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We investigate the efficient generation of low-divergence high-order harmonics driven by waveform-
optimized laser pulses in a gas-filled hollow waveguide. The drive waveform is obtained by synthesizing
two-color laser pulses, optimized such that highest harmonic yields are emitted from each atom.
Optimization of the gas pressure and waveguide configuration has enabled us to produce bright and
spatially coherent harmonics extending from the extreme ultraviolet to soft x rays. Our study on the interplay
among waveguide mode, atomic dispersion, and plasma effect uncovers how dynamic phase matching
is accomplished and how an optimized waveform is maintained when optimal waveguide parameters
(radius and length) and gas pressure are identified. Our analysis should help laboratory development in the
generation of high-flux bright coherent soft x rays as tabletop light sources for applications.
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In science and technology, light sources in different
specific spectral regions are often needed for numerous
applications, such as photochemistry, imaging, and material
processing. Large national facilities like synchrotron radi-
ation sources or free-electron lasers have been built to serve
these purposes. However, it is desirable that broadband
lights are available as dedicated tabletop equipment in more
laboratories. From nonlinear optics, it has been known that
laser light can be converted from onewavelength to another.
Recent research has shown that the extreme nonlinear
interaction of infrared lasers with gas media can generate
high-order harmonics (HHs) extending to 1.5 keV [1].
Today, the main limitation that prevents HH from evolving
as a useful light source is its low conversion efficiency.
To improve harmonic efficiency, multicolor sinusoidal

fields have been synthesized to modify the drive waveform
in away such that harmonic emission from each atom can be
enhanced [2–9]. This approach has become very favorable
recently because of technological advances in optics
[10–19]. In our recent works [8,9], a general optimization
scheme was proposed to obtain the best waveform such that
the maximum HH yield from a single atom can be achieved
by synthesizing two- or three-color fields. The harmonics
generated from such an optimizedwaveformare better phase
matched in the gas medium; thus, they would also exhibit
better spatial coherence. These harmonics are important
for applications, especially for coherent x-ray imaging, since
refocusing beams in these spectral ranges incurs large
energy loss.
In this Letter, we choose a hollow waveguide filled with

gas as the generating medium because the diffraction of the
laser beam is eliminated and nearly constant laser intensity
can be maintained for an extended interaction length, which

are favorable to the phase matching in general. The
waveguide further decouples the laser’s geometric phase
along the radial distance. This makes the hollow waveguide
an ideal setup to keep a constant waveform as the laser
propagates. The hollow waveguide has been widely used
[20] in harmonic generation experiments: for temporal
and spatial pulse shaping of the driving laser [21,22],
quasiphase matching (QPM) [23,24], fully phase-matched
harmonic generation [25–27], cutoff extension with mid-
infrared lasers [28,29], and the selection of electron
trajectories [30].
Toachievehighlyefficient, brightHHgeneration in the soft

x-ray range, we propose to combine two advanced laser
technologies: waveform synthesis and laser guiding by the
waveguide.We identify the optimal conditions for generating
best-quality harmonics and uncover the underlying mecha-
nism of dynamic phase matching. We show that the best
phase-matched harmonics from the extreme ultraviolet
(XUV) to soft x rays have low divergences (smaller than
1mrad),whichcanbecompared tovacuumultraviolet (VUV)
or XUV harmonics generated by traditional 800-nm lasers
[31–36]. In comparison, soft x-ray harmonics generated with
a midinfrared laser alone reported the full divergence angle
of about 7 mrad [37] or 4 to 8 mrad [38] (half divergence
angle should be compared to 1 mrad). The details of our
simulations are given in the Supplemental Material [39].
To discuss the benefit of using a synthesized waveform,

we first show the total harmonic yield at the exit of the
hollow waveguide (near field) generated by the waveform
(WF) of 1.6- and 0.533-μm laser pulses in Fig. 1(a). The
laser parameters are shown in Table I (see WF1). To
achieve the highest cutoff of about 250 eV (close to the
single-atom cutoff) and the highest harmonic yield
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simultaneously, we have varied both the waveguide length
and the gas pressure, and found that the optimal values
were 5 mm and 50 torr. In Fig. 1(a), we also show the total
harmonic yield generated by the 1.6-μm laser alonewith the
peak intensity of 3.0 × 1014 W=cm2 under the same con-
dition. Clearly, WF1 generates harmonic yields about 1 to 2
orders of magnitude higher than the single-color (SC) pulse
without much increase of the laser power.
The harmonic emissions in the far field for the two cases

are shown in Figs. 1(c) and 1(d), where harmonic yields
have been normalized to the maximum value in each figure
independently. We can see desirable features in harmonics
generated with WF1. Figure 1(c) shows that high harmonics
covering from 70 to 250 eV are strongly localized at the
propagation axis—their divergence is found to be within
1mrad. For SC [seeFig. 1(d)], the harmonics generated in the
same spectral region are located mostly off the axis. If one
uses an aperture to filter out harmonicswith divergence larger
than 1 mrad (this is a common procedure for selecting the
generated XUV harmonics as a light source, for example, in
attosecond experiments), the harmonic yields with WF1 are
mostly unchanged but are reduced significantly with SC.
Figure 1(b) shows more than 3 orders of magnitude differ-
ence in useful high harmonics when one comparesWF1with
SC. Note that the harmonics generated by the optimized
waveform (WF1) in free space show poor spatial coherence
and reduced plateau (see the Supplemental Material [39]).
We have checked that at the optimal pressure of 50 torr,

the spatially coherent, low-divergence high harmonics can

still be obtained with the WF1 pulse when the waveguide
length is reduced to 3 mm. What about the harmonics if the
gas pressure is changed?We consider two pressures, 10 and
100 torr, at the same waveguide length of 5 mm. The results
of harmonic emission in the far field are shown in Figs. 1(e)
and 1(f). For the 10-torr case, high harmonics are located
both on axis and off axis, showing poor spatial distribution
even though the cutoff of 250 eV is maintained. For the
100-torr case, the harmonics from 70 to 180 eV have low
divergence angles, but the cutoff energy is greatly reduced.
These results imply that phase matching of harmonic
generation in the gas medium is very complicated. It is
of interest to take a closer look at how phase matching
works in the three gas pressures studied here.
It is well known that HHs are emitted from the

recombination of “long”- and “short”-trajectory electrons
with atomic ions. Since the accumulated phase of the long-
trajectory harmonics is large and highly dependent on
the driving laser intensity, these harmonics not only are
difficult to phase match (longitudinal intensity change) but
also have a large divergence in the far field (transverse
intensity distribution) [57,58]. Therefore, short-trajectory
components are favorable for the phase matching of
HHs and thereby the generation of bright, low-divergence
harmonics with excellent spatial coherence. However,
for SC pulses, harmonic yields from each atom are much
stronger for the long-trajectory electrons, especially for
long-wavelength driving lasers [59]. On the other hand,
the optimized waveforms in Ref. [8], including WF1 used
here, were obtained to enhance the emission from short-
trajectory electrons while suppressing the emission from
long-trajectory electrons. Excellent phase matching with a
waveform-optimized pulse like WF1 can be achieved when
the following two conditions are satisfied: (i) the optimized
waveform, especially the optimal relative phase between
the two colors, needs to be maintained in the whole
interaction volume; and (ii) HHs generated in the medium
have to be phase matched over the entire interaction region.
In the following, we demonstrate how gas pressure affects
dynamic phase matching by evaluating how these two
conditions are satisfied inside the waveguide.
As the laser propagates inside the waveguide, it is

dispersed by the waveguide mode, neutral atom dispersion,
and plasma. These factors enter in the refractive index for
each color represented by [22]

nl ≈ 1 −
μ21λ

2
l

8π2a2
þ pð1 − ηÞδ1ðλlÞ −

pηn0reλ2l
2π

: ð1Þ

Here, μ1 is the mode factor (¼ 2.405 for fundamental EH11

mode), a the radius of the waveguide, p the pressure,
η the ionization level, δl the neutral atom dispersion, n0 the
neutral atomic density, and re the classical electron radius.
Each correction term on the right-hand side of Eq. (1)
contributes to the time shift (or group delay) with respect
to the reference frame (moving at the speed of light). For

FIG. 1 (color online). (a) Total harmonic yield emitted at the
exit of the hollow waveguide and (b) harmonic yield integrated
within 1 mrad using an aperture in the far field for two-color
(1.6þ 0.533 μm ) waveform (WF1 in Table I) and single-color
(SC) laser, where gas pressure is 50 torr. The corresponding
harmonic divergences in the far field given for WF1 (c) and for
SC (d). Harmonic divergences of WF1 shown for two other gas
pressures: 10 torr (e) and 100 torr (f). Length and radius of the
waveguide are 5 mm and 125 μm , respectively. The vertical
fringes in (c)–(f) represent individual harmonics.
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an ideal full phase-matching condition, the electric field
remains the same within the waveguide. However, this is
not possible since, due to dispersion, the ionization level
decreases with the propagation distance. On the other
hand, the ionization level increases with time as the field
strength increases. Thus one has to consider dynamic
phase-matching conditions.
In Fig. 2, we show the on-axis electric fields in the

reference frame at three propagation positions z ¼ 0, 1, and
5 mm, for the three gas pressures studied in Fig. 1. For the
10-torr case, we draw attention to electric fields (marked by
circles) where electrons are born that are to contribute to the
harmonic generation. The phase of the electric field shifts
monotonically to the left with increasing z. This leads to
phase mismatch between harmonics generated from differ-
ent positions of the waveguide, thus, resulting in harmonic
spectra shown in Fig. 1(e). For the optimal phase-matched
pressure of 50 torr, at the same marked times, the electric
fields at z ¼ 1 and 5 mm (as well as the region in between)
overlap very well, indicating the harmonics will be well
phase matched. At the leading edge, dispersion from the
waveguide mode is compensated by the neutral atom
dispersion. At the trailing edge, the atomic dispersion is
compensated by the plasma effect. The different behaviors
in leading and trailing edges at each z show the dynamic
phase-matching features when the laser pulse propagates
from the entrance to the exit of the waveguide. If the
pressure is increased to 100 torr, the peak electric fields are
reduced, leading to significant reduction in cutoff energy.
At higher pressure, harmonics from long-trajectory elec-
trons tend to suffer phase mismatch more significantly;
thus, large divergence harmonics are not visible anymore
[see Fig. 1(f)]. Figure 2 serves to illustrate the effect of
pressure on dynamic phase-matching phenomena.

We next investigate if the propagated laser pulses
maintain their optimized waveforms, especially the relative
phases between the two colors. As shown previously in
Ref. [8], if the relative phase of a waveform is within�0.2π
from the optimized value, the short-trajectory harmonics
still dominate and the harmonic cutoff and yield can be
maintained (see supplementary Fig. 3 for Ref. [8]). For the
input WF1, we use WF2 to mimic the on-axis electric field
at 5 mm. The parameters of both waveforms are given
in Table I and the electric fields are plotted in Fig. 3(a).
(Time-frequency analysis of harmonic emission is given
in the Supplemental Material [39].) Compared to WF1, the
relative phase between the two colors is reduced by 0.2π
(equivalent to a time shift of 178 as for the 0.533-μm laser)
and the field strength of each color decreases somewhat
due to the dispersion effect in the medium.
First, we consider the time shift of each component of the

incident two-color pulse due to mode dispersion. In Eq. (1),
this term does not depend on the pressure; thus, it is the
dominant dispersion term at low pressure. In Table II, the
time shift from this term at 5 mm is 200 as for the 1.60-μm
component and 22 as for the 0.533-μm component. This
accounts for the 178 as time shift in the relative phase
compared to WF1. We fix WF1 in the reference frame
and move WF2 in Fig. 3(a) 200 as to the left. The resulting
field is compared to the electric field calculated from the
numerical simulation for the case of 10-torr pressure [see
Fig. 3(b)]. Clearly, the two fields overlap well, demonstrat-
ing that at low pressure the field inside the waveguide is
dominated by the mode dispersion. Next, we consider the
time shift at z ¼ 5 mm for pressure at 50 torr. Table II
shows that the time shifts due to neutral atom dispersion are
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FIG. 2 (color online). On-axis electric fields of two-color
waveform at three gas pressures: (a) 10 torr, (b) 50 torr, and
(c) 100 torr. The electric fields are shown at the entrance (0 mm),
inside (1 mm), and at the exit (5 mm) of the waveguide. Enlarged
views of the electric fields are indicated. Circles indicate where
the electrons are ionized. Radius of the waveguide is 125 μm
(OC means the optical cycle of the 1.6-μm laser).

TABLE I. Laser parameters for two-color waveforms. Wave-
form WF1 is the on-axis initial electric field from Ref. [8].
WF2 mimics the on-axis electric field at the exit of the waveguide
(5-mm long and 125-μm radius) filled with neon gas (50 torr).
λ1 ¼ 1600 nm, λ2 ¼ λ1=3, and ϕ1 ¼ 0. Peak intensities (jE1j2
and jE2j2) are in 1014 W=cm2.

Waveform jE1j2 jE2j2 ϕ2

WF1 1.98 1.32 1.36 π
WF2 1.80 1.20 1.16 π

TABLE II. Time shift of the two colors with respect to the
reference frame at the exit of the waveguide (5-mm long and
125-μm radius) filled with neon gas (50 torr). The ionization level
is 0.54%, calculated by the Ammosov-Delone-Krainov (ADK)
formula [60,61] at the end of WF2 pulse in Table I. Positive
(negative) time means the laser pulse moves faster (slower) than
the reference frame.

λl Mode Atomic Plasma

1600 nm 200 as −72.9 as 183 as
533 nm 22 as −73.4 as 20 as
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about the same for the two colors. If we assume that the
ionization level at z ¼ 5 mm is constant at 0.54%, the time
shifts for the two colors are 183 and 22 as. However, the
ionization level also increases with time. The time shift of
the laser pulse from the plasma dispersion is time depen-
dent, characterized by a time-dependent factor 50η0ðt0Þ as,
where η0ðt0Þ is the scaled ionization probability. To account
for neutral atom dispersion, we move WF2 in Fig. 3(b) by
73 as to the right. Finally, we move it by 50η0ðt0Þ as to the
left for the plasma effect. Thus, we obtain the final electric
field which is shown to agree well with the numerical
one directly from simulation [see Fig. 3(c)]. This analysis
demonstrates the different roles played by the three
dispersion terms in the waveguide. More details about
the calculation of time shift and η0ðt0Þ are given in the
Supplemental Material [39].
In short, we have uncovered that at the optimal con-

dition, the propagated two-color waveforms maintain the
same properties as the initial one. Together with dynamic
phase matching, highly spatially coherent HHs are thus
generated. Note that phase matching only occurs within the
central part of a laser pulse at high gas pressure and low
ionization level [28,62].
In the discussions above, the radius of the waveguide

is fixed at 125 μm . Next, we consider the effect of the
waveguide radius, which is another key parameter of a
hollowwaveguide.We chose two radii, 75 and 200 μm , and
searched the optimal waveguide length and gas pressure to
ensure the best cutoff and harmonic yield. For 75 ð200Þ μm,
the optimal values of length and pressure are 1 mm and
120 torr (7 mm and 20 torr). The incident two-color beam

waist is adjusted to ensure that the EH11 mode is guided.
Thus, the input laser pulse energies are different in these two
cases. The normalized harmonic emissions in the far field for
two radii are shown in Fig. 4. For both cases, we can see
highly localized on-axis harmonic emission. Note that the
total harmonic yield of the 200-μm case is much stronger
than the 75-μm one (not shown). Therefore, the physical
mechanism proposed before is still valid if the radius of the
waveguide is changed.
In summary, we investigated the generation of bright and

spatially coherent high harmonics from the XUV to soft
x rays by using waveform-optimized two-color pulses in
a hollowwaveguide. The physics behind this behavior is the
dynamic phase-matching conditions. With technology
advances of the waveform synthesis [16–19,63] and hun-
dreds kHz and MHz high-repetition-rate lasers [34,36,64],
our analysis promises to be a powerful tool for realizing all-
purpose tabletop coherent light pulses available in many
laboratories.
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