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l. IK :

As wo know from the F-test in the analysis of variance, we usually

compare the observed F-value which is computed from the data with the

theoretical F-value in the conventional F table. The theoretical F-values

in the Table arc taken from the F-distributions with the corresponding

degrees of freedom and the specified probabilities. The F-distribution

is obtained under the condition that the population is normal. So the

population of the data in which the observed F-value is obtained should

also be normal. This is the assumption we need in the analysis of variance.

In ma: y situations the population of the data may not meet this con-

dition. If the shape of the population distribution function is known,

then we can use the proper transformation to make the data satisfy this

essential condition. Otherwise, many nonparametric methods can be used.

This report will deal mainly with the chi-square test in the randomized

complete block design case. A large sample is necessary for using this

method and the minimum sample size can be reached by a working rule stated

in Section 2.

In the second section we state the difference between a two-way random-

ized complete block arrangement table and a two-way contingency table, with

the binomial transformation using the pooled median changing the former to

the latter one.

The third section discusses the test of independence between two at-

tributes in x
2-test , which is comparable to testing the interaction of two

attributes in the analysis of variance case.

The fourth and fifth sections deal with the methods to compute various

X^'s concerned with different types of experimental data, in which, of



course, the contingency table should be formed at first.

The sixth section contains the concepts about the expected fre-

quencies of x^-test. in the seventh section appears a normal score trans-

formation. This is introduced by Fisher and Yates (19 1*3) and is used for

the ranked data. If we transform the quantitative data into ranks at first,

the numerical data can also be analyzed by this method. The last two

sections compare the method of x -test and F-test. The F-test is better

for normal populations and the x
2-test needs larger samples to have the

same power as the F-test. Some comments arose about Wilson's x -test from

Sheffield and McNemar, who indicated that the x
2-test has less power than

F-test.

It is true that if the population of the data is normal, the F-test

is better than any other method; otherwise, if the data is not drawn from

the normal population then the F-test is no longer the better one. The

non-parametric methods are like wearing loose suits made to cover most

people but not giving them a good fit. The transformation is used in

statistical methods to transform the data into a normal distribution to

meet the test assumption. It seems to change people's weight to fit them

into the proper suits. When all of these methods are used, we may certainly

have something to gain and also something to lose. Therefore, if we can

find the proper method of analysis for every kind of population, this is

the best way to do our job.



2. Randomized Complete Block Arrangement and the Contingency Table.

2.1 The Difference Between the Randomized Complete Block Two-Way Table

and the Contingency Table.

The data of a randomized complete block design is generally of two

way classification with one observation in each cell or plot. The obser-

vations in the cell are usually numerical measurements.

This design is devised to compare t treatments in n plots , with each

treatment replicated in b plots, so that bt equals n. The n plots are

divided into b blocks, such that within any block the plots are as homo-

geneous as possible, and the variation among blocks is known. The t

treatments are randomly allocated to the t plots in each block. With b

replications, we require b separate randomizations. A two-way classifi-

cation table of such an arrangement for a randomized complete block design

is given in Table 2.2.1.

If the observations in the two-way table of the randomized complete

block design are replaced by frequencies , that table becomes a two-way

frequency table. The treatment and block are two classified attributes.

This is generally called a two-way r x c contingency table, (Table 2.2.2).

2.2 The Change from Randomized Complete Block Two-Way Table into a

Contingency Table.

A binomial transformation can be used to change the randomized complete

block two-way table into a contingency table. Table 2.2.3 for example, is

the transformed form of Table 2.2.1. The method of transformation is at

first to find the median of each block and then replace each observation

. its respective block median by 1 and below or equal to its block



Table 2.2.1

Two-way Classification Table of RCB Design

Block
Total MeanTreatment

1 2 i b

1 yll Y12
... yy .. ylb y

i.
y
l.

2 y21 y22 y
2J

y2b y
2.

y2.

i y
il.

yi2
... y.j .. yib y

i.
y
i.

t ytl yt2
... y

tJ
.. ytb y

t.
yt.

Total y .l
y
.2 •" y

.J
•• y .b y

_

Mean y .i y .2
••• y

.J
•• y

.b
y

#<

Where y. Is the observation of the i treatment and the j block

th
y. is the sum of the l treatment

th
y. is the mean of the i treatment

th
y . is the sum of the j block

y is the mean of the j block

y is the grand total of all n observations

y is the grand mean of all n observations



Table 2.2.2

Y x c Contingency Table

atment
Block

Total

1 2
.1 c

1 n
ll

n
i2 -

°1J " n
lb

n
l.

2 "21 n
22

.. n
2J

.. n
2b

n
2.

i
°il

n.
2

. •• "ij - n
ib

n.
l

.

: : : : :

r n
rl

n
r2 •

n .

rb
n
r.

Total n
#1

n
.2 •

.. „
#J

.. n
.c

n

Where n. is the number of observations of the i treatment and

the j block

n is the total frequencies , or the total number of the

observations in the design

n. is the sum of frequencies of the i treatment

n is the sun of frequencies of the J block



median by 0, then the number of I's for each treatment is considered to be

the frequencies of the successes, af
.

, and that of 0's is considered that

of tl-.c failures, bf.. Such a 2 x r contingency table is obtained from

the data of randomized complete block design as in Table 2.2.3.

Table 2.2.3.

2 x r Contingency Table where 'a' Means Above The Median

and 'b' Means Below or Equal to The Median

Variate
Class ification

Total

1 2 ... i r

a af
l

af
2

af.
l

af
r

n
a

b bf
l

bf
2

... bf.
i

bf
r \

Total n
l

n
2

... n.
i

n
r

n

where 'a' means above the median

'b' means below or equal to the median

af. is the number of observations above the median in the
l

i treatment

bf. is the number of observations below or equal to the

median of the i treatment

n is the number of total observations of above the median
a

n. is the number of total observations of below or equal to

the median

n is the number of total observations of all observations



In the two-way table of a randomized complete block design, if the

numter of observations in each cell is more than one, then the method of

transformation is slightly different from the preceding one. That is,

the median used here is the pooled median, Md, which is obtained from all

the n observations instead of from each block. The number of successes and

failures for each treatment is determined by counting the number of ob-

servations above and the number below or equal to the pooled median, Md.

The binomial transformation for a randomized complete block experi-

ment can be used only if both t and b are large enough to make all the

expected frequencies greater than or equal to 5- That is, in binomial

populations both np and n(l-p) or nq should be greater than or equal to 5.

This is a working rule for making the transformation effectively.

3. Interaction and Independence.

An r x c two-way contingency table is usually constructed for the

purpose of studying the relationship between two attributes. In particular,

we may wish to tes"c whether the two attributes are related and dependent.

If the two attributes are not related to each other, this means they are

independent. On the other hand, if the two-way table is numerical

measurement data, independence indicates no interaction between these two

attributes. Thus we test interaction between two attributes in numerical

measurement data in the same sense as we test independence between two

attributes in a r x c contingency table. The following simple 2x2 table

of artificial data is a numerical example to illustrate no interaction

between two attributes, A and E.



Table 3.1

A 2 x 2 Table of Artificial Data

A
B

Total
1 2

1 10 12 22

C 13 15 28

Total 23 27 50

To see this, we could check 10 - 12 = 13 - 15 and 10 - 13 = 12 - 15,

this means that the difference between the observations corresponding to

tass two levels of A is the sane for all levels of B, and the difference

between the observations for two levels of B is the same for all levels

of A. This means that there is no interaction between two attributes of

A and B. On the other hand, if we consider a 2 x 2 contingency table and

let A be the variate, in which A is "success" and A is "failure", then

the data becomes a binomial form so that B and B are two binomial samples.

Now we see that the two relative frequencies or two binomial sample means

are approximately equal, or 10/23 = 12/27 = 22/50 = O.U. Therefore, we

would say that the two attributes A and B are independent or the two bi-

nomial sample means are approximately equal. The reason that they are not

exactly equal is accounted for by the sampling variation. Nevertheless,

from this point of view, we know that the purpose of testing hypotheses

of interaction for numerical two-way data and that of independence for

two-way cc data is the same.



The x -Test for Randomized Complete Block Designs.

It.l One Observation Per Cell.

The chi-snuare test in nonparametri c methods may be used in many

;.; like the analysis of variance in parametric methods to test the

hypothesis that the r samples are drawn from the same population, or that

the r population means are equal. The difference between them is that the

X
2 test deals with multinomial populations, while the analysis of variance

deals with normal populations. Thus, for the non-parametric analysis of

randomized complete block experimental data, we may at first transform the

two-way table of numerical observations into a 2 x r two-way frequency

contingency table, which is shown in the Table 2.2.3.

After the 2 x r contingency table is obtained, we can compute the

statistic x
2 as follows:

I
i=l

n.n 2

(af. - -^) (bf. v

(a:\/j (af
2
)' (af.)' (af )

2
(n f

(4.1.1)

which is approximately chi-square with (r - l) degrees of freedom, where

all the notations in the formula (U.l.l) are the same as in Table 2.2.3.

As we mentioned in the previous section, the binomial transformation

for a randomised complete block experiment in many cases can be used only

if both r and b are large. If r, the number of treatments, is small, the

/"-value needs to be corrected. The corrected value is
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This correction term originated from the relation between the chi-

square test of independence and the analysis of variance.

For the case of one observation per cell in randomized complete block

design, Friedman (1937) suggested that a quick method to test the same

hypothesis that r population means are equal is at first to rank the ob-

servations in each block from 1 to b. Let E. be the sum of the ranks of

the observations from the i treatment, we may compute

4' Wmi) I
(R

i.
)2

~ Mx * 1} (fc.1.1.1)

Where b is the number of blocks or replicates

r is the number of treatments

R is the sum of ranks in the i treatment.

Under the null hypothesis, this statistic, x
2

, is distributed approxi-
F

mately as x
2 distribution with (r - l) degrees of freedom.

The integers 12 and 3 in the formula are constants, not dependent

on the size of the experiment. This approximation is poor for small

values of r and b. Friedman has prepared tables (Siegel 1956) of the

exact distribution of x
2

, for some pairs of small values of r and b.
r

4.1.2 Cochran's Q-Test

Another method for the same case contributed by Cochran (Siegel 1956)

is the Q-test. This test is particularly suitable when the data are in a
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or dichotomized ordinal scale, such an 'yen' or 'no'; 'alive' or

'allure', and no on. This tent determines whether

ne from the same population with renpect to the

frequency of successes in the various samples.

steps for this tent are at first in the two-way table , to as-

sign a '1' to each 'success' and a '0' to each 'failure', and then to

determine the statistic Q by substituting the observed values into the

following formula;

ix
\

T O r c 1

1) r [ G
2

- ( I G.)
2

ii 1 ii xL 1=1 1=1 J

Q =
5 1

. (k.1.2.1)

j=l J J=l J

where G. is the total number of 'successes' in the i treatment

L. is the total number of 'successes' in the j block

r is the number of treatments

b is the number of blocks (replications).

under the hypothesis that the r population means are equal this Q-value

is distributed approximately as chi-square distribution with (r - 1)

degrees of freedom.

The significance of the observed value of Q may be determined by

reference to an ordinary x
2-table.

4.2 More Observations Per Cell

Suppose that there are r rows, c columns, and h observations per cell.

rvations are denoted by y with i = 1,2.. ...r: j = 1,2,. ...c; andijk

.: = 1,2,...,h. The two-way table can be transformed into a 2 x r x c
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icy table, (Table It. 2.1) by using the pooled median, Md. Thin

table can also be written as Table it. 2. 2.

From Table It. 2. 2 the total x
2_value can be calculated in general as

I I
1=1 J-l

n. , n

(af., --iL-£)
1.1 r,

n. n
1.1 a

(bf
\A 2 -i

^L (U.2.1)

with (re - l) degrees of freedom.

The hypothesis tested for this case is that the main effects and

interaction effects produce no change in the distribution of the data

population. If the number of observations for each cell of the r x c

table, n. = af. + bf
. , are all equal, and if n = n, = —

, then x£
ij ij ij a b 2 1

can be written as

v 2 , hss. y y ( af . -^_) 2 (It. 2. 2)

ax.- also if n 4 n. , but all n. . are equal, then Xm can be expressed as
a IJ 1

I I
i=l J-l

n 2 i 2

(af.. --&) (bf., --ft)
I." re 1.1 re

"b

(U. 2. 3)

For computing row or treatment x
2
, aii^ column or block xiU we could

change Table I*.2.1 into the form of Table It. 2. 3 and Table U.2.H, or namely

2 x r and 2 x c contingency tables respectively, then the two statistics

are in general
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Tabic U.2.1

x r x c ContinReney Tablo with "a" Means Above and "b"

Means Below or Equal to the Median, Md.

'

1 2 J c Totals

1

a af
ll 12 •• af

lJ
af

nlc
an

l.

",

b bf
ll

bf
12 •

- «« bf
le

b
"l.

1.

2

a
• ';:.

af
22

af
2J

af
2e

an
2

b bf
21

bf
22

. .. bf
2j

bf
2c

bn
2.

2.

; : : :
\ :

a af
il

af
i2 •

af.. af.
10

an.
l.

b bf
il

bf
i2 •

bf. bf.
1C

bn.
l.

l.

;

:

r

a af , af
r2 •

af ,
af

re
an

r.

b bf
rl

'°f
r2 •

bf , . •

•

bf
re

bn
r.

r.

Totals

a M
.l

an
2 •J

an
.0

n
a

b
!

brM ta
.2 •

bn .

• J

bn
.c %

. ._

n
.l

n
.2 •

n
mJ

n
.c n



Table >i.2.2

x re Contingency

ik

11 12 lc 21 ... 31 rl re Total

!X af
ll

... ar
ic

af
21

... af
3

.. af ...
rl

af
re

n
a

b bf
ll

bf
12

... bf
lc

bf
21

... bf
3

. .. bf ...
rl

bf
re "b

"ll
n
i2 ••• n

lc
n
21 ••• n

31
•• n

rl
n
re

Q

Table 4.2.3

2 x r Contingency "able

1

3_ 2 ... i ... r Total

j

af
i.

af
2, ••• af

i.
af

r.
n
a

b bf
i.

bf
2. ••• bf

i.
bf

r.
a.
D

Total n
i. =2. ••• n

i.
. . . n

r.
n

Table U.2.U

2 x c Contingency Table

1 2 j c Total

a af
.l

af
.2

... af
o af

.c
n
a

b bf
.l = f .2

bf ,

i
bf

.c "b

Tot 6.1
?.l

n
.2

n
.J

n
e

n
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r

XR
=
J,1=1

n. n 2 n. n 2

(af. - -k-&) (bf. - -k-*)
i . n i . n (U.2.M

n. n 11, U.
i . a i . b

n n

c

with (r - i) decrees of freedom, where n = J n , and

r

c

c
j=l

n n 2 n ,n, 2

(U.2.5)
n

.,i

n
a ".A

L n n

r

with (c - 1) degrees of freedom, where a = l n. .

•J i=1
ij

If = n = n/2, end all n. are equal, the following two expressions
"a d lj

can be used

4'^ I^.-*?)
8 {k - 2 - 6)

c

where flf = I df . ;

J=l
1J

r

where of . = V bf
.

, .

Also, if n ^ n, hut all n. are equal, the following two formulasah ij

r.ay be used.
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4 I
i=i

(af.

n 2 n. 2

4) (M, --*)
(U.2.8)

I

(af

n 2

('of

l1

c

(U.2.9)

To de„ect the interaction effect of row and column we can compute xi

by subtracting, as is done in analysis of variance. That is

„2 _ v 2
"I XT XR " XC

with (r - l)(c - l) degrees of freedom.

(U.2.10)

The general expression for x2 is fairly complex and is given by

Rao (1952).

5. Extension of Randomized Complete Block Design.

5.1 Randomized Complete Block Design with Two Treatments with One Obser-

vation Per Cell.

If only two treatments and b blocks are contained in the experimental

data, the sign test may be used, and the computing method for this case is

that a plus or minus sign is given to each difference of the b blocks,

depending on whether the observation of the first treatment is greater or

less than the observation of the second treatment. If there is no dif-

ference between the two treatments , plus and minus signs occur with eq.ual



17

probability. If the effect of the first treatment is greater than that

of the second treatment one can expect an excess of plus signs , otherwise

a deficit in plus sipns. Therefore, the hypothesis that two treatment

•e equal is the same as that the probability of a plus sign is

equal to 0.5, or p = 0.5.

Here again, a nonparametric method is essentially the binomial trans-

formation. To test the hypothesis that p = 0.5, a x
2-test may be used,

provided that the number of blocks is greater than or equal to 10, by

the working rule bp >_ 5.0.

Strictly speaking, the sign test is applicable only to the case in

. all the b signs are either positive or negative. But in practice

•che two observations of a block are sometimes equal. When this occurs,

such a block nay be excluded from the test.

The x
2 - value of the sign test is exactly the corrected chi-square

X
2

Ct. 1.2) for the randomized complete block experiment with 2 treatments

and b blocks. This relation can be shown algebraically. The median of

a block is the average of the two observations in that block. A plus sign

implies that the first observation is greater than the second one in that

block. Therefore, the number of observations greater than their block

medians for the first treatment equals the number of observations less than

their block medians for the second treatment. Therefore, the 2x2 con-

is as follows:

treat 1 treat 2 totals

no. of +'s

t ;a_:;

T b - T b

b - T T b

b b 2b
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] itter ? in the above table is the number of plus signs. By the

sign test

(T - \Y
(2T

(5.1.1)

2 >2
T ,

(b - TT
b b

b
2

^

2b

1 1

2 '
2

X t(0.5)(0.5) " b

By the method for randomized complete block experiment and formula (It. 1.2)

(5.1.2)

which can be reduced to the same expression given in formula (5.1.1).

Other methods of nonparametric analysis for two related samples may

be found in Siegel (l95<5).

5.2 Randomized Complete Block Design with Two Factors and no Combination

If the treatment contains two forms , A and C , both at m levels and

also if there are b blocks in the experiment, the two-way arrangement is

as given in Table 5.2.1.

For this data we may find the difference between corresponding levels

of factor A and factor C in the b blocks

.

To find the interaction between the factors and the blocks , the

method is to tabulate the differences between values at corresponding

levels for these two factors under the blocks. Then the next step is to

determine the ranks of the differences (Table 5.2.2).

The following x
Z

"" value can be used to test the hypothesis that

two factors nave no interaction with blocks.
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.10 5.2.1

of Two Factor with No Combination in RCB Design

A 1 a
ll

a
i2

a
lb

a
l.

2 a
21

a
22

a
2b

a
2.

m a
nl

a
m2

a
mb

a
m.

C 1 °11 C
12

C
lb

C
l.

2 C
21 °22

C
2b

C
2.

m C
ml °m2 mb

c
m.

/.
12

_ . , I r
2

- 3m(b + 1)
mb(b + 1) *j. j

(5.2.1)

with (b - 1) degrees of freedom, where b is the number of blocks, m is the

number of levels, and r. is the sum of ranks in the J block.

Table 5.2.2

The Difference and Rank Table of A-C

Level
Difference
in Block I

Rank
Difference
in Block II

Rank ...
Difference
in Block b

Rank

1

2

:.

an " Bu
a
21 " C

21

ml ml

a
i2 " C

12

a
22 " °22

a
m2 °m2

...

a
ib " C

lb

a
2b " C

2b

mb nb

r
-

1

r
2

... r
b
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The resultant x
2-value can be compared with that of the conventional

ble with respective degrees of freedom.

5.3 Randomized Complete Block Design vith Three Factors and No Combination

If three factors , A , B and C , are involved in the treatment for a

randomized complete block design, then the x| is the sum of x
2l s. One is

obtained by finding the difference , A - B as the same manner shown in

Table 5-2.2 for different blocks as in the last section, and another x
2

is obtained by finding A + B - 2C for all blocks.

$.k Randomized Complete Block Design with Four Factors and No Combination

In this case, we can use a similar procedure to find three components

of x
2

- That is, the first x
2 is obtained by finding the difference of

A - B, the second x
2 is by finding A + B - 2C, and the third x

2 is by

finding A + B + C - 3D, and thus xl is the sum of them.

If more than four factors are involved in the treatment with no combin-

ation, the method is the extension of the previous ones.

5.5 Randomized Complete Block Design with Two Factors and With Each Cell

Containing More Than One Observation.

If the randomized complete block design includes two factors , the

first factor has r levels, and the second factor has c levels. Then there

are re treatment combinations . Each treatment combination is repeated in

b olots, and each plot contains n. ., observations. Then, by using the
ijk

binomial transformation, a 2 x rob frequency contingency table can be

obtained as the following table.
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Table 5.5.1

2 x rfcl Contingency Table with 'a' and 'V Means Above and

Below or Equal to the Median, Md.

111 112 ijk rcb Total

a af
lll

af
112

••• af
ijk

af
rcb

n
a

b bf
lll

bf
112 "• bf

iJk
bf .

rcb
n
b

Total r
-lll

n
ijk

n . n

th
af . is the number of observations in the ijk cell which are greater
ijk

:. ..:

th
bf . , is the number of observations in the ijk cell which are less

ijk

than or equal to Md.

From this table we can compute the total chi-square to test the

hypothesis that the main effects and interaction effects make no difference

in the population distribution of the data. This statistic can be ex-

pressed as

rcb
4-1 I I

i=i 3=1 k=l

n.„n 2
i,1k a

) (bf.
1.1k Oy

i.1k n_

n. ., n
ijk a "ijA

(5.5.1)

with (rcb - l) degrees of freedom, where n. ., = af . + bf . .

ijk ijk ijk

Chi-squares for three main effects , namely the two factor effects

and the block effect, are computed in the same manner.
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AR .

i=l

n. n

(of. - -i^-ij (bf.

n

(5.5.2)

X
2 = [

2 2
n , n n

< "v.

(af - -J^) (bf - -

iJ* j. iaj.—
UJL)

n . a
.,1-o

(5-5.3)

= I
k=l

'..k
*j (bf

ViA,
. .k n (5.5A)

r c

• •k .-£-, <£-, idi=l d=i

c

dk

of ,
= y I bf . .. .

These three Chi-squares, xi> X
2
,. and x| are distributed as x

2 ran-

dom variables with (r - l) , (c - l), and (b - 1) degrees of freedom.

The hypothesis tested is that the population means of different

levels for all three main factors are identical.

The total interaction x
2 can be computed by subtracting from Xj •

2 _ 2 _ 2 _ 2 _ 2 (5.5.5)Xj - XT XR Xc
XB

• \j j-ji

This statistic is distributed approximately as x
2 - distribution

with rcb -r-c-b + 2 degrees of freedom

If x? :; significant, then we may make 2xbxc,2xrxb, and



23

2 j r i s contingency tables across rows, columns, and blocks respectively.

For each of these tables we can com]
,

as RCx|. KBjS
2
,, and CBx,

2
>

s °

that the interactions for each pair of two main factors are

HCx 2 = RCX
2 - x

2
,
- x

2
,

(5-5.6)

RBX
2 = ?£X

2 " X* - X
2 (5.5.7)

CBX
2 = C13X| - X

2 - X
2 (5.5.6)

These three statistics are distributed approximately as x
2 distri-

bution with (r - l)(c - 1), (r - l)(b - l) , and (c - l)(b - l) degrees of

freedom respectively.

Finally, the triple interaction x
2 of row, column, and block is

e:-:^ressed as

RBCx 2 - X^ - X
2 " X

2 - X
2 " RCX 2 - BBx 2 - CB X

2

= x
2 - RCX2 - RBX 2 - CBx 2 (5.5.9)

which is approximately distributed as a x
2 random variable with

(r - l)(e - l)(b - l) degrees of freedom.

To test the significance of all the x
2 statistics of the main effects

and interactions above, we may compare the observed x
2-values with the

conventional x
2 table with the corresponding degrees of freedom.

6. The Expected Frequencies

6.1 Two-Way Classification

6.1.1 'i' and *j' are Both 'variates'.

In the two way classification, if we suppose that the row and column

ef( . -^d to as treatment and block respectively, the expected frequencies
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can be .

'

the hypothesis. If we let p be the probability

. ;ted at random :'rom the population is a member of

all obs ons in the i"
h

row and J*' column of the r x c contingency

tabic

,

and let p. be the probability that an individual is a member of

.th
the l row, an let x> be the probability that an individual is a

of the j
th

columr. (In this case n is fixed from sample to sample),

then ar. r :. c probabi Lity table is indicated as the following table,

.1.1, which is formed from Table 2.2.2,

Table 6.1.1

r x e Probability Table

Column Total
Row

1 2 1 c

1 P1I P12 ••• Py ••• Pic p
l.

2 p21 P22 ••• P
2<j

••• p2c P2.

i pil Pi2 ••• Pij ••• pic p
i.

r prl Pr2 •• Prj •• Prc pr.

Total p .

1

P. 2 ••• P
.j •• P

- =
1

where

r.

.

i,l .
P
ij

=
n

'

af., + bf.,
1.1 1.1

n

The ;is that the row and column or two attributes are independent

can be written in the form
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H : P., = p. P ,O lj 1. .,!

Lnst H : p., r p. p , (i = 1,2, ..., r and J = 1,2, ..., c). from some
a a

j

i. .j

i and j ,

)le of size n is selected and n. , individuals of them are in

the cell of the i row and j column, then the chi-square is conven-

tionally computed as

r c (n - np ;

x
2 « y y —2J ^— (6.1.1.1)

L L np
i=l j=l p

iJ

with (r - l)(c - l) degrees of freedom. Under the hypothesis, this expres-

sion may be written as

r c (n. . - np. p )

x 2 = y y —=J x
- •>

. (6.1.1.2)
• 1 4 1 "P- P •1=1 j=l *1. .J

Since the p. and p are unknown, it is necessary to estimate them
i. .J

from the sample.

By the property of x
2

> the X
2_"test can ^e used if the estimates are

maximum likelihood estimates , with one degree of freedom for each parameter

r c

estimated. Since J p. =1 and £ p = 1, there are r-l+c-l=
i=l

1
* j=l

' J

r + c - 2 parameters to he estimated; hence the proper number of degrees

of freedom for testing the independence of two attributes in the r x c

contingency table is if = re - 1 - (r+c-2)= (r - l)(c - l).

To find the maximum likelihood estimates of the p. and p we let
i . • j

n. denote the sum of the frequencies in the i row and let n . denote
l.

*
.j

the sum of the frequencies in the j column. Since the frequencies n.
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are discrete, the likelihood function of the sample is the probability of

obtaining the sample in the order occured. Thus, using the same reasoning

n n
£

?
1 Po ••• Pr

n
l

n
2

n
r

it used to arrive at p, p, . . . p„ , the likelihood function of

the sample will be given by

r c r.

n n p,^V«^«
li

. (6.1.1.3)

But b cciuse of H : p. = p. p and the definition of n and n
,

o ij i . . J
x • •

J

this likelihood function reduces to

re n

n n (p. p ^
1J

iV«L>* ^
r c n. r c n

n ip. y i n P
1J

" n
ij

:
i=i J=i '• i=i]=i' J

r ^
n
i1 c I n

i1-^ 1
9i

t =1 * n P r1 lJ

i,J
1J 1=1 **

i
r n. c n

„
nl

,
ip. l - ip.'l. (6.1.1.3)

n n. 1 . *i. ._-i «J
. . Ij 1=1 J-l
1 >«J

r-1

How, let p = 1 - y p. , then
i=l

i<

r-1 n r-1 n. c n

l = t ^-(i- [p, )

r
- n P .

- n_ P •* (6.1.1.M
n n.r 1

i.
i=1 }mX -J

1 >U
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log L = n log(l -
r.

r-l r-l

. ) + y n.
l

- 1=1
x

log p. + K
i

.

(6.1.1. 5)

re K does not involve the variable p. . Now , differentj.ating with

respect to p. and setting the derivative i2qual to zero to find a maximum,

31og h
n n.

(6.1.1. 6)

** 1-
r-l

+
p.

Sir.

r-l

ce 1 - I v
±

? P
r-

»

i=l

this equation is equivalent to

o
r.

Pi. " n
r>

r
-i.

- Xn.
i.

(6.1.1. 7)

where X does not depend upon the index i. Since this must hold for

i = 1,2, . . . , r and since

r

i = y-D. = xyn.
_
= Xn, (6.1.1.,8)

it follows that X = 1/n , and hence that the maximum likelihood estimate

of p. isri.

n.

"i. r.

(6.1.1 .9)

By symmetry, the maximum likelihood estimate of p .
is

La (6.1.1 .10)

If u and n , in
-i. '

-i
the formula (6.1.1 .2) are replaced by their

maximum likelihood esti mates, the x
2 will become

r c (r
2 V V

n. n . 2

i .1 n (6.1.1 .11)
x
z - 1 I

i-1 0=1
a. a
i. -.1

a
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(r - l)(c - I) degrees of freedom, but we should notice that this

statistic is distributed as a x
2 distribution provided that n is suf-

ficiently large and H is true,
o

6.1.2 'i' is a 'Way of Classification' and 'J' is a 'Variate'.

consider the row a way of classification, then the r x c prob-
c

ability table can be changed, so that 7 p. . = p. =1 and n. is fixed.

j=l 1J i.

So for such a row the likelihood function is

(6.1.2.1)
i

.

c n.

" P
iJ ^

J=l 3c

It n, ,1

j=i 1J

Now we have r independent sets of sizes n , n ,

pendent observations such that n. (i = 1, 2, . . .

, n of inde-
r.

, r) is fixed from

sample to sample. Under the hypothesis that p for any column, is inde-
ed

pendent of row, or in other words,

H : p. . = c .
(say)

against H 5* H ,

where 1 , ' s are arbitrary positive parameters such that

I 9. .
= [ P., = p. =1, we have, therefore,

j=l
- J }=1 1J 1-

n.

n P

J=l

ij

i/

L**
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r n.-. c J»y
= n —-— n P .

.

In.,! J

n n, :

= i-i «1
,

• J
• (6.1.2.2)

II n. " J x

c

Maximizing log L with respect to q 's subject to £ q = 1 we obtain
•3

J=1
-i

n
,

the maximum likelihood solutions: q = —^ . The number of independent
•J n

parameters estimated from the data is c-1, and hence the test here is

of freedom r(c - l) - (c - l) = (r - l)(c - l) and whose form is

n
1

2

r c (n. , - n. —'-d-)

X--11 ^ *' n
• (6-1.2.3)„2

i i

The result of the case of '

i
' being variate and

'

J
' a way of clas-

sification may be obtained as the same manner as that above.

6.1.3 'i' and 'j' are Both 'Ways of Classification'.

The row and column of the contingency table are both ways of classif-

ication. If we suppose n. and n in the r x c contingency table are

both fixed from sample to sample, then both row and column marginal

probabilities are all equal to 1, that is

r c

EPn" b„"'l or p =p =1. (6.1.3.1)
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In this case the chi-square will be

n, n 2

X
2 =

r c (n. -
1

- •>)

y y
i,1 n

i=l ,]=1 i. ..1

(6.1.3 .2)

n

with re - (r + o - 1) = (r - J )(e - 1) degrci;s of freedom.

6.2 Three-way Classi:£U cation.

6.2.1 'i', 'J' and 'k' Are all 'Variates i

Suppose we have ii s&jnple of independent observations such that p.
Jk

is the probability of an observation in the 1.ijk) cell and n is fixed

from sample to saaple and if we let

r c b

&u* * ? -^' I Pi1k Pt k . I P.
3=1 1Jlc 1,lc

k-i
JJk

= P
iJ.

[j '**•••»•
r b cb
I Ipl1k = P . > I Ip,
i,k 1J * - J -

j,k
3.jk

= o.
" i. .

(6.2.1,,1)

r c b

I I I P.- 1k
= P

i,J,k
'"

= 1

then the likelihood function is given by

T __ *•

i.J.k
lj *

(6.2.1. 2)Li —
n

> a. .Ji,J,k ijk

under the hypothesis c..' independence between i' and
'

J for fixed 'k'.
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H .

P
i,i* _

P
i.k P

..1k

° P
..k P..k P..k

or H : p = ?i - k P
--tl!

Bgatnst H
a y H

o
(i - i,...,P ; j=i,..., 0; k=l,...,h).

We then have

,

P
i k

p
Ik

"
iJk

ijk p ..k
(6.2.1.3)

Maximizing log L with respect to the p. ,'u, p 's and d 's*i.k *\ jk *\ .kre b
subject to J p._ k

= £ p = P
__ k

and J p - X ,

l=i J -1 k=l
'

'

gives maximum-likelihood solutions

5 -5l*pi.k n

P .jk
=

n (6.2.1.1.)

^V-
The number of these estimated parameters is (r - l)b + (c - Db

+ (b - 1). The x
2 used to test the hypothesis here is

n. . d „
r c b (n. ., - -1 - k

-.1k
)

2

i=l j=l k=l •_., -.ik
(6.2.1.5)

n
..k
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with rob - 1 - b(r - 1) - b(c - 1) - (b - i) = b(r - 1)<C - l) decrees

of

Under the hypothesis that p. ,
= p.l.k l. .

p ..k
and p

.jk
= p

. ,1.
P
..k

we can test the independence of ' i 1 and ' k 1 and ',)' and 'k\ Also if

ve let p.,, = Pi.. P .J.
P
..l

, then we have

n. ,,

L « n (p. p , p
ijk

1" * J - k
)
M*

. (6.2,.1.6)

To test the hypothesis we maximize log L with respe:et to

P
i.

.' s,p
.o

1

s and t> ,
' s

..k

subject to

r c b

[P.. = I P
,

•

1=1
l" j=l

- J-
1 Ip v = i

k=i
•*

and obtain the solutions of maximum likelihood as:

TO.
"1. .

n.
i .

.

n

n

5
-J. n

(6.2. 1.7)

-
. .k

_

n
..k

n

The number of independent parameters estii*.ated . from the data is

(r + c + b - • 3) , and hence i the x
2 used to test the hypothesis here will . be

rob
n. n

.

n
..k.

2

1

X
2

1 I
i=l J=l k=l

D
i..

n
..iA.k
2

(6.2. 1.8)



with rcb - 1 - (r + c + b - 3) = rcb -r-c-b + 2 degrees of freedom.

In order to test the hypothu ,ae independence between

' (i , j )
' and 'k' or

K
o

:

*ij*
=
*ij.»..k

1st H 4 H
a o

(i = 1,2,. ...r, j = 1,2 c, k = l,2,...,b), we have

L - " (p,, P k
)

iJk
(6.2.1.9)

i.j.k

To test this hypothesis we maximize log L with respect to p. 's and p 's
i,j • . »k

b
sub c

j

Ject to 1 j p. . = £ p =1 and obtain the maximum likelihood
i=l j=l 1J ' k=l

-

solutions as -d., = —lL:-

"ij . n

(6.2.1.10)

P -
"••*

.

The number of independent parameters estimated from the data is

(re - 1) + (b - l) and hence the x
2 used to test the hypothesis here will

be

n . ,:i , 2
r c b (n.„ - 1

''- •• 1C

)

X2 =

A A v
1
,

°- »"v
(6 - 2 " 1 - ll)

i=l J»l k=l i,i ..k

n

with rcb - 1 -[(re - l) + (b - l)] = (re - l)(b - l) degrees of freedom.

The hypothesis of independence between 'i' and 'k' and between 'J'

'k f is included under the hypothesis

and p = p p ,
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;. the independence between ' i j ' and 'k' , and 'J' and 'k',

as has been shovn by Roy & Kastenbaum (1956).

6.2.2 'i' and 'J' are '\.
: and 'k' is a 'Way of Classification'.

Suppose there are b of sizes n n of independent observations

such that n , (k = l,...,b) is fixed from sample to sample and p. , is
. .^ ijk

th
re

.lity o:" an observation in the (ijk) cell, and ) 7 p . ,. =

i=l j=l
1Jic

p . = 1. The likelihood function is given by

l = n |

•• -, n r>.
iJk

i

r.n. ,'. ., -ijk
I jj ijk ij

(6.2.2.1)

Under the hypothesis of independence between 'i' and 'j' for each 'k'

that is

H : -o. ., = p. , p .,
o ijk i.k .jk

.

.
.r.st K 4 H

a o

(i = 1,2 r; j = 1,2,. ..,c; k = 1,2 b) we have

L « n (p. p ^ . (6.2.2.2)

ijk
l '* - Jk

We maximize log L with respect to the p. 's and p 's subject to
i .k . Jk

r c

J d. ,
= y p = p =1, and obtain the maximum likelihood solutions

i-1
i - lc

j=l •">* " k

~ i.k ~ . ja
-l.k °

n„j5
P
.Jk n..K

"

aer of independent parameters estimated from the data is
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• - l) + b(c - l) and hence the x
2 used to test the hypothesis here is

b

X
2 = [

k=l

-re n. , n 2 -

i=l l1=l
X

-J
k ••* n

.. k

(n
..k 2 >

n
..k

(6.2.2.3)

with b(rc - I) - b(r - l) - b(c - l) = b(r - l)(c - l) degrees of freedom.

For the hypothesis p. independent of 'k' , or

H : P. ., = q. , (say)

-inst K 4 H (for all i,j and k), we have

L - n,, li* (6.2.2.4)

-j--

..- maximise log L with resuect to the q. . 's subject to £ q. . = 1,

and obtain the maximum likelihood solutions:

a. .
= ^i . (6.2.2.5)

-ij. n

The number of independent parameters to be estimated from the data

is (re - 1) and hence the statistic x
2 is

b

X
2 =

. [
k=l

n 2
"

r c (n. ,, - n ,

x "
'

)

r r i.1k ...: n
(6.2.2.6)L I n

trith b(rc - -
N - (re - l) = (re - 1Kb - l) degrees of freedom.
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. I 'i' is a 'Variate' and 'J
1 and 'k' arc 'Ways of Classification'.

Consider c x b independent sets of sizes n of independent obaer-

vations, such that _n
fc

(j = l,2,...,c, k = 1,2,... ,b) is fixed from

^e to sample and p. is the probability of an observation in theljk

,th
(ijk) cexl, ar.d \ p p , = 1. The likelihood function is

l = n •JUL. n p.

I
"ijk i^ 'ijk

(6.2.3.1)

•or.de:- the hypothesis, that for any 'k' , p. is independent of 'j 1

, that
ijk

H : P- ., = o. , (say)
o *ijk "i.k

against H 4 H (for all i,j and k) , and

) c . = V tj. ., = p ., 1, we have
- i.k .<• -ijk .jk '

i=l i=l

L
• ? A-i,j,k

ijk
(6.2.3.2)

ve naximize log L with respect to the q. , 's subject to £ q = 1,
i=l

and obtain the maximum likelihood solutions as

_ i.k
i.k n..k

(6.2.3.3)

The number or independent parameters to be estimated from the dat£

is b(r - I) and hence the statistic x i^-sed to test the hypothesis is
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n. 2 -

(n - n -=j£)
b r ^ijk ".jk n ,

;

x
2 = I I I

. _^A_
i=l , i.k.

- ^^
(6.2. 3.U)

with cb(r - 1) - b(r - 1) = b(r - l)(o - 1) degrees of freedom.

Again for the hypothesis that for any 'j', p is independent of
ijk

'k' that is

V Pijk
= a

-ij.
(say)

r r
against H 4 H (for all i,j, and k) where 7 q = 7 p = p =1 •

As mentioned a'ooTe, the hypotheses

V pijk
=
^.x

(say)

together w

H
o=

?ijk
=

<1

ij.
Uay) '

Implie that p.,, is a pure function of 'i', i.e. that
IjK

P«.i- =
<L, (say) (for all i, j and k).

If, in a one way classification in the usual analysis of variance,

1 i '
corresponds to the 'variate' , 'j' to the 'concomitant variate' and

'k' to the 'way of classification' , then it will be seen on a little

reflection that

H : p. ., = p. - t> .,o *ijk v
\.s. - .jk

H
Q

(i = 1 r; = l,...,c; k=l,...,b)



will be t! :ue of the hypothesis of no regression, and

V p
i.ik

=
<1
ij.

(say) >

against H 4 H (for all i,J and k)
a o

will be the analogue of ^he hypothesis of no covariance.

On the other hand, suppose we take 'j' and 'k' as just the two way

classification, for example, if we take 'J' as, say, blocks and 'k' as,

say, treatments in a randomized complete block experiment (with more

than one and in general unequal number of replications in each cell).

Then

H : p. ., = o. (say)
o ljk i.k

against K 4 H (for all i,j and k)
a o

will be the analogue of no block effect for each treatment separately and

Hi t>. .. = a. . Uay)

,

o ijk ij .

against H r K (for all i,j and k)
a o

will be the analogue of 'no treatment effect' for each block separately.

In other words, in the usual parlance of analysis of variance,

V p
ij:<

=
<i.k

(say) -

against H 4 H (for all i, j and k)

combines the hypothesis of 'no main effect' and 'no interaction',

while

V pijk
=

*ij.
(say)>

against H -,- H (for all i,J and k)
a o

le hypotheses of another 'no main effect 1 and 'no interaction'.
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7. Normal Score Transformation.

R. A. Fisher (19U3) designed a normal score transformation for the

characteristics of various objects can not be measured

numerically, but they can be ranked in an orderly sequence, such kinds of

.. Judging ice cream, bread, cake, candy, chocolate, all food tests,

tea and coffee tests, and furthermore tests for clothing, sports, cars,

courses, etc. We may not express our preference in a quantitative measure,

but we can rank the different flavors, as 1, 2, 3 and so on. For this

ranked data we can replace each rank by a normal score which can be found

in the statistical table for Biological Agricultural and Medical Research

of Fisher and Yates (19^3). This table gives the average deviate of the

t-
r largest of samples of n observations drawn from a normal distribution

which has a unit variance; that is, if X. , > X,., > . . . > X, , is an
IjJ

—
\£> ~ ~ W

ordered sample from a standard normal distribution, the table gives

E(X
(r)

).

The application of this table is very simple. We now consider an

example of the ranked and randomized complete block design. Four flavors

of ice cream were evaluated by 10 Judges. Each Judge ranked the flavors,

1,2,3, or k with 1 being the most preferred, and with the results in the

following Table 7.1.
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Table 7.1

r Testing the Flavors of Four lee creams

Flavor
Juc

A B C D

1 2 1 It 3

2 1 2 3 ' It

3 2 1 1* 3

'It 3 2 It 1

5 2 1 It 3

o 2 3 It 1

7 1 2 3 It

8 2 1 It 3

9 2 1 It 3

10 3 1 2 H

After ve transform the ranks in the table into normal scores ve may

have the nev two-way Table 7.2.

Table 7.2

Mormal Score Transformed Data from Table 7-1

~ Flavor

Jt age
A 3 C D

Total

1 0.30 1.03 -1.03 -0.30

2 1.03 0.30 -0.30 -1.03

3 0.30 1.03 -1.03 -0.30

It -0.30 0.30 -1.03 1.03

5 0.30 1.03 -1.03 -0.30

6 0.30 -0.30 -1.03 1.03

7 1.03 0.3C -0.30 -1.03

a 0.30 1.03 -1.03 -0.30

9 0.30 1.03 -1.03 -0.30

10 -0 . 30 1.03 3.30 -1.03

rotal 3.260 6.780 -7.510 -2.530
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For a we c:tr. consider the judges as blocks and flavor:: as

: i:: a randomized complete block design and then do the con-

ventional .ariance. The results obtained are shown in tne

follov. V.3.

Table f.j

ysis of Variance Table for Testing
._ Flavors of Four Ice creams

Source of
Variation

D? ' Sum of Squares Mean Square ?-Value

Trea-.

Error

3

27

11.9397

11.0733

3.9799

0.14103

9.6990

Tote 30 23.0179

And also if we use a 5? significant level, the multiple range test results

are as follows.

Treatment Mean

C -0.7510,

D -0.253o'

I

A 0.3260,

1

E O.6280'

Here we should note that since the block totals are zero, we are not

able to find differences among blocks. The block degrees of freedom should

subtracted from that of the to^al. The normal score transformation may

-pply not only on ranked data but also on quantitative data, and second

terical example shows the analysis of variance for the normal score trans-

id ran< :-izec. complete block data. The data includes 5 treatments and
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10 blookn. The transformed scores and the results of analysis of variance

following Table 7»5 and J.6\

Table f,k

Two-Way Table of Randomized Complete Block Design

BXc
Treatment

1 2 3 1* 5

1 1*6 50 69 1*8 l*i*

2 1*8 1(6 1*7 60 1*0

3 32 50 1*6 51* 59

It Us U8 65 1*7 1*1*

5 39 37 1*9 50 55

6 1*8 58 59' 68 50

7 1*9 50 1*2 58 1*7

8 30 1*1* 63 1*6 71

9 1+8 1*0 1*7
.
k6 1*3

10 31+ 39 1*7 37 55

Table 7-5

Normal Score Transformed Data from Table 7-1*

Block
Treatment

1 2 3 1* 5

1 -0.50 0.50 1.16 0.00 -1.16

2 . 5 3 -0.50 0.00 1.16 -1.16

3 -1.16 0.00 -0.50 0.50 1.16

1* -1.16 0.50 1.16 0.00 -0.50

5 -0.50 -1.16 0.00 0.50 1.16

6 -1.16 0.00 0.50 1.16 -0.50

7 0.00 0.50 -1.16 1.16 -0.50

3 -1.16 -0.50 0.50 0.00 1.16

9 1.1b -1.16 0.50 0.00 -0.50

10 -1.16 0.00 0.50 -0.50 1.16
-5.- 1* -1.82 2.66 3.93 0.32
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e 7.6

'or the Data in Table 7-5

Source of Variation DF Sum of Square Mean of Square F-value

Trea.

.

"• 5.275!»0 1.3138 1.78

Error 36 26.63696 0.7399

Total 1*0 31.91200

.'-.l£;o, the grand total is equal to zero and all the block totals are

equal to zero, so the component of blocks is completely eliminated. The

t b
,

total sum of scuares is just J I 7 • Also the number of degrees of

1-1 j=l

freedom for the total sum of square is reduced, because the component of

blocks is eliminated.

la using the normal score transformation, ties are permitted. If

two ranks or observations in the same block are identical, the average

e corresponding normal scores is used.

Furthermore, for the randomized complete block design, this transfor-

mation can be extended to two factors or more than two factorial experi-

I) s. In this c^e, each of the treatments can be divided into several

levels. Then the experiment becomes the factorial type. After the trans-

formation is made for these kinds of experiment as above, then the conven-

tional analysis of variance or even regression can also be used.

For food test experiments, because it is not easy to rank more than

It products effectively at a time, this method is limited. Fisher's normal

v table can be applied for up to 50 treatments.
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Lnomial Population.

convenience, w scribe the rela een the x -test

. in the complete randomized desicn case, when oxn.rr.in:.

dal populations, as in the test for equal r.edians.

.\; know, the means of sample size n drawn from an ordinary bi-

pulation with p and q which are not necessarily equal follow

he normal distribution with the population mean equal to

p ana equal to p(l - p)/n. Then the sample means, y\'s may be

considered of t (number of treatment) observations drawn from

a normal population with mean equal to p and variance equal to p(l - p)/n.

From this and by definition, the x
2-statistic is given by

* =9
I fo - y)

v 2 - 1=1
p(l - p)

t = 2
n I (y, - y)

i=l
~

p(l - p)

Among sa.-.7)l e SS

pll - P)

(8.1)

„2
where y is the mean of y.. This x

2 will follow approximately the x dis-

(t - 1) deerees of freedom. Since the variance of a bi-

nomial population is equal to p(l - p), the y(l - y) may be used as pooled

estimate of p(l - p) , and then

t _ 2
I n(y, - y)

2 j-1 Amor.!- sample SS (8.2)

y(l - y) ?(1 - y)



y as a chi-squarc random variable with (t - i)

... if p is specified, then we can use pq to estimate

p(l "

For the F-statistic we commonly use

A;;, SS

t - 1 _ Ar.or.fr s amplc. MS
(8.3)~ Within saaole SS ~ Within sample MS

lu-t

with (t - 1) and (; n- t) degrees of freedom. This means that the two

statistics x
2 ar-d F > ar - similar, because the x

2
n»ay te expressed in a

.ct resembles an F statistic,

. .on.-r 5c;ir.V)le SS

v 2 t - 1

yd - y)

:-:- sample "S

yd - y)

(8.U)

with t - 1 and <* decrees of freedom.

Notice that in this case the within sample mean square is replaced

by y(l - y). Tr.is is the difference between normal and binomial population

2
cases. For normal population, a 2 is directly estimated by s , the error

squares, and for binomial population a 2 = p(l - p). So in a basic

sense, these two tests x
2 ar'd F '

> are similar.

, we car. consider the tern, y(l - y), which is the total mean

re , because in a binomial population, the observations y's are both

r.d l's, the grand total is £y = Jl = G (say), the total SS is
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- —
, and the total mean sauare is approximately equal to

:
:;

<*->

L L.

= y-y2
= y(i-y) (8-5)

re just replaced the total degrees of freedom £n - 1 by £n. So,

..ently, the total mean square is only slightly greater than yd - y).

Furthermore, the total mean square is the weighted average of the among

sample and within sample mean so.uares , with their number of degrees of

freedom "Deing the weights.

In our case, we used the pooled median as a cutting point to trans-

fer::, the data intc the binomi-al form, and to test the hypothesis that the

t treatment populations have the same median, that isp=l-p=q=0.5.

Under this case we may replace the term y(l - y) by p(l - p) = pq = l/ 1*.

From the discussion above we see the x -test is equivalent to the

analysis of variance, if we use the total mean square as the error term.

That is to say, the x
2-test and the analysis of variance usually yield

the same conclusion in testing the hypothesis that t population means are

equal.

9. Comments and Discussion.

9.1 Basic Technique.

The basic technique of the non-parametric methods in this report is

contingency table based on a pooled median. If the dimensions

! liable are £ v. 2 the aata may be interpreted as two samples drawn
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WO binomial populations. If the dimensions are 2 x t (or 2 x y) >

ted as t samples drawn front t binomial populations,

Iso as 2 samples drawn from t-attributes multinomial populations.

If the dimensions are t ;c b (or r x c;, the data may be either interpreted

as r rai pies drawn from c attributes multinomial populations or c

randor. samples dr - r attributes multinomial populations. Either

interpretation may yield result.

9.2 Application of Mean or Median.

As we know that the normal population is symmetric, the mean and the

median are equal. So all of the discussion concerning the mean also per-

^£ir.3 to the median. The test of the hypothesis that the t population

as are equal is the same test as for t population medians being equal.

For the binomial population in this report all the discussion about tests

of hypotheses is about the median instead of the mean. The median has an

important property; that is, the median is transformable. For example,

for the 5 observations l 1*, 15, 26, 100, 125, the median is 26 and the mean

is 56. Suppose we use the square root transformation, then the corres-

ponding transformed values are 3.1h, 3.8f, 5-10, 10.00, 11. 18, where the

transformed median is 5.10, which is the square root of the original median

26, but the n is 6.73, which is no longer the square root of the orig-

inal mean 56. For any transformation this is true, so when we use a trans-

formaticn with the analysis of variance, we are actually making comparisons

among the medians on the original scale. In this report for cases in which

llation is not normal, the mean and median may not be the same, so

..: is used iirectly for the transformation.



In section 8, we see that the x
2-test is similar to the F'test.

to 1 -ger than F' , but the corresponding F-value

in the table is .. th F" , because the degrees of

-..or of F' is larger. The x
2 test seems to have

a sli; :r probability of committing a Type II error than has the

analysis of rariance. rever, the F-test is also not beyond reproach,

because the populations are binomial and not normal. If the population

io not normal, the analysis of variance tends to reject the true hypothesis

more frequently than the significance level specified. Therefore, the

?-^est see.ns to have a higher probability of committing a Type I error

than that of x
2-test.

9.3 Individual Degree of Freedom.

individual degree of freedom can be used on any contingency

table except that of 2 x 2 in which case the number of degrees of freedom

is already equal to 1. The basic technique of the individual degree of

freedom is to reduce the dimension of the contingency table to 2 x 2 out

of the r x c contingency table. The purpose of the individual degree of

freedom is to increase the power of the test.

9.h Sheffield's Comments.

affield (1957) reinterpreted Wilson's method in a similar manner.

Ke considered that the hypothesis in Wilson's method is that each obser-

vation in a cell has 50$ chance of falling above the pooled median. If

n is the number of observations per cell, then the range of the possible

jencies above the rr.edi n is fron to n, and the mean is equal to

n/2. The variance of a frequc.-.cy is npq or n(0.5)(0.5) = n/k , since the
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thesis is that p = q,
«= 0.5. Be repeated the cx.ar.ple with the 3x3

factorial experiment including 16 replicates in each cell. The ran

of observation in each cell is ;'rom to lC. The mean of each cell is

16/2 = 8, and v_-.-iar.ce of cell is l6/-t = It. The obtained frequency table

Table 9.U.1

The Fictitious 3x3 Factorial Experimental Data

illumination

Lais
1 2 "3 Total

A 111 12 11 37

B 9 7 8 21

C 6 3 2 11

lotal 29 22 21 72

and the analysis of variance is as follows.

Table 9.1».2

Analysis of Variance Table for the Data in Table 9.4.1

Source of
Variation

DF SS MS F P
Wilson's

X
2 P

Dials 2 112.67 56.34 14.08 <0.01 28.168 < 0.15*

Illumination 2 12.67 6.34 1.58 >0.05 3.138 102

Interaction 1» 2.67 0.67 0.17 — 0.661*

Total 3 128.00 16.00 4.00 <0 . 01

. ' for illumination is not at all significant

.. :t.t1c test but would be well with! . the 5% level if tested

a tl conventional way, and he also .-.entior.sd that in a typical 3x3
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fact< riment with only one observation per cell, there is

thin cell error because of the lack of replications. The only error

tent available in such a case is the interaction of the two marginal

If the parametric approach or F-test is applied, the F-value

for illumination against interaction is C.'i'k/O.S'J = 9.5, which is well

beyond the 6.9 1* needed at the 5& level for 2 and k degrees of freedom.

The corresponding nonparaaetric test (F = 1.58) does not even reach the

20£ level of confidence.

Sheffield concluded with the comment that Wilson's test involves two

parts: first the procedure for creating approximately normal data from

the original nonnormal data with cutting by a pooled median; second the

procedure for testing obtained variance, npq. Only the second part of the

method is the distribution- free part.

9.5 McHemar's Comments.

McNemar (1957) contrasted the results of Wilson's test and the F - test

for some data of two-way classification which are published in other

textbooks. From the levels of significance reached by way of F - test

and Wilson's test, most of them, for row effects, column effects, and for

interaction effects, indicated that the probabilities of reaching the

significance needed for the F - test is smaller than that of Wilson's test,

so the power of Wilson's test is much lower than that of F - test.
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purpose of this report is to introduce the application of the

: test as a nonparair.etric test on the randomized complete block

.
.

This test is one of the large sample methods. So before we can

-o use of this method, ve should have large samples. The minimum sample

size car. ho obtained from the working rule given in Section 2.

In order to use the chi-square test for the randomized complete block

ign, we first of all need to change the ranacmized complete block two

way table into a two way contingency table. In other words, we have to

transform the r.uous data into discrete multinomial data with the median

as a cutting point. A multinomial data set is a set of observations which

can be classified into r categories. If r = 2 the multinomial data become

binomial data. The method for this transformation is called the binomial

trans format i or. and is stated in the second section.

In the third section we stated that the test of independence between

two attributes in x
2-test, is comparable to the test of interaction between

two attributes in the analysis of variance case.

-.; fourth and fifth sections deal with the methods to compute various

X
2 's concerned with different types of experimental data to test the

hypotheses that the treatment population means are the same, in which, of

course, the contingency table should be formed at first. In the discussion

we started with one observation and then more observations per cell data.

An extension of the methods applies to factorial experiments on the randomized

complete block design, in which both no combination and combinations among

levels of factors are discussed. The various x
2,

s are computed to test

hypotheses about the significance of the different main effects and

interaction effects.
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ixth section contains the concepts of the expected frequencies

of two and three way classification. The method of the

derivation of the expected frequencies used is the maximum likelihood

method.

In the seventh section appears a normal score transformation. This

is introduced by Fisher and Yates (19^3) and is used for the analysis of

ranked data. If we transform the quantitative data into ranks at first,

the numerical data can also be analyzed by this method. After the normal

score transformation has been made all the methods used in normal populations

can be used in the ranked data.

st two sections compared the x
2-test and the F-test , and the

situations of using mean and median. The F-test is better for normal pop-

ulations and the x
2-test needs larger samples to have the same power as

the F-test. Since the normal distribution is symmetrical, the mean and

median are tested in normally distributed data while only the median is

compared in bincmially distributed data.


