
 

  

 

Evaluation of performance: multi-armed bandit vs. contextual bandit 

 

 

by 

 

 

Ranojoy Chatterjee 

 

 

 

B.Tech., West Bengal University of Technology, 2017 

 

 

 

A THESIS 

 

 

 

submitted in partial fulfillment of the requirements for the degree 

 

 

 

MASTER OF SCIENCE 

 

 

 

Department of Computer Science 

College of Engineering 

 

KANSAS STATE UNIVERSITY 

Manhattan, Kansas 

 

 

2019 

 

 

 Approved by: 

 

Major Professor 

Dr. William Hsu 

  



 

  

Copyright 

© Ranojoy Chatterjee 2019. 

 

 

  



 

  

Abstract 

This work compares two methods, the multi-armed bandit (MAB) and contextual multi-armed 

bandit (CMAB), for action recommendation in a sequential decision making domain.  It 

empirically evaluates their effectiveness on a customer relationship management task. The goal 

of this project is to experiment using -greedy and random selection strategies to characterize the 

exploration vs. exploitation tradeoff , which manifests when trying to increase or maximize 

profit while gaining new information regarding the process. The first method under observation, 

the multi-armed bandit (MAB), is simpler to compute and scales better to larger amounts of data; 

it has a wide range of applicability, including website optimization, clinical trials, adaptive 

routing, and stock trading. The contextual multi-armed bandit (CMAB) is an advanced version of 

the multi-armed bandit which takes into consideration the user’s past usage patterns, especially 

historical features of the user’s search history; its training data incorporates this context, resulting 

in a model that is more accurate but also requires a lot of user data which incurs privacy 

liabilities, an adverse property. This study measures the difference in outcome if the MAB or 

CMAB have access to user data and assesses, for a real-world application domain, whether this 

trade-off is significant and worthwhile in the bigger prospective.  
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Chapter 1- Introduction 

1.1.  Problem Definition 

A massive amount of work is required for acquisition of customers in a company, including 

research, sales and marketing effort, and other costs – all of which are forfeited when a hard-

earned customer leaves a company. It is more practical for the company to retain these existing 

customers, so as to increase the revenue of the company and direct this revenue to proper 

channels and make the best outcomes. Knowledge-based systems and collaborative filtering are 

the most prevalent methods used in industrial approaches to the task of recommendation, but 

each of these approaches has its own drawbacks. In knowledge-based filtering, the greatest flaw 

is that the knowledge base is static and for collaborative filtering the quality is dependent on 

large historical data; this knowledge base is also prone to large statistical anomalies and reacts 

slowly to drifts (1). Multi-armed bandit takes account the different strategies employed by the 

marketing team and presents the outgoing customer with a suitable option from those above 

strategies, which can lead to them not leaving. 

According to studies done by Bain & Company, increasing customer retention by 5% can 

lead to an increase in profits of 25% – 95%, and the likelihood of converting an existing 

customer into a repeat customer is 60% – 70%, while the probability of converting a new lead is 

5% – 20%, at best (2). Thus, we can see how important it is to use a retention engine to reduce 

the churn rate. 

1.2.  Objective 

I chose the domain of retention engine within which to apply a multi-armed bandit, since 

there are any small to medium companies that don’t have access to big resources to run a 

complete reinforced learning algorithm to get the best results and this in turn is making them 
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loose many of their customer base to bigger multi-national companies. The results which will be 

produced from multi-armed bandits are significantly better than that of greedy and random 

recommendation. I will also use a version of contextual multi-armed bandit which is a 

reinforcement learning method and try to show, how much difference in result you get from 

multi-armed bandit and contextual multi-armed bandit.  

1.3.  Overview 

In this project, I use a simulated data set which represents the choice of a customer given the 

various alternatives presented to them. The various choices are given a score which is binomially 

distributed according to a probability p, which is continuously adjusted by the steps taken by the 

agent. In the second part of the comparison I use a data set which is available online . This data 

set includes descriptions of hypothetical samples corresponding to 23 species of gilled 

mushrooms in the Agaricus and Lepiota Family (pp. 500-525). Each species is identified as 

definitely edible, definitely poisonous, or of unknown edibility and not recommended. This latter 

class was combined with the poisonous one. The Guide clearly states that there is no simple rule 

for determining the edibility of a mushroom; no rule such as ”leaflets three, let it be” for poison 

oak and poison ivy [3]. The results are obtained using the simulated data set and the data set 

from UCI mushroom data set and compared using Thompson Sampling as the algorithm for both  

MAB and CMAB. Scikit-learn (Pedregosa, Varoquaux, Gramfort, & Michel, 2011) was 

instrumental in implementing the above said process. Visualization packages such as Matplotlib 

(Hunter, Dale, Dorettboom, & Team, 2012) and Seaborn (Waskom, 2012-2017) were used to 

compare the two process. 
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Chapter 2 – Background and Related Work 

In this part of the chapter, I will introduce the MAB and CMAB used in this project. I will also 

describe some of the data preprocessing used for the CMAB. 

 

2.1 Literature Survey 

Multi-armed bandit problems have been introduced by Robbins (1952) and have since been 

used extensively to model the trade-offs faced by an automated agent which aims to gain new 

knowledge by exploring its environment and to exploit its current, reliable knowledge. Such 

problems arise frequently in practice, for example in the context of clinical trials or on-line 

advertising. The multi-armed bandit problem offers a very clean, simple theoretical formulation 

for analyzing trade-offs between exploration and exploitation. A comprehensive overview of 

bandit problems from a statistical perspective is given in Berry & Fristedt (1985).[2] 

Internet search engines, such as Google, Yahoo! and Microsoft’s Bing, receive revenue from 

advertisements shown to a user’s query. Whenever a user decides to click on an ad displayed for 

a search query, the advertiser pays the search engine. Thus, part of the search engine’s goal is to 

display ads that are most relevant to the user in the hopes of increasing the chance of a click, and 

possibly increasing its expected revenue. In order to achieve this, the search engine has to learn 

over time which ads are the most relevant to display for different queries. On the one hand, it is 

important to exploit currently relevant ads, and on the other hand, one should explore potentially 

relevant ads. This problem can be naturally posed as a multi-armed bandit problem with context. 

Here by context we mean a user’s query. Each time a query x arrives and an ad y is displayed 
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there is an (unknown) probability µ(x, y) that the user clicks on the ad.1 We call µ(x, y) the 

click-through rate (or CTR) of x and y. [3] 

 

2.2 Established Methods 

2.2.1 Random Sampling 

  Random sampling refers to a variety of selection techniques in which sample members 

are selected by chance, but with a known probability of selection. Most social science, business, 

and agricultural surveys rely on random sampling techniques for the selection of survey 

participants or sample units, where the sample units may be persons, establishments, land points, 

or other units for analysis. Random sampling is a critical element to the overall survey research 

design. [4] 

 

Figure 2.1 Random Sampling [5]  

2.2.2  Epsilon Greedy 

  The ɛ-greedy algorithm is widely used because it is very simple and has obvious 

generalizations for sequential decision problems. At each round t = 1, 2, ... the algorithm 
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selects the arm with the highest empirical mean with probability 1 − ɛ, and selects a 

random arm with probability ɛ. In other words, given initial empirical means µ1(0), ..., 

µK(0),  

pi(t + 1) = {
1 −  ɛ +

ɛ

k
ɛ

𝑘

  
,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 ,   if 𝑖 =maxar𝑔𝑗=1,…,𝐾 µ𝑗 (𝑡)
     

   

 otherwise. If ɛ is held constant, only a linear bound on the expected regret can be 

achieved. CesaBianchi and Fisher (1998) proved poly-logarithmic bounds for variants of 

the algorithm in which ɛ decreases with time. In an earlier empirical study, Vermorel and 

Mohri (2005) did not find any practical advantage to using these methods. Therefore, in 

our experiments, we will only consider fixed values of ɛ.[2]  

2.2.3 Multi-armed bandit 

 In its simplest formulation (generally referred to as stochastic), a bandit problem 

consists of a set of K probability distributions [D1, . . . , DKi] with associated expected 

values [µ1, . . . , µKi] and variances [σ1
2, . . . , σk

2]. Initially, the Di are unknown to the 

player. In fact, these distributions are generally interpreted as corresponding to arms on a 

slot machine; the player is viewed as a gambler whose goal is to collect as much money 

as possible by pulling these arms over many turns. At each turn, t = 1, 2, ..., the player 

selects an arm, with index j(t), and receives a reward r(t) ∼ Dj(t). The player has a two-

fold goal: on one hand, finding out which distribution has the highest expected value; on 

the other hand, gaining as much rewards as possible while playing. Bandit algorithms 

specify a strategy by which the player should choose an arm j(t) at each turn. The most 
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popular performance measure for bandit algorithms is the total expected regret, defined 

for any fixed turn T as: 

RT = T µ∗ − ∑ 𝑢𝑗(𝑡)𝑇
𝑡=1  

where µ∗ = max i=1 ,…, k µi is the expected reward from the best arm. 

Alternatively, we can express the total expected regret as 

RT = T µ∗ − µj(t)∑ E(Tk(T))
𝐾

𝑘=1
 

where Tk(T) is a random variable denoting the number of plays of arm k during the first T 

turns. A classical result of Lai and Robbins (1985) states that for any suboptimal arm k, 

E(Tk(T)) ≥ ln T/ D(pk||p∗) 

where D(pj ||p∗) is the Kullback-Leibler divergence between the reward density pk of the 

suboptimal arm and the reward density p∗ of the optimal arm, defined formally as 

D(pk||p∗) = ∫ pj = ln (
𝑝𝑗

𝑝
∗) 

 

Regret thus grows at least logarithmically, or more formally, RT = Ω(log T). An 

algorithm is said to solve the multi-armed bandit problem if it can match this lower 

bound, that is if RT = O(log T). 
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Figure 2.2 Multi-armed bandit[6] 

 

2.2.4 Contextual Multi-armed bandit  

In the contextual bandit problem, an agent collects rewards for actions taken over 

a sequence of rounds; in each round, the agent chooses an action to take on the basis of 

(i) context (or features) for the current round, as well as (ii) feedback, in the form of 

rewards, obtained in previous rounds. The feedback is incomplete: in any given round, 

the agent observes the reward only for the chosen action; the agent does not observe the 

reward for other actions. Contextual bandit problems are found in many important 

applications such as online recommendation and clinical trials and represent a natural 

half-way point between supervised learning and reinforcement learning. The use of 

features to encode context is inherited from supervised machine learning, while 

exploration is necessary for good performance as in reinforcement learning. [7] 
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Figure 2.3 Multi-armed bandit vs Contextual Multi-armed bandit[1] 
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2.2.5 Thompson Sampling 

 

 Thompson Sampling (Posterior Sampling or Probability Matching) is an algorithm for 

choosing the actions that address the exploration-exploitation dilemma in multi-armed bandit 

problem. Actions are performed several times and are called exploration. It uses training 

information that evaluates the actions taken rather than instructs by giving correct actions. This is 

what creates the need for active exploration, for an explicit trial-and-error search for good 

behavior. Based on the results of those actions, rewards (1) or penalties (0) are given for that 

action to the machine. Further actions are performed in order to maximize the reward that may 

improve future performance. Suppose a robot has to pick several cans and put in a container. 

Each time it puts the can to the container, it will memorize the steps followed and train itself to 

perform the task with better speed and precision (reward). If the Robot is not able to put the can 

in the container, it will not memorize that procedure (hence speed and performance will not 

improve) and will be considered as a penalty. 

Thompson Sampling has an advantage of the tendency to decrease the search as we get 

more and more information, which mimics the desirable trade-off in the problem, where we want 

as much information as possible in fewer searches. Hence, this algorithm has tendency to be 

more “search-oriented” when we have fewer data and less “search-oriented” when we have a lot 

of data. 
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Chapter 3 – Implementation 

In this chapter I will discuss the implementation of the MAB and CMAB using Thompson 

Sampling. 

3.1 Experiment Setup 

 Initially we define an environment, in which  random sampling, ɛ-greedy and the MAB 

will run. The environment calls an agent , the agent takes the decision of which action to run and 

the environment executes it and then feeds the reward from the action taken to the agent so that 

the agent can updates itself. In the random sampling algorithm, the agent simply takes a decision 

randomly and then neither updates or learn from the decision taken, this method is simply put 

here for a baseline for the other algorithms defined here and see how better or worse the other 

defined algorithms work. In ɛ-greedy, the agent chooses a random (x) out of n-trials and on each 

trial estimates the payout for each choice and updates in the environment class, after 𝑛𝑘 learning 

trials it then selects 1-ɛ% of time the x that has the highest reward rate and ɛ% of the time 

samples the variant randomly. In this approach the sampler explores the various variants and also 

exploits the variant which has the highest return rate at the same time and while exploration it 

keeps in track all the change in return rate for the various choices and chooses the optimal 

variant accordingly. 

The MAB algorithm using the Thompson Sampler also works on the same principle as the ɛ-

greedy but with some refinement. 

• It is not greedy in nature; 

• The exploration is done in more streamlined and refined manner; 

• It is Bayesian in nature.  
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For simplicity of discussion, we first provide the details of Thompson Sampling algorithm for 

the Bernoulli bandit problem, i.e. when the rewards are either 0 or 1, and for arm i the 

probability of success (reward =1) is µi. This description of Thompson Sampling follows 

closely that of Chapelle and Li (2011). Next, we propose a simple new extension of this 

algorithm to general reward distributions with support [0, 1], which will allow us to seamlessly 

extend our analysis for Bernoulli bandits to general stochastic bandit problem. The algorithm 

for Bernoulli bandits maintains Bayesian priors on the Bernoulli means µI’s. Beta distribution 

turns out to be a very convenient choice of priors for Bernoulli rewards. Let us briefly recall 

that beta distributions form a family of continuous probability distributions on the interval (0, 

1). The Probability Distribution Function (pdf) of Beta(α, β), the beta distribution with 

parameters α > 0, β > 0, is given by 

 

f(x;  α, β) =
Γ(α + β)

𝛤(𝛼)𝛤(𝛽)
𝑥𝛼−1(1 − 𝑥)𝛽−1 

 

The mean of Beta(α, β) is α/(α + β); and as is apparent from the pdf, higher the α, β, 

tighter is the concentration of Beta(α, β) around the mean. Beta distribution is useful for 

Bernoulli rewards because if the prior is a Beta(α, β) distribution, then after observing a 

Bernoulli trial, the posterior distribution is simply Beta(α+1, β) or Beta(α, β+1), depending on 

whether the trial resulted in a success or failure, respectively. The Thompson Sampling 

algorithm initially assumes arm i to have prior Beta(1, 1) on µi, which is natural because 

Beta(1, 1) is the uniform distribution on (0, 1). At time t, having observed Si(t) successes 

(reward = 1) and Fi(t) failures (reward = 0) in ki(t) = Si(t) + Fi(t) plays of arm i, the algorithm 

updates the distribution on µi as Beta(Si(t) + 1, Fi(t) + 1). The algorithm then samples 
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from these posterior distributions of the µi’s, and plays an arm according to the probability of its 

mean being the largest. We summarize the Thompson Sampling algorithm below.  

We adapt the Bernoulli Thompson sampling algorithm to the general stochastic bandits case, i.e. 

when the rewards for arm i are generated from an arbitrary unknown distribution with support [0, 

1] and mean µi, in a way that allows us to reuse our analysis of the Bernoulli case. To our 

knowledge, this adaptation is new. We modify TS so that after observing the reward r˜t ∈ [0, 1] 

at time t, it performs a Bernoulli trial with success probability r˜t. Let random variable rt denote 

the outcome of this Bernoulli trial, and let {Si(t), Fi(t)} denote the number of successes and 

failures in the Bernoulli trials until time t. The remaining algorithm is the same as for Bernoulli 

bandits. 

Thus, the probability of observing rt = 1 is same and Si(t), Fi(t) evolve exactly in the 

same way as in the case of Bernoulli bandits with mean µi. Therefore, the analysis of TS for 

Bernoulli setting is applicable to this modified TS for the general setting. This allows us to 

replace, for the purpose of analysis, the problem with general stochastic bandits with Bernoulli 

bandits with the same means. We remark that instead of using rt, we could consider more direct 

and natural updates of type Beta(αi, βi) to Beta(αi + ˜rt, βi + 1 − rt). (Agrawal & Goyal, 2012) 

 

Thompson Sampling (Posterior Sampling or Probability Matching) is an algorithm for 

choosing the actions that address the exploration-exploitation dilemma in multi-armed bandit 

problem. Actions are performed several times and are called exploration. It uses training 

information that evaluates the actions taken rather than instructs by giving correct actions. This is 

what creates the need for active exploration, for an explicit trial-and-error search for good 

behavior. Based on the results of those actions, rewards (1) or penalties (0) are given for that 
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action to the machine. Further actions are performed in order to maximize the reward that may 

improve future performance. Suppose a robot has to pick several cans and put in a container. 

Each time it puts the can to the container, it will memorize the steps followed and train itself to 

perform the task with better speed and precision (reward). If the Robot is not able to put the can 

in the container, it will not memorize that procedure (hence speed and performance will not 

improve) and will be considered as a penalty. 

 

The CMAB was implemented using the python package contextual bandit which is based 

“Deep Bayesian Bandits Showdown: An Empirical Comparison of Bayesian Deep Networks for 

Thompson Sampling” . Thompson Sampling is a meta-algorithm that chooses an action for the 

contextual bandit in a statistically efficient manner, simultaneously finding the best arm while 

attempting to incur low cost. Informally speaking, we assume the expected reward is given by 

some function E[rt | Xt, at] = f(Xt, at). Unfortunately, function f is unknown, as otherwise we 

could just choose the action with highest expected value: at* = arg maxi f(Xt, at). 

 

The idea behind Thompson Sampling is based on keeping a posterior distribution πt over 

functions in some family f ∈ F after observing the first t-1 datapoints. Then, at time t, we sample 

one potential explanation of the underlying process: ft ∼ πt, and act optimally (i.e., greedily) 

according to ft. In other words, we choose at = arg maxi ft(Xt, ai). Finally, we update our 

posterior distribution with the new collected datapoint (Xt, at, rt). 

The main issue is that keeping an updated posterior πt (or, even, sampling from it) is 

often intractable for highly parameterized models like deep neural networks. [8] 

3.2 Data set 
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 Mushroom Data set contain 8124 attributes and 22 features collected from 23 species of 

gilled mushrooms in the Agaricus and Lepiota family, each species has been defined as edible or 

inedible.  
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Chapter 4 - Experimental Results 

4.1 Regret  

 Regret is calculated by subtracting the reward of the choice by the maximum available 

reward in a given turn. 

Regi = max(Ri) – Ri, where Ri  = reward chosen in the ith iteration  

4.2 Cumulative Regret 

 The sum of the regret generated over one simulation. 

 𝑅𝑡𝑜𝑡𝑎𝑙=  ∑ 𝑟𝑒𝑔𝑟𝑒𝑡𝑛
𝑖=1  

 

4.3 Variant Selection 

 A plot which shows how different variants are sampled in random, ɛ-greedy and in MAB.  

 

4.4 Score 

 Total reward gained by an agent per simulation. It is the cumulative valuation of the total 

reward received per trial.  
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Figure 4.1 Comparison of random, ɛ-greedy and MAB score 

In the above figure, we can clearly see the different score of random, epsilon-greedy and 

MAB. MAB outperforms random sampling but is near to epsilon-greedy apart from some sub-

optimal points where epsilon greedy gets stuck and produces a bad score. Using seaborn[9] and 

matplotlib[10] we plot these graphs. 
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Figure 4.2 Variant Sampling in Random Sampler 

 

The figure above shows, how the variant(arms) are selected in a random sampler which clearly 

shows that it randomly selects all the arms. The concept of random sampling is total exploration 

and no exploitation. The color coding for 0, 1, 2 and 3 were only used since we are dealing with 

only 4 arms.  
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Figure 4.3 Variant Sampling in ɛ-greedy 

The figure clearly depicts of total exploitation of the best arm and random exploration in ɛ% 

times, so the rest of the arms are randomly picked, and no information is collected from the 

exploration. The color coding for 0, 1, 2 and 3 were only used since we are dealing with only 4 

arms. 
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Figure 4.4 Variant Sampling in Thompson Sampler 

 

It can be clearly seen that the Thompson takes a more refined and selection, because it exploits 

the best option which is arm 3 but it also constantly visits arm 0 and arm 1, because they have a 

clear posterior probability distribution which is better than arm 2. The color coding for 0, 1, 2 

and 3 were only used since we are dealing with only 4 arms. 
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Figure 4.5 Regret for ɛ-greedy 

The graph shows clearly the regret of the epsilon greedy process over iterations. We can clearly 

see that; the regret has a steep incline but after enough iteration it seems to bottom out and 

converge.  
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Figure 4.6 Per-period regret for random, ɛ-greedy and MAB 

This plot shows the per trial regret. It can be clearly seen that Thompson sampling converge very 

quickly to a point of less regret, than that of ɛ-greedy but random sampling has no convergence 

at all.  
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Figure 4.7 Cumulative regret of random sampling, ɛ-greedy and MAB 

We can clearly see that Thompson Sampling converges better and reduces the regret better. The 

slope of ɛ- greedy is much steeper than the Thompson Sampling. Random Sampling is the worst 

of the three, but that was expected. 
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Figure 4.8 Beta distribution of 4 machines initially 

In the beginning the posterior distribution of all the arms are set at zero, since we got no information 

regarding the success and failures of the respective arms. 
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Figure 4.9 Beta distribution of 4 machines after 500 runs 

After 500 iteration we can see how the posterior distribution starts to change and we can clearly 

see that arm 3 has the best posterior distribution but arm 2 and arm 1 are very alike each other.  
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Figure 4.10 Beta distribution of 4 machines after 1000 runs 

After 1000 iteration we still can see that arm 4 wins over the rest of the alternatives, but the 

posterior distribution of the arm 1  gets better than arm 1, but still inconclusive to separate from 

each other. 
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Figure 4.11 Beta distribution of 4 machines after 5000 runs 

In the figure we see a stark difference in the posterior distribution of the arms where clearly arm 3 

clearly but we see the difference in the posterior probability in arm 1 and arm 2. This clearly 

suggests that the arm 2 has more success in relation to arm 1.   
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Figure 4.12 Beta distribution of 4 machines after 10000 runs 

The posterior distribution of the arm 0 and arm 1 are now very close to each other but we can see 

the clear winner that is arm 3 whose posterior distribution is higher than the rest of the other 

arms. 
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Figure 4.13 Beta distribution of 4 machines after 200000 runs 

The final posterior distribution of the arms where we can clearly see it begins to converge to the 

best alternative of the arms, which in our case is the arm 3. 
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Figure 4.14 CMAB score on mushroom data set 

 

The screenshot shows that the score of the Contextual Bandit when used on Mushroom data set 

from UCI [11] with Thompson  Sampling has the best score of 4990. The data set has two labels 

only one is poisonous and edible.  
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Figure 4.15 MAB score on Mushroom data set 

 

Using the same UCI Mushroom data set on the MAB using Thompson Sampling, we get a higher 

score than the CMAB. The same test parameters were maintained in both CMAB and MAB. 

While running a cross validation accuracy precision on MAB and Logistic regression, the mean 

score of MAB was found to be 0.967 whereas the mean score of Logistic Regression was  0.996.  
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Chapter 5 – Result & Analysis 

Under the same condition and data set, MAB produced a better result than CMAB as was 

stated above with the MAB score being 5991 and CMAB score 4990. According to literature 

review it was found that CMAB will out-perform MAB, but in our case,  it was found to be not 

true, and MAB outperformed random and ɛ-greedy algorithms. 

The justification can be said that due to simplification of the data set, the problem transformed  

into a 2 armed bandit problem, and since the number of non-poisonous mushroom were 

greater, so the posterior probability of the non-poisonous was higher than that of the poisonous 

which made the algorithm choose the non-poisonous more than that of the poisonous, which in 

turn made the reward greater than the CMAB.  
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Chapter 6 – Future Work 

The topic of recommender system is one of the most sorts after research topic in this day and 

age, from recommending a song or a drug for cancer treatment depends on a versatile and 

adaptable algorithm. Introduction of MAB in the art of movies has already increased Netflix 

customer base by 20%. This idea is also being used in retention system, companies like 

Bellwethr are using the same strategies to retent customer and reduce the churn rate. This 

method can be used to build a better search engine and also can be used to build better routing 

technique . This application has many utility and can be used in many number of places.   
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