

Evaluation of performance: multi-armed bandit vs. contextual bandit

by

Ranojoy Chatterjee

B.Tech., West Bengal University of Technology, 2017

A THESIS

submitted in partial fulfillment of the requirements for the degree

MASTER OF SCIENCE

Department of Computer Science

College of Engineering

KANSAS STATE UNIVERSITY

Manhattan, Kansas

2019

 Approved by:

Major Professor

Dr. William Hsu

Copyright

© Ranojoy Chatterjee 2019.

Abstract

This work compares two methods, the multi-armed bandit (MAB) and contextual multi-armed

bandit (CMAB), for action recommendation in a sequential decision making domain. It

empirically evaluates their effectiveness on a customer relationship management task. The goal

of this project is to experiment using -greedy and random selection strategies to characterize the

exploration vs. exploitation tradeoff , which manifests when trying to increase or maximize

profit while gaining new information regarding the process. The first method under observation,

the multi-armed bandit (MAB), is simpler to compute and scales better to larger amounts of data;

it has a wide range of applicability, including website optimization, clinical trials, adaptive

routing, and stock trading. The contextual multi-armed bandit (CMAB) is an advanced version of

the multi-armed bandit which takes into consideration the user’s past usage patterns, especially

historical features of the user’s search history; its training data incorporates this context, resulting

in a model that is more accurate but also requires a lot of user data which incurs privacy

liabilities, an adverse property. This study measures the difference in outcome if the MAB or

CMAB have access to user data and assesses, for a real-world application domain, whether this

trade-off is significant and worthwhile in the bigger prospective.

iv

Table of Contents

List of Figures ... v

Acknowledgements .. vi

Chapter 1- Introduction ... 1

1.1 Problem Definition...………………………………………………………………………...1

1.2 Objective..…………………………………………………………………………………...2

1.3 Overview…………………………………………………………………………………….3

Chapter 2- Background and Related Work………………………………………………………..4

2.1 Literature Survey…………………………………………………………………….……...4

2.2 Established Methods……………………………………………………………….………..5

2.2.1 Random Sampling……………………………………………………………………….5

2.2.2 Epsilon Greedy…...……………………………………………………………………...5

2.2.3 Multi-armed bandit………………….…………………………………………………..6

2.2.4 Contextual Multi-armed bandit…..……………………………………………………...7

2.2.5 Thompson Sampling…………………………………………………………………….8

Chapter 3- Implementation………………………………………………………………………..9

3.1 Experiment Setup……………………………………………………………………………9

3.2 Data set...…………………………………………………………………………………...13

Chapter 4- Experimental Results………………………………………………………………...14

4.1 Regret………………………………………………………………………………………14

4.2 Cumulative Regret…………………………………………………………………………14

4.3 Variant Selection…………………………………………………………………………..14

4.4 Score……………………………………………………………………………………….14

Chapter 5– Result & Analysis……………………………………………………………………30

Chapter 6– Future Work…………………………………………………………………………31

Chapter 7– References…………………………………………………………………………...32

v

List of Figures

Figure 2.1 Random Sampling …...……………………………….4

Figure 2.2 Multi-armed bandit....................………………………………………….……………6

Figure 2.3 Multi-armed bandit vs Contextual Multi-armed bandit.....................………………....7

Figure 4.1 Comparison of random, ɛ-greedy

and

MAB

score…………………………………...15

Figure 4.2 Variant Sampling in Random Sampler……………………………………………….16

Figure 4.3 Variant Sampling in ɛ-greedy…………………………………………………….......17

Figure 4.4 Variant Sampling in Thompson Sampler……………………………………………..18

Figure 4.5 Regret for ɛ-greedy…………………………………………………………………...19

Figure 4.6 Per-period regret for random, ɛ-greedy

and

MAB…………………………………...20

Figure 4.7 Cumulative regret of random sampling, ɛ-greedy

and

MAB…………………………21

Figure 4.8 Beta distribution of 4 machines initially……………………………………………..22

Figure 4.9 Beta distribution of 4 machines after 500 runs………………………………………23

Figure 4.10 Beta distribution of 4 machines after 1000 runs……………………………………24

Figure 4.11 Beta distribution of 4 machines after 5000 runs……………………………………25

Figure 4.12 Beta distribution of 4 machines after 10000 runs…………………………………..26

Figure 4.13 Beta distribution of 4 machines after 20000 runs…………………………………..27

Figure 4.14 CMAB score on mushroom data set………...………………………………………28

Figure 4.15 MAB score on mushroom data set…………...……………………………………...29

vi

Acknowledgements

Firstly, I am thankful to Dr. William Hsu for his academic support, time, and guidance

towards completing these research project. I am also grateful to Dr. Hsu for his patience and

allowing me to become independent towards undertaking my research works. I am also thankful

to Dr. Mitchell Nielsen and Dr. Torben Amtoft for agreeing to be part of my committee and

giving me great insights regarding my work.

I am also grateful to Matt Moody and the Bellwethr team for their patience and guidance

and letting me work in numerous projects and teaching numerous coding hacks which were

highly instrumental in this project. They were more a group of like-minded people rather than

colleagues.

I am also indebted to my parents and my elder brother Dr. Suvo Chatterjee, for their

patience, guidance, and unwavering trust in me, without which I would not be here. Dr.

Chatterjee unconditional love and guidance was one of the pivotal reasons what made me who I

am.

I would also like to thank my friends Parthapratim, Avishek, Abu Maroof for their

constant love and support, they have been a family away from family.

Most importantly I would like to thank God, without his blessing nothing would have

been possible.

1

Chapter 1- Introduction

1.1. Problem Definition

A massive amount of work is required for acquisition of customers in a company, including

research, sales and marketing effort, and other costs – all of which are forfeited when a hard-

earned customer leaves a company. It is more practical for the company to retain these existing

customers, so as to increase the revenue of the company and direct this revenue to proper

channels and make the best outcomes. Knowledge-based systems and collaborative filtering are

the most prevalent methods used in industrial approaches to the task of recommendation, but

each of these approaches has its own drawbacks. In knowledge-based filtering, the greatest flaw

is that the knowledge base is static and for collaborative filtering the quality is dependent on

large historical data; this knowledge base is also prone to large statistical anomalies and reacts

slowly to drifts (1). Multi-armed bandit takes account the different strategies employed by the

marketing team and presents the outgoing customer with a suitable option from those above

strategies, which can lead to them not leaving.

According to studies done by Bain & Company, increasing customer retention by 5% can

lead to an increase in profits of 25% – 95%, and the likelihood of converting an existing

customer into a repeat customer is 60% – 70%, while the probability of converting a new lead is

5% – 20%, at best (2). Thus, we can see how important it is to use a retention engine to reduce

the churn rate.

1.2. Objective

I chose the domain of retention engine within which to apply a multi-armed bandit, since

there are any small to medium companies that don’t have access to big resources to run a

complete reinforced learning algorithm to get the best results and this in turn is making them

2

loose many of their customer base to bigger multi-national companies. The results which will be

produced from multi-armed bandits are significantly better than that of greedy and random

recommendation. I will also use a version of contextual multi-armed bandit which is a

reinforcement learning method and try to show, how much difference in result you get from

multi-armed bandit and contextual multi-armed bandit.

1.3. Overview

In this project, I use a simulated data set which represents the choice of a customer given the

various alternatives presented to them. The various choices are given a score which is binomially

distributed according to a probability p, which is continuously adjusted by the steps taken by the

agent. In the second part of the comparison I use a data set which is available online . This data

set includes descriptions of hypothetical samples corresponding to 23 species of gilled

mushrooms in the Agaricus and Lepiota Family (pp. 500-525). Each species is identified as

definitely edible, definitely poisonous, or of unknown edibility and not recommended. This latter

class was combined with the poisonous one. The Guide clearly states that there is no simple rule

for determining the edibility of a mushroom; no rule such as ”leaflets three, let it be” for poison

oak and poison ivy [3]. The results are obtained using the simulated data set and the data set

from UCI mushroom data set and compared using Thompson Sampling as the algorithm for both

MAB and CMAB. Scikit-learn (Pedregosa, Varoquaux, Gramfort, & Michel, 2011) was

instrumental in implementing the above said process. Visualization packages such as Matplotlib

(Hunter, Dale, Dorettboom, & Team, 2012) and Seaborn (Waskom, 2012-2017) were used to

compare the two process.

3

Chapter 2 – Background and Related Work

In this part of the chapter, I will introduce the MAB and CMAB used in this project. I will also

describe some of the data preprocessing used for the CMAB.

2.1 Literature Survey

Multi-armed bandit problems have been introduced by Robbins (1952) and have since been

used extensively to model the trade-offs faced by an automated agent which aims to gain new

knowledge by exploring its environment and to exploit its current, reliable knowledge. Such

problems arise frequently in practice, for example in the context of clinical trials or on-line

advertising. The multi-armed bandit problem offers a very clean, simple theoretical formulation

for analyzing trade-offs between exploration and exploitation. A comprehensive overview of

bandit problems from a statistical perspective is given in Berry & Fristedt (1985).[2]

Internet search engines, such as Google, Yahoo! and Microsoft’s Bing, receive revenue from

advertisements shown to a user’s query. Whenever a user decides to click on an ad displayed for

a search query, the advertiser pays the search engine. Thus, part of the search engine’s goal is to

display ads that are most relevant to the user in the hopes of increasing the chance of a click, and

possibly increasing its expected revenue. In order to achieve this, the search engine has to learn

over time which ads are the most relevant to display for different queries. On the one hand, it is

important to exploit currently relevant ads, and on the other hand, one should explore potentially

relevant ads. This problem can be naturally posed as a multi-armed bandit problem with context.

Here by context we mean a user’s query. Each time a query x arrives and an ad y is displayed

4

there is an (unknown) probability µ(x, y) that the user clicks on the ad.1 We call µ(x, y) the

click-through rate (or CTR) of x and y. [3]

2.2 Established Methods

2.2.1 Random Sampling

 Random sampling refers to a variety of selection techniques in which sample members

are selected by chance, but with a known probability of selection. Most social science, business,

and agricultural surveys rely on random sampling techniques for the selection of survey

participants or sample units, where the sample units may be persons, establishments, land points,

or other units for analysis. Random sampling is a critical element to the overall survey research

design. [4]

Figure 2.1 Random Sampling [5]

2.2.2 Epsilon Greedy

 The ɛ-greedy algorithm is widely used because it is very simple and has obvious

generalizations for sequential decision problems. At each round t = 1, 2, ... the algorithm

5

selects the arm with the highest empirical mean with probability 1 − ɛ, and selects a

random arm with probability ɛ. In other words, given initial empirical means µ1(0), ...,

µK(0),

pi(t + 1) = {
1 − ɛ +

ɛ

k
ɛ

𝑘

, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 , if 𝑖 =maxar𝑔𝑗=1,…,𝐾 µ𝑗 (𝑡)

 otherwise. If ɛ is held constant, only a linear bound on the expected regret can be

achieved. CesaBianchi and Fisher (1998) proved poly-logarithmic bounds for variants of

the algorithm in which ɛ decreases with time. In an earlier empirical study, Vermorel and

Mohri (2005) did not find any practical advantage to using these methods. Therefore, in

our experiments, we will only consider fixed values of ɛ.[2]

2.2.3 Multi-armed bandit

 In its simplest formulation (generally referred to as stochastic), a bandit problem

consists of a set of K probability distributions [D1, . . . , DKi] with associated expected

values [µ1, . . . , µKi] and variances [σ1
2, . . . , σk

2]. Initially, the Di are unknown to the

player. In fact, these distributions are generally interpreted as corresponding to arms on a

slot machine; the player is viewed as a gambler whose goal is to collect as much money

as possible by pulling these arms over many turns. At each turn, t = 1, 2, ..., the player

selects an arm, with index j(t), and receives a reward r(t) ∼ Dj(t). The player has a two-

fold goal: on one hand, finding out which distribution has the highest expected value; on

the other hand, gaining as much rewards as possible while playing. Bandit algorithms

specify a strategy by which the player should choose an arm j(t) at each turn. The most

6

popular performance measure for bandit algorithms is the total expected regret, defined

for any fixed turn T as:

RT = T µ∗ − ∑ 𝑢𝑗(𝑡)𝑇
𝑡=1

where µ∗ = max i=1 ,…, k µi is the expected reward from the best arm.

Alternatively, we can express the total expected regret as

RT = T µ∗ − µj(t)∑ E(Tk(T))
𝐾

𝑘=1

where Tk(T) is a random variable denoting the number of plays of arm k during the first T

turns. A classical result of Lai and Robbins (1985) states that for any suboptimal arm k,

E(Tk(T)) ≥ ln T/ D(pk||p∗)

where D(pj ||p∗) is the Kullback-Leibler divergence between the reward density pk of the

suboptimal arm and the reward density p∗ of the optimal arm, defined formally as

D(pk||p∗) = ∫ pj = ln (
𝑝𝑗

𝑝
∗)

Regret thus grows at least logarithmically, or more formally, RT = Ω(log T). An

algorithm is said to solve the multi-armed bandit problem if it can match this lower

bound, that is if RT = O(log T).

7

Figure 2.2 Multi-armed bandit[6]

2.2.4 Contextual Multi-armed bandit

In the contextual bandit problem, an agent collects rewards for actions taken over

a sequence of rounds; in each round, the agent chooses an action to take on the basis of

(i) context (or features) for the current round, as well as (ii) feedback, in the form of

rewards, obtained in previous rounds. The feedback is incomplete: in any given round,

the agent observes the reward only for the chosen action; the agent does not observe the

reward for other actions. Contextual bandit problems are found in many important

applications such as online recommendation and clinical trials and represent a natural

half-way point between supervised learning and reinforcement learning. The use of

features to encode context is inherited from supervised machine learning, while

exploration is necessary for good performance as in reinforcement learning. [7]

8

Figure 2.3 Multi-armed bandit vs Contextual Multi-armed bandit[1]

9

2.2.5 Thompson Sampling

 Thompson Sampling (Posterior Sampling or Probability Matching) is an algorithm for

choosing the actions that address the exploration-exploitation dilemma in multi-armed bandit

problem. Actions are performed several times and are called exploration. It uses training

information that evaluates the actions taken rather than instructs by giving correct actions. This is

what creates the need for active exploration, for an explicit trial-and-error search for good

behavior. Based on the results of those actions, rewards (1) or penalties (0) are given for that

action to the machine. Further actions are performed in order to maximize the reward that may

improve future performance. Suppose a robot has to pick several cans and put in a container.

Each time it puts the can to the container, it will memorize the steps followed and train itself to

perform the task with better speed and precision (reward). If the Robot is not able to put the can

in the container, it will not memorize that procedure (hence speed and performance will not

improve) and will be considered as a penalty.

Thompson Sampling has an advantage of the tendency to decrease the search as we get

more and more information, which mimics the desirable trade-off in the problem, where we want

as much information as possible in fewer searches. Hence, this algorithm has tendency to be

more “search-oriented” when we have fewer data and less “search-oriented” when we have a lot

of data.

10

Chapter 3 – Implementation

In this chapter I will discuss the implementation of the MAB and CMAB using Thompson

Sampling.

3.1 Experiment Setup

 Initially we define an environment, in which random sampling, ɛ-greedy and the MAB

will run. The environment calls an agent , the agent takes the decision of which action to run and

the environment executes it and then feeds the reward from the action taken to the agent so that

the agent can updates itself. In the random sampling algorithm, the agent simply takes a decision

randomly and then neither updates or learn from the decision taken, this method is simply put

here for a baseline for the other algorithms defined here and see how better or worse the other

defined algorithms work. In ɛ-greedy, the agent chooses a random (x) out of n-trials and on each

trial estimates the payout for each choice and updates in the environment class, after 𝑛𝑘 learning

trials it then selects 1-ɛ% of time the x that has the highest reward rate and ɛ% of the time

samples the variant randomly. In this approach the sampler explores the various variants and also

exploits the variant which has the highest return rate at the same time and while exploration it

keeps in track all the change in return rate for the various choices and chooses the optimal

variant accordingly.

The MAB algorithm using the Thompson Sampler also works on the same principle as the ɛ-

greedy but with some refinement.

• It is not greedy in nature;

• The exploration is done in more streamlined and refined manner;

• It is Bayesian in nature.

11

For simplicity of discussion, we first provide the details of Thompson Sampling algorithm for

the Bernoulli bandit problem, i.e. when the rewards are either 0 or 1, and for arm i the

probability of success (reward =1) is µi. This description of Thompson Sampling follows

closely that of Chapelle and Li (2011). Next, we propose a simple new extension of this

algorithm to general reward distributions with support [0, 1], which will allow us to seamlessly

extend our analysis for Bernoulli bandits to general stochastic bandit problem. The algorithm

for Bernoulli bandits maintains Bayesian priors on the Bernoulli means µI’s. Beta distribution

turns out to be a very convenient choice of priors for Bernoulli rewards. Let us briefly recall

that beta distributions form a family of continuous probability distributions on the interval (0,

1). The Probability Distribution Function (pdf) of Beta(α, β), the beta distribution with

parameters α > 0, β > 0, is given by

f(x; α, β) =
Γ(α + β)

𝛤(𝛼)𝛤(𝛽)
𝑥𝛼−1(1 − 𝑥)𝛽−1

The mean of Beta(α, β) is α/(α + β); and as is apparent from the pdf, higher the α, β,

tighter is the concentration of Beta(α, β) around the mean. Beta distribution is useful for

Bernoulli rewards because if the prior is a Beta(α, β) distribution, then after observing a

Bernoulli trial, the posterior distribution is simply Beta(α+1, β) or Beta(α, β+1), depending on

whether the trial resulted in a success or failure, respectively. The Thompson Sampling

algorithm initially assumes arm i to have prior Beta(1, 1) on µi, which is natural because

Beta(1, 1) is the uniform distribution on (0, 1). At time t, having observed Si(t) successes

(reward = 1) and Fi(t) failures (reward = 0) in ki(t) = Si(t) + Fi(t) plays of arm i, the algorithm

updates the distribution on µi as Beta(Si(t) + 1, Fi(t) + 1). The algorithm then samples

12

from these posterior distributions of the µi’s, and plays an arm according to the probability of its

mean being the largest. We summarize the Thompson Sampling algorithm below.

We adapt the Bernoulli Thompson sampling algorithm to the general stochastic bandits case, i.e.

when the rewards for arm i are generated from an arbitrary unknown distribution with support [0,

1] and mean µi, in a way that allows us to reuse our analysis of the Bernoulli case. To our

knowledge, this adaptation is new. We modify TS so that after observing the reward r˜t ∈ [0, 1]

at time t, it performs a Bernoulli trial with success probability r˜t. Let random variable rt denote

the outcome of this Bernoulli trial, and let {Si(t), Fi(t)} denote the number of successes and

failures in the Bernoulli trials until time t. The remaining algorithm is the same as for Bernoulli

bandits.

Thus, the probability of observing rt = 1 is same and Si(t), Fi(t) evolve exactly in the

same way as in the case of Bernoulli bandits with mean µi. Therefore, the analysis of TS for

Bernoulli setting is applicable to this modified TS for the general setting. This allows us to

replace, for the purpose of analysis, the problem with general stochastic bandits with Bernoulli

bandits with the same means. We remark that instead of using rt, we could consider more direct

and natural updates of type Beta(αi, βi) to Beta(αi + ˜rt, βi + 1 − rt). (Agrawal & Goyal, 2012)

Thompson Sampling (Posterior Sampling or Probability Matching) is an algorithm for

choosing the actions that address the exploration-exploitation dilemma in multi-armed bandit

problem. Actions are performed several times and are called exploration. It uses training

information that evaluates the actions taken rather than instructs by giving correct actions. This is

what creates the need for active exploration, for an explicit trial-and-error search for good

behavior. Based on the results of those actions, rewards (1) or penalties (0) are given for that

13

action to the machine. Further actions are performed in order to maximize the reward that may

improve future performance. Suppose a robot has to pick several cans and put in a container.

Each time it puts the can to the container, it will memorize the steps followed and train itself to

perform the task with better speed and precision (reward). If the Robot is not able to put the can

in the container, it will not memorize that procedure (hence speed and performance will not

improve) and will be considered as a penalty.

The CMAB was implemented using the python package contextual bandit which is based

“Deep Bayesian Bandits Showdown: An Empirical Comparison of Bayesian Deep Networks for

Thompson Sampling” . Thompson Sampling is a meta-algorithm that chooses an action for the

contextual bandit in a statistically efficient manner, simultaneously finding the best arm while

attempting to incur low cost. Informally speaking, we assume the expected reward is given by

some function E[rt | Xt, at] = f(Xt, at). Unfortunately, function f is unknown, as otherwise we

could just choose the action with highest expected value: at* = arg maxi f(Xt, at).

The idea behind Thompson Sampling is based on keeping a posterior distribution πt over

functions in some family f ∈ F after observing the first t-1 datapoints. Then, at time t, we sample

one potential explanation of the underlying process: ft ∼ πt, and act optimally (i.e., greedily)

according to ft. In other words, we choose at = arg maxi ft(Xt, ai). Finally, we update our

posterior distribution with the new collected datapoint (Xt, at, rt).

The main issue is that keeping an updated posterior πt (or, even, sampling from it) is

often intractable for highly parameterized models like deep neural networks. [8]

3.2 Data set

14

 Mushroom Data set contain 8124 attributes and 22 features collected from 23 species of

gilled mushrooms in the Agaricus and Lepiota family, each species has been defined as edible or

inedible.

15

Chapter 4 - Experimental Results

4.1 Regret

 Regret is calculated by subtracting the reward of the choice by the maximum available

reward in a given turn.

Regi = max(Ri) – Ri, where Ri = reward chosen in the ith iteration

4.2 Cumulative Regret

 The sum of the regret generated over one simulation.

 𝑅𝑡𝑜𝑡𝑎𝑙= ∑ 𝑟𝑒𝑔𝑟𝑒𝑡𝑛
𝑖=1

4.3 Variant Selection

 A plot which shows how different variants are sampled in random, ɛ-greedy and in MAB.

4.4 Score

 Total reward gained by an agent per simulation. It is the cumulative valuation of the total

reward received per trial.

16

Figure 4.1 Comparison of random, ɛ-greedy and MAB score

In the above figure, we can clearly see the different score of random, epsilon-greedy and

MAB. MAB outperforms random sampling but is near to epsilon-greedy apart from some sub-

optimal points where epsilon greedy gets stuck and produces a bad score. Using seaborn[9] and

matplotlib[10] we plot these graphs.

17

Figure 4.2 Variant Sampling in Random Sampler

The figure above shows, how the variant(arms) are selected in a random sampler which clearly

shows that it randomly selects all the arms. The concept of random sampling is total exploration

and no exploitation. The color coding for 0, 1, 2 and 3 were only used since we are dealing with

only 4 arms.

18

Figure 4.3 Variant Sampling in ɛ-greedy

The figure clearly depicts of total exploitation of the best arm and random exploration in ɛ%

times, so the rest of the arms are randomly picked, and no information is collected from the

exploration. The color coding for 0, 1, 2 and 3 were only used since we are dealing with only 4

arms.

19

Figure 4.4 Variant Sampling in Thompson Sampler

It can be clearly seen that the Thompson takes a more refined and selection, because it exploits

the best option which is arm 3 but it also constantly visits arm 0 and arm 1, because they have a

clear posterior probability distribution which is better than arm 2. The color coding for 0, 1, 2

and 3 were only used since we are dealing with only 4 arms.

20

Figure 4.5 Regret for ɛ-greedy

The graph shows clearly the regret of the epsilon greedy process over iterations. We can clearly

see that; the regret has a steep incline but after enough iteration it seems to bottom out and

converge.

21

Figure 4.6 Per-period regret for random, ɛ-greedy and MAB

This plot shows the per trial regret. It can be clearly seen that Thompson sampling converge very

quickly to a point of less regret, than that of ɛ-greedy but random sampling has no convergence

at all.

22

Figure 4.7 Cumulative regret of random sampling, ɛ-greedy and MAB

We can clearly see that Thompson Sampling converges better and reduces the regret better. The

slope of ɛ- greedy is much steeper than the Thompson Sampling. Random Sampling is the worst

of the three, but that was expected.

23

Figure 4.8 Beta distribution of 4 machines initially

In the beginning the posterior distribution of all the arms are set at zero, since we got no information

regarding the success and failures of the respective arms.

24

Figure 4.9 Beta distribution of 4 machines after 500 runs

After 500 iteration we can see how the posterior distribution starts to change and we can clearly

see that arm 3 has the best posterior distribution but arm 2 and arm 1 are very alike each other.

25

Figure 4.10 Beta distribution of 4 machines after 1000 runs

After 1000 iteration we still can see that arm 4 wins over the rest of the alternatives, but the

posterior distribution of the arm 1 gets better than arm 1, but still inconclusive to separate from

each other.

26

Figure 4.11 Beta distribution of 4 machines after 5000 runs

In the figure we see a stark difference in the posterior distribution of the arms where clearly arm 3

clearly but we see the difference in the posterior probability in arm 1 and arm 2. This clearly

suggests that the arm 2 has more success in relation to arm 1.

27

Figure 4.12 Beta distribution of 4 machines after 10000 runs

The posterior distribution of the arm 0 and arm 1 are now very close to each other but we can see

the clear winner that is arm 3 whose posterior distribution is higher than the rest of the other

arms.

28

Figure 4.13 Beta distribution of 4 machines after 200000 runs

The final posterior distribution of the arms where we can clearly see it begins to converge to the

best alternative of the arms, which in our case is the arm 3.

29

Figure 4.14 CMAB score on mushroom data set

The screenshot shows that the score of the Contextual Bandit when used on Mushroom data set

from UCI [11] with Thompson Sampling has the best score of 4990. The data set has two labels

only one is poisonous and edible.

30

Figure 4.15 MAB score on Mushroom data set

Using the same UCI Mushroom data set on the MAB using Thompson Sampling, we get a higher

score than the CMAB. The same test parameters were maintained in both CMAB and MAB.

While running a cross validation accuracy precision on MAB and Logistic regression, the mean

score of MAB was found to be 0.967 whereas the mean score of Logistic Regression was 0.996.

31

Chapter 5 – Result & Analysis

Under the same condition and data set, MAB produced a better result than CMAB as was

stated above with the MAB score being 5991 and CMAB score 4990. According to literature

review it was found that CMAB will out-perform MAB, but in our case, it was found to be not

true, and MAB outperformed random and ɛ-greedy algorithms.

The justification can be said that due to simplification of the data set, the problem transformed

into a 2 armed bandit problem, and since the number of non-poisonous mushroom were

greater, so the posterior probability of the non-poisonous was higher than that of the poisonous

which made the algorithm choose the non-poisonous more than that of the poisonous, which in

turn made the reward greater than the CMAB.

32

Chapter 6 – Future Work

The topic of recommender system is one of the most sorts after research topic in this day and

age, from recommending a song or a drug for cancer treatment depends on a versatile and

adaptable algorithm. Introduction of MAB in the art of movies has already increased Netflix

customer base by 20%. This idea is also being used in retention system, companies like

Bellwethr are using the same strategies to retent customer and reduce the churn rate. This

method can be used to build a better search engine and also can be used to build better routing

technique . This application has many utility and can be used in many number of places.

33

References

[1] A. Juliani, “Simple Reinforcement Learning with Tensorflow Part 1.5: Contextual

Bandits.” [Online]. Available: https://medium.com/emergent-future/simple-reinforcement-

learning-with-tensorflow-part-1-5-contextual-bandits-bff01d1aad9c.

[2] V. Kuleshov and D. Precup, “Algorithms for multi-armed bandit problems,” Feb. 2014.

[3] M. Lu, T., Pál, D., & Pál, “Contextual multi-armed bandits,” Proc. Thirteen. Int. Conf.

Artif. Intell. Stat., pp. 485–492.

[4] “Random Sampling,” in Encyclopedia of Survey Research Methods, 2455 Teller Road,

Thousand Oaks California 91320 United States of America: Sage Publications, Inc.

[5] “Research Methodology.” [Online]. Available: https://research-

methodology.net/sampling-in-primary-data-collection/random-sampling/.

[6] A. Wong, “Solving the Multi-Armed Bandit Problem.” [Online]. Available:

https://towardsdatascience.com/solving-the-multi-armed-bandit-problem-b72de40db97c.

[7] A. Agarwal, D. Hsu, S. Kale, J. Langford, L. Li, and R. E. Schapire, “Taming the monster:

A fast and simple algorithm for contextual bandits,” in 31st International Conference on

Machine Learning, ICML 2014, 2014.

[8] C. Riquelme, G. Tucker, and J. Snoek, “Deep Bayesian Bandits Showdown: An Empirical

Comparison of Bayesian Deep Networks for Thompson Sampling,” Feb. 2018.

[9] M. Waskom, “Seaborn: Statistical Data Visualization.” [Online]. Available:

https://seaborn.pydata.org/.

[10] M. D. Hunter, J., Dale, D., Dorettboom, M., & Team, “Matplotlib,” 2012. [Online].

Available: https://matplotlib.org/.

34

[11] C. L. Blake and C. J. Merz, “UCI Repository of machine learning databases,” Univ. Calif.,

1998.

