th }}$ treatment
L_{j} is the total number of 'successes' in the $j^{\text {th }}$ block
F is the number of treatments
b is the number of blocks (replications).
Wider the hypothesis that the r population mans are equal this Q-value is distributed approximately as chi-square distribution with $(r-1)$ degrees of freecom.

The significance of the observed value of Q may be deternined by reference to an ordinary χ^{2}-table.
4.2 Nore Observations Per Cell

Suppose that there are r rows, c colums, and h observations per cell. The obsemations are denoted 1 y $y_{i j k}$ with $i=1,2, \ldots, r ; j=1,2, \ldots, c$; and $z=\therefore, 2, \ldots, h$. The twoway table can be transformed into a $2 \times \mathrm{rxc}$
 Sabse Fun tiso bo writton \sin ablc 4.2.2.

$$
\begin{equation*}
\left.x_{i f}^{2}=\sum_{i=1} \sum_{j=1}^{c} \left\lvert\, \frac{\left(\left.a f_{i, j}-\frac{\left.n_{i j} n_{e}\right)^{2}}{n} \right\rvert\,\right.}{\frac{n_{i, j} n_{a}}{n}}+\frac{\left(b f_{i, j}-\frac{n_{i,} n_{b}}{n}\right)^{2}}{\frac{n_{i, j} n_{b}}{n}}\right.\right] \tag{4.2.2}
\end{equation*}
$$

with (20 - 1) degrees of Preedon.
The hypothesis tested for this case is that the main effects and interaction effects produce no change in the distribution of the data population. If the number of observations for each cell of the $r \times c$ table, $n_{i j}=a f_{i j}+b f_{i j}$, are all equal, and if $n_{a}=n_{b}=\frac{n}{2}$, then χ_{T}^{2} can be written as

$$
\begin{equation*}
x_{T}^{2}=\frac{4 r c}{n} \sum_{i=1}^{T} \sum_{j=1}^{c}\left(a_{i j}-\frac{n}{2 r c}\right)^{2} \tag{4.2.2}
\end{equation*}
$$

ard also if $n_{c} f^{f} n_{0}$, but all $n_{i j}$ are equal, then x_{T}^{2} can be expressed as

$$
x_{T}^{2}=\sum_{i=1}^{r} \sum_{j=1}^{c}\left[\frac{\left(a f_{i, i}-\frac{n_{a}}{r c}\right)^{2}}{\frac{n_{a}}{r c}}+\frac{\left(b f_{i, j}-\frac{n_{b}}{r c}\right)^{2}}{\frac{n_{b}}{r c}}\right]
$$

For computing row or treatment χ_{R}^{2} and column or block X_{C}^{2}, we could change mable 4.2.1 into the form of Table 4.2.3 and Table 4.2.4, or namely 2 x r and 2 xc contingency tables respectively, then the two statistics are in general

Bavis 4.E. $=$

1+hats Below of Equal to the Median, Ma.

		1	2	. \cdot	J	. \cdot	c	Total	
1	0	-1531	ar_{12}	\cdots	${ }^{a r}{ }_{11}$	\cdots	$\mathrm{ar}_{1 \mathrm{c}}$	${ }^{\text {an }} 1$.	
	\%	${ }^{\text {bf }} 11$	bf_{12}	\cdots	$\mathrm{bf}_{1 \mathrm{~d}}$	\ldots	$\mathrm{bf}_{1 \mathrm{c}}$	bn_{1}.	
2	a	ar_{21}	ar_{22}	*	$\mathrm{ar}_{2 \mathrm{~J}}$	**	$\mathrm{af}_{2 \mathrm{c}}$	an_{2}.	n_{2}.
	b	br_{21}	bf_{22}	.	$\mathrm{br}_{2 \mathrm{l}}$	\cdots	$\mathrm{br}_{2 \mathrm{c}}$	bn_{2}.	
\vdots		\vdots	\vdots		!		:	:	:
1	a	af_{41}	ar_{12}	\cdots	$\mathrm{af}_{\text {ij }}$	\cdots	$\mathrm{ar}_{\text {ic }}$	an_{1}.	n_{i}.
	b	$\mathrm{br}_{i 1}$	br_{12}	**	$\mathrm{br}_{i j}$	\cdots	$\mathrm{br}_{\text {ic }}$	bn_{4}.	
!		!	!		:		!	:	\vdots
7	E	${ }^{\text {ar }}$	${ }^{81}{ }_{2}$	\cdots	af $_{21}$. \cdot	${ }^{\text {af }}{ }_{r c}$	$a^{a}{ }_{r}$.	${ }^{n} \times$.
	b	$\mathrm{bf}_{\text {rl }}$	br_{52}	* $*$	$\mathrm{bf}_{\text {rj }}$	\cdots	$\mathrm{br}_{\mathrm{rc}}$	${ }^{\text {bn }} \mathrm{r}$.	
Totals	a	an .1	${ }^{\text {an }} .2$	\cdots	$\stackrel{\text { an }}{+1}$.	${ }^{\text {an }}$, c	na_{a}	
	b	$\mathrm{bn}_{.1}$	bn. 2	-**	bn. ${ }^{\text {d }}$	\cdots	${ }^{\text {bn. }}$.	n_{0}	
		${ }^{n} .1$	${ }^{n} .2$	\cdots	${ }^{n} \cdot 1$	\cdots	${ }^{n} \cdot \mathrm{c}$		n

Merise 4.2.?
x re tiontingency Trawio

Table 4.2 .3
$2 \times r$ Contingency Sable

Table 4.2.4
$2 x$ c Contingency Table

$$
x=\sum_{i=1}^{5}\left[\frac{\left.\| \Delta a_{1}-\frac{n_{1} n^{n}}{n}\right)^{2}}{\frac{n_{i} n_{n}}{n}}+\frac{\left(\left\langle f_{i} \cdot-\frac{n_{i} \cdot n_{b}}{n}\right)^{2}\right.}{\frac{n_{i} \cdot n_{b}}{n}}\right]
$$

whte $(f-4)$ aetrocer ar frecdon, where $n_{i} .=\sum_{j=2}^{c} n_{i f}$, and

$$
X \mathrm{~K}=\left[\frac{\left(a \geq \cdot\left(-\frac{n \cdot \lambda^{2} \cdot n}{n}\right)^{2}\right.}{\frac{n \cdot 1^{n} a}{n}}+\frac{\left(b t \cdot 1-\frac{n \cdot 1^{n} b}{n}\right)^{2}}{\frac{n \cdot 1^{n} b}{n}}\right]
$$

wit: $(a-1)$ degrees of freedom, where $n_{\cdot j}=\sum_{i=1}^{r} n_{i j}$.

$$
\text { If } n_{s}=n_{b}=n / 2 \text {, end all } n_{i j} \text { are equal, the following two expressions }
$$ can be used

$$
\begin{equation*}
x_{R}^{2}=\left(\frac{4 r}{n}\right) \sum_{i=1}^{r}\left(a r_{i .}-\frac{n}{2 r}\right)^{2} \tag{4.2.6}
\end{equation*}
$$

where $\left\langle f_{i .}=\sum_{j=1}^{c} d f_{i j}\right.$;

$$
\begin{equation*}
x_{c}^{2}=\left(\frac{4 c}{n}\right) \sum_{j=1}^{c}\left\langle b f_{\cdot j}-\frac{n}{2 c}\right)^{2} \tag{4.2.7}
\end{equation*}
$$

where $b \hat{i} \cdot j=\sum_{i=1}^{T} b f_{i, j}$.

Also, if $n_{a} \neq n_{b}$ but all $n_{i j}$ are equal, the following two formulas may be used.

$$
\begin{align*}
& A_{1}=\sum_{1=1}^{n}\left[\frac{\left.-\frac{\pi}{r}\right)^{2}}{\frac{n^{n}}{r}}+\frac{\left(b f_{1} \cdot-\frac{n_{b}}{r}\right)^{2}}{\frac{n_{b}}{r}}\right] \tag{4.2.8}\\
& x_{C}^{2}=\sum_{j=1}\left[\frac{\left(a f \cdot f^{n}-\frac{n_{n}}{c}\right)^{2}}{\frac{n_{3}}{c}}+\frac{\left(b f^{2}-\frac{n_{b}}{c}\right)^{2}}{\frac{n_{b}}{c}}\right] . \tag{4.2.9}
\end{align*}
$$

20 detect the interaction effect of row and column we can compute x_{I}^{2} by subtracting, as is done in analysis of variance. That is

$$
\begin{equation*}
x_{I}^{2}=x_{T}^{2}-x_{R}^{2}-x_{C}^{2} \tag{4.2.20}
\end{equation*}
$$

with $(r-2)(c-1)$ degrees of freedom.
The general expression for X_{I}^{2} is fairly complex and is given by Rao (1952).
5. Extension of Randomized Complete Block Design.
5.1 Randomized Complete Block Design with Two Treatments with One Observation Per Cell.

If only two treatments and b blocks are contained in the experimental data, the sign test may be used, and the computing method for this case is that a plus or minus sign is given to each difference of the b blocks, depending on whether the observation of the first treatment is greater or less than the observation of the second treatment. If there is no difFerence between the two treatments, plus and minus signs occur with equal
wafanits. If the difecs or the first treatment is greater than that of the sectoc, treatient one can expect an exccsa of plus signs, othcrvise
 effect are ecual is the same as that the probability of a plus sign is equal to 0.5 , or $p=0.5$.

Here again, a nompartmetric fothod is essentially the binomial transFormation. To test the hypothesis that $p=0.5$, \& χ^{2}-test may be used, provided that the number of blocks is greater than or equal to 10 , by the working rule bp ≥ 5.0.

Strictly speaking, the sign test is applicable only to the case in which all the b signs are either positive or negative. But in practice the two observations of a block are sometimes equal. When this occurs, such a block may be excluded from the test.

The x^{2} - value of the sign test is exactly the corrected chi-square $x_{c}^{2}(4.1 .2)$ for the randomized complete block experiment with 2 treatments and b blocks. This relation can be shown algebraically. The median of a block is the average of the two observations in that block. A plus sign implies that the first observation is greater than the second one in that block. Therefore, the number of observations greater than their block medians for the first treatment equals the number of observations less than their block medians for the second treatment. Therefore, the 2×2 contirgency table is as follows:

	treat 1	treat 2	tota
no. of + 's	T	$b-T$	b
no. of -'s	$b-T$	7	b
tctals	b	b	2 b

.he letta 5 in the wove table is the number of plus signs. By the

$$
\begin{equation*}
x^{2}=\frac{\left(t-\frac{2}{2}\right)^{2}}{1(0.5)(0.5)}=\frac{(2 T-b)^{2}}{b} . \tag{5.1.1}
\end{equation*}
$$

Dy the method for randomized complete block experiment and formula (4.1.2)

$$
\begin{equation*}
x_{\mathrm{c}}^{2}=\frac{2-1}{2} \cdot\left[\frac{\frac{\mathrm{~m}^{2}}{b}+\frac{(b-T)^{2}}{b}-\frac{b^{2}}{2 b}}{\frac{1}{2} \cdot \frac{1}{2}}\right] \tag{5.1.2}
\end{equation*}
$$

waich can be reduced to the same expression given in formula (5.1.1).
Other methods of nonparametric analysis for two related samples may be found in Siegel (1956).

5.2 Randomized Complete Block Desiga with Two Factors and no Combination

If the treatment contains two forms, A and C, both at m levels and also if there are b blocks in the experiment, the twoway arrangement is as given in Table 5.2.1.

For this data we may find the difference between corresponding levels of factor A and factor C in the b blocks.

To find the interaction between the factors and the blocks, the method is to tabulate the differences between values at corresponding ievels for these two factors under the blocks. Then the next step is to determine the ranks of the differences (Table 5.2.2).

The following x^{2} - value can be used to test the hypothesis that two fuctors nave no interaction with blocks.

Soube J.2.1
7hath Cathe of Tho Factor with TH_{0} Combination in RCB Desirt.

$$
\begin{equation*}
x^{2}=\frac{12}{m b(b+1)} \sum_{j=1}^{b} r_{j}^{2}-3 m(b+1) \tag{5.2.1}
\end{equation*}
$$

with $(b-2)$ degrees of freedom, where b is the number of blocks, m is the :umber of levels, and r_{j} is the sum of ranks in the $j^{\text {th }}$ block.

$$
\text { Table } 5.2 .2
$$

The Difference and Rank Table of A-C

Level	Difference in Block I	Rank	Difference in Block II	Rank	\cdots	Difference in Block b	Rank
1	${ }^{a_{11}}-c_{11}$		$\mathrm{a}_{12}-c_{12}$		\cdots	$\mathrm{a}_{1 \mathrm{~b}}-\mathrm{c}_{1 \mathrm{~b}}$	
2	$a_{21}-c_{21}$		$a_{22}-c_{22}$		\cdots	$\mathrm{a}_{2 \mathrm{~b}}-c_{2 b}$	
\vdots	-				.		
[$\mathrm{arcll}^{\text {and }}$		$\mathrm{a}_{\underline{\text { m2 }} \text { (}} \mathrm{c}_{\text {m2 }}$. .	$\mathrm{a}_{\mathrm{mb}} \quad \mathrm{c}_{\mathrm{mb}}$	
Tote1		r_{1}		r_{2}	. .		r_{b}

Sta foskicuin a -value can be sumpared with that of the conventional

S.3 Kandonized Complote Block Design with Three Factors and No Combination
if three fiectors, A, B and C, are involved in the treatment for a rundomized complete block design, then the X_{I}^{2} is the sum of $x^{2 \prime} s$. One is obtained by finding the difference, $A-B$ as the same manner shown in Tuble 5.2 .2 for different blocks as in the last section, and another X^{2} is obtained by finding $A+B-2 C$ for all blocks.
5.4 Randomized Complete Block Design with Four Factors and No Combination

In this case, we can use a similar procedure to find three components o: x^{2}. That is, the first x^{2} is obtained by finding the difference of $A-B$, the second X^{2} is by finding $A+B-2 C$, and the third X^{2} is by finding $A+B+C-3 D$, and thus x_{I}^{2} is the sum of them.

If more than four factors are involved in the treatment with no combination, the method is the extonsion of the previous ones.
5.5 Rendomized Complete Block Design with Two Factors and With Each Cell Containing Nore Then One Observation.

If the randomized complete block design includes two factors, the first faczor has r levels, and the second factor has o levels. Then there are re treatment combinations. Each treatment combination is repeated in o plots, and each plot contains $n_{i j k}$ observations. Then, by using the binorial tiansformation, a $2 \times r \mathrm{cb}$ frequency contingency table can be ooteined es the folloring table.

Taole 5.5.1

$2 \times$ rcu Cuat ingency Table with ' a ' and ' b ' Means Above and Below or Equal to the Kedian, Ma.

	111	112	...	ijk		rcb	Total
a	${ }^{\text {ar }}{ }_{111}$	${ }^{\text {af }} 112$	\cdots	$\mathrm{ar}_{\text {ijk }}$	\cdots	$\mathrm{af}_{\mathrm{rcb}}$	n a
b	br_{111}	${ }^{\text {b }} 112$	*.	$\mathrm{br}_{i j k}$	\cdots	$\mathrm{bf}_{\mathrm{rcb}}$	n_{0}
Total	n_{211}	${ }^{1} 112$	\cdots	$n_{i, j k}$	\cdots	$\mathrm{n}_{\mathrm{rcb}}$	n

$\mathrm{af}_{i j \mathrm{k}}$ is the number of observations in the $i j \mathrm{k}^{\text {th }}$ cell which are greater then Md.
$\mathrm{br}_{\text {ijk }}$ is the number of observations in the $1 \mathrm{yk}^{\text {th }}$ cell which are less than or equal to Ma.

From this table we can compute the total chi-square to test the dypotinesis that the main effects and interaction effects make no difference in the population distribution of the data. This statistic can be expressed as

$$
x_{T}^{2}=\sum_{i=1}^{r} \sum_{j=1}^{c} \sum_{k=1}^{p}\left[\frac{\left(a f_{i, j k}-\frac{n_{i, j k}^{n} a}{n}\right)^{2}}{\frac{n_{i, k k} n_{k}}{n}}+\frac{\left(b f_{i, k k}-\frac{n_{i, k k} n_{0}}{n}\right)^{2}}{\frac{n_{i, k k} n_{b}}{n}}\right] \text { (5.5.1) }
$$

With $($ reb -1$)$ degrees of freedom, where $n_{i j k}=a f_{i j k}+b f_{i j k}$.
Chi-squares for three main effects, namely the two factor effects and the block effect, are computed in the same manner.

$$
\begin{aligned}
& \text { where } n^{n}, k=\sum_{i=1}^{r} \sum_{j=1}^{c} n_{i \jmath k} \\
& \text { br } \ldots k=\sum_{i=1}^{+} \sum_{j=1}^{c} b f_{i, j k} .
\end{aligned}
$$

These three Chi-squares, x_{R}^{2}, x_{C}^{2}, and x_{B}^{2} are distributed as x^{2} ranSam variables with $(r-1),(c-1)$, and $(b-1)$ degrees of freedom.

The hypochesis tested is that the population means of different levels for all three main factors are identical.

The totel interaction x^{2} can be computed by subtracting from x_{1}^{2}.

$$
\begin{equation*}
x_{I}^{2}=x_{T}^{2}-x_{R}^{2}-x_{C}^{2}-x_{B}^{2} \tag{5.5.5}
\end{equation*}
$$

This statistic is distributed approximately as x^{2}-distribution with $\mathrm{rcb}-\mathrm{r}-\mathrm{c}-\mathrm{b}+2$ degrees of freedom

If χ_{I}^{2} : significant, then we may make $2 \times b \times c, 2 \times r \times b$, and

 that tie inceractions for each pair of two main factors arc

$$
\begin{align*}
& R C X_{I}^{2}=R C x_{\mathrm{I}}^{2}-x_{\mathrm{R}}^{2}-x_{\mathrm{C}}^{2} \tag{5.5.6}\\
& \mathrm{RBX} \frac{\mathrm{~A}}{2}=\mathrm{B} x_{\mathrm{I}}^{2}-x_{\mathrm{R}}^{2}-x_{\mathrm{C}}^{2} \tag{5.5.7}\\
& \mathrm{CB} X_{I}^{2}=\mathrm{CB} x_{\mathrm{I}}^{2}-x_{\mathrm{R}}^{2}-x_{\mathrm{C}}^{2} . \tag{5.5.8}
\end{align*}
$$

These three statistics are distributed approximately as x^{2} distribution with $(r-1)(c-1),(r-1)(b-1)$, and $(c-1)(b-1)$ degrees of Ireedom respectively.

Finely, the triple interaction x^{2} of row, column, and block is expressed as

$$
\begin{align*}
R B C X_{I}^{2} & =x_{I}^{2}-x_{I}^{2}-x_{C}^{2}-x_{B}^{2}-R C x_{I}^{2}-R B x_{I}^{2}-C B x_{I}^{2} \\
& =x_{I}^{2}-R C x_{I}^{2}-R B x_{I}^{2}-C B x_{I}^{2} \tag{5.5.9}
\end{align*}
$$

which is approximately distributed as a x^{2} random variable with $(r-1)(c-1)(b-1)$ degrees of freedom.

To test tice significance of all the x^{2} statistics of the main effects and interactions above, we may compare the observed x^{2}-values vith the conventional x^{2} table with the corresponding degrees of freedom.
6. The Expected Frequencies

6.1 Tho-Wey Clessification

 6.1.1 'i' and 'f' are Both 'variates'.In the two way clussific-tion, if we suppose that the row and column are reft -ed to as treatment and block respectively, the expected frecquencies

 the . $^{\text {th }}$ raflin. (In this case n is fixed from sample to sample), Thea \sin I Fooadikity table is indicated as the following table, Gith $\quad 2 \mathrm{v}$, which is formed from Table 2.2.2,

Table 6.1.1
I x c Probebllity Table

50w	Colurn						Totel
	1	2	.	j	\cdots	c	
\pm	${ }^{1}$	p_{12}	\cdots	p_{13}	\cdots	$\mathrm{p}_{1 \mathrm{c}}$	p_{1}.
2	22	${ }^{22}$	\cdots	$\mathrm{P}_{2 \mathrm{~s}}$	\cdots	$\mathrm{p}_{2 \mathrm{c}}$	p_{2}.
\vdots	:	:		\vdots		:	!
₹	$p_{i 1}$	$\mathrm{P}_{\text {i2 }}$	\cdots	$p_{1 j}$.	$p_{i c}$	p_{1}.
:	:	!		!		:	!
5	${ }^{\text {r }}$ r	$\mathrm{P}_{2} 2$	\cdots	$p_{r i}$	\cdots	$p_{r c}$	p_{r}.
Total	P. 2	P. 2	\cdots	${ }^{\text {P }}$. j	.	P.c	1

where $\quad p_{i j}=\frac{n_{11}}{n}=\frac{a f_{i 1}+b f_{i, 1}}{n}$.
The hy otcesis that the row and colum or two attributes are incependent 2w: be wrivien ir the :0:m

$$
W_{0}: D_{15}=D_{1} \cdot{ }^{p} \cdot i
$$

Reainst $\|_{:}: p_{f j} \not p_{i .} p_{j}(i=1,2, \ldots, r$ and $j=1,2, \ldots, c)$. from some i anc 1 ,

If a scmple of size n is selected and $n_{i j}$ individuals of them are in the cell of the $i^{\text {th }}$ row and $j^{\text {th }}$ column, then the chi-square is conventionally computed as

$$
\begin{equation*}
x^{2}=\sum_{i=1}^{r} \sum_{j=1}^{c} \frac{\left(n n_{i j}-n p_{i, j}\right)^{2}}{n p_{i j}} \tag{6.1.1.1}
\end{equation*}
$$

with $(r-1)(c-1)$ degrees of freedom. Under the hypothesis, this expressior. may be written as

$$
\begin{equation*}
x^{2}=\sum_{i=1}^{r} \sum_{j=1}^{c} \frac{\left(n_{i j}-n p_{i} \cdot p_{\cdot j}\right)^{2}}{n p_{i} \cdot p \cdot j} \tag{6.1.1.2}
\end{equation*}
$$

Since the p_{i}. and $p_{. j}$ are unknown, it is necessary to estimate them from the sample.

By the property oi χ^{2}, the χ^{2}-test can be used if the estimates are maximum likelihood estimates, with one degree of freedom for each parameter estimated. Since $\sum_{i=1}^{\infty} p_{i}=1$ and $\sum_{j=1}^{c} p_{\cdot j}=1$, there are $r-1 \div c-1=$ $r+c-2$ parameters to be estimated; hence the proper number of degrees of freedom for testing the independence of two attributes in the $\mathrm{r} \times \mathrm{c}$ contingency table is df $=r-1-(r+c-2)=(r-1)(c-1)$.

To And the maximum likelihood estimates of the p_{i}. and $p_{. j}$ we let n_{i}. dinote the sum of the frequencies in the $i^{\text {th }}$ row and let $n . j$ denote the sum of the freq-encies in tho $j^{\text {th }}$ column. Since the frequencies $n_{i j}$
 sht:itint toc sc-ite in the order ocested. Thus, using the same reasoning -s that usea to mive st $p_{1}{ }^{n_{1}} p_{2} n_{2} \ldots p_{r}{ }^{n_{r}}$, the likelihood function of the sample will be given by

$$
L=\frac{n!}{\pi n_{i j} i} \prod_{i=1}^{r} \prod_{j=1}^{n} p_{i j} n_{i j}
$$

But Dcoause of $H_{0}: p_{i j}=p_{i}, p^{p}, j$ and the definition of n_{i}. and n, \jmath,
tlifs likelihood function reduces to

$$
\begin{align*}
& L=\frac{n!}{\pi n_{i j} j} \prod_{i=1}^{r} \prod_{j=1}^{c}\left(p_{i}, p_{. j}\right)^{n_{i j}} \\
& =\frac{n!}{\pi n_{i j}!}{\underset{i=1}{r}}_{\underset{i=1}{c}}^{\underset{j=1}{c} p_{i} .} \quad n_{i j} \underset{i=1}{r} \underset{j=1}{c} \sum_{j=j}^{n_{i j}} \\
& =\frac{n!}{\prod_{i, j} n_{i j}!}{\underset{\prod}{i=1}}_{r} p_{i .} \sum_{j=1}^{c} n_{i j}{\underset{j}{j=1}}_{c} p_{i j} \sum_{i=1}^{r} n_{i j} \\
& =\frac{n!}{\prod_{i, j} n_{i j}!} \prod_{i=1}^{r} p_{i} . n_{i} \cdot \prod_{j=1}^{c} p \cdot{ }^{n} \cdot j . \tag{6.1.1.3}
\end{align*}
$$

Now, let $p_{r .}=1-\sum_{i=1}^{r-1} p_{i .}$, then

$$
\begin{equation*}
L=\frac{!}{\Pi n_{i j}!}\left(1-\sum_{i, j}^{r-1} p_{i}\right)^{n_{r}} \cdot \prod_{i=1}^{r-1} p_{i} n_{i} \cdot \prod_{j=1}^{c} p^{n} \cdot j \cdot j \tag{6.1.1.4}
\end{equation*}
$$

Wurto $\$$ dose not irvolve the variable p_{i}. Now, differentiating with respect to p_{i}, and settime the derivative equal to zero to find a maximum,

$$
\frac{\partial 1 o g I_{1}}{\partial p_{i .}}=-\frac{n_{r}}{1-\sum_{1}^{r_{i}-1} p_{i}}+\frac{n_{i}}{p_{i}}=0
$$

Since $1-\sum_{i=1}^{r-1} p_{i}=p_{r .}$, this equation is equivalent to

$$
\begin{equation*}
P_{i .}=\frac{P_{r_{i}}}{n_{r_{i}}} n_{i .}=\lambda n_{i} \tag{6.1.1.7}
\end{equation*}
$$

where λ does not depend upon the index i. Since this must hold for $i=1,2, \ldots, r$ and since

$$
\begin{equation*}
1=\overrightarrow{\vec{\Sigma}}_{1} p_{i}=\lambda \sum_{1}^{r} n_{1}=\lambda n_{i} \tag{6.1.1.8}
\end{equation*}
$$

It follows that $\lambda=1 / n$, and hence that the maximum likelihood estimate of p_{i}. is

$$
\begin{equation*}
\widetilde{p}_{1 .}=\frac{n_{1}}{n} \tag{6.1.1.9}
\end{equation*}
$$

Dy symetry, the neximum likelinood estimate of $p . g$ is

$$
\begin{equation*}
\tilde{p}_{\cdot j}=\frac{n \cdot 1}{n} \tag{6.1.1.10}
\end{equation*}
$$

If p_{i}. and $p_{. j}$ in the formula (6.1.1.2) are replaced by their
aximul 1 ikelinood estimates, the x^{2} will become

$$
\begin{equation*}
x^{2}=\sum_{i=1}^{r} \sum_{j=1}^{c} \frac{\left(n_{i, i}-\frac{n_{i,}{ }^{n} \cdot i}{n}\right)^{2}}{\frac{n_{i,}{ }^{n} \cdot i}{n}} \tag{6.1.1.11}
\end{equation*}
$$

Wik 1 r- $(c-1)$ decrees of frecdom, but we should notice that this zsestrile n, istributed as a x^{2} distribution provided thet n is supAlatatuly large tha H_{o} is true.
0.1 .2 ' i ' is a 'Way of Classification' and ' y ' is a 'Variate'.

If we consider the rov a way of classification, then the r o probwolity table can be changed, so that $\sum_{j=1}^{c} p_{i j}=p_{i}=1$ and n_{i}. is fixed. So for such a row the likelihood function is

$$
\begin{equation*}
\frac{n_{i,}!}{\substack{\mathbb{I} n_{i j} \\ j=1}} \prod_{j=1}^{c} p_{i j} n_{i j} \tag{6.1.2.1}
\end{equation*}
$$

Now ve have r independent sets of sizes $n_{2}, n_{2}, \ldots, n_{r}$. of independent observations such that $n_{i,}(i=1,2, \ldots, r)$ is fixed from sample to sample. Under the hypothesis that $p_{i j}$ for any column, is independent of row, or in other words,

$$
H_{0}: p_{i j}=q_{, j}(s q y)
$$

against $H_{a} \neq H_{o}$,
where $q . j$'s are arbitrary positive parameters such that

$$
\begin{aligned}
\sum_{j=1}^{c} q, j & =\sum_{j=1}^{c} p_{i j}=p_{i .}=1, \text { we have, therefore, } \\
L & =\prod_{i=1}^{r}\left[\frac{n_{1 .}:}{\sum_{J}^{c} n_{i j} \cdot j=1} \underset{j=1}{c} p_{i j} n_{i j}\right]
\end{aligned}
$$

$$
\begin{align*}
& =\prod_{i=1}^{=} \frac{n_{i .}:}{\prod_{j=1}^{c} n_{i j}: j=1} p_{i j}^{i=1} n_{i j}^{j} \\
& =\frac{\sum_{i} \sum_{i, j} n_{i, j}!\prod_{j=1^{q} \cdot j}^{n} \cdot j .}{} \tag{6.1.2.2}
\end{align*}
$$

Naximizing $\log L$ with respect to $q_{\cdot j}$'s subject to $\sum_{j=1}^{c} q_{\cdot j}=1$ we obtain the maximum likelihood solutions: $\quad q_{\cdot j}=\frac{n}{n}$. . The number of independent parametera estimated from the data is $c-1$, and hence the test here is to be based on a statistic which has the χ^{2}-distribution with degrees of freedom $r(c-1)-(c-2)=(r-1)(c-1)$ and whose form is

$$
\begin{equation*}
x^{2}=\sum_{i}^{\pi} \sum_{1}^{c} \frac{\left(n_{i, 1}-n_{i} \cdot \frac{n \cdot 1}{n}\right)^{2}}{\frac{n_{i \cdot n}^{n} \cdot 1}{n}} \tag{6.1.2.3}
\end{equation*}
$$

The result of the case of ' i ' being variate and ' I ' a way of classification may be obtained as the same manner as that above. 6.1.3 ' 1 ' and ' f ' are Both 'Ways or Classification'.

The row and column of the contingency table are both ways of classification. If we suppose n_{i}. and n, j in the $r x c$ contingency table are both fixed from sample to sample, them both row and column marginal probabilities are all equal to 1 , that is

$$
\sum_{i=1}^{r} p_{i j}=\sum_{j=1}^{c} p_{1 j}=1 \quad \text { or } p_{i .}=p_{\cdot j}=1
$$

$$
\begin{equation*}
x^{2}=\prod_{1=1} \frac{\left(n_{i, 1}-\frac{n_{1} \cdot n \cdot 1}{n}\right)^{2}}{\frac{n_{1} \cdot n \cdot 1}{n}} \tag{6.1.3.2}
\end{equation*}
$$

Wikn ec - $(r+c-1)=(r-1)(c-1)$ degrees of freedom.
0.2 Chree-way Classification.
0.2 .1 ' 2 ', ' g ' and ' k ' Are all 'Variates'.

Suppose we have a sample of independent observations such that $p_{i, j k}$ is the probability of an observation in the (ifk) ${ }^{\text {th }}$ cell and n is ixced from sample to sample and if we let

$$
\begin{align*}
& \sum_{i=1}^{2} p_{i j k}=p . j k, \quad \sum_{j=1}^{c} p_{i j k}=p_{i, k}, \quad \sum_{k=1}^{b} p_{i j k}=p_{i j} . \\
& \sum_{i, j}^{r} \sum_{i, j k}^{c} p_{p}, \ldots k \sum_{i, k}^{r} \sum_{i, j k}^{b}=p . j, v \sum_{j, k}^{c} \sum_{i j k}^{b} p_{i j}=p_{i} . \tag{6.2.1.1}\\
& \sum_{i, j, k}^{c} \sum_{i, k}^{b} p_{i j k}=p \ldots=1
\end{align*}
$$

then the likelihood function is given by

$$
\begin{equation*}
I=\frac{n!}{i, j, k n_{i j k}!} \quad \prod_{i, j, k}^{p_{i, j k}^{n}}{ }^{n_{i j k}} \tag{6.2.1.2}
\end{equation*}
$$

Nder the Dypothesis c ' independence between ' L ' and ' j ' for fixed ' k '.
as $\quad H_{0} \nabla_{4 k}=\frac{P_{i . k}+i k}{P}$,
 We then $1 /=R$

$$
\begin{equation*}
L \propto \underset{i j k}{\pi}\left(\frac{p_{i, k} p}{p} \cdot j k\right) \tag{6.2.1.3}
\end{equation*}
$$

 subject to $\sum_{i=1}^{r} p_{i, k}=\sum_{j=1}^{c} p, j k=p \ldots k$ and $\sum_{k=1}^{b} p \ldots k=1$,
gives maximuT-likelihood solutions

$$
\begin{align*}
& \tilde{p}_{i, k}=\frac{n_{i, k}}{n} \\
& \tilde{p}_{\cdot j k}=\frac{n \cdot 1 k}{n} \tag{6.2.1.4}\\
& \tilde{p}_{. . k}=\frac{n \cdot \cdot k}{n} .
\end{align*}
$$

The number of these estimated parameters is $(r-1) b+(c-1) b$
$+(b-1)$. The x^{2} used to test the hypothesis here is

$$
\begin{equation*}
x^{2}=\sum_{i=1}^{n} \sum_{j=1}^{j} \sum_{k=1}^{b} \frac{\left(n_{i, j k}-\frac{n_{i \cdot} \cdot n}{n} n_{i}\right)^{2}}{\frac{n_{i, k}^{n} \cdot j k}{n} \cdot \frac{2 k}{}} \tag{6.2.1.5}
\end{equation*}
$$

942 rev-1-b(r-1)-b(c-1)-(b-1)=b(r-1)(c-1) degreea of Trectan.
 we car test the indepencence of ' i ' and ' k ' and ' g ' and ' k ' . Also if w let $p_{i, j i}=p_{i, \ldots} p_{, ~ j}, P_{k}$, then we have

$$
\begin{equation*}
L_{1}=\prod_{i j k}\left(p_{i, \ldots} p_{\cdot j \cdot} p_{n k}\right)^{n_{i j k}} \tag{6.2.1.6}
\end{equation*}
$$

To test the hypothesis we maximize $\log \mathrm{L}$ with respect to $p_{i . .}{ }^{\prime} s, P_{. j} .^{\prime s}$ and $P_{. . k^{\prime}}{ }^{\prime}$
subject to

$$
\sum_{i=1}^{\sum} p_{i} \cdot=\sum_{j=1}^{c} p, j=\sum_{k=1}^{b} p \ldots k=1
$$

and obtain the solutions of maximum likelihood as:

$$
\begin{align*}
& \tilde{p}_{i \ldots}=\frac{n_{i . .}}{n} \\
& \tilde{p}_{. j .}=\frac{n \cdot 1}{n} \tag{6.2.1.7}\\
& \tilde{p}_{\ldots k}=\frac{n \cdot \ldots k}{n} .
\end{align*}
$$

The number of independent parameters estimated from the data is $(r+c+b-3)$, and hence the x^{2} used to test the hypothesis here vill be

$$
\begin{equation*}
x^{2} \sum_{i=1} \sum_{j=1}^{c} \sum_{k=1}^{b} \frac{\left(n_{1 j k} \cdots \frac{n_{i} \cdot \cdot^{n} \cdot 1 \cdot n}{n^{2}} \cdot k^{2}\right.}{\frac{n_{2} \cdot n^{n} \cdot j^{n} \cdot \cdot k}{n^{2}}} \tag{6.2.1.8}
\end{equation*}
$$

-1 (da $2 x-1-(f+c+b-3)=r e-r-c-3+2$ degrees of freedom.
Ifi onfars ta test the nypothe is that the independence between "|i, Jl' Ent 'IM or

$$
H_{6} \cdot p_{12}=i j^{p} \ldots k
$$

$$
\text { asainst } A_{a} \neq \|_{0}
$$

$i=1,2, \ldots, r, j=1,2, \ldots, c, \quad k=1,2, \ldots, b)$, we have

$$
\begin{equation*}
L=\pi_{i, j, k}\left(p_{i, j,} p_{\cdots k}\right)^{n_{i, j k}} \tag{6.2.1.9}
\end{equation*}
$$

To test this hypothesis we maximize \log I with respect to $p_{i j,}$,s and $p \ldots s^{\prime s}$ subject to $\sum_{i=1}^{2} \sum_{j=1}^{c} p_{i, j}=\sum_{k=1}^{b} p_{1} \ldots k=1$ and obtain the maximum likelihood solutions as $\tilde{p}_{i, 1}=\frac{n_{i,}}{n}$

$$
\begin{equation*}
\tilde{p}_{\ldots k}=\frac{n}{n} \tag{6.2.1.10}
\end{equation*}
$$

The number of independent parameters estimated from the data is $(x \mathrm{c}-1)+(\mathrm{b}-1)$ and hence the x^{2} used to test the hypothesis here vill be

$$
x^{2}=\sum_{i=1}^{n} \sum_{j=1}^{c} \sum_{k=1}^{b} \frac{\left(n_{i, j k}-\frac{\left.n_{i, k}, \ldots k\right)^{2}}{n}\right.}{\frac{n_{i, j} \cdot{ }_{n} \ldots k}{n}}
$$

with $r c b-1-[(r c-1)+(b-1)]=(r c-1)(b-1)$ degrees of freedom.
The hypothesis of independence between ' i ' and ' k ' and between ' j '
$\therefore \therefore$ ' Ω ' is included under the hypothesis

$$
\#_{0}: p_{i, k}=p_{i \ldots} p_{, k} \text { and } p_{., k}=p_{. j, ~} p_{\ldots k}
$$

6.2. 2 and ' j^{\prime} the 'Variates' and ' k ' is a 'Way of Classification'.

Buphe therc are b of sizes $n \ldots, \ldots, n, b$ of independent observations
 We frol Sllity of an observacion in the $(i j k)^{\text {th }}$ cell, and $\sum_{i=1}^{T} \sum_{j=1}^{c} p_{i j k}=$ $5_{, ~} \mathrm{~K}=1$. The likelihood function is given by

$$
\begin{equation*}
L=\prod_{k=1}\left[\frac{n}{\prod_{i j} n_{i j k}!} \quad \prod_{i j} p_{i j k} n_{i j k k}\right] \tag{6.2.2.1}
\end{equation*}
$$

Under the hypothesis of independence between ' i ' and ' J ' for each ' K ' that is

$$
H_{0}: p_{i, j k}=p_{i, k} k^{p} \cdot j k
$$

againat $\mathrm{E}_{\mathrm{a}} \neq \mathrm{H}_{0}$
$(i=1,2, \ldots, r ; j=1,2, \ldots, c ; k=1,2, \ldots, b)$ we have

$$
\begin{equation*}
L \propto \underset{i j k}{\pi}\left(p_{i, k^{p} \cdot j k}\right)^{n_{i j k}} \tag{6.2.2.2}
\end{equation*}
$$

We maximize $\log L$ with respect to the $p_{i . k}{ }^{\prime} s$ and $p . j k$'s subject to

$$
\begin{gathered}
\sum_{i=1}^{T} p_{i, k}=\sum_{i=1}^{Q} p_{i, j k}=p_{\ldots k}=1 \text {, and obtain the maximum likelihood solutions } \\
\sum_{i, k}=\frac{n_{i, k}}{I_{n \cdot k}}, \tilde{p}_{, j k}=\frac{n \cdot j k}{n-k} .
\end{gathered}
$$

With $2(r e-2)-b(r-1)-b(c-1)=b(r-1)(c-1)$ degrees of freedom. For the hypothesis $p_{i j k}$ independent of ' k ', or

$$
H_{0}: p_{i j k}=q_{i j .} \text { (say) }
$$

Ggains: $H_{2} \neq H_{0}$ (for all i,j and k), we have

$$
\begin{equation*}
i \propto \underset{i j k}{\|} q_{i j} . \tag{6.2.2.4}
\end{equation*}
$$

We maximize $\log \mathrm{L}$ with respect to the $q_{i j}$.'s subject to $\sum_{i j} q_{i j}=1$, and obtain the maximum likelihood solutions:

$$
\begin{equation*}
\tilde{a}_{i j .}=\frac{n_{i, j}}{n} . \tag{6.2.2.5}
\end{equation*}
$$

The number of independent parameters to be estimated from the data is (rc-2) and hence the statistic X^{2} is

$$
\begin{equation*}
x^{2}=\sum_{k=1}^{b}\left[\sum_{i=1}^{r} \sum_{j=1}^{c} \frac{\left(n_{i, j k}-n \ldots k \frac{n_{i, j}}{n}\right)^{2}}{\left(n \ldots k \frac{n_{i, j}}{n}\right)}\right] \tag{6.2.2.6}
\end{equation*}
$$

$$
\text { ifth } b(r c-1-(r c-1)=(r c-1)(b-1) \text { cegrees of freedom. }
$$

6.2 .5 In is : 'Marize' and '1' and 'k' are 'Ways of Clawsification'.
 rations, steh that n.fk $(j=1,2, \ldots, c, k=1,2, \ldots, b)$ is fixed from Ghaple to sample and $J_{i j k}$ is the probability of an observetion in the $(10 k)^{\text {th }}$ ce-1, and $\sum_{i=1}^{r} p_{i j k}=p_{. j k}=1$. The likelihood function is

$$
I=\prod_{j, k}\left[\begin{array}{llll}
\frac{n}{n} \cdot j k & & & n_{i j k} \\
\pi_{i j k} & i & p_{i j k}
\end{array}\right]
$$

Wiar the hypothesis, that for any ' k ', $p_{i j k}$ is independent of ' g ', that is

$$
H_{0}: p_{1 j k}=q_{1 . k} \text { (say) }
$$

against $H_{a} \frac{1}{7} H_{0}$ (for all i, j and k), and

$$
\begin{align*}
& \sum_{i=1}^{T} q_{i, k}=\sum_{i=1}^{T} p_{i, k}=p_{\cdot j k}=2 \text {, we have } \\
& L \quad \& \quad n_{i j k} \tag{6.2.3.2}
\end{align*}
$$

We maximize $\log \mathrm{L}$ with respect to the $q_{i . k}$'s subject to $\sum_{i=1}^{r} q_{i . k}=1$, and obtain the maximum likelihood solutions as

$$
\tilde{q}_{1 . k}=\frac{n_{1 . k}}{n_{n k}}
$$

The nu-ber oi independent parameters to be estimated from the data is $t(=-1)$ and hence the statistic X^{2} used to test the hypothesis is

$$
a^{-}=\sum_{j=1} \sum_{k=1}^{\sum}\left[\sum_{i=1}^{\frac{\left(n_{1 j k}-n \cdot j k \frac{n_{i .2}}{n}\right)^{2}}{\left(n \cdot j k \frac{n_{1}}{n} \cdot k\right)}}\right]
$$

with $\operatorname{ci}(r-1)-b(r-1)=b(r-1)(c-1)$ degrees of freedom.
Again for the hypothesis that for any ' J ', $p_{i j k}$ is independent of ' k ' that is

$$
H_{0}: \quad p_{i j k}=q_{i j} \text {. (say) }
$$

against $H_{a} \neq H_{0}$ (for all i,j, and k) where $\sum_{i=1}^{r} q_{i j}=\sum_{i=1}^{T} p_{i j k}=p_{i, i j}=1$. As mentioned above, the hypotheses

$$
\dot{H}_{0}: p_{i j k}=q_{i, k} \text { (sky) }
$$

together with

$$
H_{0}: P_{i j k}=q_{i j} \text { (say), }
$$

ample that $p_{i j k}$ is a pure function of 'i', ie. that

$$
p_{i, j k}=q_{t . .}(s a y)(\text { for all } i, j \text { and } k)
$$

If, in a one way classification in the usual analysis of variance, 'i' corresponds to the 'variate', ' J ' to the 'concomitant variate' and ' k ' to the 'way of classification', then it Will be seen on a little reflection that

$$
H_{0}: \quad p_{i, j k}=p_{i, i}{ }^{p} \cdot j k
$$

$$
H_{0}: z_{i j}=q_{1 .} \text { (siy), }
$$

Noulow $-\neq 0$ (for all i.j and k)
will the the Theclacik or the mypothesis of no covariance.
(7n 'te vuler Marg, suppose we take ' J ' and ' k ' as just the two way classiffacailion, for example, if we take ' J ' as, say, blocks and ' k ' as, say, treatments in a randomized complete block experiment (with more then one and in general unequal number of replications in esch cell). Then

$$
\begin{aligned}
& H_{0}: p_{i, j k}=q_{i, k}(\text { say }) \\
& \text { against } \quad H_{a} \neq H_{0}(\text { for all } i, j \text { and } k)
\end{aligned}
$$

will be the anklogue of no block effect for each treatment separately and

$$
\begin{gathered}
H_{0}: p_{i j k}=q_{i j .} \text { (say), } \\
\text { against } H_{a}^{f} H_{0} \text { (for all } i, j \text { and } k \text {) }
\end{gathered}
$$

will be the analogue of 'no treatment effect' for each block separately. In other words, in the usual parlance of analysis of variance,

$$
H_{0}: p_{i j k}=q_{i, k}(s a y),
$$

against $H_{a} \neq H_{0}$ (for all i, j and k)
courbines the hypothesis of 'no main effect' and 'no interaction', while

$$
H_{0}: p_{i j k}=q_{i j} \text { (say), }
$$

wainst $H_{i}-H_{0}$ (for all i, j and k)
canbine tise hypotheses of another 'no main effect' and 'no interaction'.
i. Nomil seave In-asionatiol.
B.). Th

 wita 48 in fudaine the cream, bread, cake, candy, chocolate, all food tests, ten tad coffee tesws, and furthermore tests for clothine, sports, cars, courses, etc. We may not express our preference in a quantitative measure, sut we can rank the different ilavors, as $1,2,3$ and so on. For this ranked data we can raplace each rank by a normal score which can be found In the statistical table for Biologicel Agricultural and Medical Research of Fisher and Yates (1943). This table gives the average deviate of the $r^{\text {th }}$ 2argest of samples of n observations errawn from a normal distribution which has a unit variance; that is, if $X_{(1)} \geq X_{(2)} \geq \ldots \geq X_{(n)}$ is an wiered sample from a standard normal distribution, the table gives $E\left(X_{(r)}\right)$.

The application of this table is very simple. We now consider an example of the ranked and randomized complete block design. Four flavors of ice crean were evaluated by 10 Judges. Each Judge ranked the flavors, $1,2,3$, or 4 with 1 being the most preferred, and with the results in the following Table 7.1.

Wavle 7,2

	P]avor			
FuN.	1	4	c	I.
1	\%	1	4	3
3	1.	2	3	4
3	2	1	4	3
4	3	2	4	1
\cdots	2	1	4	3
-	2	3	4	1
1	1	2	3	4
8	2	1	4	3
9	2	1	4	3
10	3	1	2	4

After we transform the ranks in the table into normal scores we may tave the new tro-way Table 7.2.

Table 7.2
The Normal Score Mransformed Data from Table 7.1

Judge	Flavor				Total
	A	3	C	D	
1	0.30	1.03	-1.03	-0.30	0
2	1.03	0.30	-0.30	-1.03	0
3	0.30	1.03	-1.03	-0.30	0
4	-0.30	0.30	-1.03	1.03	0
5	0.30	1.03	-1.03	-0.30	0
6	0.30	-0.30	-1.03	1.03	0
\%	1.03	0.30	-0.30	-1.03	0
	0.30	1.03	-1.03	-0.30	0
9	0.80	1.03	-1.03	-0.30	0
	-0.30	1.03	0. 30	-1.03	0
-otal	3.260	6.780	-7.510	-2.530	0

The wow dave we aion sumbler Ube Jubpoa as blocta sad flavors as

Table 7.3
Andyais of Voriance Ta\}lc for Testing the Plavors of Four Ice creans

Source O: Variation	DF	Sum of Squares	Vean Square	T-Value
Treatment	3	11.9397	3.9799	$9.6990^{\text {漛 }}$
Error	27	11.0733	0.4103	
Total	30	23.0179		

And also if we use a $5 j_{j}$ significant level, the multiple range test results are as follors.

Treatment	Nean
C	-0.7510
D	-0.2530
A	0.3260
B	0.6280

Hore we should note that since the block totals are zero, we are not able to find differences among blocks. The block Aegrees of freeatom should ve subtracted from that of the total. The normal score transformation may whly not only on ranked data but also on cuantitative data, and second anericel example show the analysis of variance for the normal score transcosaed rarcomized complete block data. The data incluces 5 treatments and

Foesee 7.4
An-Jay lablis of zendomized Complete Hlock Desien

3100	Treatment				
	1.	2	3	4	5
-	46	50	69	48	44
2	48	46	47	60	40
8	32	50	46	54	59
4	42	48	65	47	44
5	39	37	49	50	55
E	48	58	59	68	50
7	49	50	42	58	47
8	30	44	63	46	71
9	48	40	47	46	43
20	34	39	47	37	55

Table 7.5
Normal Score Transformed Data from Table 7.4

Block	1	2	Mreatrent			
1	-0.50	0.50	1.16	0.00	-1.16	
2	0.50	-0.50	0.00	1.16	-1.16	
3	-1.16	0.00	-0.50	0.50	1.16	
4	-1.16	0.50	1.26	0.00	-0.50	
5	-0.50	-1.16	0.00	0.50	1.16	
6	-1.16	0.00	0.50	1.16	-0.50	
7	0.00	0.50	-1.16	1.16	-0.50	
3	-1.16	-0.50	0.50	0.00	1.16	
9	1.16	-1.16	0.50	0.00	-0.50	
	-1.16	0.00	0.50	-0.50	1.16	
	-5.14	-1.82	2.60	3.98	0.32	

Sulae 7.6

	20	sum of Square	Tom of उquare	P-vilue
Hremanes:	4	5.27540	1.3188	1.78
Croar	36	26.63696	0.7399	
")3ta	-1.0	31.91200		

Also, the grand total is equal to zero and all the block totals are equal to zero, so the component of blocks is completely eliminated. The Fotel sum 0 : squares is fust $\sum_{i=1}^{t} \sum_{j=1}^{b} \mathrm{y}^{2}$. Also the number of degrees of Ireedom fo: the total sum of square is reduced, because the component of olocis is eliminated.

In using the normal score transformation, ties are permitted. If Two ranks or observations in the same block are identical, the average of the corresponding nomal scores is used.

Furthernore, for the randomized complete block design, this transfornittion can be extended to two factors or more than two factorial experiwais. In this case, asch of the treatments can be divided into several levels. Then the experiment becomes the factorial type. After the transformation is mude for these kinds of experiment as above, then the convenbional analysis of variance or even regression can also be used.

For food test experiments, because it is not easy to rank more than 4 pro uets effectively at a time, this method is limited. Fisher's normal . Core table can be applied for up to 50 trentments.

$14 y=1$ mok, the neman of sample size n drawn from on ordinary li-
 - pratita sy the normal aisuribution with the population mean equal to y nad vind vere equal to $\mathrm{p}(1-\mathrm{p}) / \mathrm{h}$. Then the sample means, $\overline{\mathrm{y}}_{1}$'s may be cunturtal a saip-t or t (number of treatment) observations drawn from a normal population with mean equal to p and variance equal to $p(1-p) / a$. Fron this and by derinition, the χ^{2}-statistic is given by

$$
\begin{align*}
x^{2} & =\frac{\sum_{i=1}^{t}\left(\bar{y}_{i}-\overline{\bar{y}}\right)^{2}}{\frac{p(1-p)}{n}} \\
& =\frac{n \sum_{i=1}^{t}\left(\bar{y}_{i}-\overline{\bar{y}}\right)^{2}}{p(1-p)} \tag{8.1}\\
& -\frac{\text { Anon }(I-p)}{p(I-p, ~ S S}
\end{align*}
$$

Wirve f is the mean of y_{i}. This x^{2} will follow approximately the x^{2} distribution 1 thin $(t-1)$ degrees of freedon. Since the variance of a binoial population is equal to $p(1-p)$, the $\overline{\bar{y}}(1-\overline{\bar{y}})$ may be used as pooled estimate of $p(1-p)$, and then

$$
\begin{equation*}
x^{2}=\frac{\sum_{i=1}^{t} n\left(\bar{y}_{2}-\bar{y}\right)^{2}}{\bar{y}(1-\bar{y})}=\frac{\text { amonr sample } S S}{\bar{y}(1-\overline{\bar{y}})} \tag{8.2}
\end{equation*}
$$

Mor thy "hatuistic we commonly use
wiub $(t-1)$ and ($\left.\sum n-t\right)$ degrees of freedom. This means that the two sousietics x^{2} and F, are similar, because the x^{2} may be expressed in a way that resembles an F statistic,

$$
\begin{aligned}
F^{\prime} & =\frac{x^{2}}{\tau-1}=\frac{\frac{\text { Amons sample SS }}{t-1}}{\bar{y}(1-\overline{\bar{y}})} \\
& =\frac{\text { sons sample NS }}{\overline{\bar{y}}(1-\overline{\bar{y}})}
\end{aligned}
$$

witi: $t-1$ and \propto Cegrees of freedom.
Hotice thet in this case the within sample mean square is replaced vy $\overline{\bar{y}}(1-\bar{y})$. This is the difference between normal and binomial population cases. For normal population, σ^{2} is directly estimated by s^{2}, the error mean scuares, and for binomial population $\sigma^{2}=p(1-p)$. So in a basic serse, thuse two tests X^{2} and F^{\prime}, are similar.
$x i \%$, we can consider the term, $\overline{\bar{y}}(1-\overline{\bar{y}})$, which is the total mean uare, becuise in a binomial population, the observations $y^{\prime s}$ are both II A and $I^{\prime} N$, the grand total is $\sum y=\sum I=G$ (say), the total SS is
 He 3 tail olin square is approztrately equal to

$$
\begin{align*}
& =\frac{-1}{2 \pi}\left|c-\frac{\pi}{5 n}\right|=\frac{2}{y}-\left(\frac{1}{2 n}\right) \\
& =\bar{y}-y^{2}=(2-\bar{z}) \tag{8.5}
\end{align*}
$$

 AWhtiquenti. , the total mean souare is only slightly greater than $\overline{\bar{y}}(1-\bar{y})$. Furtitanore, the total mean square is the weighted average of the among sample and within sample mean squares, with their number of degrees of freedom being the weights.

In our case, we used the pooled median as a cutting point to transform the date inti the binomi al form, and to test the hypothesis that the $=$ treatment populations have the same median, that is $p=1-p=q=0.5$. Under this case we may replace the term $\bar{y}(1-\bar{y})$ by $p(1-p)=p q=1 / 4$.

From the discussion above we see the x^{2}-test is equivalent to the Analysis of variance, if we use the total mean square as the error term. That is to say, tho x^{2}-test and the analysis of variance usually yield the same conclusion in testing the hypothesis that t population means are equal.
9. Comments and Discussion.
9.1 Basic Technique.

The basic technique of the non-parametric methods in this report is = wee is contingency table based on a pooled median. If the dimensions or : .a table are 2×2 the data may be interpreted as two samples drawn
 the ant
 If the innaasic:s are t; b (or $\times \% \mathrm{a}$), the data may be either interpreted as r zanich subles dram from c attributes multinotial populations or c \therefore ico. Jenties dran fros r attritutcs multinomial populations. Either intumpetazina may yield the same result.
3.2 Aplicction of Mean or Median.

As we know that the normal population is symuetric, the mean and the median are equal. So all of the ciscussion conceming the mean also pertains to the median. The test of the hypothesis that the t population means are equal is the same test as for t population medians being equal. For the binomial population in this report all the discussion about tests $s=$ hypotheses is about the median instead of the mean. The median has an A-portant property; that is, the median is transformable. For example, for the 5 observations $14,15,26,100,125$, the median is 26 and the mean is 56. Stuppose we we the square root transformation, then the corresponding transformed values are $3.74,3.87,5.10,10.00,11.18$, where the transformed medien is 5.10 , which is the square root of the original median -20, but the new man is 6.78 , which is no longer the square root of the origInal moan 56. For any transformetion this is true, so when we use a trans:ormation with the analysis of variance, we are actually making comparisons tuong the mecians on the original scale. In this report for cases in which We populesion is not nor 1 , the mean and median may not be the same, so 4. reciar is usco directiy for the transformation.

 watimely hatros probabilaty of comituing a Type II error than has the sulusis an isctuce. fiovever, the F-test is also not beyond reproach, bro ace the pofllation are binomiel and not normal. If the popuiation Is . The dycnel, the analysis of variance tends to refect the true hypothesis tore Poonuasily than the significance level specified. Therefore, the T-test seems to have a higher probability of comitting a Type I error than tiat of χ^{2}-rest.

2.3 In:ôvícual Degree of Freeciom.

The incivitual degree of freedom can be used on any contingency tatie except that of 2×2 in which case the number of degrees of freecom is already equal to 1 . The basic technique of the individual degree of freecom is to reduce the dimension of the contingency table to 2×2 out of the $r \times c$ contingency table. The purpose of the incividual degree of freedom is to increase the power or the test.
2.4 Sherfield's Comments.

Sheffield (1957) reinterpreted Wilson's method in a similar manner. He considered that the hypothesis in Wilson's method is that each observation in a cell has 50% chance of falling above the pooled median. If I is the number of observations per cell, then the range of the possible recuancies above the meiti n is from 0 to n, and the mean is equal to $\therefore / 2$. The variance of a frequacy is npq or $n(0.5)(0.5)=n / 4$, since the

 Z $1 / 5=\ldots, \operatorname{tin}$ which of cell is $16 / 4=4$. The obteined frequency table is

Table 9.4.1
The Fictitious 3×3 Pactorial Experimental Deta

Dials	Inlumination			Total
	1	2	3	
\dot{A}	14	12	11	37
B	9	7	8	24
c	6	3	2	11
Sotal	29	22	21	72

and the enalyais of variance is as follows.

$$
\text { Table } 9.4 .2
$$

Analysis of Variance Table for the Data in Table 9.4.1

$\begin{aligned} & \text { asurce of } \\ & \text { Tariation } \end{aligned}$	DF	SS	NS	F	P	$\begin{gathered} \text { Wison's } \\ x^{2} \end{gathered}$	P
Diels	2	112.67	56.34	14.08	<0.01	28.168	$<0.2 \%$
I11umination	2	12.67	6.34	1.58	>0.05	3.188	10\%
Interaction	4	2.67	0.67	0.27	--	0.664	--
Total	8	128.00	16.00	4.00	<0.01		

 47 the fotperimetric tast but would be well within the 5% level if tested I conventional way, and he also entioned thet in a typical 3×3

 sec: gydulinie in buch a case is the interaction of the two marginal var:zilca. If the parametric approach or P-test is applled, the F-value for illumination against interaction is $6.34 / 0.67=9.5$, which is well beyond the 6.94 needed at the 5% level for 2 and 4 degrees of freedom. The corresponding nomparametric test ($F=1.58$) aoes not even reach the 20% level or confidence.

Shefificid concluded with the comment that Wilson's test involves two parts: first the procedure for creating approximately normal data from the original nonnormal data with cutting by a pooled median; second the procedure for testing obtained variance, npo. Only the second part of the method is the distribution-free part.
9.5 KeNemar's Corments.

McNemar (1957) contrasted the results of Wilson's test and the F - test ? textbooks. From the levels of significance reached by way of F - test and Wilson's test, most of them, for row effects, column effects, and for Interaction effects, indicated that the probabilities of reaching the significance needed for the F - test is smaller than that of Wilson's test, so the power of Wilson's test is much lower than that of F - test.

 cuftrace ith the groraration oi this report.

 Shica, inow, ior youk.
 Esel Troes.

 H2ey 's 30cs, Tisen Ne: Yors.
"laner, 末. ... \{hich. The Desien of Experiments. Oliver \& Boyd, London. Sout- in, 2. 4. (2, Kh). Simple Vethods for Analyzing Three Factors
 -3 5 .

Thei, ... (193h,. intsoquetion to Matheraticel Statistics. John Wiley Scull, Zos. Nen Yorit.
(2. Fioms, 0. (-352). The Desien cnd Analysis of Exoeriments. John

 ive, col. . .

NOGPARMMERIC SMARISTICAL METHOLS FOR A.E ZMNDCITZED COMPLETE BLOCK DESIGN

by
LI-CHUN AO
B. S., Tuiwan Provincial Chung-hsing University, 1954

AN ABSTRACT OF A MASTER'S REPORT

submitted in partial fulfillment of the requirements for the degree

MASTER OF SCIENCE

Depertment of Statistics and Computer Science

KANISAS STATE UNIVERSITY
Kanhattan, Kansas

We rurpose of this roport is to introduce the application of the chi-sculere test is a nompararctric test c.. the randomized complete block insign. This test is one of the large sample methods. So before we can mase use of this method, we should have large samples. The minimum sample site can bu obtainea from the working rule given in Section 2.

In ortar to use the chi-square test fo the randomized complete block usign, we first of all need to change the rancomized complete block two way table i to a two ray contingency table. In other words, we have to transfor: ti:e csetinuous cata into discrete multinomial data with the mecian as a cuttinr point. A multinomial data set is a set of observations which can be classified invo r categories. If $r=2$ the multinomial data become binomia data. The method for this transformation is called the binomial oransformatio.. snd is statec in the second section.

In the third section we stated that the test of independence between two attributes in χ^{2}-test, is comparable to the test of interaction between two attribuzes in the analysis of variance case.

The fourth and fifth sections deal with the methods to compute various $x^{2 \prime}$ s concemed witil different types of experimental data to test the hypotheses that the treatment population means are the same, in which, of course, the contingency table should be formed at first. In the discussion we started with one observation and then more observations per cell data. An extension of the methods applies to factorial experiments on the randomized complete block design, in which both no combination and combinations among levels of factor are discussed. The various $\chi^{2 \prime}$ s are computed to test the hr pot..eses about the significarch of the different main effects and Enteraction eifects.

Bie axth section concuins tiat concepts of the ejpected frequencies
 aerivation of the sxpected frequencies uscd is the maximum likelihood 2．ひご．0．．．
… the suventh section appears a normal score transformation．This Is inuroduced by fisher and Yates（1943）and is used for the analysis of he ranked aata．If we transform the quantitative data into ranks at first， The numerical data can also be asalyzed by this method．After the normal weore tran fommation has been made all the methods used in normal populations can be usec in the rankec data．

The last two section compared the x^{2}－test and the F－test，and the situations of using mean and median．The F－test is better for normal pop－ ulations and the x^{2}－test needs larger samples to have the same power as the P－test．Since the normal distribution is symmetrical，the mean and median are tested in normally distributed data while only the median is compared in binomially distributed data．

